aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase2754
-rw-r--r--src/share/algebra/category.daase5159
-rw-r--r--src/share/algebra/compress.daase1358
-rw-r--r--src/share/algebra/interp.daase10219
-rw-r--r--src/share/algebra/operation.daase33346
5 files changed, 26456 insertions, 26380 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index ca84745d..2a1ed37d 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2275580 . 3440300497)
+(2277573 . 3440472337)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4380 . T) (-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4376 . T) (-4381 . T) (-4375 . T))
+((-4387 . T) (-4385 . T) (-4384 . T) ((-4392 "*") . T) (-4383 . T) (-4388 . T) (-4382 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3189)
+(-32 R -3214)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
+((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)))
+((|HasAttribute| |#1| (QUOTE -4390)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3189 UP UPUP -3142)
+(-40 -3214 UP UPUP -2912)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4376 |has| (-406 |#2|) (-362)) (-4381 |has| (-406 |#2|) (-362)) (-4375 |has| (-406 |#2|) (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3994 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3994 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3994 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3994 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
-(-41 R -3189)
+((-4383 |has| (-406 |#2|) (-362)) (-4388 |has| (-406 |#2|) (-362)) (-4382 |has| (-406 |#2|) (-362)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4007 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4007 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4007 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-561)))) (-4007 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+(-41 R -3214)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-306))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4380 |has| |#1| (-550)) (-4378 . T) (-4377 . T))
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))))
+((-4387 |has| |#1| (-553)) (-4385 . T) (-4384 . T))
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4383 . T) (-4384 . T))
-((-3994 (-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|))))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))))
+((-4390 . T) (-4391 . T))
+((-4007 (-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|))))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4380 . T))
+((-4387 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3189)
+(-54 |Base| R -3214)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-61 -3179)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-61 -3269)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3179)
+(-62 -3269)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3179)
+(-63 -3269)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3179)
+(-64 -3269)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3179)
+(-65 -3269)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3179)
+(-66 -3269)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3179)
+(-67 -3269)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3179)
+(-68 -3269)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3179)
+(-69 -3269)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3179)
+(-70 -3269)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3179)
+(-71 -3269)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3179)
+(-72 -3269)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3179)
+(-73 -3269)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3179)
+(-74 -3269)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3179)
+(-77 -3269)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -3179)
+(-78 -3269)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3179)
+(-79 -3269)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3179)
+(-80 -3269)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3179)
+(-81 -3269)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3179)
+(-82 -3269)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3179)
+(-83 -3269)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3179)
+(-84 -3269)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3179)
+(-85 -3269)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3179)
+(-86 -3269)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3179)
+(-87 -3269)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3179)
+(-88 -3269)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -3179)
+(-89 -3269)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-362))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4383 . T))
+((-4390 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4383 . T) ((-4385 "*") . T) (-4384 . T) (-4380 . T) (-4378 . T) (-4377 . T) (-4376 . T) (-4381 . T) (-4375 . T) (-4374 . T) (-4373 . T) (-4372 . T) (-4371 . T) (-4379 . T) (-4382 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4370 . T))
+((-4390 . T) ((-4392 "*") . T) (-4391 . T) (-4387 . T) (-4385 . T) (-4384 . T) (-4383 . T) (-4388 . T) (-4382 . T) (-4381 . T) (-4380 . T) (-4379 . T) (-4378 . T) (-4386 . T) (-4389 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4377 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4380 . T))
+((-4387 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4385 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4392 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4383 . T))
+((-4390 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4384 . T))
+((-4391 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3994 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4007 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-856)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -383,27 +383,27 @@ NIL
(-113 A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-841))))
+((|HasCategory| |#1| (QUOTE (-844))))
(-114)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -3189 UP)
+(-115 -3214 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-899))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-116 |#1|) (QUOTE (-1012))) (|HasCategory| (-116 |#1|) (QUOTE (-811))) (-3994 (|HasCategory| (-116 |#1|) (QUOTE (-811))) (|HasCategory| (-116 |#1|) (QUOTE (-841)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-1138))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (|HasCategory| (-116 |#1|) (QUOTE (-144)))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-902))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-116 |#1|) (QUOTE (-1015))) (|HasCategory| (-116 |#1|) (QUOTE (-814))) (-4007 (|HasCategory| (-116 |#1|) (QUOTE (-814))) (|HasCategory| (-116 |#1|) (QUOTE (-844)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-116 |#1|) (QUOTE (-1141))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-902)))) (|HasCategory| (-116 |#1|) (QUOTE (-144)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4384)))
+((|HasAttribute| |#1| (QUOTE -4391)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-3994 (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-129) (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087)))) (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))))
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| (-129) (QUOTE (-844))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-4007 (-12 (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| (-129) (QUOTE (-844))) (|HasCategory| (-129) (QUOTE (-1090)))) (|HasCategory| (-129) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-129) (QUOTE (-1090))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -462,13 +462,13 @@ NIL
NIL
(-133)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4385 "*") . T))
+(((-4392 "*") . T))
NIL
-(-134 |minix| -1470 S T$)
+(-134 |minix| -2164 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-135 |minix| -1470 R)
+(-135 |minix| -2164 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -490,8 +490,8 @@ NIL
NIL
(-140)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4383 . T) (-4373 . T) (-4384 . T))
-((-3994 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+((-4390 . T) (-4380 . T) (-4391 . T))
+((-4007 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
(-141 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -506,7 +506,7 @@ NIL
NIL
(-144)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4380 . T))
+((-4387 . T))
NIL
(-145 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -514,9 +514,9 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-147 -3189 UP UPUP)
+(-147 -3214 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -527,14 +527,14 @@ NIL
(-149 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasAttribute| |#1| (QUOTE -4383)))
+((|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasAttribute| |#1| (QUOTE -4390)))
(-150 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-151 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4378 . T) (-4377 . T) (-4380 . T))
+((-4385 . T) (-4384 . T) (-4387 . T))
NIL
(-152)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -556,7 +556,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-157 R -3189)
+(-157 R -3214)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -587,10 +587,10 @@ NIL
(-164 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasAttribute| |#2| (QUOTE -4382)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-841))))
+((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4386)) (|HasAttribute| |#2| (QUOTE -4389)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-844))))
(-165 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
-((-4376 -3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4379 |has| |#1| (-6 -4379)) (-4382 |has| |#1| (-6 -4382)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 -4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4386 |has| |#1| (-6 -4386)) (-4389 |has| |#1| (-6 -4389)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-166 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -602,8 +602,8 @@ NIL
NIL
(-168 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4376 -3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4379 |has| |#1| (-6 -4379)) (-4382 |has| |#1| (-6 -4382)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-819)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1185)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1048))) (-12 (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasAttribute| |#1| (QUOTE -4379)) (|HasAttribute| |#1| (QUOTE -4382)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-348)))))
+((-4383 -4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4386 |has| |#1| (-6 -4386)) (-4389 |has| |#1| (-6 -4389)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1015)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1190)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-902))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-902))))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasAttribute| |#1| (QUOTE -4386)) (|HasAttribute| |#1| (QUOTE -4389)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-348)))))
(-169 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -614,7 +614,7 @@ NIL
NIL
(-171)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-172)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -622,7 +622,7 @@ NIL
NIL
(-173 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4385 "*") . T) (-4376 . T) (-4381 . T) (-4375 . T) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") . T) (-4383 . T) (-4388 . T) (-4382 . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-174)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -639,7 +639,7 @@ NIL
(-177 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-942 |#2|) (LIST (QUOTE -876) (|devaluate| |#1|))))
+((|HasCategory| (-945 |#2|) (LIST (QUOTE -879) (|devaluate| |#1|))))
(-178 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -676,7 +676,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")))
NIL
NIL
-(-187 R -3189)
+(-187 R -3214)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -784,23 +784,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-214 -3189 UP UPUP R)
+(-214 -3214 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-215 -3189 FP)
+(-215 -3214 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-216)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3994 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4007 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
(-217)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-218 R -3189)
+(-218 R -3214)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -814,19 +814,19 @@ NIL
NIL
(-221 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-222 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-223 R -3189)
+(-223 R -3214)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-224)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1422 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-1417 . T) (-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-225)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -834,23 +834,23 @@ NIL
NIL
(-226 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4385 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))) (|HasAttribute| |#1| (QUOTE (-4392 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-227 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-228 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4384 . T))
+((-4391 . T))
NIL
(-229 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))))
(-230 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4380 . T))
+((-4387 . T))
NIL
(-231 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -858,36 +858,36 @@ NIL
NIL
(-232)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4380 . T))
+((-4387 . T))
NIL
(-233 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)))
+((|HasAttribute| |#1| (QUOTE -4390)))
(-234 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4384 . T))
+((-4391 . T))
NIL
(-235)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-236 S -1470 R)
+(-236 S -2164 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasAttribute| |#3| (QUOTE -4380)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087))))
-(-237 -1470 R)
+((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasAttribute| |#3| (QUOTE -4387)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1090))))
+(-237 -2164 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
+((-4384 |has| |#2| (-1042)) (-4385 |has| |#2| (-1042)) (-4387 |has| |#2| (-6 -4387)) ((-4392 "*") |has| |#2| (-171)) (-4390 . T))
NIL
-(-238 -1470 A B)
+(-238 -2164 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-239 -1470 R)
+(-239 -2164 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3994 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3994 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+((-4384 |has| |#2| (-1042)) (-4385 |has| |#2| (-1042)) (-4387 |has| |#2| (-6 -4387)) ((-4392 "*") |has| |#2| (-171)) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-362))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-4007 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4007 (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4387)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-240)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -898,7 +898,7 @@ NIL
NIL
(-242)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4376 . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-243 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -906,16 +906,16 @@ NIL
NIL
(-244 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-245 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-246 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4392 "*") |has| |#2| (-171)) (-4383 |has| |#2| (-553)) (-4388 |has| |#2| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-902))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4388)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-247)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -926,23 +926,23 @@ NIL
NIL
(-249 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4380 -3994 (-2157 (|has| |#4| (-1039)) (|has| |#4| (-232))) (-2157 (|has| |#4| (-1039)) (|has| |#4| (-890 (-1163)))) (|has| |#4| (-6 -4380)) (-2157 (|has| |#4| (-1039)) (|has| |#4| (-631 (-558))))) (-4377 |has| |#4| (-1039)) (-4378 |has| |#4| (-1039)) ((-4385 "*") |has| |#4| (-171)) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-362))) (-3994 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3994 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (QUOTE (-784))) (-3994 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-839)))) (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-171))) (-3994 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-717)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-784)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-839)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087))))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3994 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-717))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3994 (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087)))) (-3994 (|HasAttribute| |#4| (QUOTE -4380)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))))
+((-4387 -4007 (-2170 (|has| |#4| (-1042)) (|has| |#4| (-232))) (-2170 (|has| |#4| (-1042)) (|has| |#4| (-893 (-1166)))) (|has| |#4| (-6 -4387)) (-2170 (|has| |#4| (-1042)) (|has| |#4| (-634 (-561))))) (-4384 |has| |#4| (-1042)) (-4385 |has| |#4| (-1042)) ((-4392 "*") |has| |#4| (-171)) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#4| (QUOTE (-362))) (-4007 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1042)))) (-4007 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (QUOTE (-787))) (-4007 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-842)))) (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (QUOTE (-171))) (-4007 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-720)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-842)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1042)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1090))))) (-4007 (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1042))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (-4007 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-720))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561))))) (-4007 (|HasCategory| |#4| (QUOTE (-1042))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (QUOTE (-1090)))) (-4007 (|HasAttribute| |#4| (QUOTE -4387)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))))
(-250 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4380 -3994 (-2157 (|has| |#3| (-1039)) (|has| |#3| (-232))) (-2157 (|has| |#3| (-1039)) (|has| |#3| (-890 (-1163)))) (|has| |#3| (-6 -4380)) (-2157 (|has| |#3| (-1039)) (|has| |#3| (-631 (-558))))) (-4377 |has| |#3| (-1039)) (-4378 |has| |#3| (-1039)) ((-4385 "*") |has| |#3| (-171)) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-362))) (-3994 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3994 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3994 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3994 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3994 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-717))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3994 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3994 (|HasAttribute| |#3| (QUOTE -4380)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+((-4387 -4007 (-2170 (|has| |#3| (-1042)) (|has| |#3| (-232))) (-2170 (|has| |#3| (-1042)) (|has| |#3| (-893 (-1166)))) (|has| |#3| (-6 -4387)) (-2170 (|has| |#3| (-1042)) (|has| |#3| (-634 (-561))))) (-4384 |has| |#3| (-1042)) (-4385 |has| |#3| (-1042)) ((-4392 "*") |has| |#3| (-171)) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#3| (QUOTE (-362))) (-4007 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4007 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-4007 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-4007 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-720)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-842)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090))))) (-4007 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4007 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-720))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-4007 (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090)))) (-4007 (|HasAttribute| |#3| (QUOTE -4387)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
(-251 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-232))))
(-252 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
NIL
(-253 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
(-254)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -982,8 +982,8 @@ NIL
NIL
(-263 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-264 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1028,11 +1028,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-275 R -3189)
+(-275 R -3214)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-276 R -3189)
+(-276 R -3214)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1051,10 +1051,10 @@ NIL
(-280 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))))
(-281 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4384 . T))
+((-4391 . T))
NIL
(-282 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1075,18 +1075,18 @@ NIL
(-286 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4384)))
+((|HasAttribute| |#1| (QUOTE -4391)))
(-287 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-288 S R |Mod| -2915 -3391 |exactQuo|)
+(-288 S R |Mod| -3471 -1407 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-289)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4376 . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-290)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1102,21 +1102,21 @@ NIL
NIL
(-293 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4380 -3994 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4377 |has| |#1| (-1039)) (-4378 |has| |#1| (-1039)))
-((|HasCategory| |#1| (QUOTE (-362))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717)))) (|HasCategory| |#1| (QUOTE (-471))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3994 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-301))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717)))) (-3994 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-171))))
+((-4387 -4007 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4384 |has| |#1| (-1042)) (-4385 |has| |#1| (-1042)))
+((|HasCategory| |#1| (QUOTE (-362))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720)))) (|HasCategory| |#1| (QUOTE (-471))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1090)))) (-4007 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-301))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-4007 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720)))) (-4007 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-171))))
(-294 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
(-295)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-296 -3189 S)
+(-296 -3214 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-297 E -3189)
+(-297 E -3214)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1131,7 +1131,7 @@ NIL
(-300 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1039))))
+((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-1042))))
(-301)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1154,7 +1154,7 @@ NIL
NIL
(-306)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-307 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1164,7 +1164,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-309 -3189)
+(-309 -3214)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1178,8 +1178,8 @@ NIL
NIL
(-312 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1012))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (-3994 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1138))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144)))) (-3994 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144))))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-902))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-1015))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (-4007 (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-844)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-1141))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1239) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1239) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1239) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1239) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (-12 (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-902))) (|HasCategory| $ (QUOTE (-144)))) (-4007 (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1239 |#1| |#2| |#3| |#4|) (QUOTE (-902))) (|HasCategory| $ (QUOTE (-144))))))
(-313 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1190,9 +1190,9 @@ NIL
NIL
(-315 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4380 -3994 (-2157 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-12 (|has| |#1| (-550)) (-3994 (-2157 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (|has| |#1| (-1039)) (|has| |#1| (-471)))) (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) ((-4385 "*") |has| |#1| (-550)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-550)) (-4375 |has| |#1| (-550)))
-((-3994 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (-3994 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3994 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3994 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3994 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
-(-316 R -3189)
+((-4387 -4007 (-2170 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (-12 (|has| |#1| (-553)) (-4007 (-2170 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (|has| |#1| (-1042)) (|has| |#1| (-471)))) (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4385 |has| |#1| (-171)) (-4384 |has| |#1| (-171)) ((-4392 "*") |has| |#1| (-553)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-553)) (-4382 |has| |#1| (-553)))
+((-4007 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-553))) (-4007 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1102)))) (-4007 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))))) (-4007 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1102)))) (-4007 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))))) (-4007 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
+(-316 R -3214)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1202,8 +1202,8 @@ NIL
NIL
(-318 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
(-319 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1214,8 +1214,8 @@ NIL
NIL
(-321 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4378 . T) (-4377 . T))
-((|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-783))))
+((-4385 . T) (-4384 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-786))))
(-322 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1223,26 +1223,26 @@ NIL
(-323 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-762) (QUOTE (-783))))
+((|HasCategory| (-765) (QUOTE (-786))))
(-324 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))))
+((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))))
(-325 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-326 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-327 S -3189)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-327 S -3214)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-328 -3189)
+(-328 -3214)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-329)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1260,54 +1260,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-333 S -3189 UP UPUP R)
+(-333 S -3214 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-334 -3189 UP UPUP R)
+(-334 -3214 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-335 -3189 UP UPUP R)
+(-335 -3214 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-336 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))))
(-337 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-338 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
(-339 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-340 S -3189 UP UPUP)
+(-340 S -3214 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-362))))
-(-341 -3189 UP UPUP)
+(-341 -3214 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4376 |has| (-406 |#2|) (-362)) (-4381 |has| (-406 |#2|) (-362)) (-4375 |has| (-406 |#2|) (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 |has| (-406 |#2|) (-362)) (-4388 |has| (-406 |#2|) (-362)) (-4382 |has| (-406 |#2|) (-362)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-342 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| (-903 |#1|) (QUOTE (-144))) (|HasCategory| (-903 |#1|) (QUOTE (-367)))) (|HasCategory| (-903 |#1|) (QUOTE (-146))) (|HasCategory| (-903 |#1|) (QUOTE (-367))) (|HasCategory| (-903 |#1|) (QUOTE (-144))))
(-343 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-344 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-345 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1322,33 +1322,33 @@ NIL
NIL
(-348)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-349 R UP -3189)
+(-349 R UP -3214)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-350 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| (-903 |#1|) (QUOTE (-144))) (|HasCategory| (-903 |#1|) (QUOTE (-367)))) (|HasCategory| (-903 |#1|) (QUOTE (-146))) (|HasCategory| (-903 |#1|) (QUOTE (-367))) (|HasCategory| (-903 |#1|) (QUOTE (-144))))
(-351 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-352 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-353 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| (-903 |#1|) (QUOTE (-144))) (|HasCategory| (-903 |#1|) (QUOTE (-367)))) (|HasCategory| (-903 |#1|) (QUOTE (-146))) (|HasCategory| (-903 |#1|) (QUOTE (-367))) (|HasCategory| (-903 |#1|) (QUOTE (-144))))
(-354 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
-(-355 -3189 GF)
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-355 -3214 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1356,21 +1356,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-357 -3189 FP FPP)
+(-357 -3214 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-358 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-359 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-360 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4380 . T))
+((-4387 . T))
NIL
(-361 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1378,7 +1378,7 @@ NIL
NIL
(-362)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-363 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1391,10 +1391,10 @@ NIL
(-365 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-550))))
+((|HasCategory| |#2| (QUOTE (-553))))
(-366 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4380 |has| |#1| (-550)) (-4378 . T) (-4377 . T))
+((-4387 |has| |#1| (-553)) (-4385 . T) (-4384 . T))
NIL
(-367)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1406,7 +1406,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-362))))
(-369 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-370 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1415,14 +1415,14 @@ NIL
(-371 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))))
+((|HasAttribute| |#1| (QUOTE -4391)) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))))
(-372 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4383 . T))
+((-4390 . T))
NIL
(-373 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4378 . T) (-4377 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4385 . T) (-4384 . T))
NIL
(-374 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1431,10 +1431,10 @@ NIL
(-375 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))))
+((|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))))
(-376 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4380 . T))
+((-4387 . T))
NIL
(-377 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1442,7 +1442,7 @@ NIL
NIL
(-378)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4366 . T) (-4374 . T) (-1422 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4373 . T) (-4381 . T) (-1417 . T) (-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-379 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1450,11 +1450,11 @@ NIL
NIL
(-380 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
((|HasCategory| |#1| (QUOTE (-171))))
(-381 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
NIL
(-382)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1466,15 +1466,15 @@ NIL
NIL
(-384 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
((|HasCategory| |#1| (QUOTE (-171))))
(-385 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-841))))
+((|HasCategory| |#1| (QUOTE (-844))))
(-386)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-387)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1486,13 +1486,13 @@ NIL
NIL
(-389 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
NIL
(-390)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-391 -3189 UP UPUP R)
+(-391 -3214 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1516,11 +1516,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-397 -3179 |returnType| -2164 |symbols|)
+(-397 -3269 |returnType| -2243 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-398 -3189 UP)
+(-398 -3214 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1534,15 +1534,15 @@ NIL
NIL
(-401)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-402 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4366)) (|HasAttribute| |#1| (QUOTE -4374)))
+((|HasAttribute| |#1| (QUOTE -4373)) (|HasAttribute| |#1| (QUOTE -4381)))
(-403)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1422 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-1417 . T) (-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-404 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1554,20 +1554,20 @@ NIL
NIL
(-406 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4370 -12 (|has| |#1| (-6 -4381)) (|has| |#1| (-450)) (|has| |#1| (-6 -4370))) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-811))) (-3994 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-841)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4381)) (|HasAttribute| |#1| (QUOTE -4370)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+((-4377 -12 (|has| |#1| (-6 -4388)) (|has| |#1| (-450)) (|has| |#1| (-6 -4377))) (-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-814))) (-4007 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-844)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822))))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4388)) (|HasAttribute| |#1| (QUOTE -4377)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-407 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-408 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-409 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))
+((|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))
(-410 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1576,14 +1576,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-412 R -3189 UP A)
+(-412 R -3214 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-413 R -3189 UP A |ibasis|)
+(-413 R -3214 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1028) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -1031) (|devaluate| |#2|))))
(-414 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1594,12 +1594,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-362))))
(-416 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4380 |has| |#1| (-550)) (-4378 . T) (-4377 . T))
+((-4387 |has| |#1| (-553)) (-4385 . T) (-4384 . T))
NIL
(-417 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1204))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450))))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1209))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450))))
(-418 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1623,40 +1623,40 @@ NIL
(-423 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-367))))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-367))))
(-424 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4383 . T) (-4373 . T) (-4384 . T))
+((-4390 . T) (-4380 . T) (-4391 . T))
NIL
-(-425 R -3189)
+(-425 R -3214)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-426 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4370 -12 (|has| |#1| (-6 -4370)) (|has| |#2| (-6 -4370))) (-4377 . T) (-4378 . T) (-4380 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4370)) (|HasAttribute| |#2| (QUOTE -4370))))
-(-427 R -3189)
+((-4377 -12 (|has| |#1| (-6 -4377)) (|has| |#2| (-6 -4377))) (-4384 . T) (-4385 . T) (-4387 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4377)) (|HasAttribute| |#2| (QUOTE -4377))))
+(-427 R -3214)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-428 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))))
+((|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))))
(-429 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4380 -3994 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) ((-4385 "*") |has| |#1| (-550)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-550)) (-4375 |has| |#1| (-550)))
+((-4387 -4007 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4385 |has| |#1| (-171)) (-4384 |has| |#1| (-171)) ((-4392 "*") |has| |#1| (-553)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-553)) (-4382 |has| |#1| (-553)))
NIL
-(-430 R -3189)
+(-430 R -3214)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-431 R -3189)
+(-431 R -3214)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-432 R -3189)
+(-432 R -3214)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1664,10 +1664,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-434 R -3189 UP)
+(-434 R -3214 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-48)))))
+((|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-48)))))
(-435)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1692,7 +1692,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-441 R UP -3189)
+(-441 R UP -3214)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1730,16 +1730,16 @@ NIL
NIL
(-450)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-451 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4380 |has| (-406 (-942 |#1|)) (-550)) (-4378 . T) (-4377 . T))
-((|HasCategory| (-406 (-942 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-406 (-942 |#1|)) (QUOTE (-550))))
+((-4387 |has| (-406 (-945 |#1|)) (-553)) (-4385 . T) (-4384 . T))
+((|HasCategory| (-406 (-945 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| (-406 (-945 |#1|)) (QUOTE (-553))))
(-452 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4392 "*") |has| |#2| (-171)) (-4383 |has| |#2| (-553)) (-4388 |has| |#2| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-902))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4388)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-453 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1766,7 +1766,7 @@ NIL
NIL
(-459 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
NIL
(-460 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1774,8 +1774,8 @@ NIL
NIL
(-461 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
(-462 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1804,7 +1804,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-469 |lv| -3189 R)
+(-469 |lv| -3214 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1814,23 +1814,23 @@ NIL
NIL
(-471)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4380 . T))
+((-4387 . T))
NIL
(-472 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
(-473 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))))
+((-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))))
(-474 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
(-475)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
(-476)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1838,29 +1838,29 @@ NIL
NIL
(-477 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
(-478)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-479 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
-(-480 -1470 S)
+(((-4392 "*") |has| |#2| (-171)) (-4383 |has| |#2| (-553)) (-4388 |has| |#2| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-902))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4388)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-480 -2164 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3994 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3994 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+((-4384 |has| |#2| (-1042)) (-4385 |has| |#2| (-1042)) (-4387 |has| |#2| (-6 -4387)) ((-4392 "*") |has| |#2| (-171)) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-362))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-4007 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4007 (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4387)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-481)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
(-482 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-483 -3189 UP UPUP R)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-483 -3214 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1870,12 +1870,12 @@ NIL
NIL
(-485)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3994 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4007 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
(-486 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)) (|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))
+((|HasAttribute| |#1| (QUOTE -4390)) (|HasAttribute| |#1| (QUOTE -4391)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))))
(-487 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1896,34 +1896,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-492 -3189 UP |AlExt| |AlPol|)
+(-492 -3214 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-493)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-561)))))
(-494 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-495 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-496 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-497 R UP -3189)
+(-497 R UP -3214)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-498 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1090))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-856)))))
(-499 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1936,10 +1936,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-502 -3189 |Expon| |VarSet| |DPoly|)
+(-502 -3214 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-1163)))))
+((|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-1166)))))
(-503 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -1983,39 +1983,39 @@ NIL
(-513 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-783))))
+((|HasCategory| |#2| (QUOTE (-786))))
(-514 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-515)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-516 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| (-575 |#1|) (QUOTE (-144))) (|HasCategory| (-575 |#1|) (QUOTE (-367)))) (|HasCategory| (-575 |#1|) (QUOTE (-146))) (|HasCategory| (-575 |#1|) (QUOTE (-367))) (|HasCategory| (-575 |#1|) (QUOTE (-144))))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| (-578 |#1|) (QUOTE (-144))) (|HasCategory| (-578 |#1|) (QUOTE (-367)))) (|HasCategory| (-578 |#1|) (QUOTE (-146))) (|HasCategory| (-578 |#1|) (QUOTE (-367))) (|HasCategory| (-578 |#1|) (QUOTE (-144))))
(-517 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-518 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-519 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4384)))
+((|HasAttribute| |#3| (QUOTE -4391)))
(-520 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4384)))
+((|HasAttribute| |#7| (QUOTE -4391)))
(-521 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4385 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))) (|HasAttribute| |#1| (QUOTE (-4392 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
(-522)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2048,7 +2048,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-530 K -3189 |Par|)
+(-530 K -3214 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2072,7 +2072,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-536 K -3189 |Par|)
+(-536 K -3214 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2102,2931 +2102,2959 @@ NIL
NIL
(-543)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4388 . T) (-4389 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+NIL
+(-544)
+((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
+NIL
+NIL
+(-545)
+((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
-(-544 |Key| |Entry| |addDom|)
+NIL
+(-546)
+((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
+NIL
+NIL
+(-547 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-545 R -3189)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-548 R -3214)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-546 R0 -3189 UP UPUP R)
+(-549 R0 -3214 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-547)
+(-550)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-548 R)
+(-551 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1422 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-1417 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-549 S)
+(-552 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-550)
+(-553)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-551 R -3189)
+(-554 R -3214)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-552 I)
+(-555 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-553)
+(-556)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-554 R -3189 L)
+(-557 R -3214 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|))))
-(-555)
+((|HasCategory| |#3| (LIST (QUOTE -649) (|devaluate| |#2|))))
+(-558)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-556 -3189 UP UPUP R)
+(-559 -3214 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-557 -3189 UP)
+(-560 -3214 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-558)
+(-561)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4365 . T) (-4371 . T) (-4375 . T) (-4370 . T) (-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4372 . T) (-4378 . T) (-4382 . T) (-4377 . T) (-4388 . T) (-4389 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-559)
+(-562)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-560 R -3189 L)
+(-563 R -3214 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|))))
-(-561 R -3189)
+((|HasCategory| |#3| (LIST (QUOTE -649) (|devaluate| |#2|))))
+(-564 R -3214)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1126)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-621)))))
-(-562 -3189 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-1129)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-624)))))
+(-565 -3214 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-563 S)
+(-566 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-564 -3189)
+(-567 -3214)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-565 R)
+(-568 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1422 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-1417 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-566)
+(-569)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-567 R -3189)
+(-570 R -3214)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-621))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-550))))
-(-568 -3189 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-624))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-553))))
+(-571 -3214 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-569 R -3189)
+(-572 R -3214)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-570)
+(-573)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-571)
+(-574)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-572)
+(-575)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input.")))
NIL
NIL
-(-573)
+(-576)
((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-574 |p| |unBalanced?|)
+(-577 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-575 |p|)
+(-578 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
-(-576)
+(-579)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-577 R -3189)
+(-580 R -3214)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-578 E -3189)
+(-581 E -3214)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-579 -3189)
+(-582 -3214)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4378 . T) (-4377 . T))
-((|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-1163)))))
-(-580 I)
+((-4385 . T) (-4384 . T))
+((|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166)))))
+(-583 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-581 GF)
+(-584 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-582 R)
+(-585 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-146))))
-(-583)
+(-586)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-584 R E V P TS)
+(-587 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-585)
+(-588)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-586 |mn|)
+(-589 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-3994 (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
-(-587 E V R P)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-4007 (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+(-590 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-588 |Coef|)
+(-591 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))))
-(-589 |Coef|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|)))) (|HasCategory| (-561) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))))
+(-592 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4378 |has| |#1| (-550)) (-4377 |has| |#1| (-550)) ((-4385 "*") |has| |#1| (-550)) (-4376 |has| |#1| (-550)) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-550))))
-(-590 A B)
+((-4385 |has| |#1| (-553)) (-4384 |has| |#1| (-553)) ((-4392 "*") |has| |#1| (-553)) (-4383 |has| |#1| (-553)) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-553))))
+(-593 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-591 A B C)
+(-594 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-592 R -3189 FG)
+(-595 R -3214 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-593 S)
+(-596 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-594 R |mn|)
+(-597 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-595 S |Index| |Entry|)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-598 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (QUOTE (-841))) (|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#3| (QUOTE (-1087))))
-(-596 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4391)) (|HasCategory| |#2| (QUOTE (-844))) (|HasAttribute| |#1| (QUOTE -4390)) (|HasCategory| |#3| (QUOTE (-1090))))
+(-599 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-597)
+(-600)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")))
NIL
NIL
-(-598)
+(-601)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-599 R A)
+(-602 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4380 -3994 (-2157 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4378 . T) (-4377 . T))
-((-3994 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
-(-600 |Entry|)
+((-4387 -4007 (-2170 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))) (-4385 . T) (-4384 . T))
+((-4007 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+(-603 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-601 S |Key| |Entry|)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-604 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-602 |Key| |Entry|)
+(-605 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4384 . T))
+((-4391 . T))
NIL
-(-603 R S)
+(-606 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-604 S)
+(-607 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))))
-(-605 S)
+((|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))))
+(-608 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-606 S)
+(-609 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-607 -3189 UP)
+(-610 -3214 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-608 S)
+(-611 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-609)
+(-612)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value")))
NIL
NIL
-(-610 S)
+(-613 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-611 S R)
+(-614 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-612 R)
+(-615 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-613 A R S)
+(-616 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-839))))
-(-614 R -3189)
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-842))))
+(-617 R -3214)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-615 R UP)
+(-618 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4376 . T) (-4380 . T))
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
-(-616 R E V P TS ST)
+((-4385 . T) (-4384 . T) ((-4392 "*") . T) (-4383 . T) (-4387 . T))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))
+(-619 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-617 OV E Z P)
+(-620 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-618)
+(-621)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-619 |VarSet| R |Order|)
+(-622 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-620 R |ls|)
+(-623 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-621)
+(-624)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-622 R -3189)
+(-625 R -3214)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-623 |lv| -3189)
+(-626 |lv| -3214)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-624)
+(-627)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -1925) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1145) (QUOTE (-841))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (QUOTE (-1087))))
-(-625 S R)
+((-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2654) (QUOTE (-52))))))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-52) (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1148) (QUOTE (-844))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (QUOTE (-1090))))
+(-628 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
-(-626 R)
+(-629 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4378 . T) (-4377 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4385 . T) (-4384 . T))
NIL
-(-627 R A)
+(-630 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4380 -3994 (-2157 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4378 . T) (-4377 . T))
-((-3994 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
-(-628 R FE)
+((-4387 -4007 (-2170 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))) (-4385 . T) (-4384 . T))
+((-4007 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+(-631 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-629 R)
+(-632 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-630 S R)
+(-633 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2143 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362))))
-(-631 R)
+((-2159 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362))))
+(-634 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-632 A B)
+(-635 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-633 A B)
+(-636 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-634 A B C)
+(-637 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-635 S)
+(-638 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-636 T$)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-639 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-637 S)
+(-640 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-638 R)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-641 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-639 S E |un|)
+(-642 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-640 A S)
+(-643 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4384)))
-(-641 S)
+((|HasAttribute| |#1| (QUOTE -4391)))
+(-644 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-642 R -3189 L)
+(-645 R -3214 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-643 A)
+(-646 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-644 A M)
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-647 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-645 S A)
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-648 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
-(-646 A)
+(-649 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-647 -3189 UP)
+(-650 -3214 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-648 A -2511)
+(-651 A -1558)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-649 A L)
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-652 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-650 S)
+(-653 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-651)
+(-654)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-652 M R S)
+(-655 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4378 . T) (-4377 . T))
-((|HasCategory| |#1| (QUOTE (-782))))
-(-653 R)
+((-4385 . T) (-4384 . T))
+((|HasCategory| |#1| (QUOTE (-785))))
+(-656 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-654 |VarSet| R)
+(-657 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4378 . T) (-4377 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4385 . T) (-4384 . T))
((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-171))))
-(-655 A S)
+(-658 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-656 S)
+(-659 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-657 -3189)
+(-660 -3214)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-658 -3189 |Row| |Col| M)
+(-661 -3214 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-659 R E OV P)
+(-662 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-660 |n| R)
+(-663 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4380 . T) (-4383 . T) (-4377 . T) (-4378 . T))
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))) (-3994 (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
-(-661)
+((-4387 . T) (-4390 . T) (-4384 . T) (-4385 . T))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4392 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-553))) (-4007 (|HasAttribute| |#2| (QUOTE (-4392 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+(-664)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-662 |VarSet|)
+(-665 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-663 A S)
+(-666 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-664 S)
+(-667 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-665 R)
+(-668 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-666)
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-669)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-667 |VarSet|)
+(-670 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-668 A)
+(-671 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-669 A C)
+(-672 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-670 A B C)
+(-673 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-671)
+(-674)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-672 A)
+(-675 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-673 A C)
+(-676 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-674 A B C)
+(-677 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-675 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-678 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-676 S R |Row| |Col|)
+(-679 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))))
-(-677 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4392 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-553))))
+(-680 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
-(-678 R |Row| |Col| M)
+(-681 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))))
-(-679 R)
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))))
+(-682 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4383 . T) (-4384 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4385 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-680 R)
+((-4390 . T) (-4391 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-553))) (|HasAttribute| |#1| (QUOTE (-4392 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-683 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-681 T$)
-((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "autoCoerce is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spad{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "maybe(\\spad{x}) injects the value \\spad{`x'} into \\%.")))
+(-684 T$)
+((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-682 S -3189 FLAF FLAS)
+(-685 S -3214 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-683 R Q)
+(-686 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-684)
+(-687)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4376 . T) (-4381 |has| (-689) (-362)) (-4375 |has| (-689) (-362)) (-4382 |has| (-689) (-6 -4382)) (-4379 |has| (-689) (-6 -4379)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-689) (QUOTE (-146))) (|HasCategory| (-689) (QUOTE (-144))) (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-367))) (|HasCategory| (-689) (QUOTE (-362))) (-3994 (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-232))) (-3994 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (LIST (QUOTE -285) (QUOTE (-689)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -308) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3994 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-689) (QUOTE (-1012))) (|HasCategory| (-689) (QUOTE (-1185))) (-12 (|HasCategory| (-689) (QUOTE (-992))) (|HasCategory| (-689) (QUOTE (-1185)))) (-3994 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (-3994 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (|HasCategory| (-689) (QUOTE (-543))) (-12 (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-1185)))) (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899))) (-3994 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362)))) (-3994 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-550)))) (-12 (|HasCategory| (-689) (QUOTE (-232))) (|HasCategory| (-689) (QUOTE (-362)))) (-12 (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-841))) (|HasCategory| (-689) (QUOTE (-550))) (|HasAttribute| (-689) (QUOTE -4382)) (|HasAttribute| (-689) (QUOTE -4379)) (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-144)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-348)))))
-(-685 S)
+((-4383 . T) (-4388 |has| (-692) (-362)) (-4382 |has| (-692) (-362)) (-4389 |has| (-692) (-6 -4389)) (-4386 |has| (-692) (-6 -4386)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-692) (QUOTE (-146))) (|HasCategory| (-692) (QUOTE (-144))) (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-692) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-692) (QUOTE (-367))) (|HasCategory| (-692) (QUOTE (-362))) (-4007 (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-692) (QUOTE (-362)))) (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-692) (QUOTE (-232))) (-4007 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-348)))) (|HasCategory| (-692) (QUOTE (-348))) (|HasCategory| (-692) (LIST (QUOTE -285) (QUOTE (-692)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -308) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (-4007 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-348)))) (|HasCategory| (-692) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-692) (QUOTE (-1015))) (|HasCategory| (-692) (QUOTE (-1190))) (-12 (|HasCategory| (-692) (QUOTE (-995))) (|HasCategory| (-692) (QUOTE (-1190)))) (-4007 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-362))) (-12 (|HasCategory| (-692) (QUOTE (-348))) (|HasCategory| (-692) (QUOTE (-902))))) (-4007 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (-12 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-902)))) (-12 (|HasCategory| (-692) (QUOTE (-348))) (|HasCategory| (-692) (QUOTE (-902))))) (|HasCategory| (-692) (QUOTE (-543))) (-12 (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-1190)))) (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902))) (-4007 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-362)))) (-4007 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-553)))) (-12 (|HasCategory| (-692) (QUOTE (-232))) (|HasCategory| (-692) (QUOTE (-362)))) (-12 (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-692) (QUOTE (-362)))) (|HasCategory| (-692) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-692) (QUOTE (-844))) (|HasCategory| (-692) (QUOTE (-553))) (|HasAttribute| (-692) (QUOTE -4389)) (|HasAttribute| (-692) (QUOTE -4386)) (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-144)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-902)))) (|HasCategory| (-692) (QUOTE (-348)))))
+(-688 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4384 . T))
+((-4391 . T))
NIL
-(-686 U)
+(-689 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-687)
+(-690)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-688 OV E -3189 PG)
+(-691 OV E -3214 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-689)
+(-692)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1422 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-1417 . T) (-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-690 R)
+(-693 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-691)
+(-694)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4382 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4389 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-692 S D1 D2 I)
+(-695 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-693 S)
+(-696 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")))
NIL
NIL
-(-694 S)
+(-697 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-695 S)
+(-698 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-696 S T$)
+(-699 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-697 S -3042 I)
+(-700 S -3122 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-698 E OV R P)
+(-701 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-699 R)
+(-702 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-700 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-703 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-701)
+(-704)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-702 R |Mod| -2915 -3391 |exactQuo|)
+(-705 R |Mod| -3471 -1407 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-703 R |Rep|)
+(-706 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-704 IS E |ff|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4386 |has| |#1| (-362)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-707 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-705 R M)
+(-708 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
+((-4385 |has| |#1| (-171)) (-4384 |has| |#1| (-171)) (-4387 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
-(-706 R |Mod| -2915 -3391 |exactQuo|)
+(-709 R |Mod| -3471 -1407 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-707 S R)
+(-710 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-708 R)
+(-711 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
NIL
-(-709 -3189)
+(-712 -3214)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-710 S)
+(-713 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-711)
+(-714)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-712 S)
+(-715 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-713)
+(-716)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-714 S R UP)
+(-717 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))))
-(-715 R UP)
+(-718 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4376 |has| |#1| (-362)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 |has| |#1| (-362)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-716 S)
+(-719 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-717)
+(-720)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-718 -3189 UP)
+(-721 -3214 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-719 |VarSet| E1 E2 R S PR PS)
+(-722 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-720 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-723 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-721 E OV R PPR)
+(-724 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-722 |vl| R)
+(-725 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
-(-723 E OV R PRF)
+(((-4392 "*") |has| |#2| (-171)) (-4383 |has| |#2| (-553)) (-4388 |has| |#2| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-902))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4388)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-726 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-724 E OV R P)
+(-727 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-725 R S M)
+(-728 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-726 R M)
+(-729 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-841))))
-(-727 S)
+((-4385 |has| |#1| (-171)) (-4384 |has| |#1| (-171)) (-4387 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-844))))
+(-730 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4373 . T) (-4384 . T))
+((-4380 . T) (-4391 . T))
NIL
-(-728 S)
+(-731 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4383 . T) (-4373 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-729)
+((-4390 . T) (-4380 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-732)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-730 S)
+(-733 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-731 |Coef| |Var|)
+(-734 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4378 . T) (-4377 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4385 . T) (-4384 . T) (-4387 . T))
NIL
-(-732 OV E R P)
+(-735 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-733 E OV R P)
+(-736 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-734 S R)
+(-737 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-735 R)
+(-738 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
NIL
-(-736)
+(-739)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-737)
+(-740)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-738)
+(-741)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-739)
+(-742)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-740)
+(-743)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-741)
+(-744)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-742)
+(-745)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-743)
+(-746)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-744)
+(-747)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-745)
+(-748)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-746)
+(-749)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-747)
+(-750)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-748)
+(-751)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-749)
+(-752)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-750)
+(-753)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-751 S)
+(-754 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-752)
+(-755)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-753 S)
+(-756 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-754)
+(-757)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-755 |Par|)
+(-758 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-756 -3189)
+(-759 -3214)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-757 P -3189)
+(-760 P -3214)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-758 T$)
+(-761 T$)
NIL
NIL
NIL
-(-759 UP -3189)
+(-762 UP -3214)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-760)
+(-763)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-761 R)
+(-764 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-762)
+(-765)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4385 "*") . T))
+(((-4392 "*") . T))
NIL
-(-763 R -3189)
+(-766 R -3214)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-764 S)
+(-767 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-765)
+(-768)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-766 R |PolR| E |PolE|)
+(-769 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-767 R E V P TS)
+(-770 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-768 -3189 |ExtF| |SUEx| |ExtP| |n|)
+(-771 -3214 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-769 BP E OV R P)
+(-772 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-770 |Par|)
+(-773 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-771 R |VarSet|)
+(-774 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2143 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2143 (|HasCategory| |#1| (QUOTE (-543)))) (-2143 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2143 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558))))) (-2143 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2143 (|HasCategory| |#1| (LIST (QUOTE -982) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-772 R S)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2159 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2159 (|HasCategory| |#1| (QUOTE (-543)))) (-2159 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2159 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-561))))) (-2159 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-2159 (|HasCategory| |#1| (LIST (QUOTE -985) (QUOTE (-561))))))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-775 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-773 R)
+(-776 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-774 R)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4386 |has| |#1| (-362)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-777 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
-(-775 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
+(-778 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-776 S)
+(-779 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-171))))
-(-777)
+((-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-171))))
+(-780)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-778)
+(-781)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-779)
+(-782)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-780)
+(-783)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-781 |Curve|)
+(-784 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-782)
+(-785)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-783)
+(-786)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-784)
+(-787)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-785)
+(-788)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-786)
+(-789)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-787 S R)
+(-790 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-367))))
-(-788 R)
+((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-367))))
+(-791 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-789 -3994 R OS S)
+(-792 -4007 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-790 R)
+(-793 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-3994 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
-(-791)
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-4007 (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-992 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))))
+(-794)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-792 R -3189 L)
+(-795 R -3214 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-793 R -3189)
+(-796 R -3214)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-794)
+(-797)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-795 R -3189)
+(-798 R -3214)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-796)
+(-799)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-797 -3189 UP UPUP R)
+(-800 -3214 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-798 -3189 UP L LQ)
+(-801 -3214 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-799)
+(-802)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-800 -3189 UP L LQ)
+(-803 -3214 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-801 -3189 UP)
+(-804 -3214 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-802 -3189 L UP A LO)
+(-805 -3214 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-803 -3189 UP)
+(-806 -3214 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-804 -3189 LO)
+(-807 -3214 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-805 -3189 LODO)
+(-808 -3214 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-806 -1470 S |f|)
+(-809 -2164 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3994 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3994 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
-(-807 R)
+((-4384 |has| |#2| (-1042)) (-4385 |has| |#2| (-1042)) (-4387 |has| |#2| (-6 -4387)) ((-4392 "*") |has| |#2| (-171)) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-362))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-4007 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4007 (|HasCategory| |#2| (QUOTE (-1042))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4387)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+(-810 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-808 |Kernels| R |var|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-811 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4385 "*") |has| |#2| (-362)) (-4376 |has| |#2| (-362)) (-4381 |has| |#2| (-362)) (-4375 |has| |#2| (-362)) (-4380 . T) (-4378 . T) (-4377 . T))
+(((-4392 "*") |has| |#2| (-362)) (-4383 |has| |#2| (-362)) (-4388 |has| |#2| (-362)) (-4382 |has| |#2| (-362)) (-4387 . T) (-4385 . T) (-4384 . T))
((|HasCategory| |#2| (QUOTE (-362))))
-(-809 S)
+(-812 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-810 S)
+(-813 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-811)
+(-814)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-812)
+(-815)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-813)
+(-816)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-814)
+(-817)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-815)
+(-818)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-816)
+(-819)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-817 R)
+(-820 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-818 P R)
+(-821 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-232))))
-(-819)
+(-822)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-820)
+(-823)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-821 S)
+(-824 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4383 . T) (-4373 . T) (-4384 . T))
+((-4390 . T) (-4380 . T) (-4391 . T))
NIL
-(-822)
+(-825)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-823 R S)
+(-826 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-824 R)
+(-827 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4380 |has| |#1| (-839)))
-((|HasCategory| |#1| (QUOTE (-839))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3994 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
-(-825 A S)
+((-4387 |has| |#1| (-842)))
+((|HasCategory| |#1| (QUOTE (-842))) (-4007 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4007 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+(-828 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-826 S)
+(-829 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
NIL
-(-827 R)
+(-830 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
+((-4385 |has| |#1| (-171)) (-4384 |has| |#1| (-171)) (-4387 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
-(-828)
+(-831)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-829)
+(-832)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
NIL
NIL
-(-830)
+(-833)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-831)
+(-834)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-832)
+(-835)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-833 R S)
+(-836 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-834 R)
+(-837 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4380 |has| |#1| (-839)))
-((|HasCategory| |#1| (QUOTE (-839))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3994 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
-(-835)
+((-4387 |has| |#1| (-842)))
+((|HasCategory| |#1| (QUOTE (-842))) (-4007 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4007 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+(-838)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-836 -1470 S)
+(-839 -2164 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-837)
+(-840)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-838 S)
+(-841 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-839)
+(-842)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-840 S)
+(-843 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-841)
+(-844)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-842 S R)
+(-845 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))))
-(-843 R)
+((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))))
+(-846 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-844 R C)
+(-847 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))))
-(-845 R |sigma| -3691)
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553))))
+(-848 R |sigma| -3790)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-846 |x| R |sigma| -3691)
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
+(-849 |x| R |sigma| -3790)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-362))))
-(-847 R)
+((-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-362))))
+(-850 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
-(-848)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
+(-851)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-849)
+(-852)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-850 S)
+(-853 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-851)
+(-854)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-852)
+(-855)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-853)
+(-856)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-854)
+(-857)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-855 |VariableList|)
+(-858 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-856 R |vl| |wl| |wtlevel|)
+(-859 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
+((-4385 |has| |#1| (-171)) (-4384 |has| |#1| (-171)) (-4387 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
-(-857 R PS UP)
+(-860 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-858 R |x| |pt|)
+(-861 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-859 |p|)
+(-862 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-860 |p|)
+(-863 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-861 |p|)
+(-864 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-860 |#1|) (QUOTE (-899))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-146))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-860 |#1|) (QUOTE (-1012))) (|HasCategory| (-860 |#1|) (QUOTE (-811))) (-3994 (|HasCategory| (-860 |#1|) (QUOTE (-811))) (|HasCategory| (-860 |#1|) (QUOTE (-841)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-1138))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-232))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -860) (|devaluate| |#1|)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (QUOTE (-306))) (|HasCategory| (-860 |#1|) (QUOTE (-543))) (|HasCategory| (-860 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (|HasCategory| (-860 |#1|) (QUOTE (-144)))))
-(-862 |p| PADIC)
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-863 |#1|) (QUOTE (-902))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-863 |#1|) (QUOTE (-144))) (|HasCategory| (-863 |#1|) (QUOTE (-146))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-863 |#1|) (QUOTE (-1015))) (|HasCategory| (-863 |#1|) (QUOTE (-814))) (-4007 (|HasCategory| (-863 |#1|) (QUOTE (-814))) (|HasCategory| (-863 |#1|) (QUOTE (-844)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-863 |#1|) (QUOTE (-1141))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| (-863 |#1|) (QUOTE (-232))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| (-863 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -863) (|devaluate| |#1|)) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| (-863 |#1|) (QUOTE (-306))) (|HasCategory| (-863 |#1|) (QUOTE (-543))) (|HasCategory| (-863 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-863 |#1|) (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-863 |#1|) (QUOTE (-902)))) (|HasCategory| (-863 |#1|) (QUOTE (-144)))))
+(-865 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-811))) (-3994 (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
-(-863 S T$)
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-814))) (-4007 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-866 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))))
-(-864)
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))))
+(-867)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-865)
+(-868)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-866 CF1 CF2)
+(-869 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-867 |ComponentFunction|)
+(-870 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-868 CF1 CF2)
+(-871 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-869 |ComponentFunction|)
+(-872 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-870)
+(-873)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-871 CF1 CF2)
+(-874 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-872 |ComponentFunction|)
+(-875 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-873)
+(-876)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-874 R)
+(-877 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-875 R S L)
+(-878 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-876 S)
+(-879 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-877 |Base| |Subject| |Pat|)
+(-880 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2143 (|HasCategory| |#2| (QUOTE (-1039)))) (-2143 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (-2143 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))
-(-878 R A B)
+((-12 (-2159 (|HasCategory| |#2| (QUOTE (-1042)))) (-2159 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (-2159 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))
+(-881 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-879 R S)
+(-882 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-880 R -3042)
+(-883 R -3122)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-881 R S)
+(-884 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-882 R)
+(-885 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-883 |VarSet|)
+(-886 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-884 UP R)
+(-887 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-885)
+(-888)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-886 UP -3189)
+(-889 UP -3214)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-887)
+(-890)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-888)
+(-891)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-889 A S)
+(-892 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-890 S)
+(-893 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-891 S)
+(-894 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-892 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-895 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-893 S)
+(-896 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-894 S)
+(-897 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-895 S)
+(-898 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4380 . T))
-((-3994 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841))))
-(-896 R E |VarSet| S)
+((-4387 . T))
+((-4007 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844))))
+(-899 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-897 R S)
+(-900 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-898 S)
+(-901 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-144))))
-(-899)
+(-902)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-900 |p|)
+(-903 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
-(-901 R0 -3189 UP UPUP R)
+(-904 R0 -3214 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-902 UP UPUP R)
+(-905 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-903 UP UPUP)
+(-906 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-904 R)
+(-907 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-905 R)
+(-908 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-906 E OV R P)
+(-909 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-907)
+(-910)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-908 -3189)
+(-911 -3214)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-909 R)
+(-912 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-910)
+(-913)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-911)
+(-914)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4385 "*") . T))
+(((-4392 "*") . T))
NIL
-(-912 -3189 P)
+(-915 -3214 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-913 |xx| -3189)
+(-916 |xx| -3214)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-914 R |Var| |Expon| GR)
+(-917 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-915 S)
+(-918 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-916)
+(-919)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-917)
+(-920)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-918)
+(-921)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-919 R -3189)
+(-922 R -3214)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-920)
+(-923)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-921 S A B)
+(-924 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-922 S R -3189)
+(-925 S R -3214)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-923 I)
+(-926 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-924 S E)
+(-927 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-925 S R L)
+(-928 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-926 S E V R P)
+(-929 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -876) (|devaluate| |#1|))))
-(-927 R -3189 -3042)
+((|HasCategory| |#3| (LIST (QUOTE -879) (|devaluate| |#1|))))
+(-930 R -3214 -3122)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-928 -3042)
+(-931 -3122)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-929 S R Q)
+(-932 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-930 S)
+(-933 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-931 S R P)
+(-934 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-932)
+(-935)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-933 R)
+(-936 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-934 |lv| R)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-937 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-935 |TheField| |ThePols|)
+(-938 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-839))))
-(-936 R S)
+((|HasCategory| |#1| (QUOTE (-842))))
+(-939 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-937 |x| R)
+(-940 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-938 S R E |VarSet|)
+(-941 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-899))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-841))))
-(-939 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-902))) (|HasAttribute| |#2| (QUOTE -4388)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-844))))
+(-942 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
NIL
-(-940 E V R P -3189)
+(-943 E V R P -3214)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-941 E |Vars| R P S)
+(-944 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-942 R)
+(-945 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-943 E V R P -3189)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1166) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-946 E V R P -3214)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-450))))
-(-944)
+(-947)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-945)
+(-948)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-946 R L)
+(-949 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-947 A B)
+(-950 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-948 S)
+(-951 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-949)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-952)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-950 -3189)
+(-953 -3214)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-951 I)
+(-954 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-952)
+(-955)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-953 R E)
+(-956 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4381)))
-(-954 A B)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4388)))
+(-957 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4380 -12 (|has| |#2| (-471)) (|has| |#1| (-471))))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841))))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841)))))
-(-955)
+((-4387 -12 (|has| |#2| (-471)) (|has| |#1| (-471))))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787))))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844)))))
+(-958)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-956 T$)
+(-959 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
NIL
-(-957)
+(-960)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-958 S)
+(-961 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
-(-959 R |polR|)
+(-962 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-450))))
-(-960)
+(-963)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-961)
+(-964)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-962 S |Coef| |Expon| |Var|)
+(-965 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-963 |Coef| |Expon| |Var|)
+(-966 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-964)
+(-967)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-965 S R E |VarSet| P)
+(-968 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-550))))
-(-966 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-553))))
+(-969 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4383 . T))
+((-4390 . T))
NIL
-(-967 R E V P)
+(-970 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-450))))
-(-968 K)
+(-971 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-969 |VarSet| E RC P)
+(-972 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-970 R)
+(-973 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-971 R1 R2)
+(-974 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-972 R)
+(-975 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-973 K)
+(-976 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-974 R E OV PPR)
+(-977 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-975 K R UP -3189)
+(-978 K R UP -3214)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-976 |vl| |nv|)
+(-979 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-977 R |Var| |Expon| |Dpoly|)
+(-980 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))))
-(-978 R E V P TS)
+(-981 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-979)
+(-982)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-980 A B R S)
+(-983 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-981 A S)
+(-984 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1138))))
-(-982 S)
+((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-1141))))
+(-985 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-983 |n| K)
+(-986 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-984)
+(-987)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-985 S)
+(-988 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
-(-986 S R)
+(-989 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-289))))
-(-987 R)
+((|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-289))))
+(-990 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4376 |has| |#1| (-289)) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 |has| |#1| (-289)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-988 QR R QS S)
+(-991 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-989 R)
+(-992 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4376 |has| |#1| (-289)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))))
-(-990 S)
+((-4383 |has| |#1| (-289)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543))))
+(-993 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-991 S)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-994 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-992)
+(-995)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-993 -3189 UP UPUP |radicnd| |n|)
+(-996 -3214 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4376 |has| (-406 |#2|) (-362)) (-4381 |has| (-406 |#2|) (-362)) (-4375 |has| (-406 |#2|) (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3994 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3994 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3994 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3994 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
-(-994 |bb|)
+((-4383 |has| (-406 |#2|) (-362)) (-4388 |has| (-406 |#2|) (-362)) (-4382 |has| (-406 |#2|) (-362)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4007 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4007 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4007 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-561)))) (-4007 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+(-997 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3994 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
-(-995)
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-561) (QUOTE (-902))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-561) (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-146))) (|HasCategory| (-561) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-1015))) (|HasCategory| (-561) (QUOTE (-814))) (-4007 (|HasCategory| (-561) (QUOTE (-814))) (|HasCategory| (-561) (QUOTE (-844)))) (|HasCategory| (-561) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-1141))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| (-561) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| (-561) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| (-561) (QUOTE (-232))) (|HasCategory| (-561) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-561) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -308) (QUOTE (-561)))) (|HasCategory| (-561) (LIST (QUOTE -285) (QUOTE (-561)) (QUOTE (-561)))) (|HasCategory| (-561) (QUOTE (-306))) (|HasCategory| (-561) (QUOTE (-543))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-561) (LIST (QUOTE -634) (QUOTE (-561)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-561) (QUOTE (-902)))) (|HasCategory| (-561) (QUOTE (-144)))))
+(-998)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-996)
+(-999)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-997 RP)
+(-1000 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-998 S)
+(-1001 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-999 A S)
+(-1002 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (QUOTE (-1087))))
-(-1000 S)
+((|HasAttribute| |#1| (QUOTE -4391)) (|HasCategory| |#2| (QUOTE (-1090))))
+(-1003 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1001 S)
+(-1004 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1002)
+(-1005)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4376 . T) (-4381 . T) (-4375 . T) (-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4380 . T))
+((-4383 . T) (-4388 . T) (-4382 . T) (-4385 . T) (-4384 . T) ((-4392 "*") . T) (-4387 . T))
NIL
-(-1003 R -3189)
+(-1006 R -3214)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1004 R -3189)
+(-1007 R -3214)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1005 -3189 UP)
+(-1008 -3214 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1006 -3189 UP)
+(-1009 -3214 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1007 S)
+(-1010 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1008 F1 UP UPUP R F2)
+(-1011 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-1009)
+(-1012)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1010 |Pol|)
+(-1013 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1011 |Pol|)
+(-1014 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1012)
+(-1015)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1013)
+(-1016)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1014 |TheField|)
+(-1017 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4376 . T) (-4381 . T) (-4375 . T) (-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4380 . T))
-((-3994 (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))))
-(-1015 -3189 L)
+((-4383 . T) (-4388 . T) (-4382 . T) (-4385 . T) (-4384 . T) ((-4392 "*") . T) (-4387 . T))
+((-4007 (|HasCategory| (-406 (-561)) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-406 (-561)) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-406 (-561)) (LIST (QUOTE -1031) (QUOTE (-561)))))
+(-1018 -3214 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1016 S)
+(-1019 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1087))))
-(-1017 R E V P)
+((|HasCategory| |#1| (QUOTE (-1090))))
+(-1020 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1018 R)
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1021 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4385 "*"))))
-(-1019 R)
+((|HasAttribute| |#1| (QUOTE (-4392 "*"))))
+(-1022 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))))
-(-1020 S)
+(-1023 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1021)
+(-1024)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1022 S)
+(-1025 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1023 S)
+(-1026 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1024 -3189 |Expon| |VarSet| |FPol| |LFPol|)
+(-1027 -3214 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1025)
+(-1028)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -1925) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1026)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2654) (QUOTE (-52))))))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-52) (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-52) (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1029)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1027 A S)
+(-1030 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1028 S)
+(-1031 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1029 Q R)
+(-1032 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1030)
+(-1033)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1031 UP)
+(-1034 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1032 R)
+(-1035 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1033 R)
+(-1036 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1034 T$)
+(-1037 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1035 T$)
+(-1038 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1036 R |ls|)
+(-1039 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| (-771 |#1| (-855 |#2|)) (QUOTE (-1087))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -771) (|devaluate| |#1|) (LIST (QUOTE -855) (|devaluate| |#2|)))))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-771 |#1| (-855 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-855 |#2|) (QUOTE (-367))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1037)
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1090))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -774) (|devaluate| |#1|) (LIST (QUOTE -858) (|devaluate| |#2|)))))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| (-858 |#2|) (QUOTE (-367))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1040)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1038 S)
+(-1041 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1039)
+(-1042)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4380 . T))
+((-4387 . T))
NIL
-(-1040 |xx| -3189)
+(-1043 |xx| -3214)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1041 S |m| |n| R |Row| |Col|)
+(-1044 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-550))) (|HasCategory| |#4| (QUOTE (-171))))
-(-1042 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-553))) (|HasCategory| |#4| (QUOTE (-171))))
+(-1045 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4383 . T) (-4378 . T) (-4377 . T))
+((-4390 . T) (-4385 . T) (-4384 . T))
NIL
-(-1043 |m| |n| R)
+(-1046 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4383 . T) (-4378 . T) (-4377 . T))
-((-3994 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1044 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4390 . T) (-4385 . T) (-4384 . T))
+((-4007 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1047 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1045 R)
+(-1048 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-1046)
+(-1049)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1047 S)
+(-1050 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1048)
+(-1051)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1049 |TheField| |ThePolDom|)
+(-1052 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1050)
+(-1053)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4371 . T) (-4375 . T) (-4370 . T) (-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4378 . T) (-4382 . T) (-4377 . T) (-4388 . T) (-4389 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1051)
+(-1054)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -1925) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1052 S R E V)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2654) (QUOTE (-52))))))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-52) (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1090))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (QUOTE (-1090))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-52) (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-52) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1055 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -982) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-1163)))))
-(-1053 R E V)
+((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -985) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-1166)))))
+(-1056 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
NIL
-(-1054)
+(-1057)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1055 S |TheField| |ThePols|)
+(-1058 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1056 |TheField| |ThePols|)
+(-1059 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1057 R E V P TS)
+(-1060 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1058 S R E V P)
+(-1061 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1059 R E V P)
+(-1062 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-1060 R E V P TS)
+(-1063 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1061)
+(-1064)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1062 |f|)
+(-1065 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1063 |Base| R -3189)
+(-1066 |Base| R -3214)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1064 |Base| R -3189)
+(-1067 |Base| R -3214)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-1065 R |ls|)
+(-1068 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1066 UP SAE UPA)
+(-1069 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1067 R UP M)
+(-1070 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4376 |has| |#1| (-362)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))))
-(-1068 UP SAE UPA)
+((-4383 |has| |#1| (-362)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))))
+(-1071 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1069)
+(-1072)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1070)
+(-1073)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1071 S)
+(-1074 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1072)
+(-1075)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1073 R)
+(-1076 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1074 R)
+(-1077 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-1075 S)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1078 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1076 R S)
+(-1079 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-839))))
-(-1077)
+((|HasCategory| |#1| (QUOTE (-842))))
+(-1080)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1078 R S)
+(-1081 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1079 S)
+(-1082 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1087))))
-(-1080 S)
+((|HasCategory| |#1| (QUOTE (-1090))))
+(-1083 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1081 S)
+(-1084 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (QUOTE (-1087))))
-(-1082 S L)
+((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090))))
+(-1085 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
NIL
NIL
-(-1083)
+(-1086)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1084 A S)
+(-1087 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1085 S)
+(-1088 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4373 . T))
+((-4380 . T))
NIL
-(-1086 S)
+(-1089 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1087)
+(-1090)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1088 |m| |n|)
+(-1091 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1089 S)
+(-1092 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4383 . T) (-4373 . T) (-4384 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-1090 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4390 . T) (-4380 . T) (-4391 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-1093 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1091)
+(-1094)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1092 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1095 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1093 R FS)
+(-1096 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1094 R E V P TS)
+(-1097 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1095 R E V P TS)
+(-1098 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1096 R E V P)
+(-1099 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-1097)
+(-1100)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1098 S)
+(-1101 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1099)
+(-1102)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1100 |dimtot| |dim1| S)
+(-1103 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4377 |has| |#3| (-1039)) (-4378 |has| |#3| (-1039)) (-4380 |has| |#3| (-6 -4380)) ((-4385 "*") |has| |#3| (-171)) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#3| (QUOTE (-362))) (-3994 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3994 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3994 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3994 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3994 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (|HasAttribute| |#3| (QUOTE -4380)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
-(-1101 R |x|)
+((-4384 |has| |#3| (-1042)) (-4385 |has| |#3| (-1042)) (-4387 |has| |#3| (-6 -4387)) ((-4392 "*") |has| |#3| (-171)) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4007 (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#3| (QUOTE (-362))) (-4007 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4007 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-4007 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-4007 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-4007 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1090)))) (-4007 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4007 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4007 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-4007 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-720)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-842)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090))))) (-4007 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (|HasCategory| (-561) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-4007 (|HasCategory| |#3| (QUOTE (-1042))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561)))))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#3| (QUOTE (-1090)))) (|HasAttribute| |#3| (QUOTE -4387)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+(-1104 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-450))))
-(-1102)
+(-1105)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1103 R -3189)
+(-1106 R -3214)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1104 R)
+(-1107 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1105)
+(-1108)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1106)
+(-1109)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1107)
+(-1110)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4371 . T) (-4375 . T) (-4370 . T) (-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4378 . T) (-4382 . T) (-4377 . T) (-4388 . T) (-4389 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1108 S)
+(-1111 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4383 . T) (-4384 . T))
+((-4390 . T) (-4391 . T))
NIL
-(-1109 S |ndim| R |Row| |Col|)
+(-1112 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4385 "*"))) (|HasCategory| |#3| (QUOTE (-171))))
-(-1110 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4392 "*"))) (|HasCategory| |#3| (QUOTE (-171))))
+(-1113 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4383 . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4390 . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1111 R |Row| |Col| M)
+(-1114 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1112 R |VarSet|)
+(-1115 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-1113 |Coef| |Var| SMP)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1116 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
-(-1114 R E V P)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-362))))
+(-1117 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-1115 UP -3189)
+(-1118 UP -3214)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1116 R)
+(-1119 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1117 R)
+(-1120 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1118 R)
+(-1121 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1119 S A)
+(-1122 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-841))))
-(-1120 R)
+((|HasCategory| |#1| (QUOTE (-844))))
+(-1123 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1121 R)
+(-1124 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1122)
+(-1125)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1123)
+(-1126)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1124)
+(-1127)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1125)
+(-1128)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1126)
+(-1129)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1127 V C)
+(-1130 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1128 V C)
+(-1131 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))) (-3994 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))))) (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1129 |ndim| R)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1090)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1090))) (-4007 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1090))))) (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1132 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4380 . T) (-4372 |has| |#2| (-6 (-4385 "*"))) (-4383 . T) (-4377 . T) (-4378 . T))
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (-3994 (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
-(-1130 S)
+((-4387 . T) (-4379 |has| |#2| (-6 (-4392 "*"))) (-4390 . T) (-4384 . T) (-4385 . T))
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4392 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-362))) (-4007 (|HasAttribute| |#2| (QUOTE (-4392 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+(-1133 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1131)
+(-1134)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-1132 R E V P TS)
+(-1135 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1133 R E V P)
+(-1136 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1134 S)
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1137 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1135 A S)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1138 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1136 S)
+(-1139 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1137 |Key| |Ent| |dent|)
+(-1140 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))))
-(-1138)
+((-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))))
+(-1141)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1139 |Coef|)
+(-1142 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1140 S)
+(-1143 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1141 A B)
+(-1144 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1142 A B C)
+(-1145 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1143 S)
+(-1146 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4384 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1144)
+((-4391 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1147)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-1145)
+(-1148)
NIL
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
-(-1146 |Entry|)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| (-143) (QUOTE (-1090))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+(-1149 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#1|)))))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1147 A)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#1|)))))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (QUOTE (-1090))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1150 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
-(-1148 |Coef|)
+((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
+(-1151 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1149 |Coef|)
+(-1152 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1150 R UP)
+(-1153 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-306))))
-(-1151 |n| R)
+(-1154 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1152 S1 S2)
+(-1155 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1153)
+(-1156)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1154 |Coef| |var| |cen|)
+(-1157 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4385 "*") -3994 (-2157 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2157 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4376 -3994 (-2157 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2157 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-1155 R -3189)
+(((-4392 "*") -4007 (-2170 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-2170 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-902)))) (-4383 -4007 (-2170 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-553)) (-2170 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-902)))) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|)))))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasCategory| (-561) (QUOTE (-1102))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1158 R -3214)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1156 R)
+(-1159 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1157 R S)
+(-1160 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1158 E OV R P)
+(-1161 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1159 R)
+(-1162 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-1160 |Coef| |var| |cen|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4386 |has| |#1| (-362)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4388)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1163 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
-(-1161 |Coef| |var| |cen|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(-1164 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
-(-1162)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(-1165)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1163)
+(-1166)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1164 R)
+(-1167 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1165 R)
+(-1168 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| (-961) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasAttribute| |#1| (QUOTE -4381)))
-(-1166)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-6 -4388)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| (-964) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasAttribute| |#1| (QUOTE -4388)))
+(-1169)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1167)
+(-1170)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1168)
+(-1171)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1169 R)
+(-1172 N)
+((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")))
+NIL
+NIL
+(-1173 N)
+((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
+NIL
+NIL
+(-1174 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1170)
+(-1175)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1171 S)
+(-1176 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1172 S)
+(-1177 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1173 |Key| |Entry|)
+(-1178 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4383 . T) (-4384 . T))
-((-12 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2176) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1925) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3994 (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1174 R)
+((-4390 . T) (-4391 . T))
+((-12 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2252) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2654) (|devaluate| |#2|)))))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -609) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1090))) (-4007 (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-856)))) (|HasCategory| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1179 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1175 S |Key| |Entry|)
+(-1180 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1176 |Key| |Entry|)
+(-1181 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4384 . T))
+((-4391 . T))
NIL
-(-1177 |Key| |Entry|)
+(-1182 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1178)
+(-1183)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1179 S)
+(-1184 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1180)
+(-1185)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1181)
+(-1186)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1182 R)
+(-1187 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1183)
+(-1188)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1184 S)
+(-1189 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1185)
+(-1190)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1186 S)
+(-1191 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1187 S)
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1090))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1192 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1188)
+(-1193)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1189 R -3189)
+(-1194 R -3214)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1190 R |Row| |Col| M)
+(-1195 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1191 R -3189)
+(-1196 R -3214)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -876) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -876) (|devaluate| |#1|)))))
-(-1192 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -879) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -879) (|devaluate| |#1|)))))
+(-1197 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-367))))
-(-1193 R E V P)
+(-1198 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-1194 |Coef|)
+(-1199 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
-(-1195 |Curve|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-362))))
+(-1200 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1196)
+(-1201)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1197 S)
+(-1202 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1198 -3189)
+((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1203 -3214)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1199)
+(-1204)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1200)
+(-1205)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1201 S)
+(-1206 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-841))))
-(-1202)
+((|HasCategory| |#1| (QUOTE (-844))))
+(-1207)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1203 S)
+(-1208 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1204)
+(-1209)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
+NIL
+(-1210)
+((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
+NIL
+NIL
+(-1211)
+((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
-(-1205 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+NIL
+(-1212 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1206 |Coef|)
+(-1213 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1207 S |Coef| UTS)
+(-1214 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
-(-1208 |Coef| UTS)
+(-1215 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1209 |Coef| UTS)
+(-1216 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-3994 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (QUOTE (-899))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))))
-(-1210 |Coef| |var| |cen|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-4007 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasCategory| (-561) (QUOTE (-1102))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1015)))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))))) (-4007 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-902))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))))
+(-1217 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4385 "*") -3994 (-2157 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2157 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4376 -3994 (-2157 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2157 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-1211 ZP)
+(((-4392 "*") -4007 (-2170 (|has| |#1| (-362)) (|has| (-1245 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-2170 (|has| |#1| (-362)) (|has| (-1245 |#1| |#2| |#3|) (-902)))) (-4383 -4007 (-2170 (|has| |#1| (-362)) (|has| (-1245 |#1| |#2| |#3|) (-814))) (|has| |#1| (-553)) (-2170 (|has| |#1| (-362)) (|has| (-1245 |#1| |#2| |#3|) (-902)))) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|)))))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-561)) (|devaluate| |#1|))))) (|HasCategory| (-561) (QUOTE (-1102))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-362)))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-561))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1218 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1212 R S)
+(-1219 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-839))))
-(-1213 S)
+((|HasCategory| |#1| (QUOTE (-842))))
+(-1220 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (QUOTE (-1087))))
-(-1214 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090))))
+(-1221 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1215 R Q UP)
+(-1222 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1216 R UP)
+(-1223 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1217 R UP)
+(-1224 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1218 R U)
+(-1225 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1219 |x| R)
+(-1226 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4379 |has| |#2| (-362)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3994 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
-(-1220 R PR S PS)
+(((-4392 "*") |has| |#2| (-171)) (-4383 |has| |#2| (-553)) (-4386 |has| |#2| (-362)) (-4388 |has| |#2| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-378))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-561)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-561))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-378)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -885) (QUOTE (-561)))))) (-12 (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-561)))) (-4007 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (-4007 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4388)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (-4007 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-902)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-1227 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1221 S R)
+(-1228 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1138))))
-(-1222 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1141))))
+(-1229 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4386 |has| |#1| (-362)) (-4388 |has| |#1| (-6 -4388)) (-4385 . T) (-4384 . T) (-4387 . T))
NIL
-(-1223 S |Coef| |Expon|)
+(-1230 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3940) (LIST (|devaluate| |#2|) (QUOTE (-1163))))))
-(-1224 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4022) (LIST (|devaluate| |#2|) (QUOTE (-1166))))))
+(-1231 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1225 RC P)
+(-1232 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1226 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1233 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1227 |Coef|)
+(-1234 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1228 S |Coef| ULS)
+(-1235 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1229 |Coef| ULS)
+(-1236 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1230 |Coef| ULS)
+(-1237 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
-(-1231 |Coef| |var| |cen|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))))
+(-1238 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3994 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
-(-1232 R FE |var| |cen|)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4388 |has| |#1| (-362)) (-4382 |has| |#1| (-362)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-171))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-561)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-4007 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-553)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-561)))))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(-1239 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4385 "*") |has| (-1231 |#2| |#3| |#4|) (-171)) (-4376 |has| (-1231 |#2| |#3| |#4|) (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-171))) (-3994 (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-550))))
-(-1233 A S)
+(((-4392 "*") |has| (-1238 |#2| |#3| |#4|) (-171)) (-4383 |has| (-1238 |#2| |#3| |#4|) (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| (-1238 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-1238 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1238 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1238 |#2| |#3| |#4|) (QUOTE (-171))) (-4007 (|HasCategory| (-1238 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-1238 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561)))))) (|HasCategory| (-1238 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| (-1238 |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-561)))) (|HasCategory| (-1238 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1238 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1238 |#2| |#3| |#4|) (QUOTE (-553))))
+(-1240 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4384)))
-(-1234 S)
+((|HasAttribute| |#1| (QUOTE -4391)))
+(-1241 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1235 |Coef1| |Coef2| UTS1 UTS2)
+(-1242 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1236 S |Coef|)
+(-1243 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasSignature| |#2| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1337) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))))
-(-1237 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasSignature| |#2| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1842) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#2| (QUOTE (-362))))
+(-1244 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1238 |Coef| |var| |cen|)
+(-1245 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3994 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -3940) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -1337) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -4078) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
-(-1239 |Coef| UTS)
+(((-4392 "*") |has| |#1| (-171)) (-4383 |has| |#1| (-553)) (-4384 . T) (-4385 . T) (-4387 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasCategory| |#1| (QUOTE (-553))) (-4007 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4022) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-4007 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasSignature| |#1| (LIST (QUOTE -1842) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -1412) (LIST (LIST (QUOTE -638) (QUOTE (-1166))) (|devaluate| |#1|)))))))
+(-1246 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1240 -3189 UP L UTS)
+(-1247 -3214 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-550))))
-(-1241)
+((|HasCategory| |#1| (QUOTE (-553))))
+(-1248)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1242 |sym|)
+(-1249 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1243 S R)
+(-1250 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1244 R)
+((|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1251 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4384 . T) (-4383 . T))
+((-4391 . T) (-4390 . T))
NIL
-(-1245 A B)
+(-1252 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1246 R)
+(-1253 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4384 . T) (-4383 . T))
-((-3994 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3994 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-1247)
+((-4391 . T) (-4390 . T))
+((-4007 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4007 (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-534)))) (-4007 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-561) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-1254)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1248)
+(-1255)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1249)
+(-1256)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1250)
+(-1257)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1251)
+(-1258)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1252 A S)
+(-1259 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1253 S)
+(-1260 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4378 . T) (-4377 . T))
+((-4385 . T) (-4384 . T))
NIL
-(-1254 R)
+(-1261 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1255 K R UP -3189)
+(-1262 K R UP -3214)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1256)
+(-1263)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1257)
+(-1264)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1258 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1265 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
+((-4385 |has| |#1| (-171)) (-4384 |has| |#1| (-171)) (-4387 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
-(-1259 R E V P)
+(-1266 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4384 . T) (-4383 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1260 R)
+((-4391 . T) (-4390 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-856)))))
+(-1267 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4377 . T) (-4378 . T) (-4380 . T))
+((-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1261 |vl| R)
+(-1268 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4380 . T) (-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4376)))
-(-1262 R |VarSet| XPOLY)
+((-4387 . T) (-4383 |has| |#2| (-6 -4383)) (-4385 . T) (-4384 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4383)))
+(-1269 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1263 |vl| R)
+(-1270 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
+((-4383 |has| |#2| (-6 -4383)) (-4385 . T) (-4384 . T) (-4387 . T))
NIL
-(-1264 S -3189)
+(-1271 S -3214)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))))
-(-1265 -3189)
+(-1272 -3214)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-4382 . T) (-4388 . T) (-4383 . T) ((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
-(-1266 |VarSet| R)
+(-1273 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -708) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4376)))
-(-1267 |vl| R)
+((-4383 |has| |#2| (-6 -4383)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -711) (LIST (QUOTE -406) (QUOTE (-561))))) (|HasAttribute| |#2| (QUOTE -4383)))
+(-1274 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
+((-4383 |has| |#2| (-6 -4383)) (-4385 . T) (-4384 . T) (-4387 . T))
NIL
-(-1268 R)
+(-1275 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4376 |has| |#1| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4376)))
-(-1269 R E)
+((-4383 |has| |#1| (-6 -4383)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4383)))
+(-1276 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4380 . T) (-4381 |has| |#1| (-6 -4381)) (-4376 |has| |#1| (-6 -4376)) (-4378 . T) (-4377 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasAttribute| |#1| (QUOTE -4381)) (|HasAttribute| |#1| (QUOTE -4376)))
-(-1270 |VarSet| R)
+((-4387 . T) (-4388 |has| |#1| (-6 -4388)) (-4383 |has| |#1| (-6 -4383)) (-4385 . T) (-4384 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4387)) (|HasAttribute| |#1| (QUOTE -4388)) (|HasAttribute| |#1| (QUOTE -4383)))
+(-1277 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4376)))
-(-1271 A)
+((-4383 |has| |#2| (-6 -4383)) (-4385 . T) (-4384 . T) (-4387 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4383)))
+(-1278 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1272 R |ls| |ls2|)
+(-1279 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1273 R)
+(-1280 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1274 |p|)
+(-1281 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+(((-4392 "*") . T) (-4384 . T) (-4385 . T) (-4387 . T))
NIL
NIL
NIL
@@ -5044,4 +5072,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2275560 2275565 2275570 2275575) (-2 NIL 2275540 2275545 2275550 2275555) (-1 NIL 2275520 2275525 2275530 2275535) (0 NIL 2275500 2275505 2275510 2275515) (-1274 "ZMOD.spad" 2275309 2275322 2275438 2275495) (-1273 "ZLINDEP.spad" 2274353 2274364 2275299 2275304) (-1272 "ZDSOLVE.spad" 2264202 2264224 2274343 2274348) (-1271 "YSTREAM.spad" 2263695 2263706 2264192 2264197) (-1270 "XRPOLY.spad" 2262915 2262935 2263551 2263620) (-1269 "XPR.spad" 2260706 2260719 2262633 2262732) (-1268 "XPOLY.spad" 2260261 2260272 2260562 2260631) (-1267 "XPOLYC.spad" 2259578 2259594 2260187 2260256) (-1266 "XPBWPOLY.spad" 2258015 2258035 2259358 2259427) (-1265 "XF.spad" 2256476 2256491 2257917 2258010) (-1264 "XF.spad" 2254917 2254934 2256360 2256365) (-1263 "XFALG.spad" 2251941 2251957 2254843 2254912) (-1262 "XEXPPKG.spad" 2251192 2251218 2251931 2251936) (-1261 "XDPOLY.spad" 2250806 2250822 2251048 2251117) (-1260 "XALG.spad" 2250466 2250477 2250762 2250801) (-1259 "WUTSET.spad" 2246305 2246322 2250112 2250139) (-1258 "WP.spad" 2245504 2245548 2246163 2246230) (-1257 "WHILEAST.spad" 2245302 2245311 2245494 2245499) (-1256 "WHEREAST.spad" 2244973 2244982 2245292 2245297) (-1255 "WFFINTBS.spad" 2242536 2242558 2244963 2244968) (-1254 "WEIER.spad" 2240750 2240761 2242526 2242531) (-1253 "VSPACE.spad" 2240423 2240434 2240718 2240745) (-1252 "VSPACE.spad" 2240116 2240129 2240413 2240418) (-1251 "VOID.spad" 2239793 2239802 2240106 2240111) (-1250 "VIEW.spad" 2237415 2237424 2239783 2239788) (-1249 "VIEWDEF.spad" 2232612 2232621 2237405 2237410) (-1248 "VIEW3D.spad" 2216447 2216456 2232602 2232607) (-1247 "VIEW2D.spad" 2204184 2204193 2216437 2216442) (-1246 "VECTOR.spad" 2202859 2202870 2203110 2203137) (-1245 "VECTOR2.spad" 2201486 2201499 2202849 2202854) (-1244 "VECTCAT.spad" 2199386 2199397 2201454 2201481) (-1243 "VECTCAT.spad" 2197094 2197107 2199164 2199169) (-1242 "VARIABLE.spad" 2196874 2196889 2197084 2197089) (-1241 "UTYPE.spad" 2196518 2196527 2196864 2196869) (-1240 "UTSODETL.spad" 2195811 2195835 2196474 2196479) (-1239 "UTSODE.spad" 2193999 2194019 2195801 2195806) (-1238 "UTS.spad" 2188788 2188816 2192466 2192563) (-1237 "UTSCAT.spad" 2186239 2186255 2188686 2188783) (-1236 "UTSCAT.spad" 2183334 2183352 2185783 2185788) (-1235 "UTS2.spad" 2182927 2182962 2183324 2183329) (-1234 "URAGG.spad" 2177559 2177570 2182917 2182922) (-1233 "URAGG.spad" 2172155 2172168 2177515 2177520) (-1232 "UPXSSING.spad" 2169798 2169824 2171236 2171369) (-1231 "UPXS.spad" 2166946 2166974 2167930 2168079) (-1230 "UPXSCONS.spad" 2164703 2164723 2165078 2165227) (-1229 "UPXSCCA.spad" 2163268 2163288 2164549 2164698) (-1228 "UPXSCCA.spad" 2161975 2161997 2163258 2163263) (-1227 "UPXSCAT.spad" 2160556 2160572 2161821 2161970) (-1226 "UPXS2.spad" 2160097 2160150 2160546 2160551) (-1225 "UPSQFREE.spad" 2158509 2158523 2160087 2160092) (-1224 "UPSCAT.spad" 2156102 2156126 2158407 2158504) (-1223 "UPSCAT.spad" 2153401 2153427 2155708 2155713) (-1222 "UPOLYC.spad" 2148379 2148390 2153243 2153396) (-1221 "UPOLYC.spad" 2143249 2143262 2148115 2148120) (-1220 "UPOLYC2.spad" 2142718 2142737 2143239 2143244) (-1219 "UP.spad" 2139875 2139890 2140268 2140421) (-1218 "UPMP.spad" 2138765 2138778 2139865 2139870) (-1217 "UPDIVP.spad" 2138328 2138342 2138755 2138760) (-1216 "UPDECOMP.spad" 2136565 2136579 2138318 2138323) (-1215 "UPCDEN.spad" 2135772 2135788 2136555 2136560) (-1214 "UP2.spad" 2135134 2135155 2135762 2135767) (-1213 "UNISEG.spad" 2134487 2134498 2135053 2135058) (-1212 "UNISEG2.spad" 2133980 2133993 2134443 2134448) (-1211 "UNIFACT.spad" 2133081 2133093 2133970 2133975) (-1210 "ULS.spad" 2123633 2123661 2124726 2125155) (-1209 "ULSCONS.spad" 2116027 2116047 2116399 2116548) (-1208 "ULSCCAT.spad" 2113756 2113776 2115873 2116022) (-1207 "ULSCCAT.spad" 2111593 2111615 2113712 2113717) (-1206 "ULSCAT.spad" 2109809 2109825 2111439 2111588) (-1205 "ULS2.spad" 2109321 2109374 2109799 2109804) (-1204 "UFD.spad" 2108386 2108395 2109247 2109316) (-1203 "UFD.spad" 2107513 2107524 2108376 2108381) (-1202 "UDVO.spad" 2106360 2106369 2107503 2107508) (-1201 "UDPO.spad" 2103787 2103798 2106316 2106321) (-1200 "TYPE.spad" 2103719 2103728 2103777 2103782) (-1199 "TYPEAST.spad" 2103638 2103647 2103709 2103714) (-1198 "TWOFACT.spad" 2102288 2102303 2103628 2103633) (-1197 "TUPLE.spad" 2101772 2101783 2102187 2102192) (-1196 "TUBETOOL.spad" 2098609 2098618 2101762 2101767) (-1195 "TUBE.spad" 2097250 2097267 2098599 2098604) (-1194 "TS.spad" 2095839 2095855 2096815 2096912) (-1193 "TSETCAT.spad" 2082966 2082983 2095807 2095834) (-1192 "TSETCAT.spad" 2070079 2070098 2082922 2082927) (-1191 "TRMANIP.spad" 2064445 2064462 2069785 2069790) (-1190 "TRIMAT.spad" 2063404 2063429 2064435 2064440) (-1189 "TRIGMNIP.spad" 2061921 2061938 2063394 2063399) (-1188 "TRIGCAT.spad" 2061433 2061442 2061911 2061916) (-1187 "TRIGCAT.spad" 2060943 2060954 2061423 2061428) (-1186 "TREE.spad" 2059514 2059525 2060550 2060577) (-1185 "TRANFUN.spad" 2059345 2059354 2059504 2059509) (-1184 "TRANFUN.spad" 2059174 2059185 2059335 2059340) (-1183 "TOPSP.spad" 2058848 2058857 2059164 2059169) (-1182 "TOOLSIGN.spad" 2058511 2058522 2058838 2058843) (-1181 "TEXTFILE.spad" 2057068 2057077 2058501 2058506) (-1180 "TEX.spad" 2054200 2054209 2057058 2057063) (-1179 "TEX1.spad" 2053756 2053767 2054190 2054195) (-1178 "TEMUTL.spad" 2053311 2053320 2053746 2053751) (-1177 "TBCMPPK.spad" 2051404 2051427 2053301 2053306) (-1176 "TBAGG.spad" 2050440 2050463 2051384 2051399) (-1175 "TBAGG.spad" 2049484 2049509 2050430 2050435) (-1174 "TANEXP.spad" 2048860 2048871 2049474 2049479) (-1173 "TABLE.spad" 2047271 2047294 2047541 2047568) (-1172 "TABLEAU.spad" 2046752 2046763 2047261 2047266) (-1171 "TABLBUMP.spad" 2043535 2043546 2046742 2046747) (-1170 "SYSTEM.spad" 2042809 2042818 2043525 2043530) (-1169 "SYSSOLP.spad" 2040282 2040293 2042799 2042804) (-1168 "SYNTAX.spad" 2036552 2036561 2040272 2040277) (-1167 "SYMTAB.spad" 2034608 2034617 2036542 2036547) (-1166 "SYMS.spad" 2030593 2030602 2034598 2034603) (-1165 "SYMPOLY.spad" 2029600 2029611 2029682 2029809) (-1164 "SYMFUNC.spad" 2029075 2029086 2029590 2029595) (-1163 "SYMBOL.spad" 2026502 2026511 2029065 2029070) (-1162 "SWITCH.spad" 2023259 2023268 2026492 2026497) (-1161 "SUTS.spad" 2020158 2020186 2021726 2021823) (-1160 "SUPXS.spad" 2017293 2017321 2018290 2018439) (-1159 "SUP.spad" 2014062 2014073 2014843 2014996) (-1158 "SUPFRACF.spad" 2013167 2013185 2014052 2014057) (-1157 "SUP2.spad" 2012557 2012570 2013157 2013162) (-1156 "SUMRF.spad" 2011523 2011534 2012547 2012552) (-1155 "SUMFS.spad" 2011156 2011173 2011513 2011518) (-1154 "SULS.spad" 2001695 2001723 2002801 2003230) (-1153 "SUCHTAST.spad" 2001464 2001473 2001685 2001690) (-1152 "SUCH.spad" 2001144 2001159 2001454 2001459) (-1151 "SUBSPACE.spad" 1993151 1993166 2001134 2001139) (-1150 "SUBRESP.spad" 1992311 1992325 1993107 1993112) (-1149 "STTF.spad" 1988410 1988426 1992301 1992306) (-1148 "STTFNC.spad" 1984878 1984894 1988400 1988405) (-1147 "STTAYLOR.spad" 1977276 1977287 1984759 1984764) (-1146 "STRTBL.spad" 1975781 1975798 1975930 1975957) (-1145 "STRING.spad" 1975190 1975199 1975204 1975231) (-1144 "STRICAT.spad" 1974978 1974987 1975158 1975185) (-1143 "STREAM.spad" 1971836 1971847 1974503 1974518) (-1142 "STREAM3.spad" 1971381 1971396 1971826 1971831) (-1141 "STREAM2.spad" 1970449 1970462 1971371 1971376) (-1140 "STREAM1.spad" 1970153 1970164 1970439 1970444) (-1139 "STINPROD.spad" 1969059 1969075 1970143 1970148) (-1138 "STEP.spad" 1968260 1968269 1969049 1969054) (-1137 "STBL.spad" 1966786 1966814 1966953 1966968) (-1136 "STAGG.spad" 1965861 1965872 1966776 1966781) (-1135 "STAGG.spad" 1964934 1964947 1965851 1965856) (-1134 "STACK.spad" 1964285 1964296 1964541 1964568) (-1133 "SREGSET.spad" 1961989 1962006 1963931 1963958) (-1132 "SRDCMPK.spad" 1960534 1960554 1961979 1961984) (-1131 "SRAGG.spad" 1955631 1955640 1960502 1960529) (-1130 "SRAGG.spad" 1950748 1950759 1955621 1955626) (-1129 "SQMATRIX.spad" 1948364 1948382 1949280 1949367) (-1128 "SPLTREE.spad" 1942916 1942929 1947800 1947827) (-1127 "SPLNODE.spad" 1939504 1939517 1942906 1942911) (-1126 "SPFCAT.spad" 1938281 1938290 1939494 1939499) (-1125 "SPECOUT.spad" 1936831 1936840 1938271 1938276) (-1124 "SPADXPT.spad" 1928970 1928979 1936821 1936826) (-1123 "spad-parser.spad" 1928435 1928444 1928960 1928965) (-1122 "SPADAST.spad" 1928136 1928145 1928425 1928430) (-1121 "SPACEC.spad" 1912149 1912160 1928126 1928131) (-1120 "SPACE3.spad" 1911925 1911936 1912139 1912144) (-1119 "SORTPAK.spad" 1911470 1911483 1911881 1911886) (-1118 "SOLVETRA.spad" 1909227 1909238 1911460 1911465) (-1117 "SOLVESER.spad" 1907747 1907758 1909217 1909222) (-1116 "SOLVERAD.spad" 1903757 1903768 1907737 1907742) (-1115 "SOLVEFOR.spad" 1902177 1902195 1903747 1903752) (-1114 "SNTSCAT.spad" 1901777 1901794 1902145 1902172) (-1113 "SMTS.spad" 1900037 1900063 1901342 1901439) (-1112 "SMP.spad" 1897476 1897496 1897866 1897993) (-1111 "SMITH.spad" 1896319 1896344 1897466 1897471) (-1110 "SMATCAT.spad" 1894429 1894459 1896263 1896314) (-1109 "SMATCAT.spad" 1892471 1892503 1894307 1894312) (-1108 "SKAGG.spad" 1891432 1891443 1892439 1892466) (-1107 "SINT.spad" 1890258 1890267 1891298 1891427) (-1106 "SIMPAN.spad" 1889986 1889995 1890248 1890253) (-1105 "SIG.spad" 1889314 1889323 1889976 1889981) (-1104 "SIGNRF.spad" 1888422 1888433 1889304 1889309) (-1103 "SIGNEF.spad" 1887691 1887708 1888412 1888417) (-1102 "SIGAST.spad" 1887072 1887081 1887681 1887686) (-1101 "SHP.spad" 1884990 1885005 1887028 1887033) (-1100 "SHDP.spad" 1874701 1874728 1875210 1875341) (-1099 "SGROUP.spad" 1874309 1874318 1874691 1874696) (-1098 "SGROUP.spad" 1873915 1873926 1874299 1874304) (-1097 "SGCF.spad" 1866796 1866805 1873905 1873910) (-1096 "SFRTCAT.spad" 1865724 1865741 1866764 1866791) (-1095 "SFRGCD.spad" 1864787 1864807 1865714 1865719) (-1094 "SFQCMPK.spad" 1859424 1859444 1864777 1864782) (-1093 "SFORT.spad" 1858859 1858873 1859414 1859419) (-1092 "SEXOF.spad" 1858702 1858742 1858849 1858854) (-1091 "SEX.spad" 1858594 1858603 1858692 1858697) (-1090 "SEXCAT.spad" 1856145 1856185 1858584 1858589) (-1089 "SET.spad" 1854445 1854456 1855566 1855605) (-1088 "SETMN.spad" 1852879 1852896 1854435 1854440) (-1087 "SETCAT.spad" 1852364 1852373 1852869 1852874) (-1086 "SETCAT.spad" 1851847 1851858 1852354 1852359) (-1085 "SETAGG.spad" 1848368 1848379 1851827 1851842) (-1084 "SETAGG.spad" 1844897 1844910 1848358 1848363) (-1083 "SEQAST.spad" 1844600 1844609 1844887 1844892) (-1082 "SEGXCAT.spad" 1843722 1843735 1844590 1844595) (-1081 "SEG.spad" 1843535 1843546 1843641 1843646) (-1080 "SEGCAT.spad" 1842442 1842453 1843525 1843530) (-1079 "SEGBIND.spad" 1841514 1841525 1842397 1842402) (-1078 "SEGBIND2.spad" 1841210 1841223 1841504 1841509) (-1077 "SEGAST.spad" 1840924 1840933 1841200 1841205) (-1076 "SEG2.spad" 1840349 1840362 1840880 1840885) (-1075 "SDVAR.spad" 1839625 1839636 1840339 1840344) (-1074 "SDPOL.spad" 1837015 1837026 1837306 1837433) (-1073 "SCPKG.spad" 1835094 1835105 1837005 1837010) (-1072 "SCOPE.spad" 1834239 1834248 1835084 1835089) (-1071 "SCACHE.spad" 1832921 1832932 1834229 1834234) (-1070 "SASTCAT.spad" 1832830 1832839 1832911 1832916) (-1069 "SAOS.spad" 1832702 1832711 1832820 1832825) (-1068 "SAERFFC.spad" 1832415 1832435 1832692 1832697) (-1067 "SAE.spad" 1830590 1830606 1831201 1831336) (-1066 "SAEFACT.spad" 1830291 1830311 1830580 1830585) (-1065 "RURPK.spad" 1827932 1827948 1830281 1830286) (-1064 "RULESET.spad" 1827373 1827397 1827922 1827927) (-1063 "RULE.spad" 1825577 1825601 1827363 1827368) (-1062 "RULECOLD.spad" 1825429 1825442 1825567 1825572) (-1061 "RSTRCAST.spad" 1825146 1825155 1825419 1825424) (-1060 "RSETGCD.spad" 1821524 1821544 1825136 1825141) (-1059 "RSETCAT.spad" 1811308 1811325 1821492 1821519) (-1058 "RSETCAT.spad" 1801112 1801131 1811298 1811303) (-1057 "RSDCMPK.spad" 1799564 1799584 1801102 1801107) (-1056 "RRCC.spad" 1797948 1797978 1799554 1799559) (-1055 "RRCC.spad" 1796330 1796362 1797938 1797943) (-1054 "RPTAST.spad" 1796032 1796041 1796320 1796325) (-1053 "RPOLCAT.spad" 1775392 1775407 1795900 1796027) (-1052 "RPOLCAT.spad" 1754466 1754483 1774976 1774981) (-1051 "ROUTINE.spad" 1750329 1750338 1753113 1753140) (-1050 "ROMAN.spad" 1749657 1749666 1750195 1750324) (-1049 "ROIRC.spad" 1748737 1748769 1749647 1749652) (-1048 "RNS.spad" 1747640 1747649 1748639 1748732) (-1047 "RNS.spad" 1746629 1746640 1747630 1747635) (-1046 "RNG.spad" 1746364 1746373 1746619 1746624) (-1045 "RMODULE.spad" 1746002 1746013 1746354 1746359) (-1044 "RMCAT2.spad" 1745410 1745467 1745992 1745997) (-1043 "RMATRIX.spad" 1744234 1744253 1744577 1744616) (-1042 "RMATCAT.spad" 1739767 1739798 1744190 1744229) (-1041 "RMATCAT.spad" 1735190 1735223 1739615 1739620) (-1040 "RINTERP.spad" 1735078 1735098 1735180 1735185) (-1039 "RING.spad" 1734548 1734557 1735058 1735073) (-1038 "RING.spad" 1734026 1734037 1734538 1734543) (-1037 "RIDIST.spad" 1733410 1733419 1734016 1734021) (-1036 "RGCHAIN.spad" 1731989 1732005 1732895 1732922) (-1035 "RGBCSPC.spad" 1731770 1731782 1731979 1731984) (-1034 "RGBCMDL.spad" 1731300 1731312 1731760 1731765) (-1033 "RF.spad" 1728914 1728925 1731290 1731295) (-1032 "RFFACTOR.spad" 1728376 1728387 1728904 1728909) (-1031 "RFFACT.spad" 1728111 1728123 1728366 1728371) (-1030 "RFDIST.spad" 1727099 1727108 1728101 1728106) (-1029 "RETSOL.spad" 1726516 1726529 1727089 1727094) (-1028 "RETRACT.spad" 1725944 1725955 1726506 1726511) (-1027 "RETRACT.spad" 1725370 1725383 1725934 1725939) (-1026 "RETAST.spad" 1725182 1725191 1725360 1725365) (-1025 "RESULT.spad" 1723242 1723251 1723829 1723856) (-1024 "RESRING.spad" 1722589 1722636 1723180 1723237) (-1023 "RESLATC.spad" 1721913 1721924 1722579 1722584) (-1022 "REPSQ.spad" 1721642 1721653 1721903 1721908) (-1021 "REP.spad" 1719194 1719203 1721632 1721637) (-1020 "REPDB.spad" 1718899 1718910 1719184 1719189) (-1019 "REP2.spad" 1708471 1708482 1718741 1718746) (-1018 "REP1.spad" 1702461 1702472 1708421 1708426) (-1017 "REGSET.spad" 1700258 1700275 1702107 1702134) (-1016 "REF.spad" 1699587 1699598 1700213 1700218) (-1015 "REDORDER.spad" 1698763 1698780 1699577 1699582) (-1014 "RECLOS.spad" 1697546 1697566 1698250 1698343) (-1013 "REALSOLV.spad" 1696678 1696687 1697536 1697541) (-1012 "REAL.spad" 1696550 1696559 1696668 1696673) (-1011 "REAL0Q.spad" 1693832 1693847 1696540 1696545) (-1010 "REAL0.spad" 1690660 1690675 1693822 1693827) (-1009 "RDUCEAST.spad" 1690381 1690390 1690650 1690655) (-1008 "RDIV.spad" 1690032 1690057 1690371 1690376) (-1007 "RDIST.spad" 1689595 1689606 1690022 1690027) (-1006 "RDETRS.spad" 1688391 1688409 1689585 1689590) (-1005 "RDETR.spad" 1686498 1686516 1688381 1688386) (-1004 "RDEEFS.spad" 1685571 1685588 1686488 1686493) (-1003 "RDEEF.spad" 1684567 1684584 1685561 1685566) (-1002 "RCFIELD.spad" 1681753 1681762 1684469 1684562) (-1001 "RCFIELD.spad" 1679025 1679036 1681743 1681748) (-1000 "RCAGG.spad" 1676937 1676948 1679015 1679020) (-999 "RCAGG.spad" 1674777 1674789 1676856 1676861) (-998 "RATRET.spad" 1674138 1674148 1674767 1674772) (-997 "RATFACT.spad" 1673831 1673842 1674128 1674133) (-996 "RANDSRC.spad" 1673151 1673159 1673821 1673826) (-995 "RADUTIL.spad" 1672906 1672914 1673141 1673146) (-994 "RADIX.spad" 1669808 1669821 1671373 1671466) (-993 "RADFF.spad" 1668222 1668258 1668340 1668496) (-992 "RADCAT.spad" 1667816 1667824 1668212 1668217) (-991 "RADCAT.spad" 1667408 1667418 1667806 1667811) (-990 "QUEUE.spad" 1666751 1666761 1667015 1667042) (-989 "QUAT.spad" 1665333 1665343 1665675 1665740) (-988 "QUATCT2.spad" 1664952 1664970 1665323 1665328) (-987 "QUATCAT.spad" 1663117 1663127 1664882 1664947) (-986 "QUATCAT.spad" 1661033 1661045 1662800 1662805) (-985 "QUAGG.spad" 1659859 1659869 1661001 1661028) (-984 "QQUTAST.spad" 1659628 1659636 1659849 1659854) (-983 "QFORM.spad" 1659091 1659105 1659618 1659623) (-982 "QFCAT.spad" 1657794 1657804 1658993 1659086) (-981 "QFCAT.spad" 1656088 1656100 1657289 1657294) (-980 "QFCAT2.spad" 1655779 1655795 1656078 1656083) (-979 "QEQUAT.spad" 1655336 1655344 1655769 1655774) (-978 "QCMPACK.spad" 1650083 1650102 1655326 1655331) (-977 "QALGSET.spad" 1646158 1646190 1649997 1650002) (-976 "QALGSET2.spad" 1644154 1644172 1646148 1646153) (-975 "PWFFINTB.spad" 1641464 1641485 1644144 1644149) (-974 "PUSHVAR.spad" 1640793 1640812 1641454 1641459) (-973 "PTRANFN.spad" 1636919 1636929 1640783 1640788) (-972 "PTPACK.spad" 1634007 1634017 1636909 1636914) (-971 "PTFUNC2.spad" 1633828 1633842 1633997 1634002) (-970 "PTCAT.spad" 1633077 1633087 1633796 1633823) (-969 "PSQFR.spad" 1632384 1632408 1633067 1633072) (-968 "PSEUDLIN.spad" 1631242 1631252 1632374 1632379) (-967 "PSETPK.spad" 1616675 1616691 1631120 1631125) (-966 "PSETCAT.spad" 1610595 1610618 1616655 1616670) (-965 "PSETCAT.spad" 1604489 1604514 1610551 1610556) (-964 "PSCURVE.spad" 1603472 1603480 1604479 1604484) (-963 "PSCAT.spad" 1602239 1602268 1603370 1603467) (-962 "PSCAT.spad" 1601096 1601127 1602229 1602234) (-961 "PRTITION.spad" 1600041 1600049 1601086 1601091) (-960 "PRTDAST.spad" 1599760 1599768 1600031 1600036) (-959 "PRS.spad" 1589322 1589339 1599716 1599721) (-958 "PRQAGG.spad" 1588753 1588763 1589290 1589317) (-957 "PROPLOG.spad" 1588156 1588164 1588743 1588748) (-956 "PROPFRML.spad" 1586074 1586085 1588146 1588151) (-955 "PROPERTY.spad" 1585568 1585576 1586064 1586069) (-954 "PRODUCT.spad" 1583248 1583260 1583534 1583589) (-953 "PR.spad" 1581634 1581646 1582339 1582466) (-952 "PRINT.spad" 1581386 1581394 1581624 1581629) (-951 "PRIMES.spad" 1579637 1579647 1581376 1581381) (-950 "PRIMELT.spad" 1577618 1577632 1579627 1579632) (-949 "PRIMCAT.spad" 1577241 1577249 1577608 1577613) (-948 "PRIMARR.spad" 1576246 1576256 1576424 1576451) (-947 "PRIMARR2.spad" 1574969 1574981 1576236 1576241) (-946 "PREASSOC.spad" 1574341 1574353 1574959 1574964) (-945 "PPCURVE.spad" 1573478 1573486 1574331 1574336) (-944 "PORTNUM.spad" 1573253 1573261 1573468 1573473) (-943 "POLYROOT.spad" 1572082 1572104 1573209 1573214) (-942 "POLY.spad" 1569379 1569389 1569896 1570023) (-941 "POLYLIFT.spad" 1568640 1568663 1569369 1569374) (-940 "POLYCATQ.spad" 1566742 1566764 1568630 1568635) (-939 "POLYCAT.spad" 1560148 1560169 1566610 1566737) (-938 "POLYCAT.spad" 1552856 1552879 1559320 1559325) (-937 "POLY2UP.spad" 1552304 1552318 1552846 1552851) (-936 "POLY2.spad" 1551899 1551911 1552294 1552299) (-935 "POLUTIL.spad" 1550840 1550869 1551855 1551860) (-934 "POLTOPOL.spad" 1549588 1549603 1550830 1550835) (-933 "POINT.spad" 1548427 1548437 1548514 1548541) (-932 "PNTHEORY.spad" 1545093 1545101 1548417 1548422) (-931 "PMTOOLS.spad" 1543850 1543864 1545083 1545088) (-930 "PMSYM.spad" 1543395 1543405 1543840 1543845) (-929 "PMQFCAT.spad" 1542982 1542996 1543385 1543390) (-928 "PMPRED.spad" 1542451 1542465 1542972 1542977) (-927 "PMPREDFS.spad" 1541895 1541917 1542441 1542446) (-926 "PMPLCAT.spad" 1540965 1540983 1541827 1541832) (-925 "PMLSAGG.spad" 1540546 1540560 1540955 1540960) (-924 "PMKERNEL.spad" 1540113 1540125 1540536 1540541) (-923 "PMINS.spad" 1539689 1539699 1540103 1540108) (-922 "PMFS.spad" 1539262 1539280 1539679 1539684) (-921 "PMDOWN.spad" 1538548 1538562 1539252 1539257) (-920 "PMASS.spad" 1537560 1537568 1538538 1538543) (-919 "PMASSFS.spad" 1536529 1536545 1537550 1537555) (-918 "PLOTTOOL.spad" 1536309 1536317 1536519 1536524) (-917 "PLOT.spad" 1531140 1531148 1536299 1536304) (-916 "PLOT3D.spad" 1527560 1527568 1531130 1531135) (-915 "PLOT1.spad" 1526701 1526711 1527550 1527555) (-914 "PLEQN.spad" 1513917 1513944 1526691 1526696) (-913 "PINTERP.spad" 1513533 1513552 1513907 1513912) (-912 "PINTERPA.spad" 1513315 1513331 1513523 1513528) (-911 "PI.spad" 1512922 1512930 1513289 1513310) (-910 "PID.spad" 1511878 1511886 1512848 1512917) (-909 "PICOERCE.spad" 1511535 1511545 1511868 1511873) (-908 "PGROEB.spad" 1510132 1510146 1511525 1511530) (-907 "PGE.spad" 1501385 1501393 1510122 1510127) (-906 "PGCD.spad" 1500267 1500284 1501375 1501380) (-905 "PFRPAC.spad" 1499410 1499420 1500257 1500262) (-904 "PFR.spad" 1496067 1496077 1499312 1499405) (-903 "PFOTOOLS.spad" 1495325 1495341 1496057 1496062) (-902 "PFOQ.spad" 1494695 1494713 1495315 1495320) (-901 "PFO.spad" 1494114 1494141 1494685 1494690) (-900 "PF.spad" 1493688 1493700 1493919 1494012) (-899 "PFECAT.spad" 1491354 1491362 1493614 1493683) (-898 "PFECAT.spad" 1489048 1489058 1491310 1491315) (-897 "PFBRU.spad" 1486918 1486930 1489038 1489043) (-896 "PFBR.spad" 1484456 1484479 1486908 1486913) (-895 "PERM.spad" 1480137 1480147 1484286 1484301) (-894 "PERMGRP.spad" 1474873 1474883 1480127 1480132) (-893 "PERMCAT.spad" 1473425 1473435 1474853 1474868) (-892 "PERMAN.spad" 1471957 1471971 1473415 1473420) (-891 "PENDTREE.spad" 1471296 1471306 1471586 1471591) (-890 "PDRING.spad" 1469787 1469797 1471276 1471291) (-889 "PDRING.spad" 1468286 1468298 1469777 1469782) (-888 "PDEPROB.spad" 1467301 1467309 1468276 1468281) (-887 "PDEPACK.spad" 1461303 1461311 1467291 1467296) (-886 "PDECOMP.spad" 1460765 1460782 1461293 1461298) (-885 "PDECAT.spad" 1459119 1459127 1460755 1460760) (-884 "PCOMP.spad" 1458970 1458983 1459109 1459114) (-883 "PBWLB.spad" 1457552 1457569 1458960 1458965) (-882 "PATTERN.spad" 1451983 1451993 1457542 1457547) (-881 "PATTERN2.spad" 1451719 1451731 1451973 1451978) (-880 "PATTERN1.spad" 1450021 1450037 1451709 1451714) (-879 "PATRES.spad" 1447568 1447580 1450011 1450016) (-878 "PATRES2.spad" 1447230 1447244 1447558 1447563) (-877 "PATMATCH.spad" 1445387 1445418 1446938 1446943) (-876 "PATMAB.spad" 1444812 1444822 1445377 1445382) (-875 "PATLRES.spad" 1443896 1443910 1444802 1444807) (-874 "PATAB.spad" 1443660 1443670 1443886 1443891) (-873 "PARTPERM.spad" 1441022 1441030 1443650 1443655) (-872 "PARSURF.spad" 1440450 1440478 1441012 1441017) (-871 "PARSU2.spad" 1440245 1440261 1440440 1440445) (-870 "script-parser.spad" 1439765 1439773 1440235 1440240) (-869 "PARSCURV.spad" 1439193 1439221 1439755 1439760) (-868 "PARSC2.spad" 1438982 1438998 1439183 1439188) (-867 "PARPCURV.spad" 1438440 1438468 1438972 1438977) (-866 "PARPC2.spad" 1438229 1438245 1438430 1438435) (-865 "PAN2EXPR.spad" 1437641 1437649 1438219 1438224) (-864 "PALETTE.spad" 1436611 1436619 1437631 1437636) (-863 "PAIR.spad" 1435594 1435607 1436199 1436204) (-862 "PADICRC.spad" 1432924 1432942 1434099 1434192) (-861 "PADICRAT.spad" 1430939 1430951 1431160 1431253) (-860 "PADIC.spad" 1430634 1430646 1430865 1430934) (-859 "PADICCT.spad" 1429175 1429187 1430560 1430629) (-858 "PADEPAC.spad" 1427854 1427873 1429165 1429170) (-857 "PADE.spad" 1426594 1426610 1427844 1427849) (-856 "OWP.spad" 1425834 1425864 1426452 1426519) (-855 "OVAR.spad" 1425615 1425638 1425824 1425829) (-854 "OUT.spad" 1424699 1424707 1425605 1425610) (-853 "OUTFORM.spad" 1413995 1414003 1424689 1424694) (-852 "OUTBFILE.spad" 1413413 1413421 1413985 1413990) (-851 "OUTBCON.spad" 1412888 1412896 1413403 1413408) (-850 "OUTBCON.spad" 1412361 1412371 1412878 1412883) (-849 "OSI.spad" 1411836 1411844 1412351 1412356) (-848 "OSGROUP.spad" 1411754 1411762 1411826 1411831) (-847 "ORTHPOL.spad" 1410215 1410225 1411671 1411676) (-846 "OREUP.spad" 1409668 1409696 1409895 1409934) (-845 "ORESUP.spad" 1408967 1408991 1409348 1409387) (-844 "OREPCTO.spad" 1406786 1406798 1408887 1408892) (-843 "OREPCAT.spad" 1400843 1400853 1406742 1406781) (-842 "OREPCAT.spad" 1394790 1394802 1400691 1400696) (-841 "ORDSET.spad" 1393956 1393964 1394780 1394785) (-840 "ORDSET.spad" 1393120 1393130 1393946 1393951) (-839 "ORDRING.spad" 1392510 1392518 1393100 1393115) (-838 "ORDRING.spad" 1391908 1391918 1392500 1392505) (-837 "ORDMON.spad" 1391763 1391771 1391898 1391903) (-836 "ORDFUNS.spad" 1390889 1390905 1391753 1391758) (-835 "ORDFIN.spad" 1390709 1390717 1390879 1390884) (-834 "ORDCOMP.spad" 1389174 1389184 1390256 1390285) (-833 "ORDCOMP2.spad" 1388459 1388471 1389164 1389169) (-832 "OPTPROB.spad" 1387097 1387105 1388449 1388454) (-831 "OPTPACK.spad" 1379482 1379490 1387087 1387092) (-830 "OPTCAT.spad" 1377157 1377165 1379472 1379477) (-829 "OPSIG.spad" 1376809 1376817 1377147 1377152) (-828 "OPQUERY.spad" 1376358 1376366 1376799 1376804) (-827 "OP.spad" 1376100 1376110 1376180 1376247) (-826 "OPERCAT.spad" 1375688 1375698 1376090 1376095) (-825 "OPERCAT.spad" 1375274 1375286 1375678 1375683) (-824 "ONECOMP.spad" 1374019 1374029 1374821 1374850) (-823 "ONECOMP2.spad" 1373437 1373449 1374009 1374014) (-822 "OMSERVER.spad" 1372439 1372447 1373427 1373432) (-821 "OMSAGG.spad" 1372227 1372237 1372395 1372434) (-820 "OMPKG.spad" 1370839 1370847 1372217 1372222) (-819 "OM.spad" 1369804 1369812 1370829 1370834) (-818 "OMLO.spad" 1369229 1369241 1369690 1369729) (-817 "OMEXPR.spad" 1369063 1369073 1369219 1369224) (-816 "OMERR.spad" 1368606 1368614 1369053 1369058) (-815 "OMERRK.spad" 1367640 1367648 1368596 1368601) (-814 "OMENC.spad" 1366984 1366992 1367630 1367635) (-813 "OMDEV.spad" 1361273 1361281 1366974 1366979) (-812 "OMCONN.spad" 1360682 1360690 1361263 1361268) (-811 "OINTDOM.spad" 1360445 1360453 1360608 1360677) (-810 "OFMONOID.spad" 1356632 1356642 1360435 1360440) (-809 "ODVAR.spad" 1355893 1355903 1356622 1356627) (-808 "ODR.spad" 1355537 1355563 1355705 1355854) (-807 "ODPOL.spad" 1352883 1352893 1353223 1353350) (-806 "ODP.spad" 1342730 1342750 1343103 1343234) (-805 "ODETOOLS.spad" 1341313 1341332 1342720 1342725) (-804 "ODESYS.spad" 1338963 1338980 1341303 1341308) (-803 "ODERTRIC.spad" 1334904 1334921 1338920 1338925) (-802 "ODERED.spad" 1334291 1334315 1334894 1334899) (-801 "ODERAT.spad" 1331842 1331859 1334281 1334286) (-800 "ODEPRRIC.spad" 1328733 1328755 1331832 1331837) (-799 "ODEPROB.spad" 1327990 1327998 1328723 1328728) (-798 "ODEPRIM.spad" 1325264 1325286 1327980 1327985) (-797 "ODEPAL.spad" 1324640 1324664 1325254 1325259) (-796 "ODEPACK.spad" 1311242 1311250 1324630 1324635) (-795 "ODEINT.spad" 1310673 1310689 1311232 1311237) (-794 "ODEIFTBL.spad" 1308068 1308076 1310663 1310668) (-793 "ODEEF.spad" 1303435 1303451 1308058 1308063) (-792 "ODECONST.spad" 1302954 1302972 1303425 1303430) (-791 "ODECAT.spad" 1301550 1301558 1302944 1302949) (-790 "OCT.spad" 1299688 1299698 1300404 1300443) (-789 "OCTCT2.spad" 1299332 1299353 1299678 1299683) (-788 "OC.spad" 1297106 1297116 1299288 1299327) (-787 "OC.spad" 1294605 1294617 1296789 1296794) (-786 "OCAMON.spad" 1294453 1294461 1294595 1294600) (-785 "OASGP.spad" 1294268 1294276 1294443 1294448) (-784 "OAMONS.spad" 1293788 1293796 1294258 1294263) (-783 "OAMON.spad" 1293649 1293657 1293778 1293783) (-782 "OAGROUP.spad" 1293511 1293519 1293639 1293644) (-781 "NUMTUBE.spad" 1293098 1293114 1293501 1293506) (-780 "NUMQUAD.spad" 1280960 1280968 1293088 1293093) (-779 "NUMODE.spad" 1272096 1272104 1280950 1280955) (-778 "NUMINT.spad" 1269654 1269662 1272086 1272091) (-777 "NUMFMT.spad" 1268494 1268502 1269644 1269649) (-776 "NUMERIC.spad" 1260566 1260576 1268299 1268304) (-775 "NTSCAT.spad" 1259068 1259084 1260534 1260561) (-774 "NTPOLFN.spad" 1258613 1258623 1258985 1258990) (-773 "NSUP.spad" 1251623 1251633 1256163 1256316) (-772 "NSUP2.spad" 1251015 1251027 1251613 1251618) (-771 "NSMP.spad" 1247210 1247229 1247518 1247645) (-770 "NREP.spad" 1245582 1245596 1247200 1247205) (-769 "NPCOEF.spad" 1244828 1244848 1245572 1245577) (-768 "NORMRETR.spad" 1244426 1244465 1244818 1244823) (-767 "NORMPK.spad" 1242328 1242347 1244416 1244421) (-766 "NORMMA.spad" 1242016 1242042 1242318 1242323) (-765 "NONE.spad" 1241757 1241765 1242006 1242011) (-764 "NONE1.spad" 1241433 1241443 1241747 1241752) (-763 "NODE1.spad" 1240902 1240918 1241423 1241428) (-762 "NNI.spad" 1239789 1239797 1240876 1240897) (-761 "NLINSOL.spad" 1238411 1238421 1239779 1239784) (-760 "NIPROB.spad" 1236952 1236960 1238401 1238406) (-759 "NFINTBAS.spad" 1234412 1234429 1236942 1236947) (-758 "NETCLT.spad" 1234386 1234397 1234402 1234407) (-757 "NCODIV.spad" 1232584 1232600 1234376 1234381) (-756 "NCNTFRAC.spad" 1232226 1232240 1232574 1232579) (-755 "NCEP.spad" 1230386 1230400 1232216 1232221) (-754 "NASRING.spad" 1229982 1229990 1230376 1230381) (-753 "NASRING.spad" 1229576 1229586 1229972 1229977) (-752 "NARNG.spad" 1228920 1228928 1229566 1229571) (-751 "NARNG.spad" 1228262 1228272 1228910 1228915) (-750 "NAGSP.spad" 1227335 1227343 1228252 1228257) (-749 "NAGS.spad" 1216860 1216868 1227325 1227330) (-748 "NAGF07.spad" 1215253 1215261 1216850 1216855) (-747 "NAGF04.spad" 1209485 1209493 1215243 1215248) (-746 "NAGF02.spad" 1203294 1203302 1209475 1209480) (-745 "NAGF01.spad" 1198897 1198905 1203284 1203289) (-744 "NAGE04.spad" 1192357 1192365 1198887 1198892) (-743 "NAGE02.spad" 1182699 1182707 1192347 1192352) (-742 "NAGE01.spad" 1178583 1178591 1182689 1182694) (-741 "NAGD03.spad" 1176503 1176511 1178573 1178578) (-740 "NAGD02.spad" 1169034 1169042 1176493 1176498) (-739 "NAGD01.spad" 1163147 1163155 1169024 1169029) (-738 "NAGC06.spad" 1158934 1158942 1163137 1163142) (-737 "NAGC05.spad" 1157403 1157411 1158924 1158929) (-736 "NAGC02.spad" 1156658 1156666 1157393 1157398) (-735 "NAALG.spad" 1156193 1156203 1156626 1156653) (-734 "NAALG.spad" 1155748 1155760 1156183 1156188) (-733 "MULTSQFR.spad" 1152706 1152723 1155738 1155743) (-732 "MULTFACT.spad" 1152089 1152106 1152696 1152701) (-731 "MTSCAT.spad" 1150123 1150144 1151987 1152084) (-730 "MTHING.spad" 1149780 1149790 1150113 1150118) (-729 "MSYSCMD.spad" 1149214 1149222 1149770 1149775) (-728 "MSET.spad" 1147156 1147166 1148920 1148959) (-727 "MSETAGG.spad" 1147001 1147011 1147124 1147151) (-726 "MRING.spad" 1143972 1143984 1146709 1146776) (-725 "MRF2.spad" 1143540 1143554 1143962 1143967) (-724 "MRATFAC.spad" 1143086 1143103 1143530 1143535) (-723 "MPRFF.spad" 1141116 1141135 1143076 1143081) (-722 "MPOLY.spad" 1138551 1138566 1138910 1139037) (-721 "MPCPF.spad" 1137815 1137834 1138541 1138546) (-720 "MPC3.spad" 1137630 1137670 1137805 1137810) (-719 "MPC2.spad" 1137272 1137305 1137620 1137625) (-718 "MONOTOOL.spad" 1135607 1135624 1137262 1137267) (-717 "MONOID.spad" 1134926 1134934 1135597 1135602) (-716 "MONOID.spad" 1134243 1134253 1134916 1134921) (-715 "MONOGEN.spad" 1132989 1133002 1134103 1134238) (-714 "MONOGEN.spad" 1131757 1131772 1132873 1132878) (-713 "MONADWU.spad" 1129771 1129779 1131747 1131752) (-712 "MONADWU.spad" 1127783 1127793 1129761 1129766) (-711 "MONAD.spad" 1126927 1126935 1127773 1127778) (-710 "MONAD.spad" 1126069 1126079 1126917 1126922) (-709 "MOEBIUS.spad" 1124755 1124769 1126049 1126064) (-708 "MODULE.spad" 1124625 1124635 1124723 1124750) (-707 "MODULE.spad" 1124515 1124527 1124615 1124620) (-706 "MODRING.spad" 1123846 1123885 1124495 1124510) (-705 "MODOP.spad" 1122505 1122517 1123668 1123735) (-704 "MODMONOM.spad" 1122234 1122252 1122495 1122500) (-703 "MODMON.spad" 1118993 1119009 1119712 1119865) (-702 "MODFIELD.spad" 1118351 1118390 1118895 1118988) (-701 "MMLFORM.spad" 1117211 1117219 1118341 1118346) (-700 "MMAP.spad" 1116951 1116985 1117201 1117206) (-699 "MLO.spad" 1115378 1115388 1116907 1116946) (-698 "MLIFT.spad" 1113950 1113967 1115368 1115373) (-697 "MKUCFUNC.spad" 1113483 1113501 1113940 1113945) (-696 "MKRECORD.spad" 1113085 1113098 1113473 1113478) (-695 "MKFUNC.spad" 1112466 1112476 1113075 1113080) (-694 "MKFLCFN.spad" 1111422 1111432 1112456 1112461) (-693 "MKCHSET.spad" 1111287 1111297 1111412 1111417) (-692 "MKBCFUNC.spad" 1110772 1110790 1111277 1111282) (-691 "MINT.spad" 1110211 1110219 1110674 1110767) (-690 "MHROWRED.spad" 1108712 1108722 1110201 1110206) (-689 "MFLOAT.spad" 1107228 1107236 1108602 1108707) (-688 "MFINFACT.spad" 1106628 1106650 1107218 1107223) (-687 "MESH.spad" 1104360 1104368 1106618 1106623) (-686 "MDDFACT.spad" 1102553 1102563 1104350 1104355) (-685 "MDAGG.spad" 1101840 1101850 1102533 1102548) (-684 "MCMPLX.spad" 1097826 1097834 1098440 1098629) (-683 "MCDEN.spad" 1097034 1097046 1097816 1097821) (-682 "MCALCFN.spad" 1094136 1094162 1097024 1097029) (-681 "MAYBE.spad" 1093449 1093460 1094126 1094131) (-680 "MATSTOR.spad" 1090725 1090735 1093439 1093444) (-679 "MATRIX.spad" 1089429 1089439 1089913 1089940) (-678 "MATLIN.spad" 1086755 1086779 1089313 1089318) (-677 "MATCAT.spad" 1078340 1078362 1086723 1086750) (-676 "MATCAT.spad" 1069797 1069821 1078182 1078187) (-675 "MATCAT2.spad" 1069065 1069113 1069787 1069792) (-674 "MAPPKG3.spad" 1067964 1067978 1069055 1069060) (-673 "MAPPKG2.spad" 1067298 1067310 1067954 1067959) (-672 "MAPPKG1.spad" 1066116 1066126 1067288 1067293) (-671 "MAPPAST.spad" 1065429 1065437 1066106 1066111) (-670 "MAPHACK3.spad" 1065237 1065251 1065419 1065424) (-669 "MAPHACK2.spad" 1065002 1065014 1065227 1065232) (-668 "MAPHACK1.spad" 1064632 1064642 1064992 1064997) (-667 "MAGMA.spad" 1062422 1062439 1064622 1064627) (-666 "MACROAST.spad" 1062001 1062009 1062412 1062417) (-665 "M3D.spad" 1059697 1059707 1061379 1061384) (-664 "LZSTAGG.spad" 1056925 1056935 1059687 1059692) (-663 "LZSTAGG.spad" 1054151 1054163 1056915 1056920) (-662 "LWORD.spad" 1050856 1050873 1054141 1054146) (-661 "LSTAST.spad" 1050640 1050648 1050846 1050851) (-660 "LSQM.spad" 1048866 1048880 1049264 1049315) (-659 "LSPP.spad" 1048399 1048416 1048856 1048861) (-658 "LSMP.spad" 1047239 1047267 1048389 1048394) (-657 "LSMP1.spad" 1045043 1045057 1047229 1047234) (-656 "LSAGG.spad" 1044712 1044722 1045011 1045038) (-655 "LSAGG.spad" 1044401 1044413 1044702 1044707) (-654 "LPOLY.spad" 1043355 1043374 1044257 1044326) (-653 "LPEFRAC.spad" 1042612 1042622 1043345 1043350) (-652 "LO.spad" 1042013 1042027 1042546 1042573) (-651 "LOGIC.spad" 1041615 1041623 1042003 1042008) (-650 "LOGIC.spad" 1041215 1041225 1041605 1041610) (-649 "LODOOPS.spad" 1040133 1040145 1041205 1041210) (-648 "LODO.spad" 1039517 1039533 1039813 1039852) (-647 "LODOF.spad" 1038561 1038578 1039474 1039479) (-646 "LODOCAT.spad" 1037219 1037229 1038517 1038556) (-645 "LODOCAT.spad" 1035875 1035887 1037175 1037180) (-644 "LODO2.spad" 1035148 1035160 1035555 1035594) (-643 "LODO1.spad" 1034548 1034558 1034828 1034867) (-642 "LODEEF.spad" 1033320 1033338 1034538 1034543) (-641 "LNAGG.spad" 1029122 1029132 1033310 1033315) (-640 "LNAGG.spad" 1024888 1024900 1029078 1029083) (-639 "LMOPS.spad" 1021624 1021641 1024878 1024883) (-638 "LMODULE.spad" 1021266 1021276 1021614 1021619) (-637 "LMDICT.spad" 1020549 1020559 1020817 1020844) (-636 "LITERAL.spad" 1020455 1020466 1020539 1020544) (-635 "LIST.spad" 1018173 1018183 1019602 1019629) (-634 "LIST3.spad" 1017464 1017478 1018163 1018168) (-633 "LIST2.spad" 1016104 1016116 1017454 1017459) (-632 "LIST2MAP.spad" 1012981 1012993 1016094 1016099) (-631 "LINEXP.spad" 1012413 1012423 1012961 1012976) (-630 "LINDEP.spad" 1011190 1011202 1012325 1012330) (-629 "LIMITRF.spad" 1009104 1009114 1011180 1011185) (-628 "LIMITPS.spad" 1007987 1008000 1009094 1009099) (-627 "LIE.spad" 1006001 1006013 1007277 1007422) (-626 "LIECAT.spad" 1005477 1005487 1005927 1005996) (-625 "LIECAT.spad" 1004981 1004993 1005433 1005438) (-624 "LIB.spad" 1003029 1003037 1003640 1003655) (-623 "LGROBP.spad" 1000382 1000401 1003019 1003024) (-622 "LF.spad" 999301 999317 1000372 1000377) (-621 "LFCAT.spad" 998320 998328 999291 999296) (-620 "LEXTRIPK.spad" 993823 993838 998310 998315) (-619 "LEXP.spad" 991826 991853 993803 993818) (-618 "LETAST.spad" 991525 991533 991816 991821) (-617 "LEADCDET.spad" 989909 989926 991515 991520) (-616 "LAZM3PK.spad" 988613 988635 989899 989904) (-615 "LAUPOL.spad" 987302 987315 988206 988275) (-614 "LAPLACE.spad" 986875 986891 987292 987297) (-613 "LA.spad" 986315 986329 986797 986836) (-612 "LALG.spad" 986091 986101 986295 986310) (-611 "LALG.spad" 985875 985887 986081 986086) (-610 "KVTFROM.spad" 985610 985620 985865 985870) (-609 "KTVLOGIC.spad" 985033 985041 985600 985605) (-608 "KRCFROM.spad" 984771 984781 985023 985028) (-607 "KOVACIC.spad" 983484 983501 984761 984766) (-606 "KONVERT.spad" 983206 983216 983474 983479) (-605 "KOERCE.spad" 982943 982953 983196 983201) (-604 "KERNEL.spad" 981478 981488 982727 982732) (-603 "KERNEL2.spad" 981181 981193 981468 981473) (-602 "KDAGG.spad" 980284 980306 981161 981176) (-601 "KDAGG.spad" 979395 979419 980274 980279) (-600 "KAFILE.spad" 978358 978374 978593 978620) (-599 "JORDAN.spad" 976185 976197 977648 977793) (-598 "JOINAST.spad" 975879 975887 976175 976180) (-597 "JAVACODE.spad" 975745 975753 975869 975874) (-596 "IXAGG.spad" 973868 973892 975735 975740) (-595 "IXAGG.spad" 971846 971872 973715 973720) (-594 "IVECTOR.spad" 970617 970632 970772 970799) (-593 "ITUPLE.spad" 969762 969772 970607 970612) (-592 "ITRIGMNP.spad" 968573 968592 969752 969757) (-591 "ITFUN3.spad" 968067 968081 968563 968568) (-590 "ITFUN2.spad" 967797 967809 968057 968062) (-589 "ITAYLOR.spad" 965589 965604 967633 967758) (-588 "ISUPS.spad" 958000 958015 964563 964660) (-587 "ISUMP.spad" 957497 957513 957990 957995) (-586 "ISTRING.spad" 956500 956513 956666 956693) (-585 "ISAST.spad" 956219 956227 956490 956495) (-584 "IRURPK.spad" 954932 954951 956209 956214) (-583 "IRSN.spad" 952892 952900 954922 954927) (-582 "IRRF2F.spad" 951367 951377 952848 952853) (-581 "IRREDFFX.spad" 950968 950979 951357 951362) (-580 "IROOT.spad" 949299 949309 950958 950963) (-579 "IR.spad" 947088 947102 949154 949181) (-578 "IR2.spad" 946108 946124 947078 947083) (-577 "IR2F.spad" 945308 945324 946098 946103) (-576 "IPRNTPK.spad" 945068 945076 945298 945303) (-575 "IPF.spad" 944633 944645 944873 944966) (-574 "IPADIC.spad" 944394 944420 944559 944628) (-573 "IP4ADDR.spad" 943951 943959 944384 944389) (-572 "IOMODE.spad" 943572 943580 943941 943946) (-571 "IOBFILE.spad" 942933 942941 943562 943567) (-570 "IOBCON.spad" 942798 942806 942923 942928) (-569 "INVLAPLA.spad" 942443 942459 942788 942793) (-568 "INTTR.spad" 935689 935706 942433 942438) (-567 "INTTOOLS.spad" 933400 933416 935263 935268) (-566 "INTSLPE.spad" 932706 932714 933390 933395) (-565 "INTRVL.spad" 932272 932282 932620 932701) (-564 "INTRF.spad" 930636 930650 932262 932267) (-563 "INTRET.spad" 930068 930078 930626 930631) (-562 "INTRAT.spad" 928743 928760 930058 930063) (-561 "INTPM.spad" 927106 927122 928386 928391) (-560 "INTPAF.spad" 924874 924892 927038 927043) (-559 "INTPACK.spad" 915184 915192 924864 924869) (-558 "INT.spad" 914545 914553 915038 915179) (-557 "INTHERTR.spad" 913811 913828 914535 914540) (-556 "INTHERAL.spad" 913477 913501 913801 913806) (-555 "INTHEORY.spad" 909890 909898 913467 913472) (-554 "INTG0.spad" 903353 903371 909822 909827) (-553 "INTFTBL.spad" 897382 897390 903343 903348) (-552 "INTFACT.spad" 896441 896451 897372 897377) (-551 "INTEF.spad" 894756 894772 896431 896436) (-550 "INTDOM.spad" 893371 893379 894682 894751) (-549 "INTDOM.spad" 892048 892058 893361 893366) (-548 "INTCAT.spad" 890301 890311 891962 892043) (-547 "INTBIT.spad" 889804 889812 890291 890296) (-546 "INTALG.spad" 888986 889013 889794 889799) (-545 "INTAF.spad" 888478 888494 888976 888981) (-544 "INTABL.spad" 886996 887027 887159 887186) (-543 "INS.spad" 884463 884471 886898 886991) (-542 "INS.spad" 882016 882026 884453 884458) (-541 "INPSIGN.spad" 881450 881463 882006 882011) (-540 "INPRODPF.spad" 880516 880535 881440 881445) (-539 "INPRODFF.spad" 879574 879598 880506 880511) (-538 "INNMFACT.spad" 878545 878562 879564 879569) (-537 "INMODGCD.spad" 878029 878059 878535 878540) (-536 "INFSP.spad" 876314 876336 878019 878024) (-535 "INFPROD0.spad" 875364 875383 876304 876309) (-534 "INFORM.spad" 872525 872533 875354 875359) (-533 "INFORM1.spad" 872150 872160 872515 872520) (-532 "INFINITY.spad" 871702 871710 872140 872145) (-531 "INETCLTS.spad" 871679 871687 871692 871697) (-530 "INEP.spad" 870211 870233 871669 871674) (-529 "INDE.spad" 869940 869957 870201 870206) (-528 "INCRMAPS.spad" 869361 869371 869930 869935) (-527 "INBFILE.spad" 868433 868441 869351 869356) (-526 "INBFF.spad" 864203 864214 868423 868428) (-525 "INBCON.spad" 863650 863658 864193 864198) (-524 "INBCON.spad" 863095 863105 863640 863645) (-523 "INAST.spad" 862760 862768 863085 863090) (-522 "IMPTAST.spad" 862468 862476 862750 862755) (-521 "IMATRIX.spad" 861413 861439 861925 861952) (-520 "IMATQF.spad" 860507 860551 861369 861374) (-519 "IMATLIN.spad" 859112 859136 860463 860468) (-518 "ILIST.spad" 857768 857783 858295 858322) (-517 "IIARRAY2.spad" 857156 857194 857375 857402) (-516 "IFF.spad" 856566 856582 856837 856930) (-515 "IFAST.spad" 856180 856188 856556 856561) (-514 "IFARRAY.spad" 853667 853682 855363 855390) (-513 "IFAMON.spad" 853529 853546 853623 853628) (-512 "IEVALAB.spad" 852918 852930 853519 853524) (-511 "IEVALAB.spad" 852305 852319 852908 852913) (-510 "IDPO.spad" 852103 852115 852295 852300) (-509 "IDPOAMS.spad" 851859 851871 852093 852098) (-508 "IDPOAM.spad" 851579 851591 851849 851854) (-507 "IDPC.spad" 850513 850525 851569 851574) (-506 "IDPAM.spad" 850258 850270 850503 850508) (-505 "IDPAG.spad" 850005 850017 850248 850253) (-504 "IDENT.spad" 849777 849785 849995 850000) (-503 "IDECOMP.spad" 847014 847032 849767 849772) (-502 "IDEAL.spad" 841937 841976 846949 846954) (-501 "ICDEN.spad" 841088 841104 841927 841932) (-500 "ICARD.spad" 840277 840285 841078 841083) (-499 "IBPTOOLS.spad" 838870 838887 840267 840272) (-498 "IBITS.spad" 838069 838082 838506 838533) (-497 "IBATOOL.spad" 834944 834963 838059 838064) (-496 "IBACHIN.spad" 833431 833446 834934 834939) (-495 "IARRAY2.spad" 832419 832445 833038 833065) (-494 "IARRAY1.spad" 831464 831479 831602 831629) (-493 "IAN.spad" 829677 829685 831280 831373) (-492 "IALGFACT.spad" 829278 829311 829667 829672) (-491 "HYPCAT.spad" 828702 828710 829268 829273) (-490 "HYPCAT.spad" 828124 828134 828692 828697) (-489 "HOSTNAME.spad" 827932 827940 828114 828119) (-488 "HOMOTOP.spad" 827675 827685 827922 827927) (-487 "HOAGG.spad" 824943 824953 827665 827670) (-486 "HOAGG.spad" 821986 821998 824710 824715) (-485 "HEXADEC.spad" 820088 820096 820453 820546) (-484 "HEUGCD.spad" 819103 819114 820078 820083) (-483 "HELLFDIV.spad" 818693 818717 819093 819098) (-482 "HEAP.spad" 818085 818095 818300 818327) (-481 "HEADAST.spad" 817616 817624 818075 818080) (-480 "HDP.spad" 807459 807475 807836 807967) (-479 "HDMP.spad" 804635 804650 805253 805380) (-478 "HB.spad" 802872 802880 804625 804630) (-477 "HASHTBL.spad" 801342 801373 801553 801580) (-476 "HASAST.spad" 801058 801066 801332 801337) (-475 "HACKPI.spad" 800541 800549 800960 801053) (-474 "GTSET.spad" 799480 799496 800187 800214) (-473 "GSTBL.spad" 797999 798034 798173 798188) (-472 "GSERIES.spad" 795166 795193 796131 796280) (-471 "GROUP.spad" 794435 794443 795146 795161) (-470 "GROUP.spad" 793712 793722 794425 794430) (-469 "GROEBSOL.spad" 792200 792221 793702 793707) (-468 "GRMOD.spad" 790771 790783 792190 792195) (-467 "GRMOD.spad" 789340 789354 790761 790766) (-466 "GRIMAGE.spad" 781945 781953 789330 789335) (-465 "GRDEF.spad" 780324 780332 781935 781940) (-464 "GRAY.spad" 778783 778791 780314 780319) (-463 "GRALG.spad" 777830 777842 778773 778778) (-462 "GRALG.spad" 776875 776889 777820 777825) (-461 "GPOLSET.spad" 776329 776352 776557 776584) (-460 "GOSPER.spad" 775594 775612 776319 776324) (-459 "GMODPOL.spad" 774732 774759 775562 775589) (-458 "GHENSEL.spad" 773801 773815 774722 774727) (-457 "GENUPS.spad" 769902 769915 773791 773796) (-456 "GENUFACT.spad" 769479 769489 769892 769897) (-455 "GENPGCD.spad" 769063 769080 769469 769474) (-454 "GENMFACT.spad" 768515 768534 769053 769058) (-453 "GENEEZ.spad" 766454 766467 768505 768510) (-452 "GDMP.spad" 763472 763489 764248 764375) (-451 "GCNAALG.spad" 757367 757394 763266 763333) (-450 "GCDDOM.spad" 756539 756547 757293 757362) (-449 "GCDDOM.spad" 755773 755783 756529 756534) (-448 "GB.spad" 753291 753329 755729 755734) (-447 "GBINTERN.spad" 749311 749349 753281 753286) (-446 "GBF.spad" 745068 745106 749301 749306) (-445 "GBEUCLID.spad" 742942 742980 745058 745063) (-444 "GAUSSFAC.spad" 742239 742247 742932 742937) (-443 "GALUTIL.spad" 740561 740571 742195 742200) (-442 "GALPOLYU.spad" 739007 739020 740551 740556) (-441 "GALFACTU.spad" 737172 737191 738997 739002) (-440 "GALFACT.spad" 727305 727316 737162 737167) (-439 "FVFUN.spad" 724328 724336 727295 727300) (-438 "FVC.spad" 723380 723388 724318 724323) (-437 "FUNCTION.spad" 723229 723241 723370 723375) (-436 "FT.spad" 721522 721530 723219 723224) (-435 "FTEM.spad" 720685 720693 721512 721517) (-434 "FSUPFACT.spad" 719585 719604 720621 720626) (-433 "FST.spad" 717671 717679 719575 719580) (-432 "FSRED.spad" 717149 717165 717661 717666) (-431 "FSPRMELT.spad" 715973 715989 717106 717111) (-430 "FSPECF.spad" 714050 714066 715963 715968) (-429 "FS.spad" 708112 708122 713825 714045) (-428 "FS.spad" 701952 701964 707667 707672) (-427 "FSINT.spad" 701610 701626 701942 701947) (-426 "FSERIES.spad" 700797 700809 701430 701529) (-425 "FSCINT.spad" 700110 700126 700787 700792) (-424 "FSAGG.spad" 699227 699237 700066 700105) (-423 "FSAGG.spad" 698306 698318 699147 699152) (-422 "FSAGG2.spad" 697005 697021 698296 698301) (-421 "FS2UPS.spad" 691488 691522 696995 697000) (-420 "FS2.spad" 691133 691149 691478 691483) (-419 "FS2EXPXP.spad" 690256 690279 691123 691128) (-418 "FRUTIL.spad" 689198 689208 690246 690251) (-417 "FR.spad" 682892 682902 688222 688291) (-416 "FRNAALG.spad" 677979 677989 682834 682887) (-415 "FRNAALG.spad" 673078 673090 677935 677940) (-414 "FRNAAF2.spad" 672532 672550 673068 673073) (-413 "FRMOD.spad" 671926 671956 672463 672468) (-412 "FRIDEAL.spad" 671121 671142 671906 671921) (-411 "FRIDEAL2.spad" 670723 670755 671111 671116) (-410 "FRETRCT.spad" 670234 670244 670713 670718) (-409 "FRETRCT.spad" 669611 669623 670092 670097) (-408 "FRAMALG.spad" 667939 667952 669567 669606) (-407 "FRAMALG.spad" 666299 666314 667929 667934) (-406 "FRAC.spad" 663398 663408 663801 663974) (-405 "FRAC2.spad" 663001 663013 663388 663393) (-404 "FR2.spad" 662335 662347 662991 662996) (-403 "FPS.spad" 659144 659152 662225 662330) (-402 "FPS.spad" 655981 655991 659064 659069) (-401 "FPC.spad" 655023 655031 655883 655976) (-400 "FPC.spad" 654151 654161 655013 655018) (-399 "FPATMAB.spad" 653913 653923 654141 654146) (-398 "FPARFRAC.spad" 652386 652403 653903 653908) (-397 "FORTRAN.spad" 650892 650935 652376 652381) (-396 "FORT.spad" 649821 649829 650882 650887) (-395 "FORTFN.spad" 646991 646999 649811 649816) (-394 "FORTCAT.spad" 646675 646683 646981 646986) (-393 "FORMULA.spad" 644139 644147 646665 646670) (-392 "FORMULA1.spad" 643618 643628 644129 644134) (-391 "FORDER.spad" 643309 643333 643608 643613) (-390 "FOP.spad" 642510 642518 643299 643304) (-389 "FNLA.spad" 641934 641956 642478 642505) (-388 "FNCAT.spad" 640521 640529 641924 641929) (-387 "FNAME.spad" 640413 640421 640511 640516) (-386 "FMTC.spad" 640211 640219 640339 640408) (-385 "FMONOID.spad" 637266 637276 640167 640172) (-384 "FM.spad" 636961 636973 637200 637227) (-383 "FMFUN.spad" 633991 633999 636951 636956) (-382 "FMC.spad" 633043 633051 633981 633986) (-381 "FMCAT.spad" 630697 630715 633011 633038) (-380 "FM1.spad" 630054 630066 630631 630658) (-379 "FLOATRP.spad" 627775 627789 630044 630049) (-378 "FLOAT.spad" 621063 621071 627641 627770) (-377 "FLOATCP.spad" 618480 618494 621053 621058) (-376 "FLINEXP.spad" 618192 618202 618460 618475) (-375 "FLINEXP.spad" 617858 617870 618128 618133) (-374 "FLASORT.spad" 617178 617190 617848 617853) (-373 "FLALG.spad" 614824 614843 617104 617173) (-372 "FLAGG.spad" 611842 611852 614804 614819) (-371 "FLAGG.spad" 608761 608773 611725 611730) (-370 "FLAGG2.spad" 607442 607458 608751 608756) (-369 "FINRALG.spad" 605471 605484 607398 607437) (-368 "FINRALG.spad" 603426 603441 605355 605360) (-367 "FINITE.spad" 602578 602586 603416 603421) (-366 "FINAALG.spad" 591559 591569 602520 602573) (-365 "FINAALG.spad" 580552 580564 591515 591520) (-364 "FILE.spad" 580135 580145 580542 580547) (-363 "FILECAT.spad" 578653 578670 580125 580130) (-362 "FIELD.spad" 578059 578067 578555 578648) (-361 "FIELD.spad" 577551 577561 578049 578054) (-360 "FGROUP.spad" 576160 576170 577531 577546) (-359 "FGLMICPK.spad" 574947 574962 576150 576155) (-358 "FFX.spad" 574322 574337 574663 574756) (-357 "FFSLPE.spad" 573811 573832 574312 574317) (-356 "FFPOLY.spad" 565063 565074 573801 573806) (-355 "FFPOLY2.spad" 564123 564140 565053 565058) (-354 "FFP.spad" 563520 563540 563839 563932) (-353 "FF.spad" 562968 562984 563201 563294) (-352 "FFNBX.spad" 561480 561500 562684 562777) (-351 "FFNBP.spad" 559993 560010 561196 561289) (-350 "FFNB.spad" 558458 558479 559674 559767) (-349 "FFINTBAS.spad" 555872 555891 558448 558453) (-348 "FFIELDC.spad" 553447 553455 555774 555867) (-347 "FFIELDC.spad" 551108 551118 553437 553442) (-346 "FFHOM.spad" 549856 549873 551098 551103) (-345 "FFF.spad" 547291 547302 549846 549851) (-344 "FFCGX.spad" 546138 546158 547007 547100) (-343 "FFCGP.spad" 545027 545047 545854 545947) (-342 "FFCG.spad" 543819 543840 544708 544801) (-341 "FFCAT.spad" 536846 536868 543658 543814) (-340 "FFCAT.spad" 529952 529976 536766 536771) (-339 "FFCAT2.spad" 529697 529737 529942 529947) (-338 "FEXPR.spad" 521406 521452 529453 529492) (-337 "FEVALAB.spad" 521112 521122 521396 521401) (-336 "FEVALAB.spad" 520603 520615 520889 520894) (-335 "FDIV.spad" 520045 520069 520593 520598) (-334 "FDIVCAT.spad" 518087 518111 520035 520040) (-333 "FDIVCAT.spad" 516127 516153 518077 518082) (-332 "FDIV2.spad" 515781 515821 516117 516122) (-331 "FCPAK1.spad" 514334 514342 515771 515776) (-330 "FCOMP.spad" 513713 513723 514324 514329) (-329 "FC.spad" 503628 503636 513703 513708) (-328 "FAXF.spad" 496563 496577 503530 503623) (-327 "FAXF.spad" 489550 489566 496519 496524) (-326 "FARRAY.spad" 487696 487706 488733 488760) (-325 "FAMR.spad" 485816 485828 487594 487691) (-324 "FAMR.spad" 483920 483934 485700 485705) (-323 "FAMONOID.spad" 483570 483580 483874 483879) (-322 "FAMONC.spad" 481792 481804 483560 483565) (-321 "FAGROUP.spad" 481398 481408 481688 481715) (-320 "FACUTIL.spad" 479594 479611 481388 481393) (-319 "FACTFUNC.spad" 478770 478780 479584 479589) (-318 "EXPUPXS.spad" 475603 475626 476902 477051) (-317 "EXPRTUBE.spad" 472831 472839 475593 475598) (-316 "EXPRODE.spad" 469703 469719 472821 472826) (-315 "EXPR.spad" 464978 464988 465692 466099) (-314 "EXPR2UPS.spad" 461070 461083 464968 464973) (-313 "EXPR2.spad" 460773 460785 461060 461065) (-312 "EXPEXPAN.spad" 457711 457736 458345 458438) (-311 "EXIT.spad" 457382 457390 457701 457706) (-310 "EXITAST.spad" 457118 457126 457372 457377) (-309 "EVALCYC.spad" 456576 456590 457108 457113) (-308 "EVALAB.spad" 456140 456150 456566 456571) (-307 "EVALAB.spad" 455702 455714 456130 456135) (-306 "EUCDOM.spad" 453244 453252 455628 455697) (-305 "EUCDOM.spad" 450848 450858 453234 453239) (-304 "ESTOOLS.spad" 442688 442696 450838 450843) (-303 "ESTOOLS2.spad" 442289 442303 442678 442683) (-302 "ESTOOLS1.spad" 441974 441985 442279 442284) (-301 "ES.spad" 434521 434529 441964 441969) (-300 "ES.spad" 426974 426984 434419 434424) (-299 "ESCONT.spad" 423747 423755 426964 426969) (-298 "ESCONT1.spad" 423496 423508 423737 423742) (-297 "ES2.spad" 422991 423007 423486 423491) (-296 "ES1.spad" 422557 422573 422981 422986) (-295 "ERROR.spad" 419878 419886 422547 422552) (-294 "EQTBL.spad" 418350 418372 418559 418586) (-293 "EQ.spad" 413224 413234 416023 416135) (-292 "EQ2.spad" 412940 412952 413214 413219) (-291 "EP.spad" 409254 409264 412930 412935) (-290 "ENV.spad" 407956 407964 409244 409249) (-289 "ENTIRER.spad" 407624 407632 407900 407951) (-288 "EMR.spad" 406825 406866 407550 407619) (-287 "ELTAGG.spad" 405065 405084 406815 406820) (-286 "ELTAGG.spad" 403269 403290 405021 405026) (-285 "ELTAB.spad" 402716 402734 403259 403264) (-284 "ELFUTS.spad" 402095 402114 402706 402711) (-283 "ELEMFUN.spad" 401784 401792 402085 402090) (-282 "ELEMFUN.spad" 401471 401481 401774 401779) (-281 "ELAGG.spad" 399414 399424 401451 401466) (-280 "ELAGG.spad" 397294 397306 399333 399338) (-279 "ELABEXPR.spad" 396225 396233 397284 397289) (-278 "EFUPXS.spad" 393001 393031 396181 396186) (-277 "EFULS.spad" 389837 389860 392957 392962) (-276 "EFSTRUC.spad" 387792 387808 389827 389832) (-275 "EF.spad" 382558 382574 387782 387787) (-274 "EAB.spad" 380834 380842 382548 382553) (-273 "E04UCFA.spad" 380370 380378 380824 380829) (-272 "E04NAFA.spad" 379947 379955 380360 380365) (-271 "E04MBFA.spad" 379527 379535 379937 379942) (-270 "E04JAFA.spad" 379063 379071 379517 379522) (-269 "E04GCFA.spad" 378599 378607 379053 379058) (-268 "E04FDFA.spad" 378135 378143 378589 378594) (-267 "E04DGFA.spad" 377671 377679 378125 378130) (-266 "E04AGNT.spad" 373513 373521 377661 377666) (-265 "DVARCAT.spad" 370198 370208 373503 373508) (-264 "DVARCAT.spad" 366881 366893 370188 370193) (-263 "DSMP.spad" 364312 364326 364617 364744) (-262 "DROPT.spad" 358257 358265 364302 364307) (-261 "DROPT1.spad" 357920 357930 358247 358252) (-260 "DROPT0.spad" 352747 352755 357910 357915) (-259 "DRAWPT.spad" 350902 350910 352737 352742) (-258 "DRAW.spad" 343502 343515 350892 350897) (-257 "DRAWHACK.spad" 342810 342820 343492 343497) (-256 "DRAWCX.spad" 340252 340260 342800 342805) (-255 "DRAWCURV.spad" 339789 339804 340242 340247) (-254 "DRAWCFUN.spad" 328961 328969 339779 339784) (-253 "DQAGG.spad" 327129 327139 328929 328956) (-252 "DPOLCAT.spad" 322470 322486 326997 327124) (-251 "DPOLCAT.spad" 317897 317915 322426 322431) (-250 "DPMO.spad" 310123 310139 310261 310562) (-249 "DPMM.spad" 302362 302380 302487 302788) (-248 "DOMCTOR.spad" 302254 302262 302352 302357) (-247 "DOMAIN.spad" 301385 301393 302244 302249) (-246 "DMP.spad" 298607 298622 299179 299306) (-245 "DLP.spad" 297955 297965 298597 298602) (-244 "DLIST.spad" 296534 296544 297138 297165) (-243 "DLAGG.spad" 294945 294955 296524 296529) (-242 "DIVRING.spad" 294487 294495 294889 294940) (-241 "DIVRING.spad" 294073 294083 294477 294482) (-240 "DISPLAY.spad" 292253 292261 294063 294068) (-239 "DIRPROD.spad" 281833 281849 282473 282604) (-238 "DIRPROD2.spad" 280641 280659 281823 281828) (-237 "DIRPCAT.spad" 279583 279599 280505 280636) (-236 "DIRPCAT.spad" 278254 278272 279178 279183) (-235 "DIOSP.spad" 277079 277087 278244 278249) (-234 "DIOPS.spad" 276063 276073 277059 277074) (-233 "DIOPS.spad" 275021 275033 276019 276024) (-232 "DIFRING.spad" 274313 274321 275001 275016) (-231 "DIFRING.spad" 273613 273623 274303 274308) (-230 "DIFEXT.spad" 272772 272782 273593 273608) (-229 "DIFEXT.spad" 271848 271860 272671 272676) (-228 "DIAGG.spad" 271478 271488 271828 271843) (-227 "DIAGG.spad" 271116 271128 271468 271473) (-226 "DHMATRIX.spad" 269420 269430 270573 270600) (-225 "DFSFUN.spad" 262828 262836 269410 269415) (-224 "DFLOAT.spad" 259549 259557 262718 262823) (-223 "DFINTTLS.spad" 257758 257774 259539 259544) (-222 "DERHAM.spad" 255668 255700 257738 257753) (-221 "DEQUEUE.spad" 254986 254996 255275 255302) (-220 "DEGRED.spad" 254601 254615 254976 254981) (-219 "DEFINTRF.spad" 252126 252136 254591 254596) (-218 "DEFINTEF.spad" 250622 250638 252116 252121) (-217 "DEFAST.spad" 249990 249998 250612 250617) (-216 "DECIMAL.spad" 248096 248104 248457 248550) (-215 "DDFACT.spad" 245895 245912 248086 248091) (-214 "DBLRESP.spad" 245493 245517 245885 245890) (-213 "DBASE.spad" 244147 244157 245483 245488) (-212 "DATAARY.spad" 243609 243622 244137 244142) (-211 "D03FAFA.spad" 243437 243445 243599 243604) (-210 "D03EEFA.spad" 243257 243265 243427 243432) (-209 "D03AGNT.spad" 242337 242345 243247 243252) (-208 "D02EJFA.spad" 241799 241807 242327 242332) (-207 "D02CJFA.spad" 241277 241285 241789 241794) (-206 "D02BHFA.spad" 240767 240775 241267 241272) (-205 "D02BBFA.spad" 240257 240265 240757 240762) (-204 "D02AGNT.spad" 235061 235069 240247 240252) (-203 "D01WGTS.spad" 233380 233388 235051 235056) (-202 "D01TRNS.spad" 233357 233365 233370 233375) (-201 "D01GBFA.spad" 232879 232887 233347 233352) (-200 "D01FCFA.spad" 232401 232409 232869 232874) (-199 "D01ASFA.spad" 231869 231877 232391 232396) (-198 "D01AQFA.spad" 231315 231323 231859 231864) (-197 "D01APFA.spad" 230739 230747 231305 231310) (-196 "D01ANFA.spad" 230233 230241 230729 230734) (-195 "D01AMFA.spad" 229743 229751 230223 230228) (-194 "D01ALFA.spad" 229283 229291 229733 229738) (-193 "D01AKFA.spad" 228809 228817 229273 229278) (-192 "D01AJFA.spad" 228332 228340 228799 228804) (-191 "D01AGNT.spad" 224391 224399 228322 228327) (-190 "CYCLOTOM.spad" 223897 223905 224381 224386) (-189 "CYCLES.spad" 220729 220737 223887 223892) (-188 "CVMP.spad" 220146 220156 220719 220724) (-187 "CTRIGMNP.spad" 218636 218652 220136 220141) (-186 "CTOR.spad" 218536 218544 218626 218631) (-185 "CTORKIND.spad" 218139 218147 218526 218531) (-184 "CTORCAT.spad" 217594 217602 218129 218134) (-183 "CTORCAT.spad" 217047 217057 217584 217589) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2277553 2277558 2277563 2277568) (-2 NIL 2277533 2277538 2277543 2277548) (-1 NIL 2277513 2277518 2277523 2277528) (0 NIL 2277493 2277498 2277503 2277508) (-1281 "ZMOD.spad" 2277302 2277315 2277431 2277488) (-1280 "ZLINDEP.spad" 2276346 2276357 2277292 2277297) (-1279 "ZDSOLVE.spad" 2266195 2266217 2276336 2276341) (-1278 "YSTREAM.spad" 2265688 2265699 2266185 2266190) (-1277 "XRPOLY.spad" 2264908 2264928 2265544 2265613) (-1276 "XPR.spad" 2262699 2262712 2264626 2264725) (-1275 "XPOLY.spad" 2262254 2262265 2262555 2262624) (-1274 "XPOLYC.spad" 2261571 2261587 2262180 2262249) (-1273 "XPBWPOLY.spad" 2260008 2260028 2261351 2261420) (-1272 "XF.spad" 2258469 2258484 2259910 2260003) (-1271 "XF.spad" 2256910 2256927 2258353 2258358) (-1270 "XFALG.spad" 2253934 2253950 2256836 2256905) (-1269 "XEXPPKG.spad" 2253185 2253211 2253924 2253929) (-1268 "XDPOLY.spad" 2252799 2252815 2253041 2253110) (-1267 "XALG.spad" 2252459 2252470 2252755 2252794) (-1266 "WUTSET.spad" 2248298 2248315 2252105 2252132) (-1265 "WP.spad" 2247497 2247541 2248156 2248223) (-1264 "WHILEAST.spad" 2247295 2247304 2247487 2247492) (-1263 "WHEREAST.spad" 2246966 2246975 2247285 2247290) (-1262 "WFFINTBS.spad" 2244529 2244551 2246956 2246961) (-1261 "WEIER.spad" 2242743 2242754 2244519 2244524) (-1260 "VSPACE.spad" 2242416 2242427 2242711 2242738) (-1259 "VSPACE.spad" 2242109 2242122 2242406 2242411) (-1258 "VOID.spad" 2241786 2241795 2242099 2242104) (-1257 "VIEW.spad" 2239408 2239417 2241776 2241781) (-1256 "VIEWDEF.spad" 2234605 2234614 2239398 2239403) (-1255 "VIEW3D.spad" 2218440 2218449 2234595 2234600) (-1254 "VIEW2D.spad" 2206177 2206186 2218430 2218435) (-1253 "VECTOR.spad" 2204852 2204863 2205103 2205130) (-1252 "VECTOR2.spad" 2203479 2203492 2204842 2204847) (-1251 "VECTCAT.spad" 2201379 2201390 2203447 2203474) (-1250 "VECTCAT.spad" 2199087 2199100 2201157 2201162) (-1249 "VARIABLE.spad" 2198867 2198882 2199077 2199082) (-1248 "UTYPE.spad" 2198511 2198520 2198857 2198862) (-1247 "UTSODETL.spad" 2197804 2197828 2198467 2198472) (-1246 "UTSODE.spad" 2195992 2196012 2197794 2197799) (-1245 "UTS.spad" 2190781 2190809 2194459 2194556) (-1244 "UTSCAT.spad" 2188232 2188248 2190679 2190776) (-1243 "UTSCAT.spad" 2185327 2185345 2187776 2187781) (-1242 "UTS2.spad" 2184920 2184955 2185317 2185322) (-1241 "URAGG.spad" 2179552 2179563 2184910 2184915) (-1240 "URAGG.spad" 2174148 2174161 2179508 2179513) (-1239 "UPXSSING.spad" 2171791 2171817 2173229 2173362) (-1238 "UPXS.spad" 2168939 2168967 2169923 2170072) (-1237 "UPXSCONS.spad" 2166696 2166716 2167071 2167220) (-1236 "UPXSCCA.spad" 2165261 2165281 2166542 2166691) (-1235 "UPXSCCA.spad" 2163968 2163990 2165251 2165256) (-1234 "UPXSCAT.spad" 2162549 2162565 2163814 2163963) (-1233 "UPXS2.spad" 2162090 2162143 2162539 2162544) (-1232 "UPSQFREE.spad" 2160502 2160516 2162080 2162085) (-1231 "UPSCAT.spad" 2158095 2158119 2160400 2160497) (-1230 "UPSCAT.spad" 2155394 2155420 2157701 2157706) (-1229 "UPOLYC.spad" 2150372 2150383 2155236 2155389) (-1228 "UPOLYC.spad" 2145242 2145255 2150108 2150113) (-1227 "UPOLYC2.spad" 2144711 2144730 2145232 2145237) (-1226 "UP.spad" 2141868 2141883 2142261 2142414) (-1225 "UPMP.spad" 2140758 2140771 2141858 2141863) (-1224 "UPDIVP.spad" 2140321 2140335 2140748 2140753) (-1223 "UPDECOMP.spad" 2138558 2138572 2140311 2140316) (-1222 "UPCDEN.spad" 2137765 2137781 2138548 2138553) (-1221 "UP2.spad" 2137127 2137148 2137755 2137760) (-1220 "UNISEG.spad" 2136480 2136491 2137046 2137051) (-1219 "UNISEG2.spad" 2135973 2135986 2136436 2136441) (-1218 "UNIFACT.spad" 2135074 2135086 2135963 2135968) (-1217 "ULS.spad" 2125626 2125654 2126719 2127148) (-1216 "ULSCONS.spad" 2118020 2118040 2118392 2118541) (-1215 "ULSCCAT.spad" 2115749 2115769 2117866 2118015) (-1214 "ULSCCAT.spad" 2113586 2113608 2115705 2115710) (-1213 "ULSCAT.spad" 2111802 2111818 2113432 2113581) (-1212 "ULS2.spad" 2111314 2111367 2111792 2111797) (-1211 "UINT32.spad" 2111190 2111199 2111304 2111309) (-1210 "UINT16.spad" 2111066 2111075 2111180 2111185) (-1209 "UFD.spad" 2110131 2110140 2110992 2111061) (-1208 "UFD.spad" 2109258 2109269 2110121 2110126) (-1207 "UDVO.spad" 2108105 2108114 2109248 2109253) (-1206 "UDPO.spad" 2105532 2105543 2108061 2108066) (-1205 "TYPE.spad" 2105464 2105473 2105522 2105527) (-1204 "TYPEAST.spad" 2105383 2105392 2105454 2105459) (-1203 "TWOFACT.spad" 2104033 2104048 2105373 2105378) (-1202 "TUPLE.spad" 2103517 2103528 2103932 2103937) (-1201 "TUBETOOL.spad" 2100354 2100363 2103507 2103512) (-1200 "TUBE.spad" 2098995 2099012 2100344 2100349) (-1199 "TS.spad" 2097584 2097600 2098560 2098657) (-1198 "TSETCAT.spad" 2084711 2084728 2097552 2097579) (-1197 "TSETCAT.spad" 2071824 2071843 2084667 2084672) (-1196 "TRMANIP.spad" 2066190 2066207 2071530 2071535) (-1195 "TRIMAT.spad" 2065149 2065174 2066180 2066185) (-1194 "TRIGMNIP.spad" 2063666 2063683 2065139 2065144) (-1193 "TRIGCAT.spad" 2063178 2063187 2063656 2063661) (-1192 "TRIGCAT.spad" 2062688 2062699 2063168 2063173) (-1191 "TREE.spad" 2061259 2061270 2062295 2062322) (-1190 "TRANFUN.spad" 2061090 2061099 2061249 2061254) (-1189 "TRANFUN.spad" 2060919 2060930 2061080 2061085) (-1188 "TOPSP.spad" 2060593 2060602 2060909 2060914) (-1187 "TOOLSIGN.spad" 2060256 2060267 2060583 2060588) (-1186 "TEXTFILE.spad" 2058813 2058822 2060246 2060251) (-1185 "TEX.spad" 2055945 2055954 2058803 2058808) (-1184 "TEX1.spad" 2055501 2055512 2055935 2055940) (-1183 "TEMUTL.spad" 2055056 2055065 2055491 2055496) (-1182 "TBCMPPK.spad" 2053149 2053172 2055046 2055051) (-1181 "TBAGG.spad" 2052185 2052208 2053129 2053144) (-1180 "TBAGG.spad" 2051229 2051254 2052175 2052180) (-1179 "TANEXP.spad" 2050605 2050616 2051219 2051224) (-1178 "TABLE.spad" 2049016 2049039 2049286 2049313) (-1177 "TABLEAU.spad" 2048497 2048508 2049006 2049011) (-1176 "TABLBUMP.spad" 2045280 2045291 2048487 2048492) (-1175 "SYSTEM.spad" 2044554 2044563 2045270 2045275) (-1174 "SYSSOLP.spad" 2042027 2042038 2044544 2044549) (-1173 "SYSNNI.spad" 2041203 2041214 2042017 2042022) (-1172 "SYSINT.spad" 2040676 2040687 2041193 2041198) (-1171 "SYNTAX.spad" 2036946 2036955 2040666 2040671) (-1170 "SYMTAB.spad" 2035002 2035011 2036936 2036941) (-1169 "SYMS.spad" 2030987 2030996 2034992 2034997) (-1168 "SYMPOLY.spad" 2029994 2030005 2030076 2030203) (-1167 "SYMFUNC.spad" 2029469 2029480 2029984 2029989) (-1166 "SYMBOL.spad" 2026896 2026905 2029459 2029464) (-1165 "SWITCH.spad" 2023653 2023662 2026886 2026891) (-1164 "SUTS.spad" 2020552 2020580 2022120 2022217) (-1163 "SUPXS.spad" 2017687 2017715 2018684 2018833) (-1162 "SUP.spad" 2014456 2014467 2015237 2015390) (-1161 "SUPFRACF.spad" 2013561 2013579 2014446 2014451) (-1160 "SUP2.spad" 2012951 2012964 2013551 2013556) (-1159 "SUMRF.spad" 2011917 2011928 2012941 2012946) (-1158 "SUMFS.spad" 2011550 2011567 2011907 2011912) (-1157 "SULS.spad" 2002089 2002117 2003195 2003624) (-1156 "SUCHTAST.spad" 2001858 2001867 2002079 2002084) (-1155 "SUCH.spad" 2001538 2001553 2001848 2001853) (-1154 "SUBSPACE.spad" 1993545 1993560 2001528 2001533) (-1153 "SUBRESP.spad" 1992705 1992719 1993501 1993506) (-1152 "STTF.spad" 1988804 1988820 1992695 1992700) (-1151 "STTFNC.spad" 1985272 1985288 1988794 1988799) (-1150 "STTAYLOR.spad" 1977670 1977681 1985153 1985158) (-1149 "STRTBL.spad" 1976175 1976192 1976324 1976351) (-1148 "STRING.spad" 1975584 1975593 1975598 1975625) (-1147 "STRICAT.spad" 1975372 1975381 1975552 1975579) (-1146 "STREAM.spad" 1972230 1972241 1974897 1974912) (-1145 "STREAM3.spad" 1971775 1971790 1972220 1972225) (-1144 "STREAM2.spad" 1970843 1970856 1971765 1971770) (-1143 "STREAM1.spad" 1970547 1970558 1970833 1970838) (-1142 "STINPROD.spad" 1969453 1969469 1970537 1970542) (-1141 "STEP.spad" 1968654 1968663 1969443 1969448) (-1140 "STBL.spad" 1967180 1967208 1967347 1967362) (-1139 "STAGG.spad" 1966255 1966266 1967170 1967175) (-1138 "STAGG.spad" 1965328 1965341 1966245 1966250) (-1137 "STACK.spad" 1964679 1964690 1964935 1964962) (-1136 "SREGSET.spad" 1962383 1962400 1964325 1964352) (-1135 "SRDCMPK.spad" 1960928 1960948 1962373 1962378) (-1134 "SRAGG.spad" 1956025 1956034 1960896 1960923) (-1133 "SRAGG.spad" 1951142 1951153 1956015 1956020) (-1132 "SQMATRIX.spad" 1948758 1948776 1949674 1949761) (-1131 "SPLTREE.spad" 1943310 1943323 1948194 1948221) (-1130 "SPLNODE.spad" 1939898 1939911 1943300 1943305) (-1129 "SPFCAT.spad" 1938675 1938684 1939888 1939893) (-1128 "SPECOUT.spad" 1937225 1937234 1938665 1938670) (-1127 "SPADXPT.spad" 1929364 1929373 1937215 1937220) (-1126 "spad-parser.spad" 1928829 1928838 1929354 1929359) (-1125 "SPADAST.spad" 1928530 1928539 1928819 1928824) (-1124 "SPACEC.spad" 1912543 1912554 1928520 1928525) (-1123 "SPACE3.spad" 1912319 1912330 1912533 1912538) (-1122 "SORTPAK.spad" 1911864 1911877 1912275 1912280) (-1121 "SOLVETRA.spad" 1909621 1909632 1911854 1911859) (-1120 "SOLVESER.spad" 1908141 1908152 1909611 1909616) (-1119 "SOLVERAD.spad" 1904151 1904162 1908131 1908136) (-1118 "SOLVEFOR.spad" 1902571 1902589 1904141 1904146) (-1117 "SNTSCAT.spad" 1902171 1902188 1902539 1902566) (-1116 "SMTS.spad" 1900431 1900457 1901736 1901833) (-1115 "SMP.spad" 1897870 1897890 1898260 1898387) (-1114 "SMITH.spad" 1896713 1896738 1897860 1897865) (-1113 "SMATCAT.spad" 1894823 1894853 1896657 1896708) (-1112 "SMATCAT.spad" 1892865 1892897 1894701 1894706) (-1111 "SKAGG.spad" 1891826 1891837 1892833 1892860) (-1110 "SINT.spad" 1890652 1890661 1891692 1891821) (-1109 "SIMPAN.spad" 1890380 1890389 1890642 1890647) (-1108 "SIG.spad" 1889708 1889717 1890370 1890375) (-1107 "SIGNRF.spad" 1888816 1888827 1889698 1889703) (-1106 "SIGNEF.spad" 1888085 1888102 1888806 1888811) (-1105 "SIGAST.spad" 1887466 1887475 1888075 1888080) (-1104 "SHP.spad" 1885384 1885399 1887422 1887427) (-1103 "SHDP.spad" 1875095 1875122 1875604 1875735) (-1102 "SGROUP.spad" 1874703 1874712 1875085 1875090) (-1101 "SGROUP.spad" 1874309 1874320 1874693 1874698) (-1100 "SGCF.spad" 1867190 1867199 1874299 1874304) (-1099 "SFRTCAT.spad" 1866118 1866135 1867158 1867185) (-1098 "SFRGCD.spad" 1865181 1865201 1866108 1866113) (-1097 "SFQCMPK.spad" 1859818 1859838 1865171 1865176) (-1096 "SFORT.spad" 1859253 1859267 1859808 1859813) (-1095 "SEXOF.spad" 1859096 1859136 1859243 1859248) (-1094 "SEX.spad" 1858988 1858997 1859086 1859091) (-1093 "SEXCAT.spad" 1856539 1856579 1858978 1858983) (-1092 "SET.spad" 1854839 1854850 1855960 1855999) (-1091 "SETMN.spad" 1853273 1853290 1854829 1854834) (-1090 "SETCAT.spad" 1852758 1852767 1853263 1853268) (-1089 "SETCAT.spad" 1852241 1852252 1852748 1852753) (-1088 "SETAGG.spad" 1848762 1848773 1852221 1852236) (-1087 "SETAGG.spad" 1845291 1845304 1848752 1848757) (-1086 "SEQAST.spad" 1844994 1845003 1845281 1845286) (-1085 "SEGXCAT.spad" 1844116 1844129 1844984 1844989) (-1084 "SEG.spad" 1843929 1843940 1844035 1844040) (-1083 "SEGCAT.spad" 1842836 1842847 1843919 1843924) (-1082 "SEGBIND.spad" 1841908 1841919 1842791 1842796) (-1081 "SEGBIND2.spad" 1841604 1841617 1841898 1841903) (-1080 "SEGAST.spad" 1841318 1841327 1841594 1841599) (-1079 "SEG2.spad" 1840743 1840756 1841274 1841279) (-1078 "SDVAR.spad" 1840019 1840030 1840733 1840738) (-1077 "SDPOL.spad" 1837409 1837420 1837700 1837827) (-1076 "SCPKG.spad" 1835488 1835499 1837399 1837404) (-1075 "SCOPE.spad" 1834633 1834642 1835478 1835483) (-1074 "SCACHE.spad" 1833315 1833326 1834623 1834628) (-1073 "SASTCAT.spad" 1833224 1833233 1833305 1833310) (-1072 "SAOS.spad" 1833096 1833105 1833214 1833219) (-1071 "SAERFFC.spad" 1832809 1832829 1833086 1833091) (-1070 "SAE.spad" 1830984 1831000 1831595 1831730) (-1069 "SAEFACT.spad" 1830685 1830705 1830974 1830979) (-1068 "RURPK.spad" 1828326 1828342 1830675 1830680) (-1067 "RULESET.spad" 1827767 1827791 1828316 1828321) (-1066 "RULE.spad" 1825971 1825995 1827757 1827762) (-1065 "RULECOLD.spad" 1825823 1825836 1825961 1825966) (-1064 "RSTRCAST.spad" 1825540 1825549 1825813 1825818) (-1063 "RSETGCD.spad" 1821918 1821938 1825530 1825535) (-1062 "RSETCAT.spad" 1811702 1811719 1821886 1821913) (-1061 "RSETCAT.spad" 1801506 1801525 1811692 1811697) (-1060 "RSDCMPK.spad" 1799958 1799978 1801496 1801501) (-1059 "RRCC.spad" 1798342 1798372 1799948 1799953) (-1058 "RRCC.spad" 1796724 1796756 1798332 1798337) (-1057 "RPTAST.spad" 1796426 1796435 1796714 1796719) (-1056 "RPOLCAT.spad" 1775786 1775801 1796294 1796421) (-1055 "RPOLCAT.spad" 1754860 1754877 1775370 1775375) (-1054 "ROUTINE.spad" 1750723 1750732 1753507 1753534) (-1053 "ROMAN.spad" 1750051 1750060 1750589 1750718) (-1052 "ROIRC.spad" 1749131 1749163 1750041 1750046) (-1051 "RNS.spad" 1748034 1748043 1749033 1749126) (-1050 "RNS.spad" 1747023 1747034 1748024 1748029) (-1049 "RNG.spad" 1746758 1746767 1747013 1747018) (-1048 "RMODULE.spad" 1746396 1746407 1746748 1746753) (-1047 "RMCAT2.spad" 1745804 1745861 1746386 1746391) (-1046 "RMATRIX.spad" 1744628 1744647 1744971 1745010) (-1045 "RMATCAT.spad" 1740161 1740192 1744584 1744623) (-1044 "RMATCAT.spad" 1735584 1735617 1740009 1740014) (-1043 "RINTERP.spad" 1735472 1735492 1735574 1735579) (-1042 "RING.spad" 1734942 1734951 1735452 1735467) (-1041 "RING.spad" 1734420 1734431 1734932 1734937) (-1040 "RIDIST.spad" 1733804 1733813 1734410 1734415) (-1039 "RGCHAIN.spad" 1732383 1732399 1733289 1733316) (-1038 "RGBCSPC.spad" 1732164 1732176 1732373 1732378) (-1037 "RGBCMDL.spad" 1731694 1731706 1732154 1732159) (-1036 "RF.spad" 1729308 1729319 1731684 1731689) (-1035 "RFFACTOR.spad" 1728770 1728781 1729298 1729303) (-1034 "RFFACT.spad" 1728505 1728517 1728760 1728765) (-1033 "RFDIST.spad" 1727493 1727502 1728495 1728500) (-1032 "RETSOL.spad" 1726910 1726923 1727483 1727488) (-1031 "RETRACT.spad" 1726338 1726349 1726900 1726905) (-1030 "RETRACT.spad" 1725764 1725777 1726328 1726333) (-1029 "RETAST.spad" 1725576 1725585 1725754 1725759) (-1028 "RESULT.spad" 1723636 1723645 1724223 1724250) (-1027 "RESRING.spad" 1722983 1723030 1723574 1723631) (-1026 "RESLATC.spad" 1722307 1722318 1722973 1722978) (-1025 "REPSQ.spad" 1722036 1722047 1722297 1722302) (-1024 "REP.spad" 1719588 1719597 1722026 1722031) (-1023 "REPDB.spad" 1719293 1719304 1719578 1719583) (-1022 "REP2.spad" 1708865 1708876 1719135 1719140) (-1021 "REP1.spad" 1702855 1702866 1708815 1708820) (-1020 "REGSET.spad" 1700652 1700669 1702501 1702528) (-1019 "REF.spad" 1699981 1699992 1700607 1700612) (-1018 "REDORDER.spad" 1699157 1699174 1699971 1699976) (-1017 "RECLOS.spad" 1697940 1697960 1698644 1698737) (-1016 "REALSOLV.spad" 1697072 1697081 1697930 1697935) (-1015 "REAL.spad" 1696944 1696953 1697062 1697067) (-1014 "REAL0Q.spad" 1694226 1694241 1696934 1696939) (-1013 "REAL0.spad" 1691054 1691069 1694216 1694221) (-1012 "RDUCEAST.spad" 1690775 1690784 1691044 1691049) (-1011 "RDIV.spad" 1690426 1690451 1690765 1690770) (-1010 "RDIST.spad" 1689989 1690000 1690416 1690421) (-1009 "RDETRS.spad" 1688785 1688803 1689979 1689984) (-1008 "RDETR.spad" 1686892 1686910 1688775 1688780) (-1007 "RDEEFS.spad" 1685965 1685982 1686882 1686887) (-1006 "RDEEF.spad" 1684961 1684978 1685955 1685960) (-1005 "RCFIELD.spad" 1682147 1682156 1684863 1684956) (-1004 "RCFIELD.spad" 1679419 1679430 1682137 1682142) (-1003 "RCAGG.spad" 1677331 1677342 1679409 1679414) (-1002 "RCAGG.spad" 1675170 1675183 1677250 1677255) (-1001 "RATRET.spad" 1674530 1674541 1675160 1675165) (-1000 "RATFACT.spad" 1674222 1674234 1674520 1674525) (-999 "RANDSRC.spad" 1673542 1673550 1674212 1674217) (-998 "RADUTIL.spad" 1673297 1673305 1673532 1673537) (-997 "RADIX.spad" 1670199 1670212 1671764 1671857) (-996 "RADFF.spad" 1668613 1668649 1668731 1668887) (-995 "RADCAT.spad" 1668207 1668215 1668603 1668608) (-994 "RADCAT.spad" 1667799 1667809 1668197 1668202) (-993 "QUEUE.spad" 1667142 1667152 1667406 1667433) (-992 "QUAT.spad" 1665724 1665734 1666066 1666131) (-991 "QUATCT2.spad" 1665343 1665361 1665714 1665719) (-990 "QUATCAT.spad" 1663508 1663518 1665273 1665338) (-989 "QUATCAT.spad" 1661424 1661436 1663191 1663196) (-988 "QUAGG.spad" 1660250 1660260 1661392 1661419) (-987 "QQUTAST.spad" 1660019 1660027 1660240 1660245) (-986 "QFORM.spad" 1659482 1659496 1660009 1660014) (-985 "QFCAT.spad" 1658185 1658195 1659384 1659477) (-984 "QFCAT.spad" 1656479 1656491 1657680 1657685) (-983 "QFCAT2.spad" 1656170 1656186 1656469 1656474) (-982 "QEQUAT.spad" 1655727 1655735 1656160 1656165) (-981 "QCMPACK.spad" 1650474 1650493 1655717 1655722) (-980 "QALGSET.spad" 1646549 1646581 1650388 1650393) (-979 "QALGSET2.spad" 1644545 1644563 1646539 1646544) (-978 "PWFFINTB.spad" 1641855 1641876 1644535 1644540) (-977 "PUSHVAR.spad" 1641184 1641203 1641845 1641850) (-976 "PTRANFN.spad" 1637310 1637320 1641174 1641179) (-975 "PTPACK.spad" 1634398 1634408 1637300 1637305) (-974 "PTFUNC2.spad" 1634219 1634233 1634388 1634393) (-973 "PTCAT.spad" 1633468 1633478 1634187 1634214) (-972 "PSQFR.spad" 1632775 1632799 1633458 1633463) (-971 "PSEUDLIN.spad" 1631633 1631643 1632765 1632770) (-970 "PSETPK.spad" 1617066 1617082 1631511 1631516) (-969 "PSETCAT.spad" 1610986 1611009 1617046 1617061) (-968 "PSETCAT.spad" 1604880 1604905 1610942 1610947) (-967 "PSCURVE.spad" 1603863 1603871 1604870 1604875) (-966 "PSCAT.spad" 1602630 1602659 1603761 1603858) (-965 "PSCAT.spad" 1601487 1601518 1602620 1602625) (-964 "PRTITION.spad" 1600432 1600440 1601477 1601482) (-963 "PRTDAST.spad" 1600151 1600159 1600422 1600427) (-962 "PRS.spad" 1589713 1589730 1600107 1600112) (-961 "PRQAGG.spad" 1589144 1589154 1589681 1589708) (-960 "PROPLOG.spad" 1588547 1588555 1589134 1589139) (-959 "PROPFRML.spad" 1586465 1586476 1588537 1588542) (-958 "PROPERTY.spad" 1585959 1585967 1586455 1586460) (-957 "PRODUCT.spad" 1583639 1583651 1583925 1583980) (-956 "PR.spad" 1582025 1582037 1582730 1582857) (-955 "PRINT.spad" 1581777 1581785 1582015 1582020) (-954 "PRIMES.spad" 1580028 1580038 1581767 1581772) (-953 "PRIMELT.spad" 1578009 1578023 1580018 1580023) (-952 "PRIMCAT.spad" 1577632 1577640 1577999 1578004) (-951 "PRIMARR.spad" 1576637 1576647 1576815 1576842) (-950 "PRIMARR2.spad" 1575360 1575372 1576627 1576632) (-949 "PREASSOC.spad" 1574732 1574744 1575350 1575355) (-948 "PPCURVE.spad" 1573869 1573877 1574722 1574727) (-947 "PORTNUM.spad" 1573644 1573652 1573859 1573864) (-946 "POLYROOT.spad" 1572473 1572495 1573600 1573605) (-945 "POLY.spad" 1569770 1569780 1570287 1570414) (-944 "POLYLIFT.spad" 1569031 1569054 1569760 1569765) (-943 "POLYCATQ.spad" 1567133 1567155 1569021 1569026) (-942 "POLYCAT.spad" 1560539 1560560 1567001 1567128) (-941 "POLYCAT.spad" 1553247 1553270 1559711 1559716) (-940 "POLY2UP.spad" 1552695 1552709 1553237 1553242) (-939 "POLY2.spad" 1552290 1552302 1552685 1552690) (-938 "POLUTIL.spad" 1551231 1551260 1552246 1552251) (-937 "POLTOPOL.spad" 1549979 1549994 1551221 1551226) (-936 "POINT.spad" 1548818 1548828 1548905 1548932) (-935 "PNTHEORY.spad" 1545484 1545492 1548808 1548813) (-934 "PMTOOLS.spad" 1544241 1544255 1545474 1545479) (-933 "PMSYM.spad" 1543786 1543796 1544231 1544236) (-932 "PMQFCAT.spad" 1543373 1543387 1543776 1543781) (-931 "PMPRED.spad" 1542842 1542856 1543363 1543368) (-930 "PMPREDFS.spad" 1542286 1542308 1542832 1542837) (-929 "PMPLCAT.spad" 1541356 1541374 1542218 1542223) (-928 "PMLSAGG.spad" 1540937 1540951 1541346 1541351) (-927 "PMKERNEL.spad" 1540504 1540516 1540927 1540932) (-926 "PMINS.spad" 1540080 1540090 1540494 1540499) (-925 "PMFS.spad" 1539653 1539671 1540070 1540075) (-924 "PMDOWN.spad" 1538939 1538953 1539643 1539648) (-923 "PMASS.spad" 1537951 1537959 1538929 1538934) (-922 "PMASSFS.spad" 1536920 1536936 1537941 1537946) (-921 "PLOTTOOL.spad" 1536700 1536708 1536910 1536915) (-920 "PLOT.spad" 1531531 1531539 1536690 1536695) (-919 "PLOT3D.spad" 1527951 1527959 1531521 1531526) (-918 "PLOT1.spad" 1527092 1527102 1527941 1527946) (-917 "PLEQN.spad" 1514308 1514335 1527082 1527087) (-916 "PINTERP.spad" 1513924 1513943 1514298 1514303) (-915 "PINTERPA.spad" 1513706 1513722 1513914 1513919) (-914 "PI.spad" 1513313 1513321 1513680 1513701) (-913 "PID.spad" 1512269 1512277 1513239 1513308) (-912 "PICOERCE.spad" 1511926 1511936 1512259 1512264) (-911 "PGROEB.spad" 1510523 1510537 1511916 1511921) (-910 "PGE.spad" 1501776 1501784 1510513 1510518) (-909 "PGCD.spad" 1500658 1500675 1501766 1501771) (-908 "PFRPAC.spad" 1499801 1499811 1500648 1500653) (-907 "PFR.spad" 1496458 1496468 1499703 1499796) (-906 "PFOTOOLS.spad" 1495716 1495732 1496448 1496453) (-905 "PFOQ.spad" 1495086 1495104 1495706 1495711) (-904 "PFO.spad" 1494505 1494532 1495076 1495081) (-903 "PF.spad" 1494079 1494091 1494310 1494403) (-902 "PFECAT.spad" 1491745 1491753 1494005 1494074) (-901 "PFECAT.spad" 1489439 1489449 1491701 1491706) (-900 "PFBRU.spad" 1487309 1487321 1489429 1489434) (-899 "PFBR.spad" 1484847 1484870 1487299 1487304) (-898 "PERM.spad" 1480528 1480538 1484677 1484692) (-897 "PERMGRP.spad" 1475264 1475274 1480518 1480523) (-896 "PERMCAT.spad" 1473816 1473826 1475244 1475259) (-895 "PERMAN.spad" 1472348 1472362 1473806 1473811) (-894 "PENDTREE.spad" 1471687 1471697 1471977 1471982) (-893 "PDRING.spad" 1470178 1470188 1471667 1471682) (-892 "PDRING.spad" 1468677 1468689 1470168 1470173) (-891 "PDEPROB.spad" 1467692 1467700 1468667 1468672) (-890 "PDEPACK.spad" 1461694 1461702 1467682 1467687) (-889 "PDECOMP.spad" 1461156 1461173 1461684 1461689) (-888 "PDECAT.spad" 1459510 1459518 1461146 1461151) (-887 "PCOMP.spad" 1459361 1459374 1459500 1459505) (-886 "PBWLB.spad" 1457943 1457960 1459351 1459356) (-885 "PATTERN.spad" 1452374 1452384 1457933 1457938) (-884 "PATTERN2.spad" 1452110 1452122 1452364 1452369) (-883 "PATTERN1.spad" 1450412 1450428 1452100 1452105) (-882 "PATRES.spad" 1447959 1447971 1450402 1450407) (-881 "PATRES2.spad" 1447621 1447635 1447949 1447954) (-880 "PATMATCH.spad" 1445778 1445809 1447329 1447334) (-879 "PATMAB.spad" 1445203 1445213 1445768 1445773) (-878 "PATLRES.spad" 1444287 1444301 1445193 1445198) (-877 "PATAB.spad" 1444051 1444061 1444277 1444282) (-876 "PARTPERM.spad" 1441413 1441421 1444041 1444046) (-875 "PARSURF.spad" 1440841 1440869 1441403 1441408) (-874 "PARSU2.spad" 1440636 1440652 1440831 1440836) (-873 "script-parser.spad" 1440156 1440164 1440626 1440631) (-872 "PARSCURV.spad" 1439584 1439612 1440146 1440151) (-871 "PARSC2.spad" 1439373 1439389 1439574 1439579) (-870 "PARPCURV.spad" 1438831 1438859 1439363 1439368) (-869 "PARPC2.spad" 1438620 1438636 1438821 1438826) (-868 "PAN2EXPR.spad" 1438032 1438040 1438610 1438615) (-867 "PALETTE.spad" 1437002 1437010 1438022 1438027) (-866 "PAIR.spad" 1435985 1435998 1436590 1436595) (-865 "PADICRC.spad" 1433315 1433333 1434490 1434583) (-864 "PADICRAT.spad" 1431330 1431342 1431551 1431644) (-863 "PADIC.spad" 1431025 1431037 1431256 1431325) (-862 "PADICCT.spad" 1429566 1429578 1430951 1431020) (-861 "PADEPAC.spad" 1428245 1428264 1429556 1429561) (-860 "PADE.spad" 1426985 1427001 1428235 1428240) (-859 "OWP.spad" 1426225 1426255 1426843 1426910) (-858 "OVAR.spad" 1426006 1426029 1426215 1426220) (-857 "OUT.spad" 1425090 1425098 1425996 1426001) (-856 "OUTFORM.spad" 1414386 1414394 1425080 1425085) (-855 "OUTBFILE.spad" 1413804 1413812 1414376 1414381) (-854 "OUTBCON.spad" 1413279 1413287 1413794 1413799) (-853 "OUTBCON.spad" 1412752 1412762 1413269 1413274) (-852 "OSI.spad" 1412227 1412235 1412742 1412747) (-851 "OSGROUP.spad" 1412145 1412153 1412217 1412222) (-850 "ORTHPOL.spad" 1410606 1410616 1412062 1412067) (-849 "OREUP.spad" 1410059 1410087 1410286 1410325) (-848 "ORESUP.spad" 1409358 1409382 1409739 1409778) (-847 "OREPCTO.spad" 1407177 1407189 1409278 1409283) (-846 "OREPCAT.spad" 1401234 1401244 1407133 1407172) (-845 "OREPCAT.spad" 1395181 1395193 1401082 1401087) (-844 "ORDSET.spad" 1394347 1394355 1395171 1395176) (-843 "ORDSET.spad" 1393511 1393521 1394337 1394342) (-842 "ORDRING.spad" 1392901 1392909 1393491 1393506) (-841 "ORDRING.spad" 1392299 1392309 1392891 1392896) (-840 "ORDMON.spad" 1392154 1392162 1392289 1392294) (-839 "ORDFUNS.spad" 1391280 1391296 1392144 1392149) (-838 "ORDFIN.spad" 1391100 1391108 1391270 1391275) (-837 "ORDCOMP.spad" 1389565 1389575 1390647 1390676) (-836 "ORDCOMP2.spad" 1388850 1388862 1389555 1389560) (-835 "OPTPROB.spad" 1387488 1387496 1388840 1388845) (-834 "OPTPACK.spad" 1379873 1379881 1387478 1387483) (-833 "OPTCAT.spad" 1377548 1377556 1379863 1379868) (-832 "OPSIG.spad" 1377200 1377208 1377538 1377543) (-831 "OPQUERY.spad" 1376749 1376757 1377190 1377195) (-830 "OP.spad" 1376491 1376501 1376571 1376638) (-829 "OPERCAT.spad" 1376079 1376089 1376481 1376486) (-828 "OPERCAT.spad" 1375665 1375677 1376069 1376074) (-827 "ONECOMP.spad" 1374410 1374420 1375212 1375241) (-826 "ONECOMP2.spad" 1373828 1373840 1374400 1374405) (-825 "OMSERVER.spad" 1372830 1372838 1373818 1373823) (-824 "OMSAGG.spad" 1372618 1372628 1372786 1372825) (-823 "OMPKG.spad" 1371230 1371238 1372608 1372613) (-822 "OM.spad" 1370195 1370203 1371220 1371225) (-821 "OMLO.spad" 1369620 1369632 1370081 1370120) (-820 "OMEXPR.spad" 1369454 1369464 1369610 1369615) (-819 "OMERR.spad" 1368997 1369005 1369444 1369449) (-818 "OMERRK.spad" 1368031 1368039 1368987 1368992) (-817 "OMENC.spad" 1367375 1367383 1368021 1368026) (-816 "OMDEV.spad" 1361664 1361672 1367365 1367370) (-815 "OMCONN.spad" 1361073 1361081 1361654 1361659) (-814 "OINTDOM.spad" 1360836 1360844 1360999 1361068) (-813 "OFMONOID.spad" 1357023 1357033 1360826 1360831) (-812 "ODVAR.spad" 1356284 1356294 1357013 1357018) (-811 "ODR.spad" 1355928 1355954 1356096 1356245) (-810 "ODPOL.spad" 1353274 1353284 1353614 1353741) (-809 "ODP.spad" 1343121 1343141 1343494 1343625) (-808 "ODETOOLS.spad" 1341704 1341723 1343111 1343116) (-807 "ODESYS.spad" 1339354 1339371 1341694 1341699) (-806 "ODERTRIC.spad" 1335295 1335312 1339311 1339316) (-805 "ODERED.spad" 1334682 1334706 1335285 1335290) (-804 "ODERAT.spad" 1332233 1332250 1334672 1334677) (-803 "ODEPRRIC.spad" 1329124 1329146 1332223 1332228) (-802 "ODEPROB.spad" 1328381 1328389 1329114 1329119) (-801 "ODEPRIM.spad" 1325655 1325677 1328371 1328376) (-800 "ODEPAL.spad" 1325031 1325055 1325645 1325650) (-799 "ODEPACK.spad" 1311633 1311641 1325021 1325026) (-798 "ODEINT.spad" 1311064 1311080 1311623 1311628) (-797 "ODEIFTBL.spad" 1308459 1308467 1311054 1311059) (-796 "ODEEF.spad" 1303826 1303842 1308449 1308454) (-795 "ODECONST.spad" 1303345 1303363 1303816 1303821) (-794 "ODECAT.spad" 1301941 1301949 1303335 1303340) (-793 "OCT.spad" 1300079 1300089 1300795 1300834) (-792 "OCTCT2.spad" 1299723 1299744 1300069 1300074) (-791 "OC.spad" 1297497 1297507 1299679 1299718) (-790 "OC.spad" 1294996 1295008 1297180 1297185) (-789 "OCAMON.spad" 1294844 1294852 1294986 1294991) (-788 "OASGP.spad" 1294659 1294667 1294834 1294839) (-787 "OAMONS.spad" 1294179 1294187 1294649 1294654) (-786 "OAMON.spad" 1294040 1294048 1294169 1294174) (-785 "OAGROUP.spad" 1293902 1293910 1294030 1294035) (-784 "NUMTUBE.spad" 1293489 1293505 1293892 1293897) (-783 "NUMQUAD.spad" 1281351 1281359 1293479 1293484) (-782 "NUMODE.spad" 1272487 1272495 1281341 1281346) (-781 "NUMINT.spad" 1270045 1270053 1272477 1272482) (-780 "NUMFMT.spad" 1268885 1268893 1270035 1270040) (-779 "NUMERIC.spad" 1260957 1260967 1268690 1268695) (-778 "NTSCAT.spad" 1259459 1259475 1260925 1260952) (-777 "NTPOLFN.spad" 1259004 1259014 1259376 1259381) (-776 "NSUP.spad" 1252014 1252024 1256554 1256707) (-775 "NSUP2.spad" 1251406 1251418 1252004 1252009) (-774 "NSMP.spad" 1247601 1247620 1247909 1248036) (-773 "NREP.spad" 1245973 1245987 1247591 1247596) (-772 "NPCOEF.spad" 1245219 1245239 1245963 1245968) (-771 "NORMRETR.spad" 1244817 1244856 1245209 1245214) (-770 "NORMPK.spad" 1242719 1242738 1244807 1244812) (-769 "NORMMA.spad" 1242407 1242433 1242709 1242714) (-768 "NONE.spad" 1242148 1242156 1242397 1242402) (-767 "NONE1.spad" 1241824 1241834 1242138 1242143) (-766 "NODE1.spad" 1241293 1241309 1241814 1241819) (-765 "NNI.spad" 1240180 1240188 1241267 1241288) (-764 "NLINSOL.spad" 1238802 1238812 1240170 1240175) (-763 "NIPROB.spad" 1237343 1237351 1238792 1238797) (-762 "NFINTBAS.spad" 1234803 1234820 1237333 1237338) (-761 "NETCLT.spad" 1234777 1234788 1234793 1234798) (-760 "NCODIV.spad" 1232975 1232991 1234767 1234772) (-759 "NCNTFRAC.spad" 1232617 1232631 1232965 1232970) (-758 "NCEP.spad" 1230777 1230791 1232607 1232612) (-757 "NASRING.spad" 1230373 1230381 1230767 1230772) (-756 "NASRING.spad" 1229967 1229977 1230363 1230368) (-755 "NARNG.spad" 1229311 1229319 1229957 1229962) (-754 "NARNG.spad" 1228653 1228663 1229301 1229306) (-753 "NAGSP.spad" 1227726 1227734 1228643 1228648) (-752 "NAGS.spad" 1217251 1217259 1227716 1227721) (-751 "NAGF07.spad" 1215644 1215652 1217241 1217246) (-750 "NAGF04.spad" 1209876 1209884 1215634 1215639) (-749 "NAGF02.spad" 1203685 1203693 1209866 1209871) (-748 "NAGF01.spad" 1199288 1199296 1203675 1203680) (-747 "NAGE04.spad" 1192748 1192756 1199278 1199283) (-746 "NAGE02.spad" 1183090 1183098 1192738 1192743) (-745 "NAGE01.spad" 1178974 1178982 1183080 1183085) (-744 "NAGD03.spad" 1176894 1176902 1178964 1178969) (-743 "NAGD02.spad" 1169425 1169433 1176884 1176889) (-742 "NAGD01.spad" 1163538 1163546 1169415 1169420) (-741 "NAGC06.spad" 1159325 1159333 1163528 1163533) (-740 "NAGC05.spad" 1157794 1157802 1159315 1159320) (-739 "NAGC02.spad" 1157049 1157057 1157784 1157789) (-738 "NAALG.spad" 1156584 1156594 1157017 1157044) (-737 "NAALG.spad" 1156139 1156151 1156574 1156579) (-736 "MULTSQFR.spad" 1153097 1153114 1156129 1156134) (-735 "MULTFACT.spad" 1152480 1152497 1153087 1153092) (-734 "MTSCAT.spad" 1150514 1150535 1152378 1152475) (-733 "MTHING.spad" 1150171 1150181 1150504 1150509) (-732 "MSYSCMD.spad" 1149605 1149613 1150161 1150166) (-731 "MSET.spad" 1147547 1147557 1149311 1149350) (-730 "MSETAGG.spad" 1147392 1147402 1147515 1147542) (-729 "MRING.spad" 1144363 1144375 1147100 1147167) (-728 "MRF2.spad" 1143931 1143945 1144353 1144358) (-727 "MRATFAC.spad" 1143477 1143494 1143921 1143926) (-726 "MPRFF.spad" 1141507 1141526 1143467 1143472) (-725 "MPOLY.spad" 1138942 1138957 1139301 1139428) (-724 "MPCPF.spad" 1138206 1138225 1138932 1138937) (-723 "MPC3.spad" 1138021 1138061 1138196 1138201) (-722 "MPC2.spad" 1137663 1137696 1138011 1138016) (-721 "MONOTOOL.spad" 1135998 1136015 1137653 1137658) (-720 "MONOID.spad" 1135317 1135325 1135988 1135993) (-719 "MONOID.spad" 1134634 1134644 1135307 1135312) (-718 "MONOGEN.spad" 1133380 1133393 1134494 1134629) (-717 "MONOGEN.spad" 1132148 1132163 1133264 1133269) (-716 "MONADWU.spad" 1130162 1130170 1132138 1132143) (-715 "MONADWU.spad" 1128174 1128184 1130152 1130157) (-714 "MONAD.spad" 1127318 1127326 1128164 1128169) (-713 "MONAD.spad" 1126460 1126470 1127308 1127313) (-712 "MOEBIUS.spad" 1125146 1125160 1126440 1126455) (-711 "MODULE.spad" 1125016 1125026 1125114 1125141) (-710 "MODULE.spad" 1124906 1124918 1125006 1125011) (-709 "MODRING.spad" 1124237 1124276 1124886 1124901) (-708 "MODOP.spad" 1122896 1122908 1124059 1124126) (-707 "MODMONOM.spad" 1122625 1122643 1122886 1122891) (-706 "MODMON.spad" 1119384 1119400 1120103 1120256) (-705 "MODFIELD.spad" 1118742 1118781 1119286 1119379) (-704 "MMLFORM.spad" 1117602 1117610 1118732 1118737) (-703 "MMAP.spad" 1117342 1117376 1117592 1117597) (-702 "MLO.spad" 1115769 1115779 1117298 1117337) (-701 "MLIFT.spad" 1114341 1114358 1115759 1115764) (-700 "MKUCFUNC.spad" 1113874 1113892 1114331 1114336) (-699 "MKRECORD.spad" 1113476 1113489 1113864 1113869) (-698 "MKFUNC.spad" 1112857 1112867 1113466 1113471) (-697 "MKFLCFN.spad" 1111813 1111823 1112847 1112852) (-696 "MKCHSET.spad" 1111678 1111688 1111803 1111808) (-695 "MKBCFUNC.spad" 1111163 1111181 1111668 1111673) (-694 "MINT.spad" 1110602 1110610 1111065 1111158) (-693 "MHROWRED.spad" 1109103 1109113 1110592 1110597) (-692 "MFLOAT.spad" 1107619 1107627 1108993 1109098) (-691 "MFINFACT.spad" 1107019 1107041 1107609 1107614) (-690 "MESH.spad" 1104751 1104759 1107009 1107014) (-689 "MDDFACT.spad" 1102944 1102954 1104741 1104746) (-688 "MDAGG.spad" 1102231 1102241 1102924 1102939) (-687 "MCMPLX.spad" 1098217 1098225 1098831 1099020) (-686 "MCDEN.spad" 1097425 1097437 1098207 1098212) (-685 "MCALCFN.spad" 1094527 1094553 1097415 1097420) (-684 "MAYBE.spad" 1093811 1093822 1094517 1094522) (-683 "MATSTOR.spad" 1091087 1091097 1093801 1093806) (-682 "MATRIX.spad" 1089791 1089801 1090275 1090302) (-681 "MATLIN.spad" 1087117 1087141 1089675 1089680) (-680 "MATCAT.spad" 1078702 1078724 1087085 1087112) (-679 "MATCAT.spad" 1070159 1070183 1078544 1078549) (-678 "MATCAT2.spad" 1069427 1069475 1070149 1070154) (-677 "MAPPKG3.spad" 1068326 1068340 1069417 1069422) (-676 "MAPPKG2.spad" 1067660 1067672 1068316 1068321) (-675 "MAPPKG1.spad" 1066478 1066488 1067650 1067655) (-674 "MAPPAST.spad" 1065791 1065799 1066468 1066473) (-673 "MAPHACK3.spad" 1065599 1065613 1065781 1065786) (-672 "MAPHACK2.spad" 1065364 1065376 1065589 1065594) (-671 "MAPHACK1.spad" 1064994 1065004 1065354 1065359) (-670 "MAGMA.spad" 1062784 1062801 1064984 1064989) (-669 "MACROAST.spad" 1062363 1062371 1062774 1062779) (-668 "M3D.spad" 1060059 1060069 1061741 1061746) (-667 "LZSTAGG.spad" 1057287 1057297 1060049 1060054) (-666 "LZSTAGG.spad" 1054513 1054525 1057277 1057282) (-665 "LWORD.spad" 1051218 1051235 1054503 1054508) (-664 "LSTAST.spad" 1051002 1051010 1051208 1051213) (-663 "LSQM.spad" 1049228 1049242 1049626 1049677) (-662 "LSPP.spad" 1048761 1048778 1049218 1049223) (-661 "LSMP.spad" 1047601 1047629 1048751 1048756) (-660 "LSMP1.spad" 1045405 1045419 1047591 1047596) (-659 "LSAGG.spad" 1045074 1045084 1045373 1045400) (-658 "LSAGG.spad" 1044763 1044775 1045064 1045069) (-657 "LPOLY.spad" 1043717 1043736 1044619 1044688) (-656 "LPEFRAC.spad" 1042974 1042984 1043707 1043712) (-655 "LO.spad" 1042375 1042389 1042908 1042935) (-654 "LOGIC.spad" 1041977 1041985 1042365 1042370) (-653 "LOGIC.spad" 1041577 1041587 1041967 1041972) (-652 "LODOOPS.spad" 1040495 1040507 1041567 1041572) (-651 "LODO.spad" 1039879 1039895 1040175 1040214) (-650 "LODOF.spad" 1038923 1038940 1039836 1039841) (-649 "LODOCAT.spad" 1037581 1037591 1038879 1038918) (-648 "LODOCAT.spad" 1036237 1036249 1037537 1037542) (-647 "LODO2.spad" 1035510 1035522 1035917 1035956) (-646 "LODO1.spad" 1034910 1034920 1035190 1035229) (-645 "LODEEF.spad" 1033682 1033700 1034900 1034905) (-644 "LNAGG.spad" 1029484 1029494 1033672 1033677) (-643 "LNAGG.spad" 1025250 1025262 1029440 1029445) (-642 "LMOPS.spad" 1021986 1022003 1025240 1025245) (-641 "LMODULE.spad" 1021628 1021638 1021976 1021981) (-640 "LMDICT.spad" 1020911 1020921 1021179 1021206) (-639 "LITERAL.spad" 1020817 1020828 1020901 1020906) (-638 "LIST.spad" 1018535 1018545 1019964 1019991) (-637 "LIST3.spad" 1017826 1017840 1018525 1018530) (-636 "LIST2.spad" 1016466 1016478 1017816 1017821) (-635 "LIST2MAP.spad" 1013343 1013355 1016456 1016461) (-634 "LINEXP.spad" 1012775 1012785 1013323 1013338) (-633 "LINDEP.spad" 1011552 1011564 1012687 1012692) (-632 "LIMITRF.spad" 1009466 1009476 1011542 1011547) (-631 "LIMITPS.spad" 1008349 1008362 1009456 1009461) (-630 "LIE.spad" 1006363 1006375 1007639 1007784) (-629 "LIECAT.spad" 1005839 1005849 1006289 1006358) (-628 "LIECAT.spad" 1005343 1005355 1005795 1005800) (-627 "LIB.spad" 1003391 1003399 1004002 1004017) (-626 "LGROBP.spad" 1000744 1000763 1003381 1003386) (-625 "LF.spad" 999663 999679 1000734 1000739) (-624 "LFCAT.spad" 998682 998690 999653 999658) (-623 "LEXTRIPK.spad" 994185 994200 998672 998677) (-622 "LEXP.spad" 992188 992215 994165 994180) (-621 "LETAST.spad" 991887 991895 992178 992183) (-620 "LEADCDET.spad" 990271 990288 991877 991882) (-619 "LAZM3PK.spad" 988975 988997 990261 990266) (-618 "LAUPOL.spad" 987664 987677 988568 988637) (-617 "LAPLACE.spad" 987237 987253 987654 987659) (-616 "LA.spad" 986677 986691 987159 987198) (-615 "LALG.spad" 986453 986463 986657 986672) (-614 "LALG.spad" 986237 986249 986443 986448) (-613 "KVTFROM.spad" 985972 985982 986227 986232) (-612 "KTVLOGIC.spad" 985395 985403 985962 985967) (-611 "KRCFROM.spad" 985133 985143 985385 985390) (-610 "KOVACIC.spad" 983846 983863 985123 985128) (-609 "KONVERT.spad" 983568 983578 983836 983841) (-608 "KOERCE.spad" 983305 983315 983558 983563) (-607 "KERNEL.spad" 981840 981850 983089 983094) (-606 "KERNEL2.spad" 981543 981555 981830 981835) (-605 "KDAGG.spad" 980646 980668 981523 981538) (-604 "KDAGG.spad" 979757 979781 980636 980641) (-603 "KAFILE.spad" 978720 978736 978955 978982) (-602 "JORDAN.spad" 976547 976559 978010 978155) (-601 "JOINAST.spad" 976241 976249 976537 976542) (-600 "JAVACODE.spad" 976107 976115 976231 976236) (-599 "IXAGG.spad" 974230 974254 976097 976102) (-598 "IXAGG.spad" 972208 972234 974077 974082) (-597 "IVECTOR.spad" 970979 970994 971134 971161) (-596 "ITUPLE.spad" 970124 970134 970969 970974) (-595 "ITRIGMNP.spad" 968935 968954 970114 970119) (-594 "ITFUN3.spad" 968429 968443 968925 968930) (-593 "ITFUN2.spad" 968159 968171 968419 968424) (-592 "ITAYLOR.spad" 965951 965966 967995 968120) (-591 "ISUPS.spad" 958362 958377 964925 965022) (-590 "ISUMP.spad" 957859 957875 958352 958357) (-589 "ISTRING.spad" 956862 956875 957028 957055) (-588 "ISAST.spad" 956581 956589 956852 956857) (-587 "IRURPK.spad" 955294 955313 956571 956576) (-586 "IRSN.spad" 953254 953262 955284 955289) (-585 "IRRF2F.spad" 951729 951739 953210 953215) (-584 "IRREDFFX.spad" 951330 951341 951719 951724) (-583 "IROOT.spad" 949661 949671 951320 951325) (-582 "IR.spad" 947450 947464 949516 949543) (-581 "IR2.spad" 946470 946486 947440 947445) (-580 "IR2F.spad" 945670 945686 946460 946465) (-579 "IPRNTPK.spad" 945430 945438 945660 945665) (-578 "IPF.spad" 944995 945007 945235 945328) (-577 "IPADIC.spad" 944756 944782 944921 944990) (-576 "IP4ADDR.spad" 944313 944321 944746 944751) (-575 "IOMODE.spad" 943934 943942 944303 944308) (-574 "IOBFILE.spad" 943295 943303 943924 943929) (-573 "IOBCON.spad" 943160 943168 943285 943290) (-572 "INVLAPLA.spad" 942805 942821 943150 943155) (-571 "INTTR.spad" 936051 936068 942795 942800) (-570 "INTTOOLS.spad" 933762 933778 935625 935630) (-569 "INTSLPE.spad" 933068 933076 933752 933757) (-568 "INTRVL.spad" 932634 932644 932982 933063) (-567 "INTRF.spad" 930998 931012 932624 932629) (-566 "INTRET.spad" 930430 930440 930988 930993) (-565 "INTRAT.spad" 929105 929122 930420 930425) (-564 "INTPM.spad" 927468 927484 928748 928753) (-563 "INTPAF.spad" 925236 925254 927400 927405) (-562 "INTPACK.spad" 915546 915554 925226 925231) (-561 "INT.spad" 914907 914915 915400 915541) (-560 "INTHERTR.spad" 914173 914190 914897 914902) (-559 "INTHERAL.spad" 913839 913863 914163 914168) (-558 "INTHEORY.spad" 910252 910260 913829 913834) (-557 "INTG0.spad" 903715 903733 910184 910189) (-556 "INTFTBL.spad" 897744 897752 903705 903710) (-555 "INTFACT.spad" 896803 896813 897734 897739) (-554 "INTEF.spad" 895118 895134 896793 896798) (-553 "INTDOM.spad" 893733 893741 895044 895113) (-552 "INTDOM.spad" 892410 892420 893723 893728) (-551 "INTCAT.spad" 890663 890673 892324 892405) (-550 "INTBIT.spad" 890166 890174 890653 890658) (-549 "INTALG.spad" 889348 889375 890156 890161) (-548 "INTAF.spad" 888840 888856 889338 889343) (-547 "INTABL.spad" 887358 887389 887521 887548) (-546 "INT8.spad" 887238 887246 887348 887353) (-545 "INT32.spad" 887117 887125 887228 887233) (-544 "INT16.spad" 886996 887004 887107 887112) (-543 "INS.spad" 884463 884471 886898 886991) (-542 "INS.spad" 882016 882026 884453 884458) (-541 "INPSIGN.spad" 881450 881463 882006 882011) (-540 "INPRODPF.spad" 880516 880535 881440 881445) (-539 "INPRODFF.spad" 879574 879598 880506 880511) (-538 "INNMFACT.spad" 878545 878562 879564 879569) (-537 "INMODGCD.spad" 878029 878059 878535 878540) (-536 "INFSP.spad" 876314 876336 878019 878024) (-535 "INFPROD0.spad" 875364 875383 876304 876309) (-534 "INFORM.spad" 872525 872533 875354 875359) (-533 "INFORM1.spad" 872150 872160 872515 872520) (-532 "INFINITY.spad" 871702 871710 872140 872145) (-531 "INETCLTS.spad" 871679 871687 871692 871697) (-530 "INEP.spad" 870211 870233 871669 871674) (-529 "INDE.spad" 869940 869957 870201 870206) (-528 "INCRMAPS.spad" 869361 869371 869930 869935) (-527 "INBFILE.spad" 868433 868441 869351 869356) (-526 "INBFF.spad" 864203 864214 868423 868428) (-525 "INBCON.spad" 863650 863658 864193 864198) (-524 "INBCON.spad" 863095 863105 863640 863645) (-523 "INAST.spad" 862760 862768 863085 863090) (-522 "IMPTAST.spad" 862468 862476 862750 862755) (-521 "IMATRIX.spad" 861413 861439 861925 861952) (-520 "IMATQF.spad" 860507 860551 861369 861374) (-519 "IMATLIN.spad" 859112 859136 860463 860468) (-518 "ILIST.spad" 857768 857783 858295 858322) (-517 "IIARRAY2.spad" 857156 857194 857375 857402) (-516 "IFF.spad" 856566 856582 856837 856930) (-515 "IFAST.spad" 856180 856188 856556 856561) (-514 "IFARRAY.spad" 853667 853682 855363 855390) (-513 "IFAMON.spad" 853529 853546 853623 853628) (-512 "IEVALAB.spad" 852918 852930 853519 853524) (-511 "IEVALAB.spad" 852305 852319 852908 852913) (-510 "IDPO.spad" 852103 852115 852295 852300) (-509 "IDPOAMS.spad" 851859 851871 852093 852098) (-508 "IDPOAM.spad" 851579 851591 851849 851854) (-507 "IDPC.spad" 850513 850525 851569 851574) (-506 "IDPAM.spad" 850258 850270 850503 850508) (-505 "IDPAG.spad" 850005 850017 850248 850253) (-504 "IDENT.spad" 849777 849785 849995 850000) (-503 "IDECOMP.spad" 847014 847032 849767 849772) (-502 "IDEAL.spad" 841937 841976 846949 846954) (-501 "ICDEN.spad" 841088 841104 841927 841932) (-500 "ICARD.spad" 840277 840285 841078 841083) (-499 "IBPTOOLS.spad" 838870 838887 840267 840272) (-498 "IBITS.spad" 838069 838082 838506 838533) (-497 "IBATOOL.spad" 834944 834963 838059 838064) (-496 "IBACHIN.spad" 833431 833446 834934 834939) (-495 "IARRAY2.spad" 832419 832445 833038 833065) (-494 "IARRAY1.spad" 831464 831479 831602 831629) (-493 "IAN.spad" 829677 829685 831280 831373) (-492 "IALGFACT.spad" 829278 829311 829667 829672) (-491 "HYPCAT.spad" 828702 828710 829268 829273) (-490 "HYPCAT.spad" 828124 828134 828692 828697) (-489 "HOSTNAME.spad" 827932 827940 828114 828119) (-488 "HOMOTOP.spad" 827675 827685 827922 827927) (-487 "HOAGG.spad" 824943 824953 827665 827670) (-486 "HOAGG.spad" 821986 821998 824710 824715) (-485 "HEXADEC.spad" 820088 820096 820453 820546) (-484 "HEUGCD.spad" 819103 819114 820078 820083) (-483 "HELLFDIV.spad" 818693 818717 819093 819098) (-482 "HEAP.spad" 818085 818095 818300 818327) (-481 "HEADAST.spad" 817616 817624 818075 818080) (-480 "HDP.spad" 807459 807475 807836 807967) (-479 "HDMP.spad" 804635 804650 805253 805380) (-478 "HB.spad" 802872 802880 804625 804630) (-477 "HASHTBL.spad" 801342 801373 801553 801580) (-476 "HASAST.spad" 801058 801066 801332 801337) (-475 "HACKPI.spad" 800541 800549 800960 801053) (-474 "GTSET.spad" 799480 799496 800187 800214) (-473 "GSTBL.spad" 797999 798034 798173 798188) (-472 "GSERIES.spad" 795166 795193 796131 796280) (-471 "GROUP.spad" 794435 794443 795146 795161) (-470 "GROUP.spad" 793712 793722 794425 794430) (-469 "GROEBSOL.spad" 792200 792221 793702 793707) (-468 "GRMOD.spad" 790771 790783 792190 792195) (-467 "GRMOD.spad" 789340 789354 790761 790766) (-466 "GRIMAGE.spad" 781945 781953 789330 789335) (-465 "GRDEF.spad" 780324 780332 781935 781940) (-464 "GRAY.spad" 778783 778791 780314 780319) (-463 "GRALG.spad" 777830 777842 778773 778778) (-462 "GRALG.spad" 776875 776889 777820 777825) (-461 "GPOLSET.spad" 776329 776352 776557 776584) (-460 "GOSPER.spad" 775594 775612 776319 776324) (-459 "GMODPOL.spad" 774732 774759 775562 775589) (-458 "GHENSEL.spad" 773801 773815 774722 774727) (-457 "GENUPS.spad" 769902 769915 773791 773796) (-456 "GENUFACT.spad" 769479 769489 769892 769897) (-455 "GENPGCD.spad" 769063 769080 769469 769474) (-454 "GENMFACT.spad" 768515 768534 769053 769058) (-453 "GENEEZ.spad" 766454 766467 768505 768510) (-452 "GDMP.spad" 763472 763489 764248 764375) (-451 "GCNAALG.spad" 757367 757394 763266 763333) (-450 "GCDDOM.spad" 756539 756547 757293 757362) (-449 "GCDDOM.spad" 755773 755783 756529 756534) (-448 "GB.spad" 753291 753329 755729 755734) (-447 "GBINTERN.spad" 749311 749349 753281 753286) (-446 "GBF.spad" 745068 745106 749301 749306) (-445 "GBEUCLID.spad" 742942 742980 745058 745063) (-444 "GAUSSFAC.spad" 742239 742247 742932 742937) (-443 "GALUTIL.spad" 740561 740571 742195 742200) (-442 "GALPOLYU.spad" 739007 739020 740551 740556) (-441 "GALFACTU.spad" 737172 737191 738997 739002) (-440 "GALFACT.spad" 727305 727316 737162 737167) (-439 "FVFUN.spad" 724328 724336 727295 727300) (-438 "FVC.spad" 723380 723388 724318 724323) (-437 "FUNCTION.spad" 723229 723241 723370 723375) (-436 "FT.spad" 721522 721530 723219 723224) (-435 "FTEM.spad" 720685 720693 721512 721517) (-434 "FSUPFACT.spad" 719585 719604 720621 720626) (-433 "FST.spad" 717671 717679 719575 719580) (-432 "FSRED.spad" 717149 717165 717661 717666) (-431 "FSPRMELT.spad" 715973 715989 717106 717111) (-430 "FSPECF.spad" 714050 714066 715963 715968) (-429 "FS.spad" 708112 708122 713825 714045) (-428 "FS.spad" 701952 701964 707667 707672) (-427 "FSINT.spad" 701610 701626 701942 701947) (-426 "FSERIES.spad" 700797 700809 701430 701529) (-425 "FSCINT.spad" 700110 700126 700787 700792) (-424 "FSAGG.spad" 699227 699237 700066 700105) (-423 "FSAGG.spad" 698306 698318 699147 699152) (-422 "FSAGG2.spad" 697005 697021 698296 698301) (-421 "FS2UPS.spad" 691488 691522 696995 697000) (-420 "FS2.spad" 691133 691149 691478 691483) (-419 "FS2EXPXP.spad" 690256 690279 691123 691128) (-418 "FRUTIL.spad" 689198 689208 690246 690251) (-417 "FR.spad" 682892 682902 688222 688291) (-416 "FRNAALG.spad" 677979 677989 682834 682887) (-415 "FRNAALG.spad" 673078 673090 677935 677940) (-414 "FRNAAF2.spad" 672532 672550 673068 673073) (-413 "FRMOD.spad" 671926 671956 672463 672468) (-412 "FRIDEAL.spad" 671121 671142 671906 671921) (-411 "FRIDEAL2.spad" 670723 670755 671111 671116) (-410 "FRETRCT.spad" 670234 670244 670713 670718) (-409 "FRETRCT.spad" 669611 669623 670092 670097) (-408 "FRAMALG.spad" 667939 667952 669567 669606) (-407 "FRAMALG.spad" 666299 666314 667929 667934) (-406 "FRAC.spad" 663398 663408 663801 663974) (-405 "FRAC2.spad" 663001 663013 663388 663393) (-404 "FR2.spad" 662335 662347 662991 662996) (-403 "FPS.spad" 659144 659152 662225 662330) (-402 "FPS.spad" 655981 655991 659064 659069) (-401 "FPC.spad" 655023 655031 655883 655976) (-400 "FPC.spad" 654151 654161 655013 655018) (-399 "FPATMAB.spad" 653913 653923 654141 654146) (-398 "FPARFRAC.spad" 652386 652403 653903 653908) (-397 "FORTRAN.spad" 650892 650935 652376 652381) (-396 "FORT.spad" 649821 649829 650882 650887) (-395 "FORTFN.spad" 646991 646999 649811 649816) (-394 "FORTCAT.spad" 646675 646683 646981 646986) (-393 "FORMULA.spad" 644139 644147 646665 646670) (-392 "FORMULA1.spad" 643618 643628 644129 644134) (-391 "FORDER.spad" 643309 643333 643608 643613) (-390 "FOP.spad" 642510 642518 643299 643304) (-389 "FNLA.spad" 641934 641956 642478 642505) (-388 "FNCAT.spad" 640521 640529 641924 641929) (-387 "FNAME.spad" 640413 640421 640511 640516) (-386 "FMTC.spad" 640211 640219 640339 640408) (-385 "FMONOID.spad" 637266 637276 640167 640172) (-384 "FM.spad" 636961 636973 637200 637227) (-383 "FMFUN.spad" 633991 633999 636951 636956) (-382 "FMC.spad" 633043 633051 633981 633986) (-381 "FMCAT.spad" 630697 630715 633011 633038) (-380 "FM1.spad" 630054 630066 630631 630658) (-379 "FLOATRP.spad" 627775 627789 630044 630049) (-378 "FLOAT.spad" 621063 621071 627641 627770) (-377 "FLOATCP.spad" 618480 618494 621053 621058) (-376 "FLINEXP.spad" 618192 618202 618460 618475) (-375 "FLINEXP.spad" 617858 617870 618128 618133) (-374 "FLASORT.spad" 617178 617190 617848 617853) (-373 "FLALG.spad" 614824 614843 617104 617173) (-372 "FLAGG.spad" 611842 611852 614804 614819) (-371 "FLAGG.spad" 608761 608773 611725 611730) (-370 "FLAGG2.spad" 607442 607458 608751 608756) (-369 "FINRALG.spad" 605471 605484 607398 607437) (-368 "FINRALG.spad" 603426 603441 605355 605360) (-367 "FINITE.spad" 602578 602586 603416 603421) (-366 "FINAALG.spad" 591559 591569 602520 602573) (-365 "FINAALG.spad" 580552 580564 591515 591520) (-364 "FILE.spad" 580135 580145 580542 580547) (-363 "FILECAT.spad" 578653 578670 580125 580130) (-362 "FIELD.spad" 578059 578067 578555 578648) (-361 "FIELD.spad" 577551 577561 578049 578054) (-360 "FGROUP.spad" 576160 576170 577531 577546) (-359 "FGLMICPK.spad" 574947 574962 576150 576155) (-358 "FFX.spad" 574322 574337 574663 574756) (-357 "FFSLPE.spad" 573811 573832 574312 574317) (-356 "FFPOLY.spad" 565063 565074 573801 573806) (-355 "FFPOLY2.spad" 564123 564140 565053 565058) (-354 "FFP.spad" 563520 563540 563839 563932) (-353 "FF.spad" 562968 562984 563201 563294) (-352 "FFNBX.spad" 561480 561500 562684 562777) (-351 "FFNBP.spad" 559993 560010 561196 561289) (-350 "FFNB.spad" 558458 558479 559674 559767) (-349 "FFINTBAS.spad" 555872 555891 558448 558453) (-348 "FFIELDC.spad" 553447 553455 555774 555867) (-347 "FFIELDC.spad" 551108 551118 553437 553442) (-346 "FFHOM.spad" 549856 549873 551098 551103) (-345 "FFF.spad" 547291 547302 549846 549851) (-344 "FFCGX.spad" 546138 546158 547007 547100) (-343 "FFCGP.spad" 545027 545047 545854 545947) (-342 "FFCG.spad" 543819 543840 544708 544801) (-341 "FFCAT.spad" 536846 536868 543658 543814) (-340 "FFCAT.spad" 529952 529976 536766 536771) (-339 "FFCAT2.spad" 529697 529737 529942 529947) (-338 "FEXPR.spad" 521406 521452 529453 529492) (-337 "FEVALAB.spad" 521112 521122 521396 521401) (-336 "FEVALAB.spad" 520603 520615 520889 520894) (-335 "FDIV.spad" 520045 520069 520593 520598) (-334 "FDIVCAT.spad" 518087 518111 520035 520040) (-333 "FDIVCAT.spad" 516127 516153 518077 518082) (-332 "FDIV2.spad" 515781 515821 516117 516122) (-331 "FCPAK1.spad" 514334 514342 515771 515776) (-330 "FCOMP.spad" 513713 513723 514324 514329) (-329 "FC.spad" 503628 503636 513703 513708) (-328 "FAXF.spad" 496563 496577 503530 503623) (-327 "FAXF.spad" 489550 489566 496519 496524) (-326 "FARRAY.spad" 487696 487706 488733 488760) (-325 "FAMR.spad" 485816 485828 487594 487691) (-324 "FAMR.spad" 483920 483934 485700 485705) (-323 "FAMONOID.spad" 483570 483580 483874 483879) (-322 "FAMONC.spad" 481792 481804 483560 483565) (-321 "FAGROUP.spad" 481398 481408 481688 481715) (-320 "FACUTIL.spad" 479594 479611 481388 481393) (-319 "FACTFUNC.spad" 478770 478780 479584 479589) (-318 "EXPUPXS.spad" 475603 475626 476902 477051) (-317 "EXPRTUBE.spad" 472831 472839 475593 475598) (-316 "EXPRODE.spad" 469703 469719 472821 472826) (-315 "EXPR.spad" 464978 464988 465692 466099) (-314 "EXPR2UPS.spad" 461070 461083 464968 464973) (-313 "EXPR2.spad" 460773 460785 461060 461065) (-312 "EXPEXPAN.spad" 457711 457736 458345 458438) (-311 "EXIT.spad" 457382 457390 457701 457706) (-310 "EXITAST.spad" 457118 457126 457372 457377) (-309 "EVALCYC.spad" 456576 456590 457108 457113) (-308 "EVALAB.spad" 456140 456150 456566 456571) (-307 "EVALAB.spad" 455702 455714 456130 456135) (-306 "EUCDOM.spad" 453244 453252 455628 455697) (-305 "EUCDOM.spad" 450848 450858 453234 453239) (-304 "ESTOOLS.spad" 442688 442696 450838 450843) (-303 "ESTOOLS2.spad" 442289 442303 442678 442683) (-302 "ESTOOLS1.spad" 441974 441985 442279 442284) (-301 "ES.spad" 434521 434529 441964 441969) (-300 "ES.spad" 426974 426984 434419 434424) (-299 "ESCONT.spad" 423747 423755 426964 426969) (-298 "ESCONT1.spad" 423496 423508 423737 423742) (-297 "ES2.spad" 422991 423007 423486 423491) (-296 "ES1.spad" 422557 422573 422981 422986) (-295 "ERROR.spad" 419878 419886 422547 422552) (-294 "EQTBL.spad" 418350 418372 418559 418586) (-293 "EQ.spad" 413224 413234 416023 416135) (-292 "EQ2.spad" 412940 412952 413214 413219) (-291 "EP.spad" 409254 409264 412930 412935) (-290 "ENV.spad" 407956 407964 409244 409249) (-289 "ENTIRER.spad" 407624 407632 407900 407951) (-288 "EMR.spad" 406825 406866 407550 407619) (-287 "ELTAGG.spad" 405065 405084 406815 406820) (-286 "ELTAGG.spad" 403269 403290 405021 405026) (-285 "ELTAB.spad" 402716 402734 403259 403264) (-284 "ELFUTS.spad" 402095 402114 402706 402711) (-283 "ELEMFUN.spad" 401784 401792 402085 402090) (-282 "ELEMFUN.spad" 401471 401481 401774 401779) (-281 "ELAGG.spad" 399414 399424 401451 401466) (-280 "ELAGG.spad" 397294 397306 399333 399338) (-279 "ELABEXPR.spad" 396225 396233 397284 397289) (-278 "EFUPXS.spad" 393001 393031 396181 396186) (-277 "EFULS.spad" 389837 389860 392957 392962) (-276 "EFSTRUC.spad" 387792 387808 389827 389832) (-275 "EF.spad" 382558 382574 387782 387787) (-274 "EAB.spad" 380834 380842 382548 382553) (-273 "E04UCFA.spad" 380370 380378 380824 380829) (-272 "E04NAFA.spad" 379947 379955 380360 380365) (-271 "E04MBFA.spad" 379527 379535 379937 379942) (-270 "E04JAFA.spad" 379063 379071 379517 379522) (-269 "E04GCFA.spad" 378599 378607 379053 379058) (-268 "E04FDFA.spad" 378135 378143 378589 378594) (-267 "E04DGFA.spad" 377671 377679 378125 378130) (-266 "E04AGNT.spad" 373513 373521 377661 377666) (-265 "DVARCAT.spad" 370198 370208 373503 373508) (-264 "DVARCAT.spad" 366881 366893 370188 370193) (-263 "DSMP.spad" 364312 364326 364617 364744) (-262 "DROPT.spad" 358257 358265 364302 364307) (-261 "DROPT1.spad" 357920 357930 358247 358252) (-260 "DROPT0.spad" 352747 352755 357910 357915) (-259 "DRAWPT.spad" 350902 350910 352737 352742) (-258 "DRAW.spad" 343502 343515 350892 350897) (-257 "DRAWHACK.spad" 342810 342820 343492 343497) (-256 "DRAWCX.spad" 340252 340260 342800 342805) (-255 "DRAWCURV.spad" 339789 339804 340242 340247) (-254 "DRAWCFUN.spad" 328961 328969 339779 339784) (-253 "DQAGG.spad" 327129 327139 328929 328956) (-252 "DPOLCAT.spad" 322470 322486 326997 327124) (-251 "DPOLCAT.spad" 317897 317915 322426 322431) (-250 "DPMO.spad" 310123 310139 310261 310562) (-249 "DPMM.spad" 302362 302380 302487 302788) (-248 "DOMCTOR.spad" 302254 302262 302352 302357) (-247 "DOMAIN.spad" 301385 301393 302244 302249) (-246 "DMP.spad" 298607 298622 299179 299306) (-245 "DLP.spad" 297955 297965 298597 298602) (-244 "DLIST.spad" 296534 296544 297138 297165) (-243 "DLAGG.spad" 294945 294955 296524 296529) (-242 "DIVRING.spad" 294487 294495 294889 294940) (-241 "DIVRING.spad" 294073 294083 294477 294482) (-240 "DISPLAY.spad" 292253 292261 294063 294068) (-239 "DIRPROD.spad" 281833 281849 282473 282604) (-238 "DIRPROD2.spad" 280641 280659 281823 281828) (-237 "DIRPCAT.spad" 279583 279599 280505 280636) (-236 "DIRPCAT.spad" 278254 278272 279178 279183) (-235 "DIOSP.spad" 277079 277087 278244 278249) (-234 "DIOPS.spad" 276063 276073 277059 277074) (-233 "DIOPS.spad" 275021 275033 276019 276024) (-232 "DIFRING.spad" 274313 274321 275001 275016) (-231 "DIFRING.spad" 273613 273623 274303 274308) (-230 "DIFEXT.spad" 272772 272782 273593 273608) (-229 "DIFEXT.spad" 271848 271860 272671 272676) (-228 "DIAGG.spad" 271478 271488 271828 271843) (-227 "DIAGG.spad" 271116 271128 271468 271473) (-226 "DHMATRIX.spad" 269420 269430 270573 270600) (-225 "DFSFUN.spad" 262828 262836 269410 269415) (-224 "DFLOAT.spad" 259549 259557 262718 262823) (-223 "DFINTTLS.spad" 257758 257774 259539 259544) (-222 "DERHAM.spad" 255668 255700 257738 257753) (-221 "DEQUEUE.spad" 254986 254996 255275 255302) (-220 "DEGRED.spad" 254601 254615 254976 254981) (-219 "DEFINTRF.spad" 252126 252136 254591 254596) (-218 "DEFINTEF.spad" 250622 250638 252116 252121) (-217 "DEFAST.spad" 249990 249998 250612 250617) (-216 "DECIMAL.spad" 248096 248104 248457 248550) (-215 "DDFACT.spad" 245895 245912 248086 248091) (-214 "DBLRESP.spad" 245493 245517 245885 245890) (-213 "DBASE.spad" 244147 244157 245483 245488) (-212 "DATAARY.spad" 243609 243622 244137 244142) (-211 "D03FAFA.spad" 243437 243445 243599 243604) (-210 "D03EEFA.spad" 243257 243265 243427 243432) (-209 "D03AGNT.spad" 242337 242345 243247 243252) (-208 "D02EJFA.spad" 241799 241807 242327 242332) (-207 "D02CJFA.spad" 241277 241285 241789 241794) (-206 "D02BHFA.spad" 240767 240775 241267 241272) (-205 "D02BBFA.spad" 240257 240265 240757 240762) (-204 "D02AGNT.spad" 235061 235069 240247 240252) (-203 "D01WGTS.spad" 233380 233388 235051 235056) (-202 "D01TRNS.spad" 233357 233365 233370 233375) (-201 "D01GBFA.spad" 232879 232887 233347 233352) (-200 "D01FCFA.spad" 232401 232409 232869 232874) (-199 "D01ASFA.spad" 231869 231877 232391 232396) (-198 "D01AQFA.spad" 231315 231323 231859 231864) (-197 "D01APFA.spad" 230739 230747 231305 231310) (-196 "D01ANFA.spad" 230233 230241 230729 230734) (-195 "D01AMFA.spad" 229743 229751 230223 230228) (-194 "D01ALFA.spad" 229283 229291 229733 229738) (-193 "D01AKFA.spad" 228809 228817 229273 229278) (-192 "D01AJFA.spad" 228332 228340 228799 228804) (-191 "D01AGNT.spad" 224391 224399 228322 228327) (-190 "CYCLOTOM.spad" 223897 223905 224381 224386) (-189 "CYCLES.spad" 220729 220737 223887 223892) (-188 "CVMP.spad" 220146 220156 220719 220724) (-187 "CTRIGMNP.spad" 218636 218652 220136 220141) (-186 "CTOR.spad" 218536 218544 218626 218631) (-185 "CTORKIND.spad" 218139 218147 218526 218531) (-184 "CTORCAT.spad" 217594 217602 218129 218134) (-183 "CTORCAT.spad" 217047 217057 217584 217589) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index e51af168..998f34b7 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,990 +1,995 @@
-(161890 . 3440300504)
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) #0#) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
-((((-558)) . T) (($) -3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T))
+(162016 . 3440472343)
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) #0#) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
+((((-561)) . T) (($) -4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T))
(((|#2| |#2|) . T))
-((((-558)) . T))
-((($ $) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2| |#2|) . T) ((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))))
+((((-561)) . T))
+((($ $) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2| |#2|) . T) ((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
(((|#2|) . T))
-((($) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
-(|has| |#1| (-899))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((($) . T) (((-406 (-558))) . T))
+((($) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
+(|has| |#1| (-902))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((($) . T) (((-406 (-561))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-143)) . T))
-((((-534)) . T) (((-1145)) . T) (((-224)) . T) (((-378)) . T) (((-882 (-378))) . T))
-(((|#1|) . T))
-((((-224)) . T) (((-853)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
-((($ $) . T) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
-(-3994 (|has| |#1| (-811)) (|has| |#1| (-841)))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(|has| |#1| (-839))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-534)) . T) (((-1148)) . T) (((-224)) . T) (((-378)) . T) (((-885 (-378))) . T))
+(((|#1|) . T))
+((((-224)) . T) (((-856)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
+((($ $) . T) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
+(-4007 (|has| |#1| (-814)) (|has| |#1| (-844)))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(|has| |#1| (-842))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1| |#2| |#3|) . T))
-((((-1168)) . T))
-((((-558)) . T) (((-860 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-((($) . T) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-853)) . T))
-((((-1168)) . T))
+((((-1171)) . T))
+((((-561)) . T) (((-863 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((($) . T) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-856)) . T))
+((((-1171)) . T))
(((|#4|) . T))
-((((-853)) . T))
-((((-853)) |has| |#1| (-1087)))
-((((-853)) . T) (((-1168)) . T))
+((((-856)) . T))
+((((-856)) |has| |#1| (-1090)))
+((((-856)) . T) (((-1171)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1168)) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(((|#2| (-480 (-1596 |#1|) (-762))) . T))
-(((|#1| (-529 (-1163))) . T))
-(((#0=(-860 |#1|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-((((-1145)) . T) (((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-1171)) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(((|#2| (-480 (-3498 |#1|) (-765))) . T))
+(((|#1| (-529 (-1166))) . T))
+(((#0=(-863 |#1|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+((((-1148)) . T) (((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(|has| |#4| (-367))
(|has| |#3| (-367))
(((|#1|) . T))
((((-504)) . T))
-((((-860 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-863 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
+((((-856)) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-144))
(|has| |#1| (-146))
-(|has| |#1| (-550))
-((((-558)) . T) (((-406 (-558))) -3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-((((-2 (|:| -2349 |#1|) (|:| -1857 |#2|))) . T))
-((($) . T))
-((((-558)) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1163)) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-1163)) . T))
-((((-558)) . T) (($) . T))
-((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
-((((-853)) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
-((((-853)) . T))
-(((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) . T))
+(|has| |#1| (-553))
+((((-561)) . T) (((-406 (-561))) -4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+((((-2 (|:| -2413 |#1|) (|:| -4196 |#2|))) . T))
+((($) . T))
+((((-561)) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1166)) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-1166)) . T))
+((((-561)) . T) (($) . T))
+((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
+((((-856)) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+((((-856)) . T))
+(((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) . T))
(((|#1| |#2|) . T))
-((((-853)) . T))
+((((-856)) . T))
(((|#1|) . T))
-(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
(((|#1|) . T))
-(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
(((|#2|) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
((($ $) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-367))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
(((|#1| |#1|) . T))
-((((-853)) . T))
-(|has| |#1| (-550))
-(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1163) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1163) |#2|))))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(|has| |#1| (-1087))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(|has| |#1| (-1087))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(|has| |#1| (-839))
-((($) . T) (((-406 (-558))) . T))
-(((|#1|) . T))
-((((-558) (-129)) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-856)) . T))
+(|has| |#1| (-553))
+(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|))))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(|has| |#1| (-1090))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(|has| |#1| (-1090))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(|has| |#1| (-842))
+((($) . T) (((-406 (-561))) . T))
+(((|#1|) . T))
+((((-561) (-129)) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
((((-129)) . T))
-((((-1168)) . T))
-(-3994 (|has| |#4| (-784)) (|has| |#4| (-839)))
-(-3994 (|has| |#4| (-784)) (|has| |#4| (-839)))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
+((((-1171)) . T))
+(-4007 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(-4007 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1087))
-(|has| |#1| (-1087))
-(((|#1| (-1163) (-1075 (-1163)) (-529 (-1075 (-1163)))) . T))
-((((-558) |#1|) . T))
-((((-558)) . T))
-((((-558)) . T))
-((((-900 |#1|)) . T))
+(|has| |#1| (-1090))
+(|has| |#1| (-1090))
+(((|#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) . T))
+((((-561) |#1|) . T))
+((((-561)) . T))
+((((-561)) . T))
+((((-903 |#1|)) . T))
(((|#1| (-529 |#2|)) . T))
-((((-558)) . T))
-((((-558)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(((|#1| (-762)) . T))
-(|has| |#2| (-784))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-(|has| |#2| (-839))
+((((-561)) . T))
+((((-561)) . T))
+(((|#1|) . T))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(((|#1| (-765)) . T))
+(|has| |#2| (-787))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(|has| |#2| (-842))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1145) |#1|) . T))
-((((-558) (-129)) . T))
+((((-1148) |#1|) . T))
+((((-561) (-129)) . T))
(((|#1|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(((|#3| (-762)) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(((|#3| (-765)) . T))
(|has| |#1| (-146))
(|has| |#1| (-144))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(|has| |#1| (-1087))
-((((-406 (-558))) . T) (((-558)) . T))
-((((-558)) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((((-558)) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#2|) . T))
-((((-1163) |#2|) |has| |#2| (-512 (-1163) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|)))
-((((-406 (-558))) . T) (((-558)) . T))
-((((-558)) . T) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1069)) . T) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(|has| |#1| (-1090))
+((((-406 (-561))) . T) (((-561)) . T))
+((((-561)) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((((-561)) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#2|) . T))
+((((-1166) |#2|) |has| |#2| (-512 (-1166) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|)))
+((((-406 (-561))) . T) (((-561)) . T))
+((((-561)) . T) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1072)) . T) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
(((|#1|) . T) (($) . T))
-((((-558)) . T))
-((((-558)) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-((((-558)) . T))
-((((-558)) . T))
-(((#0=(-689) (-1159 #0#)) . T))
-((((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-((((-558) |#1|) . T))
-((($) . T) (((-558)) . T) (((-406 (-558))) . T))
+((((-561)) . T))
+((((-561)) . T))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((((-561)) . T))
+((((-561)) . T))
+(((#0=(-692) (-1162 #0#)) . T))
+((((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+((((-561) |#1|) . T))
(((|#1|) . T))
(|has| |#2| (-362))
+((($) . T) (((-561)) . T) (((-406 (-561))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-853)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-1145) |#1|) . T))
+((((-856)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-1148) |#1|) . T))
(((|#3| |#3|) . T))
-((((-853)) . T))
-((((-853)) . T))
+((((-856)) . T))
+((((-856)) . T))
(((|#1| |#1|) . T))
-(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((($) -3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039))) ((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-558) |#1|) . T))
-((((-853)) . T))
-((((-168 (-224))) |has| |#1| (-1012)) (((-168 (-378))) |has| |#1| (-1012)) (((-534)) |has| |#1| (-606 (-534))) (((-1159 |#1|)) . T) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
+(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((($) -4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-561) |#1|) . T))
+((((-856)) . T))
+((((-168 (-224))) |has| |#1| (-1015)) (((-168 (-378))) |has| |#1| (-1015)) (((-534)) |has| |#1| (-609 (-534))) (((-1162 |#1|)) . T) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
(|has| |#1| (-362))
+((((-856)) . T))
((((-129)) . T))
-(-12 (|has| |#4| (-232)) (|has| |#4| (-1039)))
-(-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))
-(-3994 (|has| |#4| (-171)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-((((-853)) . T) (((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-853)) . T))
-(((|#1|) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
-(((|#2|) . T) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-(|has| |#1| (-550))
-((((-558)) -3994 (|has| |#4| (-171)) (|has| |#4| (-839)) (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087))) (|has| |#4| (-1039))) ((|#4|) -3994 (|has| |#4| (-171)) (|has| |#4| (-1087))) (((-406 (-558))) -12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))
-((((-558)) -3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039))) ((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(|has| |#1| (-550))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(((|#1|) . T))
-(|has| |#1| (-550))
-(|has| |#1| (-550))
-(|has| |#1| (-550))
-((((-689)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-992)) (|has| |#1| (-1185)))
-(((|#2|) . T) (($) . T) (((-406 (-558))) . T))
-(-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))
-((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) . T))
-(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
-(((|#4| |#4|) -3994 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1039))) (($ $) |has| |#4| (-171)))
-(((|#3| |#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($ $) |has| |#3| (-171)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
-((((-853)) . T))
+(-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))
+(-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))
+(-4007 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((((-856)) . T) (((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-856)) . T))
+(((|#1|) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
+(((|#2|) . T) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+(|has| |#1| (-553))
+((((-561)) -4007 (|has| |#4| (-171)) (|has| |#4| (-842)) (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090))) (|has| |#4| (-1042))) ((|#4|) -4007 (|has| |#4| (-171)) (|has| |#4| (-1090))) (((-406 (-561))) -12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))
+((((-561)) -4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042))) ((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#1| (-553))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(((|#1|) . T))
+(|has| |#1| (-553))
+(|has| |#1| (-553))
+(|has| |#1| (-553))
+((((-692)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))
+(((|#2|) . T) (($) . T) (((-406 (-561))) . T))
+(-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))
+((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) . T))
+(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
+(((|#4| |#4|) -4007 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($ $) |has| |#4| (-171)))
+(((|#3| |#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171)))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
+((((-856)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2349 |#1|) (|:| -1857 |#2|))) . T) (((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))))
-(((|#4|) -3994 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1039))) (($) |has| |#4| (-171)))
-(((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($) |has| |#3| (-171)))
-((((-2 (|:| -2349 |#1|) (|:| -1857 |#2|))) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
-((((-635 |#1|)) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
-((((-406 $) (-406 $)) |has| |#2| (-550)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-899))
-((((-1145) (-52)) . T))
-((((-558)) |has| #0=(-406 |#2|) (-631 (-558))) ((#0#) . T))
-((((-534)) . T) (((-224)) . T) (((-378)) . T) (((-882 (-378))) . T))
-((((-853)) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+((((-2 (|:| -2413 |#1|) (|:| -4196 |#2|))) . T) (((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))))
+(((|#4|) -4007 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($) |has| |#4| (-171)))
+(((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171)))
+((((-2 (|:| -2413 |#1|) (|:| -4196 |#2|))) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
+((((-638 |#1|)) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
+((((-406 $) (-406 $)) |has| |#2| (-553)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-902))
+((((-1148) (-52)) . T))
+((((-561)) |has| #0=(-406 |#2|) (-634 (-561))) ((#0#) . T))
+((((-534)) . T) (((-224)) . T) (((-378)) . T) (((-885 (-378))) . T))
+((((-856)) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
(((|#1|) |has| |#1| (-171)))
(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-853)) . T))
-((((-853)) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-853)) . T))
-(|has| |#1| (-841))
-(((|#2|) . T) (((-558)) . T) (((-810 |#1|)) . T))
-(|has| |#1| (-1087))
-(((|#1|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) . T) (((-1168)) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((((-1168)) . T))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-856)) . T))
+((((-856)) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
+(|has| |#1| (-844))
+(((|#2|) . T) (((-561)) . T) (((-813 |#1|)) . T))
+(|has| |#1| (-1090))
+(((|#1|) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) . T) (((-1171)) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((((-1171)) . T))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
(|has| |#1| (-232))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#1| (-529 (-809 (-1163)))) . T))
-(((|#1| (-961)) . T))
-(((#0=(-860 |#1|) $) |has| #0# (-285 #0# #0#)))
-((((-558) |#4|) . T))
-((((-558) |#3|) . T))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#1| (-529 (-812 (-1166)))) . T))
+(((|#1| (-964)) . T))
+(((#0=(-863 |#1|) $) |has| #0# (-285 #0# #0#)))
+((((-561) |#4|) . T))
+((((-561) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1138))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-(|has| (-1232 |#1| |#2| |#3| |#4|) (-144))
-(|has| (-1232 |#1| |#2| |#3| |#4|) (-146))
+(|has| |#1| (-1141))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+(|has| (-1239 |#1| |#2| |#3| |#4|) (-144))
+(|has| (-1239 |#1| |#2| |#3| |#4|) (-146))
(|has| |#1| (-144))
(|has| |#1| (-146))
(((|#1|) |has| |#1| (-171)))
-((((-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))))
-(|has| |#1| (-1087))
-((((-1145) |#1|) . T))
+((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
+(|has| |#1| (-1090))
+((((-1148) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
-((((-1112 |#1| (-1163))) . T) (((-558)) . T) (((-809 (-1163))) . T) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-1163)) . T))
+(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
+((((-1115 |#1| (-1166))) . T) (((-561)) . T) (((-812 (-1166))) . T) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-1166)) . T))
(|has| |#2| (-367))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1039)))
-((((-853)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) #0#) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+(((|#2|) |has| |#2| (-1042)))
+((((-856)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) #0#) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
(((|#1|) . T))
-((((-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((#0=(-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) #0#) |has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))))
-((((-853)) . T))
-((((-558) |#1|) . T))
-((((-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534)))) (((-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378))))) (((-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558))))))
+((((-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((#0=(-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) #0#) |has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))))
+((((-856)) . T))
+((((-561) |#1|) . T))
+((((-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534)))) (((-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378))))) (((-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561))))))
((($) . T))
-((((-853)) . T))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) . T))
+((((-856)) . T))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) . T))
-((((-853)) . T))
-(|has| (-1231 |#2| |#3| |#4|) (-146))
-(|has| (-1231 |#2| |#3| |#4|) (-144))
-(((|#2|) |has| |#2| (-1087)) (((-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) . T))
+((((-856)) . T))
+(|has| (-1238 |#2| |#3| |#4|) (-146))
+(|has| (-1238 |#2| |#3| |#4|) (-144))
+(((|#2|) |has| |#2| (-1090)) (((-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
(((|#1|) . T))
-(|has| |#1| (-1087))
-((((-853)) . T))
+(|has| |#1| (-1090))
+((((-856)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
(((|#1|) . T))
-((((-558) |#1|) . T))
+((((-561) |#1|) . T))
(((|#2|) |has| |#2| (-171)))
(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
-((((-853)) |has| |#1| (-1087)))
-(-3994 (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-900 |#1|)) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
+((((-856)) |has| |#1| (-1090)))
+(-4007 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-903 |#1|)) . T))
((((-406 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-558) |#1|)))
-((((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-841))
+(|has| |#1| (-15 * (|#1| (-561) |#1|)))
+((((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-844))
(((|#1|) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-853)) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
(((|#1|) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
(|has| |#1| (-362))
-(-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))
-(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))
+(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
(|has| |#1| (-362))
-((((-558)) . T))
-(|has| |#1| (-15 * (|#1| (-762) |#1|)))
-((((-1129 |#2| (-406 (-942 |#1|)))) . T) (((-406 (-942 |#1|))) . T))
+((((-561)) . T))
+(|has| |#1| (-15 * (|#1| (-765) |#1|)))
+((((-1132 |#2| (-406 (-945 |#1|)))) . T) (((-406 (-945 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-171)) (($) . T))
-(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
-(((|#1|) . T))
-((((-558) |#1|) . T))
-((((-853)) . T))
-(((|#2|) . T))
-(-3994 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-((((-558)) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
-((($) |has| |#1| (-550)) (((-558)) . T))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-((((-1238 |#1| |#2| |#3|)) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) ((|#1|) |has| |#1| (-171)))
-((((-1242 |#2|)) . T) (((-1238 |#1| |#2| |#3|)) . T) (((-1210 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-558)) . T) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (((-558)) . T))
-(((|#1|) . T))
-((((-1163)) -12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
-(-3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550)))
-(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))))
-((($ $) |has| |#1| (-550)))
-(((#0=(-689) (-1159 #0#)) . T))
-((((-853)) . T) (((-1246 |#4|)) . T))
-((((-853)) . T) (((-1246 |#3|)) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))))
-((($) |has| |#1| (-550)))
-((((-853)) . T))
-((($) . T))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((#1=(-1238 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
-(((|#3|) |has| |#3| (-1039)))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(|has| |#1| (-1087))
-(((|#2| (-810 |#1|)) . T))
+(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
+(((|#1|) . T))
+((((-561) |#1|) . T))
+((((-856)) . T))
+(((|#2|) . T))
+(-4007 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+((((-561)) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
+((($) |has| |#1| (-553)) (((-561)) . T))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+((((-1245 |#1| |#2| |#3|)) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) ((|#1|) |has| |#1| (-171)))
+((((-1249 |#2|)) . T) (((-1245 |#1| |#2| |#3|)) . T) (((-1217 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-561)) . T) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (((-561)) . T))
+(((|#1|) . T))
+((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553)))
+(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))))
+((($ $) |has| |#1| (-553)))
+(((#0=(-692) (-1162 #0#)) . T))
+((((-856)) . T) (((-1253 |#4|)) . T))
+((((-856)) . T) (((-1253 |#3|)) . T))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))))
+((($) |has| |#1| (-553)))
+((((-856)) . T))
+((($) . T))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((#1=(-1245 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
+(((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
+(((|#3|) |has| |#3| (-1042)))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(|has| |#1| (-1090))
+(((|#2| (-813 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-362))
-((((-406 $) (-406 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1069) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-900 |#1|)) . T))
+((((-406 $) (-406 $)) |has| |#1| (-553)) (($ $) . T) ((|#1| |#1|) . T))
+(((#0=(-1072) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-903 |#1|)) . T))
((((-143)) . T))
((((-143)) . T))
-(((|#3|) |has| |#3| (-1087)) (((-558)) -12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
-((((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+(((|#3|) |has| |#3| (-1090)) (((-561)) -12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
+((((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(((|#1|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
(|has| |#1| (-362))
-((((-1168)) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
-((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-(|has| |#2| (-811))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-839))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-((((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-534)) |has| |#1| (-606 (-534))))
+((((-1171)) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(|has| |#2| (-814))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-842))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-534)) |has| |#1| (-609 (-534))))
(((|#1| |#2|) . T))
-((((-1163)) -12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163)))))
-((((-1145) |#1|) . T))
+((((-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166)))))
+((((-1148) |#1|) . T))
(((|#1| |#2| |#3| (-529 |#3|)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
-((((-853)) . T))
+((((-856)) . T))
(((|#1|) . T))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
(|has| |#1| (-367))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-558)) . T))
-((((-558)) . T))
-(((|#1|) . T) (((-558)) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-((((-853)) . T))
-((((-853)) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-(-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))
-((((-1163) #0=(-860 |#1|)) |has| #0# (-512 (-1163) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
-(((|#1|) . T))
-((((-558) |#4|) . T))
-((((-558) |#3|) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-((((-1232 |#1| |#2| |#3| |#4|)) . T))
-((((-406 (-558))) . T) (((-558)) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-561)) . T))
+((((-561)) . T))
+(((|#1|) . T) (((-561)) . T))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+((((-856)) . T))
+((((-856)) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
+((((-1166) #0=(-863 |#1|)) |has| #0# (-512 (-1166) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
+(((|#1|) . T))
+((((-561) |#4|) . T))
+((((-561) |#3|) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-1239 |#1| |#2| |#3| |#4|)) . T))
+((((-406 (-561))) . T) (((-561)) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-558)) . T) (((-406 (-558))) . T))
-((((-558)) . T))
-((((-558)) . T))
-((($) . T) (((-558)) . T) (((-406 (-558))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-((((-558)) -3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039))) ((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
+((($) . T) (((-561)) . T) (((-406 (-561))) . T))
+((((-561)) . T))
+((((-561)) . T))
+((($) . T) (((-561)) . T) (((-406 (-561))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+((((-561)) -4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042))) ((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) |has| |#1| (-550)))
-((((-558) |#4|) . T))
-((((-558) |#3|) . T))
-((((-853)) . T))
-((((-558)) . T) (((-406 (-558))) . T) (($) . T))
-((((-853)) . T))
-((((-558) |#1|) . T))
+(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) |has| |#1| (-553)))
+((((-561) |#4|) . T))
+((((-561) |#3|) . T))
+((((-856)) . T))
+((((-561)) . T) (((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
+((((-561) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1163) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1166) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-171)))
-((($) -3994 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2|) |has| |#2| (-171)) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
-(((|#2| |#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-171)))
+((($) -4007 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2|) |has| |#2| (-171)) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
+(((|#2| |#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
((((-143)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
-((((-853)) . T))
-(((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($) |has| |#2| (-171)))
+((((-856)) . T))
+(((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
(((|#1|) . T))
-((((-853)) . T))
-(|has| |#1| (-1087))
+((((-856)) . T))
+(|has| |#1| (-1090))
(|has| $ (-146))
-((((-1168)) . T))
-((((-558) |#1|) . T))
-((($) -3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-1171)) . T))
+((((-561) |#1|) . T))
+((($) -4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
(|has| |#1| (-362))
-(-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))
-(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))
+(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
(|has| |#1| (-362))
-(|has| |#1| (-15 * (|#1| (-762) |#1|)))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-((((-853)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-(((|#2| (-529 (-855 |#1|))) . T))
-((((-853)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-575 |#1|)) . T))
-((($) . T))
-((((-558)) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
+(|has| |#1| (-15 * (|#1| (-765) |#1|)))
+(((|#1|) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((((-856)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+(((|#2| (-529 (-858 |#1|))) . T))
+((((-856)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-578 |#1|)) . T))
+((($) . T))
+((((-561)) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
(((|#1|) . T) (($) . T))
-((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
-((((-1161 |#1| |#2| |#3|)) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) ((|#1|) |has| |#1| (-171)))
-((((-1242 |#2|)) . T) (((-1161 |#1| |#2| |#3|)) . T) (((-1154 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-558)) . T) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
+((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
+((((-1164 |#1| |#2| |#3|)) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) ((|#1|) |has| |#1| (-171)))
+((((-1249 |#2|)) . T) (((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-561)) . T) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
(((|#4|) . T))
(((|#3|) . T))
-((((-860 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (((-558)) . T))
-((((-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))))
-(((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-558)) . T) (((-406 (-558))) -3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
-((((-558) |#2|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
+((((-863 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (((-561)) . T))
+((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
+(((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-561)) . T) (((-406 (-561))) -4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
+((((-561) |#2|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((#1=(-1161 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) . T))
-(((|#2|) |has| |#2| (-1039)))
-(|has| |#1| (-1087))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((#1=(-1164 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) . T))
+(((|#2|) |has| |#2| (-1042)))
+(|has| |#1| (-1090))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T))
+(((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
(((|#1|) |has| |#1| (-171)) (($) . T))
(((|#1|) . T))
-(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((((-853)) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((((-856)) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
-(((#0=(-1069) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
+(((#0=(-1072) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
((($) . T))
-(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
(((|#1|) . T))
+(((|#2|) |has| |#2| (-1090)) (((-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
(((|#2|) |has| |#1| (-362)))
-(((|#2|) |has| |#2| (-1087)) (((-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
-((((-558) |#1|) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-853)) . T))
+((((-561) |#1|) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-856)) . T))
((((-406 |#2|) |#3|) . T))
-(((|#1| (-406 (-558))) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-853)) . T) (((-1168)) . T))
+(((|#1| (-406 (-561))) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-856)) . T) (((-1171)) . T))
(|has| |#1| (-144))
(|has| |#1| (-146))
-((((-1168)) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T))
-(((|#2| |#3| (-855 |#1|)) . T))
-((((-1163)) |has| |#2| (-890 (-1163))))
+((((-1171)) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T))
+(((|#2| |#3| (-858 |#1|)) . T))
+((((-1166)) |has| |#2| (-893 (-1166))))
(((|#1|) . T))
(((|#1| (-529 |#2|) |#2|) . T))
-(((|#1| (-762) (-1069)) . T))
-((((-406 (-558))) |has| |#2| (-362)) (($) . T))
-(((|#1| (-529 (-1075 (-1163))) (-1075 (-1163))) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(((|#1|) . T))
-((((-989 |#1|)) . T) (((-558)) . T) ((|#1|) . T) (((-406 (-558))) -3994 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(|has| |#2| (-784))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(((|#1| (-765) (-1072)) . T))
+((((-406 (-561))) |has| |#2| (-362)) (($) . T))
+(((|#1| (-529 (-1078 (-1166))) (-1078 (-1166))) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(((|#1|) . T))
+((((-992 |#1|)) . T) (((-561)) . T) ((|#1|) . T) (((-406 (-561))) -4007 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(|has| |#2| (-787))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
-(|has| |#2| (-839))
-((((-883 |#1|)) . T) (((-810 |#1|)) . T))
-((((-810 (-1163))) . T))
+(|has| |#2| (-842))
+((((-886 |#1|)) . T) (((-813 |#1|)) . T))
+((((-813 (-1166))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-635 (-558))) . T))
-((((-635 (-558))) . T) (((-853)) . T))
-((((-406 (-558))) . T) (((-853)) . T))
-((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-638 (-561))) . T))
+((((-638 (-561))) . T) (((-856)) . T))
+((((-406 (-561))) . T) (((-856)) . T))
+((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
(|has| |#1| (-232))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-1238 |#1| |#2| |#3|) $) -12 (|has| (-1238 |#1| |#2| |#3|) (-285 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-1245 |#1| |#2| |#3|) $) -12 (|has| (-1245 |#1| |#2| |#3|) (-285 (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1127 |#1| |#2|)) |has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-(((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
-(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+((((-1130 |#1| |#2|)) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+(((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
(((|#2|) . T))
-((((-853)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-605 (-853))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087))) (((-1246 |#2|)) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T) (($) . T))
+((((-856)) -4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-856))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090))) (((-1253 |#2|)) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T) (($) . T))
(((|#1|) |has| |#1| (-171)))
-((((-558)) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-558) (-143)) . T))
-((($) -3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039))) ((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))))
-((((-558)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-558)) . T))
-((($) |has| |#1| (-550)) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-558)) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+((((-561)) . T))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-561) (-143)) . T))
+((($) -4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
+((((-561)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-561)) . T))
+((($) |has| |#1| (-553)) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-561)) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
+(((|#1|) . T))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
(((|#2|) |has| |#1| (-362)))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-1168)) . T))
-(((|#1| (-529 #0=(-1163)) #0#) . T))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-1171)) . T))
+(((|#1| (-529 #0=(-1166)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-171))
(|has| |#3| (-171))
-(((#0=(-406 (-942 |#1|)) #0#) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(|has| |#1| (-1087))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(|has| |#1| (-1087))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
+(((#0=(-406 (-945 |#1|)) #0#) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(|has| |#1| (-1090))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(|has| |#1| (-1090))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
(((|#1| |#1|) |has| |#1| (-171)))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1|) . T))
-((((-406 (-942 |#1|))) . T))
+((((-406 (-945 |#1|))) . T))
(((|#1|) |has| |#1| (-171)))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-853)) . T))
-((((-1232 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1039)) (((-558)) -12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-856)) . T))
+((((-1239 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1042)) (((-561)) -12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))
(((|#1| |#2|) . T))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-(|has| |#3| (-784))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
-(|has| |#3| (-839))
-(((|#1|) . T))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
-(((|#2|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((|#1| (-1143 |#1|)) |has| |#1| (-839)))
-((((-558) |#2|) . T))
-(|has| |#1| (-1087))
-(((|#1|) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-1138)))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(|has| |#1| (-1087))
-(((|#2|) . T))
-((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
-(((|#4|) -3994 (|has| |#4| (-171)) (|has| |#4| (-362))))
-(((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362))))
-((((-853)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-899)))
-((($ $) . T) ((#0=(-1163) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-809 (-1163)) |#1|) . T) ((#1# $) . T))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-899)))
-((((-558) |#2|) . T))
-((((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((($) -3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039))) ((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))))
-((((-558) |#1|) . T))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(|has| |#3| (-787))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(|has| |#3| (-842))
+(((|#1|) . T))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
+(((|#2|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((|#1| (-1146 |#1|)) |has| |#1| (-842)))
+((((-561) |#2|) . T))
+(|has| |#1| (-1090))
+(((|#1|) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-1141)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#1| (-1090))
+(((|#2|) . T))
+((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
+(((|#4|) -4007 (|has| |#4| (-171)) (|has| |#4| (-362))))
+(((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362))))
+((((-856)) . T))
+(((|#1|) . T))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-902)))
+((($ $) . T) ((#0=(-1166) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-812 (-1166)) |#1|) . T) ((#1# $) . T))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-902)))
+((((-561) |#2|) . T))
+((((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((($) -4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))))
+((((-561) |#1|) . T))
(|has| (-406 |#2|) (-146))
(|has| (-406 |#2|) (-144))
(((|#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))))
-(|has| |#1| (-38 (-406 (-558))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-406 (-558))) . T))
-((((-853)) . T))
-(|has| |#1| (-550))
-(|has| |#1| (-550))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-853)) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((((-387) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#2| (-1138))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-((((-853)) . T) (((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-1199)) . T) (((-853)) . T) (((-1168)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-406 (-561))) . T))
+((((-856)) . T))
+(|has| |#1| (-553))
+(|has| |#1| (-553))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-856)) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+(|has| |#1| (-38 (-406 (-561))))
+((((-387) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#2| (-1141))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+((((-856)) . T) (((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1204)) . T) (((-856)) . T) (((-1171)) . T))
((((-116 |#1|)) . T))
-((((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-(((|#1|) . T))
-((((-387) (-1145)) . T))
-(|has| |#1| (-550))
-((((-558) |#1|) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-(((|#2|) . T))
-((((-853)) . T))
-((((-810 |#1|)) . T))
+((((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+(((|#1|) . T))
+((((-387) (-1148)) . T))
+(|has| |#1| (-553))
+((((-561) |#1|) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+(((|#2|) . T))
+((((-856)) . T))
+((((-813 |#1|)) . T))
(((|#2|) |has| |#2| (-171)))
-((((-1163) (-52)) . T))
+((((-1166) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-550))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-553))
(((|#1|) |has| |#1| (-171)))
-((((-635 |#1|)) . T))
-((((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+((((-638 |#1|)) . T))
+((((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
(((|#2|) |has| |#2| (-308 |#2|)))
-(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
+(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1159 |#1|)) . T))
+(((|#1| (-1162 |#1|)) . T))
(|has| $ (-146))
(((|#2|) . T))
-(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-((($) . T) (((-558)) . T) (((-406 (-558))) . T))
+(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+((($) . T) (((-561)) . T) (((-406 (-561))) . T))
(|has| |#2| (-367))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-((((-558)) . T) (((-406 (-558))) . T) (($) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+((((-561)) . T) (((-406 (-561))) . T) (($) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-558)) . T) (((-406 (-558))) . T) (($) . T))
-((((-1161 |#1| |#2| |#3|) $) -12 (|has| (-1161 |#1| |#2| |#3|) (-285 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((($) . T) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-561)) . T) (((-406 (-561))) . T) (($) . T))
+((((-1164 |#1| |#2| |#3|) $) -12 (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((($) . T) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
((($ $) . T))
-((((-853)) . T))
+((((-856)) . T))
((($ $) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((#0=(-1238 |#1| |#2| |#3|) #0#) -12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1163) #0#) -12 (|has| (-1238 |#1| |#2| |#3|) (-512 (-1163) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-(-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((#0=(-1245 |#1| |#2| |#3|) #0#) -12 (|has| (-1245 |#1| |#2| |#3|) (-308 (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1166) #0#) -12 (|has| (-1245 |#1| |#2| |#3|) (-512 (-1166) (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+(-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-406 (-558))) . T) (((-558)) . T))
-((((-558) (-143)) . T))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-406 (-561))) . T) (((-561)) . T))
+((((-561) (-143)) . T))
((((-143)) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
((((-112)) . T))
(((|#1|) . T))
-((((-534)) |has| |#1| (-606 (-534))) (((-224)) . #0=(|has| |#1| (-1012))) (((-378)) . #0#))
-((((-853)) . T))
-((((-1168)) . T))
-(|has| |#1| (-811))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(|has| |#1| (-841))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-550)))
-(|has| |#1| (-550))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T))
-(|has| |#1| (-899))
-(((|#1|) . T))
-(|has| |#1| (-1087))
-((((-853)) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-550)))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
-((((-558) (-143)) . T))
-((($) . T))
-(-3994 (|has| |#4| (-171)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-((((-1168)) . T) (((-853)) . T))
-((((-1168)) . T))
-((((-853)) . T))
-(|has| |#1| (-1087))
-(((|#1| (-961)) . T))
+((((-534)) |has| |#1| (-609 (-534))) (((-224)) . #0=(|has| |#1| (-1015))) (((-378)) . #0#))
+((((-856)) . T))
+((((-1171)) . T))
+(|has| |#1| (-814))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(|has| |#1| (-844))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-553)))
+(|has| |#1| (-553))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T))
+(|has| |#1| (-902))
+(((|#1|) . T))
+(|has| |#1| (-1090))
+((((-856)) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-553)))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
+((((-561) (-143)) . T))
+((($) . T))
+(-4007 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((((-1171)) . T) (((-856)) . T))
+((((-1171)) . T))
+((((-856)) . T))
+(|has| |#1| (-1090))
+(((|#1| (-964)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
(-12 (|has| |#1| (-471)) (|has| |#2| (-471)))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))
(((|#1|) . T))
-(|has| |#2| (-784))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
+(|has| |#2| (-787))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(|has| |#2| (-839))
-(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
-(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#2| (-842))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-558)) . T))
+(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-561)) . T))
(((|#2|) |has| |#2| (-171)))
(((|#1|) |has| |#1| (-171)))
-((((-853)) . T))
+((((-856)) . T))
(|has| |#1| (-348))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-406 (-558))) . T) (($) . T))
-((($) |has| |#1| (-550)) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-558)) . T))
-((($) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) . T))
-(|has| |#1| (-819))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
-(|has| |#1| (-1087))
+((((-406 (-561))) . T) (($) . T))
+((($) |has| |#1| (-553)) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-561)) . T))
+((($) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) . T))
+(|has| |#1| (-822))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
+(|has| |#1| (-1090))
(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
-((($) |has| |#1| (-550)))
-(((|#4|) |has| |#4| (-1087)))
-(((|#3|) |has| |#3| (-1087)))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
+((($) |has| |#1| (-553)))
+(((|#4|) |has| |#4| (-1090)))
+(((|#3|) |has| |#3| (-1090)))
(|has| |#3| (-367))
-(((|#1|) . T) (((-853)) . T))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) . T) (((-856)) . T))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-((((-853)) . T))
-(((|#2|) . T))
+((((-856)) . T))
+((((-856)) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+(((|#2|) . T))
+(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
(((|#1| |#1|) |has| |#1| (-171)))
(|has| |#2| (-362))
(((|#1|) . T))
(((|#1|) |has| |#1| (-171)))
-((((-406 (-558))) . T) (((-558)) . T))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+((((-406 (-561))) . T) (((-561)) . T))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
((((-143)) . T))
(((|#1|) . T))
-((($) -3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039))) ((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))))
+((($) -4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))))
((((-143)) . T))
((((-143)) . T))
-((((-406 (-558))) . #0=(|has| |#2| (-362))) (($) . #0#) ((|#2|) . T) (((-558)) . T))
+((((-406 (-561))) . #0=(|has| |#2| (-362))) (($) . #0#) ((|#2|) . T) (((-561)) . T))
(((|#1| |#2| |#3|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
(|has| $ (-146))
(|has| $ (-146))
-((((-1168)) . T))
-(|has| |#1| (-1087))
-((((-853)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-550)) (|has| |#1| (-1039)) (|has| |#1| (-1099)))
+((((-1171)) . T))
+(|has| |#1| (-1090))
+((((-856)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-553)) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
((($ $) |has| |#1| (-285 $ $)) ((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-(((|#1| (-406 (-558))) . T))
-(((|#1|) . T))
-((((-1163)) . T))
-(|has| |#1| (-550))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(|has| |#1| (-550))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-853)) . T))
+(((|#1| (-406 (-561))) . T))
+(((|#1|) . T))
+((((-1166)) . T))
+(|has| |#1| (-553))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(|has| |#1| (-553))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-856)) . T))
(|has| |#2| (-144))
(|has| |#2| (-146))
(((|#2|) . T) (($) . T))
(|has| |#1| (-146))
(|has| |#1| (-144))
-(|has| |#4| (-839))
-(((|#2| (-239 (-1596 |#1|) (-762)) (-855 |#1|)) . T))
-(|has| |#3| (-839))
+(|has| |#4| (-842))
+(((|#2| (-239 (-3498 |#1|) (-765)) (-858 |#1|)) . T))
+(|has| |#3| (-842))
(((|#1| (-529 |#3|) |#3|) . T))
(|has| |#1| (-146))
(|has| |#1| (-144))
-(((#0=(-406 (-558)) #0#) |has| |#2| (-362)) (($ $) . T))
-((((-860 |#1|)) . T))
+(((#0=(-406 (-561)) #0#) |has| |#2| (-362)) (($ $) . T))
+((((-863 |#1|)) . T))
(|has| |#1| (-146))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
+((((-856)) . T))
(|has| |#1| (-144))
-((((-406 (-558))) |has| |#2| (-362)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-348)) (|has| |#1| (-367)))
-((((-1129 |#2| |#1|)) . T) ((|#1|) . T))
+((((-406 (-561))) |has| |#2| (-362)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-348)) (|has| |#1| (-367)))
+((((-1132 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-171))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))
-(((|#2|) . T) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
-((((-853)) . T))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
+(((|#2|) . T) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
+((((-856)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-689)) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(|has| |#1| (-550))
+((((-692)) . T))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(|has| |#1| (-553))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -992,335 +997,335 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1163) (-52)) . T))
+((((-1166) (-52)) . T))
(((|#1|) . T) (($) . T))
-((((-994 10)) . T) (((-406 (-558))) . T) (((-853)) . T))
-((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
-(((|#1|) . T))
-((((-994 16)) . T) (((-406 (-558))) . T) (((-853)) . T))
-((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
-(((|#1| (-558)) . T))
-((((-853)) . T))
-((((-853)) . T))
+((((-997 10)) . T) (((-406 (-561))) . T) (((-856)) . T))
+((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
+(((|#1|) . T))
+((((-997 16)) . T) (((-406 (-561))) . T) (((-856)) . T))
+((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
+(((|#1| (-561)) . T))
+((((-856)) . T))
+((((-856)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-406 (-558))) . T))
-(((|#3|) . T) (((-604 $)) . T))
+(((|#1| (-406 (-561))) . T))
+(((|#3|) . T) (((-607 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-558)) -3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039))) ((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-561)) -4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042))) ((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-(((#0=(-1161 |#1| |#2| |#3|) #0#) -12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1163) #0#) -12 (|has| (-1161 |#1| |#2| |#3|) (-512 (-1163) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-((((-853)) . T))
-((((-853)) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+(((#0=(-1164 |#1| |#2| |#3|) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1166) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+((((-856)) . T))
+((((-856)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) |has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))))
-((((-853)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) |has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))))
+((((-856)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1163) (-52)) . T))
+((((-1166) (-52)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-819))
-(|has| |#1| (-1087))
-(((|#2| |#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-171)))
-(((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362))))
-((((-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($) |has| |#2| (-171)))
-((((-1168)) . T))
-((((-762)) . T))
-(|has| |#1| (-550))
-((((-558)) . T))
-((((-853)) . T))
-(((|#1| (-406 (-558)) (-1069)) . T))
+((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-1090))
+(((|#2| |#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
+(((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362))))
+((((-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
+((((-1171)) . T))
+((((-765)) . T))
+(|has| |#1| (-553))
+((((-561)) . T))
+((((-856)) . T))
+(((|#1| (-406 (-561)) (-1072)) . T))
(|has| |#1| (-144))
(((|#1|) . T))
-(|has| |#1| (-550))
-((((-558)) . T))
+(|has| |#1| (-553))
+((((-561)) . T))
((((-116 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-146))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-550)))
-((((-882 (-558))) . T) (((-882 (-378))) . T) (((-534)) . T) (((-1163)) . T))
-((((-853)) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((($) . T))
-((((-853)) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-553)))
+((((-885 (-561))) . T) (((-885 (-378))) . T) (((-534)) . T) (((-1166)) . T))
+((((-856)) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((($) . T))
+((((-856)) . T))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
(((|#2|) |has| |#2| (-171)))
-((($) -3994 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) ((|#2|) |has| |#2| (-171)) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
-((((-860 |#1|)) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
-(-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))
-(|has| |#2| (-1138))
-(((#0=(-52)) . T) (((-2 (|:| -2176 (-1163)) (|:| -1925 #0#))) . T))
+((($) -4007 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) ((|#2|) |has| |#2| (-171)) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
+((((-863 |#1|)) . T))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
+(-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))
+(|has| |#2| (-1141))
+(((#0=(-52)) . T) (((-2 (|:| -2252 (-1166)) (|:| -2654 #0#))) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-(((|#1| (-558) (-1069)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| (-406 (-558)) (-1069)) . T))
-((($) -3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-558) |#2|) . T))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(((|#1| (-561) (-1072)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| (-406 (-561)) (-1072)) . T))
+((($) -4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-561) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-367))
(-12 (|has| |#1| (-367)) (|has| |#2| (-367)))
-((((-853)) . T))
-((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(((|#1|) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((((-856)) . T))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(((|#1|) . T))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
(((|#4|) . T))
(|has| |#1| (-348))
-((((-558)) -3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039))) ((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
+((((-561)) -4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042))) ((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
(((|#1|) . T))
-(((|#4|) . T) (((-853)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) #0#) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
-(|has| |#1| (-550))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
+(((|#4|) . T) (((-856)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) #0#) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
+(|has| |#1| (-553))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-899)))
-((((-406 (-558))) . T) (((-558)) . T))
-((((-558)) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((($) . T))
-((((-853)) . T))
-(((|#1|) . T))
-((((-860 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-((((-853)) . T))
-(((|#3| |#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($ $) |has| |#3| (-171)))
-(|has| |#1| (-1012))
-((((-853)) . T))
-(((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))) (($) |has| |#3| (-171)))
-((((-558) (-112)) . T))
-((((-1168)) . T))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-902)))
+((((-406 (-561))) . T) (((-561)) . T))
+((((-561)) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((($) . T))
+((((-856)) . T))
+(((|#1|) . T))
+((((-863 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((((-856)) . T))
+(((|#3| |#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171)))
+(|has| |#1| (-1015))
+((((-856)) . T))
+(((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171)))
+((((-561) (-112)) . T))
+((((-1171)) . T))
(((|#1|) |has| |#1| (-308 |#1|)))
-((((-1168)) . T))
+((((-1171)) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
-((((-1163) $) |has| |#1| (-512 (-1163) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)))
-((((-1163)) |has| |#1| (-890 (-1163))))
-(-3994 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))
+((((-1166) $) |has| |#1| (-512 (-1166) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)))
+((((-1166)) |has| |#1| (-893 (-1166))))
+(-4007 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-387) |#1|) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-1087))
-(((|#2|) . T) (((-853)) . T))
-((((-853)) . T))
-(((|#2|) . T))
-((((-900 |#1|)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-1090))
+(((|#2|) . T) (((-856)) . T))
+((((-856)) . T))
+(((|#2|) . T))
+((((-903 |#1|)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
(((|#1| |#2|) . T))
((($) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
(((|#1| |#1|) . T))
-(((#0=(-860 |#1|)) |has| #0# (-308 #0#)))
-((((-558)) . T) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1028 (-406 (-558))))) ((|#1|) . T))
+(((#0=(-863 |#1|)) |has| #0# (-308 #0#)))
+((((-561)) . T) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1031 (-406 (-561))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
(((|#1|) . T))
-(-12 (|has| |#1| (-784)) (|has| |#2| (-784)))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-12 (|has| |#1| (-787)) (|has| |#2| (-787)))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(|has| |#1| (-1185))
-(((#0=(-558) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-((((-406 (-558))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1039)))
-(((|#3|) |has| |#3| (-1039)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(((|#2|) . T) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(|has| |#1| (-1190))
+(((#0=(-561) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+((((-406 (-561))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1042)))
+(((|#3|) |has| |#3| (-1042)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
(|has| |#1| (-362))
-((((-558)) . T) (((-406 (-558))) . T) (($) . T))
-((($ $) . T) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-558) |#3|) . T))
-((((-853)) . T))
-((((-534)) |has| |#3| (-606 (-534))))
-((((-679 |#3|)) . T) (((-853)) . T))
+((((-561)) . T) (((-406 (-561))) . T) (($) . T))
+((($ $) . T) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-561) |#3|) . T))
+((((-856)) . T))
+((((-534)) |has| |#3| (-609 (-534))))
+((((-682 |#3|)) . T) (((-856)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-839))
-(|has| |#1| (-839))
-((($) . T) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-550)))
-((($) . T))
-(((#0=(-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) #0#) |has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))))
-(|has| |#2| (-841))
-((($) . T))
-(((|#2|) |has| |#2| (-1087)))
-((((-853)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-605 (-853))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087))) (((-1246 |#2|)) . T))
-(|has| |#1| (-841))
-(|has| |#1| (-841))
-((((-1145) (-52)) . T))
-(|has| |#1| (-841))
-((((-853)) . T))
-((((-558)) |has| #0=(-406 |#2|) (-631 (-558))) ((#0#) . T))
-((($) . T) (((-558)) . T))
-((((-558) (-143)) . T))
-((((-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((|#1| |#2|) . T))
-((((-406 (-558))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-853)) . T))
-((((-900 |#1|)) . T))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+((($) . T) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-553)))
+((($) . T))
+(((#0=(-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) #0#) |has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))))
+(|has| |#2| (-844))
+((($) . T))
+(((|#2|) |has| |#2| (-1090)))
+((((-856)) -4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-856))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090))) (((-1253 |#2|)) . T))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+((((-1148) (-52)) . T))
+(|has| |#1| (-844))
+((((-856)) . T))
+((((-561)) |has| #0=(-406 |#2|) (-634 (-561))) ((#0#) . T))
+((($) . T) (((-561)) . T))
+((((-561) (-143)) . T))
+((((-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((|#1| |#2|) . T))
+((((-406 (-561))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-856)) . T))
+((((-903 |#1|)) . T))
(|has| |#1| (-362))
(|has| |#1| (-362))
(|has| |#1| (-362))
-(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
-(|has| |#1| (-839))
+(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
+(|has| |#1| (-842))
(|has| |#1| (-362))
-(|has| |#1| (-839))
+(|has| |#1| (-842))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-839))
-((((-1163)) |has| |#1| (-890 (-1163))))
+(|has| |#1| (-842))
+((((-1166)) |has| |#1| (-893 (-1166))))
((((-504)) . T))
-(((|#1| (-1163)) . T))
-(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
-((((-853)) . T) (((-1168)) . T))
+(((|#1| (-1166)) . T))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
+((((-856)) . T) (((-1171)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1168)) . T))
-(|has| |#1| (-1087))
-(((|#1| (-1163) (-809 (-1163)) (-529 (-809 (-1163)))) . T))
-((((-406 (-942 |#1|))) . T))
+((((-1171)) . T))
+(|has| |#1| (-1090))
+(((|#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) . T))
+((((-406 (-945 |#1|))) . T))
((((-534)) . T))
-((((-853)) . T))
+((((-856)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((|#1| |#2|) . T))
+((((-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-171)))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-171)))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
(((|#1|) . T))
-((((-534)) |has| |#1| (-606 (-534))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))))
-((((-853)) . T))
-(((|#2|) . T) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-534)) |has| |#1| (-609 (-534))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))))
+((((-856)) . T))
+(((|#2|) . T) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
((((-504)) . T))
-(|has| |#2| (-839))
+(|has| |#2| (-842))
((((-504)) . T))
-(-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))
-(|has| |#1| (-550))
-((((-1145) |#1|) . T))
-(|has| |#1| (-1138))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-((((-948 |#1|)) . T))
-(((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1| |#1|) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-558))) (((-558)) |has| |#1| (-1028 (-558))) (((-1163)) |has| |#1| (-1028 (-1163))) ((|#1|) . T))
-((((-558) |#2|) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
-((((-558)) |has| |#1| (-876 (-558))) (((-378)) |has| |#1| (-876 (-378))))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1|) . T))
-(((|#1|) . T))
-((((-635 |#4|)) . T) (((-853)) . T))
-((((-534)) |has| |#4| (-606 (-534))))
-((((-534)) |has| |#4| (-606 (-534))))
-((((-853)) . T) (((-635 |#4|)) . T))
-((($) |has| |#1| (-839)))
-((((-558)) -3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039))) ((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
-(((|#1|) . T))
-((((-635 |#4|)) . T) (((-853)) . T))
-((((-534)) |has| |#4| (-606 (-534))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1163)) |has| (-406 |#2|) (-890 (-1163))))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) #0#) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-853)) -3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-605 (-853))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-717)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)) (|has| |#3| (-1087))) (((-1246 |#3|)) . T))
-((((-558) |#2|) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(((|#2| |#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-171)))
-(((|#2|) . T) (((-558)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((|#2|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-1145) (-1163) (-558) (-224) (-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-853)) . T))
-((((-558) (-112)) . T))
-(((|#1|) . T))
-((((-853)) . T))
+(-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))
+(|has| |#1| (-553))
+((((-1148) |#1|) . T))
+(|has| |#1| (-1141))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-951 |#1|)) . T))
+(((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1| |#1|) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-561))) (((-561)) |has| |#1| (-1031 (-561))) (((-1166)) |has| |#1| (-1031 (-1166))) ((|#1|) . T))
+((((-561) |#2|) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
+((((-561)) |has| |#1| (-879 (-561))) (((-378)) |has| |#1| (-879 (-378))))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1|) . T))
+(((|#1|) . T))
+((((-638 |#4|)) . T) (((-856)) . T))
+((((-534)) |has| |#4| (-609 (-534))))
+((((-534)) |has| |#4| (-609 (-534))))
+((((-856)) . T) (((-638 |#4|)) . T))
+((($) |has| |#1| (-842)))
+((((-561)) -4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042))) ((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
+(((|#1|) . T))
+((((-638 |#4|)) . T) (((-856)) . T))
+((((-534)) |has| |#4| (-609 (-534))))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1166)) |has| (-406 |#2|) (-893 (-1166))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) #0#) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-856)) -4007 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-608 (-856))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1090))) (((-1253 |#3|)) . T))
+((((-561) |#2|) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(((|#2| |#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171)))
+(((|#2|) . T) (((-561)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((|#2|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-1148) (-1166) (-561) (-224) (-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-856)) . T))
+((((-561) (-112)) . T))
+(((|#1|) . T))
+((((-856)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-853)) . T))
-((((-853)) . T))
+((((-856)) . T))
+((((-856)) . T))
((((-112)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1039))) (($) |has| |#2| (-171)))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171)))
(|has| $ (-146))
((((-406 |#2|)) . T))
-((((-883 |#1|)) . T) ((|#2|) . T) (((-558)) . T) (((-810 |#1|)) . T))
-((((-406 (-558))) |has| #0=(-406 |#2|) (-1028 (-406 (-558)))) (((-558)) |has| #0# (-1028 (-558))) ((#0#) . T))
+((((-886 |#1|)) . T) ((|#2|) . T) (((-561)) . T) (((-813 |#1|)) . T))
+((((-406 (-561))) |has| #0=(-406 |#2|) (-1031 (-406 (-561)))) (((-561)) |has| #0# (-1031 (-561))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-171)))
(|has| |#2| (-144))
@@ -1328,185 +1333,185 @@
(((|#3|) |has| |#3| (-171)))
(|has| |#1| (-146))
(|has| |#1| (-144))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
(|has| |#1| (-146))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
(|has| |#1| (-146))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
(|has| |#1| (-146))
(((|#1|) . T))
(|has| |#2| (-232))
(((|#2|) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-1163) (-52)) . T))
-((((-853)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1166) (-52)) . T))
+((((-856)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
(((|#1| |#1|) . T))
-((((-1163)) |has| |#2| (-890 (-1163))))
+((((-1166)) |has| |#2| (-893 (-1166))))
((((-129)) . T))
-(((|#1|) . T) (((-558)) . T) (((-810 (-1163))) . T))
-((((-558) (-112)) . T))
-(|has| |#1| (-550))
+((((-561) (-112)) . T))
+(|has| |#1| (-553))
+(((|#1|) . T) (((-561)) . T) (((-813 (-1166))) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
(((|#3|) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((((-558)) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
-(((|#1|) . T))
-((((-994 2)) . T) (((-406 (-558))) . T) (((-853)) . T))
-((((-534)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-989 |#1|)) . T) ((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-406 (-558))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1159 |#1|)) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+(|has| |#1| (-38 (-406 (-561))))
+((((-561)) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
+(((|#1|) . T))
+((((-997 2)) . T) (((-406 (-561))) . T) (((-856)) . T))
+((((-534)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-992 |#1|)) . T) ((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-406 (-561))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1162 |#1|)) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-841))
-(((|#2|) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-((((-558) |#2|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(((|#2|) . T))
-((((-558) |#3|) . T))
-(((|#2|) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(|has| |#1| (-38 (-406 (-558))))
-((((-853)) . T))
-(|has| |#1| (-1087))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) #0#) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+(|has| |#1| (-844))
+(((|#2|) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+((((-561) |#2|) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(((|#2|) . T))
+((((-561) |#3|) . T))
+(((|#2|) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-856)) . T))
+(|has| |#1| (-1090))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) #0#) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
(((|#2| |#2|) . T))
+(((|#2|) . T))
(((|#1|) . T))
(|has| |#2| (-362))
-(((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+(((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
(((|#2|) . T))
-((((-1145) (-52)) . T))
+((((-1148) (-52)) . T))
(((|#2|) |has| |#2| (-171)))
-((((-558) |#3|) . T))
-((((-558) (-143)) . T))
+((((-561) |#3|) . T))
+((((-561) (-143)) . T))
((((-143)) . T))
-((((-853)) . T))
-((((-1168)) . T))
+((((-856)) . T))
+((((-1171)) . T))
((((-112)) . T))
(|has| |#1| (-146))
(((|#1|) . T))
(|has| |#1| (-144))
((($) . T))
-(|has| |#1| (-550))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(|has| |#1| (-553))
((($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1|) . T))
-(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
((((-143)) . T))
-((((-853)) . T))
-((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
-((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
-((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
-((((-1145) (-52)) . T))
+((((-856)) . T))
+((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
+((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
+((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
+((((-1148) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1| |#2|) . T))
-((((-558) (-143)) . T))
-(((#0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) #0#) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(|has| |#1| (-841))
-(((|#2| (-762) (-1069)) . T))
+((((-561) (-143)) . T))
+(((#0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) #0#) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(|has| |#1| (-844))
+(((|#2| (-765) (-1072)) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-550)))
-(|has| |#1| (-782))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-553)))
+(|has| |#1| (-785))
(((|#1|) |has| |#1| (-171)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3994 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146))))
-(-3994 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144))))
+(-4007 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146))))
+(-4007 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144))))
(((|#4|) . T))
(|has| |#1| (-144))
-((((-1145) |#1|) . T))
+((((-1148) |#1|) . T))
(|has| |#1| (-146))
(((|#1|) . T))
-((((-558)) . T))
-((((-853)) . T))
+((((-561)) . T))
+((((-856)) . T))
(((|#1| |#2|) . T))
-((((-853)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-856)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#3|) . T))
-((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-853)) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(((|#1|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))) (((-948 |#1|)) . T))
-(|has| |#1| (-839))
-(|has| |#1| (-839))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-948 |#1|)) . T))
+((((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-856)) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(((|#1|) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))) (((-951 |#1|)) . T))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-951 |#1|)) . T))
(|has| |#2| (-362))
(((|#1|) |has| |#1| (-171)))
-(((|#2|) |has| |#2| (-1039)))
-((((-1145) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
-(((|#2| (-883 |#1|)) . T))
-((($) . T))
-((((-387) (-1145)) . T))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-605 (-853))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087))) (((-1246 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2176 (-1145)) (|:| -1925 #0#))) . T))
-(((|#1|) . T))
-((((-853)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+(((|#2|) |has| |#2| (-1042)))
+((((-1148) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
+(((|#2| (-886 |#1|)) . T))
+((($) . T))
+((((-387) (-1148)) . T))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) -4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-856))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090))) (((-1253 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2252 (-1148)) (|:| -2654 #0#))) . T))
+(((|#1|) . T))
+((((-856)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
((((-143)) . T))
(|has| |#2| (-144))
(|has| |#2| (-146))
(|has| |#1| (-471))
-(-3994 (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
+(-4007 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
(|has| |#1| (-362))
-((((-853)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
-((($) |has| |#1| (-550)))
-((((-1168)) . T))
-(|has| |#1| (-839))
-(|has| |#1| (-839))
-((((-853)) . T))
-(((|#2|) . T))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#2|) . T) (((-558)) . T) (((-810 |#1|)) . T))
+((((-856)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
+((($) |has| |#1| (-553)))
+((((-1171)) . T))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+((((-856)) . T))
+(((|#2|) . T))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#2|) . T) (((-561)) . T) (((-813 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1163)) |has| |#1| (-890 (-1163))))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-((((-853)) . T))
-((((-853)) . T))
-(|has| |#1| (-1087))
-(((|#2| (-480 (-1596 |#1|) (-762)) (-855 |#1|)) . T))
-((((-406 (-558))) . #0=(|has| |#2| (-362))) (($) . #0#))
-(((|#1| (-529 (-1163)) (-1163)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
+((((-1166)) |has| |#1| (-893 (-1166))))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
+((((-856)) . T))
+(|has| |#1| (-1090))
+(((|#2| (-480 (-3498 |#1|) (-765)) (-858 |#1|)) . T))
+((((-406 (-561))) . #0=(|has| |#2| (-362))) (($) . #0#))
+(((|#1| (-529 (-1166)) (-1166)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1520,66 +1525,66 @@
(|has| |#1| (-146))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
-((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-1163) (-52)) . T))
+(((|#1|) . T) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-1166) (-52)) . T))
((($ $) . T))
-(((|#1| (-558)) . T))
-((((-900 |#1|)) . T))
-(((|#1|) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1039))) (($) -3994 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039))))
-(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-(|has| |#1| (-841))
-(|has| |#1| (-841))
-((((-558) |#2|) . T))
-((((-558)) . T))
-((((-1238 |#1| |#2| |#3|)) -12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-(|has| |#1| (-841))
-((((-679 |#2|)) . T) (((-853)) . T))
-((((-406 (-558))) . T) (((-558)) . T) (($) . T))
+(((|#1| (-561)) . T))
+((((-903 |#1|)) . T))
+(((|#1|) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))) (($) -4007 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))))
+(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+((((-561) |#2|) . T))
+((((-561)) . T))
+((((-1245 |#1| |#2| |#3|)) -12 (|has| (-1245 |#1| |#2| |#3|) (-308 (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+(|has| |#1| (-844))
+((((-682 |#2|)) . T) (((-856)) . T))
+((((-406 (-561))) . T) (((-561)) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-406 (-942 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+((((-406 (-945 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
(((|#1|) |has| |#1| (-171)))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-(|has| |#2| (-841))
-(|has| |#1| (-841))
-(((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362))))
-(-3994 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-899)))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-((((-558) |#2|) . T))
-(((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+(|has| |#2| (-844))
+(|has| |#1| (-844))
+(((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362))))
+(-4007 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-902)))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+((((-561) |#2|) . T))
+(((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362))))
(|has| |#1| (-348))
-(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
-(((|#2|) . T) (((-558)) . T))
-((($) . T) (((-406 (-558))) . T))
-((((-558) (-112)) . T))
-(|has| |#1| (-811))
-(|has| |#1| (-811))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-839))
-(|has| |#1| (-839))
-(|has| |#1| (-839))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-38 (-406 (-558))))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-1163)) |has| |#1| (-890 (-1163))) (((-1069)) . T))
-(((|#1|) . T))
-(|has| |#1| (-839))
-(((#0=(-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) #0#) |has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(|has| |#1| (-1087))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
+(((|#2|) . T) (((-561)) . T))
+((($) . T) (((-406 (-561))) . T))
+((((-561) (-112)) . T))
+(|has| |#1| (-814))
+(|has| |#1| (-814))
+(((|#1|) . T))
+(-4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-38 (-406 (-561))))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-38 (-406 (-561))))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
+(((|#1|) . T))
+(|has| |#1| (-842))
+(((#0=(-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) #0#) |has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#1| (-1090))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
@@ -1589,16 +1594,16 @@
(((|#2|) . T))
(((|#1|) . T))
(((|#1| (-529 |#2|) |#2|) . T))
-((((-853)) . T))
-((((-143)) . T) (((-853)) . T))
-(((|#1| (-762) (-1069)) . T))
+((((-856)) . T))
+((((-143)) . T) (((-856)) . T))
+(((|#1| (-765) (-1072)) . T))
(((|#3|) . T))
((((-143)) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) -3994 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))) ((|#1|) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) -4007 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))) ((|#1|) . T))
(((|#1|) . T))
((((-143)) . T))
(((|#2|) |has| |#2| (-171)))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
(((|#1|) . T))
(|has| |#1| (-144))
(|has| |#1| (-146))
@@ -1607,259 +1612,259 @@
(((|#3|) |has| |#3| (-362)))
(((|#1|) . T))
(((|#2|) |has| |#1| (-362)))
-((((-853)) . T))
+((((-856)) . T))
(((|#2|) . T))
-(((|#1| (-1159 |#1|)) . T))
-((((-1069)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((($) . T) ((|#1|) . T) (((-406 (-558))) . T))
+(((|#1| (-1162 |#1|)) . T))
+((((-1072)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((($) . T) ((|#1|) . T) (((-406 (-561))) . T))
(((|#2|) . T))
-((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((($) |has| |#1| (-839)))
-(|has| |#1| (-899))
-((((-1163)) . T))
-((((-853)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((($) |has| |#1| (-842)))
+(|has| |#1| (-902))
+((((-1166)) . T))
+((((-856)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((#0=(-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) #0#) |has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-899)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((#0=(-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) #0#) |has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-902)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362))))
-(|has| |#1| (-841))
-(|has| |#1| (-550))
-((((-575 |#1|)) . T))
+(((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362))))
+(|has| |#1| (-844))
+(|has| |#1| (-553))
+((((-578 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3994 (-12 (|has| |#1| (-362)) (|has| |#2| (-811))) (-12 (|has| |#1| (-362)) (|has| |#2| (-841))))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-((((-900 |#1|)) . T))
+(-4007 (-12 (|has| |#1| (-362)) (|has| |#2| (-814))) (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+((((-903 |#1|)) . T))
(((|#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-762)) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
-(((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
-((((-662 |#1|)) . T))
+(((|#1| (-765)) . T))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171)))
+(((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
+((((-665 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-853)) . T) (((-1168)) . T))
+((((-856)) . T) (((-1171)) . T))
((((-534)) . T))
-((((-853)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((((-1168)) . T))
-((((-406 (-558))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-558)) . T))
-(((|#3|) . T) (((-558)) . T) (((-604 $)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((|#2|) . T))
-(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-717)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)) (|has| |#3| (-1087)))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
-(|has| |#1| (-1185))
-(|has| |#1| (-1185))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
-(|has| |#1| (-1185))
-(|has| |#1| (-1185))
+((((-856)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((((-1171)) . T))
+((((-406 (-561))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-561)) . T))
+(((|#3|) . T) (((-561)) . T) (((-607 $)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((|#2|) . T))
+(-4007 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1090)))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
+(|has| |#1| (-1190))
+(|has| |#1| (-1190))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
+(|has| |#1| (-1190))
+(|has| |#1| (-1190))
(((|#3| |#3|) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-((($) . T) (((-406 (-558))) . T) (((-406 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T) ((#1=(-406 |#1|) #1#) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T) ((#1=(-406 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-406 (-561))) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
(((|#3|) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-((((-1145) (-52)) . T))
-(|has| |#1| (-1087))
-(-3994 (|has| |#2| (-811)) (|has| |#2| (-841)))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+((((-1148) (-52)) . T))
+(|has| |#1| (-1090))
+(-4007 (|has| |#2| (-814)) (|has| |#2| (-844)))
(((|#1|) . T))
(((|#1|) |has| |#1| (-171)) (($) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((($) . T))
-((((-1161 |#1| |#2| |#3|)) -12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))
-((((-853)) . T))
-((((-558)) . T) (($) . T))
-((((-762)) . T))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
-((($) . T) (((-558)) . T))
-((($) . T))
-(|has| |#2| (-899))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((($) . T))
+((((-1164 |#1| |#2| |#3|)) -12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))
+((((-856)) . T))
+((((-561)) . T) (($) . T))
+((((-765)) . T))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
+((($) . T) (((-561)) . T))
+((($) . T))
+(|has| |#2| (-902))
(|has| |#1| (-362))
-(((|#2|) |has| |#2| (-1087)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-534)) . T) (((-406 (-1159 (-558)))) . T) (((-224)) . T) (((-378)) . T))
-((((-378)) . T) (((-224)) . T) (((-853)) . T))
-(|has| |#1| (-899))
-(|has| |#1| (-899))
-(|has| |#1| (-899))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-899)))
+(((|#2|) |has| |#2| (-1090)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-534)) . T) (((-406 (-1162 (-561)))) . T) (((-224)) . T) (((-378)) . T))
+((((-378)) . T) (((-224)) . T) (((-856)) . T))
+(|has| |#1| (-902))
+(|has| |#1| (-902))
+(|has| |#1| (-902))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-902)))
((($) . T) ((|#2|) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-899)))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-902)))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
((($ $) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
((($ $) . T))
-((((-558) (-112)) . T))
+((((-561) (-112)) . T))
((($) . T))
(((|#1|) . T))
-((((-558)) . T))
+((((-561)) . T))
((((-112)) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550)))
-(|has| |#1| (-38 (-406 (-558))))
-(((|#1| (-558)) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553)))
+(|has| |#1| (-38 (-406 (-561))))
+(((|#1| (-561)) . T))
((($) . T))
-(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
-((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
+(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
+((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
(((|#1|) . T))
-((((-558)) . T))
+((((-561)) . T))
(((|#1| |#2|) . T))
-((((-1163)) |has| |#1| (-1039)))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
+((((-1166)) |has| |#1| (-1042)))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
(((|#1|) . T))
-((((-853)) . T))
-(((|#1| (-558)) . T))
-(((|#1| (-1238 |#1| |#2| |#3|)) . T))
+((((-856)) . T))
+(((|#1| (-561)) . T))
+(((|#1| (-1245 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-406 (-558))) . T))
-(((|#1| (-1210 |#1| |#2| |#3|)) . T))
-(((|#1| (-762)) . T))
+(((|#1| (-406 (-561))) . T))
+(((|#1| (-1217 |#1| |#2| |#3|)) . T))
+(((|#1| (-765)) . T))
(((|#1|) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-853)) . T))
-(|has| |#1| (-1087))
-((((-1145) |#1|) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-856)) . T))
+(|has| |#1| (-1090))
+((((-1148) |#1|) . T))
((($) . T))
(|has| |#2| (-146))
(|has| |#2| (-144))
-(((|#1| (-529 (-809 (-1163))) (-809 (-1163))) . T))
-((((-853)) . T))
-((((-1232 |#1| |#2| |#3| |#4|)) . T))
-((((-1232 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1039)))
-((((-558) (-112)) . T))
-((((-853)) |has| |#1| (-1087)))
+(((|#1| (-529 (-812 (-1166))) (-812 (-1166))) . T))
+((((-856)) . T))
+((((-1239 |#1| |#2| |#3| |#4|)) . T))
+((((-1239 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1042)))
+((((-561) (-112)) . T))
+((((-856)) |has| |#1| (-1090)))
(|has| |#2| (-171))
-((((-558)) . T))
-(|has| |#2| (-839))
+((((-561)) . T))
+(|has| |#2| (-842))
(((|#1|) . T))
-((((-558)) . T))
-((((-853)) . T))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-348)))
+((((-561)) . T))
+((((-856)) . T))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-348)))
(|has| |#1| (-146))
-((((-853)) . T))
+((((-856)) . T))
(((|#3|) . T))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-((((-853)) . T))
-((((-1231 |#2| |#3| |#4|)) . T) (((-1232 |#1| |#2| |#3| |#4|)) . T))
-((((-853)) . T))
-((((-48)) -12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (((-604 $)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) -3994 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-406 (-942 |#1|))) |has| |#1| (-550)) (((-942 |#1|)) |has| |#1| (-1039)) (((-1163)) . T))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((((-856)) . T))
+((((-1238 |#2| |#3| |#4|)) . T) (((-1239 |#1| |#2| |#3| |#4|)) . T))
+((((-856)) . T))
+((((-48)) -12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (((-607 $)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) -4007 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-406 (-945 |#1|))) |has| |#1| (-553)) (((-945 |#1|)) |has| |#1| (-1042)) (((-1166)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-762)) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+(((|#1| (-765)) . T))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
(((|#1|) |has| |#1| (-308 |#1|)))
-((((-1232 |#1| |#2| |#3| |#4|)) . T))
-((((-558)) |has| |#1| (-876 (-558))) (((-378)) |has| |#1| (-876 (-378))))
+((((-1239 |#1| |#2| |#3| |#4|)) . T))
+((((-561)) |has| |#1| (-879 (-561))) (((-378)) |has| |#1| (-879 (-378))))
(((|#1|) . T))
-(|has| |#1| (-550))
+(|has| |#1| (-553))
(((|#1|) . T))
-((((-853)) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+((((-856)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
(((|#1|) |has| |#1| (-171)))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
-(((|#1|) . T))
-(((|#3|) |has| |#3| (-1087)))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(((|#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-362))))
-((((-1231 |#2| |#3| |#4|)) . T))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
+(((|#1|) . T))
+(((|#3|) |has| |#3| (-1090)))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(((|#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-362))))
+((((-1238 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-811))
-(|has| |#1| (-811))
-(((|#1| (-558) (-1069)) . T))
+(|has| |#1| (-814))
+(|has| |#1| (-814))
+(((|#1| (-561) (-1072)) . T))
((($) |has| |#1| (-308 $)) ((|#1|) |has| |#1| (-308 |#1|)))
-(|has| |#1| (-839))
-(|has| |#1| (-839))
-(((|#1| (-558) (-1069)) . T))
-(-3994 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(((|#1| (-406 (-558)) (-1069)) . T))
-(((|#1| (-762) (-1069)) . T))
-(|has| |#1| (-841))
-(((#0=(-900 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
+(|has| |#1| (-842))
+(|has| |#1| (-842))
+(((|#1| (-561) (-1072)) . T))
+(-4007 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(((|#1| (-406 (-561)) (-1072)) . T))
+(((|#1| (-765) (-1072)) . T))
+(|has| |#1| (-844))
+(((#0=(-903 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
(|has| |#2| (-144))
(|has| |#2| (-146))
(((|#2|) . T))
(|has| |#1| (-144))
(|has| |#1| (-146))
-(|has| |#1| (-1087))
-((((-900 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-(|has| |#1| (-1087))
-((((-558)) -3994 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039))))
-(((|#1|) . T))
-(|has| |#1| (-1087))
-((((-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-631 (-558)))) ((|#2|) |has| |#1| (-362)))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
-((((-679 (-338 (-3952) (-3952 (QUOTE X) (QUOTE HESS)) (-689)))) . T))
+(|has| |#1| (-1090))
+((((-903 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+(|has| |#1| (-1090))
+((((-561)) -4007 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))))
+(((|#1|) . T))
+(|has| |#1| (-1090))
+((((-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-561)))) ((|#2|) |has| |#1| (-362)))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
+((((-682 (-338 (-4031) (-4031 (QUOTE X) (QUOTE HESS)) (-692)))) . T))
(((|#2|) |has| |#2| (-171)))
(((|#1|) |has| |#1| (-171)))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-((((-853)) . T))
-(|has| |#3| (-839))
-((((-853)) . T))
-((((-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
-((((-853)) . T))
-(((|#1| |#1|) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1039))))
-(((|#1|) . T))
-((((-558)) . T))
-((((-558)) . T))
-(((|#1|) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1039))))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+((((-856)) . T))
+(|has| |#3| (-842))
+((((-856)) . T))
+((((-1238 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
+((((-856)) . T))
+(((|#1| |#1|) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))))
+(((|#1|) . T))
+((((-561)) . T))
+((((-561)) . T))
+(((|#1|) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))))
(((|#2|) |has| |#2| (-362)))
-((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-362)))
-(|has| |#1| (-841))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) |has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-899)))
-(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
-((((-853)) . T))
-((((-853)) . T))
-((((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
-((((-853)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
+((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-362)))
+(|has| |#1| (-844))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) |has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-902)))
+(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
+((((-856)) . T))
+((((-856)) . T))
+((((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
+((((-856)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
(|has| |#1| (-232))
(((|#1|) . T))
-(((|#1| (-558)) . T))
-(|has| |#1| (-839))
-(((|#1| (-1161 |#1| |#2| |#3|)) . T))
+(((|#1| (-561)) . T))
+(|has| |#1| (-842))
+(((|#1| (-1164 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-406 (-558))) . T))
-(((|#1| (-1154 |#1| |#2| |#3|)) . T))
-(((|#1| (-762)) . T))
+(((|#1| (-406 (-561))) . T))
+(((|#1| (-1157 |#1| |#2| |#3|)) . T))
+(((|#1| (-765)) . T))
(((|#1|) . T))
(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
(((|#1|) . T))
@@ -1868,190 +1873,190 @@
(|has| |#1| (-146))
(|has| |#1| (-146))
(|has| |#1| (-144))
-((((-558)) . T) ((|#1|) . T) (($) . T) (((-406 (-558))) . T) (((-1163)) |has| |#1| (-1028 (-1163))))
+((((-561)) . T) ((|#1|) . T) (($) . T) (((-406 (-561))) . T) (((-1166)) |has| |#1| (-1031 (-1166))))
(((|#1| |#2|) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) -3994 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))) ((|#1|) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) -4007 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))) ((|#1|) . T))
((((-143)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-558)) . T))
-((((-853)) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(((|#1|) . T))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-561)) . T))
+((((-856)) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
(|has| |#1| (-362))
(|has| |#1| (-362))
(|has| (-406 |#2|) (-232))
-((((-635 |#1|)) . T))
-(|has| |#1| (-899))
-(((|#2|) |has| |#2| (-1039)))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+((((-638 |#1|)) . T))
+(|has| |#1| (-902))
+(((|#2|) |has| |#2| (-1042)))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
(|has| |#1| (-362))
(((|#1|) |has| |#1| (-171)))
(((|#1| |#1|) . T))
-((((-860 |#1|)) . T))
-((((-853)) . T))
+((((-863 |#1|)) . T))
+((((-856)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1087)))
-(|has| |#2| (-841))
+(((|#2|) |has| |#2| (-1090)))
+(|has| |#2| (-844))
(((|#1|) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-((((-635 $)) . T) (((-1145)) . T) (((-1163)) . T) (((-558)) . T) (((-224)) . T) (((-853)) . T))
-((((-406 (-558))) . T) (((-558)) . T) (((-604 $)) . T))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+((((-638 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-561)) . T) (((-224)) . T) (((-856)) . T))
+((((-406 (-561))) . T) (((-561)) . T) (((-607 $)) . T))
(((|#1|) . T))
-((((-853)) . T))
+((((-856)) . T))
((($) . T))
-(|has| |#1| (-841))
-((((-853)) . T))
+(|has| |#1| (-844))
+((((-856)) . T))
(((|#1| (-529 |#2|) |#2|) . T))
-(((|#1| (-558) (-1069)) . T))
-((((-900 |#1|)) . T))
-((((-853)) . T))
+(((|#1| (-561) (-1072)) . T))
+((((-903 |#1|)) . T))
+((((-856)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-406 (-558)) (-1069)) . T))
-(((|#1| (-762) (-1069)) . T))
-(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-558)) -3994 (|has| (-406 (-558)) (-1028 (-558))) (|has| |#1| (-1028 (-558)))) (((-406 (-558))) . T))
-(((|#1| (-594 |#1| |#3|) (-594 |#1| |#2|)) . T))
+(((|#1| (-406 (-561)) (-1072)) . T))
+(((|#1| (-765) (-1072)) . T))
+(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-561)) -4007 (|has| (-406 (-561)) (-1031 (-561))) (|has| |#1| (-1031 (-561)))) (((-406 (-561))) . T))
+(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
(|has| |#2| (-232))
-(((|#2| (-529 (-855 |#1|)) (-855 |#1|)) . T))
-((((-853)) . T))
-((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) . T))
+(((|#2| (-529 (-858 |#1|)) (-858 |#1|)) . T))
+((((-856)) . T))
+((($) |has| |#1| (-553)) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) . T))
(((|#1| |#3|) . T))
-((((-853)) . T))
-(((|#1|) |has| |#1| (-171)) (((-942 |#1|)) . T) (((-558)) . T))
+((((-856)) . T))
+(((|#1|) |has| |#1| (-171)) (((-945 |#1|)) . T) (((-561)) . T))
(((|#1|) |has| |#1| (-171)))
-((((-689)) . T))
-((((-689)) . T))
+((((-692)) . T))
+((((-692)) . T))
(((|#2|) |has| |#2| (-171)))
-(|has| |#2| (-839))
-((((-558)) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
-((((-112)) |has| |#1| (-1087)) (((-853)) -3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)) (|has| |#1| (-1087))))
+(|has| |#2| (-842))
+((((-561)) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
+((((-112)) |has| |#1| (-1090)) (((-856)) -4007 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1090))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) . T))
-((((-853)) . T))
-((((-558) |#1|) . T))
-((((-853)) . T))
-((((-689)) . T) (((-406 (-558))) . T) (((-558)) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) . T))
+((((-856)) . T))
+((((-561) |#1|) . T))
+((((-856)) . T))
+((((-692)) . T) (((-406 (-561))) . T) (((-561)) . T))
(((|#1| |#1|) |has| |#1| (-171)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
((((-378)) . T))
-((((-689)) . T))
-((((-406 (-558))) . #0=(|has| |#2| (-362))) (($) . #0#))
+((((-692)) . T))
+((((-406 (-561))) . #0=(|has| |#2| (-362))) (($) . #0#))
(((|#1|) |has| |#1| (-171)))
-((((-406 (-942 |#1|))) . T))
+((((-406 (-945 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-841))
-(|has| |#2| (-899))
-(|has| |#1| (-899))
+(|has| |#2| (-844))
+(|has| |#2| (-902))
+(|has| |#1| (-902))
(|has| |#1| (-362))
-(|has| |#1| (-841))
-(((|#3|) |has| |#3| (-1039)))
-((((-1163)) |has| |#2| (-890 (-1163))))
-((((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-406 (-558))) . T) (($) . T))
+(|has| |#1| (-844))
+(((|#3|) |has| |#3| (-1042)))
+((((-1166)) |has| |#2| (-893 (-1166))))
+((((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-406 (-561))) . T) (($) . T))
(|has| |#1| (-471))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-362))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-550)) (|has| |#1| (-1039)) (|has| |#1| (-1099)))
-(|has| |#1| (-38 (-406 (-558))))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-553)) (|has| |#1| (-1042)) (|has| |#1| (-1102)))
+(|has| |#1| (-38 (-406 (-561))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
(|has| |#1| (-348))
((((-143)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((($) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(((|#2|) . T) (((-853)) . T))
-(((|#2|) . T) (((-853)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-841))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
+(|has| |#1| (-38 (-406 (-561))))
+((($) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(((|#2|) . T) (((-856)) . T))
+(((|#2|) . T) (((-856)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-844))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-146))
(|has| |#1| (-144))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
(|has| |#1| (-367))
-(|has| |#1| (-841))
-(((|#2|) . T) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
+(|has| |#1| (-844))
+(((|#2|) . T) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
((((-116 |#1|)) . T))
(((|#2|) |has| |#2| (-171)))
(((|#1|) . T))
-((((-558)) . T))
+((((-561)) . T))
(|has| |#1| (-362))
(|has| |#1| (-362))
-((((-853)) . T))
-((((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))) (((-378)) . #0=(|has| |#1| (-1012))) (((-224)) . #0#))
+((((-856)) . T))
+((((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))) (((-378)) . #0=(|has| |#1| (-1015))) (((-224)) . #0#))
(((|#1|) |has| |#1| (-362)))
-((((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((($ $) . T) (((-604 $) $) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-((($) . T) (((-1232 |#1| |#2| |#3| |#4|)) . T) (((-406 (-558))) . T))
-((($) -3994 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-550)))
+((((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((($ $) . T) (((-607 $) $) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+((($) . T) (((-1239 |#1| |#2| |#3| |#4|)) . T) (((-406 (-561))) . T))
+((($) -4007 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-553)))
(|has| |#1| (-362))
(|has| |#1| (-362))
(|has| |#1| (-362))
-((((-378)) . T) (((-558)) . T) (((-406 (-558))) . T))
-((((-635 (-771 |#1| (-855 |#2|)))) . T) (((-853)) . T))
-((((-534)) |has| (-771 |#1| (-855 |#2|)) (-606 (-534))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-378)) . T) (((-561)) . T) (((-406 (-561))) . T))
+((((-638 (-774 |#1| (-858 |#2|)))) . T) (((-856)) . T))
+((((-534)) |has| (-774 |#1| (-858 |#2|)) (-609 (-534))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
((((-378)) . T))
-(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
-((((-853)) . T))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-899)))
-(((|#1|) . T))
-(|has| |#1| (-841))
-(|has| |#1| (-841))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
-((((-762)) . T))
-(|has| |#1| (-1087))
-((((-853)) . T))
-((((-1163)) . T) (((-853)) . T))
-((((-406 (-558))) . T) (((-558)) . T) (((-604 $)) . T))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
+((((-856)) . T))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-902)))
+(((|#1|) . T))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
+((((-765)) . T))
+(|has| |#1| (-1090))
+((((-856)) . T))
+((((-1166)) . T) (((-856)) . T))
+((((-406 (-561))) . T) (((-561)) . T) (((-607 $)) . T))
(|has| |#1| (-144))
(|has| |#1| (-146))
-((((-558)) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(((#0=(-1231 |#2| |#3| |#4|)) . T) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))) (($) . T))
-((((-558)) . T))
+((((-561)) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(((#0=(-1238 |#2| |#3| |#4|)) . T) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))) (($) . T))
+((((-561)) . T))
(|has| |#1| (-362))
-(-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
-(-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
+(-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
+(-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
(|has| |#1| (-362))
(|has| |#1| (-144))
(|has| |#1| (-146))
@@ -2060,1473 +2065,1475 @@
(|has| |#1| (-232))
(|has| |#1| (-362))
(((|#3|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-558)) |has| |#2| (-631 (-558))) ((|#2|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-561)) |has| |#2| (-634 (-561))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1087))
+(|has| |#1| (-1090))
(((|#1| |#2|) . T))
-((((-558)) . T) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))
-(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
+((((-561)) . T) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))
+(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
(((|#3|) |has| |#3| (-171)))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
-((((-853)) . T))
-((((-558)) . T))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
+((((-856)) . T))
+((((-561)) . T))
(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-406 (-558))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
-((((-942 |#1|)) . T) (((-853)) . T))
+((((-406 (-561))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((((-945 |#1|)) . T) (((-856)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#0=(-406 (-558)) #0#) |has| |#1| (-362)))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
-((((-942 |#1|)) . T))
-((($) . T))
-((((-558) |#1|) . T))
-((((-1163)) |has| (-406 |#2|) (-890 (-1163))))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-558))) |has| |#1| (-362)))
-((((-534)) |has| |#2| (-606 (-534))))
-((((-679 |#2|)) . T) (((-853)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-((((-860 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(-3994 (|has| |#4| (-784)) (|has| |#4| (-839)))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
-((((-853)) . T))
-((((-853)) . T))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-(((|#2|) |has| |#2| (-1039)))
+(((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#0=(-406 (-561)) #0#) |has| |#1| (-362)))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
+((((-945 |#1|)) . T))
+((($) . T))
+((((-561) |#1|) . T))
+((((-1166)) |has| (-406 |#2|) (-893 (-1166))))
+(((|#1|) . T) (($) -4007 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-561))) |has| |#1| (-362)))
+((((-534)) |has| |#2| (-609 (-534))))
+((((-682 |#2|)) . T) (((-856)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+((((-863 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(-4007 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
+((((-856)) . T))
+((((-856)) . T))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+(((|#2|) |has| |#2| (-1042)))
(((|#1|) . T))
((((-406 |#2|)) . T))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))
-((((-558) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-558)) . T) (($) . T) (((-406 (-558))) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-406 (-558))) . T) (($) . T))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-1204)))
-((($) . T))
-((((-406 (-558))) |has| #0=(-406 |#2|) (-1028 (-406 (-558)))) (((-558)) |has| #0# (-1028 (-558))) ((#0#) . T))
-(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
-(((|#1| (-762)) . T))
-(|has| |#1| (-841))
-(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-558)) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) |has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(|has| |#1| (-839))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
+(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))
+((((-561) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-561)) . T) (($) . T) (((-406 (-561))) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-1209)))
+((($) . T))
+((((-406 (-561))) |has| #0=(-406 |#2|) (-1031 (-406 (-561)))) (((-561)) |has| #0# (-1031 (-561))) ((#0#) . T))
+(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
+(((|#1| (-765)) . T))
+(|has| |#1| (-844))
+(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-561)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) |has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#1| (-842))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
(|has| |#1| (-348))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-1145)) . T) (((-1163)) . T) (((-224)) . T) (((-558)) . T))
-(((|#2|) . T) (((-558)) . T) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1069)) . T) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-561)) . T))
+(((|#2|) . T) (((-561)) . T) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1072)) . T) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
(((|#1| |#2|) . T))
((((-143)) . T))
-((((-771 |#1| (-855 |#2|))) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(|has| |#1| (-1185))
-((((-853)) . T))
-(((|#1|) . T))
-(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-717)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)) (|has| |#3| (-1087)))
-((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)))
-(((|#2|) . T))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-((((-900 |#1|)) . T))
-((($) . T))
-((((-406 (-942 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-534)) |has| |#4| (-606 (-534))))
-((((-853)) . T) (((-635 |#4|)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-839))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) |has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))))
-(|has| |#1| (-1087))
+((((-774 |#1| (-858 |#2|))) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(|has| |#1| (-1190))
+((((-856)) . T))
+(((|#1|) . T))
+(-4007 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1090)))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)))
+(((|#2|) . T))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+((((-903 |#1|)) . T))
+((($) . T))
+((((-406 (-945 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-534)) |has| |#4| (-609 (-534))))
+((((-856)) . T) (((-638 |#4|)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(((|#1|) . T))
+(|has| |#1| (-842))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) |has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))))
+(|has| |#1| (-1090))
(|has| |#1| (-362))
-(|has| |#1| (-841))
+(|has| |#1| (-844))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-662 |#1|)) . T))
-((($) . T) (((-406 (-558))) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((((-665 |#1|)) . T))
+((($) . T) (((-406 (-561))) . T))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
(|has| |#1| (-144))
(|has| |#1| (-146))
-(-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
-(-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
+(-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146)))
+(-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144)))
(|has| |#1| (-144))
(|has| |#1| (-146))
(|has| |#1| (-146))
(|has| |#1| (-144))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(|has| |#1| (-839))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(|has| |#1| (-842))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
-((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-1087))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T) (((-558)) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
+((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-1090))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T) (((-561)) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T))
(|has| |#2| (-144))
(|has| |#2| (-146))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-1087))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-1090))
(((|#2|) |has| |#2| (-171)))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#3|) |has| |#3| (-362)))
((((-406 |#2|)) . T))
-((((-853)) . T))
-(((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-(((|#1|) -3994 (|has| |#1| (-171)) (|has| |#1| (-362))))
+((((-856)) . T))
+(((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+(((|#1|) -4007 (|has| |#1| (-171)) (|has| |#1| (-362))))
((((-315 |#1|)) . T))
(((|#2|) |has| |#2| (-362)))
(((|#2|) . T))
-((((-406 (-558))) . T) (((-689)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((#0=(-771 |#1| (-855 |#2|)) #0#) |has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))))
-((((-558)) . T) (($) . T))
-((((-855 |#1|)) . T))
+((((-406 (-561))) . T) (((-692)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((#0=(-774 |#1| (-858 |#2|)) #0#) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))))
+((((-561)) . T) (($) . T))
+((((-858 |#1|)) . T))
(((|#2|) |has| |#2| (-171)))
(((|#1|) |has| |#1| (-171)))
(((|#2|) . T))
-((((-1163)) |has| |#1| (-890 (-1163))) (((-1069)) . T))
-((((-1163)) |has| |#1| (-890 (-1163))) (((-1075 (-1163))) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(|has| |#1| (-38 (-406 (-558))))
-(((|#4|) |has| |#4| (-1039)) (((-558)) -12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))))
-(((|#3|) |has| |#3| (-1039)) (((-558)) -12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1078 (-1166))) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(|has| |#1| (-38 (-406 (-561))))
+(((|#4|) |has| |#4| (-1042)) (((-561)) -12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))))
+(((|#3|) |has| |#3| (-1042)) (((-561)) -12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))))
(|has| |#1| (-144))
(|has| |#1| (-146))
((($ $) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)) (|has| |#1| (-1087)))
-(|has| |#1| (-550))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1090)))
+(|has| |#1| (-553))
(((|#2|) . T))
-((((-558)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-561)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
-((((-575 |#1|)) . T))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
+((((-578 |#1|)) . T))
((($) . T))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-853)) . T))
-(((|#2|) |has| |#2| (-6 (-4385 "*"))))
+((((-856)) . T))
+(((|#2|) |has| |#2| (-6 (-4392 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1231 |#2| |#3| |#4|)) . T) (((-558)) . T) (((-1232 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-558))) . T))
-((((-48)) -12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (((-558)) -3994 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))) (|has| |#1| (-1039))) ((|#1|) . T) (((-604 $)) . T) (($) |has| |#1| (-550)) (((-406 (-558))) -3994 (|has| |#1| (-550)) (|has| |#1| (-1028 (-406 (-558))))) (((-406 (-942 |#1|))) |has| |#1| (-550)) (((-942 |#1|)) |has| |#1| (-1039)) (((-1163)) . T))
-((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
-((($) . T) (((-116 |#1|)) . T) (((-406 (-558))) . T))
-((((-1112 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((((-1159 |#1|)) . T) (((-1069)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((((-1112 |#1| (-1163))) . T) (((-1075 (-1163))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-1163)) . T))
-(|has| |#1| (-1087))
+((((-1238 |#2| |#3| |#4|)) . T) (((-561)) . T) (((-1239 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-561))) . T))
+((((-48)) -12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (((-561)) -4007 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))) (|has| |#1| (-1042))) ((|#1|) . T) (((-607 $)) . T) (($) |has| |#1| (-553)) (((-406 (-561))) -4007 (|has| |#1| (-553)) (|has| |#1| (-1031 (-406 (-561))))) (((-406 (-945 |#1|))) |has| |#1| (-553)) (((-945 |#1|)) |has| |#1| (-1042)) (((-1166)) . T))
+((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
+((($) . T) (((-116 |#1|)) . T) (((-406 (-561))) . T))
+((((-1115 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((((-1162 |#1|)) . T) (((-1072)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((((-1115 |#1| (-1166))) . T) (((-1078 (-1166))) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-1166)) . T))
+(|has| |#1| (-1090))
((($) . T))
-(|has| |#1| (-1087))
-((((-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))) (((-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378)))))
+(|has| |#1| (-1090))
+((((-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))) (((-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378)))))
(((|#1| |#2|) . T))
-((((-1163) |#1|) . T))
+((((-1166) |#1|) . T))
(((|#4|) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-1163) (-52)) . T))
-((((-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T))
-((((-853)) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-717)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)) (|has| |#2| (-1087)))
-(((#0=(-1232 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-171)) ((#0=(-406 (-558)) #0#) |has| |#1| (-550)) (($ $) |has| |#1| (-550)))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-1166) (-52)) . T))
+((((-1238 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T))
+((((-856)) . T))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1090)))
+(((#0=(-1239 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-171)) ((#0=(-406 (-561)) #0#) |has| |#1| (-553)) (($ $) |has| |#1| (-553)))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
(((|#1| $) |has| |#1| (-285 |#1| |#1|)))
-((((-1232 |#1| |#2| |#3| |#4|)) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-550)) (($) |has| |#1| (-550)))
+((((-1239 |#1| |#2| |#3| |#4|)) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-553)) (($) |has| |#1| (-553)))
(|has| |#1| (-362))
(|has| |#1| (-144))
(|has| |#1| (-146))
(|has| |#1| (-146))
(|has| |#1| (-144))
-((((-406 (-558))) . T) (($) . T))
+((((-406 (-561))) . T) (($) . T))
(((|#3|) |has| |#3| (-362)))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
-((((-1163)) . T))
-((($) . T) (((-1231 |#2| |#3| |#4|)) . T) (((-406 (-558))) |has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558)))) (((-558)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
+((((-1166)) . T))
+((($) . T) (((-1238 |#2| |#3| |#4|)) . T) (((-406 (-561))) |has| (-1238 |#2| |#3| |#4|) (-38 (-406 (-561)))) (((-561)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
(((|#2| |#3|) . T))
-(-3994 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(-4007 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
(((|#1| (-529 |#2|)) . T))
-(((|#1| (-762)) . T))
-(((|#1| (-529 (-1075 (-1163)))) . T))
+(((|#1| (-765)) . T))
+(((|#1| (-529 (-1078 (-1166)))) . T))
(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-(|has| |#2| (-899))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-((((-853)) . T))
-((($ $) . T) ((#0=(-1231 |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-558)) #1#) |has| #0# (-38 (-406 (-558)))))
-((((-900 |#1|)) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
-((($) . T) (((-406 (-558))) . T))
-((((-853)) . T))
+(|has| |#2| (-902))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+((((-856)) . T))
+((($ $) . T) ((#0=(-1238 |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-561)) #1#) |has| #0# (-38 (-406 (-561)))))
+((((-903 |#1|)) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+((($) . T) (((-406 (-561))) . T))
+((((-856)) . T))
((($) . T))
((($) . T))
-(-3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-550)))
+(-4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-553)))
(|has| |#1| (-362))
(|has| |#1| (-362))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1231 |#2| |#3| |#4|)) . T) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))))
-((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362)) (|has| |#1| (-348)))
-(-3994 (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)))
-((((-558)) |has| |#1| (-631 (-558))) ((|#1|) . T))
+((($) . T) ((#0=(-1238 |#2| |#3| |#4|)) . T) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362)) (|has| |#1| (-348)))
+(-4007 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))
+((((-561)) |has| |#1| (-634 (-561))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-853)) . T))
-((((-853)) . T))
+((((-856)) . T))
+((((-856)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) . T))
+(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
(|has| |#2| (-362))
-(|has| |#1| (-841))
+(|has| |#1| (-844))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-558)) . T))
-((((-853)) . T))
-(|has| |#1| (-1087))
+((((-561)) . T))
+((((-856)) . T))
+(|has| |#1| (-1090))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-406 $) (-406 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-811))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-406 $) (-406 $)) |has| |#1| (-553)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-814))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-853)) . T))
-(((|#1| (-529 (-1163))) . T))
+((((-856)) . T))
+(((|#1| (-529 (-1166))) . T))
(((|#1|) |has| |#1| (-171)))
-((((-853)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-(((|#2|) -3994 (|has| |#2| (-6 (-4385 "*"))) (|has| |#2| (-171))))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(|has| |#2| (-841))
-(|has| |#2| (-899))
-(|has| |#1| (-899))
+((((-856)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+(((|#2|) -4007 (|has| |#2| (-6 (-4392 "*"))) (|has| |#2| (-171))))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(|has| |#2| (-844))
+(|has| |#2| (-902))
+(|has| |#1| (-902))
(((|#2|) |has| |#2| (-171)))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-853)) . T))
-((((-853)) . T))
-((((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-856)) . T))
+((((-856)) . T))
+((((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) . T))
(((|#1|) . T))
-((((-853)) . T))
+((((-856)) . T))
(((|#1| |#2|) . T))
-(((|#1| (-406 (-558))) . T))
+(((|#1| (-406 (-561))) . T))
(((|#1|) . T))
-(-3994 (|has| |#1| (-289)) (|has| |#1| (-362)))
+(-4007 (|has| |#1| (-289)) (|has| |#1| (-362)))
((((-143)) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-839))
-((((-853)) . T))
-((((-853)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-842))
+((((-856)) . T))
+((((-856)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-186)) . T) (((-853)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-186)) . T) (((-856)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))) (((-882 (-558))) |has| |#1| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#1| (-606 (-882 (-378)))))
-((((-1163) (-52)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-635 (-143))) . T) (((-1145)) . T))
-((((-853)) . T))
-((((-1145)) . T))
-((((-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-(|has| |#1| (-841))
-((((-853)) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))) (((-885 (-561))) |has| |#1| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#1| (-609 (-885 (-378)))))
+((((-1166) (-52)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-638 (-143))) . T) (((-1148)) . T))
+((((-856)) . T))
+((((-1148)) . T))
+((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|)))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+(|has| |#1| (-844))
+((((-856)) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) . T))
(((|#2|) |has| |#2| (-362)))
-((((-853)) . T))
-((((-534)) |has| |#4| (-606 (-534))))
-((((-853)) . T) (((-635 |#4|)) . T))
-(((|#2|) . T))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-((($) . T) (((-558)) . T) (((-406 (-558))) . T) (((-604 $)) . T))
-(-3994 (|has| |#4| (-171)) (|has| |#4| (-717)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-((((-1163) (-52)) . T))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(|has| |#1| (-899))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(|has| |#1| (-899))
-(((|#1|) . T) (((-558)) . T) (((-406 (-558))) . T) (($) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-853)) . T))
-((((-558)) . T))
-(((#0=(-406 (-558)) #0#) . T) (($ $) . T))
-((((-406 (-558))) . T) (($) . T))
-(((|#1| (-406 (-558)) (-1069)) . T))
-(|has| |#1| (-1087))
-(|has| |#1| (-550))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(|has| |#1| (-811))
-(((#0=(-900 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
+((((-856)) . T))
+((((-534)) |has| |#4| (-609 (-534))))
+((((-856)) . T) (((-638 |#4|)) . T))
+(((|#2|) . T))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((($) . T) (((-561)) . T) (((-406 (-561))) . T) (((-607 $)) . T))
+(-4007 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((((-1166) (-52)) . T))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(|has| |#1| (-902))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(|has| |#1| (-902))
+(((|#1|) . T) (((-561)) . T) (((-406 (-561))) . T) (($) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-856)) . T))
+((((-561)) . T))
+(((#0=(-406 (-561)) #0#) . T) (($ $) . T))
+((((-406 (-561))) . T) (($) . T))
+(((|#1| (-406 (-561)) (-1072)) . T))
+(|has| |#1| (-1090))
+(|has| |#1| (-553))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(|has| |#1| (-814))
+(((#0=(-903 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
((((-406 |#2|)) . T))
-(|has| |#1| (-839))
-((((-1186 |#1|)) . T) (((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) . T) ((#1=(-558) #1#) . T) (($ $) . T))
-((((-900 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-(((|#2|) |has| |#2| (-1039)) (((-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))))
-(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
+(|has| |#1| (-842))
+((((-1191 |#1|)) . T) (((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) . T) ((#1=(-561) #1#) . T) (($ $) . T))
+((((-903 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+(((|#2|) |has| |#2| (-1042)) (((-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))))
+(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-146))
(|has| |#1| (-144))
(((|#2|) . T))
-((((-853)) . T))
-((((-406 (-558))) . T) (((-689)) . T) (($) . T) (((-558)) . T))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2176 (-1163)) (|:| -1925 #0#))) . T))
+((((-856)) . T))
+((((-406 (-561))) . T) (((-692)) . T) (($) . T) (((-561)) . T))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2252 (-1166)) (|:| -2654 #0#))) . T))
(|has| |#1| (-348))
-((((-558)) . T))
-((((-853)) . T))
+((((-561)) . T))
+((((-856)) . T))
(((|#1|) . T))
-(((#0=(-1232 |#1| |#2| |#3| |#4|) $) |has| #0# (-285 #0# #0#)))
+(((#0=(-1239 |#1| |#2| |#3| |#4|) $) |has| #0# (-285 #0# #0#)))
(|has| |#1| (-362))
-(((#0=(-1069) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(((#0=(-406 (-558)) #0#) . T) ((#1=(-689) #1#) . T) (($ $) . T))
+(((#0=(-1072) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(((#0=(-406 (-561)) #0#) . T) ((#1=(-692) #1#) . T) (($ $) . T))
((((-315 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) |has| |#1| (-362)))
-(|has| |#1| (-1087))
+(((|#1|) . T) (((-406 (-561))) |has| |#1| (-362)))
+(|has| |#1| (-1090))
(((|#1|) . T))
-(((|#1|) -3994 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
-(((|#1|) -3994 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
+(((|#1|) -4007 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
+(((|#1|) -4007 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|))))
(((|#2|) . T))
-((((-406 (-558))) . T) (((-689)) . T) (($) . T))
-((((-573)) . T))
+((((-406 (-561))) . T) (((-692)) . T) (($) . T))
+((((-576)) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-232))
-((((-855 |#1|)) . T))
-((((-1163)) |has| |#1| (-890 (-1163))) ((|#3|) . T))
-((((-635 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-1012)))
-((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-853)) . T))
+((((-858 |#1|)) . T))
+((((-1166)) |has| |#1| (-893 (-1166))) ((|#3|) . T))
+((((-638 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-1015)))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-856)) . T))
(|has| |#1| (-362))
(|has| |#1| (-362))
-((((-406 (-558))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
-((((-558)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-((((-558)) . T))
+((((-406 (-561))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T))
+((((-561)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((((-561)) . T))
(((|#3|) . T))
-(|has| |#1| (-1087))
+(|has| |#1| (-1090))
(((|#2|) . T))
(((|#1|) . T))
-((((-558)) . T))
-(((|#2|) . T) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (($) . T) (((-558)) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+((((-561)) . T))
+(((|#2|) . T) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (($) . T) (((-561)) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
(((|#1| |#2|) . T))
((($) . T))
-((((-575 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-((($) . T) (((-406 (-558))) . T))
+((((-578 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((($) . T) (((-406 (-561))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((#0=(-116 |#1|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
-((((-1112 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#2|) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((#0=(-116 |#1|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
+((((-1115 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($ $) . T))
-((((-662 |#1|)) . T))
-((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
-((((-116 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-((((-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) (((-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))))
+((((-665 |#1|)) . T))
+((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
+((((-116 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((((-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) (((-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) (($) . T))
+(((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) (($) . T))
((((-143)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-378)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
+((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-378)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
(((|#1|) . T))
-(|has| |#2| (-899))
-(|has| |#1| (-899))
-(|has| |#1| (-899))
+(|has| |#2| (-902))
+(|has| |#1| (-902))
+(|has| |#1| (-902))
(((|#4|) . T))
-(|has| |#2| (-1012))
+(|has| |#2| (-1015))
((($) . T))
-(|has| |#1| (-899))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+(|has| |#1| (-902))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
(|has| |#1| (-362))
-((((-900 |#1|)) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-(-3994 (|has| |#1| (-367)) (|has| |#1| (-841)))
-(((|#1|) . T))
-((((-762)) . T))
-((((-853)) . T))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-903 |#1|)) . T))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+(-4007 (|has| |#1| (-367)) (|has| |#1| (-844)))
+(((|#1|) . T))
+((((-765)) . T))
+((((-856)) . T))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
((((-406 |#2|) |#3|) . T))
-((($) . T) (((-406 (-558))) . T))
-((($) . T) (((-558)) . T) (((-406 (-558))) . T) (((-604 $)) . T))
-((((-558)) . T) (($) . T))
-((((-558)) . T) (($) . T))
-((((-762) |#1|) . T))
-(((|#2| (-239 (-1596 |#1|) (-762))) . T))
+((($) . T) (((-406 (-561))) . T))
+((($) . T) (((-561)) . T) (((-406 (-561))) . T) (((-607 $)) . T))
+((((-561)) . T) (($) . T))
+((((-561)) . T) (($) . T))
+((((-765) |#1|) . T))
+(((|#2| (-239 (-3498 |#1|) (-765))) . T))
(((|#1| (-529 |#3|)) . T))
-((((-406 (-558))) . T))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-1145)) . T) (((-853)) . T))
-(((#0=(-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) #0#) |has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))))
-((((-1145)) . T))
-(|has| |#1| (-899))
+((((-406 (-561))) . T))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-1148)) . T) (((-856)) . T))
+(((#0=(-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) #0#) |has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))))
+((((-1148)) . T))
+(|has| |#1| (-902))
(|has| |#2| (-362))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-4007 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T))
-((((-853)) . T))
+((((-856)) . T))
(((|#1|) . T))
-((((-378)) . T) (((-558)) . T))
-(((#0=(-406 (-558)) #0#) . T) (($ $) . T))
+((((-378)) . T) (((-561)) . T))
+(((#0=(-406 (-561)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-853)) . T))
-(|has| |#1| (-550))
-((((-406 (-558))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(-3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
-(|has| |#1| (-38 (-406 (-558))))
-(-12 (|has| |#1| (-543)) (|has| |#1| (-819)))
-((((-853)) . T))
-((((-1163)) -3994 (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-890 (-1163))))))
+((((-856)) . T))
+(|has| |#1| (-553))
+((((-406 (-561))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(-4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
+(|has| |#1| (-38 (-406 (-561))))
+(-12 (|has| |#1| (-543)) (|has| |#1| (-822)))
+((((-856)) . T))
+((((-1166)) -4007 (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))))
(|has| |#1| (-362))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
(|has| |#1| (-362))
-((((-406 (-558))) . T) (($) . T))
-((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
-((((-558) |#1|) . T))
+((((-406 (-561))) . T) (($) . T))
+((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
+((((-561) |#1|) . T))
(((|#1|) . T))
(((|#2|) |has| |#1| (-362)))
(((|#2|) |has| |#1| (-362)))
-((((-558)) . T) (($) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-561)) . T) (($) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
-(((|#2|) . T) (((-1163)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) (((-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))) (((-406 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))))
+(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))) (((-406 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))))
(((|#2|) . T))
-((((-1163) #0=(-1232 |#1| |#2| |#3| |#4|)) |has| #0# (-512 (-1163) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
-((((-604 $) $) . T) (($ $) . T))
-((((-168 (-224))) . T) (((-168 (-378))) . T) (((-1159 (-689))) . T) (((-882 (-378))) . T))
-((((-853)) . T))
-(|has| |#1| (-550))
-(|has| |#1| (-550))
+((((-1166) #0=(-1239 |#1| |#2| |#3| |#4|)) |has| #0# (-512 (-1166) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
+((((-607 $) $) . T) (($ $) . T))
+((((-168 (-224))) . T) (((-168 (-378))) . T) (((-1162 (-692))) . T) (((-885 (-378))) . T))
+((((-856)) . T))
+(|has| |#1| (-553))
+(|has| |#1| (-553))
(|has| (-406 |#2|) (-232))
-(((|#1| (-406 (-558))) . T))
+(((|#1| (-406 (-561))) . T))
((($ $) . T))
-((((-1163)) |has| |#2| (-890 (-1163))))
+((((-1166)) |has| |#2| (-893 (-1166))))
((($) . T))
-((((-853)) . T))
-((((-406 (-558))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
+((((-856)) . T))
+((((-406 (-561))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
(((|#2|) |has| |#1| (-362)))
-((((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-378)))) (((-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-558)))))
+((((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-378)))) (((-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-561)))))
(|has| |#1| (-362))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
(|has| |#1| (-362))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
(|has| |#1| (-362))
-(|has| |#1| (-550))
+(|has| |#1| (-553))
(((|#1|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
(((|#3|) . T))
-((((-1145)) . T) (((-1163)) . T) (((-224)) . T) (((-558)) . T))
+((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-561)) . T))
(((|#1|) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(-4007 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
(((|#2|) . T))
(((|#2|) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(|has| |#1| (-38 (-406 (-558))))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(|has| |#1| (-38 (-406 (-561))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(|has| |#1| (-38 (-406 (-561))))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
(|has| |#1| (-146))
-((((-1145) |#1|) . T))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
+((((-1148) |#1|) . T))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
(|has| |#1| (-146))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))
(|has| |#1| (-146))
-((((-575 |#1|)) . T))
+((((-578 |#1|)) . T))
((($) . T))
((((-406 |#2|)) . T))
-(|has| |#1| (-550))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-348)))
+(|has| |#1| (-553))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-348)))
(|has| |#1| (-146))
-((((-853)) . T))
+((((-856)) . T))
((($) . T))
-((((-406 (-558))) |has| |#2| (-1028 (-558))) (((-558)) |has| |#2| (-1028 (-558))) (((-1163)) |has| |#2| (-1028 (-1163))) ((|#2|) . T))
-(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-558)) #1#) . T) (($ $) . T))
-((((-1127 |#1| |#2|)) . T))
-(((|#1| (-558)) . T))
-(((|#1| (-406 (-558))) . T))
-((((-558)) |has| |#2| (-876 (-558))) (((-378)) |has| |#2| (-876 (-378))))
+((((-406 (-561))) |has| |#2| (-1031 (-561))) (((-561)) |has| |#2| (-1031 (-561))) (((-1166)) |has| |#2| (-1031 (-1166))) ((|#2|) . T))
+(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-561)) #1#) . T) (($ $) . T))
+((((-1130 |#1| |#2|)) . T))
+(((|#1| (-561)) . T))
+(((|#1| (-406 (-561))) . T))
+((((-561)) |has| |#2| (-879 (-561))) (((-378)) |has| |#2| (-879 (-378))))
(((|#2|) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
((((-112)) . T))
(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-853)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-1163) (-52)) . T))
+((((-856)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-1166) (-52)) . T))
((((-406 |#2|)) . T))
-((((-853)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1087))
-(|has| |#1| (-782))
-(|has| |#1| (-782))
-((((-853)) . T))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
+((((-856)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1090))
+(|has| |#1| (-785))
+(|has| |#1| (-785))
+((((-856)) . T))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-224)) . T) (((-378)) . T) (((-882 (-378))) . T))
-((((-853)) . T))
-((((-1232 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)) (((-406 (-558))) |has| |#1| (-550)))
-((((-853)) . T))
-((((-853)) . T))
+((((-224)) . T) (((-378)) . T) (((-885 (-378))) . T))
+((((-856)) . T))
+((((-1239 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)) (((-406 (-561))) |has| |#1| (-553)))
+((((-856)) . T))
+((((-856)) . T))
(((|#2|) . T))
-((((-853)) . T))
-(((#0=(-900 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
+((((-856)) . T))
+(((#0=(-903 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-900 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
+((((-903 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
(|has| |#1| (-362))
-((((-853)) . T))
+((((-856)) . T))
(((|#2|) . T))
-((((-558)) . T))
-((((-853)) . T))
-((((-558)) . T))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
+((((-561)) . T))
+((((-856)) . T))
+((((-561)) . T))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-1145)) . T) (((-534)) . T) (((-558)) . T) (((-882 (-558))) . T) (((-378)) . T) (((-224)) . T))
-((((-853)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-1148)) . T) (((-534)) . T) (((-561)) . T) (((-885 (-561))) . T) (((-378)) . T) (((-224)) . T))
+((((-856)) . T))
(|has| |#1| (-146))
(|has| |#1| (-144))
-((($) . T) ((#0=(-1231 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+((($) . T) ((#0=(-1238 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
(|has| |#1| (-362))
(|has| |#1| (-362))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-717)) (|has| |#1| (-890 (-1163))) (|has| |#1| (-1039)) (|has| |#1| (-1099)) (|has| |#1| (-1087)))
-(|has| |#1| (-1138))
-((((-558) |#1|) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1090)))
+(|has| |#1| (-1141))
+((((-561) |#1|) . T))
(((|#1|) . T))
(((#0=(-116 |#1|) $) |has| #0# (-285 #0# #0#)))
(((|#1|) |has| |#1| (-171)))
-((((-315 |#1|)) . T) (((-558)) . T))
+((((-315 |#1|)) . T) (((-561)) . T))
(((|#1|) . T))
+((((-856)) . T))
((((-114)) . T) ((|#1|) . T))
-((((-853)) . T))
+((((-856)) . T))
(((|#1| |#2|) . T))
-((((-1163) |#1|) . T))
(((|#1|) |has| |#1| (-308 |#1|)))
-((((-558) |#1|) . T))
+((((-561) |#1|) . T))
+((((-1166) |#1|) . T))
(((|#1|) . T))
-((((-558)) . T) (((-406 (-558))) . T))
+((((-561)) . T) (((-406 (-561))) . T))
(((|#1|) . T))
-(|has| |#1| (-550))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
+(|has| |#1| (-553))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
((((-378)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-362))
(|has| |#1| (-362))
-(|has| |#1| (-550))
-(|has| |#1| (-1087))
-((((-771 |#1| (-855 |#2|))) |has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(|has| |#1| (-553))
+(|has| |#1| (-1090))
+((((-774 |#1| (-858 |#2|))) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-899))
+(|has| |#2| (-902))
(((|#1| (-529 |#2|)) . T))
-(((|#1| (-762)) . T))
+(((|#1| (-765)) . T))
(|has| |#1| (-232))
-(((|#1| (-529 (-1075 (-1163)))) . T))
+(((|#1| (-529 (-1078 (-1166)))) . T))
(|has| |#2| (-362))
-((((-575 |#1|)) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-((((-558)) . T) (((-406 (-558))) . T) (($) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) . T))
+((((-578 |#1|)) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+((((-561)) . T) (((-406 (-561))) . T) (($) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-558)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
-((((-853)) . T))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
-((((-853)) . T))
-((((-1107)) . T) (((-853)) . T))
-((((-534)) . T) (((-853)) . T))
+(((|#1|) . T) (((-561)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
+((((-856)) . T))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
+((((-856)) . T))
+((((-1110)) . T) (((-856)) . T))
+((((-534)) . T) (((-856)) . T))
(((|#1|) . T))
-((($ $) . T) (((-604 $) $) . T))
+((($ $) . T) (((-607 $) $) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-558)) . T))
+((((-561)) . T))
(((|#3|) . T))
-((((-853)) . T))
-(-3994 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-558)) . T) (((-406 (-558))) -3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
-((((-1112 |#1| |#2|)) . T) ((|#2|) . T) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-558)) . T))
-((((-1159 |#1|)) . T) (((-558)) . T) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) (((-1069)) . T) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
-(-3994 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-550)) (|has| |#1| (-1039)))
-((((-1112 |#1| (-1163))) . T) (((-558)) . T) (((-1075 (-1163))) . T) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) (((-1163)) . T))
-(((#0=(-575 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-558)) #1#) . T))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+((((-856)) . T))
+(-4007 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-561)) . T) (((-406 (-561))) -4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
+((((-1115 |#1| |#2|)) . T) ((|#2|) . T) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-561)) . T))
+((((-1162 |#1|)) . T) (((-561)) . T) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) (((-1072)) . T) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
+(-4007 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-553)) (|has| |#1| (-1042)))
+((((-1115 |#1| (-1166))) . T) (((-561)) . T) (((-1078 (-1166))) . T) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) (((-1166)) . T))
+(((#0=(-578 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-561)) #1#) . T))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
(((|#1|) |has| |#1| (-171)))
-(((|#1| (-1246 |#1|) (-1246 |#1|)) . T))
-((((-575 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-((($) . T) (((-406 (-558))) . T))
-((($) . T) (((-406 (-558))) . T))
-(((|#2|) |has| |#2| (-6 (-4385 "*"))))
+(((|#1| (-1253 |#1|) (-1253 |#1|)) . T))
+((((-578 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((($) . T) (((-406 (-561))) . T))
+((($) . T) (((-406 (-561))) . T))
+(((|#2|) |has| |#2| (-6 (-4392 "*"))))
(((|#1|) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((|#1|) . T) (((-558)) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((|#1|) . T) (((-561)) . T))
(((|#1|) . T))
-((((-853)) . T))
+((((-856)) . T))
((((-293 |#3|)) . T))
-(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
+((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
(((|#2|) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) . T))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(|has| |#2| (-899))
-(|has| |#1| (-899))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) . T))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) . T))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(|has| |#2| (-902))
+(|has| |#1| (-902))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) . T))
(((|#1|) . T))
-((((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) . T))
+((((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1087))
+(|has| |#1| (-1090))
(((|#1|) . T))
-((((-1163)) . T) ((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))
-(((#0=(-406 (-558)) #0#) . T))
-((((-406 (-558))) . T))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-1166)) . T) ((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))
+(((#0=(-406 (-561)) #0#) . T))
+((((-406 (-561))) . T))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
(((|#1|) . T))
(((|#1|) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-((((-406 (-558))) . T) (((-558)) . T) (($) . T))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-406 (-561))) . T) (((-561)) . T) (($) . T))
((((-534)) . T))
-((((-853)) . T))
-((((-558)) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
-((((-1163)) |has| |#2| (-890 (-1163))) (((-1069)) . T))
-((((-1231 |#2| |#3| |#4|)) . T))
-((((-900 |#1|)) . T))
-((($) . T) (((-406 (-558))) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
-((((-853)) . T))
-(|has| |#1| (-1204))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-((((-1163)) |has| |#1| (-890 (-1163))))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-((($) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) . T))
-(((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))))
-((($) . T) (((-406 (-558))) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1039)) (((-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-550))))
-(|has| |#1| (-550))
+((((-856)) . T))
+((((-561)) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
+((((-1166)) |has| |#2| (-893 (-1166))) (((-1072)) . T))
+((((-1238 |#2| |#3| |#4|)) . T))
+((((-903 |#1|)) . T))
+((($) . T) (((-406 (-561))) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+((((-856)) . T))
+(|has| |#1| (-1209))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+((((-1166)) |has| |#1| (-893 (-1166))))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((($) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) . T))
+(((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))) ((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))))
+((($) . T) (((-406 (-561))) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1042)) (((-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-553))))
+(|has| |#1| (-553))
(((|#1|) |has| |#1| (-362)))
-((((-558)) . T))
-(|has| |#1| (-782))
-(|has| |#1| (-782))
-((((-1163) #0=(-116 |#1|)) |has| #0# (-512 (-1163) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
-(((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
-((((-1069)) . T) ((|#2|) . T) (((-558)) |has| |#2| (-1028 (-558))) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
+((((-561)) . T))
+(|has| |#1| (-785))
+(|has| |#1| (-785))
+((((-1166) #0=(-116 |#1|)) |has| #0# (-512 (-1166) #0#)) ((#0# #0#) |has| #0# (-308 #0#)))
+(((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
+((((-1072)) . T) ((|#2|) . T) (((-561)) |has| |#2| (-1031 (-561))) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-558) (-762)) . T) ((|#3| (-762)) . T))
+((((-561) (-765)) . T) ((|#3| (-765)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-853)) . T))
-(|has| |#2| (-811))
-(|has| |#2| (-811))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((((-558)) |has| |#1| (-876 (-558))) (((-378)) |has| |#1| (-876 (-378))))
-(((|#1|) . T))
-((((-860 |#1|)) . T))
-((((-860 |#1|)) . T))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-899)))
-((((-406 (-558))) . T) (((-689)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-856)) . T))
+(|has| |#2| (-814))
+(|has| |#2| (-814))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((((-561)) |has| |#1| (-879 (-561))) (((-378)) |has| |#1| (-879 (-378))))
+(((|#1|) . T))
+((((-863 |#1|)) . T))
+((((-863 |#1|)) . T))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-902)))
+((((-406 (-561))) . T) (((-692)) . T) (($) . T))
(|has| |#1| (-362))
(|has| |#1| (-362))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
(|has| |#1| (-362))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-855 |#1|)) . T))
+((((-858 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-762)) . T))
-((((-1163)) . T))
-((((-860 |#1|)) . T))
-(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-((((-853)) . T))
+(((|#2| (-765)) . T))
+((((-1166)) . T))
+((((-863 |#1|)) . T))
+(-4007 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((((-856)) . T))
(((|#1|) . T))
-(-3994 (|has| |#2| (-784)) (|has| |#2| (-839)))
-(-3994 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841))))
-((((-860 |#1|)) . T))
+(-4007 (|has| |#2| (-787)) (|has| |#2| (-842)))
+(-4007 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844))))
+((((-863 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
-((($ $) . T) (((-604 $) $) . T))
-((($) . T))
-((((-853)) . T))
-((((-558)) . T))
-(((|#2|) . T))
-((((-853)) . T))
-(((|#1|) . T) (((-406 (-558))) |has| |#1| (-362)))
-((((-853)) . T))
-(((|#1|) . T))
-((((-853)) . T))
-((($) . T) ((|#2|) . T) (((-406 (-558))) . T))
-(|has| |#1| (-1087))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-853)) . T))
-(|has| |#2| (-899))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
-((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
-((((-853)) . T))
-((((-853)) . T))
-(((|#3|) |has| |#3| (-1039)) (((-558)) -12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))))
-((((-1112 |#1| |#2|)) . T) (((-942 |#1|)) |has| |#2| (-606 (-1163))) (((-853)) . T))
-((((-942 |#1|)) |has| |#2| (-606 (-1163))) (((-1145)) -12 (|has| |#1| (-1028 (-558))) (|has| |#2| (-606 (-1163)))) (((-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558))))) (((-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378))))) (((-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534)))))
-((((-1159 |#1|)) . T) (((-853)) . T))
-((((-853)) . T))
-((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T) (((-1163)) . T))
-((((-853)) . T))
-((((-558)) . T))
-(((|#1|) . T))
-((($) . T))
-((((-378)) |has| |#1| (-876 (-378))) (((-558)) |has| |#1| (-876 (-558))))
-((((-558)) . T))
-(((|#1|) . T))
-((((-853)) . T))
-(((|#1|) . T))
-((((-853)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-635 |#1|)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
+((($ $) . T) (((-607 $) $) . T))
+((($) . T))
+((((-856)) . T))
+((((-561)) . T))
+(((|#2|) . T))
+((((-856)) . T))
+(((|#1|) . T) (((-406 (-561))) |has| |#1| (-362)))
+((((-856)) . T))
+(((|#1|) . T))
+((((-856)) . T))
+((($) . T) ((|#2|) . T) (((-406 (-561))) . T))
+(|has| |#1| (-1090))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-856)) . T))
+(|has| |#2| (-902))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
+((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
+((((-856)) . T))
+((((-856)) . T))
+(((|#3|) |has| |#3| (-1042)) (((-561)) -12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))))
+((((-1115 |#1| |#2|)) . T) (((-945 |#1|)) |has| |#2| (-609 (-1166))) (((-856)) . T))
+((((-945 |#1|)) |has| |#2| (-609 (-1166))) (((-1148)) -12 (|has| |#1| (-1031 (-561))) (|has| |#2| (-609 (-1166)))) (((-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561))))) (((-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378))))) (((-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534)))))
+((((-1162 |#1|)) . T) (((-856)) . T))
+((((-856)) . T))
+((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T) (((-1166)) . T))
+((((-856)) . T))
+((((-561)) . T))
+(((|#1|) . T))
+((($) . T))
+((((-378)) |has| |#1| (-879 (-378))) (((-561)) |has| |#1| (-879 (-561))))
+((((-561)) . T))
+(((|#1|) . T))
+((((-856)) . T))
+(((|#1|) . T))
+((((-856)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-638 |#1|)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
(((|#1|) |has| |#1| (-171)) (($) . T))
-((((-558)) . T) (((-406 (-558))) . T))
+((((-561)) . T) (((-406 (-561))) . T))
(((|#1|) |has| |#1| (-308 |#1|)))
-((((-853)) . T))
+((((-856)) . T))
((((-378)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-853)) . T))
-((((-406 (-558))) . T) (($) . T))
+((((-856)) . T))
+((((-406 (-561))) . T) (($) . T))
((((-406 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1087))
-(((|#2| (-480 (-1596 |#1|) (-762))) . T))
-((((-558) |#1|) . T))
-((((-1145)) . T) (((-853)) . T))
+(|has| |#1| (-1090))
+(((|#2| (-480 (-3498 |#1|) (-765))) . T))
+((((-561) |#1|) . T))
+((((-1148)) . T) (((-856)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-529 (-1163))) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-((((-558)) . T))
+(((|#1| (-529 (-1166))) . T))
+(-4007 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-561)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1163)) |has| |#1| (-890 (-1163))) (((-1069)) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-631 (-558))))
-(|has| |#1| (-550))
-((($) . T) (((-406 (-558))) . T))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-634 (-561))))
+(|has| |#1| (-553))
+((($) . T) (((-406 (-561))) . T))
((($) . T))
((($) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
(((|#1|) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-853)) . T))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-856)) . T))
((((-143)) . T))
-(((|#1|) . T) (((-406 (-558))) . T))
+(((|#1|) . T) (((-406 (-561))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-853)) . T))
+((((-856)) . T))
(((|#1|) . T))
-(|has| |#1| (-1138))
-(((|#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) . T))
+(|has| |#1| (-1141))
+(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
(((|#1|) . T))
-((((-406 $) (-406 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((((-853)) . T))
-((((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-558)) |has| |#1| (-1028 (-558))) ((|#1|) . T) ((|#2|) . T))
-((((-1069)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))))
-((((-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378)))) (((-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))))
-((((-1232 |#1| |#2| |#3| |#4|)) . T))
-((((-558) |#1|) . T))
+((((-406 $) (-406 $)) |has| |#1| (-553)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((((-856)) . T))
+((((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-561)) |has| |#1| (-1031 (-561))) ((|#1|) . T) ((|#2|) . T))
+((((-1072)) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))))
+((((-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378)))) (((-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))))
+((((-1239 |#1| |#2| |#3| |#4|)) . T))
+((((-561) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-171)) (($) . T))
((($) . T))
-((((-689)) . T))
-((((-771 |#1| (-855 |#2|))) . T))
+((((-692)) . T))
+((((-774 |#1| (-858 |#2|))) . T))
((($) . T))
-((((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-1087))
-(|has| |#1| (-1087))
+((((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-1090))
+(|has| |#1| (-1090))
(|has| |#2| (-362))
(|has| |#1| (-362))
(|has| |#1| (-362))
-(|has| |#1| (-38 (-406 (-558))))
-((((-558)) . T))
-((((-1163)) -12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039))))
-((((-1163)) -12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-561)) . T))
+((((-1166)) -12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042))))
+((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))
(((|#1|) . T))
(|has| |#1| (-232))
(((|#1| (-529 |#3|)) . T))
-(((|#2| (-239 (-1596 |#1|) (-762))) . T))
+(((|#2| (-239 (-3498 |#1|) (-765))) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
(((|#1|) . T) (($) . T))
(((|#1| (-529 |#2|)) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(((|#1| (-762)) . T))
-(|has| |#1| (-550))
-(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+(-4007 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(((|#1| (-765)) . T))
+(|has| |#1| (-553))
+(-4007 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-853)) . T))
-((((-558)) . T) (((-406 (-558))) . T) (($) . T))
-(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
-(-3994 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
+((((-856)) . T))
+((((-561)) . T) (((-406 (-561))) . T) (($) . T))
+(-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
+(-4007 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
(((|#1|) |has| |#1| (-171)))
-(((|#4|) |has| |#4| (-1039)))
-(((|#3|) |has| |#3| (-1039)))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
-(-12 (|has| |#1| (-362)) (|has| |#2| (-811)))
-((((-558)) . T) (((-406 (-558))) -3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-855 |#1|)) . T))
-((((-1112 |#1| |#2|)) . T) (((-558)) . T) ((|#3|) . T) (($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))) ((|#2|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (($) . T) (((-558)) . T))
-((((-1168)) . T))
-((((-662 |#1|)) . T))
-((((-406 |#2|)) . T) (((-406 (-558))) . T) (($) . T))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-((((-853)) . T))
-((((-635 $)) . T) (((-1145)) . T) (((-1163)) . T) (((-558)) . T) (((-224)) . T) (((-853)) . T))
-((($) . T) (((-406 (-558))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1087)) (((-558)) -12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087))) (((-406 (-558))) -12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))
-(((|#3|) |has| |#3| (-1087)) (((-558)) -12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (((-406 (-558))) -12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))
+(((|#4|) |has| |#4| (-1042)))
+(((|#3|) |has| |#3| (-1042)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+(-12 (|has| |#1| (-362)) (|has| |#2| (-814)))
+((((-561)) . T) (((-406 (-561))) -4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))) ((|#2|) . T) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-858 |#1|)) . T))
+((((-1115 |#1| |#2|)) . T) (((-561)) . T) ((|#3|) . T) (($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))) ((|#2|) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (($) . T) (((-561)) . T))
+((((-1171)) . T))
+((((-665 |#1|)) . T))
+((((-406 |#2|)) . T) (((-406 (-561))) . T) (($) . T))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+((((-856)) . T))
+((((-638 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-561)) . T) (((-224)) . T) (((-856)) . T))
+((($) . T) (((-406 (-561))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1090)) (((-561)) -12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090))) (((-406 (-561))) -12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))
+(((|#3|) |has| |#3| (-1090)) (((-561)) -12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (((-406 (-561))) -12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))
(|has| |#2| (-362))
-(((|#2|) |has| |#2| (-1039)) (((-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))))
+(((|#2|) |has| |#2| (-1042)) (((-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))))
(((|#1|) . T))
(|has| |#2| (-362))
-(((#0=(-406 (-558)) #0#) |has| |#2| (-38 (-406 (-558)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1| |#1|) . T) ((#0=(-406 (-558)) #0#) |has| |#1| (-38 (-406 (-558)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+(((#0=(-406 (-561)) #0#) |has| |#2| (-38 (-406 (-561)))) ((|#2| |#2|) . T) (($ $) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1| |#1|) . T) ((#0=(-406 (-561)) #0#) |has| |#1| (-38 (-406 (-561)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-561)) #0#) . T))
(((|#2| |#2|) . T))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) . T) (($) . T) (((-406 (-558))) . T))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T) (($) -4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) . T) (($) . T) (((-406 (-561))) . T))
(((|#2|) . T))
-((((-853)) |has| |#1| (-1087)))
+((((-856)) |has| |#1| (-1090)))
((($) . T))
-((((-1232 |#1| |#2| |#3| |#4|)) . T))
+((((-1239 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-811))
-(|has| |#2| (-811))
+(|has| |#2| (-814))
+(|has| |#2| (-814))
(|has| |#1| (-362))
(|has| |#1| (-362))
-(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
(|has| |#1| (-362))
(((|#1|) |has| |#2| (-416 |#1|)))
(((|#1|) |has| |#2| (-416 |#1|)))
-((((-1145)) . T))
-((((-900 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-635 |#1|)) . T) (((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-635 |#1|)) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-853)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1199)) . T) (((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) |has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-((((-558) |#1|) . T))
-((((-558) |#1|) . T))
-((((-558) |#1|) . T))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-558) |#1|) . T))
-(((|#1|) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
-((((-1163)) |has| |#1| (-890 (-1163))) (((-809 (-1163))) . T))
-(-3994 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-784)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-((((-810 |#1|)) . T))
+((((-1148)) . T))
+((((-903 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-638 |#1|)) . T) (((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-638 |#1|)) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-856)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1204)) . T) (((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) |has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+((((-561) |#1|) . T))
+((((-561) |#1|) . T))
+((((-561) |#1|) . T))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-561) |#1|) . T))
+(((|#1|) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171)))
+((((-1166)) |has| |#1| (-893 (-1166))) (((-812 (-1166))) . T))
+(-4007 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((((-813 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-853)) . T))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
+((((-856)) . T))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-406 (-558))))
-((((-853)) . T))
-((((-1232 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-558))) . T))
-(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)) (((-406 (-558))) |has| |#1| (-550)))
-(((|#2|) . T) (((-558)) |has| |#2| (-631 (-558))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-856)) . T))
+((((-1239 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-561))) . T))
+(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)) (((-406 (-561))) |has| |#1| (-553)))
+(((|#2|) . T) (((-561)) |has| |#2| (-634 (-561))))
(|has| |#1| (-362))
-(-3994 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232))))
-(|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))
+(-4007 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232))))
+(|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))
(|has| |#1| (-362))
(((|#1|) . T))
-(((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1| |#1|) . T))
-((((-558) |#1|) . T))
+(((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1| |#1|) . T))
+((((-561) |#1|) . T))
((((-315 |#1|)) . T))
-(((#0=(-689) (-1159 #0#)) . T))
-((((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((|#1|) . T))
+(((#0=(-692) (-1162 #0#)) . T))
+((((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-839))
-(((|#2|) . T) (((-1163)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))) (((-558)) . T) ((|#1|) |has| |#1| (-171)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) (((-558)) . T) (($) -3994 (|has| |#1| (-362)) (|has| |#1| (-550))))
-((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1112 |#1| (-1163))) . T) (((-809 (-1163))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1028 (-558))) (((-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) (((-1163)) . T))
+(|has| |#1| (-842))
+(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))) (((-561)) . T) ((|#1|) |has| |#1| (-171)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) (((-561)) . T) (($) -4007 (|has| |#1| (-362)) (|has| |#1| (-553))))
+((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1115 |#1| (-1166))) . T) (((-812 (-1166))) . T) ((|#1|) . T) (((-561)) |has| |#1| (-1031 (-561))) (((-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) (((-1166)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1069) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1163) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-1075 (-1163)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1072) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1166) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-1078 (-1166)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))))
-(|has| |#2| (-899))
-((($) . T) ((#0=(-1231 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-558))) |has| #0# (-38 (-406 (-558)))))
-((((-558) |#1|) . T))
-((((-1168)) . T))
-(((#0=(-1232 |#1| |#2| |#3| |#4|)) |has| #0# (-308 #0#)))
+((($) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))))
+(|has| |#2| (-902))
+((($) . T) ((#0=(-1238 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-561))) |has| #0# (-38 (-406 (-561)))))
+((((-561) |#1|) . T))
+((((-1171)) . T))
+(((#0=(-1239 |#1| |#2| |#3| |#4|)) |has| #0# (-308 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) ((#0=(-406 (-558)) #0#) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
+((($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) ((#0=(-406 (-561)) #0#) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
(|has| |#2| (-232))
(|has| $ (-146))
-((((-853)) . T))
-((($) . T) (((-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
-((((-853)) . T))
-(|has| |#1| (-839))
+((((-856)) . T))
+((($) . T) (((-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T))
+((((-856)) . T))
+(|has| |#1| (-842))
((((-129)) . T))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))
((((-406 |#2|) |#3|) . T))
(((|#1|) . T))
((((-129)) . T))
-((((-853)) . T))
-(((|#2| (-662 |#1|)) . T))
-(-12 (|has| |#1| (-306)) (|has| |#1| (-899)))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+((((-856)) . T))
+(((|#2| (-665 |#1|)) . T))
+(-12 (|has| |#1| (-306)) (|has| |#1| (-902)))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#4|) . T))
-(|has| |#1| (-550))
-((($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T))
-((((-1163)) -3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))
-(((|#1|) . T) (($) -3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-550))) (((-406 (-558))) -3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-362))))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163)))))
-(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))
-((((-558) |#1|) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
+(|has| |#1| (-553))
+((($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T))
+((((-1166)) -4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))
+(((|#1|) . T) (($) -4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-553))) (((-406 (-561))) -4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-362))))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166)))))
+(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))
+((((-561) |#1|) . T))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
(((|#1|) . T))
-(((|#1| (-529 (-809 (-1163)))) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((((-558)) . T) ((|#2|) . T) (($) . T) (((-406 (-558))) . T) (((-1163)) |has| |#2| (-1028 (-1163))))
+(((|#1| (-529 (-812 (-1166)))) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((((-561)) . T) ((|#2|) . T) (($) . T) (((-406 (-561))) . T) (((-1166)) |has| |#2| (-1031 (-1166))))
(((|#1|) . T))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
(((|#1|) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
-((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((($) . T) (((-860 |#1|)) . T) (((-406 (-558))) . T))
-((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(|has| |#1| (-550))
+(-4007 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
+((((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((($) . T) (((-863 |#1|)) . T) (((-406 (-561))) . T))
+((((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(|has| |#1| (-553))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-406 |#2|)) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-406 (-558)) #0#) . T) (($ $) . T))
-((((-558)) . T))
-(((|#2|) . T) (((-406 (-558))) . T) (($) . T))
-((((-853)) . T))
-((((-575 |#1|)) . T) (((-406 (-558))) . T) (($) . T))
-((((-853)) . T))
-((((-406 (-558))) . T) (($) . T))
-((((-558) |#1|) . T))
-((((-853)) . T))
-((($ $) . T) (((-1163) $) . T))
-((((-1238 |#1| |#2| |#3|)) . T))
-((((-534)) |has| |#2| (-606 (-534))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))))
-((((-853)) . T))
-((((-853)) . T))
-((((-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) (((-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) (((-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-(((|#1|) . T) (((-853)) . T) (((-1168)) . T))
-((((-853)) . T))
-((((-1168)) . T))
-((((-114)) . T) ((|#1|) . T) (((-558)) . T))
-(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-406 (-561)) #0#) . T) (($ $) . T))
+((((-561)) . T))
+(((|#2|) . T) (((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
+((((-578 |#1|)) . T) (((-406 (-561))) . T) (($) . T))
+((((-856)) . T))
+((((-406 (-561))) . T) (($) . T))
+((((-561) |#1|) . T))
+((((-856)) . T))
+((($ $) . T) (((-1166) $) . T))
+((((-1245 |#1| |#2| |#3|)) . T))
+((((-534)) |has| |#2| (-609 (-534))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))))
+((((-856)) . T))
+((((-856)) . T))
+((((-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) (((-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) (((-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+(((|#1|) . T) (((-856)) . T) (((-1171)) . T))
+((((-856)) . T))
+((((-1171)) . T))
+((((-114)) . T) ((|#1|) . T) (((-561)) . T))
+(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T))
(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T))
((((-129)) . T))
-((((-853)) . T))
-((((-1238 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) |has| |#2| (-171)) (($) -3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))))
+((((-856)) . T))
+((((-1245 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) |has| |#2| (-171)) (($) -4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-406 (-558))) |has| |#2| (-38 (-406 (-558)))) ((|#2|) . T))
+((($) . T) (((-406 (-561))) |has| |#2| (-38 (-406 (-561)))) ((|#2|) . T))
(|has| |#1| (-362))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-1091)) . T))
-((((-853)) . T))
-((($) -3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-1094)) . T))
+((((-856)) . T))
+((($) -4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
((($) . T))
-((($) -3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899))) ((|#1|) |has| |#1| (-171)) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-((((-1238 |#1| |#2| |#3|)) . T) (((-1210 |#1| |#2| |#3|)) . T))
-((((-1163)) . T) (((-853)) . T))
-(|has| |#2| (-899))
+((($) -4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902))) ((|#1|) |has| |#1| (-171)) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+((((-1245 |#1| |#2| |#3|)) . T) (((-1217 |#1| |#2| |#3|)) . T))
+((((-1166)) . T) (((-856)) . T))
+(|has| |#2| (-902))
(((|#1|) . T))
-(|has| |#1| (-899))
+(|has| |#1| (-902))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-171)))
-((((-689)) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-1168)) . T))
+((((-692)) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-1171)) . T))
(((|#1|) |has| |#1| (-171)))
-((((-1168)) . T))
-((((-1168)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
(((|#1|) |has| |#1| (-171)))
-((((-406 (-558))) . T) (($) . T))
-(((|#1| (-558)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-1168)) . T))
-((((-1168)) . T))
+((((-406 (-561))) . T) (($) . T))
+(((|#1| (-561)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-1171)) . T))
+((((-1171)) . T))
(|has| |#1| (-362))
(|has| |#1| (-362))
-(-3994 (|has| |#1| (-171)) (|has| |#1| (-550)))
-(((|#1| (-558)) . T))
-(((|#1| (-406 (-558))) . T))
-(((|#1| (-762)) . T))
-((((-406 (-558))) . T))
+(-4007 (|has| |#1| (-171)) (|has| |#1| (-553)))
+(((|#1| (-561)) . T))
+(((|#1| (-406 (-561))) . T))
+(((|#1| (-765)) . T))
+((((-406 (-561))) . T))
(((|#1| (-529 |#2|) |#2|) . T))
-((((-558) |#1|) . T))
-((((-558) |#1|) . T))
-(|has| |#1| (-1087))
-((((-558) |#1|) . T))
+((((-561) |#1|) . T))
+((((-561) |#1|) . T))
+(|has| |#1| (-1090))
+((((-561) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-882 (-378))) . T) (((-882 (-558))) . T) (((-1163)) . T) (((-534)) . T))
+((((-885 (-378))) . T) (((-885 (-561))) . T) (((-1166)) . T) (((-534)) . T))
(((|#1|) . T))
-((((-853)) . T))
-(-3994 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-784)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
-((((-558)) . T))
-((((-558)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
+((((-856)) . T))
+(-4007 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+(-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))
+((((-561)) . T))
+((((-561)) . T))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3994 (|has| |#2| (-171)) (|has| |#2| (-717)) (|has| |#2| (-839)) (|has| |#2| (-1039)))
-((((-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))))
-(-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
+(-4007 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042)))
+((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))))
+(-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))
(|has| |#1| (-144))
(|has| |#1| (-146))
(|has| |#1| (-362))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-232))
-((((-853)) . T))
-(((|#1| (-762) (-1069)) . T))
-((((-558) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-558) |#1|) . T))
-((((-558) |#1|) . T))
+((((-856)) . T))
+(((|#1| (-765) (-1072)) . T))
+((((-561) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-561) |#1|) . T))
+((((-561) |#1|) . T))
((((-116 |#1|)) . T))
-((((-406 (-558))) . T) (((-558)) . T))
-(((|#2|) |has| |#2| (-1039)))
-((((-406 (-558))) . T) (($) . T))
-(((|#2|) . T))
-((((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-550)))
-((((-558)) . T))
-((((-558)) . T))
-((((-1145) (-1163) (-558) (-224) (-853)) . T))
+((((-406 (-561))) . T) (((-561)) . T))
+(((|#2|) |has| |#2| (-1042)))
+((((-406 (-561))) . T) (($) . T))
+(((|#2|) . T))
+((((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-553)))
+((((-561)) . T))
+((((-561)) . T))
+((((-1148) (-1166) (-561) (-224) (-856)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-558)) . T) ((|#2|) |has| |#2| (-171)))
-((((-114)) . T) ((|#1|) . T) (((-558)) . T))
-(-3994 (|has| |#1| (-348)) (|has| |#1| (-367)))
+((((-561)) . T) ((|#2|) |has| |#2| (-171)))
+((((-114)) . T) ((|#1|) . T) (((-561)) . T))
+(-4007 (|has| |#1| (-348)) (|has| |#1| (-367)))
(((|#1| |#2|) . T))
((((-224)) . T))
-((((-406 (-558))) . T) (($) . T) (((-558)) . T))
+((((-406 (-561))) . T) (($) . T) (((-561)) . T))
+((((-856)) . T))
((($) . T) ((|#1|) . T))
-((((-853)) . T))
-((($) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-406 (-558))) |has| |#1| (-38 (-406 (-558)))))
-(((|#2|) |has| |#2| (-1087)) (((-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (((-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-534)) |has| |#1| (-606 (-534))))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-841)) (|has| |#1| (-1087))))
-((($) . T) (((-406 (-558))) . T))
-(|has| |#1| (-899))
-(|has| |#1| (-899))
-((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) (((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) (((-882 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-378))))) (((-882 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-558))))) (((-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-534)))))
-((((-853)) . T))
-((((-853)) . T))
+((($) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-406 (-561))) |has| |#1| (-38 (-406 (-561)))))
+(((|#2|) |has| |#2| (-1090)) (((-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (((-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-534)) |has| |#1| (-609 (-534))))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-844)) (|has| |#1| (-1090))))
+((($) . T) (((-406 (-561))) . T))
+(|has| |#1| (-902))
+(|has| |#1| (-902))
+((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) (((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) (((-885 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-378))))) (((-885 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-561))))) (((-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-534)))))
+((((-856)) . T))
+((((-856)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-171)))
-(((|#1|) . T) (((-558)) . T))
-((((-1168)) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-550)))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
+(((|#1|) . T) (((-561)) . T))
+((((-1171)) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-553)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
(((|#2|) . T))
-(-3994 (|has| |#1| (-21)) (|has| |#1| (-839)))
+(-4007 (|has| |#1| (-21)) (|has| |#1| (-842)))
(((|#1|) |has| |#1| (-171)))
(((|#1|) . T))
(((|#1|) . T))
-((((-853)) -3994 (-12 (|has| |#1| (-605 (-853))) (|has| |#2| (-605 (-853)))) (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))))
+((((-856)) -4007 (-12 (|has| |#1| (-608 (-856))) (|has| |#2| (-608 (-856)))) (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))))
((((-406 |#2|) |#3|) . T))
-((((-406 (-558))) . T) (($) . T))
-(|has| |#1| (-38 (-406 (-558))))
+((((-406 (-561))) . T) (($) . T))
+(|has| |#1| (-38 (-406 (-561))))
(|has| |#1| (-362))
-((($ $) . T) ((#0=(-406 (-558)) #0#) . T))
+((($ $) . T) ((#0=(-406 (-561)) #0#) . T))
(|has| (-406 |#2|) (-146))
(|has| (-406 |#2|) (-144))
-((((-689)) . T))
-(((|#1|) . T) (((-406 (-558))) . T) (((-558)) . T) (($) . T))
-(((#0=(-558) #0#) . T))
-((($) . T) (((-406 (-558))) . T))
-(-3994 (|has| |#4| (-171)) (|has| |#4| (-717)) (|has| |#4| (-839)) (|has| |#4| (-1039)))
-(-3994 (|has| |#3| (-171)) (|has| |#3| (-717)) (|has| |#3| (-839)) (|has| |#3| (-1039)))
-((((-853)) . T) (((-1168)) . T))
-(|has| |#4| (-784))
-(-3994 (|has| |#4| (-784)) (|has| |#4| (-839)))
-(|has| |#4| (-839))
-(|has| |#3| (-784))
-((((-1168)) . T))
-(-3994 (|has| |#3| (-784)) (|has| |#3| (-839)))
-(|has| |#3| (-839))
-((((-558)) . T))
-(((|#2|) . T))
-((((-1163)) -3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))))
-((((-1163)) -12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163)))))
+((((-692)) . T))
+(((|#1|) . T) (((-406 (-561))) . T) (((-561)) . T) (($) . T))
+(((#0=(-561) #0#) . T))
+((($) . T) (((-406 (-561))) . T))
+(-4007 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042)))
+(-4007 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042)))
+((((-856)) . T) (((-1171)) . T))
+(|has| |#4| (-787))
+(-4007 (|has| |#4| (-787)) (|has| |#4| (-842)))
+(|has| |#4| (-842))
+(|has| |#3| (-787))
+((((-1171)) . T))
+(-4007 (|has| |#3| (-787)) (|has| |#3| (-842)))
+(|has| |#3| (-842))
+((((-561)) . T))
+(((|#2|) . T))
+((((-1166)) -4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))))
+((((-1166)) -12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-855 |#1|)) . T))
-((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
-((((-1127 |#1| |#2|)) . T))
-((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
-(((|#2|) . T) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
-((($) . T))
-(|has| |#1| (-1012))
-(((|#2|) . T) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-((((-853)) . T))
-((((-534)) |has| |#2| (-606 (-534))) (((-882 (-558))) |has| |#2| (-606 (-882 (-558)))) (((-882 (-378))) |has| |#2| (-606 (-882 (-378)))) (((-378)) . #0=(|has| |#2| (-1012))) (((-224)) . #0#))
+((((-858 |#1|)) . T))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-1130 |#1| |#2|)) . T))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
+(((|#2|) . T) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
+((($) . T))
+(|has| |#1| (-1015))
+(((|#2|) . T) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+((((-856)) . T))
+((((-534)) |has| |#2| (-609 (-534))) (((-885 (-561))) |has| |#2| (-609 (-885 (-561)))) (((-885 (-378))) |has| |#2| (-609 (-885 (-378)))) (((-378)) . #0=(|has| |#2| (-1015))) (((-224)) . #0#))
((((-293 |#3|)) . T))
-((((-1163) (-52)) . T))
+((((-1166) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-406 (-558))))
-(|has| |#1| (-38 (-406 (-558))))
-((((-853)) . T))
+(|has| |#1| (-38 (-406 (-561))))
+(|has| |#1| (-38 (-406 (-561))))
+((((-856)) . T))
(((|#2|) . T))
+((((-856)) . T))
((($ $) . T))
-((((-406 (-558))) . T) (((-689)) . T) (($) . T))
-((((-1161 |#1| |#2| |#3|)) . T))
-((((-1161 |#1| |#2| |#3|)) . T) (((-1154 |#1| |#2| |#3|)) . T))
-((((-853)) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-558) |#1|) . T))
-((((-1161 |#1| |#2| |#3|)) |has| |#1| (-362)))
+((((-406 (-561))) . T) (((-692)) . T) (($) . T))
+((((-1164 |#1| |#2| |#3|)) . T))
+((((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T))
+((((-856)) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-561) |#1|) . T))
+((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-362))
-(((|#3|) . T) ((|#2|) . T) (($) -3994 (|has| |#4| (-171)) (|has| |#4| (-839)) (|has| |#4| (-1039))) ((|#4|) -3994 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1039))))
-(((|#2|) . T) (($) -3994 (|has| |#3| (-171)) (|has| |#3| (-839)) (|has| |#3| (-1039))) ((|#3|) -3994 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1039))))
+(((|#3|) . T) ((|#2|) . T) (($) -4007 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042))) ((|#4|) -4007 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))))
+(((|#2|) . T) (($) -4007 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -4007 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-362))
((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) (((-558)) |has| |#2| (-1028 (-558))) ((|#2|) . T) (((-855 |#1|)) . T))
-((((-1163)) . T) ((|#1|) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
-((((-186)) . T) (((-853)) . T))
-((((-853)) . T))
+((((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) (((-561)) |has| |#2| (-1031 (-561))) ((|#2|) . T) (((-858 |#1|)) . T))
+((((-1166)) . T) ((|#1|) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
+((((-186)) . T) (((-856)) . T))
+((((-856)) . T))
(((|#1|) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-((((-129)) . T) (((-853)) . T))
-((((-558) |#1|) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+((((-129)) . T) (((-856)) . T))
+((((-561) |#1|) . T))
((((-129)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-899)))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-((((-853)) . T))
-((((-853)) . T))
-((((-853)) . T))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-902)))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((((-856)) . T))
+((((-856)) . T))
+((((-856)) . T))
(((|#1| (-529 |#2|)) . T))
-((((-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) . T))
-((((-558) (-129)) . T))
-(((|#1| (-558)) . T))
-(((|#1| (-406 (-558))) . T))
-(((|#1| (-762)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-406 (-558))) . T))
-((((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-(-3994 (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899)))
-(-3994 (|has| |#1| (-450)) (|has| |#1| (-550)) (|has| |#1| (-899)))
-((($) . T))
-(((|#2| (-529 (-855 |#1|))) . T))
-((((-1168)) . T))
-((((-1168)) . T))
-((((-558) |#1|) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-(((|#2|) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-853)) . T) (((-1168)) . T))
-((((-1168)) . T))
-((((-853)) -3994 (|has| |#1| (-605 (-853))) (|has| |#1| (-1087))))
-(((|#1|) . T))
-(((|#2| (-762)) . T))
+((((-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) . T))
+((((-561) (-129)) . T))
+(((|#1| (-561)) . T))
+(((|#1| (-406 (-561))) . T))
+(((|#1| (-765)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-406 (-561))) . T))
+((((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+(-4007 (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902)))
+(-4007 (|has| |#1| (-450)) (|has| |#1| (-553)) (|has| |#1| (-902)))
+((($) . T))
+(((|#2| (-529 (-858 |#1|))) . T))
+((((-1171)) . T))
+((((-1171)) . T))
+((((-561) |#1|) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+(((|#2|) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-856)) . T) (((-1171)) . T))
+((((-1171)) . T))
+((((-856)) -4007 (|has| |#1| (-608 (-856))) (|has| |#1| (-1090))))
+(((|#1|) . T))
+(((|#2| (-765)) . T))
(((|#1| |#2|) . T))
-((((-1145) |#1|) . T))
+((((-1148) |#1|) . T))
((((-406 |#2|)) . T))
-((((-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T))
-(|has| |#1| (-550))
-(|has| |#1| (-550))
+((((-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T))
+(|has| |#1| (-553))
+(|has| |#1| (-553))
((($) . T) ((|#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-558)) . T) (($) . T))
+((((-561)) . T) (($) . T))
(((|#2| $) |has| |#2| (-285 |#2| |#2|)))
-(((|#1| (-635 |#1|)) |has| |#1| (-839)))
-(-3994 (|has| |#1| (-232)) (|has| |#1| (-348)))
-(-3994 (|has| |#1| (-362)) (|has| |#1| (-348)))
-((((-1242 |#1|)) . T) (((-558)) . T) ((|#2|) . T) (((-406 (-558))) |has| |#2| (-1028 (-406 (-558)))))
-(|has| |#1| (-1087))
-(((|#1|) . T))
-((((-1242 |#1|)) . T) (((-558)) . T) (($) -3994 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-550)) (|has| |#2| (-899))) (((-1069)) . T) ((|#2|) . T) (((-406 (-558))) -3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))))
-((((-406 (-558))) . T) (($) . T))
-((((-989 |#1|)) . T) ((|#1|) . T) (((-558)) -3994 (|has| (-989 |#1|) (-1028 (-558))) (|has| |#1| (-1028 (-558)))) (((-406 (-558))) -3994 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-((((-1163)) |has| |#1| (-890 (-1163))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))
-(((|#1| (-594 |#1| |#3|) (-594 |#1| |#2|)) . T))
+(((|#1| (-638 |#1|)) |has| |#1| (-842)))
+(-4007 (|has| |#1| (-232)) (|has| |#1| (-348)))
+(-4007 (|has| |#1| (-362)) (|has| |#1| (-348)))
+((((-1249 |#1|)) . T) (((-561)) . T) ((|#2|) . T) (((-406 (-561))) |has| |#2| (-1031 (-406 (-561)))))
+(|has| |#1| (-1090))
+(((|#1|) . T))
+((((-1249 |#1|)) . T) (((-561)) . T) (($) -4007 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-553)) (|has| |#2| (-902))) (((-1072)) . T) ((|#2|) . T) (((-406 (-561))) -4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))))
+((((-406 (-561))) . T) (($) . T))
+((((-992 |#1|)) . T) ((|#1|) . T) (((-561)) -4007 (|has| (-992 |#1|) (-1031 (-561))) (|has| |#1| (-1031 (-561)))) (((-406 (-561))) -4007 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+((((-1166)) |has| |#1| (-893 (-1166))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))
+(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1127 |#1| |#2|) #0#) |has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))))
+(((#0=(-1130 |#1| |#2|) #0#) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((#0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) #0#) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((#0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) #0#) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))))
(((#0=(-116 |#1|)) |has| #0# (-308 #0#)))
((($ $) . T))
-(-3994 (|has| |#1| (-841)) (|has| |#1| (-1087)))
-((($ $) . T) ((#0=(-855 |#1|) $) . T) ((#0# |#2|) . T))
+(-4007 (|has| |#1| (-844)) (|has| |#1| (-1090)))
+((($ $) . T) ((#0=(-858 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-232)) ((|#2| |#1|) |has| |#1| (-232)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-476 . -1087) T) ((-263 . -512) 161781) ((-246 . -512) 161724) ((-244 . -1087) 161674) ((-565 . -111) 161659) ((-529 . -23) T) ((-137 . -1087) T) ((-136 . -1087) T) ((-117 . -308) 161616) ((-132 . -1087) T) ((-477 . -512) 161408) ((-667 . -608) 161392) ((-684 . -102) T) ((-1128 . -512) 161311) ((-389 . -130) T) ((-1259 . -966) 161280) ((-31 . -93) T) ((-594 . -487) 161264) ((-613 . -130) T) ((-810 . -837) T) ((-521 . -57) 161214) ((-59 . -512) 161147) ((-517 . -512) 161080) ((-417 . -890) 161039) ((-168 . -1039) T) ((-514 . -512) 160972) ((-495 . -512) 160905) ((-494 . -512) 160838) ((-790 . -1028) 160621) ((-689 . -38) 160586) ((-1219 . -608) 160334) ((-342 . -348) T) ((-1081 . -1080) 160318) ((-1081 . -1087) 160296) ((-846 . -608) 160193) ((-168 . -242) 160144) ((-168 . -232) 160095) ((-1081 . -1082) 160053) ((-862 . -285) 160011) ((-224 . -786) T) ((-224 . -783) T) ((-684 . -283) NIL) ((-565 . -608) 159983) ((-1137 . -1176) 159962) ((-406 . -982) 159946) ((-691 . -21) T) ((-691 . -25) T) ((-1261 . -638) 159920) ((-315 . -159) 159899) ((-315 . -142) 159878) ((-1137 . -107) 159828) ((-133 . -25) T) ((-40 . -230) 159805) ((-116 . -21) T) ((-116 . -25) T) ((-600 . -287) 159781) ((-473 . -287) 159760) ((-1219 . -325) 159737) ((-1219 . -1039) T) ((-846 . -1039) T) ((-790 . -337) 159721) ((-138 . -184) T) ((-117 . -1138) NIL) ((-91 . -605) 159653) ((-475 . -130) T) ((-1219 . -232) T) ((-1083 . -488) 159634) ((-1083 . -605) 159600) ((-1077 . -488) 159581) ((-1077 . -605) 159547) ((-586 . -1200) T) ((-1061 . -488) 159528) ((-565 . -1039) T) ((-1061 . -605) 159494) ((-652 . -708) 159478) ((-1054 . -488) 159459) ((-1054 . -605) 159425) ((-948 . -287) 159402) ((-60 . -34) T) ((-1050 . -786) T) ((-1050 . -783) T) ((-1026 . -488) 159383) ((-1009 . -488) 159364) ((-807 . -717) T) ((-722 . -47) 159329) ((-615 . -38) 159316) ((-354 . -289) T) ((-351 . -289) T) ((-343 . -289) T) ((-263 . -289) 159247) ((-246 . -289) 159178) ((-1026 . -605) 159144) ((-1014 . -102) T) ((-1009 . -605) 159110) ((-618 . -488) 159091) ((-412 . -717) T) ((-117 . -38) 159036) ((-481 . -488) 159017) ((-618 . -605) 158983) ((-412 . -471) T) ((-217 . -488) 158964) ((-481 . -605) 158930) ((-353 . -102) T) ((-217 . -605) 158896) ((-1194 . -1046) T) ((-702 . -1046) T) ((-1161 . -47) 158873) ((-1160 . -47) 158843) ((-1154 . -47) 158820) ((-128 . -287) 158795) ((-1025 . -150) 158741) ((-900 . -289) T) ((-1113 . -47) 158713) ((-684 . -308) NIL) ((-513 . -605) 158695) ((-508 . -605) 158677) ((-506 . -605) 158659) ((-326 . -1087) 158609) ((-703 . -450) 158540) ((-48 . -102) T) ((-1230 . -285) 158525) ((-1209 . -285) 158445) ((-635 . -656) 158429) ((-635 . -641) 158413) ((-338 . -21) T) ((-338 . -25) T) ((-40 . -348) NIL) ((-173 . -21) T) ((-173 . -25) T) ((-635 . -372) 158397) ((-597 . -488) 158379) ((-594 . -285) 158356) ((-597 . -605) 158323) ((-387 . -102) T) ((-1107 . -142) T) ((-126 . -605) 158255) ((-864 . -1087) T) ((-648 . -410) 158239) ((-705 . -605) 158221) ((-248 . -605) 158188) ((-186 . -605) 158170) ((-161 . -605) 158152) ((-156 . -605) 158134) ((-1261 . -717) T) ((-1089 . -34) T) ((-861 . -786) NIL) ((-861 . -783) NIL) ((-849 . -841) T) ((-722 . -876) NIL) ((-1270 . -130) T) ((-380 . -130) T) ((-882 . -608) 158102) ((-894 . -102) T) ((-722 . -1028) 157978) ((-529 . -130) T) ((-1074 . -410) 157962) ((-990 . -487) 157946) ((-117 . -399) 157923) ((-1154 . -1200) 157902) ((-773 . -410) 157886) ((-771 . -410) 157870) ((-933 . -34) T) ((-684 . -1138) NIL) ((-250 . -638) 157705) ((-249 . -638) 157527) ((-808 . -910) 157506) ((-452 . -410) 157490) ((-594 . -19) 157474) ((-1133 . -1193) 157443) ((-1154 . -876) NIL) ((-1154 . -874) 157395) ((-594 . -596) 157372) ((-1186 . -605) 157304) ((-1162 . -605) 157286) ((-62 . -394) T) ((-1160 . -1028) 157221) ((-1154 . -1028) 157187) ((-684 . -38) 157137) ((-472 . -285) 157122) ((-722 . -376) 157106) ((-829 . -605) 157088) ((-648 . -1046) T) ((-1230 . -992) 157054) ((-1209 . -992) 157020) ((-1075 . -608) 157004) ((-1051 . -1176) 156979) ((-1063 . -608) 156956) ((-862 . -606) 156763) ((-862 . -605) 156745) ((-1173 . -487) 156682) ((-417 . -1012) 156660) ((-48 . -308) 156647) ((-1051 . -107) 156593) ((-477 . -487) 156530) ((-518 . -1200) T) ((-1154 . -337) 156482) ((-1128 . -487) 156453) ((-1154 . -376) 156405) ((-1074 . -1046) T) ((-436 . -102) T) ((-182 . -1087) T) ((-250 . -34) T) ((-249 . -34) T) ((-773 . -1046) T) ((-771 . -1046) T) ((-722 . -890) 156382) ((-452 . -1046) T) ((-59 . -487) 156366) ((-1024 . -1045) 156340) ((-517 . -487) 156324) ((-514 . -487) 156308) ((-495 . -487) 156292) ((-494 . -487) 156276) ((-244 . -512) 156209) ((-1024 . -111) 156176) ((-1161 . -890) 156089) ((-1160 . -890) 155995) ((-1154 . -890) 155828) ((-1113 . -890) 155812) ((-660 . -1099) T) ((-353 . -1138) T) ((-636 . -93) T) ((-321 . -1045) 155794) ((-250 . -782) 155773) ((-250 . -785) 155724) ((-31 . -488) 155705) ((-250 . -784) 155684) ((-249 . -782) 155663) ((-249 . -785) 155614) ((-249 . -784) 155593) ((-31 . -605) 155559) ((-50 . -1046) T) ((-250 . -717) 155469) ((-249 . -717) 155379) ((-1194 . -1087) T) ((-660 . -23) T) ((-575 . -1046) T) ((-516 . -1046) T) ((-378 . -1045) 155344) ((-321 . -111) 155319) ((-73 . -382) T) ((-73 . -394) T) ((-1014 . -38) 155256) ((-684 . -399) 155238) ((-99 . -102) T) ((-702 . -1087) T) ((-993 . -144) 155210) ((-993 . -146) 155182) ((-378 . -111) 155138) ((-318 . -1204) 155117) ((-472 . -992) 155083) ((-353 . -38) 155048) ((-40 . -369) 155020) ((-863 . -605) 154892) ((-127 . -125) 154876) ((-121 . -125) 154860) ((-827 . -1045) 154830) ((-824 . -21) 154782) ((-818 . -1045) 154766) ((-824 . -25) 154718) ((-318 . -550) 154669) ((-515 . -608) 154650) ((-558 . -819) T) ((-239 . -1200) T) ((-1024 . -608) 154619) ((-827 . -111) 154584) ((-818 . -111) 154563) ((-1230 . -605) 154545) ((-1209 . -605) 154527) ((-1209 . -606) 154198) ((-1159 . -899) 154177) ((-1112 . -899) 154156) ((-48 . -38) 154121) ((-1268 . -1099) T) ((-594 . -605) 154033) ((-594 . -606) 153994) ((-1266 . -1099) T) ((-360 . -608) 153978) ((-321 . -608) 153962) ((-239 . -1028) 153789) ((-1159 . -638) 153714) ((-1112 . -638) 153639) ((-709 . -605) 153621) ((-845 . -638) 153595) ((-1268 . -23) T) ((-1266 . -23) T) ((-489 . -1087) T) ((-378 . -608) 153545) ((-378 . -610) 153527) ((-1024 . -1039) T) ((-1173 . -285) 153506) ((-168 . -367) 153457) ((-994 . -1200) T) ((-827 . -608) 153411) ((-818 . -608) 153366) ((-44 . -23) T) ((-477 . -285) 153345) ((-579 . -1087) T) ((-1133 . -1096) 153314) ((-1091 . -1090) 153266) ((-389 . -21) T) ((-389 . -25) T) ((-151 . -1099) T) ((-1274 . -102) T) ((-994 . -874) 153248) ((-994 . -876) 153230) ((-1194 . -708) 153127) ((-615 . -230) 153111) ((-613 . -21) T) ((-288 . -550) T) ((-613 . -25) T) ((-1180 . -1087) T) ((-702 . -708) 153076) ((-239 . -376) 153045) ((-994 . -1028) 153005) ((-378 . -1039) T) ((-222 . -1046) T) ((-117 . -230) 152982) ((-59 . -285) 152959) ((-151 . -23) T) ((-514 . -285) 152936) ((-326 . -512) 152869) ((-494 . -285) 152846) ((-378 . -242) T) ((-378 . -232) T) ((-827 . -1039) T) ((-818 . -1039) T) ((-703 . -939) 152815) ((-691 . -841) T) ((-472 . -605) 152797) ((-818 . -232) 152776) ((-133 . -841) T) ((-648 . -1087) T) ((-1173 . -596) 152755) ((-544 . -1176) 152734) ((-335 . -1087) T) ((-318 . -362) 152713) ((-406 . -146) 152692) ((-406 . -144) 152671) ((-954 . -1099) 152570) ((-239 . -890) 152502) ((-806 . -1099) 152412) ((-644 . -843) 152396) ((-477 . -596) 152375) ((-544 . -107) 152325) ((-994 . -376) 152307) ((-994 . -337) 152289) ((-97 . -1087) T) ((-954 . -23) 152100) ((-475 . -21) T) ((-475 . -25) T) ((-806 . -23) 151970) ((-1163 . -605) 151952) ((-59 . -19) 151936) ((-1163 . -606) 151858) ((-1159 . -717) T) ((-1112 . -717) T) ((-514 . -19) 151842) ((-494 . -19) 151826) ((-59 . -596) 151803) ((-1074 . -1087) T) ((-891 . -102) 151781) ((-845 . -717) T) ((-773 . -1087) T) ((-514 . -596) 151758) ((-494 . -596) 151735) ((-771 . -1087) T) ((-771 . -1053) 151702) ((-459 . -1087) T) ((-452 . -1087) T) ((-579 . -708) 151677) ((-639 . -1087) T) ((-1238 . -47) 151654) ((-1232 . -102) T) ((-1231 . -47) 151624) ((-1210 . -47) 151601) ((-1194 . -171) 151552) ((-1160 . -306) 151531) ((-994 . -890) NIL) ((-1154 . -306) 151510) ((-619 . -1099) T) ((-660 . -130) T) ((-1083 . -608) 151491) ((-1077 . -608) 151472) ((-1067 . -550) 151423) ((-1067 . -1204) 151374) ((-1061 . -608) 151355) ((-274 . -1087) T) ((-85 . -439) T) ((-85 . -394) T) ((-1054 . -608) 151336) ((-1026 . -608) 151317) ((-50 . -1087) T) ((-1009 . -608) 151298) ((-702 . -171) T) ((-588 . -47) 151275) ((-224 . -638) 151240) ((-575 . -1087) T) ((-516 . -1087) T) ((-358 . -1204) T) ((-352 . -1204) T) ((-344 . -1204) T) ((-485 . -811) T) ((-485 . -910) T) ((-318 . -1099) T) ((-108 . -1204) T) ((-705 . -1045) 151210) ((-338 . -841) T) ((-216 . -910) T) ((-216 . -811) T) ((-618 . -608) 151191) ((-358 . -550) T) ((-352 . -550) T) ((-344 . -550) T) ((-481 . -608) 151172) ((-108 . -550) T) ((-648 . -708) 151142) ((-1154 . -1012) NIL) ((-217 . -608) 151123) ((-318 . -23) T) ((-67 . -1200) T) ((-990 . -605) 151055) ((-684 . -230) 151037) ((-705 . -111) 151002) ((-635 . -34) T) ((-244 . -487) 150986) ((-1089 . -1085) 150970) ((-170 . -1087) T) ((-942 . -899) 150949) ((-513 . -608) 150933) ((-1274 . -1138) T) ((-1270 . -21) T) ((-479 . -899) 150912) ((-1270 . -25) T) ((-1268 . -130) T) ((-1266 . -130) T) ((-1259 . -102) T) ((-1242 . -605) 150878) ((-1231 . -1028) 150813) ((-1074 . -708) 150662) ((-1050 . -638) 150649) ((-942 . -638) 150574) ((-773 . -708) 150403) ((-534 . -605) 150385) ((-534 . -606) 150366) ((-771 . -708) 150215) ((-1210 . -1200) 150194) ((-1064 . -102) T) ((-380 . -25) T) ((-380 . -21) T) ((-479 . -638) 150119) ((-459 . -708) 150090) ((-452 . -708) 149939) ((-977 . -102) T) ((-1210 . -876) NIL) ((-1210 . -874) 149891) ((-1173 . -606) NIL) ((-728 . -102) T) ((-1173 . -605) 149873) ((-597 . -608) 149855) ((-1129 . -1110) 149800) ((-1036 . -1193) 149729) ((-529 . -25) T) ((-891 . -308) 149667) ((-705 . -608) 149621) ((-342 . -1046) T) ((-636 . -488) 149602) ((-140 . -102) T) ((-44 . -130) T) ((-288 . -1099) T) ((-671 . -93) T) ((-666 . -93) T) ((-654 . -605) 149584) ((-636 . -605) 149537) ((-476 . -93) T) ((-354 . -605) 149519) ((-351 . -605) 149501) ((-343 . -605) 149483) ((-263 . -606) 149231) ((-263 . -605) 149213) ((-246 . -605) 149195) ((-246 . -606) 149056) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1210 . -1028) 149022) ((-1194 . -512) 148989) ((-1128 . -605) 148971) ((-810 . -848) T) ((-810 . -717) T) ((-594 . -287) 148948) ((-575 . -708) 148913) ((-477 . -606) NIL) ((-477 . -605) 148895) ((-516 . -708) 148840) ((-315 . -102) T) ((-312 . -102) T) ((-288 . -23) T) ((-151 . -130) T) ((-900 . -605) 148822) ((-385 . -717) T) ((-862 . -1045) 148774) ((-900 . -606) 148756) ((-862 . -111) 148694) ((-705 . -1039) T) ((-703 . -1222) 148678) ((-138 . -102) T) ((-135 . -102) T) ((-114 . -102) T) ((-684 . -348) NIL) ((-517 . -605) 148610) ((-378 . -786) T) ((-222 . -1087) T) ((-378 . -783) T) ((-224 . -785) T) ((-224 . -782) T) ((-59 . -606) 148571) ((-59 . -605) 148483) ((-224 . -717) T) ((-514 . -606) 148444) ((-514 . -605) 148356) ((-495 . -605) 148288) ((-494 . -606) 148249) ((-494 . -605) 148161) ((-1067 . -362) 148112) ((-40 . -410) 148089) ((-77 . -1200) T) ((-861 . -899) NIL) ((-358 . -328) 148073) ((-358 . -362) T) ((-352 . -328) 148057) ((-352 . -362) T) ((-344 . -328) 148041) ((-344 . -362) T) ((-315 . -283) 148020) ((-108 . -362) T) ((-70 . -1200) T) ((-1210 . -337) 147972) ((-861 . -638) 147917) ((-1210 . -376) 147869) ((-954 . -130) 147724) ((-806 . -130) 147594) ((-948 . -641) 147578) ((-1074 . -171) 147489) ((-948 . -372) 147473) ((-1050 . -785) T) ((-1050 . -782) T) ((-862 . -608) 147371) ((-773 . -171) 147262) ((-771 . -171) 147173) ((-807 . -47) 147135) ((-1050 . -717) T) ((-326 . -487) 147119) ((-942 . -717) T) ((-452 . -171) 147030) ((-244 . -285) 147007) ((-479 . -717) T) ((-1259 . -308) 146945) ((-1238 . -890) 146858) ((-1231 . -890) 146764) ((-1230 . -1045) 146599) ((-1210 . -890) 146432) ((-1209 . -1045) 146240) ((-1194 . -289) 146219) ((-1133 . -150) 146203) ((-1107 . -102) T) ((-1105 . -1087) T) ((-1067 . -23) T) ((-1062 . -102) T) ((-917 . -945) T) ((-728 . -308) 146141) ((-75 . -1200) T) ((-30 . -945) T) ((-168 . -899) 146094) ((-654 . -381) 146066) ((-112 . -835) T) ((-1 . -605) 146048) ((-1067 . -1099) T) ((-128 . -641) 146030) ((-50 . -612) 146014) ((-993 . -408) 145986) ((-588 . -890) 145899) ((-437 . -102) T) ((-140 . -308) NIL) ((-128 . -372) 145881) ((-862 . -1039) T) ((-824 . -841) 145860) ((-81 . -1200) T) ((-702 . -289) T) ((-40 . -1046) T) ((-575 . -171) T) ((-516 . -171) T) ((-509 . -605) 145842) ((-168 . -638) 145752) ((-505 . -605) 145734) ((-350 . -146) 145716) ((-350 . -144) T) ((-358 . -1099) T) ((-352 . -1099) T) ((-344 . -1099) T) ((-994 . -306) T) ((-904 . -306) T) ((-862 . -242) T) ((-108 . -1099) T) ((-862 . -232) 145695) ((-1230 . -111) 145516) ((-1209 . -111) 145305) ((-244 . -1234) 145289) ((-558 . -839) T) ((-358 . -23) T) ((-353 . -348) T) ((-315 . -308) 145276) ((-312 . -308) 145217) ((-352 . -23) T) ((-318 . -130) T) ((-344 . -23) T) ((-994 . -1012) T) ((-31 . -608) 145198) ((-108 . -23) T) ((-244 . -596) 145175) ((-1232 . -38) 145067) ((-1219 . -899) 145046) ((-112 . -1087) T) ((-1025 . -102) T) ((-1219 . -638) 144971) ((-861 . -785) NIL) ((-846 . -638) 144945) ((-861 . -782) NIL) ((-807 . -876) NIL) ((-861 . -717) T) ((-1074 . -512) 144818) ((-773 . -512) 144765) ((-771 . -512) 144717) ((-565 . -638) 144704) ((-807 . -1028) 144532) ((-452 . -512) 144475) ((-387 . -388) T) ((-1230 . -608) 144288) ((-1209 . -608) 144036) ((-60 . -1200) T) ((-613 . -841) 144015) ((-498 . -651) T) ((-1133 . -966) 143984) ((-993 . -450) T) ((-689 . -839) T) ((-508 . -783) T) ((-472 . -1045) 143819) ((-342 . -1087) T) ((-312 . -1138) NIL) ((-288 . -130) T) ((-393 . -1087) T) ((-684 . -369) 143786) ((-860 . -1046) T) ((-222 . -612) 143763) ((-326 . -285) 143740) ((-472 . -111) 143561) ((-1230 . -1039) T) ((-1209 . -1039) T) ((-807 . -376) 143545) ((-168 . -717) T) ((-644 . -102) T) ((-1230 . -242) 143524) ((-1230 . -232) 143476) ((-1209 . -232) 143381) ((-1209 . -242) 143360) ((-993 . -401) NIL) ((-660 . -631) 143308) ((-315 . -38) 143218) ((-312 . -38) 143147) ((-69 . -605) 143129) ((-318 . -491) 143095) ((-1173 . -287) 143074) ((-1100 . -1099) 142984) ((-83 . -1200) T) ((-61 . -605) 142966) ((-477 . -287) 142945) ((-1261 . -1028) 142922) ((-1151 . -1087) T) ((-1100 . -23) 142792) ((-807 . -890) 142728) ((-1219 . -717) T) ((-1089 . -1200) T) ((-472 . -608) 142554) ((-1074 . -289) 142485) ((-956 . -1087) T) ((-883 . -102) T) ((-773 . -289) 142396) ((-326 . -19) 142380) ((-59 . -287) 142357) ((-771 . -289) 142288) ((-846 . -717) T) ((-117 . -839) NIL) ((-514 . -287) 142265) ((-326 . -596) 142242) ((-494 . -287) 142219) ((-452 . -289) 142150) ((-1025 . -308) 142001) ((-671 . -488) 141982) ((-565 . -717) T) ((-666 . -488) 141963) ((-671 . -605) 141913) ((-666 . -605) 141879) ((-652 . -605) 141861) ((-476 . -488) 141842) ((-476 . -605) 141808) ((-244 . -606) 141769) ((-244 . -488) 141746) ((-137 . -488) 141727) ((-136 . -488) 141708) ((-132 . -488) 141689) ((-244 . -605) 141581) ((-212 . -102) T) ((-137 . -605) 141547) ((-136 . -605) 141513) ((-132 . -605) 141479) ((-1134 . -34) T) ((-933 . -1200) T) ((-342 . -708) 141424) ((-660 . -25) T) ((-660 . -21) T) ((-1163 . -608) 141405) ((-472 . -1039) T) ((-627 . -416) 141370) ((-599 . -416) 141335) ((-1107 . -1138) T) ((-575 . -289) T) ((-516 . -289) T) ((-1231 . -306) 141314) ((-472 . -232) 141266) ((-472 . -242) 141245) ((-1210 . -306) 141224) ((-1210 . -1012) NIL) ((-1067 . -130) T) ((-862 . -786) 141203) ((-143 . -102) T) ((-40 . -1087) T) ((-862 . -783) 141182) ((-635 . -1000) 141166) ((-574 . -1046) T) ((-558 . -1046) T) ((-493 . -1046) T) ((-406 . -450) T) ((-358 . -130) T) ((-315 . -399) 141150) ((-312 . -399) 141111) ((-352 . -130) T) ((-344 . -130) T) ((-1168 . -1087) T) ((-1107 . -38) 141098) ((-1081 . -605) 141065) ((-108 . -130) T) ((-944 . -1087) T) ((-911 . -1087) T) ((-762 . -1087) T) ((-662 . -1087) T) ((-691 . -146) T) ((-116 . -146) T) ((-1268 . -21) T) ((-1268 . -25) T) ((-1266 . -21) T) ((-1266 . -25) T) ((-654 . -1045) 141049) ((-529 . -841) T) ((-498 . -841) T) ((-354 . -1045) 141001) ((-351 . -1045) 140953) ((-343 . -1045) 140905) ((-250 . -1200) T) ((-249 . -1200) T) ((-263 . -1045) 140748) ((-246 . -1045) 140591) ((-654 . -111) 140570) ((-354 . -111) 140508) ((-351 . -111) 140446) ((-343 . -111) 140384) ((-263 . -111) 140213) ((-246 . -111) 140042) ((-808 . -1204) 140021) ((-615 . -410) 140005) ((-44 . -21) T) ((-44 . -25) T) ((-806 . -631) 139911) ((-808 . -550) 139890) ((-250 . -1028) 139717) ((-249 . -1028) 139544) ((-126 . -119) 139528) ((-900 . -1045) 139493) ((-703 . -102) T) ((-689 . -1046) T) ((-534 . -610) 139396) ((-342 . -171) T) ((-151 . -21) T) ((-151 . -25) T) ((-88 . -605) 139378) ((-900 . -111) 139334) ((-40 . -708) 139279) ((-860 . -1087) T) ((-654 . -608) 139256) ((-636 . -608) 139237) ((-354 . -608) 139174) ((-351 . -608) 139111) ((-343 . -608) 139048) ((-326 . -606) 139009) ((-326 . -605) 138921) ((-263 . -608) 138674) ((-246 . -608) 138459) ((-1209 . -783) 138412) ((-1209 . -786) 138365) ((-250 . -376) 138334) ((-249 . -376) 138303) ((-644 . -38) 138273) ((-600 . -34) T) ((-480 . -1099) 138183) ((-473 . -34) T) ((-1100 . -130) 138053) ((-954 . -25) 137864) ((-900 . -608) 137814) ((-864 . -605) 137796) ((-954 . -21) 137751) ((-806 . -21) 137661) ((-806 . -25) 137512) ((-615 . -1046) T) ((-1165 . -550) 137491) ((-1159 . -47) 137468) ((-354 . -1039) T) ((-351 . -1039) T) ((-480 . -23) 137338) ((-343 . -1039) T) ((-246 . -1039) T) ((-263 . -1039) T) ((-1112 . -47) 137310) ((-117 . -1046) T) ((-1024 . -638) 137284) ((-948 . -34) T) ((-354 . -232) 137263) ((-354 . -242) T) ((-351 . -232) 137242) ((-351 . -242) T) ((-343 . -232) 137221) ((-343 . -242) T) ((-246 . -325) 137178) ((-263 . -325) 137150) ((-263 . -232) 137129) ((-1143 . -150) 137113) ((-250 . -890) 137045) ((-249 . -890) 136977) ((-1069 . -841) T) ((-413 . -1099) T) ((-1043 . -23) T) ((-900 . -1039) T) ((-321 . -638) 136959) ((-1014 . -839) T) ((-1194 . -992) 136925) ((-1160 . -910) 136904) ((-1154 . -910) 136883) ((-1154 . -811) NIL) ((-900 . -242) T) ((-808 . -362) 136862) ((-384 . -23) T) ((-127 . -1087) 136840) ((-121 . -1087) 136818) ((-900 . -232) T) ((-128 . -34) T) ((-378 . -638) 136783) ((-860 . -708) 136770) ((-1036 . -150) 136735) ((-40 . -171) T) ((-684 . -410) 136717) ((-703 . -308) 136704) ((-827 . -638) 136664) ((-818 . -638) 136638) ((-318 . -25) T) ((-318 . -21) T) ((-648 . -285) 136617) ((-574 . -1087) T) ((-558 . -1087) T) ((-493 . -1087) T) ((-244 . -287) 136594) ((-312 . -230) 136555) ((-1159 . -876) NIL) ((-55 . -1087) T) ((-1112 . -876) 136414) ((-129 . -841) T) ((-1159 . -1028) 136294) ((-1112 . -1028) 136177) ((-182 . -605) 136159) ((-845 . -1028) 136055) ((-773 . -285) 135982) ((-808 . -1099) T) ((-1024 . -717) T) ((-594 . -641) 135966) ((-1036 . -966) 135895) ((-989 . -102) T) ((-808 . -23) T) ((-703 . -1138) 135873) ((-684 . -1046) T) ((-594 . -372) 135857) ((-350 . -450) T) ((-342 . -289) T) ((-1247 . -1087) T) ((-247 . -1087) T) ((-398 . -102) T) ((-288 . -21) T) ((-288 . -25) T) ((-360 . -717) T) ((-701 . -1087) T) ((-689 . -1087) T) ((-360 . -471) T) ((-1194 . -605) 135839) ((-1159 . -376) 135823) ((-1112 . -376) 135807) ((-1014 . -410) 135769) ((-140 . -228) 135751) ((-378 . -785) T) ((-378 . -782) T) ((-860 . -171) T) ((-378 . -717) T) ((-702 . -605) 135733) ((-703 . -38) 135562) ((-1246 . -1244) 135546) ((-350 . -401) T) ((-1246 . -1087) 135496) ((-574 . -708) 135483) ((-558 . -708) 135470) ((-493 . -708) 135435) ((-315 . -621) 135414) ((-827 . -717) T) ((-818 . -717) T) ((-635 . -1200) T) ((-1067 . -631) 135362) ((-1159 . -890) 135305) ((-1112 . -890) 135289) ((-652 . -1045) 135273) ((-108 . -631) 135255) ((-480 . -130) 135125) ((-1165 . -1099) T) ((-942 . -47) 135094) ((-615 . -1087) T) ((-652 . -111) 135073) ((-489 . -605) 135039) ((-326 . -287) 135016) ((-479 . -47) 134973) ((-1165 . -23) T) ((-117 . -1087) T) ((-103 . -102) 134951) ((-1258 . -1099) T) ((-1043 . -130) T) ((-1014 . -1046) T) ((-810 . -1028) 134935) ((-993 . -715) 134907) ((-1258 . -23) T) ((-689 . -708) 134872) ((-579 . -605) 134854) ((-385 . -1028) 134838) ((-353 . -1046) T) ((-384 . -130) T) ((-323 . -1028) 134822) ((-224 . -876) 134804) ((-994 . -910) T) ((-91 . -34) T) ((-994 . -811) T) ((-904 . -910) T) ((-1180 . -605) 134786) ((-1107 . -819) T) ((-485 . -1204) T) ((-1092 . -1087) T) ((-1067 . -21) T) ((-1067 . -25) T) ((-216 . -1204) T) ((-989 . -308) 134751) ((-224 . -1028) 134711) ((-40 . -289) T) ((-705 . -638) 134671) ((-671 . -608) 134652) ((-666 . -608) 134633) ((-485 . -550) T) ((-476 . -608) 134614) ((-358 . -25) T) ((-358 . -21) T) ((-352 . -25) T) ((-216 . -550) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-244 . -608) 134591) ((-137 . -608) 134572) ((-136 . -608) 134553) ((-132 . -608) 134534) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1046) T) ((-574 . -171) T) ((-558 . -171) T) ((-493 . -171) T) ((-648 . -605) 134516) ((-728 . -727) 134500) ((-335 . -605) 134482) ((-68 . -382) T) ((-68 . -394) T) ((-1089 . -107) 134466) ((-1050 . -876) 134448) ((-942 . -876) 134373) ((-643 . -1099) T) ((-615 . -708) 134360) ((-479 . -876) NIL) ((-1133 . -102) T) ((-1081 . -610) 134344) ((-1050 . -1028) 134326) ((-97 . -605) 134308) ((-475 . -146) T) ((-942 . -1028) 134188) ((-117 . -708) 134133) ((-643 . -23) T) ((-479 . -1028) 134009) ((-1074 . -606) NIL) ((-1074 . -605) 133991) ((-773 . -606) NIL) ((-773 . -605) 133952) ((-771 . -606) 133586) ((-771 . -605) 133500) ((-1100 . -631) 133406) ((-459 . -605) 133388) ((-452 . -605) 133370) ((-452 . -606) 133231) ((-1025 . -228) 133177) ((-862 . -899) 133156) ((-126 . -34) T) ((-808 . -130) T) ((-639 . -605) 133138) ((-572 . -102) T) ((-354 . -1265) 133122) ((-351 . -1265) 133106) ((-343 . -1265) 133090) ((-127 . -512) 133023) ((-121 . -512) 132956) ((-509 . -783) T) ((-509 . -786) T) ((-508 . -785) T) ((-103 . -308) 132894) ((-221 . -102) 132872) ((-684 . -1087) T) ((-689 . -171) T) ((-862 . -638) 132824) ((-65 . -383) T) ((-274 . -605) 132806) ((-65 . -394) T) ((-942 . -376) 132790) ((-860 . -289) T) ((-50 . -605) 132772) ((-989 . -38) 132720) ((-575 . -605) 132702) ((-479 . -376) 132686) ((-575 . -606) 132668) ((-516 . -605) 132650) ((-900 . -1265) 132637) ((-861 . -1200) T) ((-691 . -450) T) ((-493 . -512) 132603) ((-485 . -362) T) ((-354 . -367) 132582) ((-351 . -367) 132561) ((-343 . -367) 132540) ((-705 . -717) T) ((-216 . -362) T) ((-116 . -450) T) ((-1269 . -1260) 132524) ((-861 . -874) 132501) ((-861 . -876) NIL) ((-954 . -841) 132400) ((-806 . -841) 132351) ((-644 . -646) 132335) ((-1186 . -34) T) ((-170 . -605) 132317) ((-1100 . -21) 132227) ((-1100 . -25) 132078) ((-861 . -1028) 132055) ((-942 . -890) 132036) ((-1219 . -47) 132013) ((-900 . -367) T) ((-59 . -641) 131997) ((-514 . -641) 131981) ((-479 . -890) 131958) ((-71 . -439) T) ((-71 . -394) T) ((-494 . -641) 131942) ((-59 . -372) 131926) ((-615 . -171) T) ((-514 . -372) 131910) ((-494 . -372) 131894) ((-818 . -699) 131878) ((-1159 . -306) 131857) ((-1165 . -130) T) ((-117 . -171) T) ((-1133 . -308) 131795) ((-168 . -1200) T) ((-627 . -735) 131779) ((-599 . -735) 131763) ((-1258 . -130) T) ((-1231 . -910) 131742) ((-1210 . -910) 131721) ((-1210 . -811) NIL) ((-684 . -708) 131671) ((-1209 . -899) 131624) ((-1014 . -1087) T) ((-861 . -376) 131601) ((-861 . -337) 131578) ((-895 . -1099) T) ((-168 . -874) 131562) ((-168 . -876) 131487) ((-485 . -1099) T) ((-353 . -1087) T) ((-216 . -1099) T) ((-76 . -439) T) ((-76 . -394) T) ((-168 . -1028) 131383) ((-318 . -841) T) ((-1246 . -512) 131316) ((-1230 . -638) 131213) ((-1209 . -638) 131083) ((-862 . -785) 131062) ((-862 . -782) 131041) ((-862 . -717) T) ((-485 . -23) T) ((-222 . -605) 131023) ((-173 . -450) T) ((-221 . -308) 130961) ((-86 . -439) T) ((-86 . -394) T) ((-216 . -23) T) ((-1270 . -1263) 130940) ((-574 . -289) T) ((-558 . -289) T) ((-667 . -1028) 130924) ((-493 . -289) T) ((-135 . -468) 130879) ((-48 . -1087) T) ((-703 . -230) 130863) ((-861 . -890) NIL) ((-1219 . -876) NIL) ((-879 . -102) T) ((-875 . -102) T) ((-387 . -1087) T) ((-168 . -376) 130847) ((-168 . -337) 130831) ((-1219 . -1028) 130711) ((-846 . -1028) 130607) ((-1129 . -102) T) ((-643 . -130) T) ((-117 . -512) 130515) ((-652 . -783) 130494) ((-652 . -786) 130473) ((-565 . -1028) 130455) ((-293 . -1253) 130425) ((-856 . -102) T) ((-953 . -550) 130404) ((-1194 . -1045) 130287) ((-480 . -631) 130193) ((-894 . -1087) T) ((-1014 . -708) 130130) ((-702 . -1045) 130095) ((-609 . -102) T) ((-594 . -34) T) ((-1134 . -1200) T) ((-1194 . -111) 129964) ((-472 . -638) 129861) ((-353 . -708) 129806) ((-168 . -890) 129765) ((-689 . -289) T) ((-684 . -171) T) ((-702 . -111) 129721) ((-1274 . -1046) T) ((-1219 . -376) 129705) ((-417 . -1204) 129683) ((-1105 . -605) 129665) ((-312 . -839) NIL) ((-417 . -550) T) ((-224 . -306) T) ((-1209 . -782) 129618) ((-1209 . -785) 129571) ((-1230 . -717) T) ((-1209 . -717) T) ((-48 . -708) 129536) ((-224 . -1012) T) ((-350 . -1253) 129513) ((-1232 . -410) 129479) ((-709 . -717) T) ((-1219 . -890) 129422) ((-1194 . -608) 129304) ((-112 . -605) 129286) ((-112 . -606) 129268) ((-709 . -471) T) ((-702 . -608) 129218) ((-480 . -21) 129128) ((-127 . -487) 129112) ((-121 . -487) 129096) ((-480 . -25) 128947) ((-615 . -289) T) ((-579 . -1045) 128922) ((-436 . -1087) T) ((-1050 . -306) T) ((-117 . -289) T) ((-1091 . -102) T) ((-993 . -102) T) ((-579 . -111) 128890) ((-1129 . -308) 128828) ((-1194 . -1039) T) ((-1050 . -1012) T) ((-66 . -1200) T) ((-1043 . -25) T) ((-1043 . -21) T) ((-702 . -1039) T) ((-384 . -21) T) ((-384 . -25) T) ((-684 . -512) NIL) ((-1014 . -171) T) ((-702 . -242) T) ((-1050 . -543) T) ((-504 . -102) T) ((-500 . -102) T) ((-353 . -171) T) ((-342 . -605) 128810) ((-393 . -605) 128792) ((-472 . -717) T) ((-1107 . -839) T) ((-882 . -1028) 128760) ((-108 . -841) T) ((-648 . -1045) 128744) ((-485 . -130) T) ((-1232 . -1046) T) ((-216 . -130) T) ((-1143 . -102) 128722) ((-99 . -1087) T) ((-244 . -656) 128706) ((-244 . -641) 128690) ((-648 . -111) 128669) ((-579 . -608) 128653) ((-315 . -410) 128637) ((-244 . -372) 128621) ((-1146 . -234) 128568) ((-989 . -230) 128552) ((-74 . -1200) T) ((-48 . -171) T) ((-691 . -386) T) ((-691 . -142) T) ((-1269 . -102) T) ((-1180 . -608) 128534) ((-1074 . -1045) 128377) ((-263 . -899) 128356) ((-246 . -899) 128335) ((-773 . -1045) 128158) ((-771 . -1045) 128001) ((-600 . -1200) T) ((-1151 . -605) 127983) ((-1074 . -111) 127812) ((-1036 . -102) T) ((-473 . -1200) T) ((-459 . -1045) 127783) ((-452 . -1045) 127626) ((-654 . -638) 127610) ((-861 . -306) T) ((-773 . -111) 127419) ((-771 . -111) 127248) ((-354 . -638) 127200) ((-351 . -638) 127152) ((-343 . -638) 127104) ((-263 . -638) 127029) ((-246 . -638) 126954) ((-1145 . -841) T) ((-1075 . -1028) 126938) ((-459 . -111) 126899) ((-452 . -111) 126728) ((-1063 . -1028) 126705) ((-990 . -34) T) ((-956 . -605) 126687) ((-948 . -1200) T) ((-126 . -1000) 126671) ((-953 . -1099) T) ((-861 . -1012) NIL) ((-726 . -1099) T) ((-706 . -1099) T) ((-648 . -608) 126589) ((-1246 . -487) 126573) ((-1129 . -38) 126533) ((-953 . -23) T) ((-834 . -102) T) ((-808 . -21) T) ((-808 . -25) T) ((-726 . -23) T) ((-706 . -23) T) ((-110 . -651) T) ((-900 . -638) 126498) ((-575 . -1045) 126463) ((-516 . -1045) 126408) ((-226 . -57) 126366) ((-451 . -23) T) ((-406 . -102) T) ((-262 . -102) T) ((-684 . -289) T) ((-856 . -38) 126336) ((-575 . -111) 126292) ((-516 . -111) 126221) ((-1074 . -608) 125957) ((-417 . -1099) T) ((-315 . -1046) 125847) ((-312 . -1046) T) ((-128 . -1200) T) ((-773 . -608) 125595) ((-771 . -608) 125361) ((-648 . -1039) T) ((-1274 . -1087) T) ((-452 . -608) 125146) ((-168 . -306) 125077) ((-417 . -23) T) ((-40 . -605) 125059) ((-40 . -606) 125043) ((-108 . -982) 125025) ((-116 . -859) 125009) ((-639 . -608) 124993) ((-48 . -512) 124959) ((-1186 . -1000) 124943) ((-1168 . -605) 124910) ((-1173 . -34) T) ((-944 . -605) 124876) ((-911 . -605) 124858) ((-1100 . -841) 124809) ((-762 . -605) 124791) ((-662 . -605) 124773) ((-1143 . -308) 124711) ((-477 . -34) T) ((-1079 . -1200) T) ((-475 . -450) T) ((-1128 . -34) T) ((-1074 . -1039) T) ((-50 . -608) 124680) ((-773 . -1039) T) ((-771 . -1039) T) ((-637 . -234) 124664) ((-624 . -234) 124610) ((-575 . -608) 124560) ((-516 . -608) 124490) ((-1219 . -306) 124469) ((-1074 . -325) 124430) ((-452 . -1039) T) ((-1165 . -21) T) ((-1074 . -232) 124409) ((-773 . -325) 124386) ((-773 . -232) T) ((-771 . -325) 124358) ((-722 . -1204) 124337) ((-326 . -641) 124321) ((-1165 . -25) T) ((-59 . -34) T) ((-517 . -34) T) ((-514 . -34) T) ((-452 . -325) 124300) ((-326 . -372) 124284) ((-495 . -34) T) ((-494 . -34) T) ((-993 . -1138) NIL) ((-722 . -550) 124215) ((-627 . -102) T) ((-599 . -102) T) ((-354 . -717) T) ((-351 . -717) T) ((-343 . -717) T) ((-263 . -717) T) ((-246 . -717) T) ((-1036 . -308) 124123) ((-891 . -1087) 124101) ((-50 . -1039) T) ((-1258 . -21) T) ((-1258 . -25) T) ((-1161 . -550) 124080) ((-1160 . -1204) 124059) ((-575 . -1039) T) ((-516 . -1039) T) ((-1154 . -1204) 124038) ((-360 . -1028) 124022) ((-321 . -1028) 124006) ((-1014 . -289) T) ((-378 . -876) 123988) ((-1160 . -550) 123939) ((-1154 . -550) 123890) ((-993 . -38) 123835) ((-790 . -1099) T) ((-900 . -717) T) ((-575 . -242) T) ((-575 . -232) T) ((-516 . -232) T) ((-516 . -242) T) ((-1113 . -550) 123814) ((-353 . -289) T) ((-637 . -685) 123798) ((-378 . -1028) 123758) ((-1107 . -1046) T) ((-103 . -125) 123742) ((-790 . -23) T) ((-1246 . -285) 123719) ((-406 . -308) 123684) ((-1268 . -1263) 123660) ((-1266 . -1263) 123639) ((-1232 . -1087) T) ((-860 . -605) 123621) ((-827 . -1028) 123590) ((-202 . -778) T) ((-201 . -778) T) ((-200 . -778) T) ((-199 . -778) T) ((-198 . -778) T) ((-197 . -778) T) ((-196 . -778) T) ((-195 . -778) T) ((-194 . -778) T) ((-193 . -778) T) ((-493 . -992) T) ((-273 . -830) T) ((-272 . -830) T) ((-271 . -830) T) ((-270 . -830) T) ((-48 . -289) T) ((-269 . -830) T) ((-268 . -830) T) ((-267 . -830) T) ((-192 . -778) T) ((-604 . -841) T) ((-644 . -410) 123574) ((-222 . -608) 123536) ((-110 . -841) T) ((-643 . -21) T) ((-643 . -25) T) ((-1269 . -38) 123506) ((-117 . -285) 123457) ((-1246 . -19) 123441) ((-1246 . -596) 123418) ((-1259 . -1087) T) ((-1064 . -1087) T) ((-977 . -1087) T) ((-953 . -130) T) ((-728 . -1087) T) ((-726 . -130) T) ((-706 . -130) T) ((-509 . -784) T) ((-406 . -1138) 123396) ((-451 . -130) T) ((-509 . -785) T) ((-222 . -1039) T) ((-293 . -102) 123178) ((-140 . -1087) T) ((-689 . -992) T) ((-91 . -1200) T) ((-127 . -605) 123110) ((-121 . -605) 123042) ((-1274 . -171) T) ((-1160 . -362) 123021) ((-1154 . -362) 123000) ((-315 . -1087) T) ((-417 . -130) T) ((-312 . -1087) T) ((-406 . -38) 122952) ((-1120 . -102) T) ((-1232 . -708) 122844) ((-644 . -1046) T) ((-1122 . -1241) T) ((-318 . -144) 122823) ((-318 . -146) 122802) ((-138 . -1087) T) ((-135 . -1087) T) ((-114 . -1087) T) ((-849 . -102) T) ((-574 . -605) 122784) ((-558 . -606) 122683) ((-558 . -605) 122665) ((-493 . -605) 122647) ((-493 . -606) 122592) ((-483 . -23) T) ((-480 . -841) 122543) ((-485 . -631) 122525) ((-955 . -605) 122507) ((-216 . -631) 122489) ((-224 . -403) T) ((-652 . -638) 122473) ((-55 . -605) 122455) ((-1159 . -910) 122434) ((-722 . -1099) T) ((-350 . -102) T) ((-1199 . -1070) T) ((-1107 . -835) T) ((-809 . -841) T) ((-722 . -23) T) ((-342 . -1045) 122379) ((-1145 . -1144) T) ((-1134 . -107) 122363) ((-1161 . -1099) T) ((-1160 . -1099) T) ((-513 . -1028) 122347) ((-1154 . -1099) T) ((-1113 . -1099) T) ((-342 . -111) 122276) ((-994 . -1204) T) ((-126 . -1200) T) ((-904 . -1204) T) ((-684 . -285) NIL) ((-1247 . -605) 122258) ((-1161 . -23) T) ((-1160 . -23) T) ((-1154 . -23) T) ((-994 . -550) T) ((-1129 . -230) 122242) ((-904 . -550) T) ((-1113 . -23) T) ((-247 . -605) 122224) ((-1062 . -1087) T) ((-790 . -130) T) ((-701 . -605) 122206) ((-315 . -708) 122116) ((-312 . -708) 122045) ((-689 . -605) 122027) ((-689 . -606) 121972) ((-406 . -399) 121956) ((-437 . -1087) T) ((-485 . -25) T) ((-485 . -21) T) ((-1107 . -1087) T) ((-216 . -25) T) ((-216 . -21) T) ((-703 . -410) 121940) ((-705 . -1028) 121909) ((-1246 . -605) 121821) ((-1246 . -606) 121782) ((-1232 . -171) T) ((-244 . -34) T) ((-342 . -608) 121712) ((-393 . -608) 121694) ((-916 . -964) T) ((-1186 . -1200) T) ((-652 . -782) 121673) ((-652 . -785) 121652) ((-397 . -394) T) ((-521 . -102) 121630) ((-1025 . -1087) T) ((-221 . -985) 121614) ((-502 . -102) T) ((-615 . -605) 121596) ((-45 . -841) NIL) ((-615 . -606) 121573) ((-1025 . -602) 121548) ((-891 . -512) 121481) ((-342 . -1039) T) ((-117 . -606) NIL) ((-117 . -605) 121463) ((-862 . -1200) T) ((-660 . -416) 121447) ((-660 . -1110) 121392) ((-498 . -150) 121374) ((-342 . -232) T) ((-342 . -242) T) ((-40 . -1045) 121319) ((-862 . -874) 121303) ((-862 . -876) 121228) ((-703 . -1046) T) ((-684 . -992) NIL) ((-3 . |UnionCategory|) T) ((-1230 . -47) 121198) ((-1209 . -47) 121175) ((-1128 . -1000) 121146) ((-224 . -910) T) ((-40 . -111) 121075) ((-862 . -1028) 120939) ((-1107 . -708) 120926) ((-1092 . -605) 120908) ((-1067 . -146) 120887) ((-1067 . -144) 120838) ((-994 . -362) T) ((-318 . -1188) 120804) ((-378 . -306) T) ((-318 . -1185) 120770) ((-315 . -171) 120749) ((-312 . -171) T) ((-993 . -230) 120726) ((-904 . -362) T) ((-575 . -1265) 120713) ((-516 . -1265) 120690) ((-358 . -146) 120669) ((-358 . -144) 120620) ((-352 . -146) 120599) ((-352 . -144) 120550) ((-600 . -1176) 120526) ((-344 . -146) 120505) ((-344 . -144) 120456) ((-318 . -35) 120422) ((-473 . -1176) 120401) ((0 . |EnumerationCategory|) T) ((-318 . -95) 120367) ((-378 . -1012) T) ((-108 . -146) T) ((-108 . -144) NIL) ((-45 . -234) 120317) ((-644 . -1087) T) ((-600 . -107) 120264) ((-483 . -130) T) ((-473 . -107) 120214) ((-239 . -1099) 120124) ((-862 . -376) 120108) ((-862 . -337) 120092) ((-239 . -23) 119962) ((-40 . -608) 119892) ((-1050 . -910) T) ((-1050 . -811) T) ((-575 . -367) T) ((-516 . -367) T) ((-350 . -1138) T) ((-326 . -34) T) ((-44 . -416) 119876) ((-1168 . -608) 119811) ((-863 . -1200) T) ((-389 . -735) 119795) ((-1259 . -512) 119728) ((-722 . -130) T) ((-662 . -608) 119712) ((-1238 . -550) 119691) ((-1231 . -1204) 119670) ((-1231 . -550) 119621) ((-1210 . -1204) 119600) ((-310 . -1070) T) ((-1210 . -550) 119551) ((-728 . -512) 119484) ((-1209 . -1200) 119463) ((-1209 . -876) 119336) ((-883 . -1087) T) ((-143 . -835) T) ((-1209 . -874) 119306) ((-681 . -605) 119288) ((-1161 . -130) T) ((-521 . -308) 119226) ((-1160 . -130) T) ((-140 . -512) NIL) ((-1154 . -130) T) ((-1113 . -130) T) ((-1014 . -992) T) ((-994 . -23) T) ((-350 . -38) 119191) ((-994 . -1099) T) ((-904 . -1099) T) ((-82 . -605) 119173) ((-40 . -1039) T) ((-860 . -1045) 119160) ((-993 . -348) NIL) ((-862 . -890) 119119) ((-691 . -102) T) ((-961 . -23) T) ((-594 . -1200) T) ((-904 . -23) T) ((-860 . -111) 119104) ((-426 . -1099) T) ((-212 . -1087) T) ((-472 . -47) 119074) ((-133 . -102) T) ((-40 . -232) 119046) ((-40 . -242) T) ((-116 . -102) T) ((-589 . -550) 119025) ((-588 . -550) 119004) ((-684 . -605) 118986) ((-684 . -606) 118894) ((-315 . -512) 118860) ((-312 . -512) 118752) ((-1230 . -1028) 118736) ((-1209 . -1028) 118522) ((-989 . -410) 118506) ((-426 . -23) T) ((-1107 . -171) T) ((-1232 . -289) T) ((-644 . -708) 118476) ((-143 . -1087) T) ((-48 . -992) T) ((-406 . -230) 118460) ((-294 . -234) 118410) ((-861 . -910) T) ((-861 . -811) NIL) ((-860 . -608) 118382) ((-855 . -841) T) ((-1209 . -337) 118352) ((-1209 . -376) 118322) ((-221 . -1108) 118306) ((-1246 . -287) 118283) ((-1194 . -638) 118208) ((-953 . -21) T) ((-953 . -25) T) ((-726 . -21) T) ((-726 . -25) T) ((-706 . -21) T) ((-706 . -25) T) ((-702 . -638) 118173) ((-451 . -21) T) ((-451 . -25) T) ((-338 . -102) T) ((-173 . -102) T) ((-989 . -1046) T) ((-860 . -1039) T) ((-765 . -102) T) ((-1231 . -362) 118152) ((-1230 . -890) 118058) ((-1210 . -362) 118037) ((-1209 . -890) 117888) ((-1014 . -605) 117870) ((-406 . -819) 117823) ((-1161 . -491) 117789) ((-168 . -910) 117720) ((-1160 . -491) 117686) ((-1154 . -491) 117652) ((-703 . -1087) T) ((-1113 . -491) 117618) ((-574 . -1045) 117605) ((-558 . -1045) 117592) ((-493 . -1045) 117557) ((-315 . -289) 117536) ((-312 . -289) T) ((-353 . -605) 117518) ((-417 . -25) T) ((-417 . -21) T) ((-99 . -285) 117497) ((-574 . -111) 117482) ((-558 . -111) 117467) ((-493 . -111) 117423) ((-1163 . -876) 117390) ((-891 . -487) 117374) ((-48 . -605) 117356) ((-48 . -606) 117301) ((-239 . -130) 117171) ((-1219 . -910) 117150) ((-807 . -1204) 117129) ((-387 . -488) 117110) ((-1025 . -512) 116954) ((-387 . -605) 116920) ((-807 . -550) 116851) ((-579 . -638) 116826) ((-263 . -47) 116798) ((-246 . -47) 116755) ((-529 . -507) 116732) ((-574 . -608) 116704) ((-558 . -608) 116676) ((-493 . -608) 116609) ((-990 . -1200) T) ((-689 . -1045) 116574) ((-1238 . -23) T) ((-1238 . -1099) T) ((-1231 . -1099) T) ((-1210 . -1099) T) ((-993 . -369) 116546) ((-112 . -367) T) ((-472 . -890) 116452) ((-1231 . -23) T) ((-894 . -605) 116434) ((-55 . -608) 116416) ((-91 . -107) 116400) ((-1194 . -717) T) ((-895 . -841) 116351) ((-691 . -1138) T) ((-689 . -111) 116307) ((-1210 . -23) T) ((-589 . -1099) T) ((-588 . -1099) T) ((-703 . -708) 116136) ((-702 . -717) T) ((-1107 . -289) T) ((-994 . -130) T) ((-485 . -841) T) ((-961 . -130) T) ((-904 . -130) T) ((-790 . -25) T) ((-216 . -841) T) ((-790 . -21) T) ((-574 . -1039) T) ((-558 . -1039) T) ((-493 . -1039) T) ((-589 . -23) T) ((-342 . -1265) 116113) ((-318 . -450) 116092) ((-338 . -308) 116079) ((-588 . -23) T) ((-426 . -130) T) ((-648 . -638) 116053) ((-244 . -1000) 116037) ((-862 . -306) T) ((-1270 . -1260) 116021) ((-762 . -783) T) ((-762 . -786) T) ((-691 . -38) 116008) ((-558 . -232) T) ((-493 . -242) T) ((-493 . -232) T) ((-1137 . -234) 115958) ((-1074 . -899) 115937) ((-116 . -38) 115924) ((-208 . -791) T) ((-207 . -791) T) ((-206 . -791) T) ((-205 . -791) T) ((-862 . -1012) 115902) ((-1259 . -487) 115886) ((-773 . -899) 115865) ((-771 . -899) 115844) ((-1173 . -1200) T) ((-452 . -899) 115823) ((-728 . -487) 115807) ((-1074 . -638) 115732) ((-689 . -608) 115667) ((-773 . -638) 115592) ((-615 . -1045) 115579) ((-477 . -1200) T) ((-342 . -367) T) ((-140 . -487) 115561) ((-771 . -638) 115486) ((-1128 . -1200) T) ((-459 . -638) 115457) ((-263 . -876) 115316) ((-246 . -876) NIL) ((-117 . -1045) 115261) ((-452 . -638) 115186) ((-654 . -1028) 115163) ((-615 . -111) 115148) ((-354 . -1028) 115132) ((-351 . -1028) 115116) ((-343 . -1028) 115100) ((-263 . -1028) 114944) ((-246 . -1028) 114820) ((-117 . -111) 114749) ((-59 . -1200) T) ((-517 . -1200) T) ((-514 . -1200) T) ((-495 . -1200) T) ((-494 . -1200) T) ((-436 . -605) 114731) ((-433 . -605) 114713) ((-3 . -102) T) ((-1017 . -1193) 114682) ((-824 . -102) T) ((-679 . -57) 114640) ((-689 . -1039) T) ((-50 . -638) 114614) ((-288 . -450) T) ((-474 . -1193) 114583) ((0 . -102) T) ((-575 . -638) 114548) ((-516 . -638) 114493) ((-49 . -102) T) ((-900 . -1028) 114480) ((-689 . -242) T) ((-1067 . -408) 114459) ((-722 . -631) 114407) ((-989 . -1087) T) ((-703 . -171) 114298) ((-615 . -608) 114193) ((-485 . -982) 114175) ((-263 . -376) 114159) ((-246 . -376) 114143) ((-398 . -1087) T) ((-1016 . -102) 114121) ((-338 . -38) 114105) ((-216 . -982) 114087) ((-117 . -608) 114017) ((-173 . -38) 113949) ((-1230 . -306) 113928) ((-1209 . -306) 113907) ((-648 . -717) T) ((-99 . -605) 113889) ((-1154 . -631) 113841) ((-483 . -25) T) ((-483 . -21) T) ((-1209 . -1012) 113793) ((-615 . -1039) T) ((-378 . -403) T) ((-389 . -102) T) ((-1092 . -610) 113708) ((-263 . -890) 113654) ((-246 . -890) 113631) ((-117 . -1039) T) ((-807 . -1099) T) ((-1074 . -717) T) ((-615 . -232) 113610) ((-613 . -102) T) ((-773 . -717) T) ((-771 . -717) T) ((-412 . -1099) T) ((-117 . -242) T) ((-40 . -367) NIL) ((-117 . -232) NIL) ((-452 . -717) T) ((-807 . -23) T) ((-722 . -25) T) ((-722 . -21) T) ((-693 . -841) T) ((-1064 . -285) 113589) ((-78 . -395) T) ((-78 . -394) T) ((-531 . -758) 113571) ((-684 . -1045) 113521) ((-1238 . -130) T) ((-1231 . -130) T) ((-1210 . -130) T) ((-1129 . -410) 113505) ((-627 . -366) 113437) ((-599 . -366) 113369) ((-1143 . -1136) 113353) ((-103 . -1087) 113331) ((-1161 . -25) T) ((-1161 . -21) T) ((-1160 . -21) T) ((-989 . -708) 113279) ((-222 . -638) 113246) ((-684 . -111) 113180) ((-50 . -717) T) ((-1160 . -25) T) ((-350 . -348) T) ((-1154 . -21) T) ((-1067 . -450) 113131) ((-1154 . -25) T) ((-703 . -512) 113078) ((-575 . -717) T) ((-516 . -717) T) ((-1113 . -21) T) ((-1113 . -25) T) ((-589 . -130) T) ((-588 . -130) T) ((-358 . -450) T) ((-352 . -450) T) ((-344 . -450) T) ((-472 . -306) 113057) ((-312 . -285) 112992) ((-108 . -450) T) ((-79 . -439) T) ((-79 . -394) T) ((-475 . -102) T) ((-681 . -608) 112976) ((-1274 . -605) 112958) ((-1274 . -606) 112940) ((-1067 . -401) 112919) ((-1025 . -487) 112850) ((-558 . -786) T) ((-558 . -783) T) ((-1051 . -234) 112796) ((-358 . -401) 112747) ((-352 . -401) 112698) ((-344 . -401) 112649) ((-1261 . -1099) T) ((-684 . -608) 112584) ((-1261 . -23) T) ((-1248 . -102) T) ((-174 . -605) 112566) ((-1129 . -1046) T) ((-660 . -735) 112550) ((-1165 . -144) 112529) ((-1165 . -146) 112508) ((-1133 . -1087) T) ((-1133 . -1059) 112477) ((-69 . -1200) T) ((-1014 . -1045) 112414) ((-856 . -1046) T) ((-239 . -631) 112320) ((-684 . -1039) T) ((-353 . -1045) 112265) ((-61 . -1200) T) ((-1014 . -111) 112181) ((-891 . -605) 112092) ((-684 . -242) T) ((-684 . -232) NIL) ((-834 . -839) 112071) ((-689 . -786) T) ((-689 . -783) T) ((-993 . -410) 112048) ((-353 . -111) 111977) ((-378 . -910) T) ((-406 . -839) 111956) ((-703 . -289) 111867) ((-222 . -717) T) ((-1238 . -491) 111833) ((-1231 . -491) 111799) ((-1210 . -491) 111765) ((-572 . -1087) T) ((-315 . -992) 111744) ((-221 . -1087) 111722) ((-318 . -963) 111684) ((-105 . -102) T) ((-48 . -1045) 111649) ((-1270 . -102) T) ((-380 . -102) T) ((-48 . -111) 111605) ((-994 . -631) 111587) ((-1232 . -605) 111569) ((-529 . -102) T) ((-498 . -102) T) ((-1120 . -1121) 111553) ((-151 . -1253) 111537) ((-244 . -1200) T) ((-1199 . -102) T) ((-1014 . -608) 111474) ((-1159 . -1204) 111453) ((-353 . -608) 111383) ((-1112 . -1204) 111362) ((-239 . -21) 111272) ((-239 . -25) 111123) ((-127 . -119) 111107) ((-121 . -119) 111091) ((-44 . -735) 111075) ((-1159 . -550) 110986) ((-1112 . -550) 110917) ((-1025 . -285) 110892) ((-1153 . -1070) T) ((-984 . -1070) T) ((-807 . -130) T) ((-117 . -786) NIL) ((-117 . -783) NIL) ((-354 . -306) T) ((-351 . -306) T) ((-343 . -306) T) ((-250 . -1099) 110802) ((-249 . -1099) 110712) ((-1014 . -1039) T) ((-993 . -1046) T) ((-48 . -608) 110645) ((-342 . -638) 110590) ((-613 . -38) 110574) ((-1259 . -605) 110536) ((-1259 . -606) 110497) ((-1064 . -605) 110479) ((-1014 . -242) T) ((-353 . -1039) T) ((-806 . -1253) 110449) ((-250 . -23) T) ((-249 . -23) T) ((-977 . -605) 110431) ((-728 . -606) 110392) ((-728 . -605) 110374) ((-790 . -841) 110353) ((-1146 . -150) 110300) ((-989 . -512) 110212) ((-353 . -232) T) ((-353 . -242) T) ((-387 . -608) 110193) ((-994 . -25) T) ((-140 . -605) 110175) ((-140 . -606) 110134) ((-900 . -306) T) ((-994 . -21) T) ((-961 . -25) T) ((-904 . -21) T) ((-904 . -25) T) ((-426 . -21) T) ((-426 . -25) T) ((-834 . -410) 110118) ((-48 . -1039) T) ((-1268 . -1260) 110102) ((-1266 . -1260) 110086) ((-1025 . -596) 110061) ((-315 . -606) 109922) ((-315 . -605) 109904) ((-312 . -606) NIL) ((-312 . -605) 109886) ((-48 . -242) T) ((-48 . -232) T) ((-644 . -285) 109847) ((-544 . -234) 109797) ((-138 . -605) 109764) ((-135 . -605) 109746) ((-114 . -605) 109728) ((-475 . -38) 109693) ((-1270 . -1267) 109672) ((-1261 . -130) T) ((-1269 . -1046) T) ((-1069 . -102) T) ((-88 . -1200) T) ((-498 . -308) NIL) ((-990 . -107) 109656) ((-879 . -1087) T) ((-875 . -1087) T) ((-1246 . -641) 109640) ((-1246 . -372) 109624) ((-326 . -1200) T) ((-586 . -841) T) ((-1129 . -1087) T) ((-1129 . -1042) 109564) ((-103 . -512) 109497) ((-917 . -605) 109479) ((-342 . -717) T) ((-30 . -605) 109461) ((-856 . -1087) T) ((-834 . -1046) 109440) ((-40 . -638) 109385) ((-224 . -1204) T) ((-406 . -1046) T) ((-1145 . -150) 109367) ((-989 . -289) 109318) ((-609 . -1087) T) ((-224 . -550) T) ((-318 . -1227) 109302) ((-318 . -1224) 109272) ((-1173 . -1176) 109251) ((-1062 . -605) 109233) ((-637 . -150) 109217) ((-624 . -150) 109163) ((-1173 . -107) 109113) ((-477 . -1176) 109092) ((-485 . -146) T) ((-485 . -144) NIL) ((-1107 . -606) 109007) ((-437 . -605) 108989) ((-216 . -146) T) ((-216 . -144) NIL) ((-1107 . -605) 108971) ((-129 . -102) T) ((-52 . -102) T) ((-1210 . -631) 108923) ((-477 . -107) 108873) ((-983 . -23) T) ((-1270 . -38) 108843) ((-1159 . -1099) T) ((-1112 . -1099) T) ((-1050 . -1204) T) ((-310 . -102) T) ((-845 . -1099) T) ((-942 . -1204) 108822) ((-479 . -1204) 108801) ((-722 . -841) 108780) ((-1050 . -550) T) ((-942 . -550) 108711) ((-1159 . -23) T) ((-1112 . -23) T) ((-845 . -23) T) ((-479 . -550) 108642) ((-1129 . -708) 108574) ((-1133 . -512) 108507) ((-1025 . -606) NIL) ((-1025 . -605) 108489) ((-96 . -1070) T) ((-856 . -708) 108459) ((-1194 . -47) 108428) ((-250 . -130) T) ((-249 . -130) T) ((-1091 . -1087) T) ((-993 . -1087) T) ((-62 . -605) 108410) ((-1154 . -841) NIL) ((-1014 . -783) T) ((-1014 . -786) T) ((-1274 . -1045) 108397) ((-1274 . -111) 108382) ((-860 . -638) 108369) ((-1238 . -25) T) ((-1238 . -21) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-1210 . -21) T) ((-1210 . -25) T) ((-1017 . -150) 108353) ((-862 . -811) 108332) ((-862 . -910) T) ((-703 . -285) 108259) ((-589 . -21) T) ((-589 . -25) T) ((-588 . -21) T) ((-40 . -717) T) ((-221 . -512) 108192) ((-588 . -25) T) ((-474 . -150) 108176) ((-461 . -150) 108160) ((-911 . -785) T) ((-911 . -717) T) ((-762 . -784) T) ((-762 . -785) T) ((-504 . -1087) T) ((-500 . -1087) T) ((-762 . -717) T) ((-224 . -362) T) ((-1143 . -1087) 108138) ((-861 . -1204) T) ((-644 . -605) 108120) ((-861 . -550) T) ((-684 . -367) NIL) ((-1274 . -608) 108102) ((-358 . -1253) 108086) ((-660 . -102) T) ((-352 . -1253) 108070) ((-344 . -1253) 108054) ((-1269 . -1087) T) ((-518 . -841) 108033) ((-808 . -450) 108012) ((-1036 . -1087) T) ((-1036 . -1059) 107941) ((-1017 . -966) 107910) ((-810 . -1099) T) ((-993 . -708) 107855) ((-385 . -1099) T) ((-474 . -966) 107824) ((-461 . -966) 107793) ((-110 . -150) 107775) ((-73 . -605) 107757) ((-883 . -605) 107739) ((-1067 . -715) 107718) ((-1274 . -1039) T) ((-807 . -631) 107666) ((-293 . -1046) 107608) ((-168 . -1204) 107513) ((-224 . -1099) T) ((-323 . -23) T) ((-1154 . -982) 107465) ((-834 . -1087) T) ((-1232 . -1045) 107370) ((-1113 . -731) 107349) ((-1230 . -910) 107328) ((-1209 . -910) 107307) ((-860 . -717) T) ((-168 . -550) 107218) ((-574 . -638) 107205) ((-558 . -638) 107192) ((-406 . -1087) T) ((-262 . -1087) T) ((-212 . -605) 107174) ((-493 . -638) 107139) ((-224 . -23) T) ((-1209 . -811) 107092) ((-1268 . -102) T) ((-353 . -1265) 107069) ((-1266 . -102) T) ((-1232 . -111) 106961) ((-143 . -605) 106943) ((-983 . -130) T) ((-44 . -102) T) ((-239 . -841) 106894) ((-1219 . -1204) 106873) ((-103 . -487) 106857) ((-1269 . -708) 106827) ((-1074 . -47) 106788) ((-1050 . -1099) T) ((-942 . -1099) T) ((-127 . -34) T) ((-121 . -34) T) ((-773 . -47) 106765) ((-771 . -47) 106737) ((-1219 . -550) 106648) ((-353 . -367) T) ((-479 . -1099) T) ((-1159 . -130) T) ((-1112 . -130) T) ((-452 . -47) 106627) ((-861 . -362) T) ((-845 . -130) T) ((-151 . -102) T) ((-1050 . -23) T) ((-942 . -23) T) ((-565 . -550) T) ((-807 . -25) T) ((-807 . -21) T) ((-1129 . -512) 106560) ((-585 . -1070) T) ((-579 . -1028) 106544) ((-1232 . -608) 106418) ((-479 . -23) T) ((-350 . -1046) T) ((-1194 . -890) 106399) ((-660 . -308) 106337) ((-1100 . -1253) 106307) ((-689 . -638) 106272) ((-993 . -171) T) ((-953 . -144) 106251) ((-627 . -1087) T) ((-599 . -1087) T) ((-953 . -146) 106230) ((-994 . -841) T) ((-726 . -146) 106209) ((-726 . -144) 106188) ((-961 . -841) T) ((-472 . -910) 106167) ((-315 . -1045) 106077) ((-312 . -1045) 106006) ((-989 . -285) 105964) ((-406 . -708) 105916) ((-691 . -839) T) ((-1232 . -1039) T) ((-315 . -111) 105812) ((-312 . -111) 105725) ((-954 . -102) T) ((-806 . -102) 105515) ((-703 . -606) NIL) ((-703 . -605) 105497) ((-648 . -1028) 105393) ((-1232 . -325) 105337) ((-1025 . -287) 105312) ((-574 . -717) T) ((-558 . -785) T) ((-168 . -362) 105263) ((-558 . -782) T) ((-558 . -717) T) ((-493 . -717) T) ((-1133 . -487) 105247) ((-1074 . -876) NIL) ((-861 . -1099) T) ((-117 . -899) NIL) ((-1268 . -1267) 105223) ((-1266 . -1267) 105202) ((-773 . -876) NIL) ((-771 . -876) 105061) ((-1261 . -25) T) ((-1261 . -21) T) ((-1197 . -102) 105039) ((-1093 . -394) T) ((-615 . -638) 105026) ((-452 . -876) NIL) ((-665 . -102) 105004) ((-1074 . -1028) 104831) ((-861 . -23) T) ((-773 . -1028) 104690) ((-771 . -1028) 104547) ((-117 . -638) 104492) ((-452 . -1028) 104368) ((-315 . -608) 103932) ((-312 . -608) 103815) ((-639 . -1028) 103799) ((-619 . -102) T) ((-221 . -487) 103783) ((-1246 . -34) T) ((-135 . -608) 103767) ((-627 . -708) 103751) ((-599 . -708) 103735) ((-660 . -38) 103695) ((-318 . -102) T) ((-85 . -605) 103677) ((-50 . -1028) 103661) ((-1107 . -1045) 103648) ((-1074 . -376) 103632) ((-773 . -376) 103616) ((-60 . -57) 103578) ((-689 . -785) T) ((-689 . -782) T) ((-575 . -1028) 103565) ((-516 . -1028) 103542) ((-689 . -717) T) ((-323 . -130) T) ((-315 . -1039) 103432) ((-312 . -1039) T) ((-168 . -1099) T) ((-771 . -376) 103416) ((-45 . -150) 103366) ((-994 . -982) 103348) ((-452 . -376) 103332) ((-406 . -171) T) ((-315 . -242) 103311) ((-312 . -242) T) ((-312 . -232) NIL) ((-293 . -1087) 103093) ((-224 . -130) T) ((-1107 . -111) 103078) ((-168 . -23) T) ((-790 . -146) 103057) ((-790 . -144) 103036) ((-250 . -631) 102942) ((-249 . -631) 102848) ((-318 . -283) 102814) ((-1143 . -512) 102747) ((-1120 . -1087) T) ((-224 . -1048) T) ((-806 . -308) 102685) ((-1074 . -890) 102620) ((-773 . -890) 102563) ((-771 . -890) 102547) ((-1268 . -38) 102517) ((-1266 . -38) 102487) ((-1219 . -1099) T) ((-846 . -1099) T) ((-452 . -890) 102464) ((-849 . -1087) T) ((-1219 . -23) T) ((-1107 . -608) 102436) ((-565 . -1099) T) ((-846 . -23) T) ((-615 . -717) T) ((-354 . -910) T) ((-351 . -910) T) ((-288 . -102) T) ((-343 . -910) T) ((-1050 . -130) T) ((-960 . -1070) T) ((-942 . -130) T) ((-117 . -785) NIL) ((-117 . -782) NIL) ((-117 . -717) T) ((-684 . -899) NIL) ((-1036 . -512) 102337) ((-479 . -130) T) ((-565 . -23) T) ((-665 . -308) 102275) ((-627 . -752) T) ((-599 . -752) T) ((-1210 . -841) NIL) ((-993 . -289) T) ((-250 . -21) T) ((-684 . -638) 102225) ((-350 . -1087) T) ((-250 . -25) T) ((-249 . -21) T) ((-249 . -25) T) ((-151 . -38) 102209) ((-2 . -102) T) ((-900 . -910) T) ((-480 . -1253) 102179) ((-222 . -1028) 102156) ((-1107 . -1039) T) ((-702 . -306) T) ((-293 . -708) 102098) ((-691 . -1046) T) ((-485 . -450) T) ((-406 . -512) 102010) ((-216 . -450) T) ((-1107 . -232) T) ((-294 . -150) 101960) ((-989 . -606) 101921) ((-989 . -605) 101903) ((-979 . -605) 101885) ((-116 . -1046) T) ((-644 . -1045) 101869) ((-224 . -491) T) ((-398 . -605) 101851) ((-398 . -606) 101828) ((-1043 . -1253) 101798) ((-644 . -111) 101777) ((-1129 . -487) 101761) ((-806 . -38) 101731) ((-63 . -439) T) ((-63 . -394) T) ((-1146 . -102) T) ((-861 . -130) T) ((-482 . -102) 101709) ((-1274 . -367) T) ((-1067 . -102) T) ((-1049 . -102) T) ((-350 . -708) 101654) ((-722 . -146) 101633) ((-722 . -144) 101612) ((-644 . -608) 101530) ((-1014 . -638) 101467) ((-521 . -1087) 101445) ((-358 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-108 . -102) T) ((-502 . -1087) T) ((-353 . -638) 101390) ((-1159 . -631) 101338) ((-1112 . -631) 101286) ((-384 . -507) 101265) ((-824 . -839) 101244) ((-378 . -1204) T) ((-684 . -717) T) ((-338 . -1046) T) ((-1210 . -982) 101196) ((-173 . -1046) T) ((-103 . -605) 101128) ((-1161 . -144) 101107) ((-1161 . -146) 101086) ((-378 . -550) T) ((-1160 . -146) 101065) ((-1160 . -144) 101044) ((-1154 . -144) 100951) ((-406 . -289) T) ((-1154 . -146) 100858) ((-1113 . -146) 100837) ((-1113 . -144) 100816) ((-318 . -38) 100657) ((-168 . -130) T) ((-312 . -786) NIL) ((-312 . -783) NIL) ((-644 . -1039) T) ((-48 . -638) 100622) ((-883 . -608) 100599) ((-1153 . -102) T) ((-984 . -102) T) ((-983 . -21) T) ((-127 . -1000) 100583) ((-121 . -1000) 100567) ((-983 . -25) T) ((-891 . -119) 100551) ((-1145 . -102) T) ((-807 . -841) 100530) ((-1219 . -130) T) ((-1159 . -25) T) ((-1159 . -21) T) ((-846 . -130) T) ((-1112 . -25) T) ((-1112 . -21) T) ((-845 . -25) T) ((-845 . -21) T) ((-773 . -306) 100509) ((-637 . -102) 100487) ((-624 . -102) T) ((-1146 . -308) 100282) ((-565 . -130) T) ((-613 . -839) 100261) ((-1143 . -487) 100245) ((-1137 . -150) 100195) ((-1133 . -605) 100157) ((-1133 . -606) 100118) ((-1014 . -782) T) ((-1014 . -785) T) ((-1014 . -717) T) ((-703 . -1045) 99941) ((-482 . -308) 99879) ((-451 . -416) 99849) ((-350 . -171) T) ((-288 . -38) 99836) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-268 . -102) T) ((-342 . -1028) 99813) ((-267 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-353 . -717) T) ((-703 . -111) 99622) ((-660 . -230) 99606) ((-575 . -306) T) ((-516 . -306) T) ((-293 . -512) 99555) ((-108 . -308) NIL) ((-72 . -394) T) ((-1100 . -102) 99345) ((-824 . -410) 99329) ((-1107 . -786) T) ((-1107 . -783) T) ((-691 . -1087) T) ((-572 . -605) 99311) ((-378 . -362) T) ((-168 . -491) 99289) ((-221 . -605) 99221) ((-133 . -1087) T) ((-116 . -1087) T) ((-48 . -717) T) ((-1036 . -487) 99186) ((-140 . -424) 99168) ((-140 . -367) T) ((-1017 . -102) T) ((-510 . -507) 99147) ((-703 . -608) 98903) ((-474 . -102) T) ((-461 . -102) T) ((-1024 . -1099) T) ((-1168 . -1028) 98838) ((-1161 . -35) 98804) ((-1161 . -95) 98770) ((-1161 . -1188) 98736) ((-1161 . -1185) 98702) ((-1145 . -308) NIL) ((-89 . -395) T) ((-89 . -394) T) ((-1067 . -1138) 98681) ((-1160 . -1185) 98647) ((-1160 . -1188) 98613) ((-1024 . -23) T) ((-1160 . -95) 98579) ((-565 . -491) T) ((-1160 . -35) 98545) ((-1154 . -1185) 98511) ((-1154 . -1188) 98477) ((-1154 . -95) 98443) ((-360 . -1099) T) ((-358 . -1138) 98422) ((-352 . -1138) 98401) ((-344 . -1138) 98380) ((-1154 . -35) 98346) ((-1113 . -35) 98312) ((-1113 . -95) 98278) ((-108 . -1138) T) ((-1113 . -1188) 98244) ((-824 . -1046) 98223) ((-637 . -308) 98161) ((-624 . -308) 98012) ((-1113 . -1185) 97978) ((-703 . -1039) T) ((-1050 . -631) 97960) ((-1067 . -38) 97828) ((-942 . -631) 97776) ((-994 . -146) T) ((-994 . -144) NIL) ((-378 . -1099) T) ((-323 . -25) T) ((-321 . -23) T) ((-933 . -841) 97755) ((-703 . -325) 97732) ((-479 . -631) 97680) ((-40 . -1028) 97568) ((-703 . -232) T) ((-691 . -708) 97555) ((-338 . -1087) T) ((-173 . -1087) T) ((-330 . -841) T) ((-417 . -450) 97505) ((-378 . -23) T) ((-358 . -38) 97470) ((-352 . -38) 97435) ((-344 . -38) 97400) ((-80 . -439) T) ((-80 . -394) T) ((-224 . -25) T) ((-224 . -21) T) ((-827 . -1099) T) ((-108 . -38) 97350) ((-818 . -1099) T) ((-765 . -1087) T) ((-116 . -708) 97337) ((-662 . -1028) 97321) ((-604 . -102) T) ((-827 . -23) T) ((-818 . -23) T) ((-1143 . -285) 97298) ((-1100 . -308) 97236) ((-1089 . -234) 97220) ((-64 . -395) T) ((-64 . -394) T) ((-110 . -102) T) ((-40 . -376) 97197) ((-96 . -102) T) ((-643 . -843) 97181) ((-1122 . -1070) T) ((-1050 . -21) T) ((-1050 . -25) T) ((-806 . -230) 97150) ((-942 . -25) T) ((-942 . -21) T) ((-613 . -1046) T) ((-1107 . -367) T) ((-479 . -25) T) ((-479 . -21) T) ((-1017 . -308) 97088) ((-879 . -605) 97070) ((-875 . -605) 97052) ((-250 . -841) 97003) ((-249 . -841) 96954) ((-521 . -512) 96887) ((-861 . -631) 96864) ((-474 . -308) 96802) ((-461 . -308) 96740) ((-350 . -289) T) ((-1143 . -1234) 96724) ((-1129 . -605) 96686) ((-1129 . -606) 96647) ((-1127 . -102) T) ((-989 . -1045) 96543) ((-40 . -890) 96495) ((-1143 . -596) 96472) ((-1274 . -638) 96459) ((-856 . -488) 96436) ((-1051 . -150) 96382) ((-862 . -1204) T) ((-989 . -111) 96264) ((-338 . -708) 96248) ((-856 . -605) 96210) ((-173 . -708) 96142) ((-406 . -285) 96100) ((-862 . -550) T) ((-108 . -399) 96082) ((-84 . -383) T) ((-84 . -394) T) ((-691 . -171) T) ((-609 . -605) 96064) ((-99 . -717) T) ((-480 . -102) 95854) ((-99 . -471) T) ((-116 . -171) T) ((-1100 . -38) 95824) ((-168 . -631) 95772) ((-1043 . -102) T) ((-989 . -608) 95662) ((-861 . -25) T) ((-806 . -237) 95641) ((-861 . -21) T) ((-809 . -102) T) ((-413 . -102) T) ((-384 . -102) T) ((-110 . -308) NIL) ((-226 . -102) 95619) ((-127 . -1200) T) ((-121 . -1200) T) ((-1024 . -130) T) ((-660 . -366) 95603) ((-989 . -1039) T) ((-1219 . -631) 95551) ((-1091 . -605) 95533) ((-993 . -605) 95515) ((-513 . -23) T) ((-508 . -23) T) ((-342 . -306) T) ((-506 . -23) T) ((-321 . -130) T) ((-3 . -1087) T) ((-993 . -606) 95499) ((-989 . -242) 95478) ((-989 . -232) 95457) ((-1274 . -717) T) ((-1238 . -144) 95436) ((-824 . -1087) T) ((-1238 . -146) 95415) ((-1231 . -146) 95394) ((-1231 . -144) 95373) ((-1230 . -1204) 95352) ((-1210 . -144) 95259) ((-1210 . -146) 95166) ((-1209 . -1204) 95145) ((-378 . -130) T) ((-558 . -876) 95127) ((0 . -1087) T) ((-173 . -171) T) ((-168 . -21) T) ((-168 . -25) T) ((-49 . -1087) T) ((-1232 . -638) 95032) ((-1230 . -550) 94983) ((-705 . -1099) T) ((-1209 . -550) 94934) ((-558 . -1028) 94916) ((-588 . -146) 94895) ((-588 . -144) 94874) ((-493 . -1028) 94817) ((-1122 . -1124) T) ((-87 . -383) T) ((-87 . -394) T) ((-862 . -362) T) ((-827 . -130) T) ((-818 . -130) T) ((-705 . -23) T) ((-504 . -605) 94783) ((-500 . -605) 94765) ((-1270 . -1046) T) ((-378 . -1048) T) ((-1016 . -1087) 94743) ((-55 . -1028) 94725) ((-891 . -34) T) ((-480 . -308) 94663) ((-585 . -102) T) ((-1143 . -606) 94624) ((-1143 . -605) 94556) ((-1159 . -841) 94535) ((-45 . -102) T) ((-1112 . -841) 94514) ((-808 . -102) T) ((-1219 . -25) T) ((-1219 . -21) T) ((-846 . -25) T) ((-44 . -366) 94498) ((-846 . -21) T) ((-722 . -450) 94449) ((-1269 . -605) 94431) ((-1043 . -308) 94369) ((-661 . -1070) T) ((-598 . -1070) T) ((-389 . -1087) T) ((-565 . -25) T) ((-565 . -21) T) ((-179 . -1070) T) ((-160 . -1070) T) ((-155 . -1070) T) ((-153 . -1070) T) ((-613 . -1087) T) ((-689 . -876) 94351) ((-1246 . -1200) T) ((-226 . -308) 94289) ((-143 . -367) T) ((-1036 . -606) 94231) ((-1036 . -605) 94174) ((-312 . -899) NIL) ((-689 . -1028) 94119) ((-702 . -910) T) ((-472 . -1204) 94098) ((-1160 . -450) 94077) ((-1154 . -450) 94056) ((-329 . -102) T) ((-862 . -1099) T) ((-315 . -638) 93877) ((-312 . -638) 93806) ((-472 . -550) 93757) ((-338 . -512) 93723) ((-544 . -150) 93673) ((-40 . -306) T) ((-834 . -605) 93655) ((-691 . -289) T) ((-862 . -23) T) ((-378 . -491) T) ((-1067 . -230) 93625) ((-510 . -102) T) ((-406 . -606) 93432) ((-406 . -605) 93414) ((-262 . -605) 93396) ((-116 . -289) T) ((-1232 . -717) T) ((-1230 . -362) 93375) ((-1209 . -362) 93354) ((-1259 . -34) T) ((-117 . -1200) T) ((-108 . -230) 93336) ((-1165 . -102) T) ((-475 . -1087) T) ((-521 . -487) 93320) ((-728 . -34) T) ((-480 . -38) 93290) ((-140 . -34) T) ((-117 . -874) 93267) ((-117 . -876) NIL) ((-615 . -1028) 93150) ((-635 . -841) 93129) ((-1258 . -102) T) ((-294 . -102) T) ((-703 . -367) 93108) ((-117 . -1028) 93085) ((-389 . -708) 93069) ((-613 . -708) 93053) ((-45 . -308) 92857) ((-807 . -144) 92836) ((-807 . -146) 92815) ((-1269 . -381) 92794) ((-810 . -841) T) ((-1248 . -1087) T) ((-1146 . -228) 92741) ((-385 . -841) 92720) ((-1238 . -1188) 92686) ((-1238 . -1185) 92652) ((-1231 . -1185) 92618) ((-513 . -130) T) ((-1231 . -1188) 92584) ((-1210 . -1185) 92550) ((-1210 . -1188) 92516) ((-1238 . -35) 92482) ((-1238 . -95) 92448) ((-627 . -605) 92417) ((-599 . -605) 92386) ((-224 . -841) T) ((-1231 . -95) 92352) ((-1231 . -35) 92318) ((-1230 . -1099) T) ((-1107 . -638) 92305) ((-1210 . -95) 92271) ((-1209 . -1099) T) ((-586 . -150) 92253) ((-1067 . -348) 92232) ((-173 . -289) T) ((-117 . -376) 92209) ((-117 . -337) 92186) ((-1210 . -35) 92152) ((-860 . -306) T) ((-312 . -785) NIL) ((-312 . -782) NIL) ((-315 . -717) 92001) ((-312 . -717) T) ((-472 . -362) 91980) ((-358 . -348) 91959) ((-352 . -348) 91938) ((-344 . -348) 91917) ((-315 . -471) 91896) ((-1230 . -23) T) ((-1209 . -23) T) ((-709 . -1099) T) ((-705 . -130) T) ((-643 . -102) T) ((-475 . -708) 91861) ((-45 . -281) 91811) ((-105 . -1087) T) ((-68 . -605) 91793) ((-960 . -102) T) ((-855 . -102) T) ((-615 . -890) 91752) ((-1270 . -1087) T) ((-380 . -1087) T) ((-1199 . -1087) T) ((-1100 . -230) 91721) ((-82 . -1200) T) ((-1050 . -841) T) ((-942 . -841) 91700) ((-117 . -890) NIL) ((-773 . -910) 91679) ((-704 . -841) T) ((-529 . -1087) T) ((-498 . -1087) T) ((-354 . -1204) T) ((-351 . -1204) T) ((-343 . -1204) T) ((-263 . -1204) 91658) ((-246 . -1204) 91637) ((-531 . -851) T) ((-479 . -841) 91616) ((-1145 . -819) T) ((-1129 . -1045) 91600) ((-389 . -752) T) ((-684 . -1200) T) ((-681 . -1028) 91584) ((-354 . -550) T) ((-351 . -550) T) ((-343 . -550) T) ((-263 . -550) 91515) ((-246 . -550) 91446) ((-523 . -1070) T) ((-1129 . -111) 91425) ((-451 . -735) 91395) ((-856 . -1045) 91365) ((-808 . -38) 91307) ((-684 . -874) 91289) ((-684 . -876) 91271) ((-294 . -308) 91075) ((-900 . -1204) T) ((-660 . -410) 91059) ((-856 . -111) 91024) ((-684 . -1028) 90969) ((-994 . -450) T) ((-900 . -550) T) ((-531 . -605) 90951) ((-575 . -910) T) ((-472 . -1099) T) ((-516 . -910) T) ((-1143 . -287) 90928) ((-904 . -450) T) ((-65 . -605) 90910) ((-624 . -228) 90856) ((-472 . -23) T) ((-1107 . -785) T) ((-862 . -130) T) ((-1107 . -782) T) ((-1261 . -1263) 90835) ((-1107 . -717) T) ((-644 . -638) 90809) ((-293 . -605) 90550) ((-1129 . -608) 90468) ((-1025 . -34) T) ((-806 . -839) 90447) ((-574 . -306) T) ((-558 . -306) T) ((-493 . -306) T) ((-1270 . -708) 90417) ((-684 . -376) 90399) ((-684 . -337) 90381) ((-475 . -171) T) ((-380 . -708) 90351) ((-856 . -608) 90286) ((-861 . -841) NIL) ((-558 . -1012) T) ((-493 . -1012) T) ((-1120 . -605) 90268) ((-1100 . -237) 90247) ((-213 . -102) T) ((-1137 . -102) T) ((-71 . -605) 90229) ((-1129 . -1039) T) ((-1165 . -38) 90126) ((-849 . -605) 90108) ((-558 . -543) T) ((-660 . -1046) T) ((-722 . -939) 90061) ((-1129 . -232) 90040) ((-1069 . -1087) T) ((-1024 . -25) T) ((-1024 . -21) T) ((-993 . -1045) 89985) ((-895 . -102) T) ((-856 . -1039) T) ((-684 . -890) NIL) ((-354 . -328) 89969) ((-354 . -362) T) ((-351 . -328) 89953) ((-351 . -362) T) ((-343 . -328) 89937) ((-343 . -362) T) ((-485 . -102) T) ((-1258 . -38) 89907) ((-521 . -677) 89857) ((-216 . -102) T) ((-1014 . -1028) 89737) ((-993 . -111) 89666) ((-1161 . -963) 89635) ((-1160 . -963) 89597) ((-518 . -150) 89581) ((-1067 . -369) 89560) ((-350 . -605) 89542) ((-321 . -21) T) ((-353 . -1028) 89519) ((-321 . -25) T) ((-1154 . -963) 89488) ((-1113 . -963) 89455) ((-76 . -605) 89437) ((-689 . -306) T) ((-168 . -841) 89416) ((-900 . -362) T) ((-378 . -25) T) ((-378 . -21) T) ((-900 . -328) 89403) ((-86 . -605) 89385) ((-689 . -1012) T) ((-667 . -841) T) ((-1230 . -130) T) ((-1209 . -130) T) ((-891 . -1000) 89369) ((-827 . -21) T) ((-48 . -1028) 89312) ((-827 . -25) T) ((-818 . -25) T) ((-818 . -21) T) ((-1268 . -1046) T) ((-1266 . -1046) T) ((-644 . -717) T) ((-1091 . -610) 89215) ((-993 . -608) 89145) ((-1269 . -1045) 89129) ((-1219 . -841) 89108) ((-806 . -410) 89077) ((-103 . -119) 89061) ((-129 . -1087) T) ((-52 . -1087) T) ((-916 . -605) 89043) ((-861 . -982) 89020) ((-814 . -102) T) ((-1269 . -111) 88999) ((-643 . -38) 88969) ((-565 . -841) T) ((-354 . -1099) T) ((-351 . -1099) T) ((-343 . -1099) T) ((-263 . -1099) T) ((-246 . -1099) T) ((-615 . -306) 88948) ((-1137 . -308) 88752) ((-522 . -1070) T) ((-310 . -1087) T) ((-654 . -23) T) ((-480 . -230) 88721) ((-151 . -1046) T) ((-354 . -23) T) ((-351 . -23) T) ((-343 . -23) T) ((-117 . -306) T) ((-263 . -23) T) ((-246 . -23) T) ((-993 . -1039) T) ((-703 . -899) 88700) ((-1143 . -608) 88677) ((-993 . -232) 88649) ((-993 . -242) T) ((-117 . -1012) NIL) ((-900 . -1099) T) ((-1231 . -450) 88628) ((-1210 . -450) 88607) ((-521 . -605) 88539) ((-703 . -638) 88464) ((-406 . -1045) 88416) ((-502 . -605) 88398) ((-900 . -23) T) ((-485 . -308) NIL) ((-1269 . -608) 88354) ((-472 . -130) T) ((-216 . -308) NIL) ((-406 . -111) 88292) ((-806 . -1046) 88222) ((-728 . -1085) 88206) ((-1230 . -491) 88172) ((-1209 . -491) 88138) ((-140 . -1085) 88120) ((-475 . -289) T) ((-1269 . -1039) T) ((-1051 . -102) T) ((-834 . -608) 87988) ((-498 . -512) NIL) ((-693 . -102) T) ((-480 . -237) 87967) ((-406 . -608) 87865) ((-1159 . -144) 87844) ((-1159 . -146) 87823) ((-1112 . -146) 87802) ((-1112 . -144) 87781) ((-627 . -1045) 87765) ((-599 . -1045) 87749) ((-660 . -1087) T) ((-660 . -1042) 87689) ((-1161 . -1237) 87673) ((-1161 . -1224) 87650) ((-485 . -1138) T) ((-1160 . -1229) 87611) ((-1160 . -1224) 87581) ((-1160 . -1227) 87565) ((-216 . -1138) T) ((-342 . -910) T) ((-809 . -265) 87549) ((-627 . -111) 87528) ((-599 . -111) 87507) ((-1154 . -1208) 87468) ((-834 . -1039) 87447) ((-1154 . -1224) 87424) ((-513 . -25) T) ((-493 . -301) T) ((-509 . -23) T) ((-508 . -25) T) ((-506 . -25) T) ((-505 . -23) T) ((-1154 . -1206) 87408) ((-406 . -1039) T) ((-318 . -1046) T) ((-684 . -306) T) ((-108 . -839) T) ((-703 . -717) T) ((-406 . -242) T) ((-406 . -232) 87387) ((-485 . -38) 87337) ((-216 . -38) 87287) ((-472 . -491) 87253) ((-1145 . -1131) T) ((-1088 . -102) T) ((-691 . -605) 87235) ((-691 . -606) 87150) ((-705 . -21) T) ((-705 . -25) T) ((-1122 . -102) T) ((-133 . -605) 87132) ((-116 . -605) 87114) ((-156 . -25) T) ((-1268 . -1087) T) ((-862 . -631) 87062) ((-1266 . -1087) T) ((-953 . -102) T) ((-726 . -102) T) ((-706 . -102) T) ((-451 . -102) T) ((-807 . -450) 87013) ((-44 . -1087) T) ((-1075 . -841) T) ((-654 . -130) T) ((-1051 . -308) 86864) ((-660 . -708) 86848) ((-288 . -1046) T) ((-354 . -130) T) ((-351 . -130) T) ((-343 . -130) T) ((-263 . -130) T) ((-246 . -130) T) ((-417 . -102) T) ((-151 . -1087) T) ((-45 . -228) 86798) ((-948 . -841) 86777) ((-989 . -638) 86715) ((-239 . -1253) 86685) ((-1014 . -306) T) ((-293 . -1045) 86606) ((-900 . -130) T) ((-40 . -910) T) ((-485 . -399) 86588) ((-353 . -306) T) ((-216 . -399) 86570) ((-1067 . -410) 86554) ((-293 . -111) 86470) ((-862 . -25) T) ((-862 . -21) T) ((-338 . -605) 86452) ((-1232 . -47) 86396) ((-224 . -146) T) ((-173 . -605) 86378) ((-1100 . -839) 86357) ((-765 . -605) 86339) ((-128 . -841) T) ((-600 . -234) 86286) ((-473 . -234) 86236) ((-1268 . -708) 86206) ((-48 . -306) T) ((-1266 . -708) 86176) ((-65 . -608) 86105) ((-954 . -1087) T) ((-806 . -1087) 85895) ((-311 . -102) T) ((-891 . -1200) T) ((-48 . -1012) T) ((-1209 . -631) 85803) ((-679 . -102) 85781) ((-44 . -708) 85765) ((-544 . -102) T) ((-293 . -608) 85696) ((-67 . -382) T) ((-67 . -394) T) ((-652 . -23) T) ((-660 . -752) T) ((-1197 . -1087) 85674) ((-350 . -1045) 85619) ((-665 . -1087) 85597) ((-1050 . -146) T) ((-942 . -146) 85576) ((-942 . -144) 85555) ((-790 . -102) T) ((-151 . -708) 85539) ((-479 . -146) 85518) ((-479 . -144) 85497) ((-350 . -111) 85426) ((-1067 . -1046) T) ((-321 . -841) 85405) ((-1238 . -963) 85374) ((-619 . -1087) T) ((-1231 . -963) 85336) ((-509 . -130) T) ((-505 . -130) T) ((-294 . -228) 85286) ((-358 . -1046) T) ((-352 . -1046) T) ((-344 . -1046) T) ((-293 . -1039) 85228) ((-1210 . -963) 85197) ((-378 . -841) T) ((-108 . -1046) T) ((-989 . -717) T) ((-860 . -910) T) ((-834 . -786) 85176) ((-834 . -783) 85155) ((-417 . -308) 85094) ((-466 . -102) T) ((-588 . -963) 85063) ((-318 . -1087) T) ((-406 . -786) 85042) ((-406 . -783) 85021) ((-498 . -487) 85003) ((-1232 . -1028) 84969) ((-1230 . -21) T) ((-1230 . -25) T) ((-1209 . -21) T) ((-1209 . -25) T) ((-806 . -708) 84911) ((-350 . -608) 84841) ((-689 . -403) T) ((-1259 . -1200) T) ((-598 . -102) T) ((-1100 . -410) 84810) ((-993 . -367) NIL) ((-661 . -102) T) ((-179 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-153 . -102) T) ((-103 . -34) T) ((-728 . -1200) T) ((-44 . -752) T) ((-586 . -102) T) ((-77 . -395) T) ((-77 . -394) T) ((-643 . -646) 84794) ((-140 . -1200) T) ((-861 . -146) T) ((-861 . -144) NIL) ((-1199 . -93) T) ((-350 . -1039) T) ((-70 . -382) T) ((-70 . -394) T) ((-1152 . -102) T) ((-660 . -512) 84727) ((-679 . -308) 84665) ((-953 . -38) 84562) ((-726 . -38) 84532) ((-544 . -308) 84336) ((-315 . -1200) T) ((-350 . -232) T) ((-350 . -242) T) ((-312 . -1200) T) ((-288 . -1087) T) ((-1167 . -605) 84318) ((-702 . -1204) T) ((-1143 . -641) 84302) ((-1194 . -550) 84281) ((-702 . -550) T) ((-315 . -874) 84265) ((-315 . -876) 84190) ((-312 . -874) 84151) ((-312 . -876) NIL) ((-790 . -308) 84116) ((-318 . -708) 83957) ((-323 . -322) 83934) ((-483 . -102) T) ((-472 . -25) T) ((-472 . -21) T) ((-417 . -38) 83908) ((-315 . -1028) 83571) ((-224 . -1185) T) ((-224 . -1188) T) ((-3 . -605) 83553) ((-312 . -1028) 83483) ((-2 . -1087) T) ((-2 . |RecordCategory|) T) ((-824 . -605) 83465) ((-1100 . -1046) 83395) ((-574 . -910) T) ((-558 . -811) T) ((-558 . -910) T) ((-493 . -910) T) ((-135 . -1028) 83379) ((-224 . -95) T) ((-75 . -439) T) ((-75 . -394) T) ((0 . -605) 83361) ((-168 . -146) 83340) ((-168 . -144) 83291) ((-224 . -35) T) ((-49 . -605) 83273) ((-475 . -1046) T) ((-485 . -230) 83255) ((-482 . -958) 83239) ((-480 . -839) 83218) ((-216 . -230) 83200) ((-81 . -439) T) ((-81 . -394) T) ((-1133 . -34) T) ((-806 . -171) 83179) ((-722 . -102) T) ((-1016 . -605) 83146) ((-498 . -285) 83121) ((-315 . -376) 83090) ((-312 . -376) 83051) ((-312 . -337) 83012) ((-1072 . -605) 82994) ((-807 . -939) 82941) ((-652 . -130) T) ((-1219 . -144) 82920) ((-1219 . -146) 82899) ((-1161 . -102) T) ((-1160 . -102) T) ((-1154 . -102) T) ((-1146 . -1087) T) ((-1113 . -102) T) ((-221 . -34) T) ((-288 . -708) 82886) ((-1146 . -602) 82862) ((-586 . -308) NIL) ((-482 . -1087) 82840) ((-389 . -605) 82822) ((-508 . -841) T) ((-1137 . -228) 82772) ((-1238 . -1237) 82756) ((-1238 . -1224) 82733) ((-1231 . -1229) 82694) ((-1231 . -1224) 82664) ((-1231 . -1227) 82648) ((-1210 . -1208) 82609) ((-1210 . -1224) 82586) ((-613 . -605) 82568) ((-1210 . -1206) 82552) ((-689 . -910) T) ((-1161 . -283) 82518) ((-1160 . -283) 82484) ((-1154 . -283) 82450) ((-1067 . -1087) T) ((-1049 . -1087) T) ((-48 . -301) T) ((-315 . -890) 82416) ((-312 . -890) NIL) ((-1049 . -1056) 82395) ((-1107 . -876) 82377) ((-790 . -38) 82361) ((-263 . -631) 82309) ((-246 . -631) 82257) ((-691 . -1045) 82244) ((-588 . -1224) 82221) ((-1113 . -283) 82187) ((-318 . -171) 82118) ((-358 . -1087) T) ((-352 . -1087) T) ((-344 . -1087) T) ((-498 . -19) 82100) ((-1107 . -1028) 82082) ((-1089 . -150) 82066) ((-108 . -1087) T) ((-116 . -1045) 82053) ((-702 . -362) T) ((-498 . -596) 82028) ((-691 . -111) 82013) ((-435 . -102) T) ((-45 . -1136) 81963) ((-116 . -111) 81948) ((-627 . -711) T) ((-599 . -711) T) ((-806 . -512) 81881) ((-1025 . -1200) T) ((-933 . -150) 81865) ((-1159 . -450) 81796) ((-1153 . -1087) T) ((-1145 . -1087) T) ((-523 . -102) T) ((-518 . -102) 81746) ((-1129 . -638) 81720) ((-1112 . -450) 81671) ((-1074 . -1204) 81650) ((-773 . -1204) 81629) ((-771 . -1204) 81608) ((-62 . -1200) T) ((-475 . -605) 81560) ((-475 . -606) 81482) ((-1074 . -550) 81413) ((-984 . -1087) T) ((-773 . -550) 81324) ((-771 . -550) 81255) ((-480 . -410) 81224) ((-615 . -910) 81203) ((-452 . -1204) 81182) ((-722 . -308) 81169) ((-691 . -608) 81141) ((-397 . -605) 81123) ((-665 . -512) 81056) ((-654 . -25) T) ((-654 . -21) T) ((-452 . -550) 80987) ((-354 . -25) T) ((-354 . -21) T) ((-117 . -910) T) ((-117 . -811) NIL) ((-351 . -25) T) ((-351 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-263 . -25) T) ((-263 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-83 . -383) T) ((-83 . -394) T) ((-133 . -608) 80969) ((-116 . -608) 80941) ((-1248 . -605) 80923) ((-1194 . -1099) T) ((-1194 . -23) T) ((-1154 . -308) 80808) ((-1113 . -308) 80795) ((-1067 . -708) 80663) ((-856 . -638) 80623) ((-933 . -970) 80607) ((-900 . -21) T) ((-288 . -171) T) ((-900 . -25) T) ((-310 . -93) T) ((-862 . -841) 80558) ((-702 . -1099) T) ((-702 . -23) T) ((-691 . -1039) T) ((-637 . -1087) 80536) ((-624 . -1087) T) ((-575 . -1204) T) ((-516 . -1204) T) ((-624 . -602) 80511) ((-575 . -550) T) ((-516 . -550) T) ((-358 . -708) 80463) ((-352 . -708) 80415) ((-338 . -1045) 80399) ((-344 . -708) 80351) ((-173 . -111) 80262) ((-173 . -1045) 80194) ((-108 . -708) 80144) ((-338 . -111) 80123) ((-273 . -1087) T) ((-272 . -1087) T) ((-271 . -1087) T) ((-270 . -1087) T) ((-269 . -1087) T) ((-268 . -1087) T) ((-267 . -1087) T) ((-211 . -1087) T) ((-210 . -1087) T) ((-208 . -1087) T) ((-168 . -1188) 80101) ((-168 . -1185) 80079) ((-207 . -1087) T) ((-206 . -1087) T) ((-116 . -1039) T) ((-205 . -1087) T) ((-202 . -1087) T) ((-691 . -232) T) ((-201 . -1087) T) ((-200 . -1087) T) ((-199 . -1087) T) ((-198 . -1087) T) ((-197 . -1087) T) ((-196 . -1087) T) ((-195 . -1087) T) ((-194 . -1087) T) ((-193 . -1087) T) ((-192 . -1087) T) ((-239 . -102) 79869) ((-168 . -35) 79847) ((-168 . -95) 79825) ((-644 . -1028) 79721) ((-480 . -1046) 79651) ((-1100 . -1087) 79441) ((-1129 . -34) T) ((-660 . -487) 79425) ((-73 . -1200) T) ((-105 . -605) 79407) ((-1270 . -605) 79389) ((-380 . -605) 79371) ((-338 . -608) 79323) ((-173 . -608) 79240) ((-1199 . -488) 79221) ((-722 . -38) 79070) ((-565 . -1188) T) ((-565 . -1185) T) ((-529 . -605) 79052) ((-518 . -308) 78990) ((-498 . -605) 78972) ((-498 . -606) 78954) ((-1199 . -605) 78920) ((-1154 . -1138) NIL) ((-1017 . -1059) 78889) ((-1017 . -1087) T) ((-994 . -102) T) ((-961 . -102) T) ((-904 . -102) T) ((-883 . -1028) 78866) ((-1129 . -717) T) ((-993 . -638) 78811) ((-474 . -1087) T) ((-461 . -1087) T) ((-579 . -23) T) ((-565 . -35) T) ((-565 . -95) T) ((-426 . -102) T) ((-1051 . -228) 78757) ((-1161 . -38) 78654) ((-856 . -717) T) ((-684 . -910) T) ((-509 . -25) T) ((-505 . -21) T) ((-505 . -25) T) ((-1160 . -38) 78495) ((-338 . -1039) T) ((-1154 . -38) 78291) ((-1067 . -171) T) ((-173 . -1039) T) ((-1113 . -38) 78188) ((-703 . -47) 78165) ((-358 . -171) T) ((-352 . -171) T) ((-517 . -57) 78139) ((-495 . -57) 78089) ((-350 . -1265) 78066) ((-224 . -450) T) ((-318 . -289) 78017) ((-344 . -171) T) ((-173 . -242) T) ((-1209 . -841) 77916) ((-108 . -171) T) ((-862 . -982) 77900) ((-648 . -1099) T) ((-575 . -362) T) ((-575 . -328) 77887) ((-516 . -328) 77864) ((-516 . -362) T) ((-315 . -306) 77843) ((-312 . -306) T) ((-594 . -841) 77822) ((-1100 . -708) 77764) ((-518 . -281) 77748) ((-648 . -23) T) ((-417 . -230) 77732) ((-312 . -1012) NIL) ((-335 . -23) T) ((-103 . -1000) 77716) ((-45 . -36) 77695) ((-604 . -1087) T) ((-350 . -367) T) ((-522 . -102) T) ((-493 . -27) T) ((-239 . -308) 77633) ((-1074 . -1099) T) ((-1269 . -638) 77607) ((-773 . -1099) T) ((-771 . -1099) T) ((-452 . -1099) T) ((-1050 . -450) T) ((-942 . -450) 77558) ((-1102 . -1070) T) ((-110 . -1087) T) ((-1074 . -23) T) ((-808 . -1046) T) ((-773 . -23) T) ((-771 . -23) T) ((-479 . -450) 77509) ((-1146 . -512) 77292) ((-380 . -381) 77271) ((-1165 . -410) 77255) ((-459 . -23) T) ((-452 . -23) T) ((-96 . -1087) T) ((-482 . -512) 77188) ((-288 . -289) T) ((-1069 . -605) 77170) ((-1069 . -606) 77151) ((-406 . -899) 77130) ((-50 . -1099) T) ((-1014 . -910) T) ((-993 . -717) T) ((-703 . -876) NIL) ((-575 . -1099) T) ((-516 . -1099) T) ((-834 . -638) 77103) ((-1194 . -130) T) ((-1154 . -399) 77055) ((-994 . -308) NIL) ((-806 . -487) 77039) ((-353 . -910) T) ((-1143 . -34) T) ((-406 . -638) 76991) ((-50 . -23) T) ((-702 . -130) T) ((-703 . -1028) 76871) ((-575 . -23) T) ((-108 . -512) NIL) ((-516 . -23) T) ((-168 . -408) 76842) ((-1127 . -1087) T) ((-1261 . -1260) 76826) ((-691 . -786) T) ((-691 . -783) T) ((-1107 . -306) T) ((-378 . -146) T) ((-279 . -605) 76808) ((-1209 . -982) 76778) ((-48 . -910) T) ((-665 . -487) 76762) ((-250 . -1253) 76732) ((-249 . -1253) 76702) ((-1163 . -841) T) ((-1100 . -171) 76681) ((-1107 . -1012) T) ((-1036 . -34) T) ((-827 . -146) 76660) ((-827 . -144) 76639) ((-728 . -107) 76623) ((-604 . -131) T) ((-480 . -1087) 76413) ((-1165 . -1046) T) ((-861 . -450) T) ((-85 . -1200) T) ((-239 . -38) 76383) ((-140 . -107) 76365) ((-703 . -376) 76349) ((-824 . -608) 76217) ((-1107 . -543) T) ((-573 . -102) T) ((-129 . -488) 76199) ((-389 . -1045) 76183) ((-1269 . -717) T) ((-1159 . -939) 76152) ((-129 . -605) 76119) ((-52 . -605) 76101) ((-1112 . -939) 76068) ((-643 . -410) 76052) ((-1258 . -1046) T) ((-613 . -1045) 76036) ((-652 . -25) T) ((-652 . -21) T) ((-1145 . -512) NIL) ((-1238 . -102) T) ((-1231 . -102) T) ((-389 . -111) 76015) ((-221 . -253) 75999) ((-1210 . -102) T) ((-1043 . -1087) T) ((-994 . -1138) T) ((-1043 . -1042) 75939) ((-809 . -1087) T) ((-342 . -1204) T) ((-627 . -638) 75923) ((-613 . -111) 75902) ((-599 . -638) 75886) ((-589 . -102) T) ((-310 . -488) 75867) ((-579 . -130) T) ((-588 . -102) T) ((-413 . -1087) T) ((-384 . -1087) T) ((-310 . -605) 75833) ((-226 . -1087) 75811) ((-637 . -512) 75744) ((-624 . -512) 75588) ((-824 . -1039) 75567) ((-635 . -150) 75551) ((-342 . -550) T) ((-703 . -890) 75494) ((-544 . -228) 75444) ((-1238 . -283) 75410) ((-1067 . -289) 75361) ((-485 . -839) T) ((-222 . -1099) T) ((-1231 . -283) 75327) ((-1210 . -283) 75293) ((-994 . -38) 75243) ((-216 . -839) T) ((-1194 . -491) 75209) ((-904 . -38) 75161) ((-834 . -785) 75140) ((-834 . -782) 75119) ((-834 . -717) 75098) ((-358 . -289) T) ((-352 . -289) T) ((-344 . -289) T) ((-168 . -450) 75029) ((-426 . -38) 75013) ((-108 . -289) T) ((-222 . -23) T) ((-406 . -785) 74992) ((-406 . -782) 74971) ((-406 . -717) T) ((-498 . -287) 74946) ((-475 . -1045) 74911) ((-648 . -130) T) ((-613 . -608) 74880) ((-1100 . -512) 74813) ((-335 . -130) T) ((-168 . -401) 74792) ((-480 . -708) 74734) ((-806 . -285) 74711) ((-475 . -111) 74667) ((-643 . -1046) T) ((-1219 . -450) 74598) ((-1257 . -1070) T) ((-1256 . -1070) T) ((-1074 . -130) T) ((-1043 . -708) 74540) ((-263 . -841) 74519) ((-246 . -841) 74498) ((-773 . -130) T) ((-771 . -130) T) ((-565 . -450) T) ((-1017 . -512) 74431) ((-613 . -1039) T) ((-585 . -1087) T) ((-531 . -172) T) ((-459 . -130) T) ((-452 . -130) T) ((-45 . -1087) T) ((-384 . -708) 74401) ((-808 . -1087) T) ((-474 . -512) 74334) ((-461 . -512) 74267) ((-451 . -366) 74237) ((-45 . -602) 74216) ((-315 . -301) T) ((-475 . -608) 74166) ((-660 . -605) 74128) ((-59 . -841) 74107) ((-1210 . -308) 73992) ((-994 . -399) 73974) ((-806 . -596) 73951) ((-514 . -841) 73930) ((-494 . -841) 73909) ((-40 . -1204) T) ((-989 . -1028) 73805) ((-50 . -130) T) ((-575 . -130) T) ((-516 . -130) T) ((-293 . -638) 73665) ((-342 . -328) 73642) ((-342 . -362) T) ((-321 . -322) 73619) ((-318 . -285) 73604) ((-40 . -550) T) ((-378 . -1185) T) ((-378 . -1188) T) ((-1025 . -1176) 73579) ((-1173 . -234) 73529) ((-1154 . -230) 73481) ((-329 . -1087) T) ((-378 . -95) T) ((-378 . -35) T) ((-1025 . -107) 73427) ((-475 . -1039) T) ((-477 . -234) 73377) ((-1146 . -487) 73311) ((-1270 . -1045) 73295) ((-380 . -1045) 73279) ((-475 . -242) T) ((-807 . -102) T) ((-705 . -146) 73258) ((-705 . -144) 73237) ((-482 . -487) 73221) ((-483 . -334) 73190) ((-1270 . -111) 73169) ((-510 . -1087) T) ((-480 . -171) 73148) ((-989 . -376) 73132) ((-412 . -102) T) ((-380 . -111) 73111) ((-989 . -337) 73095) ((-278 . -973) 73079) ((-277 . -973) 73063) ((-1268 . -605) 73045) ((-1266 . -605) 73027) ((-110 . -512) NIL) ((-1159 . -1222) 73011) ((-845 . -843) 72995) ((-1165 . -1087) T) ((-103 . -1200) T) ((-942 . -939) 72956) ((-808 . -708) 72898) ((-1210 . -1138) NIL) ((-479 . -939) 72843) ((-1050 . -142) T) ((-60 . -102) 72821) ((-44 . -605) 72803) ((-78 . -605) 72785) ((-350 . -638) 72730) ((-1258 . -1087) T) ((-509 . -841) T) ((-342 . -1099) T) ((-294 . -1087) T) ((-989 . -890) 72689) ((-294 . -602) 72668) ((-1270 . -608) 72617) ((-1238 . -38) 72514) ((-1231 . -38) 72355) ((-1210 . -38) 72151) ((-485 . -1046) T) ((-380 . -608) 72135) ((-216 . -1046) T) ((-342 . -23) T) ((-151 . -605) 72117) ((-824 . -786) 72096) ((-824 . -783) 72075) ((-1199 . -608) 72056) ((-589 . -38) 72029) ((-588 . -38) 71926) ((-860 . -550) T) ((-222 . -130) T) ((-318 . -992) 71892) ((-79 . -605) 71874) ((-703 . -306) 71853) ((-293 . -717) 71755) ((-815 . -102) T) ((-855 . -835) T) ((-293 . -471) 71734) ((-1261 . -102) T) ((-40 . -362) T) ((-862 . -146) 71713) ((-862 . -144) 71692) ((-1145 . -487) 71674) ((-1270 . -1039) T) ((-480 . -512) 71607) ((-1133 . -1200) T) ((-954 . -605) 71589) ((-637 . -487) 71573) ((-624 . -487) 71504) ((-806 . -605) 71235) ((-48 . -27) T) ((-1165 . -708) 71132) ((-643 . -1087) T) ((-852 . -851) T) ((-435 . -363) 71106) ((-1089 . -102) T) ((-960 . -1087) T) ((-855 . -1087) T) ((-807 . -308) 71093) ((-531 . -525) T) ((-531 . -570) T) ((-1266 . -381) 71065) ((-1043 . -512) 70998) ((-1146 . -285) 70974) ((-239 . -230) 70943) ((-1258 . -708) 70913) ((-1153 . -93) T) ((-984 . -93) T) ((-808 . -171) 70892) ((-1197 . -488) 70869) ((-226 . -512) 70802) ((-613 . -786) 70781) ((-613 . -783) 70760) ((-1197 . -605) 70672) ((-221 . -1200) T) ((-665 . -605) 70604) ((-1143 . -1000) 70588) ((-933 . -102) 70538) ((-350 . -717) T) ((-852 . -605) 70520) ((-1210 . -399) 70472) ((-1100 . -487) 70456) ((-60 . -308) 70394) ((-330 . -102) T) ((-1194 . -21) T) ((-1194 . -25) T) ((-40 . -1099) T) ((-702 . -21) T) ((-619 . -605) 70376) ((-513 . -322) 70355) ((-702 . -25) T) ((-108 . -285) NIL) ((-911 . -1099) T) ((-40 . -23) T) ((-762 . -1099) T) ((-558 . -1204) T) ((-493 . -1204) T) ((-318 . -605) 70337) ((-994 . -230) 70319) ((-168 . -165) 70303) ((-574 . -550) T) ((-558 . -550) T) ((-493 . -550) T) ((-762 . -23) T) ((-1230 . -146) 70282) ((-1146 . -596) 70258) ((-1230 . -144) 70237) ((-1017 . -487) 70221) ((-1209 . -144) 70146) ((-1209 . -146) 70071) ((-1261 . -1267) 70050) ((-474 . -487) 70034) ((-461 . -487) 70018) ((-521 . -34) T) ((-643 . -708) 69988) ((-112 . -957) T) ((-652 . -841) 69967) ((-1165 . -171) 69918) ((-364 . -102) T) ((-239 . -237) 69897) ((-250 . -102) T) ((-249 . -102) T) ((-1219 . -939) 69866) ((-244 . -841) 69845) ((-807 . -38) 69694) ((-45 . -512) 69486) ((-1145 . -285) 69461) ((-213 . -1087) T) ((-1137 . -1087) T) ((-1137 . -602) 69440) ((-579 . -25) T) ((-579 . -21) T) ((-1089 . -308) 69378) ((-953 . -410) 69362) ((-689 . -1204) T) ((-624 . -285) 69337) ((-1074 . -631) 69285) ((-773 . -631) 69233) ((-771 . -631) 69181) ((-342 . -130) T) ((-288 . -605) 69163) ((-895 . -1087) T) ((-689 . -550) T) ((-129 . -608) 69145) ((-860 . -1099) T) ((-452 . -631) 69093) ((-895 . -893) 69077) ((-378 . -450) T) ((-485 . -1087) T) ((-691 . -638) 69064) ((-933 . -308) 69002) ((-216 . -1087) T) ((-315 . -910) 68981) ((-312 . -910) T) ((-312 . -811) NIL) ((-389 . -711) T) ((-860 . -23) T) ((-116 . -638) 68968) ((-472 . -144) 68947) ((-417 . -410) 68931) ((-472 . -146) 68910) ((-110 . -487) 68892) ((-310 . -608) 68873) ((-2 . -605) 68855) ((-185 . -102) T) ((-1145 . -19) 68837) ((-1145 . -596) 68812) ((-648 . -21) T) ((-648 . -25) T) ((-586 . -1131) T) ((-1100 . -285) 68789) ((-335 . -25) T) ((-335 . -21) T) ((-493 . -362) T) ((-1261 . -38) 68759) ((-1129 . -1200) T) ((-624 . -596) 68734) ((-1074 . -25) T) ((-1074 . -21) T) ((-529 . -783) T) ((-529 . -786) T) ((-117 . -1204) T) ((-953 . -1046) T) ((-615 . -550) T) ((-773 . -25) T) ((-773 . -21) T) ((-771 . -21) T) ((-771 . -25) T) ((-726 . -1046) T) ((-706 . -1046) T) ((-660 . -1045) 68718) ((-515 . -1070) T) ((-459 . -25) T) ((-117 . -550) T) ((-459 . -21) T) ((-452 . -25) T) ((-452 . -21) T) ((-1129 . -1028) 68614) ((-808 . -289) 68593) ((-814 . -1087) T) ((-1268 . -1045) 68577) ((-956 . -957) T) ((-660 . -111) 68556) ((-294 . -512) 68348) ((-1266 . -1045) 68332) ((-1230 . -1185) 68298) ((-1230 . -1188) 68264) ((-250 . -308) 68202) ((-249 . -308) 68140) ((-1213 . -102) 68118) ((-1146 . -606) NIL) ((-1146 . -605) 68100) ((-1230 . -95) 68066) ((-1210 . -230) 68018) ((-1209 . -1185) 67984) ((-96 . -93) T) ((-1209 . -1188) 67950) ((-1129 . -376) 67934) ((-1107 . -811) T) ((-1107 . -910) T) ((-1100 . -596) 67911) ((-1067 . -606) 67895) ((-482 . -605) 67827) ((-806 . -287) 67804) ((-600 . -150) 67751) ((-417 . -1046) T) ((-485 . -708) 67701) ((-480 . -487) 67685) ((-326 . -841) 67664) ((-338 . -638) 67638) ((-50 . -21) T) ((-50 . -25) T) ((-216 . -708) 67588) ((-168 . -715) 67559) ((-173 . -638) 67491) ((-575 . -21) T) ((-575 . -25) T) ((-516 . -25) T) ((-516 . -21) T) ((-473 . -150) 67441) ((-1067 . -605) 67423) ((-1049 . -605) 67405) ((-983 . -102) T) ((-853 . -102) T) ((-790 . -410) 67369) ((-40 . -130) T) ((-689 . -362) T) ((-691 . -717) T) ((-211 . -885) T) ((-691 . -785) T) ((-691 . -782) T) ((-574 . -1099) T) ((-558 . -1099) T) ((-493 . -1099) T) ((-358 . -605) 67351) ((-352 . -605) 67333) ((-344 . -605) 67315) ((-66 . -395) T) ((-66 . -394) T) ((-108 . -606) 67245) ((-108 . -605) 67188) ((-210 . -885) T) ((-948 . -150) 67172) ((-762 . -130) T) ((-660 . -608) 67090) ((-133 . -717) T) ((-116 . -717) T) ((-1230 . -35) 67056) ((-1043 . -487) 67040) ((-574 . -23) T) ((-558 . -23) T) ((-493 . -23) T) ((-1209 . -95) 67006) ((-1209 . -35) 66972) ((-1159 . -102) T) ((-1112 . -102) T) ((-845 . -102) T) ((-226 . -487) 66956) ((-1268 . -111) 66935) ((-1266 . -111) 66914) ((-44 . -1045) 66898) ((-1219 . -1222) 66882) ((-846 . -843) 66866) ((-1165 . -289) 66845) ((-110 . -285) 66820) ((-1268 . -608) 66766) ((-128 . -150) 66748) ((-1129 . -890) 66707) ((-44 . -111) 66686) ((-1168 . -1241) T) ((-1153 . -488) 66667) ((-1153 . -605) 66633) ((-1145 . -606) NIL) ((-660 . -1039) T) ((-1145 . -605) 66615) ((-1051 . -602) 66590) ((-1051 . -1087) T) ((-984 . -488) 66571) ((-984 . -605) 66537) ((-74 . -439) T) ((-74 . -394) T) ((-693 . -1087) T) ((-151 . -1045) 66521) ((-660 . -232) 66500) ((-565 . -548) 66484) ((-354 . -146) 66463) ((-354 . -144) 66414) ((-351 . -146) 66393) ((-351 . -144) 66344) ((-343 . -146) 66323) ((-343 . -144) 66274) ((-263 . -144) 66253) ((-263 . -146) 66232) ((-250 . -38) 66202) ((-246 . -146) 66181) ((-117 . -362) T) ((-246 . -144) 66160) ((-249 . -38) 66130) ((-151 . -111) 66109) ((-993 . -1028) 65997) ((-1154 . -839) NIL) ((-684 . -1204) T) ((-790 . -1046) T) ((-689 . -1099) T) ((-1268 . -1039) T) ((-1266 . -608) 65926) ((-1266 . -1039) T) ((-1143 . -1200) T) ((-993 . -376) 65903) ((-900 . -144) T) ((-900 . -146) 65885) ((-860 . -130) T) ((-806 . -1045) 65782) ((-684 . -550) T) ((-689 . -23) T) ((-637 . -605) 65714) ((-637 . -606) 65675) ((-624 . -606) NIL) ((-624 . -605) 65657) ((-485 . -171) T) ((-222 . -21) T) ((-216 . -171) T) ((-222 . -25) T) ((-472 . -1188) 65623) ((-472 . -1185) 65589) ((-273 . -605) 65571) ((-272 . -605) 65553) ((-271 . -605) 65535) ((-270 . -605) 65517) ((-269 . -605) 65499) ((-498 . -641) 65481) ((-268 . -605) 65463) ((-338 . -717) T) ((-267 . -605) 65445) ((-110 . -19) 65427) ((-173 . -717) T) ((-498 . -372) 65409) ((-211 . -605) 65391) ((-518 . -1136) 65375) ((-498 . -123) T) ((-110 . -596) 65350) ((-210 . -605) 65332) ((-472 . -35) 65298) ((-472 . -95) 65264) ((-208 . -605) 65246) ((-207 . -605) 65228) ((-206 . -605) 65210) ((-205 . -605) 65192) ((-202 . -605) 65174) ((-201 . -605) 65156) ((-200 . -605) 65138) ((-199 . -605) 65120) ((-198 . -605) 65102) ((-197 . -605) 65084) ((-196 . -605) 65066) ((-534 . -1090) 65018) ((-195 . -605) 65000) ((-194 . -605) 64982) ((-45 . -487) 64919) ((-193 . -605) 64901) ((-192 . -605) 64883) ((-151 . -608) 64852) ((-1102 . -102) T) ((-806 . -111) 64742) ((-635 . -102) 64692) ((-480 . -285) 64669) ((-1100 . -605) 64400) ((-1088 . -1087) T) ((-1036 . -1200) T) ((-1269 . -1028) 64384) ((-615 . -1099) T) ((-1159 . -308) 64371) ((-1122 . -1087) T) ((-1112 . -308) 64358) ((-1083 . -1070) T) ((-1077 . -1070) T) ((-1061 . -1070) T) ((-1054 . -1070) T) ((-1026 . -1070) T) ((-1009 . -1070) T) ((-117 . -1099) T) ((-810 . -102) T) ((-618 . -1070) T) ((-615 . -23) T) ((-1137 . -512) 64150) ((-481 . -1070) T) ((-993 . -890) 64102) ((-385 . -102) T) ((-323 . -102) T) ((-217 . -1070) T) ((-953 . -1087) T) ((-151 . -1039) T) ((-722 . -410) 64086) ((-117 . -23) T) ((-726 . -1087) T) ((-706 . -1087) T) ((-693 . -131) T) ((-451 . -1087) T) ((-406 . -1200) T) ((-315 . -429) 64070) ((-585 . -93) T) ((-1017 . -606) 64031) ((-1014 . -1204) T) ((-224 . -102) T) ((-1017 . -605) 63993) ((-807 . -230) 63977) ((-806 . -608) 63707) ((-1014 . -550) T) ((-824 . -638) 63680) ((-353 . -1204) T) ((-474 . -605) 63642) ((-474 . -606) 63603) ((-461 . -606) 63564) ((-461 . -605) 63526) ((-406 . -874) 63510) ((-318 . -1045) 63345) ((-406 . -876) 63270) ((-834 . -1028) 63166) ((-485 . -512) NIL) ((-480 . -596) 63143) ((-353 . -550) T) ((-216 . -512) NIL) ((-862 . -450) T) ((-417 . -1087) T) ((-406 . -1028) 63007) ((-318 . -111) 62828) ((-684 . -362) T) ((-224 . -283) T) ((-1197 . -608) 62805) ((-48 . -1204) T) ((-806 . -1039) 62735) ((-574 . -130) T) ((-558 . -130) T) ((-493 . -130) T) ((-1159 . -1138) 62713) ((-48 . -550) T) ((-1146 . -287) 62689) ((-1050 . -102) T) ((-942 . -102) T) ((-315 . -27) 62668) ((-806 . -232) 62620) ((-248 . -826) 62602) ((-239 . -839) 62581) ((-186 . -826) 62563) ((-704 . -102) T) ((-294 . -487) 62500) ((-479 . -102) T) ((-722 . -1046) T) ((-604 . -605) 62482) ((-604 . -606) 62343) ((-406 . -376) 62327) ((-406 . -337) 62311) ((-318 . -608) 62137) ((-1159 . -38) 61966) ((-1112 . -38) 61815) ((-845 . -38) 61785) ((-389 . -638) 61769) ((-635 . -308) 61707) ((-953 . -708) 61604) ((-726 . -708) 61574) ((-221 . -107) 61558) ((-45 . -285) 61483) ((-613 . -638) 61457) ((-311 . -1087) T) ((-288 . -1045) 61444) ((-110 . -605) 61426) ((-110 . -606) 61408) ((-451 . -708) 61378) ((-807 . -252) 61317) ((-679 . -1087) 61295) ((-544 . -1087) T) ((-1161 . -1046) T) ((-1160 . -1046) T) ((-96 . -488) 61276) ((-1154 . -1046) T) ((-288 . -111) 61261) ((-1113 . -1046) T) ((-544 . -602) 61240) ((-96 . -605) 61206) ((-994 . -839) T) ((-226 . -677) 61164) ((-684 . -1099) T) ((-1194 . -731) 61140) ((-829 . -826) 61122) ((-318 . -1039) T) ((-342 . -25) T) ((-342 . -21) T) ((-406 . -890) 61081) ((-68 . -1200) T) ((-824 . -785) 61060) ((-417 . -708) 61034) ((-790 . -1087) T) ((-824 . -782) 61013) ((-689 . -130) T) ((-703 . -910) 60992) ((-684 . -23) T) ((-485 . -289) T) ((-824 . -717) 60971) ((-318 . -232) 60923) ((-318 . -242) 60902) ((-216 . -289) T) ((-1014 . -362) T) ((-1230 . -450) 60881) ((-1209 . -450) 60860) ((-353 . -328) 60837) ((-353 . -362) T) ((-1127 . -605) 60819) ((-45 . -1234) 60769) ((-861 . -102) T) ((-635 . -281) 60753) ((-689 . -1048) T) ((-1257 . -102) T) ((-1256 . -102) T) ((-475 . -638) 60718) ((-466 . -1087) T) ((-45 . -596) 60643) ((-1145 . -287) 60618) ((-288 . -608) 60590) ((-40 . -631) 60529) ((-48 . -362) T) ((-1093 . -605) 60511) ((-1074 . -841) 60490) ((-624 . -287) 60465) ((-773 . -841) 60444) ((-771 . -841) 60423) ((-480 . -605) 60154) ((-239 . -410) 60123) ((-942 . -308) 60110) ((-452 . -841) 60089) ((-65 . -1200) T) ((-1051 . -512) 59933) ((-615 . -130) T) ((-479 . -308) 59920) ((-598 . -1087) T) ((-117 . -130) T) ((-661 . -1087) T) ((-288 . -1039) T) ((-179 . -1087) T) ((-160 . -1087) T) ((-155 . -1087) T) ((-153 . -1087) T) ((-451 . -752) T) ((-31 . -1070) T) ((-953 . -171) 59871) ((-960 . -93) T) ((-1067 . -1045) 59781) ((-613 . -785) 59760) ((-586 . -1087) T) ((-613 . -782) 59739) ((-613 . -717) T) ((-294 . -285) 59718) ((-293 . -1200) T) ((-1043 . -605) 59680) ((-1043 . -606) 59641) ((-1014 . -1099) T) ((-168 . -102) T) ((-274 . -841) T) ((-1152 . -1087) T) ((-809 . -605) 59623) ((-1100 . -287) 59600) ((-1089 . -228) 59584) ((-993 . -306) T) ((-790 . -708) 59568) ((-358 . -1045) 59520) ((-353 . -1099) T) ((-352 . -1045) 59472) ((-413 . -605) 59454) ((-384 . -605) 59436) ((-344 . -1045) 59388) ((-226 . -605) 59320) ((-1067 . -111) 59216) ((-1014 . -23) T) ((-108 . -1045) 59166) ((-888 . -102) T) ((-832 . -102) T) ((-799 . -102) T) ((-760 . -102) T) ((-667 . -102) T) ((-472 . -450) 59145) ((-417 . -171) T) ((-358 . -111) 59083) ((-352 . -111) 59021) ((-344 . -111) 58959) ((-250 . -230) 58928) ((-249 . -230) 58897) ((-353 . -23) T) ((-71 . -1200) T) ((-224 . -38) 58862) ((-108 . -111) 58796) ((-40 . -25) T) ((-40 . -21) T) ((-660 . -711) T) ((-168 . -283) 58774) ((-48 . -1099) T) ((-911 . -25) T) ((-762 . -25) T) ((-1137 . -487) 58711) ((-483 . -1087) T) ((-1270 . -638) 58685) ((-1219 . -102) T) ((-846 . -102) T) ((-239 . -1046) 58615) ((-1050 . -1138) T) ((-954 . -783) 58568) ((-380 . -638) 58552) ((-48 . -23) T) ((-954 . -786) 58505) ((-806 . -786) 58456) ((-806 . -783) 58407) ((-294 . -596) 58386) ((-475 . -717) T) ((-565 . -102) T) ((-1067 . -608) 58204) ((-248 . -184) T) ((-186 . -184) T) ((-861 . -308) 58161) ((-643 . -285) 58140) ((-112 . -651) T) ((-358 . -608) 58077) ((-352 . -608) 58014) ((-344 . -608) 57951) ((-76 . -1200) T) ((-108 . -608) 57901) ((-1050 . -38) 57888) ((-654 . -373) 57867) ((-942 . -38) 57716) ((-722 . -1087) T) ((-479 . -38) 57565) ((-86 . -1200) T) ((-585 . -488) 57546) ((-565 . -283) T) ((-1210 . -839) NIL) ((-585 . -605) 57512) ((-1161 . -1087) T) ((-1160 . -1087) T) ((-1067 . -1039) T) ((-350 . -1028) 57489) ((-808 . -488) 57473) ((-994 . -1046) T) ((-45 . -605) 57455) ((-45 . -606) NIL) ((-904 . -1046) T) ((-808 . -605) 57424) ((-1154 . -1087) T) ((-1134 . -102) 57402) ((-1067 . -242) 57353) ((-426 . -1046) T) ((-358 . -1039) T) ((-364 . -363) 57330) ((-352 . -1039) T) ((-344 . -1039) T) ((-250 . -237) 57309) ((-249 . -237) 57288) ((-1067 . -232) 57213) ((-1113 . -1087) T) ((-293 . -890) 57172) ((-108 . -1039) T) ((-684 . -130) T) ((-417 . -512) 57014) ((-358 . -232) 56993) ((-358 . -242) T) ((-44 . -711) T) ((-352 . -232) 56972) ((-352 . -242) T) ((-344 . -232) 56951) ((-344 . -242) T) ((-1153 . -608) 56932) ((-168 . -308) 56897) ((-108 . -242) T) ((-108 . -232) T) ((-984 . -608) 56878) ((-318 . -783) T) ((-860 . -21) T) ((-860 . -25) T) ((-406 . -306) T) ((-498 . -34) T) ((-110 . -287) 56853) ((-1100 . -1045) 56750) ((-861 . -1138) NIL) ((-329 . -605) 56732) ((-406 . -1012) 56710) ((-1100 . -111) 56600) ((-681 . -1241) T) ((-435 . -1087) T) ((-1270 . -717) T) ((-63 . -605) 56582) ((-861 . -38) 56527) ((-521 . -1200) T) ((-594 . -150) 56511) ((-510 . -605) 56493) ((-1219 . -308) 56480) ((-722 . -708) 56329) ((-529 . -784) T) ((-529 . -785) T) ((-558 . -631) 56311) ((-493 . -631) 56271) ((-354 . -450) T) ((-351 . -450) T) ((-343 . -450) T) ((-263 . -450) 56222) ((-523 . -1087) T) ((-518 . -1087) 56172) ((-246 . -450) 56123) ((-1137 . -285) 56102) ((-1165 . -605) 56084) ((-679 . -512) 56017) ((-953 . -289) 55996) ((-544 . -512) 55788) ((-1258 . -605) 55757) ((-1159 . -230) 55741) ((-1100 . -608) 55471) ((-168 . -1138) 55450) ((-1258 . -488) 55434) ((-1161 . -708) 55331) ((-1160 . -708) 55172) ((-882 . -102) T) ((-1154 . -708) 54968) ((-1113 . -708) 54865) ((-1143 . -664) 54849) ((-354 . -401) 54800) ((-351 . -401) 54751) ((-343 . -401) 54702) ((-1014 . -130) T) ((-790 . -512) 54614) ((-294 . -606) NIL) ((-294 . -605) 54596) ((-900 . -450) T) ((-954 . -367) 54549) ((-806 . -367) 54528) ((-508 . -507) 54507) ((-506 . -507) 54486) ((-485 . -285) NIL) ((-480 . -287) 54463) ((-417 . -289) T) ((-353 . -130) T) ((-216 . -285) NIL) ((-684 . -491) NIL) ((-99 . -1099) T) ((-168 . -38) 54291) ((-1230 . -963) 54253) ((-1134 . -308) 54191) ((-1209 . -963) 54160) ((-900 . -401) T) ((-1100 . -1039) 54090) ((-1232 . -550) T) ((-1137 . -596) 54069) ((-112 . -841) T) ((-1051 . -487) 54000) ((-574 . -21) T) ((-574 . -25) T) ((-558 . -21) T) ((-558 . -25) T) ((-493 . -25) T) ((-493 . -21) T) ((-1219 . -1138) 53978) ((-1100 . -232) 53930) ((-48 . -130) T) ((-1181 . -102) T) ((-239 . -1087) 53720) ((-861 . -399) 53697) ((-1075 . -102) T) ((-1063 . -102) T) ((-600 . -102) T) ((-473 . -102) T) ((-1219 . -38) 53526) ((-846 . -38) 53496) ((-722 . -171) 53407) ((-643 . -605) 53389) ((-636 . -1070) T) ((-565 . -38) 53376) ((-960 . -488) 53357) ((-960 . -605) 53323) ((-948 . -102) 53273) ((-855 . -605) 53255) ((-855 . -606) 53177) ((-586 . -512) NIL) ((-1238 . -1046) T) ((-1231 . -1046) T) ((-1210 . -1046) T) ((-589 . -1046) T) ((-588 . -1046) T) ((-1274 . -1099) T) ((-1161 . -171) 53128) ((-1160 . -171) 53059) ((-1154 . -171) 52990) ((-1113 . -171) 52941) ((-994 . -1087) T) ((-961 . -1087) T) ((-904 . -1087) T) ((-1194 . -146) 52920) ((-790 . -788) 52904) ((-689 . -25) T) ((-689 . -21) T) ((-117 . -631) 52881) ((-691 . -876) 52863) ((-426 . -1087) T) ((-315 . -1204) 52842) ((-312 . -1204) T) ((-168 . -399) 52826) ((-1194 . -144) 52805) ((-472 . -963) 52767) ((-128 . -102) T) ((-72 . -605) 52749) ((-108 . -786) T) ((-108 . -783) T) ((-691 . -1028) 52731) ((-315 . -550) 52710) ((-312 . -550) T) ((-1274 . -23) T) ((-133 . -1028) 52692) ((-96 . -608) 52673) ((-480 . -1045) 52570) ((-45 . -287) 52495) ((-239 . -708) 52437) ((-515 . -102) T) ((-480 . -111) 52327) ((-1079 . -102) 52305) ((-1024 . -102) T) ((-635 . -819) 52284) ((-722 . -512) 52227) ((-1043 . -1045) 52211) ((-1122 . -93) T) ((-1051 . -285) 52186) ((-615 . -21) T) ((-615 . -25) T) ((-522 . -1087) T) ((-360 . -102) T) ((-321 . -102) T) ((-660 . -638) 52160) ((-384 . -1045) 52144) ((-1043 . -111) 52123) ((-807 . -410) 52107) ((-117 . -25) T) ((-89 . -605) 52089) ((-117 . -21) T) ((-600 . -308) 51884) ((-473 . -308) 51688) ((-1137 . -606) NIL) ((-384 . -111) 51667) ((-378 . -102) T) ((-213 . -605) 51649) ((-1137 . -605) 51631) ((-1154 . -512) 51400) ((-994 . -708) 51350) ((-1113 . -512) 51320) ((-904 . -708) 51272) ((-480 . -608) 51002) ((-350 . -306) T) ((-1173 . -150) 50952) ((-948 . -308) 50890) ((-827 . -102) T) ((-426 . -708) 50874) ((-224 . -819) T) ((-818 . -102) T) ((-816 . -102) T) ((-477 . -150) 50824) ((-1230 . -1229) 50803) ((-1107 . -1204) T) ((-338 . -1028) 50770) ((-1230 . -1224) 50740) ((-1230 . -1227) 50724) ((-1209 . -1208) 50703) ((-80 . -605) 50685) ((-895 . -605) 50667) ((-1209 . -1224) 50644) ((-1107 . -550) T) ((-911 . -841) T) ((-762 . -841) T) ((-485 . -606) 50574) ((-485 . -605) 50516) ((-378 . -283) T) ((-662 . -841) T) ((-1209 . -1206) 50500) ((-1232 . -1099) T) ((-216 . -606) 50430) ((-216 . -605) 50372) ((-1268 . -638) 50346) ((-1051 . -596) 50321) ((-809 . -608) 50305) ((-59 . -150) 50289) ((-514 . -150) 50273) ((-494 . -150) 50257) ((-358 . -1265) 50241) ((-352 . -1265) 50225) ((-344 . -1265) 50209) ((-315 . -362) 50188) ((-312 . -362) T) ((-480 . -1039) 50118) ((-684 . -631) 50100) ((-1266 . -638) 50074) ((-128 . -308) NIL) ((-1232 . -23) T) ((-679 . -487) 50058) ((-64 . -605) 50040) ((-1100 . -786) 49991) ((-1100 . -783) 49942) ((-544 . -487) 49879) ((-660 . -34) T) ((-480 . -232) 49831) ((-294 . -287) 49810) ((-239 . -171) 49789) ((-807 . -1046) T) ((-44 . -638) 49747) ((-1067 . -367) 49698) ((-722 . -289) 49629) ((-518 . -512) 49562) ((-808 . -1045) 49513) ((-1074 . -144) 49492) ((-358 . -367) 49471) ((-352 . -367) 49450) ((-344 . -367) 49429) ((-1074 . -146) 49408) ((-861 . -230) 49385) ((-808 . -111) 49327) ((-773 . -144) 49306) ((-773 . -146) 49285) ((-263 . -939) 49252) ((-250 . -839) 49231) ((-246 . -939) 49176) ((-249 . -839) 49155) ((-771 . -144) 49134) ((-771 . -146) 49113) ((-151 . -638) 49087) ((-573 . -1087) T) ((-452 . -146) 49066) ((-452 . -144) 49045) ((-660 . -717) T) ((-814 . -605) 49027) ((-1238 . -1087) T) ((-1231 . -1087) T) ((-1210 . -1087) T) ((-1194 . -1188) 48993) ((-1194 . -1185) 48959) ((-1161 . -289) 48938) ((-1160 . -289) 48889) ((-1154 . -289) 48840) ((-1113 . -289) 48819) ((-338 . -890) 48800) ((-994 . -171) T) ((-904 . -171) T) ((-589 . -1087) T) ((-588 . -1087) T) ((-684 . -21) T) ((-684 . -25) T) ((-472 . -1227) 48784) ((-472 . -1224) 48754) ((-417 . -285) 48682) ((-315 . -1099) 48531) ((-312 . -1099) T) ((-1194 . -35) 48497) ((-1194 . -95) 48463) ((-84 . -605) 48445) ((-91 . -102) 48423) ((-1274 . -130) T) ((-585 . -608) 48404) ((-575 . -144) T) ((-575 . -146) 48386) ((-516 . -146) 48368) ((-516 . -144) T) ((-315 . -23) 48220) ((-40 . -341) 48194) ((-312 . -23) T) ((-808 . -608) 48108) ((-1145 . -641) 48090) ((-1261 . -1046) T) ((-1145 . -372) 48072) ((-806 . -638) 47920) ((-1083 . -102) T) ((-1077 . -102) T) ((-1061 . -102) T) ((-168 . -230) 47904) ((-1054 . -102) T) ((-1026 . -102) T) ((-1009 . -102) T) ((-586 . -487) 47886) ((-618 . -102) T) ((-239 . -512) 47819) ((-481 . -102) T) ((-1268 . -717) T) ((-1266 . -717) T) ((-217 . -102) T) ((-1165 . -1045) 47702) ((-1165 . -111) 47571) ((-852 . -172) T) ((-808 . -1039) T) ((-671 . -1070) T) ((-666 . -1070) T) ((-513 . -102) T) ((-508 . -102) T) ((-48 . -631) 47531) ((-506 . -102) T) ((-476 . -1070) T) ((-1258 . -1045) 47501) ((-137 . -1070) T) ((-136 . -1070) T) ((-132 . -1070) T) ((-1024 . -38) 47485) ((-808 . -232) T) ((-808 . -242) 47464) ((-1258 . -111) 47429) ((-1238 . -708) 47326) ((-1231 . -708) 47167) ((-544 . -285) 47146) ((-1219 . -230) 47130) ((-1051 . -606) NIL) ((-598 . -93) T) ((-1051 . -605) 47112) ((-693 . -488) 47096) ((-661 . -93) T) ((-179 . -93) T) ((-160 . -93) T) ((-155 . -93) T) ((-153 . -93) T) ((-1210 . -708) 46892) ((-993 . -910) T) ((-693 . -605) 46861) ((-151 . -717) T) ((-1100 . -367) 46840) ((-994 . -512) NIL) ((-250 . -410) 46809) ((-249 . -410) 46778) ((-1014 . -25) T) ((-1014 . -21) T) ((-589 . -708) 46751) ((-588 . -708) 46648) ((-790 . -285) 46606) ((-126 . -102) 46584) ((-824 . -1028) 46480) ((-168 . -819) 46459) ((-318 . -638) 46356) ((-806 . -34) T) ((-705 . -102) T) ((-1165 . -608) 46209) ((-1107 . -1099) T) ((-1016 . -1200) T) ((-378 . -38) 46174) ((-353 . -25) T) ((-353 . -21) T) ((-186 . -102) T) ((-161 . -102) T) ((-248 . -102) T) ((-156 . -102) T) ((-354 . -1253) 46158) ((-351 . -1253) 46142) ((-343 . -1253) 46126) ((-168 . -348) 46105) ((-558 . -841) T) ((-493 . -841) T) ((-1107 . -23) T) ((-87 . -605) 46087) ((-691 . -306) T) ((-827 . -38) 46057) ((-818 . -38) 46027) ((-1258 . -608) 45969) ((-1232 . -130) T) ((-1137 . -287) 45948) ((-954 . -784) 45901) ((-954 . -785) 45854) ((-806 . -782) 45833) ((-116 . -306) T) ((-91 . -308) 45771) ((-665 . -34) T) ((-544 . -596) 45750) ((-48 . -25) T) ((-48 . -21) T) ((-806 . -785) 45701) ((-806 . -784) 45680) ((-691 . -1012) T) ((-643 . -1045) 45664) ((-954 . -717) 45563) ((-806 . -717) 45473) ((-954 . -471) 45426) ((-480 . -786) 45377) ((-480 . -783) 45328) ((-900 . -1253) 45315) ((-1165 . -1039) T) ((-643 . -111) 45294) ((-1165 . -325) 45271) ((-1186 . -102) 45249) ((-1088 . -605) 45231) ((-691 . -543) T) ((-807 . -1087) T) ((-1122 . -488) 45212) ((-1258 . -1039) T) ((-412 . -1087) T) ((-1122 . -605) 45178) ((-250 . -1046) 45108) ((-249 . -1046) 45038) ((-829 . -102) T) ((-288 . -638) 45025) ((-586 . -285) 45000) ((-679 . -677) 44958) ((-953 . -605) 44940) ((-862 . -102) T) ((-726 . -605) 44922) ((-706 . -605) 44904) ((-1238 . -171) 44855) ((-1231 . -171) 44786) ((-1210 . -171) 44717) ((-689 . -841) T) ((-994 . -289) T) ((-451 . -605) 44699) ((-619 . -717) T) ((-60 . -1087) 44677) ((-244 . -150) 44661) ((-904 . -289) T) ((-1014 . -1002) T) ((-619 . -471) T) ((-703 . -1204) 44640) ((-643 . -608) 44558) ((-589 . -171) 44537) ((-588 . -171) 44488) ((-1246 . -841) 44467) ((-703 . -550) 44378) ((-406 . -910) T) ((-406 . -811) 44357) ((-318 . -785) T) ((-960 . -608) 44338) ((-318 . -717) T) ((-417 . -605) 44320) ((-417 . -606) 44227) ((-635 . -1136) 44211) ((-110 . -641) 44193) ((-173 . -306) T) ((-126 . -308) 44131) ((-110 . -372) 44113) ((-397 . -1200) T) ((-315 . -130) 43984) ((-312 . -130) T) ((-69 . -394) T) ((-110 . -123) T) ((-518 . -487) 43968) ((-644 . -1099) T) ((-586 . -19) 43950) ((-61 . -439) T) ((-61 . -394) T) ((-815 . -1087) T) ((-586 . -596) 43925) ((-475 . -1028) 43885) ((-643 . -1039) T) ((-644 . -23) T) ((-1261 . -1087) T) ((-31 . -102) T) ((-807 . -708) 43734) ((-571 . -851) T) ((-117 . -841) NIL) ((-1159 . -410) 43718) ((-1112 . -410) 43702) ((-845 . -410) 43686) ((-863 . -102) 43637) ((-1230 . -102) T) ((-1210 . -512) 43406) ((-1209 . -102) T) ((-1186 . -308) 43344) ((-523 . -93) T) ((-1161 . -285) 43329) ((-311 . -605) 43311) ((-1160 . -285) 43296) ((-1089 . -1087) T) ((-1067 . -638) 43206) ((-679 . -605) 43138) ((-288 . -717) T) ((-108 . -899) NIL) ((-679 . -606) 43099) ((-593 . -605) 43081) ((-571 . -605) 43063) ((-544 . -606) NIL) ((-544 . -605) 43045) ((-527 . -605) 43027) ((-1154 . -285) 42875) ((-485 . -1045) 42825) ((-702 . -450) T) ((-509 . -507) 42804) ((-505 . -507) 42783) ((-216 . -1045) 42733) ((-358 . -638) 42685) ((-352 . -638) 42637) ((-224 . -839) T) ((-344 . -638) 42589) ((-594 . -102) 42539) ((-480 . -367) 42518) ((-108 . -638) 42468) ((-485 . -111) 42402) ((-239 . -487) 42386) ((-342 . -146) 42368) ((-342 . -144) T) ((-168 . -369) 42339) ((-933 . -1244) 42323) ((-216 . -111) 42257) ((-862 . -308) 42222) ((-933 . -1087) 42172) ((-790 . -606) 42133) ((-790 . -605) 42115) ((-709 . -102) T) ((-330 . -1087) T) ((-213 . -608) 42092) ((-1107 . -130) T) ((-705 . -38) 42062) ((-315 . -491) 42041) ((-498 . -1200) T) ((-1230 . -283) 42007) ((-1209 . -283) 41973) ((-326 . -150) 41957) ((-1051 . -287) 41932) ((-1261 . -708) 41902) ((-1146 . -34) T) ((-1270 . -1028) 41879) ((-466 . -605) 41861) ((-482 . -34) T) ((-380 . -1028) 41845) ((-1159 . -1046) T) ((-1112 . -1046) T) ((-845 . -1046) T) ((-1050 . -839) T) ((-485 . -608) 41795) ((-216 . -608) 41745) ((-807 . -171) 41656) ((-518 . -285) 41633) ((-1238 . -289) 41612) ((-1181 . -363) 41586) ((-1075 . -265) 41570) ((-661 . -488) 41551) ((-661 . -605) 41517) ((-598 . -488) 41498) ((-117 . -982) 41475) ((-598 . -605) 41425) ((-472 . -102) T) ((-179 . -488) 41406) ((-179 . -605) 41372) ((-160 . -488) 41353) ((-155 . -488) 41334) ((-153 . -488) 41315) ((-160 . -605) 41281) ((-155 . -605) 41247) ((-364 . -1087) T) ((-250 . -1087) T) ((-249 . -1087) T) ((-153 . -605) 41213) ((-1231 . -289) 41164) ((-1210 . -289) 41115) ((-862 . -1138) 41093) ((-1161 . -992) 41059) ((-600 . -363) 40999) ((-1160 . -992) 40965) ((-600 . -228) 40912) ((-586 . -605) 40894) ((-586 . -606) NIL) ((-684 . -841) T) ((-473 . -228) 40844) ((-485 . -1039) T) ((-1154 . -992) 40810) ((-88 . -438) T) ((-88 . -394) T) ((-216 . -1039) T) ((-1113 . -992) 40776) ((-1067 . -717) T) ((-703 . -1099) T) ((-589 . -289) 40755) ((-588 . -289) 40734) ((-485 . -242) T) ((-485 . -232) T) ((-216 . -242) T) ((-216 . -232) T) ((-1152 . -605) 40716) ((-862 . -38) 40668) ((-358 . -717) T) ((-352 . -717) T) ((-344 . -717) T) ((-108 . -785) T) ((-108 . -782) T) ((-703 . -23) T) ((-108 . -717) T) ((-518 . -1234) 40652) ((-1274 . -25) T) ((-472 . -283) 40618) ((-1274 . -21) T) ((-1209 . -308) 40557) ((-1163 . -102) T) ((-40 . -144) 40529) ((-40 . -146) 40501) ((-518 . -596) 40478) ((-1100 . -638) 40326) ((-594 . -308) 40264) ((-45 . -641) 40214) ((-45 . -656) 40164) ((-45 . -372) 40114) ((-1145 . -34) T) ((-861 . -839) NIL) ((-644 . -130) T) ((-483 . -605) 40096) ((-239 . -285) 40073) ((-185 . -1087) T) ((-637 . -34) T) ((-624 . -34) T) ((-1074 . -450) 40024) ((-807 . -512) 39898) ((-773 . -450) 39829) ((-771 . -450) 39780) ((-452 . -450) 39731) ((-942 . -410) 39715) ((-722 . -605) 39697) ((-250 . -708) 39639) ((-249 . -708) 39581) ((-722 . -606) 39442) ((-479 . -410) 39426) ((-338 . -301) T) ((-522 . -93) T) ((-350 . -910) T) ((-990 . -102) 39404) ((-1014 . -841) T) ((-60 . -512) 39337) ((-1209 . -1138) 39289) ((-994 . -285) NIL) ((-224 . -1046) T) ((-378 . -819) T) ((-1100 . -34) T) ((-575 . -450) T) ((-516 . -450) T) ((-1213 . -1080) 39273) ((-1213 . -1087) 39251) ((-239 . -596) 39228) ((-1213 . -1082) 39185) ((-1161 . -605) 39167) ((-1160 . -605) 39149) ((-1154 . -605) 39131) ((-1154 . -606) NIL) ((-1113 . -605) 39113) ((-862 . -399) 39097) ((-534 . -102) T) ((-1230 . -38) 38938) ((-1209 . -38) 38752) ((-860 . -146) T) ((-693 . -608) 38736) ((-575 . -401) T) ((-48 . -841) T) ((-516 . -401) T) ((-1242 . -102) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-1100 . -782) 38715) ((-1100 . -785) 38666) ((-1100 . -784) 38645) ((-983 . -1087) T) ((-1017 . -34) T) ((-853 . -1087) T) ((-1100 . -717) 38555) ((-654 . -102) T) ((-636 . -102) T) ((-544 . -287) 38534) ((-1173 . -102) T) ((-474 . -34) T) ((-461 . -34) T) ((-354 . -102) T) ((-351 . -102) T) ((-343 . -102) T) ((-263 . -102) T) ((-246 . -102) T) ((-475 . -306) T) ((-1050 . -1046) T) ((-942 . -1046) T) ((-315 . -631) 38440) ((-312 . -631) 38401) ((-479 . -1046) T) ((-477 . -102) T) ((-435 . -605) 38383) ((-1159 . -1087) T) ((-1112 . -1087) T) ((-845 . -1087) T) ((-1128 . -102) T) ((-807 . -289) 38314) ((-953 . -1045) 38197) ((-475 . -1012) T) ((-726 . -1045) 38167) ((-451 . -1045) 38137) ((-1134 . -1108) 38121) ((-1089 . -512) 38054) ((-953 . -111) 37923) ((-900 . -102) T) ((-726 . -111) 37888) ((-523 . -488) 37869) ((-523 . -605) 37835) ((-59 . -102) 37785) ((-518 . -606) 37746) ((-518 . -605) 37658) ((-517 . -102) 37636) ((-514 . -102) 37586) ((-495 . -102) 37564) ((-494 . -102) 37514) ((-451 . -111) 37477) ((-250 . -171) 37456) ((-249 . -171) 37435) ((-417 . -1045) 37409) ((-1194 . -963) 37371) ((-989 . -1099) T) ((-1122 . -608) 37352) ((-933 . -512) 37285) ((-485 . -786) T) ((-472 . -38) 37126) ((-417 . -111) 37093) ((-485 . -783) T) ((-990 . -308) 37031) ((-216 . -786) T) ((-216 . -783) T) ((-989 . -23) T) ((-703 . -130) T) ((-1209 . -399) 37001) ((-315 . -25) 36853) ((-168 . -410) 36837) ((-315 . -21) 36708) ((-312 . -25) T) ((-312 . -21) T) ((-855 . -367) T) ((-953 . -608) 36561) ((-110 . -34) T) ((-726 . -608) 36517) ((-706 . -608) 36499) ((-480 . -638) 36347) ((-861 . -1046) T) ((-586 . -287) 36322) ((-574 . -146) T) ((-558 . -146) T) ((-493 . -146) T) ((-1159 . -708) 36151) ((-1112 . -708) 36000) ((-1107 . -631) 35982) ((-845 . -708) 35952) ((-660 . -1200) T) ((-1 . -102) T) ((-417 . -608) 35860) ((-239 . -605) 35591) ((-1102 . -1087) T) ((-1219 . -410) 35575) ((-1173 . -308) 35379) ((-953 . -1039) T) ((-726 . -1039) T) ((-706 . -1039) T) ((-635 . -1087) 35329) ((-1043 . -638) 35313) ((-846 . -410) 35297) ((-509 . -102) T) ((-505 . -102) T) ((-246 . -308) 35284) ((-263 . -308) 35271) ((-953 . -325) 35250) ((-384 . -638) 35234) ((-477 . -308) 35038) ((-250 . -512) 34971) ((-660 . -1028) 34867) ((-249 . -512) 34800) ((-1128 . -308) 34726) ((-810 . -1087) T) ((-790 . -1045) 34710) ((-1238 . -285) 34695) ((-1231 . -285) 34680) ((-1210 . -285) 34528) ((-385 . -1087) T) ((-323 . -1087) T) ((-417 . -1039) T) ((-168 . -1046) T) ((-59 . -308) 34466) ((-790 . -111) 34445) ((-588 . -285) 34430) ((-517 . -308) 34368) ((-514 . -308) 34306) ((-495 . -308) 34244) ((-494 . -308) 34182) ((-417 . -232) 34161) ((-480 . -34) T) ((-994 . -606) 34091) ((-224 . -1087) T) ((-994 . -605) 34051) ((-961 . -605) 34011) ((-961 . -606) 33986) ((-904 . -605) 33968) ((-689 . -146) T) ((-691 . -910) T) ((-691 . -811) T) ((-426 . -605) 33950) ((-1107 . -21) T) ((-1107 . -25) T) ((-660 . -376) 33934) ((-116 . -910) T) ((-862 . -230) 33918) ((-78 . -1200) T) ((-126 . -125) 33902) ((-1043 . -34) T) ((-1268 . -1028) 33876) ((-1266 . -1028) 33833) ((-1219 . -1046) T) ((-846 . -1046) T) ((-480 . -782) 33812) ((-354 . -1138) 33791) ((-351 . -1138) 33770) ((-343 . -1138) 33749) ((-480 . -785) 33700) ((-480 . -784) 33679) ((-226 . -34) T) ((-480 . -717) 33589) ((-790 . -608) 33437) ((-60 . -487) 33421) ((-565 . -1046) T) ((-1159 . -171) 33312) ((-1112 . -171) 33223) ((-1050 . -1087) T) ((-1074 . -939) 33168) ((-942 . -1087) T) ((-808 . -638) 33119) ((-773 . -939) 33088) ((-704 . -1087) T) ((-771 . -939) 33055) ((-514 . -281) 33039) ((-660 . -890) 32998) ((-479 . -1087) T) ((-452 . -939) 32965) ((-79 . -1200) T) ((-354 . -38) 32930) ((-351 . -38) 32895) ((-343 . -38) 32860) ((-263 . -38) 32709) ((-246 . -38) 32558) ((-900 . -1138) T) ((-522 . -488) 32539) ((-615 . -146) 32518) ((-615 . -144) 32497) ((-522 . -605) 32463) ((-117 . -146) T) ((-117 . -144) NIL) ((-413 . -717) T) ((-790 . -1039) T) ((-342 . -450) T) ((-1238 . -992) 32429) ((-1231 . -992) 32395) ((-1210 . -992) 32361) ((-900 . -38) 32326) ((-224 . -708) 32291) ((-318 . -47) 32261) ((-40 . -408) 32233) ((-139 . -605) 32215) ((-989 . -130) T) ((-806 . -1200) T) ((-173 . -910) T) ((-598 . -608) 32196) ((-342 . -401) T) ((-661 . -608) 32177) ((-179 . -608) 32158) ((-160 . -608) 32139) ((-155 . -608) 32120) ((-153 . -608) 32101) ((-518 . -287) 32078) ((-806 . -1028) 31905) ((-45 . -34) T) ((-671 . -102) T) ((-666 . -102) T) ((-652 . -102) T) ((-644 . -21) T) ((-644 . -25) T) ((-1209 . -230) 31875) ((-1089 . -487) 31859) ((-476 . -102) T) ((-665 . -1200) T) ((-244 . -102) 31809) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-861 . -1087) T) ((-1165 . -638) 31734) ((-1050 . -708) 31721) ((-722 . -1045) 31564) ((-1159 . -512) 31511) ((-942 . -708) 31360) ((-1112 . -512) 31312) ((-1257 . -1087) T) ((-1256 . -1087) T) ((-479 . -708) 31161) ((-67 . -605) 31143) ((-722 . -111) 30972) ((-933 . -487) 30956) ((-1258 . -638) 30916) ((-808 . -717) T) ((-1161 . -1045) 30799) ((-1160 . -1045) 30634) ((-1154 . -1045) 30424) ((-1113 . -1045) 30307) ((-993 . -1204) T) ((-1081 . -102) 30285) ((-806 . -376) 30254) ((-573 . -605) 30236) ((-993 . -550) T) ((-1161 . -111) 30105) ((-1160 . -111) 29926) ((-1154 . -111) 29695) ((-1113 . -111) 29564) ((-1092 . -1090) 29528) ((-378 . -839) T) ((-1238 . -605) 29510) ((-1231 . -605) 29492) ((-1210 . -605) 29474) ((-1210 . -606) NIL) ((-239 . -287) 29451) ((-40 . -450) T) ((-224 . -171) T) ((-168 . -1087) T) ((-722 . -608) 29236) ((-684 . -146) T) ((-684 . -144) NIL) ((-589 . -605) 29218) ((-588 . -605) 29200) ((-888 . -1087) T) ((-832 . -1087) T) ((-799 . -1087) T) ((-760 . -1087) T) ((-648 . -843) 29184) ((-667 . -1087) T) ((-806 . -890) 29116) ((-40 . -401) NIL) ((-1161 . -608) 28998) ((-1107 . -651) T) ((-861 . -708) 28943) ((-250 . -487) 28927) ((-249 . -487) 28911) ((-1160 . -608) 28654) ((-1154 . -608) 28449) ((-703 . -631) 28397) ((-643 . -638) 28371) ((-1113 . -608) 28253) ((-294 . -34) T) ((-722 . -1039) T) ((-575 . -1253) 28240) ((-516 . -1253) 28217) ((-1219 . -1087) T) ((-1159 . -289) 28128) ((-1112 . -289) 28059) ((-1050 . -171) T) ((-846 . -1087) T) ((-942 . -171) 27970) ((-773 . -1222) 27954) ((-635 . -512) 27887) ((-77 . -605) 27869) ((-722 . -325) 27834) ((-1165 . -717) T) ((-565 . -1087) T) ((-479 . -171) 27745) ((-244 . -308) 27683) ((-1129 . -1099) T) ((-70 . -605) 27665) ((-1258 . -717) T) ((-1161 . -1039) T) ((-1160 . -1039) T) ((-326 . -102) 27615) ((-1154 . -1039) T) ((-1129 . -23) T) ((-1113 . -1039) T) ((-91 . -1108) 27599) ((-856 . -1099) T) ((-1161 . -232) 27558) ((-1160 . -242) 27537) ((-1160 . -232) 27489) ((-1154 . -232) 27376) ((-1154 . -242) 27355) ((-318 . -890) 27261) ((-856 . -23) T) ((-168 . -708) 27089) ((-406 . -1204) T) ((-1088 . -367) T) ((-1014 . -146) T) ((-993 . -362) T) ((-860 . -450) T) ((-933 . -285) 27066) ((-315 . -841) T) ((-312 . -841) NIL) ((-864 . -102) T) ((-703 . -25) T) ((-406 . -550) T) ((-703 . -21) T) ((-523 . -608) 27047) ((-353 . -146) 27029) ((-353 . -144) T) ((-1134 . -1087) 27007) ((-451 . -711) T) ((-75 . -605) 26989) ((-114 . -841) T) ((-244 . -281) 26973) ((-239 . -1045) 26870) ((-81 . -605) 26852) ((-726 . -367) 26805) ((-1163 . -819) T) ((-728 . -234) 26789) ((-1146 . -1200) T) ((-140 . -234) 26771) ((-239 . -111) 26661) ((-1219 . -708) 26490) ((-48 . -146) T) ((-861 . -171) T) ((-846 . -708) 26460) ((-482 . -1200) T) ((-942 . -512) 26407) ((-643 . -717) T) ((-565 . -708) 26394) ((-1024 . -1046) T) ((-479 . -512) 26337) ((-933 . -19) 26321) ((-933 . -596) 26298) ((-807 . -606) NIL) ((-807 . -605) 26280) ((-994 . -1045) 26230) ((-412 . -605) 26212) ((-250 . -285) 26189) ((-249 . -285) 26166) ((-485 . -899) NIL) ((-315 . -29) 26136) ((-108 . -1200) T) ((-993 . -1099) T) ((-216 . -899) NIL) ((-904 . -1045) 26088) ((-1067 . -1028) 25984) ((-994 . -111) 25918) ((-993 . -23) T) ((-728 . -685) 25902) ((-263 . -230) 25886) ((-426 . -1045) 25870) ((-378 . -1046) T) ((-239 . -608) 25600) ((-904 . -111) 25538) ((-684 . -1188) NIL) ((-485 . -638) 25488) ((-108 . -874) 25470) ((-108 . -876) 25452) ((-684 . -1185) NIL) ((-216 . -638) 25402) ((-358 . -1028) 25386) ((-352 . -1028) 25370) ((-326 . -308) 25308) ((-344 . -1028) 25292) ((-224 . -289) T) ((-426 . -111) 25271) ((-60 . -605) 25203) ((-168 . -171) T) ((-1107 . -841) T) ((-108 . -1028) 25163) ((-882 . -1087) T) ((-827 . -1046) T) ((-818 . -1046) T) ((-684 . -35) NIL) ((-684 . -95) NIL) ((-312 . -982) 25124) ((-182 . -102) T) ((-574 . -450) T) ((-558 . -450) T) ((-493 . -450) T) ((-406 . -362) T) ((-239 . -1039) 25054) ((-1137 . -34) T) ((-475 . -910) T) ((-989 . -631) 25002) ((-250 . -596) 24979) ((-249 . -596) 24956) ((-1067 . -376) 24940) ((-861 . -512) 24848) ((-239 . -232) 24800) ((-1145 . -1200) T) ((-994 . -608) 24750) ((-904 . -608) 24687) ((-815 . -605) 24669) ((-1269 . -1099) T) ((-1261 . -605) 24651) ((-1219 . -171) 24542) ((-426 . -608) 24511) ((-108 . -376) 24493) ((-108 . -337) 24475) ((-1050 . -289) T) ((-942 . -289) 24406) ((-790 . -367) 24385) ((-637 . -1200) T) ((-624 . -1200) T) ((-479 . -289) 24316) ((-565 . -171) T) ((-326 . -281) 24300) ((-1269 . -23) T) ((-1194 . -102) T) ((-1181 . -1087) T) ((-1075 . -1087) T) ((-1063 . -1087) T) ((-83 . -605) 24282) ((-702 . -102) T) ((-354 . -348) 24261) ((-600 . -1087) T) ((-351 . -348) 24240) ((-343 . -348) 24219) ((-473 . -1087) T) ((-1173 . -228) 24169) ((-263 . -252) 24131) ((-1129 . -130) T) ((-600 . -602) 24107) ((-1067 . -890) 24040) ((-994 . -1039) T) ((-904 . -1039) T) ((-473 . -602) 24019) ((-1154 . -783) NIL) ((-1154 . -786) NIL) ((-1089 . -606) 23980) ((-477 . -228) 23930) ((-1089 . -605) 23912) ((-994 . -242) T) ((-994 . -232) T) ((-426 . -1039) T) ((-948 . -1087) 23862) ((-904 . -242) T) ((-856 . -130) T) ((-689 . -450) T) ((-834 . -1099) 23841) ((-108 . -890) NIL) ((-1194 . -283) 23807) ((-862 . -839) 23786) ((-1100 . -1200) T) ((-895 . -717) T) ((-168 . -512) 23698) ((-989 . -25) T) ((-895 . -471) T) ((-406 . -1099) T) ((-485 . -785) T) ((-485 . -782) T) ((-900 . -348) T) ((-485 . -717) T) ((-216 . -785) T) ((-216 . -782) T) ((-989 . -21) T) ((-216 . -717) T) ((-834 . -23) 23650) ((-522 . -608) 23631) ((-318 . -306) 23610) ((-1025 . -234) 23556) ((-406 . -23) T) ((-933 . -606) 23517) ((-933 . -605) 23429) ((-635 . -487) 23413) ((-45 . -1000) 23363) ((-609 . -957) T) ((-489 . -102) T) ((-330 . -605) 23345) ((-1100 . -1028) 23172) ((-586 . -641) 23154) ((-128 . -1087) T) ((-586 . -372) 23136) ((-342 . -1253) 23113) ((-1017 . -1200) T) ((-861 . -289) T) ((-1219 . -512) 23060) ((-474 . -1200) T) ((-461 . -1200) T) ((-579 . -102) T) ((-1159 . -285) 22987) ((-615 . -450) 22966) ((-990 . -985) 22950) ((-1261 . -381) 22922) ((-515 . -1087) T) ((-117 . -450) T) ((-1180 . -102) T) ((-1079 . -1087) 22900) ((-1024 . -1087) T) ((-1102 . -93) T) ((-883 . -841) T) ((-350 . -1204) T) ((-1238 . -1045) 22783) ((-1100 . -376) 22752) ((-1231 . -1045) 22587) ((-1210 . -1045) 22377) ((-1238 . -111) 22246) ((-1231 . -111) 22067) ((-1210 . -111) 21836) ((-1194 . -308) 21823) ((-350 . -550) T) ((-364 . -605) 21805) ((-288 . -306) T) ((-589 . -1045) 21778) ((-588 . -1045) 21661) ((-360 . -1087) T) ((-321 . -1087) T) ((-250 . -605) 21622) ((-249 . -605) 21583) ((-993 . -130) T) ((-627 . -23) T) ((-684 . -408) 21550) ((-599 . -23) T) ((-648 . -102) T) ((-589 . -111) 21521) ((-588 . -111) 21390) ((-378 . -1087) T) ((-335 . -102) T) ((-168 . -289) 21301) ((-1209 . -839) 21254) ((-705 . -1046) T) ((-1134 . -512) 21187) ((-1100 . -890) 21119) ((-827 . -1087) T) ((-818 . -1087) T) ((-816 . -1087) T) ((-97 . -102) T) ((-143 . -841) T) ((-604 . -874) 21103) ((-110 . -1200) T) ((-1074 . -102) T) ((-1051 . -34) T) ((-773 . -102) T) ((-771 . -102) T) ((-1238 . -608) 20985) ((-1231 . -608) 20728) ((-459 . -102) T) ((-452 . -102) T) ((-1210 . -608) 20523) ((-239 . -786) 20474) ((-239 . -783) 20425) ((-639 . -102) T) ((-589 . -608) 20383) ((-588 . -608) 20265) ((-1219 . -289) 20176) ((-654 . -626) 20160) ((-185 . -605) 20142) ((-635 . -285) 20119) ((-1024 . -708) 20103) ((-565 . -289) T) ((-953 . -638) 20028) ((-1269 . -130) T) ((-726 . -638) 19988) ((-706 . -638) 19975) ((-274 . -102) T) ((-451 . -638) 19905) ((-50 . -102) T) ((-575 . -102) T) ((-516 . -102) T) ((-1238 . -1039) T) ((-1231 . -1039) T) ((-1210 . -1039) T) ((-1238 . -232) 19864) ((-321 . -708) 19846) ((-1231 . -242) 19825) ((-1231 . -232) 19777) ((-1210 . -232) 19664) ((-1210 . -242) 19643) ((-1194 . -38) 19540) ((-994 . -786) T) ((-589 . -1039) T) ((-588 . -1039) T) ((-994 . -783) T) ((-961 . -786) T) ((-961 . -783) T) ((-862 . -1046) T) ((-860 . -859) 19524) ((-109 . -605) 19506) ((-684 . -450) T) ((-378 . -708) 19471) ((-417 . -638) 19445) ((-703 . -841) 19424) ((-702 . -38) 19389) ((-588 . -232) 19348) ((-40 . -715) 19320) ((-350 . -328) 19297) ((-350 . -362) T) ((-1067 . -306) 19248) ((-293 . -1099) 19129) ((-1093 . -1200) T) ((-170 . -102) T) ((-1213 . -605) 19096) ((-834 . -130) 19048) ((-635 . -1234) 19032) ((-827 . -708) 19002) ((-818 . -708) 18972) ((-480 . -1200) T) ((-358 . -306) T) ((-352 . -306) T) ((-344 . -306) T) ((-635 . -596) 18949) ((-406 . -130) T) ((-518 . -656) 18933) ((-108 . -306) T) ((-293 . -23) 18816) ((-518 . -641) 18800) ((-684 . -401) NIL) ((-518 . -372) 18784) ((-290 . -605) 18766) ((-91 . -1087) 18744) ((-108 . -1012) T) ((-558 . -142) T) ((-1246 . -150) 18728) ((-480 . -1028) 18555) ((-1232 . -144) 18516) ((-1232 . -146) 18477) ((-1043 . -1200) T) ((-983 . -605) 18459) ((-853 . -605) 18441) ((-807 . -1045) 18284) ((-1257 . -93) T) ((-1256 . -93) T) ((-1159 . -606) NIL) ((-1083 . -1087) T) ((-1077 . -1087) T) ((-1074 . -308) 18271) ((-1061 . -1087) T) ((-226 . -1200) T) ((-1054 . -1087) T) ((-1026 . -1087) T) ((-1009 . -1087) T) ((-773 . -308) 18258) ((-771 . -308) 18245) ((-1159 . -605) 18227) ((-807 . -111) 18056) ((-1112 . -605) 18038) ((-618 . -1087) T) ((-571 . -172) T) ((-527 . -172) T) ((-452 . -308) 18025) ((-481 . -1087) T) ((-1112 . -606) 17773) ((-1024 . -171) T) ((-933 . -287) 17750) ((-217 . -1087) T) ((-845 . -605) 17732) ((-600 . -512) 17515) ((-81 . -608) 17456) ((-809 . -1028) 17440) ((-473 . -512) 17232) ((-953 . -717) T) ((-726 . -717) T) ((-706 . -717) T) ((-350 . -1099) T) ((-1166 . -605) 17214) ((-222 . -102) T) ((-480 . -376) 17183) ((-513 . -1087) T) ((-508 . -1087) T) ((-506 . -1087) T) ((-790 . -638) 17157) ((-1014 . -450) T) ((-948 . -512) 17090) ((-350 . -23) T) ((-627 . -130) T) ((-599 . -130) T) ((-353 . -450) T) ((-239 . -367) 17069) ((-378 . -171) T) ((-1230 . -1046) T) ((-1209 . -1046) T) ((-224 . -992) T) ((-807 . -608) 16806) ((-689 . -386) T) ((-417 . -717) T) ((-691 . -1204) T) ((-1129 . -631) 16754) ((-574 . -859) 16738) ((-1261 . -1045) 16722) ((-1146 . -1176) 16698) ((-691 . -550) T) ((-126 . -1087) 16676) ((-705 . -1087) T) ((-480 . -890) 16608) ((-248 . -1087) T) ((-186 . -1087) T) ((-648 . -38) 16578) ((-353 . -401) T) ((-315 . -146) 16557) ((-315 . -144) 16536) ((-128 . -512) NIL) ((-116 . -550) T) ((-312 . -146) 16492) ((-312 . -144) 16448) ((-48 . -450) T) ((-161 . -1087) T) ((-156 . -1087) T) ((-1146 . -107) 16395) ((-773 . -1138) 16373) ((-679 . -34) T) ((-1261 . -111) 16352) ((-544 . -34) T) ((-482 . -107) 16336) ((-250 . -287) 16313) ((-249 . -287) 16290) ((-861 . -285) 16241) ((-45 . -1200) T) ((-807 . -1039) T) ((-1165 . -47) 16218) ((-807 . -325) 16180) ((-1074 . -38) 16029) ((-807 . -232) 16008) ((-773 . -38) 15837) ((-771 . -38) 15686) ((-1102 . -488) 15667) ((-452 . -38) 15516) ((-1102 . -605) 15482) ((-1105 . -102) T) ((-635 . -606) 15443) ((-635 . -605) 15355) ((-575 . -1138) T) ((-516 . -1138) T) ((-1134 . -487) 15339) ((-1186 . -1087) 15317) ((-1129 . -25) T) ((-1129 . -21) T) ((-1261 . -608) 15266) ((-472 . -1046) T) ((-1210 . -783) NIL) ((-1210 . -786) NIL) ((-989 . -841) 15245) ((-829 . -1087) T) ((-810 . -605) 15227) ((-856 . -21) T) ((-856 . -25) T) ((-790 . -717) T) ((-173 . -1204) T) ((-575 . -38) 15192) ((-516 . -38) 15157) ((-385 . -605) 15139) ((-323 . -605) 15121) ((-168 . -285) 15079) ((-63 . -1200) T) ((-112 . -102) T) ((-862 . -1087) T) ((-173 . -550) T) ((-705 . -708) 15049) ((-293 . -130) 14932) ((-224 . -605) 14914) ((-224 . -606) 14844) ((-993 . -631) 14783) ((-1261 . -1039) T) ((-1107 . -146) T) ((-624 . -1176) 14758) ((-722 . -899) 14737) ((-586 . -34) T) ((-637 . -107) 14721) ((-624 . -107) 14667) ((-1219 . -285) 14594) ((-722 . -638) 14519) ((-294 . -1200) T) ((-1165 . -1028) 14415) ((-933 . -610) 14392) ((-571 . -570) T) ((-571 . -525) T) ((-527 . -525) T) ((-1154 . -899) NIL) ((-1050 . -606) 14307) ((-1050 . -605) 14289) ((-942 . -605) 14271) ((-704 . -488) 14221) ((-342 . -102) T) ((-250 . -1045) 14118) ((-249 . -1045) 14015) ((-393 . -102) T) ((-31 . -1087) T) ((-942 . -606) 13876) ((-704 . -605) 13811) ((-1259 . -1193) 13780) ((-479 . -605) 13762) ((-479 . -606) 13623) ((-246 . -410) 13607) ((-263 . -410) 13591) ((-250 . -111) 13481) ((-249 . -111) 13371) ((-1161 . -638) 13296) ((-1160 . -638) 13193) ((-1154 . -638) 13045) ((-1113 . -638) 12970) ((-350 . -130) T) ((-82 . -439) T) ((-82 . -394) T) ((-993 . -25) T) ((-993 . -21) T) ((-863 . -1087) 12921) ((-862 . -708) 12873) ((-378 . -289) T) ((-168 . -992) 12825) ((-684 . -386) T) ((-989 . -987) 12809) ((-691 . -1099) T) ((-684 . -165) 12791) ((-1230 . -1087) T) ((-1209 . -1087) T) ((-315 . -1185) 12770) ((-315 . -1188) 12749) ((-1151 . -102) T) ((-315 . -949) 12728) ((-133 . -1099) T) ((-116 . -1099) T) ((-594 . -1244) 12712) ((-691 . -23) T) ((-594 . -1087) 12662) ((-315 . -95) 12641) ((-91 . -512) 12574) ((-173 . -362) T) ((-250 . -608) 12304) ((-249 . -608) 12034) ((-315 . -35) 12013) ((-600 . -487) 11947) ((-133 . -23) T) ((-116 . -23) T) ((-956 . -102) T) ((-709 . -1087) T) ((-473 . -487) 11884) ((-406 . -631) 11832) ((-643 . -1028) 11728) ((-948 . -487) 11712) ((-354 . -1046) T) ((-351 . -1046) T) ((-343 . -1046) T) ((-263 . -1046) T) ((-246 . -1046) T) ((-861 . -606) NIL) ((-861 . -605) 11694) ((-1257 . -488) 11675) ((-1256 . -488) 11656) ((-1269 . -21) T) ((-1257 . -605) 11622) ((-1256 . -605) 11588) ((-565 . -992) T) ((-722 . -717) T) ((-1269 . -25) T) ((-250 . -1039) 11518) ((-249 . -1039) 11448) ((-72 . -1200) T) ((-250 . -232) 11400) ((-249 . -232) 11352) ((-40 . -102) T) ((-900 . -1046) T) ((-128 . -487) 11334) ((-1168 . -102) T) ((-1161 . -717) T) ((-1160 . -717) T) ((-1154 . -717) T) ((-1154 . -782) NIL) ((-1154 . -785) NIL) ((-944 . -102) T) ((-911 . -102) T) ((-1113 . -717) T) ((-762 . -102) T) ((-662 . -102) T) ((-472 . -1087) T) ((-338 . -1099) T) ((-173 . -1099) T) ((-318 . -910) 11313) ((-1230 . -708) 11154) ((-862 . -171) T) ((-1209 . -708) 10968) ((-834 . -21) 10920) ((-834 . -25) 10872) ((-244 . -1136) 10856) ((-126 . -512) 10789) ((-406 . -25) T) ((-406 . -21) T) ((-338 . -23) T) ((-168 . -606) 10555) ((-168 . -605) 10537) ((-173 . -23) T) ((-635 . -287) 10514) ((-518 . -34) T) ((-888 . -605) 10496) ((-89 . -1200) T) ((-832 . -605) 10478) ((-799 . -605) 10460) ((-760 . -605) 10442) ((-667 . -605) 10424) ((-239 . -638) 10272) ((-1163 . -1087) T) ((-1159 . -1045) 10095) ((-1137 . -1200) T) ((-1112 . -1045) 9938) ((-845 . -1045) 9922) ((-1213 . -610) 9906) ((-1159 . -111) 9715) ((-1112 . -111) 9544) ((-845 . -111) 9523) ((-1219 . -606) NIL) ((-1219 . -605) 9505) ((-342 . -1138) T) ((-846 . -605) 9487) ((-1063 . -285) 9466) ((-80 . -1200) T) ((-994 . -899) NIL) ((-600 . -285) 9442) ((-1186 . -512) 9375) ((-485 . -1200) T) ((-565 . -605) 9357) ((-473 . -285) 9336) ((-515 . -93) T) ((-216 . -1200) T) ((-1074 . -230) 9320) ((-288 . -910) T) ((-808 . -306) 9299) ((-860 . -102) T) ((-773 . -230) 9283) ((-994 . -638) 9233) ((-948 . -285) 9210) ((-904 . -638) 9162) ((-627 . -21) T) ((-627 . -25) T) ((-599 . -21) T) ((-342 . -38) 9127) ((-684 . -715) 9094) ((-485 . -874) 9076) ((-485 . -876) 9058) ((-472 . -708) 8899) ((-216 . -874) 8881) ((-64 . -1200) T) ((-216 . -876) 8863) ((-599 . -25) T) ((-426 . -638) 8837) ((-1159 . -608) 8606) ((-485 . -1028) 8566) ((-862 . -512) 8478) ((-1112 . -608) 8270) ((-845 . -608) 8188) ((-216 . -1028) 8148) ((-239 . -34) T) ((-990 . -1087) 8126) ((-1230 . -171) 8057) ((-1209 . -171) 7988) ((-703 . -144) 7967) ((-703 . -146) 7946) ((-691 . -130) T) ((-135 . -463) 7923) ((-1134 . -605) 7855) ((-648 . -646) 7839) ((-128 . -285) 7814) ((-116 . -130) T) ((-475 . -1204) T) ((-600 . -596) 7790) ((-473 . -596) 7769) ((-335 . -334) 7738) ((-534 . -1087) T) ((-475 . -550) T) ((-1159 . -1039) T) ((-1112 . -1039) T) ((-845 . -1039) T) ((-239 . -782) 7717) ((-239 . -785) 7668) ((-239 . -784) 7647) ((-1159 . -325) 7624) ((-239 . -717) 7534) ((-948 . -19) 7518) ((-485 . -376) 7500) ((-485 . -337) 7482) ((-1112 . -325) 7454) ((-353 . -1253) 7431) ((-216 . -376) 7413) ((-216 . -337) 7395) ((-948 . -596) 7372) ((-1159 . -232) T) ((-654 . -1087) T) ((-636 . -1087) T) ((-1242 . -1087) T) ((-1173 . -1087) T) ((-1074 . -252) 7309) ((-354 . -1087) T) ((-351 . -1087) T) ((-343 . -1087) T) ((-263 . -1087) T) ((-246 . -1087) T) ((-84 . -1200) T) ((-127 . -102) 7287) ((-121 . -102) 7265) ((-1173 . -602) 7244) ((-477 . -1087) T) ((-1128 . -1087) T) ((-477 . -602) 7223) ((-250 . -786) 7174) ((-250 . -783) 7125) ((-249 . -786) 7076) ((-40 . -1138) NIL) ((-249 . -783) 7027) ((-1102 . -608) 7008) ((-128 . -19) 6990) ((-1067 . -910) 6941) ((-994 . -785) T) ((-994 . -782) T) ((-994 . -717) T) ((-961 . -785) T) ((-128 . -596) 6916) ((-904 . -717) T) ((-91 . -487) 6900) ((-485 . -890) NIL) ((-900 . -1087) T) ((-224 . -1045) 6865) ((-862 . -289) T) ((-216 . -890) NIL) ((-824 . -1099) 6844) ((-59 . -1087) 6794) ((-517 . -1087) 6772) ((-514 . -1087) 6722) ((-495 . -1087) 6700) ((-494 . -1087) 6650) ((-574 . -102) T) ((-558 . -102) T) ((-493 . -102) T) ((-472 . -171) 6581) ((-358 . -910) T) ((-352 . -910) T) ((-344 . -910) T) ((-224 . -111) 6537) ((-824 . -23) 6489) ((-426 . -717) T) ((-108 . -910) T) ((-40 . -38) 6434) ((-108 . -811) T) ((-575 . -348) T) ((-516 . -348) T) ((-1209 . -512) 6294) ((-315 . -450) 6273) ((-312 . -450) T) ((-882 . -605) 6255) ((-827 . -285) 6234) ((-338 . -130) T) ((-173 . -130) T) ((-293 . -25) 6098) ((-293 . -21) 5981) ((-45 . -1176) 5960) ((-66 . -605) 5942) ((-55 . -102) T) ((-594 . -512) 5875) ((-45 . -107) 5825) ((-810 . -608) 5809) ((-1089 . -424) 5793) ((-1089 . -367) 5772) ((-385 . -608) 5756) ((-323 . -608) 5740) ((-1051 . -1200) T) ((-1050 . -1045) 5727) ((-942 . -1045) 5570) ((-1247 . -102) T) ((-1246 . -102) 5520) ((-1050 . -111) 5505) ((-479 . -1045) 5348) ((-654 . -708) 5332) ((-942 . -111) 5161) ((-224 . -608) 5111) ((-475 . -362) T) ((-354 . -708) 5063) ((-351 . -708) 5015) ((-343 . -708) 4967) ((-263 . -708) 4816) ((-246 . -708) 4665) ((-1238 . -638) 4590) ((-1210 . -899) NIL) ((-1083 . -93) T) ((-1077 . -93) T) ((-933 . -641) 4574) ((-1061 . -93) T) ((-479 . -111) 4403) ((-1054 . -93) T) ((-1026 . -93) T) ((-933 . -372) 4387) ((-247 . -102) T) ((-1009 . -93) T) ((-74 . -605) 4369) ((-953 . -47) 4348) ((-701 . -102) T) ((-613 . -1099) T) ((-1 . -1087) T) ((-689 . -102) T) ((-1231 . -638) 4245) ((-618 . -93) T) ((-1181 . -605) 4227) ((-1075 . -605) 4209) ((-126 . -487) 4193) ((-481 . -93) T) ((-1063 . -605) 4175) ((-389 . -23) T) ((-87 . -1200) T) ((-217 . -93) T) ((-1210 . -638) 4027) ((-900 . -708) 3992) ((-613 . -23) T) ((-600 . -605) 3974) ((-600 . -606) NIL) ((-473 . -606) NIL) ((-473 . -605) 3956) ((-509 . -1087) T) ((-505 . -1087) T) ((-350 . -25) T) ((-350 . -21) T) ((-127 . -308) 3894) ((-121 . -308) 3832) ((-589 . -638) 3819) ((-224 . -1039) T) ((-588 . -638) 3744) ((-378 . -992) T) ((-224 . -242) T) ((-224 . -232) T) ((-1050 . -608) 3716) ((-1050 . -610) 3697) ((-948 . -606) 3658) ((-948 . -605) 3570) ((-942 . -608) 3359) ((-860 . -38) 3346) ((-704 . -608) 3296) ((-1230 . -289) 3247) ((-1209 . -289) 3198) ((-479 . -608) 2983) ((-1107 . -450) T) ((-500 . -841) T) ((-315 . -1126) 2962) ((-989 . -146) 2941) ((-989 . -144) 2920) ((-493 . -308) 2907) ((-294 . -1176) 2886) ((-861 . -1045) 2831) ((-475 . -1099) T) ((-138 . -826) 2813) ((-615 . -102) T) ((-1186 . -487) 2797) ((-250 . -367) 2776) ((-249 . -367) 2755) ((-1050 . -1039) T) ((-294 . -107) 2705) ((-128 . -606) NIL) ((-128 . -605) 2671) ((-117 . -102) T) ((-942 . -1039) T) ((-861 . -111) 2600) ((-475 . -23) T) ((-479 . -1039) T) ((-1050 . -232) T) ((-942 . -325) 2569) ((-479 . -325) 2526) ((-354 . -171) T) ((-351 . -171) T) ((-343 . -171) T) ((-263 . -171) 2437) ((-246 . -171) 2348) ((-953 . -1028) 2244) ((-515 . -488) 2225) ((-726 . -1028) 2196) ((-515 . -605) 2162) ((-1092 . -102) T) ((-1079 . -605) 2129) ((-1024 . -605) 2111) ((-1259 . -150) 2095) ((-1257 . -608) 2076) ((-1251 . -605) 2058) ((-1238 . -717) T) ((-1231 . -717) T) ((-1210 . -782) NIL) ((-1210 . -785) NIL) ((-168 . -1045) 1968) ((-900 . -171) T) ((-861 . -608) 1898) ((-1210 . -717) T) ((-1256 . -608) 1879) ((-993 . -341) 1853) ((-990 . -512) 1786) ((-834 . -841) 1765) ((-558 . -1138) T) ((-472 . -289) 1716) ((-589 . -717) T) ((-360 . -605) 1698) ((-321 . -605) 1680) ((-417 . -1028) 1576) ((-588 . -717) T) ((-406 . -841) 1527) ((-168 . -111) 1423) ((-824 . -130) 1375) ((-728 . -150) 1359) ((-1246 . -308) 1297) ((-485 . -306) T) ((-378 . -605) 1264) ((-518 . -1000) 1248) ((-378 . -606) 1162) ((-216 . -306) T) ((-140 . -150) 1144) ((-705 . -285) 1123) ((-485 . -1012) T) ((-574 . -38) 1110) ((-558 . -38) 1097) ((-493 . -38) 1062) ((-216 . -1012) T) ((-861 . -1039) T) ((-827 . -605) 1044) ((-818 . -605) 1026) ((-816 . -605) 1008) ((-807 . -899) 987) ((-1270 . -1099) T) ((-1219 . -1045) 810) ((-846 . -1045) 794) ((-861 . -242) T) ((-861 . -232) NIL) ((-679 . -1200) T) ((-1270 . -23) T) ((-807 . -638) 719) ((-544 . -1200) T) ((-417 . -337) 703) ((-565 . -1045) 690) ((-1219 . -111) 499) ((-691 . -631) 481) ((-846 . -111) 460) ((-380 . -23) T) ((-168 . -608) 238) ((-1173 . -512) 30) ((-652 . -1087) T) ((-671 . -1087) T) ((-666 . -1087) T)) \ No newline at end of file
+(((-476 . -1090) T) ((-263 . -512) 161907) ((-246 . -512) 161850) ((-244 . -1090) 161800) ((-568 . -111) 161785) ((-529 . -23) T) ((-137 . -1090) T) ((-136 . -1090) T) ((-117 . -308) 161742) ((-132 . -1090) T) ((-477 . -512) 161534) ((-670 . -611) 161518) ((-687 . -102) T) ((-1131 . -512) 161437) ((-389 . -130) T) ((-1266 . -969) 161406) ((-31 . -93) T) ((-597 . -487) 161390) ((-616 . -130) T) ((-813 . -840) T) ((-521 . -57) 161340) ((-59 . -512) 161273) ((-517 . -512) 161206) ((-417 . -893) 161165) ((-168 . -1042) T) ((-514 . -512) 161098) ((-495 . -512) 161031) ((-494 . -512) 160964) ((-793 . -1031) 160747) ((-692 . -38) 160712) ((-1226 . -611) 160460) ((-342 . -348) T) ((-1084 . -1083) 160444) ((-1084 . -1090) 160422) ((-849 . -611) 160319) ((-168 . -242) 160270) ((-168 . -232) 160221) ((-1084 . -1085) 160179) ((-865 . -285) 160137) ((-224 . -789) T) ((-224 . -786) T) ((-687 . -283) NIL) ((-568 . -611) 160109) ((-1140 . -1181) 160088) ((-406 . -985) 160072) ((-694 . -21) T) ((-694 . -25) T) ((-1268 . -641) 160046) ((-315 . -159) 160025) ((-315 . -142) 160004) ((-1140 . -107) 159954) ((-133 . -25) T) ((-40 . -230) 159931) ((-116 . -21) T) ((-116 . -25) T) ((-603 . -287) 159907) ((-473 . -287) 159886) ((-1226 . -325) 159863) ((-1226 . -1042) T) ((-849 . -1042) T) ((-793 . -337) 159847) ((-138 . -184) T) ((-117 . -1141) NIL) ((-91 . -608) 159779) ((-475 . -130) T) ((-1226 . -232) T) ((-1086 . -488) 159760) ((-1086 . -608) 159726) ((-1080 . -488) 159707) ((-1080 . -608) 159673) ((-589 . -1205) T) ((-1064 . -488) 159654) ((-568 . -1042) T) ((-1064 . -608) 159620) ((-655 . -711) 159604) ((-1057 . -488) 159585) ((-1057 . -608) 159551) ((-951 . -287) 159528) ((-60 . -34) T) ((-1053 . -789) T) ((-1053 . -786) T) ((-1029 . -488) 159509) ((-1012 . -488) 159490) ((-810 . -720) T) ((-725 . -47) 159455) ((-618 . -38) 159442) ((-354 . -289) T) ((-351 . -289) T) ((-343 . -289) T) ((-263 . -289) 159373) ((-246 . -289) 159304) ((-1029 . -608) 159270) ((-1017 . -102) T) ((-1012 . -608) 159236) ((-621 . -488) 159217) ((-412 . -720) T) ((-117 . -38) 159162) ((-481 . -488) 159143) ((-621 . -608) 159109) ((-412 . -471) T) ((-217 . -488) 159090) ((-481 . -608) 159056) ((-353 . -102) T) ((-217 . -608) 159022) ((-1199 . -1049) T) ((-705 . -1049) T) ((-1164 . -47) 158999) ((-1163 . -47) 158969) ((-1157 . -47) 158946) ((-128 . -287) 158921) ((-1028 . -150) 158867) ((-903 . -289) T) ((-1116 . -47) 158839) ((-687 . -308) NIL) ((-513 . -608) 158821) ((-508 . -608) 158803) ((-506 . -608) 158785) ((-326 . -1090) 158735) ((-706 . -450) 158666) ((-48 . -102) T) ((-1237 . -285) 158651) ((-1216 . -285) 158571) ((-638 . -659) 158555) ((-638 . -644) 158539) ((-338 . -21) T) ((-338 . -25) T) ((-40 . -348) NIL) ((-173 . -21) T) ((-173 . -25) T) ((-638 . -372) 158523) ((-600 . -488) 158505) ((-597 . -285) 158482) ((-600 . -608) 158449) ((-387 . -102) T) ((-1110 . -142) T) ((-126 . -608) 158381) ((-867 . -1090) T) ((-651 . -410) 158365) ((-708 . -608) 158347) ((-248 . -608) 158314) ((-186 . -608) 158296) ((-161 . -608) 158278) ((-156 . -608) 158260) ((-1268 . -720) T) ((-1092 . -34) T) ((-864 . -789) NIL) ((-864 . -786) NIL) ((-852 . -844) T) ((-725 . -879) NIL) ((-1277 . -130) T) ((-380 . -130) T) ((-885 . -611) 158228) ((-897 . -102) T) ((-725 . -1031) 158104) ((-529 . -130) T) ((-1077 . -410) 158088) ((-993 . -487) 158072) ((-117 . -399) 158049) ((-1157 . -1205) 158028) ((-776 . -410) 158012) ((-774 . -410) 157996) ((-936 . -34) T) ((-687 . -1141) NIL) ((-250 . -641) 157831) ((-249 . -641) 157653) ((-811 . -913) 157632) ((-452 . -410) 157616) ((-597 . -19) 157600) ((-1136 . -1198) 157569) ((-1157 . -879) NIL) ((-1157 . -877) 157521) ((-597 . -599) 157498) ((-1191 . -608) 157430) ((-1165 . -608) 157412) ((-62 . -394) T) ((-1163 . -1031) 157347) ((-1157 . -1031) 157313) ((-687 . -38) 157263) ((-472 . -285) 157248) ((-1211 . -608) 157230) ((-725 . -376) 157214) ((-832 . -608) 157196) ((-651 . -1049) T) ((-1237 . -995) 157162) ((-1216 . -995) 157128) ((-1078 . -611) 157112) ((-1054 . -1181) 157087) ((-1066 . -611) 157064) ((-865 . -609) 156871) ((-865 . -608) 156853) ((-1178 . -487) 156790) ((-417 . -1015) 156768) ((-48 . -308) 156755) ((-1054 . -107) 156701) ((-477 . -487) 156638) ((-518 . -1205) T) ((-1157 . -337) 156590) ((-1131 . -487) 156561) ((-1157 . -376) 156513) ((-1077 . -1049) T) ((-436 . -102) T) ((-182 . -1090) T) ((-250 . -34) T) ((-249 . -34) T) ((-776 . -1049) T) ((-774 . -1049) T) ((-725 . -893) 156490) ((-452 . -1049) T) ((-59 . -487) 156474) ((-1027 . -1048) 156448) ((-517 . -487) 156432) ((-514 . -487) 156416) ((-495 . -487) 156400) ((-494 . -487) 156384) ((-244 . -512) 156317) ((-1027 . -111) 156284) ((-1164 . -893) 156197) ((-1163 . -893) 156103) ((-1157 . -893) 155936) ((-1116 . -893) 155920) ((-663 . -1102) T) ((-353 . -1141) T) ((-639 . -93) T) ((-321 . -1048) 155902) ((-250 . -785) 155881) ((-250 . -788) 155832) ((-31 . -488) 155813) ((-250 . -787) 155792) ((-249 . -785) 155771) ((-249 . -788) 155722) ((-249 . -787) 155701) ((-31 . -608) 155667) ((-50 . -1049) T) ((-250 . -720) 155577) ((-249 . -720) 155487) ((-1199 . -1090) T) ((-663 . -23) T) ((-578 . -1049) T) ((-516 . -1049) T) ((-378 . -1048) 155452) ((-321 . -111) 155427) ((-73 . -382) T) ((-73 . -394) T) ((-1017 . -38) 155364) ((-687 . -399) 155346) ((-99 . -102) T) ((-705 . -1090) T) ((-996 . -144) 155318) ((-996 . -146) 155290) ((-378 . -111) 155246) ((-318 . -1209) 155225) ((-472 . -995) 155191) ((-353 . -38) 155156) ((-40 . -369) 155128) ((-866 . -608) 155000) ((-127 . -125) 154984) ((-121 . -125) 154968) ((-830 . -1048) 154938) ((-827 . -21) 154890) ((-821 . -1048) 154874) ((-827 . -25) 154826) ((-318 . -553) 154777) ((-515 . -611) 154758) ((-561 . -822) T) ((-239 . -1205) T) ((-1027 . -611) 154727) ((-830 . -111) 154692) ((-821 . -111) 154671) ((-1237 . -608) 154653) ((-1216 . -608) 154635) ((-1216 . -609) 154306) ((-1162 . -902) 154285) ((-1115 . -902) 154264) ((-48 . -38) 154229) ((-1275 . -1102) T) ((-597 . -608) 154141) ((-597 . -609) 154102) ((-1273 . -1102) T) ((-360 . -611) 154086) ((-321 . -611) 154070) ((-239 . -1031) 153897) ((-1162 . -641) 153822) ((-1115 . -641) 153747) ((-848 . -641) 153721) ((-712 . -608) 153703) ((-544 . -367) T) ((-1275 . -23) T) ((-1273 . -23) T) ((-489 . -1090) T) ((-378 . -611) 153653) ((-378 . -613) 153635) ((-1027 . -1042) T) ((-1178 . -285) 153614) ((-168 . -367) 153565) ((-997 . -1205) T) ((-830 . -611) 153519) ((-821 . -611) 153474) ((-44 . -23) T) ((-477 . -285) 153453) ((-582 . -1090) T) ((-1136 . -1099) 153422) ((-1094 . -1093) 153374) ((-389 . -21) T) ((-389 . -25) T) ((-151 . -1102) T) ((-1281 . -102) T) ((-997 . -877) 153356) ((-997 . -879) 153338) ((-1199 . -711) 153235) ((-618 . -230) 153219) ((-616 . -21) T) ((-288 . -553) T) ((-616 . -25) T) ((-1185 . -1090) T) ((-705 . -711) 153184) ((-239 . -376) 153153) ((-997 . -1031) 153113) ((-378 . -1042) T) ((-222 . -1049) T) ((-117 . -230) 153090) ((-59 . -285) 153067) ((-151 . -23) T) ((-514 . -285) 153044) ((-326 . -512) 152977) ((-494 . -285) 152954) ((-378 . -242) T) ((-378 . -232) T) ((-830 . -1042) T) ((-821 . -1042) T) ((-706 . -942) 152923) ((-694 . -844) T) ((-472 . -608) 152905) ((-821 . -232) 152884) ((-133 . -844) T) ((-651 . -1090) T) ((-1178 . -599) 152863) ((-547 . -1181) 152842) ((-335 . -1090) T) ((-318 . -362) 152821) ((-406 . -146) 152800) ((-406 . -144) 152779) ((-957 . -1102) 152678) ((-239 . -893) 152610) ((-809 . -1102) 152520) ((-647 . -846) 152504) ((-477 . -599) 152483) ((-547 . -107) 152433) ((-997 . -376) 152415) ((-997 . -337) 152397) ((-97 . -1090) T) ((-957 . -23) 152208) ((-475 . -21) T) ((-475 . -25) T) ((-809 . -23) 152078) ((-1166 . -608) 152060) ((-59 . -19) 152044) ((-1166 . -609) 151966) ((-1162 . -720) T) ((-1115 . -720) T) ((-514 . -19) 151950) ((-494 . -19) 151934) ((-59 . -599) 151911) ((-1077 . -1090) T) ((-894 . -102) 151889) ((-848 . -720) T) ((-776 . -1090) T) ((-514 . -599) 151866) ((-494 . -599) 151843) ((-774 . -1090) T) ((-774 . -1056) 151810) ((-459 . -1090) T) ((-452 . -1090) T) ((-582 . -711) 151785) ((-642 . -1090) T) ((-1245 . -47) 151762) ((-1239 . -102) T) ((-1238 . -47) 151732) ((-1217 . -47) 151709) ((-1199 . -171) 151660) ((-1163 . -306) 151639) ((-997 . -893) NIL) ((-1157 . -306) 151618) ((-622 . -1102) T) ((-663 . -130) T) ((-1086 . -611) 151599) ((-1080 . -611) 151580) ((-1070 . -553) 151531) ((-1070 . -1209) 151482) ((-1064 . -611) 151463) ((-274 . -1090) T) ((-85 . -439) T) ((-85 . -394) T) ((-1057 . -611) 151444) ((-1029 . -611) 151425) ((-50 . -1090) T) ((-1012 . -611) 151406) ((-705 . -171) T) ((-591 . -47) 151383) ((-224 . -641) 151348) ((-578 . -1090) T) ((-516 . -1090) T) ((-358 . -1209) T) ((-352 . -1209) T) ((-344 . -1209) T) ((-485 . -814) T) ((-485 . -913) T) ((-318 . -1102) T) ((-108 . -1209) T) ((-708 . -1048) 151318) ((-338 . -844) T) ((-216 . -913) T) ((-216 . -814) T) ((-621 . -611) 151299) ((-358 . -553) T) ((-352 . -553) T) ((-344 . -553) T) ((-481 . -611) 151280) ((-108 . -553) T) ((-651 . -711) 151250) ((-1157 . -1015) NIL) ((-217 . -611) 151231) ((-318 . -23) T) ((-67 . -1205) T) ((-993 . -608) 151163) ((-687 . -230) 151145) ((-708 . -111) 151110) ((-638 . -34) T) ((-244 . -487) 151094) ((-1092 . -1088) 151078) ((-170 . -1090) T) ((-945 . -902) 151057) ((-513 . -611) 151041) ((-1281 . -1141) T) ((-1277 . -21) T) ((-479 . -902) 151020) ((-1277 . -25) T) ((-1275 . -130) T) ((-1273 . -130) T) ((-1266 . -102) T) ((-1249 . -608) 150986) ((-1238 . -1031) 150921) ((-1077 . -711) 150770) ((-1053 . -641) 150757) ((-945 . -641) 150682) ((-776 . -711) 150511) ((-534 . -608) 150493) ((-534 . -609) 150474) ((-774 . -711) 150323) ((-1217 . -1205) 150302) ((-1067 . -102) T) ((-380 . -25) T) ((-380 . -21) T) ((-479 . -641) 150227) ((-459 . -711) 150198) ((-452 . -711) 150047) ((-980 . -102) T) ((-1217 . -879) NIL) ((-1217 . -877) 149999) ((-1178 . -609) NIL) ((-731 . -102) T) ((-1178 . -608) 149981) ((-600 . -611) 149963) ((-1132 . -1113) 149908) ((-1039 . -1198) 149837) ((-529 . -25) T) ((-894 . -308) 149775) ((-708 . -611) 149729) ((-342 . -1049) T) ((-639 . -488) 149710) ((-140 . -102) T) ((-44 . -130) T) ((-288 . -1102) T) ((-674 . -93) T) ((-669 . -93) T) ((-657 . -608) 149692) ((-639 . -608) 149645) ((-476 . -93) T) ((-354 . -608) 149627) ((-351 . -608) 149609) ((-343 . -608) 149591) ((-263 . -609) 149339) ((-263 . -608) 149321) ((-246 . -608) 149303) ((-246 . -609) 149164) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1217 . -1031) 149130) ((-1199 . -512) 149097) ((-1131 . -608) 149079) ((-813 . -851) T) ((-813 . -720) T) ((-597 . -287) 149056) ((-578 . -711) 149021) ((-477 . -609) NIL) ((-477 . -608) 149003) ((-516 . -711) 148948) ((-315 . -102) T) ((-312 . -102) T) ((-288 . -23) T) ((-151 . -130) T) ((-903 . -608) 148930) ((-385 . -720) T) ((-865 . -1048) 148882) ((-903 . -609) 148864) ((-865 . -111) 148802) ((-708 . -1042) T) ((-706 . -1229) 148786) ((-138 . -102) T) ((-135 . -102) T) ((-114 . -102) T) ((-687 . -348) NIL) ((-517 . -608) 148718) ((-378 . -789) T) ((-222 . -1090) T) ((-378 . -786) T) ((-224 . -788) T) ((-224 . -785) T) ((-59 . -609) 148679) ((-59 . -608) 148591) ((-224 . -720) T) ((-514 . -609) 148552) ((-514 . -608) 148464) ((-495 . -608) 148396) ((-494 . -609) 148357) ((-494 . -608) 148269) ((-1070 . -362) 148220) ((-40 . -410) 148197) ((-77 . -1205) T) ((-864 . -902) NIL) ((-358 . -328) 148181) ((-358 . -362) T) ((-352 . -328) 148165) ((-352 . -362) T) ((-344 . -328) 148149) ((-344 . -362) T) ((-315 . -283) 148128) ((-108 . -362) T) ((-70 . -1205) T) ((-1217 . -337) 148080) ((-864 . -641) 148025) ((-1217 . -376) 147977) ((-957 . -130) 147832) ((-809 . -130) 147702) ((-951 . -644) 147686) ((-1077 . -171) 147597) ((-951 . -372) 147581) ((-1053 . -788) T) ((-1053 . -785) T) ((-865 . -611) 147479) ((-776 . -171) 147370) ((-774 . -171) 147281) ((-810 . -47) 147243) ((-1053 . -720) T) ((-326 . -487) 147227) ((-945 . -720) T) ((-452 . -171) 147138) ((-244 . -285) 147115) ((-1266 . -308) 147053) ((-479 . -720) T) ((-1245 . -893) 146966) ((-1238 . -893) 146872) ((-1237 . -1048) 146707) ((-1217 . -893) 146540) ((-1216 . -1048) 146348) ((-1199 . -289) 146327) ((-1173 . -367) T) ((-1172 . -367) T) ((-1136 . -150) 146311) ((-1110 . -102) T) ((-1108 . -1090) T) ((-1070 . -23) T) ((-1065 . -102) T) ((-920 . -948) T) ((-731 . -308) 146249) ((-75 . -1205) T) ((-30 . -948) T) ((-168 . -902) 146202) ((-657 . -381) 146174) ((-112 . -838) T) ((-1 . -608) 146156) ((-1070 . -1102) T) ((-128 . -644) 146138) ((-50 . -615) 146122) ((-996 . -408) 146094) ((-591 . -893) 146007) ((-437 . -102) T) ((-140 . -308) NIL) ((-128 . -372) 145989) ((-865 . -1042) T) ((-827 . -844) 145968) ((-81 . -1205) T) ((-705 . -289) T) ((-40 . -1049) T) ((-578 . -171) T) ((-516 . -171) T) ((-509 . -608) 145950) ((-168 . -641) 145860) ((-505 . -608) 145842) ((-350 . -146) 145824) ((-350 . -144) T) ((-358 . -1102) T) ((-352 . -1102) T) ((-344 . -1102) T) ((-997 . -306) T) ((-907 . -306) T) ((-865 . -242) T) ((-108 . -1102) T) ((-865 . -232) 145803) ((-1237 . -111) 145624) ((-1216 . -111) 145413) ((-244 . -1241) 145397) ((-561 . -842) T) ((-358 . -23) T) ((-353 . -348) T) ((-315 . -308) 145384) ((-312 . -308) 145325) ((-352 . -23) T) ((-318 . -130) T) ((-344 . -23) T) ((-997 . -1015) T) ((-31 . -611) 145306) ((-108 . -23) T) ((-244 . -599) 145283) ((-1239 . -38) 145175) ((-1226 . -902) 145154) ((-112 . -1090) T) ((-1028 . -102) T) ((-1226 . -641) 145079) ((-864 . -788) NIL) ((-849 . -641) 145053) ((-864 . -785) NIL) ((-810 . -879) NIL) ((-864 . -720) T) ((-1077 . -512) 144926) ((-776 . -512) 144873) ((-774 . -512) 144825) ((-568 . -641) 144812) ((-810 . -1031) 144640) ((-452 . -512) 144583) ((-387 . -388) T) ((-1237 . -611) 144396) ((-1216 . -611) 144144) ((-60 . -1205) T) ((-616 . -844) 144123) ((-498 . -654) T) ((-1136 . -969) 144092) ((-996 . -450) T) ((-692 . -842) T) ((-508 . -786) T) ((-472 . -1048) 143927) ((-342 . -1090) T) ((-312 . -1141) NIL) ((-288 . -130) T) ((-393 . -1090) T) ((-687 . -369) 143894) ((-863 . -1049) T) ((-222 . -615) 143871) ((-326 . -285) 143848) ((-472 . -111) 143669) ((-1237 . -1042) T) ((-1216 . -1042) T) ((-810 . -376) 143653) ((-168 . -720) T) ((-647 . -102) T) ((-1237 . -242) 143632) ((-1237 . -232) 143584) ((-1216 . -232) 143489) ((-1216 . -242) 143468) ((-996 . -401) NIL) ((-663 . -634) 143416) ((-315 . -38) 143326) ((-312 . -38) 143255) ((-69 . -608) 143237) ((-318 . -491) 143203) ((-1178 . -287) 143182) ((-1103 . -1102) 143092) ((-83 . -1205) T) ((-61 . -608) 143074) ((-477 . -287) 143053) ((-1268 . -1031) 143030) ((-1154 . -1090) T) ((-1103 . -23) 142900) ((-810 . -893) 142836) ((-1226 . -720) T) ((-1092 . -1205) T) ((-472 . -611) 142662) ((-1077 . -289) 142593) ((-959 . -1090) T) ((-886 . -102) T) ((-776 . -289) 142504) ((-326 . -19) 142488) ((-59 . -287) 142465) ((-774 . -289) 142396) ((-849 . -720) T) ((-117 . -842) NIL) ((-514 . -287) 142373) ((-326 . -599) 142350) ((-494 . -287) 142327) ((-452 . -289) 142258) ((-1028 . -308) 142109) ((-674 . -488) 142090) ((-568 . -720) T) ((-669 . -488) 142071) ((-674 . -608) 142021) ((-669 . -608) 141987) ((-655 . -608) 141969) ((-476 . -488) 141950) ((-476 . -608) 141916) ((-244 . -609) 141877) ((-244 . -488) 141854) ((-137 . -488) 141835) ((-136 . -488) 141816) ((-132 . -488) 141797) ((-244 . -608) 141689) ((-212 . -102) T) ((-137 . -608) 141655) ((-136 . -608) 141621) ((-132 . -608) 141587) ((-1137 . -34) T) ((-936 . -1205) T) ((-342 . -711) 141532) ((-663 . -25) T) ((-663 . -21) T) ((-1166 . -611) 141513) ((-472 . -1042) T) ((-630 . -416) 141478) ((-602 . -416) 141443) ((-1110 . -1141) T) ((-578 . -289) T) ((-516 . -289) T) ((-1238 . -306) 141422) ((-472 . -232) 141374) ((-472 . -242) 141353) ((-1217 . -306) 141332) ((-1217 . -1015) NIL) ((-1070 . -130) T) ((-865 . -789) 141311) ((-143 . -102) T) ((-40 . -1090) T) ((-865 . -786) 141290) ((-638 . -1003) 141274) ((-577 . -1049) T) ((-561 . -1049) T) ((-493 . -1049) T) ((-406 . -450) T) ((-358 . -130) T) ((-315 . -399) 141258) ((-312 . -399) 141219) ((-352 . -130) T) ((-344 . -130) T) ((-1171 . -1090) T) ((-1110 . -38) 141206) ((-1084 . -608) 141173) ((-108 . -130) T) ((-947 . -1090) T) ((-914 . -1090) T) ((-765 . -1090) T) ((-665 . -1090) T) ((-694 . -146) T) ((-116 . -146) T) ((-1275 . -21) T) ((-1275 . -25) T) ((-1273 . -21) T) ((-1273 . -25) T) ((-657 . -1048) 141157) ((-529 . -844) T) ((-498 . -844) T) ((-354 . -1048) 141109) ((-351 . -1048) 141061) ((-343 . -1048) 141013) ((-250 . -1205) T) ((-249 . -1205) T) ((-263 . -1048) 140856) ((-246 . -1048) 140699) ((-657 . -111) 140678) ((-545 . -838) T) ((-354 . -111) 140616) ((-351 . -111) 140554) ((-343 . -111) 140492) ((-263 . -111) 140321) ((-246 . -111) 140150) ((-811 . -1209) 140129) ((-618 . -410) 140113) ((-44 . -21) T) ((-44 . -25) T) ((-809 . -634) 140019) ((-811 . -553) 139998) ((-250 . -1031) 139825) ((-249 . -1031) 139652) ((-126 . -119) 139636) ((-903 . -1048) 139601) ((-706 . -102) T) ((-692 . -1049) T) ((-534 . -613) 139504) ((-342 . -171) T) ((-151 . -25) T) ((-88 . -608) 139486) ((-151 . -21) T) ((-903 . -111) 139442) ((-40 . -711) 139387) ((-863 . -1090) T) ((-657 . -611) 139364) ((-639 . -611) 139345) ((-354 . -611) 139282) ((-351 . -611) 139219) ((-545 . -1090) T) ((-343 . -611) 139156) ((-326 . -609) 139117) ((-326 . -608) 139029) ((-263 . -611) 138782) ((-246 . -611) 138567) ((-1216 . -786) 138520) ((-1216 . -789) 138473) ((-250 . -376) 138442) ((-249 . -376) 138411) ((-647 . -38) 138381) ((-603 . -34) T) ((-480 . -1102) 138291) ((-473 . -34) T) ((-1103 . -130) 138161) ((-957 . -25) 137972) ((-903 . -611) 137922) ((-867 . -608) 137904) ((-957 . -21) 137859) ((-809 . -21) 137769) ((-809 . -25) 137620) ((-1211 . -367) T) ((-618 . -1049) T) ((-1168 . -553) 137599) ((-1162 . -47) 137576) ((-354 . -1042) T) ((-351 . -1042) T) ((-480 . -23) 137446) ((-343 . -1042) T) ((-246 . -1042) T) ((-263 . -1042) T) ((-1115 . -47) 137418) ((-117 . -1049) T) ((-1027 . -641) 137392) ((-951 . -34) T) ((-354 . -232) 137371) ((-354 . -242) T) ((-351 . -232) 137350) ((-351 . -242) T) ((-343 . -232) 137329) ((-343 . -242) T) ((-246 . -325) 137286) ((-263 . -325) 137258) ((-263 . -232) 137237) ((-1146 . -150) 137221) ((-250 . -893) 137153) ((-249 . -893) 137085) ((-1072 . -844) T) ((-413 . -1102) T) ((-1046 . -23) T) ((-903 . -1042) T) ((-321 . -641) 137067) ((-1017 . -842) T) ((-1199 . -995) 137033) ((-1163 . -913) 137012) ((-1157 . -913) 136991) ((-1157 . -814) NIL) ((-903 . -242) T) ((-811 . -362) 136970) ((-384 . -23) T) ((-127 . -1090) 136948) ((-121 . -1090) 136926) ((-903 . -232) T) ((-128 . -34) T) ((-378 . -641) 136891) ((-863 . -711) 136878) ((-1039 . -150) 136843) ((-40 . -171) T) ((-687 . -410) 136825) ((-706 . -308) 136812) ((-830 . -641) 136772) ((-821 . -641) 136746) ((-318 . -25) T) ((-318 . -21) T) ((-651 . -285) 136725) ((-577 . -1090) T) ((-561 . -1090) T) ((-493 . -1090) T) ((-244 . -287) 136702) ((-312 . -230) 136663) ((-1162 . -879) NIL) ((-55 . -1090) T) ((-1115 . -879) 136522) ((-129 . -844) T) ((-1162 . -1031) 136402) ((-1115 . -1031) 136285) ((-182 . -608) 136267) ((-848 . -1031) 136163) ((-776 . -285) 136090) ((-811 . -1102) T) ((-1027 . -720) T) ((-597 . -644) 136074) ((-1039 . -969) 136003) ((-992 . -102) T) ((-811 . -23) T) ((-706 . -1141) 135981) ((-687 . -1049) T) ((-597 . -372) 135965) ((-350 . -450) T) ((-342 . -289) T) ((-1254 . -1090) T) ((-247 . -1090) T) ((-398 . -102) T) ((-288 . -21) T) ((-288 . -25) T) ((-360 . -720) T) ((-704 . -1090) T) ((-692 . -1090) T) ((-360 . -471) T) ((-1199 . -608) 135947) ((-1162 . -376) 135931) ((-1115 . -376) 135915) ((-1017 . -410) 135877) ((-140 . -228) 135859) ((-378 . -788) T) ((-378 . -785) T) ((-863 . -171) T) ((-378 . -720) T) ((-705 . -608) 135841) ((-706 . -38) 135670) ((-1253 . -1251) 135654) ((-350 . -401) T) ((-1253 . -1090) 135604) ((-577 . -711) 135591) ((-561 . -711) 135578) ((-493 . -711) 135543) ((-315 . -624) 135522) ((-830 . -720) T) ((-821 . -720) T) ((-638 . -1205) T) ((-1070 . -634) 135470) ((-1162 . -893) 135413) ((-1115 . -893) 135397) ((-655 . -1048) 135381) ((-108 . -634) 135363) ((-480 . -130) 135233) ((-1168 . -1102) T) ((-945 . -47) 135202) ((-618 . -1090) T) ((-655 . -111) 135181) ((-489 . -608) 135147) ((-326 . -287) 135124) ((-479 . -47) 135081) ((-1168 . -23) T) ((-117 . -1090) T) ((-103 . -102) 135059) ((-1265 . -1102) T) ((-1046 . -130) T) ((-1017 . -1049) T) ((-813 . -1031) 135043) ((-996 . -718) 135015) ((-1265 . -23) T) ((-692 . -711) 134980) ((-582 . -608) 134962) ((-385 . -1031) 134946) ((-353 . -1049) T) ((-384 . -130) T) ((-323 . -1031) 134930) ((-224 . -879) 134912) ((-997 . -913) T) ((-91 . -34) T) ((-997 . -814) T) ((-907 . -913) T) ((-1185 . -608) 134894) ((-1110 . -822) T) ((-485 . -1209) T) ((-1095 . -1090) T) ((-1070 . -21) T) ((-1070 . -25) T) ((-216 . -1209) T) ((-992 . -308) 134859) ((-224 . -1031) 134819) ((-40 . -289) T) ((-708 . -641) 134779) ((-674 . -611) 134760) ((-669 . -611) 134741) ((-485 . -553) T) ((-476 . -611) 134722) ((-358 . -25) T) ((-358 . -21) T) ((-352 . -25) T) ((-216 . -553) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-244 . -611) 134699) ((-137 . -611) 134680) ((-136 . -611) 134661) ((-132 . -611) 134642) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1049) T) ((-577 . -171) T) ((-561 . -171) T) ((-493 . -171) T) ((-651 . -608) 134624) ((-731 . -730) 134608) ((-335 . -608) 134590) ((-68 . -382) T) ((-68 . -394) T) ((-1092 . -107) 134574) ((-1053 . -879) 134556) ((-945 . -879) 134481) ((-646 . -1102) T) ((-618 . -711) 134468) ((-479 . -879) NIL) ((-1136 . -102) T) ((-1084 . -613) 134452) ((-1053 . -1031) 134434) ((-97 . -608) 134416) ((-475 . -146) T) ((-945 . -1031) 134296) ((-117 . -711) 134241) ((-646 . -23) T) ((-479 . -1031) 134117) ((-1077 . -609) NIL) ((-1077 . -608) 134099) ((-776 . -609) NIL) ((-776 . -608) 134060) ((-774 . -609) 133694) ((-774 . -608) 133608) ((-1103 . -634) 133514) ((-459 . -608) 133496) ((-452 . -608) 133478) ((-452 . -609) 133339) ((-1028 . -228) 133285) ((-865 . -902) 133264) ((-126 . -34) T) ((-811 . -130) T) ((-642 . -608) 133246) ((-575 . -102) T) ((-354 . -1272) 133230) ((-351 . -1272) 133214) ((-343 . -1272) 133198) ((-127 . -512) 133131) ((-121 . -512) 133064) ((-509 . -786) T) ((-509 . -789) T) ((-508 . -788) T) ((-103 . -308) 133002) ((-221 . -102) 132980) ((-687 . -1090) T) ((-692 . -171) T) ((-865 . -641) 132932) ((-65 . -383) T) ((-274 . -608) 132914) ((-65 . -394) T) ((-945 . -376) 132898) ((-863 . -289) T) ((-50 . -608) 132880) ((-992 . -38) 132828) ((-578 . -608) 132810) ((-479 . -376) 132794) ((-578 . -609) 132776) ((-516 . -608) 132758) ((-903 . -1272) 132745) ((-864 . -1205) T) ((-694 . -450) T) ((-493 . -512) 132711) ((-485 . -362) T) ((-354 . -367) 132690) ((-351 . -367) 132669) ((-343 . -367) 132648) ((-708 . -720) T) ((-216 . -362) T) ((-116 . -450) T) ((-1276 . -1267) 132632) ((-864 . -877) 132609) ((-864 . -879) NIL) ((-957 . -844) 132508) ((-809 . -844) 132459) ((-647 . -649) 132443) ((-1191 . -34) T) ((-170 . -608) 132425) ((-1103 . -21) 132335) ((-1103 . -25) 132186) ((-864 . -1031) 132163) ((-945 . -893) 132144) ((-1226 . -47) 132121) ((-903 . -367) T) ((-59 . -644) 132105) ((-514 . -644) 132089) ((-479 . -893) 132066) ((-71 . -439) T) ((-71 . -394) T) ((-494 . -644) 132050) ((-59 . -372) 132034) ((-618 . -171) T) ((-514 . -372) 132018) ((-494 . -372) 132002) ((-821 . -702) 131986) ((-1162 . -306) 131965) ((-1168 . -130) T) ((-117 . -171) T) ((-1136 . -308) 131903) ((-168 . -1205) T) ((-630 . -738) 131887) ((-602 . -738) 131871) ((-1265 . -130) T) ((-1238 . -913) 131850) ((-1217 . -913) 131829) ((-1217 . -814) NIL) ((-687 . -711) 131779) ((-1216 . -902) 131732) ((-1017 . -1090) T) ((-864 . -376) 131709) ((-864 . -337) 131686) ((-898 . -1102) T) ((-168 . -877) 131670) ((-168 . -879) 131595) ((-485 . -1102) T) ((-353 . -1090) T) ((-216 . -1102) T) ((-76 . -439) T) ((-76 . -394) T) ((-168 . -1031) 131491) ((-318 . -844) T) ((-1253 . -512) 131424) ((-1237 . -641) 131321) ((-1216 . -641) 131191) ((-865 . -788) 131170) ((-865 . -785) 131149) ((-865 . -720) T) ((-485 . -23) T) ((-222 . -608) 131131) ((-173 . -450) T) ((-221 . -308) 131069) ((-86 . -439) T) ((-86 . -394) T) ((-216 . -23) T) ((-1277 . -1270) 131048) ((-577 . -289) T) ((-561 . -289) T) ((-670 . -1031) 131032) ((-493 . -289) T) ((-135 . -468) 130987) ((-48 . -1090) T) ((-706 . -230) 130971) ((-864 . -893) NIL) ((-1226 . -879) NIL) ((-882 . -102) T) ((-878 . -102) T) ((-387 . -1090) T) ((-168 . -376) 130955) ((-168 . -337) 130939) ((-1226 . -1031) 130819) ((-849 . -1031) 130715) ((-1132 . -102) T) ((-646 . -130) T) ((-117 . -512) 130623) ((-655 . -786) 130602) ((-655 . -789) 130581) ((-568 . -1031) 130563) ((-293 . -1260) 130533) ((-859 . -102) T) ((-956 . -553) 130512) ((-1199 . -1048) 130395) ((-480 . -634) 130301) ((-897 . -1090) T) ((-1017 . -711) 130238) ((-705 . -1048) 130203) ((-612 . -102) T) ((-597 . -34) T) ((-1137 . -1205) T) ((-1199 . -111) 130072) ((-472 . -641) 129969) ((-353 . -711) 129914) ((-168 . -893) 129873) ((-692 . -289) T) ((-687 . -171) T) ((-705 . -111) 129829) ((-1281 . -1049) T) ((-1226 . -376) 129813) ((-417 . -1209) 129791) ((-1108 . -608) 129773) ((-312 . -842) NIL) ((-417 . -553) T) ((-224 . -306) T) ((-1216 . -785) 129726) ((-1216 . -788) 129679) ((-1237 . -720) T) ((-1216 . -720) T) ((-48 . -711) 129644) ((-224 . -1015) T) ((-350 . -1260) 129621) ((-1239 . -410) 129587) ((-712 . -720) T) ((-1226 . -893) 129530) ((-1199 . -611) 129412) ((-112 . -608) 129394) ((-112 . -609) 129376) ((-712 . -471) T) ((-705 . -611) 129326) ((-480 . -21) 129236) ((-127 . -487) 129220) ((-121 . -487) 129204) ((-480 . -25) 129055) ((-618 . -289) T) ((-582 . -1048) 129030) ((-436 . -1090) T) ((-1053 . -306) T) ((-117 . -289) T) ((-1094 . -102) T) ((-996 . -102) T) ((-582 . -111) 128998) ((-1132 . -308) 128936) ((-1199 . -1042) T) ((-1053 . -1015) T) ((-66 . -1205) T) ((-1046 . -25) T) ((-1046 . -21) T) ((-705 . -1042) T) ((-384 . -21) T) ((-384 . -25) T) ((-687 . -512) NIL) ((-1017 . -171) T) ((-705 . -242) T) ((-1053 . -543) T) ((-504 . -102) T) ((-500 . -102) T) ((-353 . -171) T) ((-342 . -608) 128918) ((-393 . -608) 128900) ((-472 . -720) T) ((-1110 . -842) T) ((-885 . -1031) 128868) ((-108 . -844) T) ((-651 . -1048) 128852) ((-485 . -130) T) ((-1239 . -1049) T) ((-216 . -130) T) ((-1146 . -102) 128830) ((-99 . -1090) T) ((-244 . -659) 128814) ((-244 . -644) 128798) ((-651 . -111) 128777) ((-582 . -611) 128761) ((-315 . -410) 128745) ((-244 . -372) 128729) ((-1149 . -234) 128676) ((-992 . -230) 128660) ((-74 . -1205) T) ((-48 . -171) T) ((-694 . -386) T) ((-694 . -142) T) ((-1276 . -102) T) ((-1185 . -611) 128642) ((-1077 . -1048) 128485) ((-263 . -902) 128464) ((-246 . -902) 128443) ((-776 . -1048) 128266) ((-774 . -1048) 128109) ((-603 . -1205) T) ((-1154 . -608) 128091) ((-1077 . -111) 127920) ((-1039 . -102) T) ((-473 . -1205) T) ((-459 . -1048) 127891) ((-452 . -1048) 127734) ((-657 . -641) 127718) ((-864 . -306) T) ((-776 . -111) 127527) ((-774 . -111) 127356) ((-354 . -641) 127308) ((-351 . -641) 127260) ((-343 . -641) 127212) ((-263 . -641) 127137) ((-246 . -641) 127062) ((-1148 . -844) T) ((-1078 . -1031) 127046) ((-459 . -111) 127007) ((-452 . -111) 126836) ((-1066 . -1031) 126813) ((-993 . -34) T) ((-959 . -608) 126795) ((-951 . -1205) T) ((-126 . -1003) 126779) ((-956 . -1102) T) ((-864 . -1015) NIL) ((-729 . -1102) T) ((-709 . -1102) T) ((-651 . -611) 126697) ((-1253 . -487) 126681) ((-1132 . -38) 126641) ((-956 . -23) T) ((-837 . -102) T) ((-811 . -21) T) ((-811 . -25) T) ((-729 . -23) T) ((-709 . -23) T) ((-110 . -654) T) ((-903 . -641) 126606) ((-578 . -1048) 126571) ((-516 . -1048) 126516) ((-226 . -57) 126474) ((-451 . -23) T) ((-406 . -102) T) ((-262 . -102) T) ((-687 . -289) T) ((-859 . -38) 126444) ((-578 . -111) 126400) ((-516 . -111) 126329) ((-1077 . -611) 126065) ((-417 . -1102) T) ((-315 . -1049) 125955) ((-312 . -1049) T) ((-128 . -1205) T) ((-776 . -611) 125703) ((-774 . -611) 125469) ((-651 . -1042) T) ((-1281 . -1090) T) ((-452 . -611) 125254) ((-168 . -306) 125185) ((-417 . -23) T) ((-40 . -608) 125167) ((-40 . -609) 125151) ((-108 . -985) 125133) ((-116 . -862) 125117) ((-642 . -611) 125101) ((-48 . -512) 125067) ((-1191 . -1003) 125051) ((-1171 . -608) 125018) ((-1178 . -34) T) ((-947 . -608) 124984) ((-914 . -608) 124966) ((-1103 . -844) 124917) ((-765 . -608) 124899) ((-665 . -608) 124881) ((-1146 . -308) 124819) ((-477 . -34) T) ((-1082 . -1205) T) ((-475 . -450) T) ((-1131 . -34) T) ((-1077 . -1042) T) ((-50 . -611) 124788) ((-776 . -1042) T) ((-774 . -1042) T) ((-640 . -234) 124772) ((-627 . -234) 124718) ((-578 . -611) 124668) ((-516 . -611) 124598) ((-1226 . -306) 124577) ((-1077 . -325) 124538) ((-452 . -1042) T) ((-1168 . -21) T) ((-1077 . -232) 124517) ((-776 . -325) 124494) ((-776 . -232) T) ((-774 . -325) 124466) ((-725 . -1209) 124445) ((-326 . -644) 124429) ((-1168 . -25) T) ((-59 . -34) T) ((-517 . -34) T) ((-514 . -34) T) ((-452 . -325) 124408) ((-326 . -372) 124392) ((-495 . -34) T) ((-494 . -34) T) ((-996 . -1141) NIL) ((-725 . -553) 124323) ((-630 . -102) T) ((-602 . -102) T) ((-354 . -720) T) ((-351 . -720) T) ((-343 . -720) T) ((-263 . -720) T) ((-246 . -720) T) ((-1039 . -308) 124231) ((-894 . -1090) 124209) ((-50 . -1042) T) ((-1265 . -21) T) ((-1265 . -25) T) ((-1164 . -553) 124188) ((-1163 . -1209) 124167) ((-578 . -1042) T) ((-516 . -1042) T) ((-1157 . -1209) 124146) ((-360 . -1031) 124130) ((-321 . -1031) 124114) ((-1017 . -289) T) ((-378 . -879) 124096) ((-1163 . -553) 124047) ((-1157 . -553) 123998) ((-996 . -38) 123943) ((-793 . -1102) T) ((-903 . -720) T) ((-578 . -242) T) ((-578 . -232) T) ((-516 . -232) T) ((-516 . -242) T) ((-1116 . -553) 123922) ((-353 . -289) T) ((-640 . -688) 123906) ((-378 . -1031) 123866) ((-1110 . -1049) T) ((-103 . -125) 123850) ((-793 . -23) T) ((-1275 . -1270) 123826) ((-1253 . -285) 123803) ((-406 . -308) 123768) ((-1273 . -1270) 123747) ((-1239 . -1090) T) ((-863 . -608) 123729) ((-830 . -1031) 123698) ((-202 . -781) T) ((-201 . -781) T) ((-200 . -781) T) ((-199 . -781) T) ((-198 . -781) T) ((-197 . -781) T) ((-196 . -781) T) ((-195 . -781) T) ((-194 . -781) T) ((-193 . -781) T) ((-545 . -608) 123680) ((-493 . -995) T) ((-273 . -833) T) ((-272 . -833) T) ((-271 . -833) T) ((-270 . -833) T) ((-48 . -289) T) ((-269 . -833) T) ((-268 . -833) T) ((-267 . -833) T) ((-192 . -781) T) ((-607 . -844) T) ((-647 . -410) 123664) ((-222 . -611) 123626) ((-110 . -844) T) ((-646 . -21) T) ((-646 . -25) T) ((-1276 . -38) 123596) ((-117 . -285) 123547) ((-1253 . -19) 123531) ((-1253 . -599) 123508) ((-1266 . -1090) T) ((-1067 . -1090) T) ((-980 . -1090) T) ((-956 . -130) T) ((-731 . -1090) T) ((-729 . -130) T) ((-709 . -130) T) ((-509 . -787) T) ((-406 . -1141) 123486) ((-451 . -130) T) ((-509 . -788) T) ((-222 . -1042) T) ((-293 . -102) 123268) ((-140 . -1090) T) ((-692 . -995) T) ((-91 . -1205) T) ((-127 . -608) 123200) ((-121 . -608) 123132) ((-1281 . -171) T) ((-1163 . -362) 123111) ((-1157 . -362) 123090) ((-315 . -1090) T) ((-417 . -130) T) ((-312 . -1090) T) ((-406 . -38) 123042) ((-1123 . -102) T) ((-1239 . -711) 122934) ((-647 . -1049) T) ((-1125 . -1248) T) ((-318 . -144) 122913) ((-318 . -146) 122892) ((-138 . -1090) T) ((-135 . -1090) T) ((-114 . -1090) T) ((-852 . -102) T) ((-577 . -608) 122874) ((-561 . -609) 122773) ((-561 . -608) 122755) ((-493 . -608) 122737) ((-493 . -609) 122682) ((-483 . -23) T) ((-480 . -844) 122633) ((-485 . -634) 122615) ((-958 . -608) 122597) ((-216 . -634) 122579) ((-224 . -403) T) ((-655 . -641) 122563) ((-55 . -608) 122545) ((-1162 . -913) 122524) ((-725 . -1102) T) ((-350 . -102) T) ((-1204 . -1073) T) ((-1110 . -838) T) ((-812 . -844) T) ((-725 . -23) T) ((-342 . -1048) 122469) ((-1148 . -1147) T) ((-1137 . -107) 122453) ((-1164 . -1102) T) ((-1163 . -1102) T) ((-513 . -1031) 122437) ((-1157 . -1102) T) ((-1116 . -1102) T) ((-342 . -111) 122366) ((-997 . -1209) T) ((-126 . -1205) T) ((-907 . -1209) T) ((-687 . -285) NIL) ((-1254 . -608) 122348) ((-1164 . -23) T) ((-1163 . -23) T) ((-1157 . -23) T) ((-997 . -553) T) ((-1132 . -230) 122332) ((-907 . -553) T) ((-1116 . -23) T) ((-247 . -608) 122314) ((-1065 . -1090) T) ((-793 . -130) T) ((-704 . -608) 122296) ((-315 . -711) 122206) ((-312 . -711) 122135) ((-692 . -608) 122117) ((-692 . -609) 122062) ((-406 . -399) 122046) ((-437 . -1090) T) ((-485 . -25) T) ((-485 . -21) T) ((-1110 . -1090) T) ((-216 . -25) T) ((-216 . -21) T) ((-706 . -410) 122030) ((-708 . -1031) 121999) ((-1253 . -608) 121911) ((-1253 . -609) 121872) ((-1239 . -171) T) ((-244 . -34) T) ((-342 . -611) 121802) ((-393 . -611) 121784) ((-919 . -967) T) ((-1191 . -1205) T) ((-655 . -785) 121763) ((-655 . -788) 121742) ((-397 . -394) T) ((-521 . -102) 121720) ((-1028 . -1090) T) ((-221 . -988) 121704) ((-502 . -102) T) ((-618 . -608) 121686) ((-45 . -844) NIL) ((-618 . -609) 121663) ((-1028 . -605) 121638) ((-894 . -512) 121571) ((-342 . -1042) T) ((-117 . -609) NIL) ((-117 . -608) 121553) ((-865 . -1205) T) ((-663 . -416) 121537) ((-663 . -1113) 121482) ((-498 . -150) 121464) ((-342 . -232) T) ((-342 . -242) T) ((-40 . -1048) 121409) ((-865 . -877) 121393) ((-865 . -879) 121318) ((-706 . -1049) T) ((-687 . -995) NIL) ((-3 . |UnionCategory|) T) ((-1237 . -47) 121288) ((-1216 . -47) 121265) ((-1131 . -1003) 121236) ((-224 . -913) T) ((-40 . -111) 121165) ((-865 . -1031) 121029) ((-1110 . -711) 121016) ((-1095 . -608) 120998) ((-1070 . -146) 120977) ((-1070 . -144) 120928) ((-997 . -362) T) ((-318 . -1193) 120894) ((-378 . -306) T) ((-318 . -1190) 120860) ((-315 . -171) 120839) ((-312 . -171) T) ((-996 . -230) 120816) ((-907 . -362) T) ((-578 . -1272) 120803) ((-516 . -1272) 120780) ((-358 . -146) 120759) ((-358 . -144) 120710) ((-352 . -146) 120689) ((-352 . -144) 120640) ((-603 . -1181) 120616) ((-344 . -146) 120595) ((-344 . -144) 120546) ((-318 . -35) 120512) ((-473 . -1181) 120491) ((0 . |EnumerationCategory|) T) ((-318 . -95) 120457) ((-378 . -1015) T) ((-108 . -146) T) ((-108 . -144) NIL) ((-45 . -234) 120407) ((-647 . -1090) T) ((-603 . -107) 120354) ((-483 . -130) T) ((-473 . -107) 120304) ((-239 . -1102) 120214) ((-865 . -376) 120198) ((-865 . -337) 120182) ((-239 . -23) 120052) ((-40 . -611) 119982) ((-1053 . -913) T) ((-1053 . -814) T) ((-578 . -367) T) ((-516 . -367) T) ((-350 . -1141) T) ((-326 . -34) T) ((-44 . -416) 119966) ((-1171 . -611) 119901) ((-866 . -1205) T) ((-389 . -738) 119885) ((-1266 . -512) 119818) ((-725 . -130) T) ((-665 . -611) 119802) ((-1245 . -553) 119781) ((-1238 . -1209) 119760) ((-1238 . -553) 119711) ((-1217 . -1209) 119690) ((-310 . -1073) T) ((-1217 . -553) 119641) ((-731 . -512) 119574) ((-1216 . -1205) 119553) ((-1216 . -879) 119426) ((-886 . -1090) T) ((-143 . -838) T) ((-1216 . -877) 119396) ((-684 . -608) 119378) ((-1164 . -130) T) ((-521 . -308) 119316) ((-1163 . -130) T) ((-140 . -512) NIL) ((-1157 . -130) T) ((-1116 . -130) T) ((-1017 . -995) T) ((-997 . -23) T) ((-350 . -38) 119281) ((-997 . -1102) T) ((-907 . -1102) T) ((-82 . -608) 119263) ((-40 . -1042) T) ((-863 . -1048) 119250) ((-996 . -348) NIL) ((-865 . -893) 119209) ((-694 . -102) T) ((-964 . -23) T) ((-597 . -1205) T) ((-907 . -23) T) ((-863 . -111) 119194) ((-426 . -1102) T) ((-212 . -1090) T) ((-472 . -47) 119164) ((-133 . -102) T) ((-40 . -232) 119136) ((-40 . -242) T) ((-116 . -102) T) ((-592 . -553) 119115) ((-591 . -553) 119094) ((-687 . -608) 119076) ((-687 . -609) 118984) ((-315 . -512) 118950) ((-312 . -512) 118842) ((-1237 . -1031) 118826) ((-1216 . -1031) 118612) ((-992 . -410) 118596) ((-426 . -23) T) ((-1110 . -171) T) ((-1239 . -289) T) ((-647 . -711) 118566) ((-143 . -1090) T) ((-48 . -995) T) ((-406 . -230) 118550) ((-294 . -234) 118500) ((-864 . -913) T) ((-864 . -814) NIL) ((-863 . -611) 118472) ((-858 . -844) T) ((-1216 . -337) 118442) ((-1216 . -376) 118412) ((-221 . -1111) 118396) ((-1253 . -287) 118373) ((-1199 . -641) 118298) ((-956 . -21) T) ((-956 . -25) T) ((-729 . -21) T) ((-729 . -25) T) ((-709 . -21) T) ((-709 . -25) T) ((-705 . -641) 118263) ((-451 . -21) T) ((-451 . -25) T) ((-338 . -102) T) ((-173 . -102) T) ((-992 . -1049) T) ((-863 . -1042) T) ((-768 . -102) T) ((-1238 . -362) 118242) ((-1237 . -893) 118148) ((-1217 . -362) 118127) ((-1216 . -893) 117978) ((-1017 . -608) 117960) ((-406 . -822) 117913) ((-1164 . -491) 117879) ((-168 . -913) 117810) ((-1163 . -491) 117776) ((-1157 . -491) 117742) ((-706 . -1090) T) ((-1116 . -491) 117708) ((-577 . -1048) 117695) ((-561 . -1048) 117682) ((-493 . -1048) 117647) ((-315 . -289) 117626) ((-312 . -289) T) ((-353 . -608) 117608) ((-417 . -25) T) ((-417 . -21) T) ((-99 . -285) 117587) ((-577 . -111) 117572) ((-561 . -111) 117557) ((-493 . -111) 117513) ((-1166 . -879) 117480) ((-894 . -487) 117464) ((-48 . -608) 117446) ((-48 . -609) 117391) ((-239 . -130) 117261) ((-1226 . -913) 117240) ((-810 . -1209) 117219) ((-387 . -488) 117200) ((-1028 . -512) 117044) ((-387 . -608) 117010) ((-810 . -553) 116941) ((-582 . -641) 116916) ((-263 . -47) 116888) ((-246 . -47) 116845) ((-529 . -507) 116822) ((-577 . -611) 116794) ((-561 . -611) 116766) ((-493 . -611) 116699) ((-993 . -1205) T) ((-692 . -1048) 116664) ((-1245 . -23) T) ((-1245 . -1102) T) ((-1238 . -1102) T) ((-1217 . -1102) T) ((-996 . -369) 116636) ((-112 . -367) T) ((-472 . -893) 116542) ((-1238 . -23) T) ((-897 . -608) 116524) ((-55 . -611) 116506) ((-91 . -107) 116490) ((-1199 . -720) T) ((-898 . -844) 116441) ((-694 . -1141) T) ((-692 . -111) 116397) ((-1217 . -23) T) ((-592 . -1102) T) ((-591 . -1102) T) ((-706 . -711) 116226) ((-705 . -720) T) ((-1110 . -289) T) ((-997 . -130) T) ((-485 . -844) T) ((-964 . -130) T) ((-907 . -130) T) ((-793 . -25) T) ((-216 . -844) T) ((-793 . -21) T) ((-577 . -1042) T) ((-561 . -1042) T) ((-493 . -1042) T) ((-592 . -23) T) ((-342 . -1272) 116203) ((-318 . -450) 116182) ((-338 . -308) 116169) ((-591 . -23) T) ((-426 . -130) T) ((-651 . -641) 116143) ((-244 . -1003) 116127) ((-865 . -306) T) ((-1277 . -1267) 116111) ((-765 . -786) T) ((-765 . -789) T) ((-694 . -38) 116098) ((-561 . -232) T) ((-493 . -242) T) ((-493 . -232) T) ((-1140 . -234) 116048) ((-1077 . -902) 116027) ((-116 . -38) 116014) ((-208 . -794) T) ((-207 . -794) T) ((-206 . -794) T) ((-205 . -794) T) ((-865 . -1015) 115992) ((-1266 . -487) 115976) ((-776 . -902) 115955) ((-774 . -902) 115934) ((-1178 . -1205) T) ((-452 . -902) 115913) ((-731 . -487) 115897) ((-1077 . -641) 115822) ((-692 . -611) 115757) ((-776 . -641) 115682) ((-618 . -1048) 115669) ((-477 . -1205) T) ((-342 . -367) T) ((-140 . -487) 115651) ((-774 . -641) 115576) ((-1131 . -1205) T) ((-546 . -844) T) ((-459 . -641) 115547) ((-263 . -879) 115406) ((-246 . -879) NIL) ((-117 . -1048) 115351) ((-452 . -641) 115276) ((-657 . -1031) 115253) ((-618 . -111) 115238) ((-354 . -1031) 115222) ((-351 . -1031) 115206) ((-343 . -1031) 115190) ((-263 . -1031) 115034) ((-246 . -1031) 114910) ((-117 . -111) 114839) ((-59 . -1205) T) ((-517 . -1205) T) ((-514 . -1205) T) ((-495 . -1205) T) ((-494 . -1205) T) ((-436 . -608) 114821) ((-433 . -608) 114803) ((-3 . -102) T) ((-1020 . -1198) 114772) ((-827 . -102) T) ((-682 . -57) 114730) ((-692 . -1042) T) ((-50 . -641) 114704) ((-288 . -450) T) ((-474 . -1198) 114673) ((0 . -102) T) ((-578 . -641) 114638) ((-516 . -641) 114583) ((-49 . -102) T) ((-903 . -1031) 114570) ((-692 . -242) T) ((-1070 . -408) 114549) ((-725 . -634) 114497) ((-992 . -1090) T) ((-706 . -171) 114388) ((-618 . -611) 114283) ((-485 . -985) 114265) ((-263 . -376) 114249) ((-246 . -376) 114233) ((-398 . -1090) T) ((-1019 . -102) 114211) ((-338 . -38) 114195) ((-216 . -985) 114177) ((-117 . -611) 114107) ((-173 . -38) 114039) ((-1237 . -306) 114018) ((-1216 . -306) 113997) ((-651 . -720) T) ((-99 . -608) 113979) ((-1157 . -634) 113931) ((-483 . -25) T) ((-483 . -21) T) ((-1216 . -1015) 113883) ((-618 . -1042) T) ((-378 . -403) T) ((-389 . -102) T) ((-1095 . -613) 113798) ((-263 . -893) 113744) ((-246 . -893) 113721) ((-117 . -1042) T) ((-810 . -1102) T) ((-1077 . -720) T) ((-618 . -232) 113700) ((-616 . -102) T) ((-776 . -720) T) ((-774 . -720) T) ((-412 . -1102) T) ((-117 . -242) T) ((-40 . -367) NIL) ((-117 . -232) NIL) ((-1210 . -844) T) ((-452 . -720) T) ((-810 . -23) T) ((-725 . -25) T) ((-725 . -21) T) ((-696 . -844) T) ((-1067 . -285) 113679) ((-78 . -395) T) ((-78 . -394) T) ((-531 . -761) 113661) ((-687 . -1048) 113611) ((-1245 . -130) T) ((-1238 . -130) T) ((-1217 . -130) T) ((-1132 . -410) 113595) ((-630 . -366) 113527) ((-602 . -366) 113459) ((-1146 . -1139) 113443) ((-103 . -1090) 113421) ((-1164 . -25) T) ((-1164 . -21) T) ((-1163 . -21) T) ((-992 . -711) 113369) ((-222 . -641) 113336) ((-687 . -111) 113270) ((-50 . -720) T) ((-1163 . -25) T) ((-350 . -348) T) ((-1157 . -21) T) ((-1070 . -450) 113221) ((-1157 . -25) T) ((-706 . -512) 113168) ((-578 . -720) T) ((-516 . -720) T) ((-1116 . -21) T) ((-1116 . -25) T) ((-592 . -130) T) ((-591 . -130) T) ((-358 . -450) T) ((-352 . -450) T) ((-344 . -450) T) ((-472 . -306) 113147) ((-312 . -285) 113082) ((-108 . -450) T) ((-79 . -439) T) ((-79 . -394) T) ((-475 . -102) T) ((-684 . -611) 113066) ((-1281 . -608) 113048) ((-1281 . -609) 113030) ((-1070 . -401) 113009) ((-1028 . -487) 112940) ((-561 . -789) T) ((-561 . -786) T) ((-1054 . -234) 112886) ((-358 . -401) 112837) ((-352 . -401) 112788) ((-344 . -401) 112739) ((-1268 . -1102) T) ((-687 . -611) 112674) ((-1268 . -23) T) ((-1255 . -102) T) ((-174 . -608) 112656) ((-1132 . -1049) T) ((-545 . -367) T) ((-663 . -738) 112640) ((-1168 . -144) 112619) ((-1168 . -146) 112598) ((-1136 . -1090) T) ((-1136 . -1062) 112567) ((-69 . -1205) T) ((-1017 . -1048) 112504) ((-859 . -1049) T) ((-239 . -634) 112410) ((-687 . -1042) T) ((-353 . -1048) 112355) ((-61 . -1205) T) ((-1017 . -111) 112271) ((-894 . -608) 112182) ((-687 . -242) T) ((-687 . -232) NIL) ((-837 . -842) 112161) ((-692 . -789) T) ((-692 . -786) T) ((-996 . -410) 112138) ((-353 . -111) 112067) ((-378 . -913) T) ((-406 . -842) 112046) ((-706 . -289) 111957) ((-222 . -720) T) ((-1245 . -491) 111923) ((-1238 . -491) 111889) ((-1217 . -491) 111855) ((-575 . -1090) T) ((-315 . -995) 111834) ((-221 . -1090) 111812) ((-318 . -966) 111774) ((-105 . -102) T) ((-48 . -1048) 111739) ((-1277 . -102) T) ((-380 . -102) T) ((-48 . -111) 111695) ((-997 . -634) 111677) ((-1239 . -608) 111659) ((-529 . -102) T) ((-498 . -102) T) ((-1123 . -1124) 111643) ((-151 . -1260) 111627) ((-244 . -1205) T) ((-1204 . -102) T) ((-1017 . -611) 111564) ((-1162 . -1209) 111543) ((-353 . -611) 111473) ((-1115 . -1209) 111452) ((-239 . -21) 111362) ((-239 . -25) 111213) ((-127 . -119) 111197) ((-121 . -119) 111181) ((-44 . -738) 111165) ((-1162 . -553) 111076) ((-1115 . -553) 111007) ((-1028 . -285) 110982) ((-1156 . -1073) T) ((-987 . -1073) T) ((-810 . -130) T) ((-117 . -789) NIL) ((-117 . -786) NIL) ((-354 . -306) T) ((-351 . -306) T) ((-343 . -306) T) ((-250 . -1102) 110892) ((-249 . -1102) 110802) ((-1017 . -1042) T) ((-996 . -1049) T) ((-48 . -611) 110735) ((-342 . -641) 110680) ((-616 . -38) 110664) ((-1266 . -608) 110626) ((-1266 . -609) 110587) ((-1067 . -608) 110569) ((-1017 . -242) T) ((-353 . -1042) T) ((-809 . -1260) 110539) ((-250 . -23) T) ((-249 . -23) T) ((-980 . -608) 110521) ((-731 . -609) 110482) ((-731 . -608) 110464) ((-793 . -844) 110443) ((-1149 . -150) 110390) ((-992 . -512) 110302) ((-353 . -232) T) ((-353 . -242) T) ((-387 . -611) 110283) ((-997 . -25) T) ((-140 . -608) 110265) ((-140 . -609) 110224) ((-903 . -306) T) ((-997 . -21) T) ((-964 . -25) T) ((-907 . -21) T) ((-907 . -25) T) ((-426 . -21) T) ((-426 . -25) T) ((-837 . -410) 110208) ((-48 . -1042) T) ((-1275 . -1267) 110192) ((-1273 . -1267) 110176) ((-1028 . -599) 110151) ((-315 . -609) 110012) ((-315 . -608) 109994) ((-312 . -609) NIL) ((-312 . -608) 109976) ((-48 . -242) T) ((-48 . -232) T) ((-647 . -285) 109937) ((-547 . -234) 109887) ((-138 . -608) 109854) ((-135 . -608) 109836) ((-114 . -608) 109818) ((-475 . -38) 109783) ((-1277 . -1274) 109762) ((-1268 . -130) T) ((-1276 . -1049) T) ((-1072 . -102) T) ((-88 . -1205) T) ((-498 . -308) NIL) ((-993 . -107) 109746) ((-882 . -1090) T) ((-878 . -1090) T) ((-1253 . -644) 109730) ((-1253 . -372) 109714) ((-326 . -1205) T) ((-589 . -844) T) ((-1132 . -1090) T) ((-1132 . -1045) 109654) ((-103 . -512) 109587) ((-920 . -608) 109569) ((-342 . -720) T) ((-30 . -608) 109551) ((-859 . -1090) T) ((-837 . -1049) 109530) ((-40 . -641) 109475) ((-224 . -1209) T) ((-406 . -1049) T) ((-1148 . -150) 109457) ((-992 . -289) 109408) ((-612 . -1090) T) ((-224 . -553) T) ((-318 . -1234) 109392) ((-318 . -1231) 109362) ((-1178 . -1181) 109341) ((-1065 . -608) 109323) ((-640 . -150) 109307) ((-627 . -150) 109253) ((-1178 . -107) 109203) ((-477 . -1181) 109182) ((-485 . -146) T) ((-485 . -144) NIL) ((-1110 . -609) 109097) ((-437 . -608) 109079) ((-216 . -146) T) ((-216 . -144) NIL) ((-1110 . -608) 109061) ((-129 . -102) T) ((-52 . -102) T) ((-1217 . -634) 109013) ((-477 . -107) 108963) ((-986 . -23) T) ((-1277 . -38) 108933) ((-1162 . -1102) T) ((-1115 . -1102) T) ((-1053 . -1209) T) ((-310 . -102) T) ((-848 . -1102) T) ((-945 . -1209) 108912) ((-479 . -1209) 108891) ((-725 . -844) 108870) ((-1053 . -553) T) ((-945 . -553) 108801) ((-1162 . -23) T) ((-1115 . -23) T) ((-848 . -23) T) ((-479 . -553) 108732) ((-1132 . -711) 108664) ((-1136 . -512) 108597) ((-1028 . -609) NIL) ((-1028 . -608) 108579) ((-96 . -1073) T) ((-859 . -711) 108549) ((-1199 . -47) 108518) ((-250 . -130) T) ((-249 . -130) T) ((-1094 . -1090) T) ((-996 . -1090) T) ((-62 . -608) 108500) ((-1157 . -844) NIL) ((-1017 . -786) T) ((-1017 . -789) T) ((-1281 . -1048) 108487) ((-1281 . -111) 108472) ((-863 . -641) 108459) ((-1245 . -25) T) ((-1245 . -21) T) ((-1238 . -21) T) ((-1238 . -25) T) ((-1217 . -21) T) ((-1217 . -25) T) ((-1020 . -150) 108443) ((-865 . -814) 108422) ((-865 . -913) T) ((-706 . -285) 108349) ((-592 . -21) T) ((-592 . -25) T) ((-591 . -21) T) ((-40 . -720) T) ((-221 . -512) 108282) ((-591 . -25) T) ((-474 . -150) 108266) ((-461 . -150) 108250) ((-914 . -788) T) ((-914 . -720) T) ((-765 . -787) T) ((-765 . -788) T) ((-504 . -1090) T) ((-500 . -1090) T) ((-765 . -720) T) ((-224 . -362) T) ((-1146 . -1090) 108228) ((-864 . -1209) T) ((-647 . -608) 108210) ((-864 . -553) T) ((-687 . -367) NIL) ((-1281 . -611) 108192) ((-358 . -1260) 108176) ((-663 . -102) T) ((-352 . -1260) 108160) ((-344 . -1260) 108144) ((-1276 . -1090) T) ((-518 . -844) 108123) ((-811 . -450) 108102) ((-1039 . -1090) T) ((-1039 . -1062) 108031) ((-1020 . -969) 108000) ((-813 . -1102) T) ((-996 . -711) 107945) ((-385 . -1102) T) ((-474 . -969) 107914) ((-461 . -969) 107883) ((-110 . -150) 107865) ((-73 . -608) 107847) ((-886 . -608) 107829) ((-1070 . -718) 107808) ((-1281 . -1042) T) ((-810 . -634) 107756) ((-293 . -1049) 107698) ((-168 . -1209) 107603) ((-224 . -1102) T) ((-323 . -23) T) ((-1157 . -985) 107555) ((-837 . -1090) T) ((-1239 . -1048) 107460) ((-1116 . -734) 107439) ((-1237 . -913) 107418) ((-1216 . -913) 107397) ((-863 . -720) T) ((-168 . -553) 107308) ((-577 . -641) 107295) ((-561 . -641) 107282) ((-406 . -1090) T) ((-262 . -1090) T) ((-212 . -608) 107264) ((-493 . -641) 107229) ((-224 . -23) T) ((-1216 . -814) 107182) ((-1275 . -102) T) ((-353 . -1272) 107159) ((-1273 . -102) T) ((-1239 . -111) 107051) ((-143 . -608) 107033) ((-986 . -130) T) ((-44 . -102) T) ((-239 . -844) 106984) ((-1226 . -1209) 106963) ((-103 . -487) 106947) ((-1276 . -711) 106917) ((-1077 . -47) 106878) ((-1053 . -1102) T) ((-945 . -1102) T) ((-127 . -34) T) ((-121 . -34) T) ((-776 . -47) 106855) ((-774 . -47) 106827) ((-1226 . -553) 106738) ((-353 . -367) T) ((-479 . -1102) T) ((-1162 . -130) T) ((-1115 . -130) T) ((-452 . -47) 106717) ((-864 . -362) T) ((-848 . -130) T) ((-151 . -102) T) ((-1053 . -23) T) ((-945 . -23) T) ((-568 . -553) T) ((-810 . -25) T) ((-810 . -21) T) ((-1132 . -512) 106650) ((-588 . -1073) T) ((-582 . -1031) 106634) ((-1239 . -611) 106508) ((-479 . -23) T) ((-350 . -1049) T) ((-1199 . -893) 106489) ((-663 . -308) 106427) ((-1103 . -1260) 106397) ((-692 . -641) 106362) ((-996 . -171) T) ((-956 . -144) 106341) ((-630 . -1090) T) ((-602 . -1090) T) ((-956 . -146) 106320) ((-997 . -844) T) ((-729 . -146) 106299) ((-729 . -144) 106278) ((-964 . -844) T) ((-472 . -913) 106257) ((-315 . -1048) 106167) ((-312 . -1048) 106096) ((-992 . -285) 106054) ((-406 . -711) 106006) ((-694 . -842) T) ((-1239 . -1042) T) ((-315 . -111) 105902) ((-312 . -111) 105815) ((-957 . -102) T) ((-809 . -102) 105605) ((-706 . -609) NIL) ((-706 . -608) 105587) ((-651 . -1031) 105483) ((-1239 . -325) 105427) ((-1028 . -287) 105402) ((-577 . -720) T) ((-561 . -788) T) ((-168 . -362) 105353) ((-561 . -785) T) ((-561 . -720) T) ((-493 . -720) T) ((-1136 . -487) 105337) ((-1077 . -879) NIL) ((-864 . -1102) T) ((-117 . -902) NIL) ((-1275 . -1274) 105313) ((-1273 . -1274) 105292) ((-776 . -879) NIL) ((-774 . -879) 105151) ((-1268 . -25) T) ((-1268 . -21) T) ((-1202 . -102) 105129) ((-1096 . -394) T) ((-618 . -641) 105116) ((-452 . -879) NIL) ((-668 . -102) 105094) ((-1077 . -1031) 104921) ((-864 . -23) T) ((-776 . -1031) 104780) ((-774 . -1031) 104637) ((-117 . -641) 104582) ((-452 . -1031) 104458) ((-315 . -611) 104022) ((-312 . -611) 103905) ((-642 . -1031) 103889) ((-622 . -102) T) ((-221 . -487) 103873) ((-1253 . -34) T) ((-135 . -611) 103857) ((-630 . -711) 103841) ((-602 . -711) 103825) ((-663 . -38) 103785) ((-318 . -102) T) ((-85 . -608) 103767) ((-50 . -1031) 103751) ((-1110 . -1048) 103738) ((-1077 . -376) 103722) ((-776 . -376) 103706) ((-60 . -57) 103668) ((-692 . -788) T) ((-692 . -785) T) ((-578 . -1031) 103655) ((-516 . -1031) 103632) ((-692 . -720) T) ((-323 . -130) T) ((-315 . -1042) 103522) ((-312 . -1042) T) ((-168 . -1102) T) ((-774 . -376) 103506) ((-45 . -150) 103456) ((-997 . -985) 103438) ((-452 . -376) 103422) ((-406 . -171) T) ((-315 . -242) 103401) ((-312 . -242) T) ((-312 . -232) NIL) ((-293 . -1090) 103183) ((-224 . -130) T) ((-1110 . -111) 103168) ((-168 . -23) T) ((-793 . -146) 103147) ((-793 . -144) 103126) ((-250 . -634) 103032) ((-249 . -634) 102938) ((-318 . -283) 102904) ((-1146 . -512) 102837) ((-1123 . -1090) T) ((-224 . -1051) T) ((-809 . -308) 102775) ((-1077 . -893) 102710) ((-776 . -893) 102653) ((-774 . -893) 102637) ((-1275 . -38) 102607) ((-1273 . -38) 102577) ((-1226 . -1102) T) ((-849 . -1102) T) ((-452 . -893) 102554) ((-852 . -1090) T) ((-1226 . -23) T) ((-1110 . -611) 102526) ((-568 . -1102) T) ((-849 . -23) T) ((-618 . -720) T) ((-354 . -913) T) ((-351 . -913) T) ((-288 . -102) T) ((-343 . -913) T) ((-1053 . -130) T) ((-963 . -1073) T) ((-945 . -130) T) ((-117 . -788) NIL) ((-117 . -785) NIL) ((-117 . -720) T) ((-687 . -902) NIL) ((-1039 . -512) 102427) ((-479 . -130) T) ((-568 . -23) T) ((-668 . -308) 102365) ((-630 . -755) T) ((-602 . -755) T) ((-1217 . -844) NIL) ((-996 . -289) T) ((-250 . -21) T) ((-687 . -641) 102315) ((-350 . -1090) T) ((-250 . -25) T) ((-249 . -21) T) ((-249 . -25) T) ((-151 . -38) 102299) ((-2 . -102) T) ((-903 . -913) T) ((-480 . -1260) 102269) ((-222 . -1031) 102246) ((-1110 . -1042) T) ((-705 . -306) T) ((-293 . -711) 102188) ((-694 . -1049) T) ((-485 . -450) T) ((-406 . -512) 102100) ((-216 . -450) T) ((-1110 . -232) T) ((-294 . -150) 102050) ((-992 . -609) 102011) ((-992 . -608) 101993) ((-982 . -608) 101975) ((-116 . -1049) T) ((-647 . -1048) 101959) ((-224 . -491) T) ((-398 . -608) 101941) ((-398 . -609) 101918) ((-1046 . -1260) 101888) ((-647 . -111) 101867) ((-1132 . -487) 101851) ((-809 . -38) 101821) ((-63 . -439) T) ((-63 . -394) T) ((-1149 . -102) T) ((-864 . -130) T) ((-482 . -102) 101799) ((-1281 . -367) T) ((-1070 . -102) T) ((-1052 . -102) T) ((-350 . -711) 101744) ((-725 . -146) 101723) ((-725 . -144) 101702) ((-647 . -611) 101620) ((-1017 . -641) 101557) ((-521 . -1090) 101535) ((-358 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-108 . -102) T) ((-502 . -1090) T) ((-353 . -641) 101480) ((-1162 . -634) 101428) ((-1115 . -634) 101376) ((-384 . -507) 101355) ((-827 . -842) 101334) ((-378 . -1209) T) ((-687 . -720) T) ((-338 . -1049) T) ((-1217 . -985) 101286) ((-173 . -1049) T) ((-103 . -608) 101218) ((-1164 . -144) 101197) ((-1164 . -146) 101176) ((-378 . -553) T) ((-1163 . -146) 101155) ((-1163 . -144) 101134) ((-1157 . -144) 101041) ((-406 . -289) T) ((-1157 . -146) 100948) ((-1116 . -146) 100927) ((-1116 . -144) 100906) ((-318 . -38) 100747) ((-168 . -130) T) ((-312 . -789) NIL) ((-312 . -786) NIL) ((-647 . -1042) T) ((-48 . -641) 100712) ((-886 . -611) 100689) ((-1156 . -102) T) ((-987 . -102) T) ((-986 . -21) T) ((-127 . -1003) 100673) ((-121 . -1003) 100657) ((-986 . -25) T) ((-894 . -119) 100641) ((-1148 . -102) T) ((-810 . -844) 100620) ((-1226 . -130) T) ((-1162 . -25) T) ((-1162 . -21) T) ((-849 . -130) T) ((-1115 . -25) T) ((-1115 . -21) T) ((-848 . -25) T) ((-848 . -21) T) ((-776 . -306) 100599) ((-640 . -102) 100577) ((-627 . -102) T) ((-1149 . -308) 100372) ((-568 . -130) T) ((-616 . -842) 100351) ((-1146 . -487) 100335) ((-1140 . -150) 100285) ((-1136 . -608) 100247) ((-1136 . -609) 100208) ((-1017 . -785) T) ((-1017 . -788) T) ((-1017 . -720) T) ((-706 . -1048) 100031) ((-482 . -308) 99969) ((-451 . -416) 99939) ((-350 . -171) T) ((-288 . -38) 99926) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-268 . -102) T) ((-342 . -1031) 99903) ((-267 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-353 . -720) T) ((-706 . -111) 99712) ((-663 . -230) 99696) ((-578 . -306) T) ((-516 . -306) T) ((-293 . -512) 99645) ((-108 . -308) NIL) ((-72 . -394) T) ((-1103 . -102) 99435) ((-827 . -410) 99419) ((-1110 . -789) T) ((-1110 . -786) T) ((-694 . -1090) T) ((-575 . -608) 99401) ((-378 . -362) T) ((-168 . -491) 99379) ((-221 . -608) 99311) ((-133 . -1090) T) ((-116 . -1090) T) ((-48 . -720) T) ((-1039 . -487) 99276) ((-140 . -424) 99258) ((-140 . -367) T) ((-1020 . -102) T) ((-510 . -507) 99237) ((-706 . -611) 98993) ((-474 . -102) T) ((-461 . -102) T) ((-1027 . -1102) T) ((-1171 . -1031) 98928) ((-1164 . -35) 98894) ((-1164 . -95) 98860) ((-1164 . -1193) 98826) ((-1164 . -1190) 98792) ((-1148 . -308) NIL) ((-89 . -395) T) ((-89 . -394) T) ((-1070 . -1141) 98771) ((-1163 . -1190) 98737) ((-1163 . -1193) 98703) ((-1027 . -23) T) ((-1163 . -95) 98669) ((-568 . -491) T) ((-1163 . -35) 98635) ((-1157 . -1190) 98601) ((-1157 . -1193) 98567) ((-1157 . -95) 98533) ((-360 . -1102) T) ((-358 . -1141) 98512) ((-352 . -1141) 98491) ((-344 . -1141) 98470) ((-1157 . -35) 98436) ((-1116 . -35) 98402) ((-1116 . -95) 98368) ((-108 . -1141) T) ((-1116 . -1193) 98334) ((-827 . -1049) 98313) ((-640 . -308) 98251) ((-627 . -308) 98102) ((-1116 . -1190) 98068) ((-706 . -1042) T) ((-1053 . -634) 98050) ((-1070 . -38) 97918) ((-945 . -634) 97866) ((-997 . -146) T) ((-997 . -144) NIL) ((-378 . -1102) T) ((-323 . -25) T) ((-321 . -23) T) ((-936 . -844) 97845) ((-706 . -325) 97822) ((-479 . -634) 97770) ((-40 . -1031) 97658) ((-706 . -232) T) ((-694 . -711) 97645) ((-338 . -1090) T) ((-173 . -1090) T) ((-330 . -844) T) ((-417 . -450) 97595) ((-378 . -23) T) ((-358 . -38) 97560) ((-352 . -38) 97525) ((-344 . -38) 97490) ((-80 . -439) T) ((-80 . -394) T) ((-224 . -25) T) ((-224 . -21) T) ((-830 . -1102) T) ((-108 . -38) 97440) ((-821 . -1102) T) ((-768 . -1090) T) ((-116 . -711) 97427) ((-665 . -1031) 97411) ((-607 . -102) T) ((-830 . -23) T) ((-821 . -23) T) ((-1146 . -285) 97388) ((-1103 . -308) 97326) ((-1092 . -234) 97310) ((-64 . -395) T) ((-64 . -394) T) ((-110 . -102) T) ((-40 . -376) 97287) ((-96 . -102) T) ((-646 . -846) 97271) ((-1125 . -1073) T) ((-1053 . -21) T) ((-1053 . -25) T) ((-809 . -230) 97240) ((-945 . -25) T) ((-945 . -21) T) ((-616 . -1049) T) ((-1110 . -367) T) ((-479 . -25) T) ((-479 . -21) T) ((-1020 . -308) 97178) ((-882 . -608) 97160) ((-878 . -608) 97142) ((-250 . -844) 97093) ((-249 . -844) 97044) ((-521 . -512) 96977) ((-864 . -634) 96954) ((-474 . -308) 96892) ((-461 . -308) 96830) ((-350 . -289) T) ((-1146 . -1241) 96814) ((-1132 . -608) 96776) ((-1132 . -609) 96737) ((-1130 . -102) T) ((-992 . -1048) 96633) ((-40 . -893) 96585) ((-1146 . -599) 96562) ((-1281 . -641) 96549) ((-859 . -488) 96526) ((-1054 . -150) 96472) ((-865 . -1209) T) ((-992 . -111) 96354) ((-338 . -711) 96338) ((-859 . -608) 96300) ((-173 . -711) 96232) ((-406 . -285) 96190) ((-865 . -553) T) ((-108 . -399) 96172) ((-84 . -383) T) ((-84 . -394) T) ((-694 . -171) T) ((-612 . -608) 96154) ((-99 . -720) T) ((-480 . -102) 95944) ((-99 . -471) T) ((-116 . -171) T) ((-1103 . -38) 95914) ((-168 . -634) 95862) ((-1046 . -102) T) ((-992 . -611) 95752) ((-864 . -25) T) ((-809 . -237) 95731) ((-864 . -21) T) ((-812 . -102) T) ((-413 . -102) T) ((-384 . -102) T) ((-110 . -308) NIL) ((-226 . -102) 95709) ((-127 . -1205) T) ((-121 . -1205) T) ((-1027 . -130) T) ((-663 . -366) 95693) ((-992 . -1042) T) ((-1226 . -634) 95641) ((-1094 . -608) 95623) ((-996 . -608) 95605) ((-513 . -23) T) ((-508 . -23) T) ((-342 . -306) T) ((-506 . -23) T) ((-321 . -130) T) ((-3 . -1090) T) ((-996 . -609) 95589) ((-992 . -242) 95568) ((-992 . -232) 95547) ((-1281 . -720) T) ((-1245 . -144) 95526) ((-827 . -1090) T) ((-1245 . -146) 95505) ((-1238 . -146) 95484) ((-1238 . -144) 95463) ((-1237 . -1209) 95442) ((-1217 . -144) 95349) ((-1217 . -146) 95256) ((-1216 . -1209) 95235) ((-378 . -130) T) ((-561 . -879) 95217) ((0 . -1090) T) ((-173 . -171) T) ((-168 . -21) T) ((-168 . -25) T) ((-49 . -1090) T) ((-1239 . -641) 95122) ((-1237 . -553) 95073) ((-708 . -1102) T) ((-1216 . -553) 95024) ((-561 . -1031) 95006) ((-591 . -146) 94985) ((-591 . -144) 94964) ((-493 . -1031) 94907) ((-1125 . -1127) T) ((-87 . -383) T) ((-87 . -394) T) ((-865 . -362) T) ((-830 . -130) T) ((-821 . -130) T) ((-708 . -23) T) ((-504 . -608) 94873) ((-500 . -608) 94855) ((-1277 . -1049) T) ((-378 . -1051) T) ((-1019 . -1090) 94833) ((-55 . -1031) 94815) ((-894 . -34) T) ((-480 . -308) 94753) ((-588 . -102) T) ((-1146 . -609) 94714) ((-1146 . -608) 94646) ((-1162 . -844) 94625) ((-45 . -102) T) ((-1115 . -844) 94604) ((-811 . -102) T) ((-1226 . -25) T) ((-1226 . -21) T) ((-849 . -25) T) ((-44 . -366) 94588) ((-849 . -21) T) ((-725 . -450) 94539) ((-1276 . -608) 94521) ((-1046 . -308) 94459) ((-664 . -1073) T) ((-601 . -1073) T) ((-389 . -1090) T) ((-568 . -25) T) ((-568 . -21) T) ((-179 . -1073) T) ((-160 . -1073) T) ((-155 . -1073) T) ((-153 . -1073) T) ((-616 . -1090) T) ((-692 . -879) 94441) ((-1253 . -1205) T) ((-226 . -308) 94379) ((-143 . -367) T) ((-1039 . -609) 94321) ((-1039 . -608) 94264) ((-312 . -902) NIL) ((-692 . -1031) 94209) ((-705 . -913) T) ((-472 . -1209) 94188) ((-1163 . -450) 94167) ((-1157 . -450) 94146) ((-329 . -102) T) ((-865 . -1102) T) ((-315 . -641) 93967) ((-312 . -641) 93896) ((-472 . -553) 93847) ((-338 . -512) 93813) ((-547 . -150) 93763) ((-40 . -306) T) ((-837 . -608) 93745) ((-694 . -289) T) ((-865 . -23) T) ((-378 . -491) T) ((-1070 . -230) 93715) ((-510 . -102) T) ((-406 . -609) 93522) ((-406 . -608) 93504) ((-262 . -608) 93486) ((-116 . -289) T) ((-1239 . -720) T) ((-1237 . -362) 93465) ((-1216 . -362) 93444) ((-1266 . -34) T) ((-117 . -1205) T) ((-108 . -230) 93426) ((-1168 . -102) T) ((-475 . -1090) T) ((-521 . -487) 93410) ((-731 . -34) T) ((-480 . -38) 93380) ((-140 . -34) T) ((-117 . -877) 93357) ((-117 . -879) NIL) ((-618 . -1031) 93240) ((-638 . -844) 93219) ((-1265 . -102) T) ((-294 . -102) T) ((-706 . -367) 93198) ((-117 . -1031) 93175) ((-389 . -711) 93159) ((-616 . -711) 93143) ((-45 . -308) 92947) ((-810 . -144) 92926) ((-810 . -146) 92905) ((-1276 . -381) 92884) ((-813 . -844) T) ((-1255 . -1090) T) ((-1149 . -228) 92831) ((-385 . -844) 92810) ((-1245 . -1193) 92776) ((-1245 . -1190) 92742) ((-1238 . -1190) 92708) ((-513 . -130) T) ((-1238 . -1193) 92674) ((-1217 . -1190) 92640) ((-1217 . -1193) 92606) ((-1245 . -35) 92572) ((-1245 . -95) 92538) ((-630 . -608) 92507) ((-602 . -608) 92476) ((-224 . -844) T) ((-1238 . -95) 92442) ((-1238 . -35) 92408) ((-1237 . -1102) T) ((-1110 . -641) 92395) ((-1217 . -95) 92361) ((-1216 . -1102) T) ((-589 . -150) 92343) ((-1070 . -348) 92322) ((-173 . -289) T) ((-117 . -376) 92299) ((-117 . -337) 92276) ((-1217 . -35) 92242) ((-863 . -306) T) ((-312 . -788) NIL) ((-312 . -785) NIL) ((-315 . -720) 92091) ((-312 . -720) T) ((-472 . -362) 92070) ((-358 . -348) 92049) ((-352 . -348) 92028) ((-344 . -348) 92007) ((-315 . -471) 91986) ((-1237 . -23) T) ((-1216 . -23) T) ((-712 . -1102) T) ((-708 . -130) T) ((-646 . -102) T) ((-475 . -711) 91951) ((-45 . -281) 91901) ((-105 . -1090) T) ((-68 . -608) 91883) ((-963 . -102) T) ((-858 . -102) T) ((-618 . -893) 91842) ((-1277 . -1090) T) ((-380 . -1090) T) ((-1204 . -1090) T) ((-1103 . -230) 91811) ((-82 . -1205) T) ((-1053 . -844) T) ((-945 . -844) 91790) ((-117 . -893) NIL) ((-776 . -913) 91769) ((-707 . -844) T) ((-529 . -1090) T) ((-498 . -1090) T) ((-354 . -1209) T) ((-351 . -1209) T) ((-343 . -1209) T) ((-263 . -1209) 91748) ((-246 . -1209) 91727) ((-531 . -854) T) ((-479 . -844) 91706) ((-1148 . -822) T) ((-1132 . -1048) 91690) ((-389 . -755) T) ((-687 . -1205) T) ((-684 . -1031) 91674) ((-354 . -553) T) ((-351 . -553) T) ((-343 . -553) T) ((-263 . -553) 91605) ((-246 . -553) 91536) ((-523 . -1073) T) ((-1132 . -111) 91515) ((-451 . -738) 91485) ((-859 . -1048) 91455) ((-811 . -38) 91397) ((-687 . -877) 91379) ((-687 . -879) 91361) ((-294 . -308) 91165) ((-903 . -1209) T) ((-663 . -410) 91149) ((-859 . -111) 91114) ((-687 . -1031) 91059) ((-997 . -450) T) ((-903 . -553) T) ((-531 . -608) 91041) ((-578 . -913) T) ((-472 . -1102) T) ((-516 . -913) T) ((-1146 . -287) 91018) ((-907 . -450) T) ((-65 . -608) 91000) ((-627 . -228) 90946) ((-472 . -23) T) ((-1110 . -788) T) ((-865 . -130) T) ((-1110 . -785) T) ((-1268 . -1270) 90925) ((-1110 . -720) T) ((-647 . -641) 90899) ((-293 . -608) 90640) ((-1132 . -611) 90558) ((-1028 . -34) T) ((-809 . -842) 90537) ((-577 . -306) T) ((-561 . -306) T) ((-493 . -306) T) ((-1277 . -711) 90507) ((-687 . -376) 90489) ((-687 . -337) 90471) ((-475 . -171) T) ((-380 . -711) 90441) ((-859 . -611) 90376) ((-864 . -844) NIL) ((-561 . -1015) T) ((-493 . -1015) T) ((-1123 . -608) 90358) ((-1103 . -237) 90337) ((-213 . -102) T) ((-1140 . -102) T) ((-71 . -608) 90319) ((-1132 . -1042) T) ((-1168 . -38) 90216) ((-852 . -608) 90198) ((-561 . -543) T) ((-663 . -1049) T) ((-725 . -942) 90151) ((-1132 . -232) 90130) ((-1072 . -1090) T) ((-1027 . -25) T) ((-1027 . -21) T) ((-996 . -1048) 90075) ((-898 . -102) T) ((-859 . -1042) T) ((-687 . -893) NIL) ((-354 . -328) 90059) ((-354 . -362) T) ((-351 . -328) 90043) ((-351 . -362) T) ((-343 . -328) 90027) ((-343 . -362) T) ((-485 . -102) T) ((-1265 . -38) 89997) ((-544 . -844) T) ((-521 . -680) 89947) ((-216 . -102) T) ((-1017 . -1031) 89827) ((-996 . -111) 89756) ((-1164 . -966) 89725) ((-1163 . -966) 89687) ((-518 . -150) 89671) ((-1070 . -369) 89650) ((-350 . -608) 89632) ((-321 . -21) T) ((-353 . -1031) 89609) ((-321 . -25) T) ((-1157 . -966) 89578) ((-1116 . -966) 89545) ((-76 . -608) 89527) ((-692 . -306) T) ((-168 . -844) 89506) ((-129 . -838) T) ((-903 . -362) T) ((-378 . -25) T) ((-378 . -21) T) ((-903 . -328) 89493) ((-86 . -608) 89475) ((-692 . -1015) T) ((-670 . -844) T) ((-1237 . -130) T) ((-1216 . -130) T) ((-894 . -1003) 89459) ((-830 . -21) T) ((-48 . -1031) 89402) ((-830 . -25) T) ((-821 . -25) T) ((-821 . -21) T) ((-1275 . -1049) T) ((-546 . -102) T) ((-1273 . -1049) T) ((-647 . -720) T) ((-1094 . -613) 89305) ((-996 . -611) 89235) ((-1276 . -1048) 89219) ((-1226 . -844) 89198) ((-809 . -410) 89167) ((-103 . -119) 89151) ((-129 . -1090) T) ((-52 . -1090) T) ((-919 . -608) 89133) ((-864 . -985) 89110) ((-817 . -102) T) ((-1276 . -111) 89089) ((-646 . -38) 89059) ((-568 . -844) T) ((-354 . -1102) T) ((-351 . -1102) T) ((-343 . -1102) T) ((-263 . -1102) T) ((-246 . -1102) T) ((-618 . -306) 89038) ((-1140 . -308) 88842) ((-522 . -1073) T) ((-310 . -1090) T) ((-657 . -23) T) ((-480 . -230) 88811) ((-151 . -1049) T) ((-354 . -23) T) ((-351 . -23) T) ((-343 . -23) T) ((-117 . -306) T) ((-263 . -23) T) ((-246 . -23) T) ((-996 . -1042) T) ((-706 . -902) 88790) ((-1146 . -611) 88767) ((-996 . -232) 88739) ((-996 . -242) T) ((-117 . -1015) NIL) ((-903 . -1102) T) ((-1238 . -450) 88718) ((-1217 . -450) 88697) ((-521 . -608) 88629) ((-706 . -641) 88554) ((-406 . -1048) 88506) ((-502 . -608) 88488) ((-903 . -23) T) ((-485 . -308) NIL) ((-1276 . -611) 88444) ((-472 . -130) T) ((-216 . -308) NIL) ((-406 . -111) 88382) ((-809 . -1049) 88312) ((-731 . -1088) 88296) ((-1237 . -491) 88262) ((-1216 . -491) 88228) ((-140 . -1088) 88210) ((-475 . -289) T) ((-1276 . -1042) T) ((-1210 . -102) T) ((-1054 . -102) T) ((-837 . -611) 88078) ((-498 . -512) NIL) ((-696 . -102) T) ((-480 . -237) 88057) ((-406 . -611) 87955) ((-1162 . -144) 87934) ((-1162 . -146) 87913) ((-1115 . -146) 87892) ((-1115 . -144) 87871) ((-630 . -1048) 87855) ((-602 . -1048) 87839) ((-663 . -1090) T) ((-663 . -1045) 87779) ((-1164 . -1244) 87763) ((-1164 . -1231) 87740) ((-485 . -1141) T) ((-1163 . -1236) 87701) ((-1163 . -1231) 87671) ((-1163 . -1234) 87655) ((-216 . -1141) T) ((-342 . -913) T) ((-812 . -265) 87639) ((-630 . -111) 87618) ((-602 . -111) 87597) ((-1157 . -1215) 87558) ((-837 . -1042) 87537) ((-1157 . -1231) 87514) ((-513 . -25) T) ((-493 . -301) T) ((-509 . -23) T) ((-508 . -25) T) ((-506 . -25) T) ((-505 . -23) T) ((-1157 . -1213) 87498) ((-406 . -1042) T) ((-318 . -1049) T) ((-687 . -306) T) ((-108 . -842) T) ((-706 . -720) T) ((-406 . -242) T) ((-406 . -232) 87477) ((-485 . -38) 87427) ((-216 . -38) 87377) ((-472 . -491) 87343) ((-1148 . -1134) T) ((-1091 . -102) T) ((-694 . -608) 87325) ((-694 . -609) 87240) ((-708 . -21) T) ((-708 . -25) T) ((-1125 . -102) T) ((-133 . -608) 87222) ((-116 . -608) 87204) ((-156 . -25) T) ((-1275 . -1090) T) ((-865 . -634) 87152) ((-1273 . -1090) T) ((-956 . -102) T) ((-729 . -102) T) ((-709 . -102) T) ((-451 . -102) T) ((-810 . -450) 87103) ((-44 . -1090) T) ((-1078 . -844) T) ((-657 . -130) T) ((-1054 . -308) 86954) ((-663 . -711) 86938) ((-288 . -1049) T) ((-354 . -130) T) ((-351 . -130) T) ((-343 . -130) T) ((-263 . -130) T) ((-246 . -130) T) ((-417 . -102) T) ((-151 . -1090) T) ((-45 . -228) 86888) ((-951 . -844) 86867) ((-992 . -641) 86805) ((-239 . -1260) 86775) ((-1017 . -306) T) ((-293 . -1048) 86696) ((-903 . -130) T) ((-40 . -913) T) ((-485 . -399) 86678) ((-353 . -306) T) ((-216 . -399) 86660) ((-1070 . -410) 86644) ((-293 . -111) 86560) ((-1173 . -844) T) ((-1172 . -844) T) ((-865 . -25) T) ((-865 . -21) T) ((-338 . -608) 86542) ((-1239 . -47) 86486) ((-224 . -146) T) ((-173 . -608) 86468) ((-1103 . -842) 86447) ((-768 . -608) 86429) ((-128 . -844) T) ((-603 . -234) 86376) ((-473 . -234) 86326) ((-1275 . -711) 86296) ((-48 . -306) T) ((-1273 . -711) 86266) ((-65 . -611) 86195) ((-957 . -1090) T) ((-809 . -1090) 85985) ((-311 . -102) T) ((-894 . -1205) T) ((-48 . -1015) T) ((-1216 . -634) 85893) ((-682 . -102) 85871) ((-44 . -711) 85855) ((-547 . -102) T) ((-293 . -611) 85786) ((-67 . -382) T) ((-67 . -394) T) ((-655 . -23) T) ((-663 . -755) T) ((-1202 . -1090) 85764) ((-350 . -1048) 85709) ((-668 . -1090) 85687) ((-1053 . -146) T) ((-945 . -146) 85666) ((-945 . -144) 85645) ((-793 . -102) T) ((-151 . -711) 85629) ((-479 . -146) 85608) ((-479 . -144) 85587) ((-350 . -111) 85516) ((-1070 . -1049) T) ((-321 . -844) 85495) ((-1245 . -966) 85464) ((-622 . -1090) T) ((-1238 . -966) 85426) ((-509 . -130) T) ((-505 . -130) T) ((-294 . -228) 85376) ((-358 . -1049) T) ((-352 . -1049) T) ((-344 . -1049) T) ((-293 . -1042) 85318) ((-1217 . -966) 85287) ((-378 . -844) T) ((-108 . -1049) T) ((-992 . -720) T) ((-863 . -913) T) ((-837 . -789) 85266) ((-837 . -786) 85245) ((-417 . -308) 85184) ((-466 . -102) T) ((-591 . -966) 85153) ((-318 . -1090) T) ((-406 . -789) 85132) ((-406 . -786) 85111) ((-498 . -487) 85093) ((-1239 . -1031) 85059) ((-1237 . -21) T) ((-1237 . -25) T) ((-1216 . -21) T) ((-1216 . -25) T) ((-809 . -711) 85001) ((-350 . -611) 84931) ((-692 . -403) T) ((-1266 . -1205) T) ((-601 . -102) T) ((-1103 . -410) 84900) ((-996 . -367) NIL) ((-664 . -102) T) ((-179 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-153 . -102) T) ((-103 . -34) T) ((-731 . -1205) T) ((-44 . -755) T) ((-589 . -102) T) ((-77 . -395) T) ((-77 . -394) T) ((-646 . -649) 84884) ((-140 . -1205) T) ((-864 . -146) T) ((-864 . -144) NIL) ((-1204 . -93) T) ((-350 . -1042) T) ((-70 . -382) T) ((-70 . -394) T) ((-1155 . -102) T) ((-663 . -512) 84817) ((-682 . -308) 84755) ((-956 . -38) 84652) ((-729 . -38) 84622) ((-547 . -308) 84426) ((-315 . -1205) T) ((-350 . -232) T) ((-350 . -242) T) ((-312 . -1205) T) ((-288 . -1090) T) ((-1170 . -608) 84408) ((-705 . -1209) T) ((-1146 . -644) 84392) ((-1199 . -553) 84371) ((-705 . -553) T) ((-315 . -877) 84355) ((-315 . -879) 84280) ((-312 . -877) 84241) ((-312 . -879) NIL) ((-793 . -308) 84206) ((-318 . -711) 84047) ((-323 . -322) 84024) ((-483 . -102) T) ((-472 . -25) T) ((-472 . -21) T) ((-417 . -38) 83998) ((-315 . -1031) 83661) ((-224 . -1190) T) ((-224 . -1193) T) ((-3 . -608) 83643) ((-312 . -1031) 83573) ((-2 . -1090) T) ((-2 . |RecordCategory|) T) ((-827 . -608) 83555) ((-1103 . -1049) 83485) ((-577 . -913) T) ((-561 . -814) T) ((-561 . -913) T) ((-493 . -913) T) ((-135 . -1031) 83469) ((-224 . -95) T) ((-75 . -439) T) ((-75 . -394) T) ((0 . -608) 83451) ((-168 . -146) 83430) ((-168 . -144) 83381) ((-224 . -35) T) ((-49 . -608) 83363) ((-475 . -1049) T) ((-485 . -230) 83345) ((-482 . -961) 83329) ((-480 . -842) 83308) ((-216 . -230) 83290) ((-81 . -439) T) ((-81 . -394) T) ((-1136 . -34) T) ((-809 . -171) 83269) ((-725 . -102) T) ((-1019 . -608) 83236) ((-498 . -285) 83211) ((-315 . -376) 83180) ((-312 . -376) 83141) ((-312 . -337) 83102) ((-1075 . -608) 83084) ((-810 . -942) 83031) ((-655 . -130) T) ((-1226 . -144) 83010) ((-1226 . -146) 82989) ((-1164 . -102) T) ((-1163 . -102) T) ((-1157 . -102) T) ((-1149 . -1090) T) ((-1116 . -102) T) ((-221 . -34) T) ((-288 . -711) 82976) ((-1149 . -605) 82952) ((-589 . -308) NIL) ((-482 . -1090) 82930) ((-389 . -608) 82912) ((-508 . -844) T) ((-1140 . -228) 82862) ((-1245 . -1244) 82846) ((-1245 . -1231) 82823) ((-1238 . -1236) 82784) ((-1238 . -1231) 82754) ((-1238 . -1234) 82738) ((-1217 . -1215) 82699) ((-1217 . -1231) 82676) ((-616 . -608) 82658) ((-1217 . -1213) 82642) ((-692 . -913) T) ((-1164 . -283) 82608) ((-1163 . -283) 82574) ((-1157 . -283) 82540) ((-1070 . -1090) T) ((-1052 . -1090) T) ((-48 . -301) T) ((-315 . -893) 82506) ((-312 . -893) NIL) ((-1052 . -1059) 82485) ((-1110 . -879) 82467) ((-793 . -38) 82451) ((-263 . -634) 82399) ((-246 . -634) 82347) ((-694 . -1048) 82334) ((-591 . -1231) 82311) ((-1116 . -283) 82277) ((-318 . -171) 82208) ((-358 . -1090) T) ((-352 . -1090) T) ((-344 . -1090) T) ((-498 . -19) 82190) ((-1110 . -1031) 82172) ((-1092 . -150) 82156) ((-108 . -1090) T) ((-116 . -1048) 82143) ((-705 . -362) T) ((-498 . -599) 82118) ((-694 . -111) 82103) ((-435 . -102) T) ((-45 . -1139) 82053) ((-116 . -111) 82038) ((-630 . -714) T) ((-602 . -714) T) ((-809 . -512) 81971) ((-1028 . -1205) T) ((-936 . -150) 81955) ((-1162 . -450) 81886) ((-1156 . -1090) T) ((-1148 . -1090) T) ((-523 . -102) T) ((-518 . -102) 81836) ((-1132 . -641) 81810) ((-1115 . -450) 81761) ((-1077 . -1209) 81740) ((-776 . -1209) 81719) ((-774 . -1209) 81698) ((-62 . -1205) T) ((-475 . -608) 81650) ((-475 . -609) 81572) ((-1077 . -553) 81503) ((-987 . -1090) T) ((-776 . -553) 81414) ((-774 . -553) 81345) ((-480 . -410) 81314) ((-618 . -913) 81293) ((-452 . -1209) 81272) ((-725 . -308) 81259) ((-694 . -611) 81231) ((-397 . -608) 81213) ((-668 . -512) 81146) ((-657 . -25) T) ((-657 . -21) T) ((-452 . -553) 81077) ((-354 . -25) T) ((-354 . -21) T) ((-117 . -913) T) ((-117 . -814) NIL) ((-351 . -25) T) ((-351 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-263 . -25) T) ((-263 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-83 . -383) T) ((-83 . -394) T) ((-133 . -611) 81059) ((-116 . -611) 81031) ((-1255 . -608) 81013) ((-1211 . -844) T) ((-1199 . -1102) T) ((-1199 . -23) T) ((-1157 . -308) 80898) ((-1116 . -308) 80885) ((-1070 . -711) 80753) ((-859 . -641) 80713) ((-936 . -973) 80697) ((-903 . -21) T) ((-288 . -171) T) ((-903 . -25) T) ((-310 . -93) T) ((-865 . -844) 80648) ((-705 . -1102) T) ((-705 . -23) T) ((-694 . -1042) T) ((-640 . -1090) 80626) ((-627 . -1090) T) ((-578 . -1209) T) ((-516 . -1209) T) ((-694 . -232) T) ((-627 . -605) 80601) ((-578 . -553) T) ((-516 . -553) T) ((-358 . -711) 80553) ((-338 . -1048) 80537) ((-352 . -711) 80489) ((-344 . -711) 80441) ((-173 . -1048) 80373) ((-173 . -111) 80284) ((-108 . -711) 80234) ((-338 . -111) 80213) ((-273 . -1090) T) ((-272 . -1090) T) ((-271 . -1090) T) ((-270 . -1090) T) ((-269 . -1090) T) ((-268 . -1090) T) ((-267 . -1090) T) ((-211 . -1090) T) ((-210 . -1090) T) ((-168 . -1193) 80191) ((-168 . -1190) 80169) ((-208 . -1090) T) ((-207 . -1090) T) ((-116 . -1042) T) ((-206 . -1090) T) ((-205 . -1090) T) ((-202 . -1090) T) ((-201 . -1090) T) ((-200 . -1090) T) ((-199 . -1090) T) ((-198 . -1090) T) ((-197 . -1090) T) ((-196 . -1090) T) ((-195 . -1090) T) ((-194 . -1090) T) ((-193 . -1090) T) ((-192 . -1090) T) ((-239 . -102) 79959) ((-168 . -35) 79937) ((-168 . -95) 79915) ((-647 . -1031) 79811) ((-480 . -1049) 79741) ((-1103 . -1090) 79531) ((-1132 . -34) T) ((-663 . -487) 79515) ((-73 . -1205) T) ((-105 . -608) 79497) ((-1277 . -608) 79479) ((-380 . -608) 79461) ((-338 . -611) 79413) ((-173 . -611) 79330) ((-1204 . -488) 79311) ((-725 . -38) 79160) ((-568 . -1193) T) ((-568 . -1190) T) ((-529 . -608) 79142) ((-518 . -308) 79080) ((-498 . -608) 79062) ((-498 . -609) 79044) ((-1204 . -608) 79010) ((-1157 . -1141) NIL) ((-1020 . -1062) 78979) ((-1020 . -1090) T) ((-997 . -102) T) ((-964 . -102) T) ((-907 . -102) T) ((-886 . -1031) 78956) ((-1132 . -720) T) ((-996 . -641) 78901) ((-474 . -1090) T) ((-461 . -1090) T) ((-582 . -23) T) ((-568 . -35) T) ((-568 . -95) T) ((-426 . -102) T) ((-1054 . -228) 78847) ((-1164 . -38) 78744) ((-859 . -720) T) ((-687 . -913) T) ((-509 . -25) T) ((-505 . -21) T) ((-505 . -25) T) ((-1163 . -38) 78585) ((-338 . -1042) T) ((-1157 . -38) 78381) ((-1070 . -171) T) ((-173 . -1042) T) ((-1116 . -38) 78278) ((-706 . -47) 78255) ((-358 . -171) T) ((-352 . -171) T) ((-517 . -57) 78229) ((-495 . -57) 78179) ((-350 . -1272) 78156) ((-224 . -450) T) ((-318 . -289) 78107) ((-344 . -171) T) ((-173 . -242) T) ((-1216 . -844) 78006) ((-108 . -171) T) ((-865 . -985) 77990) ((-651 . -1102) T) ((-578 . -362) T) ((-578 . -328) 77977) ((-516 . -328) 77954) ((-516 . -362) T) ((-315 . -306) 77933) ((-312 . -306) T) ((-597 . -844) 77912) ((-1103 . -711) 77854) ((-518 . -281) 77838) ((-651 . -23) T) ((-417 . -230) 77822) ((-312 . -1015) NIL) ((-335 . -23) T) ((-103 . -1003) 77806) ((-45 . -36) 77785) ((-607 . -1090) T) ((-350 . -367) T) ((-522 . -102) T) ((-493 . -27) T) ((-239 . -308) 77723) ((-1077 . -1102) T) ((-1276 . -641) 77697) ((-776 . -1102) T) ((-774 . -1102) T) ((-452 . -1102) T) ((-1053 . -450) T) ((-945 . -450) 77648) ((-1105 . -1073) T) ((-110 . -1090) T) ((-1077 . -23) T) ((-811 . -1049) T) ((-776 . -23) T) ((-774 . -23) T) ((-479 . -450) 77599) ((-1149 . -512) 77382) ((-380 . -381) 77361) ((-1168 . -410) 77345) ((-459 . -23) T) ((-452 . -23) T) ((-96 . -1090) T) ((-482 . -512) 77278) ((-288 . -289) T) ((-1072 . -608) 77260) ((-1072 . -609) 77241) ((-406 . -902) 77220) ((-50 . -1102) T) ((-1017 . -913) T) ((-996 . -720) T) ((-706 . -879) NIL) ((-578 . -1102) T) ((-516 . -1102) T) ((-837 . -641) 77193) ((-1199 . -130) T) ((-1157 . -399) 77145) ((-997 . -308) NIL) ((-809 . -487) 77129) ((-353 . -913) T) ((-1146 . -34) T) ((-406 . -641) 77081) ((-50 . -23) T) ((-705 . -130) T) ((-706 . -1031) 76961) ((-578 . -23) T) ((-108 . -512) NIL) ((-516 . -23) T) ((-168 . -408) 76932) ((-1130 . -1090) T) ((-1268 . -1267) 76916) ((-694 . -789) T) ((-694 . -786) T) ((-1110 . -306) T) ((-378 . -146) T) ((-279 . -608) 76898) ((-1216 . -985) 76868) ((-48 . -913) T) ((-668 . -487) 76852) ((-250 . -1260) 76822) ((-249 . -1260) 76792) ((-1166 . -844) T) ((-1103 . -171) 76771) ((-1110 . -1015) T) ((-1039 . -34) T) ((-830 . -146) 76750) ((-830 . -144) 76729) ((-731 . -107) 76713) ((-607 . -131) T) ((-480 . -1090) 76503) ((-1168 . -1049) T) ((-864 . -450) T) ((-85 . -1205) T) ((-239 . -38) 76473) ((-140 . -107) 76455) ((-706 . -376) 76439) ((-827 . -611) 76307) ((-1110 . -543) T) ((-576 . -102) T) ((-129 . -488) 76289) ((-389 . -1048) 76273) ((-1276 . -720) T) ((-1162 . -942) 76242) ((-129 . -608) 76209) ((-52 . -608) 76191) ((-1115 . -942) 76158) ((-646 . -410) 76142) ((-1265 . -1049) T) ((-616 . -1048) 76126) ((-655 . -25) T) ((-655 . -21) T) ((-1148 . -512) NIL) ((-1245 . -102) T) ((-1238 . -102) T) ((-389 . -111) 76105) ((-221 . -253) 76089) ((-1217 . -102) T) ((-1046 . -1090) T) ((-997 . -1141) T) ((-1046 . -1045) 76029) ((-812 . -1090) T) ((-342 . -1209) T) ((-630 . -641) 76013) ((-616 . -111) 75992) ((-602 . -641) 75976) ((-592 . -102) T) ((-310 . -488) 75957) ((-582 . -130) T) ((-591 . -102) T) ((-413 . -1090) T) ((-384 . -1090) T) ((-310 . -608) 75923) ((-226 . -1090) 75901) ((-640 . -512) 75834) ((-627 . -512) 75678) ((-827 . -1042) 75657) ((-638 . -150) 75641) ((-342 . -553) T) ((-706 . -893) 75584) ((-547 . -228) 75534) ((-1245 . -283) 75500) ((-1070 . -289) 75451) ((-485 . -842) T) ((-222 . -1102) T) ((-1238 . -283) 75417) ((-1217 . -283) 75383) ((-997 . -38) 75333) ((-216 . -842) T) ((-1199 . -491) 75299) ((-907 . -38) 75251) ((-837 . -788) 75230) ((-837 . -785) 75209) ((-837 . -720) 75188) ((-358 . -289) T) ((-352 . -289) T) ((-344 . -289) T) ((-168 . -450) 75119) ((-426 . -38) 75103) ((-108 . -289) T) ((-222 . -23) T) ((-406 . -788) 75082) ((-406 . -785) 75061) ((-406 . -720) T) ((-498 . -287) 75036) ((-475 . -1048) 75001) ((-651 . -130) T) ((-616 . -611) 74970) ((-1103 . -512) 74903) ((-335 . -130) T) ((-168 . -401) 74882) ((-480 . -711) 74824) ((-809 . -285) 74801) ((-475 . -111) 74757) ((-646 . -1049) T) ((-1226 . -450) 74688) ((-1264 . -1073) T) ((-1263 . -1073) T) ((-1077 . -130) T) ((-1046 . -711) 74630) ((-263 . -844) 74609) ((-246 . -844) 74588) ((-776 . -130) T) ((-774 . -130) T) ((-568 . -450) T) ((-1020 . -512) 74521) ((-616 . -1042) T) ((-588 . -1090) T) ((-531 . -172) T) ((-459 . -130) T) ((-452 . -130) T) ((-45 . -1090) T) ((-384 . -711) 74491) ((-811 . -1090) T) ((-474 . -512) 74424) ((-461 . -512) 74357) ((-451 . -366) 74327) ((-45 . -605) 74306) ((-315 . -301) T) ((-475 . -611) 74256) ((-663 . -608) 74218) ((-59 . -844) 74197) ((-1217 . -308) 74082) ((-997 . -399) 74064) ((-809 . -599) 74041) ((-514 . -844) 74020) ((-494 . -844) 73999) ((-40 . -1209) T) ((-992 . -1031) 73895) ((-50 . -130) T) ((-578 . -130) T) ((-516 . -130) T) ((-293 . -641) 73755) ((-342 . -328) 73732) ((-342 . -362) T) ((-321 . -322) 73709) ((-318 . -285) 73694) ((-40 . -553) T) ((-378 . -1190) T) ((-378 . -1193) T) ((-1028 . -1181) 73669) ((-1178 . -234) 73619) ((-1157 . -230) 73571) ((-329 . -1090) T) ((-378 . -95) T) ((-378 . -35) T) ((-1028 . -107) 73517) ((-475 . -1042) T) ((-477 . -234) 73467) ((-1149 . -487) 73401) ((-1277 . -1048) 73385) ((-380 . -1048) 73369) ((-475 . -242) T) ((-810 . -102) T) ((-708 . -146) 73348) ((-708 . -144) 73327) ((-482 . -487) 73311) ((-483 . -334) 73280) ((-1277 . -111) 73259) ((-510 . -1090) T) ((-480 . -171) 73238) ((-992 . -376) 73222) ((-412 . -102) T) ((-380 . -111) 73201) ((-992 . -337) 73185) ((-278 . -976) 73169) ((-277 . -976) 73153) ((-1275 . -608) 73135) ((-1273 . -608) 73117) ((-110 . -512) NIL) ((-1162 . -1229) 73101) ((-848 . -846) 73085) ((-1168 . -1090) T) ((-103 . -1205) T) ((-945 . -942) 73046) ((-811 . -711) 72988) ((-1217 . -1141) NIL) ((-479 . -942) 72933) ((-1053 . -142) T) ((-60 . -102) 72911) ((-44 . -608) 72893) ((-78 . -608) 72875) ((-350 . -641) 72820) ((-1265 . -1090) T) ((-509 . -844) T) ((-342 . -1102) T) ((-294 . -1090) T) ((-992 . -893) 72779) ((-294 . -605) 72758) ((-1277 . -611) 72707) ((-1245 . -38) 72604) ((-1238 . -38) 72445) ((-1217 . -38) 72241) ((-485 . -1049) T) ((-380 . -611) 72225) ((-216 . -1049) T) ((-342 . -23) T) ((-151 . -608) 72207) ((-827 . -789) 72186) ((-827 . -786) 72165) ((-1204 . -611) 72146) ((-592 . -38) 72119) ((-591 . -38) 72016) ((-863 . -553) T) ((-222 . -130) T) ((-318 . -995) 71982) ((-79 . -608) 71964) ((-706 . -306) 71943) ((-293 . -720) 71845) ((-818 . -102) T) ((-858 . -838) T) ((-293 . -471) 71824) ((-1268 . -102) T) ((-40 . -362) T) ((-865 . -146) 71803) ((-865 . -144) 71782) ((-1148 . -487) 71764) ((-1277 . -1042) T) ((-480 . -512) 71697) ((-1136 . -1205) T) ((-957 . -608) 71679) ((-640 . -487) 71663) ((-627 . -487) 71594) ((-809 . -608) 71325) ((-48 . -27) T) ((-1168 . -711) 71222) ((-646 . -1090) T) ((-855 . -854) T) ((-435 . -363) 71196) ((-1092 . -102) T) ((-963 . -1090) T) ((-858 . -1090) T) ((-810 . -308) 71183) ((-531 . -525) T) ((-531 . -573) T) ((-1273 . -381) 71155) ((-1046 . -512) 71088) ((-1149 . -285) 71064) ((-239 . -230) 71033) ((-1265 . -711) 71003) ((-1156 . -93) T) ((-987 . -93) T) ((-811 . -171) 70982) ((-1202 . -488) 70959) ((-226 . -512) 70892) ((-616 . -789) 70871) ((-616 . -786) 70850) ((-1202 . -608) 70762) ((-221 . -1205) T) ((-668 . -608) 70694) ((-1146 . -1003) 70678) ((-936 . -102) 70628) ((-350 . -720) T) ((-855 . -608) 70610) ((-1217 . -399) 70562) ((-1103 . -487) 70546) ((-60 . -308) 70484) ((-330 . -102) T) ((-1199 . -21) T) ((-1199 . -25) T) ((-40 . -1102) T) ((-705 . -21) T) ((-622 . -608) 70466) ((-513 . -322) 70445) ((-705 . -25) T) ((-108 . -285) NIL) ((-914 . -1102) T) ((-40 . -23) T) ((-765 . -1102) T) ((-561 . -1209) T) ((-493 . -1209) T) ((-318 . -608) 70427) ((-997 . -230) 70409) ((-168 . -165) 70393) ((-577 . -553) T) ((-561 . -553) T) ((-493 . -553) T) ((-765 . -23) T) ((-1237 . -146) 70372) ((-1149 . -599) 70348) ((-1237 . -144) 70327) ((-1020 . -487) 70311) ((-1216 . -144) 70236) ((-1216 . -146) 70161) ((-1268 . -1274) 70140) ((-474 . -487) 70124) ((-461 . -487) 70108) ((-521 . -34) T) ((-646 . -711) 70078) ((-112 . -960) T) ((-655 . -844) 70057) ((-1168 . -171) 70008) ((-364 . -102) T) ((-239 . -237) 69987) ((-250 . -102) T) ((-249 . -102) T) ((-1226 . -942) 69956) ((-244 . -844) 69935) ((-810 . -38) 69784) ((-45 . -512) 69576) ((-1148 . -285) 69551) ((-213 . -1090) T) ((-1140 . -1090) T) ((-1140 . -605) 69530) ((-582 . -25) T) ((-582 . -21) T) ((-1092 . -308) 69468) ((-956 . -410) 69452) ((-692 . -1209) T) ((-627 . -285) 69427) ((-1077 . -634) 69375) ((-776 . -634) 69323) ((-774 . -634) 69271) ((-342 . -130) T) ((-288 . -608) 69253) ((-898 . -1090) T) ((-692 . -553) T) ((-129 . -611) 69235) ((-863 . -1102) T) ((-452 . -634) 69183) ((-898 . -896) 69167) ((-378 . -450) T) ((-485 . -1090) T) ((-936 . -308) 69105) ((-694 . -641) 69092) ((-546 . -838) T) ((-216 . -1090) T) ((-315 . -913) 69071) ((-312 . -913) T) ((-312 . -814) NIL) ((-389 . -714) T) ((-863 . -23) T) ((-116 . -641) 69058) ((-472 . -144) 69037) ((-417 . -410) 69021) ((-472 . -146) 69000) ((-110 . -487) 68982) ((-310 . -611) 68963) ((-2 . -608) 68945) ((-185 . -102) T) ((-1148 . -19) 68927) ((-1148 . -599) 68902) ((-651 . -21) T) ((-651 . -25) T) ((-589 . -1134) T) ((-1103 . -285) 68879) ((-335 . -25) T) ((-335 . -21) T) ((-493 . -362) T) ((-1268 . -38) 68849) ((-1132 . -1205) T) ((-627 . -599) 68824) ((-546 . -1090) T) ((-1077 . -25) T) ((-1077 . -21) T) ((-529 . -786) T) ((-529 . -789) T) ((-117 . -1209) T) ((-956 . -1049) T) ((-618 . -553) T) ((-776 . -25) T) ((-776 . -21) T) ((-774 . -21) T) ((-774 . -25) T) ((-729 . -1049) T) ((-709 . -1049) T) ((-663 . -1048) 68808) ((-515 . -1073) T) ((-459 . -25) T) ((-117 . -553) T) ((-459 . -21) T) ((-452 . -25) T) ((-452 . -21) T) ((-1132 . -1031) 68704) ((-811 . -289) 68683) ((-1275 . -1048) 68667) ((-817 . -1090) T) ((-1273 . -1048) 68651) ((-959 . -960) T) ((-663 . -111) 68630) ((-294 . -512) 68422) ((-1237 . -1190) 68388) ((-1237 . -1193) 68354) ((-1237 . -95) 68320) ((-250 . -308) 68258) ((-249 . -308) 68196) ((-1220 . -102) 68174) ((-1149 . -609) NIL) ((-1149 . -608) 68156) ((-1217 . -230) 68108) ((-1216 . -1190) 68074) ((-1216 . -1193) 68040) ((-96 . -93) T) ((-1210 . -838) T) ((-1132 . -376) 68024) ((-1110 . -814) T) ((-1110 . -913) T) ((-1103 . -599) 68001) ((-1070 . -609) 67985) ((-482 . -608) 67917) ((-809 . -287) 67894) ((-603 . -150) 67841) ((-417 . -1049) T) ((-485 . -711) 67791) ((-480 . -487) 67775) ((-326 . -844) 67754) ((-338 . -641) 67728) ((-50 . -21) T) ((-50 . -25) T) ((-216 . -711) 67678) ((-168 . -718) 67649) ((-173 . -641) 67581) ((-578 . -21) T) ((-578 . -25) T) ((-516 . -25) T) ((-516 . -21) T) ((-473 . -150) 67531) ((-1070 . -608) 67513) ((-1052 . -608) 67495) ((-986 . -102) T) ((-856 . -102) T) ((-793 . -410) 67459) ((-40 . -130) T) ((-692 . -362) T) ((-694 . -720) T) ((-694 . -788) T) ((-694 . -785) T) ((-211 . -888) T) ((-577 . -1102) T) ((-561 . -1102) T) ((-493 . -1102) T) ((-358 . -608) 67441) ((-352 . -608) 67423) ((-344 . -608) 67405) ((-66 . -395) T) ((-66 . -394) T) ((-108 . -609) 67335) ((-108 . -608) 67278) ((-210 . -888) T) ((-951 . -150) 67262) ((-765 . -130) T) ((-663 . -611) 67180) ((-133 . -720) T) ((-116 . -720) T) ((-1237 . -35) 67146) ((-1046 . -487) 67130) ((-577 . -23) T) ((-561 . -23) T) ((-493 . -23) T) ((-1216 . -95) 67096) ((-1216 . -35) 67062) ((-1162 . -102) T) ((-1115 . -102) T) ((-848 . -102) T) ((-226 . -487) 67046) ((-1275 . -111) 67025) ((-1273 . -111) 67004) ((-44 . -1048) 66988) ((-1226 . -1229) 66972) ((-849 . -846) 66956) ((-1275 . -611) 66902) ((-1168 . -289) 66881) ((-110 . -285) 66856) ((-1210 . -1090) T) ((-128 . -150) 66838) ((-1132 . -893) 66797) ((-44 . -111) 66776) ((-1171 . -1248) T) ((-1156 . -488) 66757) ((-1156 . -608) 66723) ((-1148 . -609) NIL) ((-663 . -1042) T) ((-1148 . -608) 66705) ((-1054 . -605) 66680) ((-1054 . -1090) T) ((-987 . -488) 66661) ((-987 . -608) 66627) ((-74 . -439) T) ((-74 . -394) T) ((-696 . -1090) T) ((-151 . -1048) 66611) ((-663 . -232) 66590) ((-568 . -551) 66574) ((-354 . -146) 66553) ((-354 . -144) 66504) ((-351 . -146) 66483) ((-351 . -144) 66434) ((-343 . -146) 66413) ((-343 . -144) 66364) ((-263 . -144) 66343) ((-263 . -146) 66322) ((-250 . -38) 66292) ((-246 . -146) 66271) ((-117 . -362) T) ((-246 . -144) 66250) ((-249 . -38) 66220) ((-151 . -111) 66199) ((-996 . -1031) 66087) ((-1157 . -842) NIL) ((-687 . -1209) T) ((-793 . -1049) T) ((-692 . -1102) T) ((-1275 . -1042) T) ((-1273 . -611) 66016) ((-1273 . -1042) T) ((-1146 . -1205) T) ((-996 . -376) 65993) ((-903 . -144) T) ((-903 . -146) 65975) ((-863 . -130) T) ((-809 . -1048) 65872) ((-687 . -553) T) ((-692 . -23) T) ((-640 . -608) 65804) ((-640 . -609) 65765) ((-627 . -609) NIL) ((-627 . -608) 65747) ((-485 . -171) T) ((-222 . -21) T) ((-216 . -171) T) ((-222 . -25) T) ((-472 . -1193) 65713) ((-472 . -1190) 65679) ((-273 . -608) 65661) ((-272 . -608) 65643) ((-271 . -608) 65625) ((-270 . -608) 65607) ((-269 . -608) 65589) ((-498 . -644) 65571) ((-268 . -608) 65553) ((-338 . -720) T) ((-267 . -608) 65535) ((-110 . -19) 65517) ((-173 . -720) T) ((-498 . -372) 65499) ((-211 . -608) 65481) ((-518 . -1139) 65465) ((-498 . -123) T) ((-110 . -599) 65440) ((-210 . -608) 65422) ((-472 . -35) 65388) ((-472 . -95) 65354) ((-208 . -608) 65336) ((-207 . -608) 65318) ((-206 . -608) 65300) ((-205 . -608) 65282) ((-202 . -608) 65264) ((-201 . -608) 65246) ((-200 . -608) 65228) ((-199 . -608) 65210) ((-198 . -608) 65192) ((-197 . -608) 65174) ((-196 . -608) 65156) ((-534 . -1093) 65108) ((-195 . -608) 65090) ((-194 . -608) 65072) ((-45 . -487) 65009) ((-193 . -608) 64991) ((-192 . -608) 64973) ((-151 . -611) 64942) ((-1105 . -102) T) ((-809 . -111) 64832) ((-638 . -102) 64782) ((-480 . -285) 64759) ((-1103 . -608) 64490) ((-1091 . -1090) T) ((-1039 . -1205) T) ((-1276 . -1031) 64474) ((-618 . -1102) T) ((-1162 . -308) 64461) ((-1125 . -1090) T) ((-1115 . -308) 64448) ((-1086 . -1073) T) ((-1080 . -1073) T) ((-1064 . -1073) T) ((-1057 . -1073) T) ((-1029 . -1073) T) ((-1012 . -1073) T) ((-117 . -1102) T) ((-813 . -102) T) ((-621 . -1073) T) ((-618 . -23) T) ((-1140 . -512) 64240) ((-481 . -1073) T) ((-996 . -893) 64192) ((-385 . -102) T) ((-323 . -102) T) ((-217 . -1073) T) ((-956 . -1090) T) ((-151 . -1042) T) ((-725 . -410) 64176) ((-117 . -23) T) ((-729 . -1090) T) ((-709 . -1090) T) ((-696 . -131) T) ((-451 . -1090) T) ((-406 . -1205) T) ((-315 . -429) 64160) ((-588 . -93) T) ((-1020 . -609) 64121) ((-1017 . -1209) T) ((-224 . -102) T) ((-1020 . -608) 64083) ((-810 . -230) 64067) ((-809 . -611) 63797) ((-1017 . -553) T) ((-827 . -641) 63770) ((-353 . -1209) T) ((-474 . -608) 63732) ((-474 . -609) 63693) ((-461 . -609) 63654) ((-461 . -608) 63616) ((-406 . -877) 63600) ((-318 . -1048) 63435) ((-406 . -879) 63360) ((-837 . -1031) 63256) ((-485 . -512) NIL) ((-480 . -599) 63233) ((-353 . -553) T) ((-216 . -512) NIL) ((-865 . -450) T) ((-417 . -1090) T) ((-406 . -1031) 63097) ((-318 . -111) 62918) ((-687 . -362) T) ((-224 . -283) T) ((-1202 . -611) 62895) ((-48 . -1209) T) ((-809 . -1042) 62825) ((-577 . -130) T) ((-561 . -130) T) ((-493 . -130) T) ((-1162 . -1141) 62803) ((-48 . -553) T) ((-1149 . -287) 62779) ((-1053 . -102) T) ((-945 . -102) T) ((-315 . -27) 62758) ((-809 . -232) 62710) ((-248 . -829) 62692) ((-239 . -842) 62671) ((-186 . -829) 62653) ((-707 . -102) T) ((-294 . -487) 62590) ((-479 . -102) T) ((-725 . -1049) T) ((-607 . -608) 62572) ((-607 . -609) 62433) ((-406 . -376) 62417) ((-406 . -337) 62401) ((-318 . -611) 62227) ((-1162 . -38) 62056) ((-1115 . -38) 61905) ((-848 . -38) 61875) ((-389 . -641) 61859) ((-638 . -308) 61797) ((-956 . -711) 61694) ((-729 . -711) 61664) ((-221 . -107) 61648) ((-45 . -285) 61573) ((-616 . -641) 61547) ((-311 . -1090) T) ((-288 . -1048) 61534) ((-110 . -608) 61516) ((-110 . -609) 61498) ((-451 . -711) 61468) ((-810 . -252) 61407) ((-682 . -1090) 61385) ((-547 . -1090) T) ((-1164 . -1049) T) ((-1163 . -1049) T) ((-96 . -488) 61366) ((-1157 . -1049) T) ((-288 . -111) 61351) ((-1116 . -1049) T) ((-547 . -605) 61330) ((-96 . -608) 61296) ((-997 . -842) T) ((-226 . -680) 61254) ((-687 . -1102) T) ((-1199 . -734) 61230) ((-1017 . -362) T) ((-832 . -829) 61212) ((-318 . -1042) T) ((-342 . -25) T) ((-342 . -21) T) ((-406 . -893) 61171) ((-68 . -1205) T) ((-827 . -788) 61150) ((-417 . -711) 61124) ((-793 . -1090) T) ((-827 . -785) 61103) ((-692 . -130) T) ((-706 . -913) 61082) ((-687 . -23) T) ((-485 . -289) T) ((-827 . -720) 61061) ((-318 . -232) 61013) ((-318 . -242) 60992) ((-216 . -289) T) ((-129 . -367) T) ((-1237 . -450) 60971) ((-1216 . -450) 60950) ((-353 . -328) 60927) ((-353 . -362) T) ((-1130 . -608) 60909) ((-45 . -1241) 60859) ((-864 . -102) T) ((-638 . -281) 60843) ((-692 . -1051) T) ((-1264 . -102) T) ((-1263 . -102) T) ((-475 . -641) 60808) ((-466 . -1090) T) ((-45 . -599) 60733) ((-1148 . -287) 60708) ((-288 . -611) 60680) ((-40 . -634) 60619) ((-48 . -362) T) ((-1096 . -608) 60601) ((-1077 . -844) 60580) ((-627 . -287) 60555) ((-776 . -844) 60534) ((-774 . -844) 60513) ((-480 . -608) 60244) ((-239 . -410) 60213) ((-945 . -308) 60200) ((-452 . -844) 60179) ((-65 . -1205) T) ((-1054 . -512) 60023) ((-618 . -130) T) ((-544 . -102) T) ((-479 . -308) 60010) ((-601 . -1090) T) ((-117 . -130) T) ((-664 . -1090) T) ((-288 . -1042) T) ((-179 . -1090) T) ((-160 . -1090) T) ((-155 . -1090) T) ((-153 . -1090) T) ((-451 . -755) T) ((-31 . -1073) T) ((-956 . -171) 59961) ((-963 . -93) T) ((-1070 . -1048) 59871) ((-616 . -788) 59850) ((-589 . -1090) T) ((-616 . -785) 59829) ((-616 . -720) T) ((-294 . -285) 59808) ((-293 . -1205) T) ((-1046 . -608) 59770) ((-1046 . -609) 59731) ((-1017 . -1102) T) ((-168 . -102) T) ((-274 . -844) T) ((-1155 . -1090) T) ((-812 . -608) 59713) ((-1103 . -287) 59690) ((-1092 . -228) 59674) ((-996 . -306) T) ((-793 . -711) 59658) ((-358 . -1048) 59610) ((-353 . -1102) T) ((-352 . -1048) 59562) ((-413 . -608) 59544) ((-384 . -608) 59526) ((-344 . -1048) 59478) ((-226 . -608) 59410) ((-1070 . -111) 59306) ((-1017 . -23) T) ((-108 . -1048) 59256) ((-891 . -102) T) ((-835 . -102) T) ((-802 . -102) T) ((-763 . -102) T) ((-670 . -102) T) ((-472 . -450) 59235) ((-417 . -171) T) ((-358 . -111) 59173) ((-352 . -111) 59111) ((-344 . -111) 59049) ((-250 . -230) 59018) ((-249 . -230) 58987) ((-353 . -23) T) ((-71 . -1205) T) ((-224 . -38) 58952) ((-108 . -111) 58886) ((-40 . -25) T) ((-40 . -21) T) ((-663 . -714) T) ((-168 . -283) 58864) ((-48 . -1102) T) ((-914 . -25) T) ((-765 . -25) T) ((-1140 . -487) 58801) ((-483 . -1090) T) ((-1277 . -641) 58775) ((-1226 . -102) T) ((-849 . -102) T) ((-239 . -1049) 58705) ((-1053 . -1141) T) ((-957 . -786) 58658) ((-380 . -641) 58642) ((-48 . -23) T) ((-957 . -789) 58595) ((-809 . -789) 58546) ((-809 . -786) 58497) ((-294 . -599) 58476) ((-475 . -720) T) ((-568 . -102) T) ((-1070 . -611) 58294) ((-248 . -184) T) ((-186 . -184) T) ((-864 . -308) 58251) ((-646 . -285) 58230) ((-112 . -654) T) ((-358 . -611) 58167) ((-352 . -611) 58104) ((-344 . -611) 58041) ((-76 . -1205) T) ((-108 . -611) 57991) ((-1053 . -38) 57978) ((-657 . -373) 57957) ((-945 . -38) 57806) ((-725 . -1090) T) ((-479 . -38) 57655) ((-86 . -1205) T) ((-588 . -488) 57636) ((-568 . -283) T) ((-1217 . -842) NIL) ((-588 . -608) 57602) ((-1164 . -1090) T) ((-1163 . -1090) T) ((-1070 . -1042) T) ((-350 . -1031) 57579) ((-811 . -488) 57563) ((-997 . -1049) T) ((-45 . -608) 57545) ((-45 . -609) NIL) ((-907 . -1049) T) ((-811 . -608) 57514) ((-1157 . -1090) T) ((-1137 . -102) 57492) ((-1070 . -242) 57443) ((-426 . -1049) T) ((-358 . -1042) T) ((-364 . -363) 57420) ((-352 . -1042) T) ((-344 . -1042) T) ((-250 . -237) 57399) ((-249 . -237) 57378) ((-1070 . -232) 57303) ((-1116 . -1090) T) ((-293 . -893) 57262) ((-108 . -1042) T) ((-687 . -130) T) ((-417 . -512) 57104) ((-358 . -232) 57083) ((-358 . -242) T) ((-44 . -714) T) ((-352 . -232) 57062) ((-352 . -242) T) ((-344 . -232) 57041) ((-344 . -242) T) ((-1156 . -611) 57022) ((-168 . -308) 56987) ((-108 . -242) T) ((-108 . -232) T) ((-987 . -611) 56968) ((-318 . -786) T) ((-863 . -21) T) ((-863 . -25) T) ((-406 . -306) T) ((-498 . -34) T) ((-110 . -287) 56943) ((-1103 . -1048) 56840) ((-864 . -1141) NIL) ((-329 . -608) 56822) ((-406 . -1015) 56800) ((-1103 . -111) 56690) ((-684 . -1248) T) ((-435 . -1090) T) ((-1277 . -720) T) ((-63 . -608) 56672) ((-864 . -38) 56617) ((-521 . -1205) T) ((-597 . -150) 56601) ((-510 . -608) 56583) ((-1226 . -308) 56570) ((-725 . -711) 56419) ((-529 . -787) T) ((-529 . -788) T) ((-561 . -634) 56401) ((-493 . -634) 56361) ((-354 . -450) T) ((-351 . -450) T) ((-343 . -450) T) ((-263 . -450) 56312) ((-523 . -1090) T) ((-518 . -1090) 56262) ((-246 . -450) 56213) ((-1140 . -285) 56192) ((-1168 . -608) 56174) ((-682 . -512) 56107) ((-956 . -289) 56086) ((-547 . -512) 55878) ((-1265 . -608) 55847) ((-1162 . -230) 55831) ((-1103 . -611) 55561) ((-168 . -1141) 55540) ((-1265 . -488) 55524) ((-1164 . -711) 55421) ((-1163 . -711) 55262) ((-885 . -102) T) ((-1157 . -711) 55058) ((-1116 . -711) 54955) ((-1146 . -667) 54939) ((-354 . -401) 54890) ((-351 . -401) 54841) ((-343 . -401) 54792) ((-1017 . -130) T) ((-793 . -512) 54704) ((-294 . -609) NIL) ((-294 . -608) 54686) ((-903 . -450) T) ((-957 . -367) 54639) ((-809 . -367) 54618) ((-508 . -507) 54597) ((-506 . -507) 54576) ((-485 . -285) NIL) ((-480 . -287) 54553) ((-417 . -289) T) ((-353 . -130) T) ((-216 . -285) NIL) ((-687 . -491) NIL) ((-99 . -1102) T) ((-168 . -38) 54381) ((-1237 . -966) 54343) ((-1137 . -308) 54281) ((-1216 . -966) 54250) ((-903 . -401) T) ((-1103 . -1042) 54180) ((-1239 . -553) T) ((-1140 . -599) 54159) ((-112 . -844) T) ((-1054 . -487) 54090) ((-577 . -21) T) ((-577 . -25) T) ((-561 . -21) T) ((-561 . -25) T) ((-493 . -25) T) ((-493 . -21) T) ((-1226 . -1141) 54068) ((-1103 . -232) 54020) ((-48 . -130) T) ((-1186 . -102) T) ((-239 . -1090) 53810) ((-864 . -399) 53787) ((-1078 . -102) T) ((-1066 . -102) T) ((-603 . -102) T) ((-473 . -102) T) ((-1226 . -38) 53616) ((-849 . -38) 53586) ((-725 . -171) 53497) ((-646 . -608) 53479) ((-639 . -1073) T) ((-568 . -38) 53466) ((-963 . -488) 53447) ((-963 . -608) 53413) ((-951 . -102) 53363) ((-858 . -608) 53345) ((-858 . -609) 53267) ((-589 . -512) NIL) ((-1245 . -1049) T) ((-1238 . -1049) T) ((-1217 . -1049) T) ((-1281 . -1102) T) ((-1173 . -102) T) ((-592 . -1049) T) ((-591 . -1049) T) ((-1172 . -102) T) ((-1164 . -171) 53218) ((-1163 . -171) 53149) ((-1157 . -171) 53080) ((-1116 . -171) 53031) ((-997 . -1090) T) ((-964 . -1090) T) ((-907 . -1090) T) ((-1199 . -146) 53010) ((-793 . -791) 52994) ((-692 . -25) T) ((-692 . -21) T) ((-117 . -634) 52971) ((-694 . -879) 52953) ((-426 . -1090) T) ((-315 . -1209) 52932) ((-312 . -1209) T) ((-168 . -399) 52916) ((-1199 . -144) 52895) ((-472 . -966) 52857) ((-128 . -102) T) ((-72 . -608) 52839) ((-108 . -789) T) ((-108 . -786) T) ((-694 . -1031) 52821) ((-315 . -553) 52800) ((-312 . -553) T) ((-1281 . -23) T) ((-133 . -1031) 52782) ((-96 . -611) 52763) ((-480 . -1048) 52660) ((-45 . -287) 52585) ((-239 . -711) 52527) ((-515 . -102) T) ((-480 . -111) 52417) ((-1082 . -102) 52395) ((-1027 . -102) T) ((-638 . -822) 52374) ((-725 . -512) 52317) ((-1046 . -1048) 52301) ((-1125 . -93) T) ((-1054 . -285) 52276) ((-618 . -21) T) ((-618 . -25) T) ((-522 . -1090) T) ((-360 . -102) T) ((-321 . -102) T) ((-663 . -641) 52250) ((-384 . -1048) 52234) ((-1046 . -111) 52213) ((-810 . -410) 52197) ((-117 . -25) T) ((-89 . -608) 52179) ((-117 . -21) T) ((-603 . -308) 51974) ((-473 . -308) 51778) ((-1140 . -609) NIL) ((-384 . -111) 51757) ((-378 . -102) T) ((-213 . -608) 51739) ((-1140 . -608) 51721) ((-1157 . -512) 51490) ((-997 . -711) 51440) ((-1116 . -512) 51410) ((-907 . -711) 51362) ((-480 . -611) 51092) ((-350 . -306) T) ((-1178 . -150) 51042) ((-951 . -308) 50980) ((-830 . -102) T) ((-426 . -711) 50964) ((-224 . -822) T) ((-821 . -102) T) ((-819 . -102) T) ((-477 . -150) 50914) ((-1237 . -1236) 50893) ((-1110 . -1209) T) ((-338 . -1031) 50860) ((-1237 . -1231) 50830) ((-1237 . -1234) 50814) ((-1216 . -1215) 50793) ((-80 . -608) 50775) ((-898 . -608) 50757) ((-1216 . -1231) 50734) ((-1110 . -553) T) ((-914 . -844) T) ((-765 . -844) T) ((-485 . -609) 50664) ((-485 . -608) 50606) ((-378 . -283) T) ((-665 . -844) T) ((-1216 . -1213) 50590) ((-1239 . -1102) T) ((-216 . -609) 50520) ((-216 . -608) 50462) ((-1275 . -641) 50436) ((-1054 . -599) 50411) ((-812 . -611) 50395) ((-59 . -150) 50379) ((-514 . -150) 50363) ((-494 . -150) 50347) ((-358 . -1272) 50331) ((-352 . -1272) 50315) ((-344 . -1272) 50299) ((-315 . -362) 50278) ((-312 . -362) T) ((-480 . -1042) 50208) ((-687 . -634) 50190) ((-1273 . -641) 50164) ((-128 . -308) NIL) ((-1239 . -23) T) ((-682 . -487) 50148) ((-64 . -608) 50130) ((-1103 . -789) 50081) ((-1103 . -786) 50032) ((-547 . -487) 49969) ((-663 . -34) T) ((-480 . -232) 49921) ((-294 . -287) 49900) ((-239 . -171) 49879) ((-810 . -1049) T) ((-44 . -641) 49837) ((-1070 . -367) 49788) ((-725 . -289) 49719) ((-518 . -512) 49652) ((-811 . -1048) 49603) ((-1077 . -144) 49582) ((-546 . -608) 49564) ((-358 . -367) 49543) ((-352 . -367) 49522) ((-344 . -367) 49501) ((-1077 . -146) 49480) ((-864 . -230) 49457) ((-811 . -111) 49399) ((-776 . -144) 49378) ((-776 . -146) 49357) ((-263 . -942) 49324) ((-250 . -842) 49303) ((-246 . -942) 49248) ((-249 . -842) 49227) ((-774 . -144) 49206) ((-774 . -146) 49185) ((-151 . -641) 49159) ((-576 . -1090) T) ((-452 . -146) 49138) ((-452 . -144) 49117) ((-663 . -720) T) ((-817 . -608) 49099) ((-1245 . -1090) T) ((-1238 . -1090) T) ((-1217 . -1090) T) ((-1199 . -1193) 49065) ((-1199 . -1190) 49031) ((-1164 . -289) 49010) ((-1163 . -289) 48961) ((-1157 . -289) 48912) ((-1116 . -289) 48891) ((-338 . -893) 48872) ((-997 . -171) T) ((-907 . -171) T) ((-592 . -1090) T) ((-591 . -1090) T) ((-687 . -21) T) ((-687 . -25) T) ((-472 . -1234) 48856) ((-472 . -1231) 48826) ((-417 . -285) 48754) ((-545 . -844) T) ((-315 . -1102) 48603) ((-312 . -1102) T) ((-1199 . -35) 48569) ((-1199 . -95) 48535) ((-84 . -608) 48517) ((-91 . -102) 48495) ((-1281 . -130) T) ((-588 . -611) 48476) ((-578 . -144) T) ((-578 . -146) 48458) ((-516 . -146) 48440) ((-516 . -144) T) ((-315 . -23) 48292) ((-40 . -341) 48266) ((-312 . -23) T) ((-811 . -611) 48180) ((-1148 . -644) 48162) ((-1268 . -1049) T) ((-1148 . -372) 48144) ((-809 . -641) 47992) ((-1086 . -102) T) ((-1080 . -102) T) ((-1064 . -102) T) ((-168 . -230) 47976) ((-1057 . -102) T) ((-1029 . -102) T) ((-1012 . -102) T) ((-589 . -487) 47958) ((-621 . -102) T) ((-239 . -512) 47891) ((-481 . -102) T) ((-1275 . -720) T) ((-1273 . -720) T) ((-217 . -102) T) ((-1168 . -1048) 47774) ((-1168 . -111) 47643) ((-855 . -172) T) ((-811 . -1042) T) ((-674 . -1073) T) ((-669 . -1073) T) ((-513 . -102) T) ((-508 . -102) T) ((-48 . -634) 47603) ((-506 . -102) T) ((-476 . -1073) T) ((-1265 . -1048) 47573) ((-137 . -1073) T) ((-136 . -1073) T) ((-132 . -1073) T) ((-1027 . -38) 47557) ((-811 . -232) T) ((-811 . -242) 47536) ((-1265 . -111) 47501) ((-1245 . -711) 47398) ((-1238 . -711) 47239) ((-1226 . -230) 47223) ((-547 . -285) 47202) ((-1210 . -608) 47184) ((-1054 . -609) NIL) ((-601 . -93) T) ((-1054 . -608) 47166) ((-696 . -488) 47150) ((-664 . -93) T) ((-179 . -93) T) ((-160 . -93) T) ((-155 . -93) T) ((-153 . -93) T) ((-1217 . -711) 46946) ((-996 . -913) T) ((-696 . -608) 46915) ((-151 . -720) T) ((-1103 . -367) 46894) ((-997 . -512) NIL) ((-250 . -410) 46863) ((-249 . -410) 46832) ((-1017 . -25) T) ((-1017 . -21) T) ((-592 . -711) 46805) ((-591 . -711) 46702) ((-793 . -285) 46660) ((-126 . -102) 46638) ((-827 . -1031) 46534) ((-168 . -822) 46513) ((-318 . -641) 46410) ((-809 . -34) T) ((-708 . -102) T) ((-1168 . -611) 46263) ((-1110 . -1102) T) ((-1019 . -1205) T) ((-378 . -38) 46228) ((-353 . -25) T) ((-353 . -21) T) ((-186 . -102) T) ((-161 . -102) T) ((-248 . -102) T) ((-156 . -102) T) ((-354 . -1260) 46212) ((-351 . -1260) 46196) ((-343 . -1260) 46180) ((-168 . -348) 46159) ((-561 . -844) T) ((-493 . -844) T) ((-1110 . -23) T) ((-87 . -608) 46141) ((-694 . -306) T) ((-830 . -38) 46111) ((-821 . -38) 46081) ((-1265 . -611) 46023) ((-1239 . -130) T) ((-1140 . -287) 46002) ((-957 . -787) 45955) ((-957 . -788) 45908) ((-809 . -785) 45887) ((-116 . -306) T) ((-91 . -308) 45825) ((-668 . -34) T) ((-547 . -599) 45804) ((-48 . -25) T) ((-48 . -21) T) ((-809 . -788) 45755) ((-809 . -787) 45734) ((-694 . -1015) T) ((-646 . -1048) 45718) ((-957 . -720) 45617) ((-809 . -720) 45527) ((-957 . -471) 45480) ((-480 . -789) 45431) ((-480 . -786) 45382) ((-903 . -1260) 45369) ((-1168 . -1042) T) ((-646 . -111) 45348) ((-1168 . -325) 45325) ((-1191 . -102) 45303) ((-1091 . -608) 45285) ((-694 . -543) T) ((-810 . -1090) T) ((-1265 . -1042) T) ((-1125 . -488) 45266) ((-1211 . -102) T) ((-412 . -1090) T) ((-1125 . -608) 45232) ((-250 . -1049) 45162) ((-249 . -1049) 45092) ((-832 . -102) T) ((-288 . -641) 45079) ((-589 . -285) 45054) ((-682 . -680) 45012) ((-956 . -608) 44994) ((-865 . -102) T) ((-729 . -608) 44976) ((-709 . -608) 44958) ((-1245 . -171) 44909) ((-1238 . -171) 44840) ((-1217 . -171) 44771) ((-692 . -844) T) ((-997 . -289) T) ((-451 . -608) 44753) ((-622 . -720) T) ((-60 . -1090) 44731) ((-244 . -150) 44715) ((-907 . -289) T) ((-1017 . -1005) T) ((-622 . -471) T) ((-706 . -1209) 44694) ((-646 . -611) 44612) ((-592 . -171) 44591) ((-591 . -171) 44542) ((-1253 . -844) 44521) ((-706 . -553) 44432) ((-406 . -913) T) ((-406 . -814) 44411) ((-318 . -788) T) ((-963 . -611) 44392) ((-318 . -720) T) ((-417 . -608) 44374) ((-417 . -609) 44281) ((-638 . -1139) 44265) ((-110 . -644) 44247) ((-173 . -306) T) ((-126 . -308) 44185) ((-110 . -372) 44167) ((-397 . -1205) T) ((-315 . -130) 44038) ((-312 . -130) T) ((-69 . -394) T) ((-110 . -123) T) ((-518 . -487) 44022) ((-647 . -1102) T) ((-589 . -19) 44004) ((-61 . -439) T) ((-61 . -394) T) ((-818 . -1090) T) ((-589 . -599) 43979) ((-475 . -1031) 43939) ((-646 . -1042) T) ((-647 . -23) T) ((-1268 . -1090) T) ((-31 . -102) T) ((-810 . -711) 43788) ((-574 . -854) T) ((-117 . -844) NIL) ((-1162 . -410) 43772) ((-1115 . -410) 43756) ((-848 . -410) 43740) ((-866 . -102) 43691) ((-1237 . -102) T) ((-1217 . -512) 43460) ((-1216 . -102) T) ((-1191 . -308) 43398) ((-523 . -93) T) ((-1164 . -285) 43383) ((-311 . -608) 43365) ((-1163 . -285) 43350) ((-1092 . -1090) T) ((-1070 . -641) 43260) ((-682 . -608) 43192) ((-288 . -720) T) ((-108 . -902) NIL) ((-682 . -609) 43153) ((-596 . -608) 43135) ((-574 . -608) 43117) ((-547 . -609) NIL) ((-547 . -608) 43099) ((-527 . -608) 43081) ((-1157 . -285) 42929) ((-485 . -1048) 42879) ((-705 . -450) T) ((-509 . -507) 42858) ((-505 . -507) 42837) ((-216 . -1048) 42787) ((-358 . -641) 42739) ((-352 . -641) 42691) ((-224 . -842) T) ((-344 . -641) 42643) ((-597 . -102) 42593) ((-480 . -367) 42572) ((-108 . -641) 42522) ((-485 . -111) 42456) ((-239 . -487) 42440) ((-342 . -146) 42422) ((-342 . -144) T) ((-168 . -369) 42393) ((-936 . -1251) 42377) ((-216 . -111) 42311) ((-865 . -308) 42276) ((-936 . -1090) 42226) ((-793 . -609) 42187) ((-793 . -608) 42169) ((-712 . -102) T) ((-330 . -1090) T) ((-213 . -611) 42146) ((-1110 . -130) T) ((-708 . -38) 42116) ((-315 . -491) 42095) ((-498 . -1205) T) ((-1237 . -283) 42061) ((-1216 . -283) 42027) ((-326 . -150) 42011) ((-1054 . -287) 41986) ((-1268 . -711) 41956) ((-1149 . -34) T) ((-1277 . -1031) 41933) ((-466 . -608) 41915) ((-482 . -34) T) ((-380 . -1031) 41899) ((-1162 . -1049) T) ((-1115 . -1049) T) ((-848 . -1049) T) ((-1053 . -842) T) ((-485 . -611) 41849) ((-216 . -611) 41799) ((-810 . -171) 41710) ((-518 . -285) 41687) ((-1245 . -289) 41666) ((-1186 . -363) 41640) ((-1078 . -265) 41624) ((-664 . -488) 41605) ((-664 . -608) 41571) ((-601 . -488) 41552) ((-117 . -985) 41529) ((-601 . -608) 41479) ((-472 . -102) T) ((-179 . -488) 41460) ((-179 . -608) 41426) ((-160 . -488) 41407) ((-155 . -488) 41388) ((-153 . -488) 41369) ((-160 . -608) 41335) ((-155 . -608) 41301) ((-364 . -1090) T) ((-250 . -1090) T) ((-249 . -1090) T) ((-153 . -608) 41267) ((-1238 . -289) 41218) ((-1217 . -289) 41169) ((-865 . -1141) 41147) ((-1164 . -995) 41113) ((-603 . -363) 41053) ((-1163 . -995) 41019) ((-603 . -228) 40966) ((-589 . -608) 40948) ((-589 . -609) NIL) ((-687 . -844) T) ((-473 . -228) 40898) ((-485 . -1042) T) ((-1157 . -995) 40864) ((-88 . -438) T) ((-88 . -394) T) ((-216 . -1042) T) ((-1116 . -995) 40830) ((-1070 . -720) T) ((-706 . -1102) T) ((-592 . -289) 40809) ((-591 . -289) 40788) ((-485 . -242) T) ((-485 . -232) T) ((-216 . -242) T) ((-216 . -232) T) ((-1155 . -608) 40770) ((-865 . -38) 40722) ((-358 . -720) T) ((-352 . -720) T) ((-344 . -720) T) ((-108 . -788) T) ((-108 . -785) T) ((-706 . -23) T) ((-108 . -720) T) ((-518 . -1241) 40706) ((-1281 . -25) T) ((-472 . -283) 40672) ((-1281 . -21) T) ((-1216 . -308) 40611) ((-1166 . -102) T) ((-40 . -144) 40583) ((-40 . -146) 40555) ((-518 . -599) 40532) ((-1103 . -641) 40380) ((-597 . -308) 40318) ((-45 . -644) 40268) ((-45 . -659) 40218) ((-45 . -372) 40168) ((-1148 . -34) T) ((-864 . -842) NIL) ((-647 . -130) T) ((-483 . -608) 40150) ((-239 . -285) 40127) ((-185 . -1090) T) ((-640 . -34) T) ((-627 . -34) T) ((-1077 . -450) 40078) ((-810 . -512) 39952) ((-776 . -450) 39883) ((-774 . -450) 39834) ((-452 . -450) 39785) ((-945 . -410) 39769) ((-725 . -608) 39751) ((-250 . -711) 39693) ((-249 . -711) 39635) ((-725 . -609) 39496) ((-479 . -410) 39480) ((-338 . -301) T) ((-522 . -93) T) ((-350 . -913) T) ((-993 . -102) 39458) ((-1017 . -844) T) ((-60 . -512) 39391) ((-1216 . -1141) 39343) ((-997 . -285) NIL) ((-224 . -1049) T) ((-378 . -822) T) ((-1103 . -34) T) ((-578 . -450) T) ((-516 . -450) T) ((-1220 . -1083) 39327) ((-1220 . -1090) 39305) ((-239 . -599) 39282) ((-1220 . -1085) 39239) ((-1164 . -608) 39221) ((-1163 . -608) 39203) ((-1157 . -608) 39185) ((-1157 . -609) NIL) ((-1116 . -608) 39167) ((-865 . -399) 39151) ((-534 . -102) T) ((-1237 . -38) 38992) ((-1216 . -38) 38806) ((-863 . -146) T) ((-696 . -611) 38790) ((-578 . -401) T) ((-48 . -844) T) ((-516 . -401) T) ((-1249 . -102) T) ((-1239 . -21) T) ((-1239 . -25) T) ((-1103 . -785) 38769) ((-1103 . -788) 38720) ((-1103 . -787) 38699) ((-986 . -1090) T) ((-1020 . -34) T) ((-856 . -1090) T) ((-1103 . -720) 38609) ((-657 . -102) T) ((-639 . -102) T) ((-547 . -287) 38588) ((-1178 . -102) T) ((-474 . -34) T) ((-461 . -34) T) ((-354 . -102) T) ((-351 . -102) T) ((-343 . -102) T) ((-263 . -102) T) ((-246 . -102) T) ((-475 . -306) T) ((-1053 . -1049) T) ((-945 . -1049) T) ((-315 . -634) 38494) ((-312 . -634) 38455) ((-479 . -1049) T) ((-477 . -102) T) ((-435 . -608) 38437) ((-1162 . -1090) T) ((-1115 . -1090) T) ((-848 . -1090) T) ((-1131 . -102) T) ((-810 . -289) 38368) ((-956 . -1048) 38251) ((-475 . -1015) T) ((-729 . -1048) 38221) ((-451 . -1048) 38191) ((-1137 . -1111) 38175) ((-1092 . -512) 38108) ((-956 . -111) 37977) ((-903 . -102) T) ((-729 . -111) 37942) ((-523 . -488) 37923) ((-523 . -608) 37889) ((-59 . -102) 37839) ((-518 . -609) 37800) ((-518 . -608) 37712) ((-517 . -102) 37690) ((-514 . -102) 37640) ((-495 . -102) 37618) ((-494 . -102) 37568) ((-451 . -111) 37531) ((-250 . -171) 37510) ((-249 . -171) 37489) ((-417 . -1048) 37463) ((-1199 . -966) 37425) ((-992 . -1102) T) ((-1125 . -611) 37406) ((-936 . -512) 37339) ((-485 . -789) T) ((-472 . -38) 37180) ((-417 . -111) 37147) ((-485 . -786) T) ((-993 . -308) 37085) ((-216 . -789) T) ((-216 . -786) T) ((-992 . -23) T) ((-706 . -130) T) ((-1216 . -399) 37055) ((-315 . -25) 36907) ((-168 . -410) 36891) ((-315 . -21) 36762) ((-312 . -25) T) ((-312 . -21) T) ((-858 . -367) T) ((-956 . -611) 36615) ((-110 . -34) T) ((-729 . -611) 36571) ((-709 . -611) 36553) ((-480 . -641) 36401) ((-864 . -1049) T) ((-589 . -287) 36376) ((-577 . -146) T) ((-561 . -146) T) ((-493 . -146) T) ((-1162 . -711) 36205) ((-1115 . -711) 36054) ((-1110 . -634) 36036) ((-848 . -711) 36006) ((-663 . -1205) T) ((-1 . -102) T) ((-417 . -611) 35914) ((-239 . -608) 35645) ((-1105 . -1090) T) ((-1226 . -410) 35629) ((-1178 . -308) 35433) ((-956 . -1042) T) ((-729 . -1042) T) ((-709 . -1042) T) ((-638 . -1090) 35383) ((-1046 . -641) 35367) ((-849 . -410) 35351) ((-509 . -102) T) ((-505 . -102) T) ((-246 . -308) 35338) ((-263 . -308) 35325) ((-956 . -325) 35304) ((-384 . -641) 35288) ((-477 . -308) 35092) ((-250 . -512) 35025) ((-663 . -1031) 34921) ((-249 . -512) 34854) ((-1131 . -308) 34780) ((-813 . -1090) T) ((-793 . -1048) 34764) ((-1245 . -285) 34749) ((-1238 . -285) 34734) ((-1217 . -285) 34582) ((-385 . -1090) T) ((-323 . -1090) T) ((-417 . -1042) T) ((-168 . -1049) T) ((-59 . -308) 34520) ((-793 . -111) 34499) ((-591 . -285) 34484) ((-517 . -308) 34422) ((-514 . -308) 34360) ((-495 . -308) 34298) ((-494 . -308) 34236) ((-417 . -232) 34215) ((-480 . -34) T) ((-997 . -609) 34145) ((-224 . -1090) T) ((-997 . -608) 34105) ((-964 . -608) 34065) ((-964 . -609) 34040) ((-907 . -608) 34022) ((-692 . -146) T) ((-694 . -913) T) ((-694 . -814) T) ((-426 . -608) 34004) ((-1110 . -21) T) ((-1110 . -25) T) ((-663 . -376) 33988) ((-116 . -913) T) ((-865 . -230) 33972) ((-78 . -1205) T) ((-126 . -125) 33956) ((-1046 . -34) T) ((-1275 . -1031) 33930) ((-1273 . -1031) 33887) ((-1226 . -1049) T) ((-849 . -1049) T) ((-480 . -785) 33866) ((-354 . -1141) 33845) ((-351 . -1141) 33824) ((-343 . -1141) 33803) ((-480 . -788) 33754) ((-480 . -787) 33733) ((-226 . -34) T) ((-480 . -720) 33643) ((-793 . -611) 33491) ((-60 . -487) 33475) ((-568 . -1049) T) ((-1162 . -171) 33366) ((-1115 . -171) 33277) ((-1053 . -1090) T) ((-1077 . -942) 33222) ((-945 . -1090) T) ((-811 . -641) 33173) ((-776 . -942) 33142) ((-707 . -1090) T) ((-774 . -942) 33109) ((-514 . -281) 33093) ((-663 . -893) 33052) ((-479 . -1090) T) ((-452 . -942) 33019) ((-79 . -1205) T) ((-354 . -38) 32984) ((-351 . -38) 32949) ((-343 . -38) 32914) ((-263 . -38) 32763) ((-246 . -38) 32612) ((-903 . -1141) T) ((-522 . -488) 32593) ((-618 . -146) 32572) ((-618 . -144) 32551) ((-522 . -608) 32517) ((-117 . -146) T) ((-117 . -144) NIL) ((-413 . -720) T) ((-793 . -1042) T) ((-342 . -450) T) ((-1245 . -995) 32483) ((-1238 . -995) 32449) ((-1217 . -995) 32415) ((-903 . -38) 32380) ((-224 . -711) 32345) ((-318 . -47) 32315) ((-40 . -408) 32287) ((-139 . -608) 32269) ((-992 . -130) T) ((-809 . -1205) T) ((-173 . -913) T) ((-546 . -367) T) ((-601 . -611) 32250) ((-342 . -401) T) ((-664 . -611) 32231) ((-179 . -611) 32212) ((-160 . -611) 32193) ((-155 . -611) 32174) ((-153 . -611) 32155) ((-518 . -287) 32132) ((-1216 . -230) 32102) ((-809 . -1031) 31929) ((-45 . -34) T) ((-674 . -102) T) ((-669 . -102) T) ((-655 . -102) T) ((-647 . -21) T) ((-647 . -25) T) ((-1092 . -487) 31913) ((-668 . -1205) T) ((-476 . -102) T) ((-244 . -102) 31863) ((-544 . -838) T) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-864 . -1090) T) ((-1168 . -641) 31788) ((-1053 . -711) 31775) ((-725 . -1048) 31618) ((-1162 . -512) 31565) ((-945 . -711) 31414) ((-1115 . -512) 31366) ((-1264 . -1090) T) ((-1263 . -1090) T) ((-479 . -711) 31215) ((-67 . -608) 31197) ((-725 . -111) 31026) ((-936 . -487) 31010) ((-1265 . -641) 30970) ((-811 . -720) T) ((-1164 . -1048) 30853) ((-1163 . -1048) 30688) ((-1157 . -1048) 30478) ((-1116 . -1048) 30361) ((-996 . -1209) T) ((-1084 . -102) 30339) ((-809 . -376) 30308) ((-576 . -608) 30290) ((-544 . -1090) T) ((-996 . -553) T) ((-1164 . -111) 30159) ((-1163 . -111) 29980) ((-1157 . -111) 29749) ((-1116 . -111) 29618) ((-1095 . -1093) 29582) ((-378 . -842) T) ((-1245 . -608) 29564) ((-1238 . -608) 29546) ((-1217 . -608) 29528) ((-1217 . -609) NIL) ((-239 . -287) 29505) ((-40 . -450) T) ((-224 . -171) T) ((-168 . -1090) T) ((-725 . -611) 29290) ((-687 . -146) T) ((-687 . -144) NIL) ((-592 . -608) 29272) ((-591 . -608) 29254) ((-891 . -1090) T) ((-835 . -1090) T) ((-802 . -1090) T) ((-763 . -1090) T) ((-651 . -846) 29238) ((-670 . -1090) T) ((-809 . -893) 29170) ((-1210 . -367) T) ((-40 . -401) NIL) ((-1164 . -611) 29052) ((-1110 . -654) T) ((-864 . -711) 28997) ((-250 . -487) 28981) ((-249 . -487) 28965) ((-1163 . -611) 28708) ((-1157 . -611) 28503) ((-706 . -634) 28451) ((-646 . -641) 28425) ((-1116 . -611) 28307) ((-294 . -34) T) ((-725 . -1042) T) ((-578 . -1260) 28294) ((-516 . -1260) 28271) ((-1226 . -1090) T) ((-1162 . -289) 28182) ((-1115 . -289) 28113) ((-1053 . -171) T) ((-849 . -1090) T) ((-945 . -171) 28024) ((-776 . -1229) 28008) ((-638 . -512) 27941) ((-77 . -608) 27923) ((-725 . -325) 27888) ((-1168 . -720) T) ((-568 . -1090) T) ((-479 . -171) 27799) ((-244 . -308) 27737) ((-1132 . -1102) T) ((-70 . -608) 27719) ((-1265 . -720) T) ((-1164 . -1042) T) ((-1163 . -1042) T) ((-326 . -102) 27669) ((-1157 . -1042) T) ((-1132 . -23) T) ((-1116 . -1042) T) ((-91 . -1111) 27653) ((-859 . -1102) T) ((-1164 . -232) 27612) ((-1163 . -242) 27591) ((-1163 . -232) 27543) ((-1157 . -232) 27430) ((-1157 . -242) 27409) ((-318 . -893) 27315) ((-859 . -23) T) ((-168 . -711) 27143) ((-406 . -1209) T) ((-1091 . -367) T) ((-1017 . -146) T) ((-996 . -362) T) ((-863 . -450) T) ((-936 . -285) 27120) ((-315 . -844) T) ((-312 . -844) NIL) ((-867 . -102) T) ((-706 . -25) T) ((-406 . -553) T) ((-706 . -21) T) ((-523 . -611) 27101) ((-353 . -146) 27083) ((-353 . -144) T) ((-1137 . -1090) 27061) ((-451 . -714) T) ((-75 . -608) 27043) ((-114 . -844) T) ((-244 . -281) 27027) ((-239 . -1048) 26924) ((-81 . -608) 26906) ((-729 . -367) 26859) ((-1166 . -822) T) ((-731 . -234) 26843) ((-1149 . -1205) T) ((-140 . -234) 26825) ((-239 . -111) 26715) ((-1226 . -711) 26544) ((-48 . -146) T) ((-864 . -171) T) ((-849 . -711) 26514) ((-482 . -1205) T) ((-945 . -512) 26461) ((-646 . -720) T) ((-568 . -711) 26448) ((-1027 . -1049) T) ((-479 . -512) 26391) ((-936 . -19) 26375) ((-936 . -599) 26352) ((-810 . -609) NIL) ((-810 . -608) 26334) ((-997 . -1048) 26284) ((-412 . -608) 26266) ((-250 . -285) 26243) ((-249 . -285) 26220) ((-485 . -902) NIL) ((-315 . -29) 26190) ((-108 . -1205) T) ((-996 . -1102) T) ((-216 . -902) NIL) ((-907 . -1048) 26142) ((-1070 . -1031) 26038) ((-997 . -111) 25972) ((-996 . -23) T) ((-731 . -688) 25956) ((-263 . -230) 25940) ((-426 . -1048) 25924) ((-378 . -1049) T) ((-239 . -611) 25654) ((-907 . -111) 25592) ((-687 . -1193) NIL) ((-485 . -641) 25542) ((-108 . -877) 25524) ((-108 . -879) 25506) ((-687 . -1190) NIL) ((-216 . -641) 25456) ((-358 . -1031) 25440) ((-352 . -1031) 25424) ((-326 . -308) 25362) ((-344 . -1031) 25346) ((-224 . -289) T) ((-426 . -111) 25325) ((-60 . -608) 25257) ((-168 . -171) T) ((-1110 . -844) T) ((-108 . -1031) 25217) ((-885 . -1090) T) ((-830 . -1049) T) ((-821 . -1049) T) ((-687 . -35) NIL) ((-687 . -95) NIL) ((-312 . -985) 25178) ((-182 . -102) T) ((-577 . -450) T) ((-561 . -450) T) ((-493 . -450) T) ((-406 . -362) T) ((-239 . -1042) 25108) ((-1140 . -34) T) ((-475 . -913) T) ((-992 . -634) 25056) ((-250 . -599) 25033) ((-249 . -599) 25010) ((-1070 . -376) 24994) ((-864 . -512) 24902) ((-239 . -232) 24854) ((-1148 . -1205) T) ((-997 . -611) 24804) ((-907 . -611) 24741) ((-818 . -608) 24723) ((-1276 . -1102) T) ((-1268 . -608) 24705) ((-1226 . -171) 24596) ((-426 . -611) 24565) ((-108 . -376) 24547) ((-108 . -337) 24529) ((-1053 . -289) T) ((-945 . -289) 24460) ((-793 . -367) 24439) ((-640 . -1205) T) ((-627 . -1205) T) ((-479 . -289) 24370) ((-568 . -171) T) ((-326 . -281) 24354) ((-1276 . -23) T) ((-1199 . -102) T) ((-1186 . -1090) T) ((-1078 . -1090) T) ((-1066 . -1090) T) ((-83 . -608) 24336) ((-1173 . -838) T) ((-1172 . -838) T) ((-705 . -102) T) ((-354 . -348) 24315) ((-603 . -1090) T) ((-351 . -348) 24294) ((-343 . -348) 24273) ((-473 . -1090) T) ((-1178 . -228) 24223) ((-263 . -252) 24185) ((-1132 . -130) T) ((-603 . -605) 24161) ((-1070 . -893) 24094) ((-997 . -1042) T) ((-907 . -1042) T) ((-473 . -605) 24073) ((-1157 . -786) NIL) ((-1157 . -789) NIL) ((-1092 . -609) 24034) ((-477 . -228) 23984) ((-1092 . -608) 23966) ((-997 . -242) T) ((-997 . -232) T) ((-426 . -1042) T) ((-951 . -1090) 23916) ((-907 . -242) T) ((-859 . -130) T) ((-692 . -450) T) ((-837 . -1102) 23895) ((-108 . -893) NIL) ((-1199 . -283) 23861) ((-865 . -842) 23840) ((-1103 . -1205) T) ((-898 . -720) T) ((-168 . -512) 23752) ((-992 . -25) T) ((-898 . -471) T) ((-406 . -1102) T) ((-485 . -788) T) ((-485 . -785) T) ((-903 . -348) T) ((-485 . -720) T) ((-216 . -788) T) ((-216 . -785) T) ((-992 . -21) T) ((-216 . -720) T) ((-837 . -23) 23704) ((-522 . -611) 23685) ((-1173 . -1090) T) ((-318 . -306) 23664) ((-1172 . -1090) T) ((-1028 . -234) 23610) ((-406 . -23) T) ((-936 . -609) 23571) ((-936 . -608) 23483) ((-638 . -487) 23467) ((-45 . -1003) 23417) ((-612 . -960) T) ((-489 . -102) T) ((-330 . -608) 23399) ((-1103 . -1031) 23226) ((-589 . -644) 23208) ((-128 . -1090) T) ((-589 . -372) 23190) ((-342 . -1260) 23167) ((-1020 . -1205) T) ((-864 . -289) T) ((-1226 . -512) 23114) ((-474 . -1205) T) ((-461 . -1205) T) ((-582 . -102) T) ((-1162 . -285) 23041) ((-618 . -450) 23020) ((-993 . -988) 23004) ((-1268 . -381) 22976) ((-515 . -1090) T) ((-117 . -450) T) ((-1185 . -102) T) ((-1082 . -1090) 22954) ((-1027 . -1090) T) ((-1105 . -93) T) ((-886 . -844) T) ((-350 . -1209) T) ((-1245 . -1048) 22837) ((-1103 . -376) 22806) ((-1238 . -1048) 22641) ((-1217 . -1048) 22431) ((-1245 . -111) 22300) ((-1238 . -111) 22121) ((-1217 . -111) 21890) ((-1199 . -308) 21877) ((-350 . -553) T) ((-364 . -608) 21859) ((-288 . -306) T) ((-592 . -1048) 21832) ((-591 . -1048) 21715) ((-360 . -1090) T) ((-321 . -1090) T) ((-250 . -608) 21676) ((-249 . -608) 21637) ((-996 . -130) T) ((-630 . -23) T) ((-687 . -408) 21604) ((-602 . -23) T) ((-651 . -102) T) ((-592 . -111) 21575) ((-591 . -111) 21444) ((-378 . -1090) T) ((-335 . -102) T) ((-168 . -289) 21355) ((-1216 . -842) 21308) ((-708 . -1049) T) ((-1137 . -512) 21241) ((-1103 . -893) 21173) ((-830 . -1090) T) ((-821 . -1090) T) ((-819 . -1090) T) ((-97 . -102) T) ((-143 . -844) T) ((-607 . -877) 21157) ((-110 . -1205) T) ((-1077 . -102) T) ((-1054 . -34) T) ((-776 . -102) T) ((-774 . -102) T) ((-1245 . -611) 21039) ((-1238 . -611) 20782) ((-459 . -102) T) ((-452 . -102) T) ((-1217 . -611) 20577) ((-239 . -789) 20528) ((-239 . -786) 20479) ((-642 . -102) T) ((-592 . -611) 20437) ((-591 . -611) 20319) ((-1226 . -289) 20230) ((-657 . -629) 20214) ((-185 . -608) 20196) ((-638 . -285) 20173) ((-1027 . -711) 20157) ((-568 . -289) T) ((-956 . -641) 20082) ((-1276 . -130) T) ((-729 . -641) 20042) ((-709 . -641) 20029) ((-274 . -102) T) ((-451 . -641) 19959) ((-50 . -102) T) ((-578 . -102) T) ((-516 . -102) T) ((-1245 . -1042) T) ((-1238 . -1042) T) ((-1217 . -1042) T) ((-1245 . -232) 19918) ((-321 . -711) 19900) ((-1238 . -242) 19879) ((-1238 . -232) 19831) ((-1217 . -232) 19718) ((-1217 . -242) 19697) ((-1199 . -38) 19594) ((-997 . -789) T) ((-592 . -1042) T) ((-591 . -1042) T) ((-997 . -786) T) ((-964 . -789) T) ((-964 . -786) T) ((-865 . -1049) T) ((-863 . -862) 19578) ((-109 . -608) 19560) ((-687 . -450) T) ((-378 . -711) 19525) ((-417 . -641) 19499) ((-706 . -844) 19478) ((-705 . -38) 19443) ((-591 . -232) 19402) ((-40 . -718) 19374) ((-350 . -328) 19351) ((-350 . -362) T) ((-1070 . -306) 19302) ((-293 . -1102) 19183) ((-1096 . -1205) T) ((-170 . -102) T) ((-1220 . -608) 19150) ((-837 . -130) 19102) ((-638 . -1241) 19086) ((-830 . -711) 19056) ((-821 . -711) 19026) ((-480 . -1205) T) ((-358 . -306) T) ((-352 . -306) T) ((-344 . -306) T) ((-638 . -599) 19003) ((-406 . -130) T) ((-518 . -659) 18987) ((-108 . -306) T) ((-293 . -23) 18870) ((-518 . -644) 18854) ((-687 . -401) NIL) ((-518 . -372) 18838) ((-290 . -608) 18820) ((-91 . -1090) 18798) ((-108 . -1015) T) ((-561 . -142) T) ((-1253 . -150) 18782) ((-480 . -1031) 18609) ((-1239 . -144) 18570) ((-1239 . -146) 18531) ((-1046 . -1205) T) ((-986 . -608) 18513) ((-856 . -608) 18495) ((-810 . -1048) 18338) ((-1264 . -93) T) ((-1263 . -93) T) ((-1162 . -609) NIL) ((-1086 . -1090) T) ((-1080 . -1090) T) ((-1077 . -308) 18325) ((-1064 . -1090) T) ((-226 . -1205) T) ((-1057 . -1090) T) ((-1029 . -1090) T) ((-1012 . -1090) T) ((-776 . -308) 18312) ((-774 . -308) 18299) ((-1162 . -608) 18281) ((-810 . -111) 18110) ((-1115 . -608) 18092) ((-621 . -1090) T) ((-574 . -172) T) ((-527 . -172) T) ((-452 . -308) 18079) ((-481 . -1090) T) ((-1115 . -609) 17827) ((-1027 . -171) T) ((-936 . -287) 17804) ((-217 . -1090) T) ((-848 . -608) 17786) ((-603 . -512) 17569) ((-81 . -611) 17510) ((-812 . -1031) 17494) ((-473 . -512) 17286) ((-956 . -720) T) ((-729 . -720) T) ((-709 . -720) T) ((-350 . -1102) T) ((-1169 . -608) 17268) ((-222 . -102) T) ((-480 . -376) 17237) ((-513 . -1090) T) ((-508 . -1090) T) ((-506 . -1090) T) ((-793 . -641) 17211) ((-1017 . -450) T) ((-951 . -512) 17144) ((-350 . -23) T) ((-630 . -130) T) ((-602 . -130) T) ((-353 . -450) T) ((-239 . -367) 17123) ((-378 . -171) T) ((-1237 . -1049) T) ((-1216 . -1049) T) ((-224 . -995) T) ((-810 . -611) 16860) ((-692 . -386) T) ((-417 . -720) T) ((-694 . -1209) T) ((-1132 . -634) 16808) ((-577 . -862) 16792) ((-1268 . -1048) 16776) ((-1149 . -1181) 16752) ((-694 . -553) T) ((-126 . -1090) 16730) ((-708 . -1090) T) ((-480 . -893) 16662) ((-248 . -1090) T) ((-186 . -1090) T) ((-651 . -38) 16632) ((-353 . -401) T) ((-315 . -146) 16611) ((-315 . -144) 16590) ((-128 . -512) NIL) ((-116 . -553) T) ((-312 . -146) 16546) ((-312 . -144) 16502) ((-48 . -450) T) ((-161 . -1090) T) ((-156 . -1090) T) ((-1149 . -107) 16449) ((-776 . -1141) 16427) ((-682 . -34) T) ((-1268 . -111) 16406) ((-547 . -34) T) ((-482 . -107) 16390) ((-250 . -287) 16367) ((-249 . -287) 16344) ((-864 . -285) 16295) ((-45 . -1205) T) ((-1211 . -838) T) ((-810 . -1042) T) ((-1168 . -47) 16272) ((-810 . -325) 16234) ((-1077 . -38) 16083) ((-810 . -232) 16062) ((-776 . -38) 15891) ((-774 . -38) 15740) ((-1105 . -488) 15721) ((-452 . -38) 15570) ((-1105 . -608) 15536) ((-1108 . -102) T) ((-638 . -609) 15497) ((-638 . -608) 15409) ((-578 . -1141) T) ((-516 . -1141) T) ((-1137 . -487) 15393) ((-1191 . -1090) 15371) ((-1132 . -25) T) ((-1132 . -21) T) ((-1268 . -611) 15320) ((-472 . -1049) T) ((-1211 . -1090) T) ((-1217 . -786) NIL) ((-1217 . -789) NIL) ((-992 . -844) 15299) ((-832 . -1090) T) ((-813 . -608) 15281) ((-859 . -21) T) ((-859 . -25) T) ((-793 . -720) T) ((-173 . -1209) T) ((-578 . -38) 15246) ((-516 . -38) 15211) ((-385 . -608) 15193) ((-323 . -608) 15175) ((-168 . -285) 15133) ((-63 . -1205) T) ((-112 . -102) T) ((-865 . -1090) T) ((-173 . -553) T) ((-708 . -711) 15103) ((-293 . -130) 14986) ((-224 . -608) 14968) ((-224 . -609) 14898) ((-996 . -634) 14837) ((-1268 . -1042) T) ((-1110 . -146) T) ((-627 . -1181) 14812) ((-725 . -902) 14791) ((-589 . -34) T) ((-640 . -107) 14775) ((-627 . -107) 14721) ((-1226 . -285) 14648) ((-725 . -641) 14573) ((-294 . -1205) T) ((-1168 . -1031) 14469) ((-936 . -613) 14446) ((-574 . -573) T) ((-574 . -525) T) ((-527 . -525) T) ((-1157 . -902) NIL) ((-1053 . -609) 14361) ((-1053 . -608) 14343) ((-945 . -608) 14325) ((-707 . -488) 14275) ((-342 . -102) T) ((-250 . -1048) 14172) ((-249 . -1048) 14069) ((-393 . -102) T) ((-31 . -1090) T) ((-945 . -609) 13930) ((-707 . -608) 13865) ((-1266 . -1198) 13834) ((-479 . -608) 13816) ((-479 . -609) 13677) ((-246 . -410) 13661) ((-263 . -410) 13645) ((-250 . -111) 13535) ((-249 . -111) 13425) ((-1164 . -641) 13350) ((-1163 . -641) 13247) ((-1157 . -641) 13099) ((-1116 . -641) 13024) ((-350 . -130) T) ((-82 . -439) T) ((-82 . -394) T) ((-996 . -25) T) ((-996 . -21) T) ((-866 . -1090) 12975) ((-865 . -711) 12927) ((-378 . -289) T) ((-168 . -995) 12879) ((-687 . -386) T) ((-992 . -990) 12863) ((-694 . -1102) T) ((-687 . -165) 12845) ((-1237 . -1090) T) ((-1216 . -1090) T) ((-315 . -1190) 12824) ((-315 . -1193) 12803) ((-1154 . -102) T) ((-315 . -952) 12782) ((-133 . -1102) T) ((-116 . -1102) T) ((-597 . -1251) 12766) ((-694 . -23) T) ((-597 . -1090) 12716) ((-315 . -95) 12695) ((-91 . -512) 12628) ((-173 . -362) T) ((-250 . -611) 12358) ((-249 . -611) 12088) ((-315 . -35) 12067) ((-603 . -487) 12001) ((-133 . -23) T) ((-116 . -23) T) ((-959 . -102) T) ((-712 . -1090) T) ((-473 . -487) 11938) ((-406 . -634) 11886) ((-646 . -1031) 11782) ((-951 . -487) 11766) ((-354 . -1049) T) ((-351 . -1049) T) ((-343 . -1049) T) ((-263 . -1049) T) ((-246 . -1049) T) ((-864 . -609) NIL) ((-864 . -608) 11748) ((-1264 . -488) 11729) ((-1263 . -488) 11710) ((-1276 . -21) T) ((-1264 . -608) 11676) ((-1263 . -608) 11642) ((-568 . -995) T) ((-725 . -720) T) ((-1276 . -25) T) ((-250 . -1042) 11572) ((-249 . -1042) 11502) ((-72 . -1205) T) ((-250 . -232) 11454) ((-249 . -232) 11406) ((-40 . -102) T) ((-903 . -1049) T) ((-128 . -487) 11388) ((-1171 . -102) T) ((-1164 . -720) T) ((-1163 . -720) T) ((-1157 . -720) T) ((-1157 . -785) NIL) ((-1157 . -788) NIL) ((-947 . -102) T) ((-914 . -102) T) ((-1116 . -720) T) ((-765 . -102) T) ((-665 . -102) T) ((-544 . -608) 11370) ((-472 . -1090) T) ((-338 . -1102) T) ((-173 . -1102) T) ((-318 . -913) 11349) ((-1237 . -711) 11190) ((-865 . -171) T) ((-1216 . -711) 11004) ((-837 . -21) 10956) ((-837 . -25) 10908) ((-244 . -1139) 10892) ((-126 . -512) 10825) ((-406 . -25) T) ((-406 . -21) T) ((-338 . -23) T) ((-168 . -609) 10591) ((-168 . -608) 10573) ((-173 . -23) T) ((-638 . -287) 10550) ((-518 . -34) T) ((-891 . -608) 10532) ((-89 . -1205) T) ((-835 . -608) 10514) ((-802 . -608) 10496) ((-763 . -608) 10478) ((-670 . -608) 10460) ((-239 . -641) 10308) ((-1166 . -1090) T) ((-1162 . -1048) 10131) ((-1140 . -1205) T) ((-1115 . -1048) 9974) ((-848 . -1048) 9958) ((-1220 . -613) 9942) ((-1162 . -111) 9751) ((-1115 . -111) 9580) ((-848 . -111) 9559) ((-1226 . -609) NIL) ((-1226 . -608) 9541) ((-342 . -1141) T) ((-849 . -608) 9523) ((-1066 . -285) 9502) ((-80 . -1205) T) ((-997 . -902) NIL) ((-603 . -285) 9478) ((-1191 . -512) 9411) ((-485 . -1205) T) ((-568 . -608) 9393) ((-473 . -285) 9372) ((-515 . -93) T) ((-216 . -1205) T) ((-1077 . -230) 9356) ((-997 . -641) 9306) ((-288 . -913) T) ((-811 . -306) 9285) ((-863 . -102) T) ((-776 . -230) 9269) ((-951 . -285) 9246) ((-907 . -641) 9198) ((-630 . -21) T) ((-630 . -25) T) ((-602 . -21) T) ((-545 . -102) T) ((-342 . -38) 9163) ((-687 . -718) 9130) ((-485 . -877) 9112) ((-485 . -879) 9094) ((-472 . -711) 8935) ((-216 . -877) 8917) ((-64 . -1205) T) ((-216 . -879) 8899) ((-602 . -25) T) ((-426 . -641) 8873) ((-1162 . -611) 8642) ((-485 . -1031) 8602) ((-865 . -512) 8514) ((-1115 . -611) 8306) ((-848 . -611) 8224) ((-216 . -1031) 8184) ((-239 . -34) T) ((-993 . -1090) 8162) ((-1237 . -171) 8093) ((-1216 . -171) 8024) ((-706 . -144) 8003) ((-706 . -146) 7982) ((-694 . -130) T) ((-135 . -463) 7959) ((-1137 . -608) 7891) ((-651 . -649) 7875) ((-128 . -285) 7850) ((-116 . -130) T) ((-475 . -1209) T) ((-603 . -599) 7826) ((-473 . -599) 7805) ((-335 . -334) 7774) ((-534 . -1090) T) ((-475 . -553) T) ((-1162 . -1042) T) ((-1115 . -1042) T) ((-848 . -1042) T) ((-239 . -785) 7753) ((-239 . -788) 7704) ((-239 . -787) 7683) ((-1162 . -325) 7660) ((-239 . -720) 7570) ((-951 . -19) 7554) ((-485 . -376) 7536) ((-485 . -337) 7518) ((-1115 . -325) 7490) ((-353 . -1260) 7467) ((-216 . -376) 7449) ((-216 . -337) 7431) ((-951 . -599) 7408) ((-1162 . -232) T) ((-657 . -1090) T) ((-639 . -1090) T) ((-1249 . -1090) T) ((-1178 . -1090) T) ((-1077 . -252) 7345) ((-354 . -1090) T) ((-351 . -1090) T) ((-343 . -1090) T) ((-263 . -1090) T) ((-246 . -1090) T) ((-84 . -1205) T) ((-127 . -102) 7323) ((-121 . -102) 7301) ((-1178 . -605) 7280) ((-477 . -1090) T) ((-1131 . -1090) T) ((-477 . -605) 7259) ((-250 . -789) 7210) ((-250 . -786) 7161) ((-249 . -789) 7112) ((-40 . -1141) NIL) ((-249 . -786) 7063) ((-1105 . -611) 7044) ((-128 . -19) 7026) ((-1070 . -913) 6977) ((-997 . -788) T) ((-997 . -785) T) ((-997 . -720) T) ((-964 . -788) T) ((-128 . -599) 6952) ((-907 . -720) T) ((-91 . -487) 6936) ((-485 . -893) NIL) ((-903 . -1090) T) ((-224 . -1048) 6901) ((-865 . -289) T) ((-216 . -893) NIL) ((-827 . -1102) 6880) ((-59 . -1090) 6830) ((-517 . -1090) 6808) ((-514 . -1090) 6758) ((-495 . -1090) 6736) ((-494 . -1090) 6686) ((-577 . -102) T) ((-561 . -102) T) ((-493 . -102) T) ((-472 . -171) 6617) ((-358 . -913) T) ((-352 . -913) T) ((-344 . -913) T) ((-224 . -111) 6573) ((-827 . -23) 6525) ((-426 . -720) T) ((-108 . -913) T) ((-40 . -38) 6470) ((-108 . -814) T) ((-578 . -348) T) ((-516 . -348) T) ((-1216 . -512) 6330) ((-315 . -450) 6309) ((-312 . -450) T) ((-885 . -608) 6291) ((-830 . -285) 6270) ((-338 . -130) T) ((-173 . -130) T) ((-293 . -25) 6134) ((-293 . -21) 6017) ((-45 . -1181) 5996) ((-66 . -608) 5978) ((-55 . -102) T) ((-597 . -512) 5911) ((-45 . -107) 5861) ((-813 . -611) 5845) ((-1092 . -424) 5829) ((-1092 . -367) 5808) ((-385 . -611) 5792) ((-323 . -611) 5776) ((-1054 . -1205) T) ((-1053 . -1048) 5763) ((-945 . -1048) 5606) ((-1254 . -102) T) ((-1253 . -102) 5556) ((-1053 . -111) 5541) ((-479 . -1048) 5384) ((-657 . -711) 5368) ((-945 . -111) 5197) ((-224 . -611) 5147) ((-475 . -362) T) ((-354 . -711) 5099) ((-351 . -711) 5051) ((-343 . -711) 5003) ((-263 . -711) 4852) ((-246 . -711) 4701) ((-1245 . -641) 4626) ((-1217 . -902) NIL) ((-1086 . -93) T) ((-1080 . -93) T) ((-936 . -644) 4610) ((-1064 . -93) T) ((-479 . -111) 4439) ((-1057 . -93) T) ((-1029 . -93) T) ((-936 . -372) 4423) ((-247 . -102) T) ((-1012 . -93) T) ((-74 . -608) 4405) ((-956 . -47) 4384) ((-704 . -102) T) ((-692 . -102) T) ((-1 . -1090) T) ((-616 . -1102) T) ((-1238 . -641) 4281) ((-621 . -93) T) ((-1186 . -608) 4263) ((-1078 . -608) 4245) ((-126 . -487) 4229) ((-481 . -93) T) ((-1066 . -608) 4211) ((-389 . -23) T) ((-87 . -1205) T) ((-217 . -93) T) ((-1217 . -641) 4063) ((-903 . -711) 4028) ((-616 . -23) T) ((-603 . -608) 4010) ((-603 . -609) NIL) ((-473 . -609) NIL) ((-473 . -608) 3992) ((-509 . -1090) T) ((-505 . -1090) T) ((-350 . -25) T) ((-350 . -21) T) ((-127 . -308) 3930) ((-121 . -308) 3868) ((-592 . -641) 3855) ((-224 . -1042) T) ((-591 . -641) 3780) ((-378 . -995) T) ((-224 . -242) T) ((-224 . -232) T) ((-1053 . -611) 3752) ((-1053 . -613) 3733) ((-951 . -609) 3694) ((-951 . -608) 3606) ((-945 . -611) 3395) ((-863 . -38) 3382) ((-707 . -611) 3332) ((-1237 . -289) 3283) ((-1216 . -289) 3234) ((-479 . -611) 3019) ((-1110 . -450) T) ((-500 . -844) T) ((-315 . -1129) 2998) ((-992 . -146) 2977) ((-992 . -144) 2956) ((-493 . -308) 2943) ((-294 . -1181) 2922) ((-1173 . -608) 2904) ((-1172 . -608) 2886) ((-864 . -1048) 2831) ((-475 . -1102) T) ((-138 . -829) 2813) ((-618 . -102) T) ((-1191 . -487) 2797) ((-250 . -367) 2776) ((-249 . -367) 2755) ((-1053 . -1042) T) ((-294 . -107) 2705) ((-128 . -609) NIL) ((-128 . -608) 2671) ((-117 . -102) T) ((-945 . -1042) T) ((-864 . -111) 2600) ((-475 . -23) T) ((-479 . -1042) T) ((-1053 . -232) T) ((-945 . -325) 2569) ((-479 . -325) 2526) ((-354 . -171) T) ((-351 . -171) T) ((-343 . -171) T) ((-263 . -171) 2437) ((-246 . -171) 2348) ((-956 . -1031) 2244) ((-515 . -488) 2225) ((-729 . -1031) 2196) ((-515 . -608) 2162) ((-1095 . -102) T) ((-1082 . -608) 2129) ((-1027 . -608) 2111) ((-1266 . -150) 2095) ((-1264 . -611) 2076) ((-1258 . -608) 2058) ((-1245 . -720) T) ((-1238 . -720) T) ((-1217 . -785) NIL) ((-1217 . -788) NIL) ((-168 . -1048) 1968) ((-903 . -171) T) ((-864 . -611) 1898) ((-1217 . -720) T) ((-1263 . -611) 1879) ((-996 . -341) 1853) ((-993 . -512) 1786) ((-837 . -844) 1765) ((-561 . -1141) T) ((-472 . -289) 1716) ((-592 . -720) T) ((-360 . -608) 1698) ((-321 . -608) 1680) ((-417 . -1031) 1576) ((-591 . -720) T) ((-406 . -844) 1527) ((-168 . -111) 1423) ((-827 . -130) 1375) ((-731 . -150) 1359) ((-1253 . -308) 1297) ((-485 . -306) T) ((-378 . -608) 1264) ((-518 . -1003) 1248) ((-378 . -609) 1162) ((-216 . -306) T) ((-140 . -150) 1144) ((-708 . -285) 1123) ((-485 . -1015) T) ((-577 . -38) 1110) ((-561 . -38) 1097) ((-493 . -38) 1062) ((-216 . -1015) T) ((-864 . -1042) T) ((-830 . -608) 1044) ((-821 . -608) 1026) ((-819 . -608) 1008) ((-810 . -902) 987) ((-1277 . -1102) T) ((-1226 . -1048) 810) ((-849 . -1048) 794) ((-864 . -242) T) ((-864 . -232) NIL) ((-682 . -1205) T) ((-1277 . -23) T) ((-810 . -641) 719) ((-547 . -1205) T) ((-417 . -337) 703) ((-568 . -1048) 690) ((-1226 . -111) 499) ((-694 . -634) 481) ((-849 . -111) 460) ((-380 . -23) T) ((-168 . -611) 238) ((-1178 . -512) 30) ((-655 . -1090) T) ((-674 . -1090) T) ((-669 . -1090) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index e16e998e..a2c44b20 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3440300496)
-(4386 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3440472335)
+(4393 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -193,13 +193,14 @@
|InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage|
|InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField|
|InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&|
- |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration|
- |AlgebraicIntegrate| |IntegerBits| |IntervalCategory|
- |IntegralDomain&| |IntegralDomain| |ElementaryIntegration|
- |IntegerFactorizationPackage| |IntegrationFunctionsTable|
- |GenusZeroIntegration| |IntegerNumberTheoryFunctions|
- |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration|
- |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
+ |IntegerNumberSystem| |Int16| |Int32| |Int8| |InnerTable|
+ |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
+ |IntervalCategory| |IntegralDomain&| |IntegralDomain|
+ |ElementaryIntegration| |IntegerFactorizationPackage|
+ |IntegrationFunctionsTable| |GenusZeroIntegration|
+ |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
+ |TranscendentalHermiteIntegration| |Integer|
+ |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
|PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
|RationalFunctionIntegration| |Interval|
|IntegerSolveLinearPolynomialEquation| |IntegrationTools|
@@ -428,18 +429,19 @@
|SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries|
|SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions|
|SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax|
- |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table|
- |TangentExpansions| |TableAggregate&| |TableAggregate|
- |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1|
- |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace|
- |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory|
- |Tree| |TrigonometricFunctionCategory&|
- |TrigonometricFunctionCategory| |TrigonometricManipulations|
- |TriangularMatrixOperations| |TranscendentalManipulations|
- |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries|
- |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type|
- |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
- |UniqueFactorizationDomain&| |UniqueFactorizationDomain|
+ |SystemInteger| |SystemNonNegativeInteger| |SystemSolvePackage|
+ |System| |TableauxBumpers| |Tableau| |Table| |TangentExpansions|
+ |TableAggregate&| |TableAggregate| |TabulatedComputationPackage|
+ |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign|
+ |TopLevelThreeSpace| |TranscendentalFunctionCategory&|
+ |TranscendentalFunctionCategory| |Tree|
+ |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
+ |TrigonometricManipulations| |TriangularMatrixOperations|
+ |TranscendentalManipulations| |TriangularSetCategory&|
+ |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools|
+ |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering|
+ |UserDefinedVariableOrdering| |UniqueFactorizationDomain&|
+ |UniqueFactorizationDomain| |UInt16| |UInt32|
|UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
@@ -474,661 +476,659 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |cSech| |removeSquaresIfCan| |incr| |suffix?|
- |initializeGroupForWordProblem| |newTypeLists| |unmakeSUP|
- |createLowComplexityTable| |completeHermite| |cyclicEqual?|
- |fortranLiteralLine| |OMputSymbol| |composites|
- |rightCharacteristicPolynomial| |roughSubIdeal?| |hi| |gramschmidt|
- |symbolIfCan| |expint| |decreasePrecision| |toseInvertible?| |shuffle|
- |qPot| |iisinh| |monicLeftDivide| |countable?| |localAbs| |const|
- |prefix?| |s21bdf| |pushNewContour| |jacobiIdentity?|
- |semiResultantEuclidean1| |diagonal?| |divergence|
- |constantToUnaryFunction| |radicalSolve| |sncndn| |wholeRagits|
- |simpson| |polyred| |smith| |exprToGenUPS| |redPo| |jordanAdmissible?|
- |showTheSymbolTable| |trailingCoefficient| |listLoops|
- |indicialEquationAtInfinity| |coth2trigh| |getProperty| |acscIfCan|
- |region| |matrixConcat3D| |taylorIfCan| |sign| |float?| |splitLinear|
- |integrate| |algSplitSimple| |cSec| |unary?| |function| |c05adf|
- |pr2dmp| |binarySearchTree| |e02def| |rightScalarTimes!|
- |basisOfLeftAnnihilator| |iiasec| |id| |setValue!| |debug3D| |nodes|
- |alphabetic?| |relerror| |normInvertible?| |c05pbf| |f04mcf| |points|
- |brillhartTrials| |leftZero| |heapSort| |product| |insert|
- |whitePoint| |stop| |cCosh| |lazy?| |slex| |eval| LODO2FUN |putGraph|
- |GospersMethod| |applyRules| |formula| |pushucoef| |repeatUntilLoop|
- |characteristicSet| |rightZero| |table| |nil| |infix?|
- |stoseInvertible?reg| |minimize| |children| |OMUnknownSymbol?|
- |bernoulli| |squareFreeLexTriangular| |close!| |interpret| |eulerE|
- |limitPlus| |subResultantsChain| |postfix| |mapSolve| |new|
- |rationalApproximation| |mask| |rightRegularRepresentation| |pureLex|
- |dmpToHdmp| |initiallyReduce| |obj| |frst| |invmultisect| |arity|
- |infLex?| |e04ycf| |nativeModuleExtension| |subCase?| |top!|
- |componentUpperBound| |cyclic| |pmComplexintegrate| |cache| |graphs|
- |balancedBinaryTree| |safetyMargin| |parabolicCylindrical| |Lazard|
- |goodnessOfFit| |cycle| |approximate| |norm| |inrootof| |edf2df| |int|
- |cfirst| |randomLC| |setAdaptive3D| |nrows| |axes| |dioSolve|
- |edf2efi| |definingEquations| |coHeight| |complex| |e01baf| |iibinom|
- |symmetricProduct| |extractBottom!| |unitVector| |singleFactorBound|
- |leviCivitaSymbol| |ncols| |gcdPrimitive| |subSet|
- |PollardSmallFactor| |multiplyCoefficients| |acotIfCan|
- |functionIsOscillatory| |e01bhf| |useSingleFactorBound?| |outputAsTex|
- |optional?| |status| |argumentListOf| |constantLeft| |readLineIfCan!|
- |biRank| |OMlistCDs| |lfextlimint| |roman| |equiv?| |close|
- |wordsForStrongGenerators| |expandTrigProducts| |getRef|
- |doublyTransitive?| |just| |dim| |optpair| |knownInfBasis|
- |BasicMethod| |var2StepsDefault| |leftAlternative?| |d02gaf| |s15adf|
- |minColIndex| |lagrange| |clipPointsDefault| |leftMult| |split!|
- |useEisensteinCriterion?| |setMinPoints3D| |cartesian| |lookup|
- |charthRoot| |remove| |rank| |display| |RittWuCompare|
- |stopTableInvSet!| |besselK| BY |odd?| |exteriorDifferential|
- |integralLastSubResultant| |inspect| |distdfact| |lcm|
- |compiledFunction| |submod| |rroot| |univariate?| |rename!| |space|
- |separant| |lieAlgebra?| |perspective| |infieldint| |OMsetEncoding|
- |computeCycleLength| |symmetricDifference| |last| |commonDenominator|
- |sh| |safeFloor| |categories| |linears| |bringDown| |invmod|
- |removeRoughlyRedundantFactorsInPol| |imagI| |left| |nextColeman|
- |assoc| |nilFactor| |critMonD1| |append| |changeMeasure|
- |countRealRootsMultiple| |addiag| |idealSimplify| |ratPoly|
- |checkForZero| |univariateSolve| |factorList| |subspace|
- |leftQuotient| |right| |OMputObject| |rewriteIdealWithRemainder|
- |pointPlot| |gcd| |generalizedEigenvector| |iExquo| |constantOperator|
- |remainder| |characteristicSerie| |RemainderList| |cCsch|
- |viewDeltaYDefault| |dfRange| |tubePlot| |graphImage| |false|
- |unrankImproperPartitions0| |input| |complete| |byte| |hexDigit?|
- |euclideanSize| |f01qef| |monomRDEsys| |exponentialOrder| |OMgetBind|
- |colorDef| |numberOfFactors| |library| |triangularSystems| |rootsOf|
- |taylorRep| |drawComplexVectorField| |integers| |critMTonD1| |lists|
- |largest| |prolateSpheroidal| |f01maf| |lSpaceBasis|
- |listConjugateBases| |rk4f| |iCompose| |makeFloatFunction| |bitCoef|
- |asimpson| |cAsinh| |acoshIfCan| |superscript| |toScale|
- |viewDefaults| |generalizedContinuumHypothesisAssumed|
- |mainCoefficients| |OMUnknownCD?| |nextsubResultant2| |#|
- |basisOfLeftNucloid| |mainValue| |sizeLess?| |eof?| |second|
- |aspFilename| |queue| |bytes| FG2F |transcendent?| |set| |lllp|
- |cyclic?| |inc| |third| |hcrf| |OMbindTCP| |deleteRoutine!|
- |closedCurve| |OMputVariable| |mathieu12| |hMonic| |s13acf|
- |makeYoungTableau| |showSummary| |vspace| |rationalPower| |cAcsch|
- |selectsecond| |ldf2vmf| |pop!| |credPol| |semicolonSeparate| |power|
- |iroot| |iilog| |constantRight| |monicCompleteDecompose|
- |idealiserMatrix| |fractionPart| |leftMinimalPolynomial|
- |showAttributes| |swap| |viewZoomDefault| |mkIntegral| |bothWays|
- |ldf2lst| |structuralConstants| |crest| |OMputInteger| |f01qdf|
- |s20adf| |setrest!| |symbol| |concat!| |OMmakeConn| |e01bgf| |bracket|
- |plot| |sn| |bits| |expextendedint| |headRemainder| |expression|
- |usingTable?| |createLowComplexityNormalBasis| |btwFact|
- |binomThmExpt| |OMgetInteger| |atoms| |integer| |f02aaf| |wholePart|
- |atom?| |solveLinearPolynomialEquation| |definingInequation|
- |rational| |sturmSequence| |setVariableOrder| |leftFactorIfCan|
- |copy!| |s17dlf| |d02cjf| |skewSFunction| |read!| |makeEq|
- |setsubMatrix!| |e02ddf| |removeZeroes| |topPredicate| |coth2tanh|
- |hash| |linearPolynomials| |lazyPseudoQuotient| |OMlistSymbols|
- |tanintegrate| |square?| |lazyPseudoRemainder| |badValues| |label|
- |show| |count| |selectMultiDimensionalRoutines| |leftRemainder|
- |cscIfCan| |limitedint| |orthonormalBasis| |prinb| |explimitedint|
- |c06fqf| |or?| = |rem| |karatsubaDivide| |freeOf?| |isConnected?|
- |coerceL| |bernoulliB| |minimalPolynomial| |stosePrepareSubResAlgo|
- |minPoints| |subResultantGcdEuclidean| |trace| |maxPoints| |number?|
- |quadraticNorm| |cn| |fortranReal| |s17adf| |recur| |getVariableOrder|
- < |BumInSepFFE| |squareMatrix| |basisOfRightNucleus| |separateDegrees|
- |compdegd| |bombieriNorm| |d01ajf| |showClipRegion| > |parametric?|
- |irreducibleRepresentation| |highCommonTerms| |equiv| |cLog|
- |permutations| |removeRedundantFactorsInPols|
- |reducedContinuedFraction| |zeroVector| |rdHack1| |bitTruth| <=
- |getZechTable| |s17agf| |rename| |cyclotomicDecomposition|
- |lineColorDefault| |summation| |deepExpand| >= |factorSquareFree|
- |constructor| |outputFloating| |infieldIntegrate| |aQuartic|
- |virtualDegree| |sinhcosh| |iisqrt3| |clipParametric| |UP2ifCan|
- |oblateSpheroidal| |rk4| |modifyPoint| |processTemplate| |eulerPhi|
- |elliptic?| |option| |euclideanNormalForm| |ideal| |shellSort|
- |minus!| |makeMulti| |difference| |trace2PowMod| |palglimint|
- |tryFunctionalDecomposition?| |shrinkable| + |OMputApp| |meatAxe|
- |notelem| |nothing| |inverseColeman| |tanh2trigh| |imagj|
- |semiDiscriminantEuclidean| |leftPower| |areEquivalent?| - |trigs|
- |reduced?| |sylvesterSequence| |hasSolution?| |OMencodingUnknown|
- |prefixRagits| |closedCurve?| |readable?| / |octon|
- |removeIrreducibleRedundantFactors| |asecIfCan| |pdf2ef| |presub|
- |cubic| |e01bef| |loopPoints| |movedPoints| |outputSpacing| |s17aff|
- |besselJ| |recolor| |bubbleSort!| |createMultiplicationTable|
- |sqfrFactor| |uniform| |init| |s13adf| |finite?| |dihedralGroup|
- |internalInfRittWu?| |systemSizeIF| |say| |mkPrim| |powerAssociative?|
- |inHallBasis?| |quoted?| |rule| |rightTrim| |numberOfFractionalTerms|
- |partialNumerators| |OMreceive| |exprHasAlgebraicWeight|
- |separateFactors| |cTan| |whatInfinity| |rootRadius|
- |monicRightFactorIfCan| |leftTrim| |check| GF2FG |rur| |coefChoose|
- |f01brf| |iicsch| |triangular?| |setButtonValue| |typeList| |multiset|
- |setProperties!| |exponent| |duplicates| |f02bbf| |var2Steps|
- |OMputFloat| |subscriptedVariables| |cPower| |twoFactor| |s17ahf|
- |scalarMatrix| |B1solve| |subtractIfCan| |palgint0| |elColumn2!|
- |removeRoughlyRedundantFactorsInPols| |rootDirectory| |rightUnits|
- |quartic| |outlineRender| |removeSinSq| |conical| |character?| |pack!|
- |ignore?| |incrementKthElement| |argscript| |basisOfCommutingElements|
- |power!| |createMultiplicationMatrix| |internalSubQuasiComponent?|
- |symmetricPower| |setOrder| |noncommutativeJordanAlgebra?|
- |explicitlyFinite?| |lyndon| |overlap| |OMgetEndError| |void|
- |semiResultantEuclideannaif| |f01mcf| |c06gqf|
- |semiSubResultantGcdEuclidean2| |f04atf| |complexElementary|
- |createPrimitiveNormalPoly| |ridHack1| |pattern| |distance|
- |primextendedint| |bivariateSLPEBR| |createPrimitivePoly| |omError|
- |f01rcf| |isList| |reverse| |setref| |setPosition| |d02bbf|
- |interReduce| |exportedOperators| |linearDependence| |reducedSystem|
- |LiePoly| |s18def| |deref| |constantKernel| |c06eaf|
- |semiIndiceSubResultantEuclidean| |entry| |hasTopPredicate?|
- |eigenvector| |partition| |cycleElt| |putColorInfo| |d01anf|
- |bezoutResultant| |extendedResultant| |keys| |cschIfCan| |middle|
- |linearAssociatedOrder| |se2rfi| |genericLeftDiscriminant| |idealiser|
- |rightExactQuotient| |nor| |prepareDecompose| |removeSinhSq|
- |sech2cosh| |nthExpon| |chebyshevT| |lastSubResultantElseSplit|
- |child| |resultantEuclidean| |setErrorBound| |fTable| |monic?| |block|
- |denomLODE| |pade| |curryRight| |removeDuplicates!|
- |integralMatrixAtInfinity| |changeNameToObjf| |UnVectorise| |isOp|
- |fullDisplay| |zag| |unprotectedRemoveRedundantFactors| |dictionary|
- |reseed| |OMgetBVar| |characteristicPolynomial| |makeprod| |zCoord|
- |iterationVar| |lexGroebner| |list?| |perfectNthRoot| |maxrow|
- |external?| |sequences| |pdct| |getProperties| |generalSqFr|
- |bumptab1| RF2UTS |newReduc| F2FG |irreducibleFactors| |colorFunction|
- |generic| |reopen!| |endOfFile?| |iiatan| |doubleDisc| |asinIfCan|
- |solveRetract| |genus| |mapCoef| |symmetricRemainder|
- |sizeMultiplication| |top| |powerSum| |approxNthRoot| |tanIfCan|
- |clearTheIFTable| |collectQuasiMonic| |corrPoly| |firstSubsetGray|
- |eigenMatrix| |unitNormal| |generate| |constant|
- |stoseInvertibleSetreg| |f02abf| |create3Space| |singRicDE|
- |invertibleElseSplit?| |permutationRepresentation| |composite|
- |squareFreePart| |qfactor| |var1Steps| |cAsin| |back| |leftOne|
- |lfextendedint| |mainKernel| |toroidal| |maxdeg| |rischDE|
- |incrementBy| |minrank| |orOperands| |negative?| |normalize|
- |triangSolve| |setLegalFortranSourceExtensions| |qualifier|
- |swapRows!| |acsch| |getMeasure| |expand| |infinityNorm| |s17dcf|
- |laguerreL| |iiasin| |shiftRoots| |UpTriBddDenomInv| |divideIfCan!|
- |s14abf| |diagonalMatrix| |filterWhile| |bandedJacobian|
- |padicFraction| |antisymmetricTensors| |factorAndSplit| |tanh2coth|
- |subscript| |prinshINFO| |paren| |morphism| |cylindrical|
- |filterUntil| |cCot| |fixedPoint| |point| |oddInfiniteProduct|
- |kovacic| |erf| |dn| |OMsupportsCD?| |createThreeSpace|
- |toseInvertibleSet| |select| |extractSplittingLeaf| |pow|
- |nextsousResultant2| |computePowers| |connect| |genericLeftTrace|
- |lflimitedint| |minPol| |resultantReduitEuclidean| |algDsolve|
- |s14aaf| |inconsistent?| |LyndonBasis| |symmetric?| |delay|
- |OMgetAttr| |OMgetEndApp| |startTable!| |byteBuffer| |factorials|
- |central?| |pointColorPalette| |series| |varList| |dilog| |normal01|
- |SFunction| |oddlambert| |mapmult| |subHeight| |range| |localUnquote|
- |surface| |sumOfSquares| |prinpolINFO| |factorSquareFreeByRecursion|
- |sin| |totalDifferential| |extendedint| |mappingAst| |rightRecip|
- |intPatternMatch| |deepestTail| |withPredicates| |bat1|
- |wronskianMatrix| |mainForm| |cos| |objectOf| |doubleComplex?|
- |deleteProperty!| |adaptive| |principal?| |arbitrary|
- |irreducibleFactor| |noKaratsuba| |null| |pushup| |tan| |Hausdorff|
- |OMReadError?| |OMencodingXML| |mainVariable| |nthRoot| |quickSort|
- |outputArgs| |charpol| |explicitEntries?| |listexp| |min| |not|
- |matrix| |particularSolution| |cot| |cAcos| |extractPoint| |entry?|
- |OMencodingSGML| |cAsech| |elRow2!| |fortranLinkerArgs| |operator|
- |rk4qc| |deriv| |and| |sec| |removeSuperfluousCases| |stFuncN|
- |components| |resultantReduit| |rightRemainder| |arguments| |ranges|
- |c06fpf| |sin2csc| |or| |scanOneDimSubspaces| |csc| |cot2tan| |ptree|
- |mpsode| |internalDecompose| |chiSquare1| |key| |twist| |curry| |tanQ|
- |imports| |tubePointsDefault| |xor| |createGenericMatrix| |asin|
- |comparison| |shiftRight| |f2st| |s21baf| |setPrologue!| |leftFactor|
- |reduceBasisAtInfinity| |minIndex| |realZeros| |case| |acos|
- |eyeDistance| |newLine| |filename| |mapMatrixIfCan| |exprex| |node?|
- |quotientByP| |supDimElseRittWu?| |identitySquareMatrix| |groebner|
- |buildSyntax| |Zero| |leftExtendedGcd| |atan| |normFactors|
- |roughEqualIdeals?| |multisect| |not?| |setAttributeButtonStep|
- |readLine!| |integralMatrix| |fortranLiteral| |leadingSupport|
- |FormatRoman| |One| |acot| |exists?| |moebiusMu| |headReduce|
- |permutationGroup| |parse| |unrankImproperPartitions1| |setright!|
- |oneDimensionalArray| |setLength!| |HenselLift| |contains?| |asec|
- |red| |basisOfRightNucloid| |iiacoth| |showArrayValues| |socf2socdf|
- |duplicates?| |reverse!| |endSubProgram| |dimensions| |changeBase|
- |acsc| |ddFact| |alphabetic| |totalLex| |OMgetEndAtp|
- |antiCommutative?| |reducedQPowers| |leftUnit| |plus|
- |showFortranOutputStack| |sinh| |nthRootIfCan| |select!| |nullary|
- |degreeSubResultant| |hasoln| |setEmpty!| |lintgcd| |perfectSqrt|
- |quotient| |d02gbf| |cosh| |variable?| |vedf2vef| |explicitlyEmpty?|
- |showAllElements| |f02xef| |e04gcf| |generators| |midpoint|
- |alternative?| |transform| |elt| |tanh| |lepol| |tubeRadius|
- |setScreenResolution3D| |max| |rewriteSetWithReduction| |powmod|
- |leftTraceMatrix| |alphanumeric?| |leadingTerm| |jacobian| |rational?|
- |coth| |chebyshevU| |OMunhandledSymbol| |palgRDE| |bipolar|
- |pointColor| |univcase| |times| |definingPolynomial| |sech|
- |stronglyReduce| |kind| |cos2sec| |charClass| |interval|
- |OMopenString| |isQuotient| |LyndonCoordinates| |midpoints| |hex|
- |setPredicates| |polarCoordinates| |mainMonomial| |csch|
- |createZechTable| |op| |hostPlatform| |rarrow| |variable| |tab|
- |extend| |isMult| |factorSquareFreePolynomial| |color|
- |dimensionOfIrreducibleRepresentation| |OMgetObject| |asinh|
- |unaryFunction| |mainVariables| |iterators| |listYoungTableaus|
- |complexForm| |KrullNumber| |lazyPquo| |integralRepresents| |implies|
- |groebner?| |rangeIsFinite| |useSingleFactorBound| |routines|
- |viewThetaDefault| |goto| |reverseLex| |coshIfCan| |airyBi|
- |evenlambert| |monom| |equivOperands| |complexRoots| |OMsend| |index|
- |LazardQuotient| |unparse| |rationalPoints| |fortranCarriageReturn|
- |enqueue!| |derivationCoordinates| |sub| |SturmHabichtSequence|
- |lowerPolynomial| |s17ajf| |fillPascalTriangle| |height| |argument|
- |rootOf| |c06ecf| |constDsolve| |logpart| |initials| |trunc|
- |OMgetFloat| |symbolTableOf| |bfEntry| |lhs| |linearPart|
- |squareFreePrim| |remove!| |repeating?| |common| |getBadValues|
- |bezoutDiscriminant| |operators| |opeval| |union| |sin?| |pair| |rhs|
- |addBadValue| |iiasinh| |reduceByQuasiMonic| |traverse| |tree|
- |finiteBound| |rightDiscriminant| |iiperm| |halfExtendedResultant1|
- |countRealRoots| |s14baf| |divideExponents| |cycleLength| |makeCrit|
- |c02aff| |addMatchRestricted| |collectUnder| |addPointLast|
- |hyperelliptic| |palgextint0| |partialDenominators| |addPoint|
- |leftDiscriminant| |e02daf| |heap| |list| |bipolarCylindrical|
- |csch2sinh| |constantOpIfCan| |df2mf| |fortranLogical|
- |characteristic| |squareFreePolynomial| |lastSubResultantEuclidean|
- |cCsc| |resultantEuclideannaif| |laurentRep| |car| |matrixDimensions|
- |low| |value| |tail| |zeroSquareMatrix| |PDESolve| |lfinfieldint|
- |bumptab| |writeByte!| |hue| |fortranDouble| |subNodeOf?| |bsolve|
- |cdr| |binary| |OMputString| |imagk| |OMputBVar| |prem| |scaleRoots|
- |setfirst!| |setDifference| |c06gcf| |firstNumer| |loadNativeModule|
- |pToDmp| |printTypes| |extractIfCan| |outputList| |argumentList!|
- |pushuconst| |tValues| |outputMeasure| |critT| |write!|
- |setIntersection| |infiniteProduct| |generator| |dmpToP|
- |numberOfComputedEntries| |sturmVariationsOf| |vconcat| |packageCall|
- |c06frf| |whileLoop| |HermiteIntegrate| |associatedSystem|
- |LowTriBddDenomInv| |bag| |setUnion| |component| |ratpart|
- |extractIndex| |fracPart| |selectOrPolynomials| |gethi| |belong?|
- |normalizeAtInfinity| |bivariatePolynomials| |linearlyDependentOverZ?|
- |apply| |weighted| |poisson| |df2fi| |musserTrials| |exQuo|
- |getOperator| |imagJ| |flexibleArray| |chineseRemainder|
- |LazardQuotient2| |dominantTerm| |iitan| |purelyTranscendental?|
- |screenResolution3D| |seriesToOutputForm| |row| |s13aaf| |po|
- |partialQuotients| |eigenvalues| |cAcosh| |inputBinaryFile| |size|
- |setFormula!| |stFunc1| |latex| |diff| |rspace| |isOpen?|
- |trapezoidal| |li| |complexEigenvalues| |stiffnessAndStabilityOfODEIF|
- |genericLeftMinimalPolynomial| |expPot| |errorInfo| |nextItem|
- |laplacian| |conjugates| |clearTheFTable|
- |halfExtendedSubResultantGcd1| |rootProduct| |complex?|
- |zeroDimPrime?| |removeRedundantFactors| |double| |subResultantGcd|
- |order| |extract!| |retractable?| |upperCase!| |associator|
- |allRootsOf| |radPoly| |approxSqrt| |chvar| |useNagFunctions|
- |elseBranch| |tanNa| |mapUp!| |compactFraction|
- |internalLastSubResultant| |OMgetApp| |leftExactQuotient| |setTex!|
- |minPoly| |discreteLog| |pushdterm| |showAll?|
- |isAbsolutelyIrreducible?| |OMwrite| |nullity| |drawComplex|
- |cyclicCopy| |cyclicEntries| |chainSubResultants| |SturmHabicht|
- |extendIfCan| |linear| |subst| |vertConcat| |subresultantSequence|
- |pseudoRemainder| |call| |build| |inRadical?| |listOfMonoms| |mesh|
- |intermediateResultsIF| |s18aef| |factorset| |prod| |lazyResidueClass|
- |crushedSet| |redPol| |semiSubResultantGcdEuclidean1|
- |LyndonWordsList1| |extractProperty| |selectIntegrationRoutines|
- |polynomial| |gbasis| |generalizedEigenvectors| |startTableGcd!|
- |quotedOperators| |OMgetError| |univariatePolynomials| |minordet|
- |increase| |reindex| |OMputBind| |OMcloseConn| |redpps| |linearMatrix|
- |zerosOf| |cycles| |indicialEquation| |declare!| |cCos| |numFunEvals|
- |printStats!| |rightOne| |viewpoint| |factor1| |nextPartition|
- |e04naf| |qroot| |figureUnits| |s18adf| |critM| |approximants|
- |nextIrreduciblePoly| |parents| |lifting| |setMaxPoints3D|
- |rightFactorCandidate| |karatsuba| |mapBivariate| |OMputEndError|
- |search| |objects| |tracePowMod| |bit?| |simplifyLog| |mindeg|
- |OMParseError?| |lowerCase!| |binding| |fortranInteger| |coerceImages|
- |lazyIrreducibleFactors| |test| |base| |saturate| |box| |imagE|
- |coercePreimagesImages| |qinterval| |algebraicOf| |initiallyReduced?|
- |equality| |matrixGcd| |cosIfCan| |writeLine!| |OMgetEndBVar|
- |overset?| |insert!| |getExplanations| |medialSet| |reducedForm|
- |ffactor| |normalDeriv| |log2| |readBytes!| |expintfldpoly|
- |precision| |att2Result| |commaSeparate| |internalIntegrate0| |prefix|
- |setStatus!| |genericLeftTraceForm| |minPoints3D| |associative?|
- |branchIfCan| |algebraicVariables| |mix| |associates?|
- |interpretString| |limitedIntegrate| |basisOfNucleus| |orbits| |round|
- |segment| |rightGcd| |setMinPoints| |decimal| |invertibleSet|
- |minimumExponent| |concat| |parseString| |karatsubaOnce| |andOperands|
- |removeZero| |iitanh| |froot| |stronglyReduced?| |homogeneous?|
- |solve| |inverseIntegralMatrix| |simpsono| |forLoop| |rotate!|
- |leftGcd| |doubleFloatFormat| |viewPhiDefault| |bfKeys| |sdf2lst|
- |bandedHessian| |setAdaptive| |pomopo!| |OMclose| |rightAlternative?|
- |sup| |true| |horizConcat| |double?| |s01eaf| |polCase|
- |basisOfRightAnnihilator| |solve1| |boundOfCauchy| |atanhIfCan|
- |unvectorise| |genericRightNorm| |fixedDivisor| |nthr| |mathieu22|
- |generalizedContinuumHypothesisAssumed?| |fullPartialFraction|
- |recoverAfterFail| |rootPower| |wordInGenerators| |OMputEndBVar|
- |lieAdmissible?| |contractSolve| |d01amf| |pastel| |multiEuclidean|
- |weierstrass| |airyAi| |externalList| |getPickedPoints| |iiacos| |xn|
- |useEisensteinCriterion| |index?| |modularGcd| |xCoord| |basis|
- |normalDenom| |previous| |relationsIdeal| |psolve| |defineProperty|
- |f07adf| |setRealSteps| |signature| |LyndonWordsList| |compound?|
- |rightDivide| |printInfo| |s17aef| |sum| |lazyIntegrate|
- |complexExpand| |setOfMinN| |setMaxPoints| |iprint| |symbolTable|
- |redmat| |enterInCache| |reducedDiscriminant| |localIntegralBasis|
- |cap| |cAtanh| |output| |compose| |numerator| |mkAnswer|
- |clearFortranOutputStack| |thenBranch| |mapExponents|
- |monomialIntPoly| |noLinearFactor?| |aLinear| |scale| |printingInfo?|
- |splitSquarefree| |OMconnOutDevice| |henselFact| |innerSolve1|
- |divideIfCan| |any| |d03eef| |accuracyIF| |inf| |adaptive?| |lp|
- |setleft!| |padicallyExpand| |internalIntegrate| |factorPolynomial|
- |raisePolynomial| |upperCase?| |tube| |factorOfDegree| |d01apf|
- |digamma| |torsion?| |lexTriangular| |realSolve| |OMreadStr|
- |symmetricGroup| |open?| |neglist| |inR?| |getCode|
- |commutativeEquality| |iiatanh| |center| |leftNorm| |doubleResultant|
- |f01bsf| |leftTrace| |isTimes| |find| |extension| |coleman| |dot|
- |torsionIfCan| |dAndcExp| |nsqfree| |quasiMonicPolynomials| |point?|
- |rootPoly| |fill!| |any?| |setprevious!| |edf2ef| |copyInto!|
- |antiAssociative?| |host| |lyndon?| |polynomialZeros| |updateStatus!|
- |node| |changeVar| |createNormalPrimitivePoly| |uncouplingMatrices|
- |divisorCascade| |stopTableGcd!| |pushFortranOutputStack|
- |expintegrate| |symbol?| |measure2Result| |wordInStrongGenerators|
- |setlast!| |preprocess| |functionIsFracPolynomial?| |integerIfCan|
- |separate| |popFortranOutputStack| |headReduced?| |continue|
- |interpolate| |bezoutMatrix| |exquo| |resultant| |exptMod| |coerceS|
- |logGamma| |style| |iiacosh| |variationOfParameters| |div|
- |selectOptimizationRoutines| |cond| |firstDenom| |exp1| |mathieu24|
- |Not| |empty| |ocf2ocdf| |sorted?| |closed?| |escape| |quo|
- |insertMatch| |stack| |generalPosition| |blue| |squareFreeFactors|
- |dimension| |setleaves!| |leftCharacteristicPolynomial|
- |getIdentifier| |option?| |leastAffineMultiple| |f04adf|
- |toseLastSubResultant| |setClipValue| |groebnerIdeal| |lowerCase?|
- |groebSolve| |rightMult| |optimize| |iiGamma| |OMsupportsSymbol?|
- |OMreadFile| |positiveSolve| |coerceP| |solveLinearlyOverQ|
- |systemCommand| |hasHi| |totalDegree| |cycleRagits| |setClosed|
- |ceiling| |rootBound| |geometric| |reduction| |baseRDE| |parts|
- |maximumExponent| |ip4Address| |unexpand| |stirling1| |rationalPoint?|
- |front| |mainSquareFreePart| |nextSubsetGray|
- |semiResultantEuclidean2| |log10| |s18aff| |normDeriv2| |rdregime|
- |resetBadValues| |scalarTypeOf| |createPrimitiveElement| |innerSolve|
- |normal| |bitand| |representationType| |rombergo| |htrigs|
- |arrayStack| |tensorProduct| |normalElement| |rightPower|
- |primlimintfrac| |gradient| |bitior|
- |zeroSetSplitIntoTriangularSystems| |fibonacci| |s17dgf| |c06fuf|
- |epilogue| |s19acf| |part?| |palgextint| |sinIfCan| |edf2fi|
- |signAround| |length| |patternVariable| |integral?| |numberOfDivisors|
- |nthExponent| |graphCurves| |zeroDimensional?| |sinh2csch| |comp|
- |trueEqual| |minset| |scripts| |implies?| |aQuadratic|
- |leftScalarTimes!| |internal?| |zeroDim?| |f01ref| |gderiv|
- |abelianGroup| |rquo| |coordinates| |equation| |hitherPlane|
- |numerators| |simplifyPower| |showIntensityFunctions|
- |setScreenResolution| |viewWriteDefault| |numberOfMonomials| |e01sef|
- |An| |purelyAlgebraicLeadingMonomial?| |position!| |prime?| |hermiteH|
- |failed?| |makeFR| |lazyPseudoDivide| |curve?| |mathieu23|
- |integralBasis| |constant?| |denomRicDE| |sylvesterMatrix|
- |fortranTypeOf| |maxPoints3D| |exprHasWeightCosWXorSinWX|
- |makeViewport2D| |lazyGintegrate| |modularGcdPrimitive| |findBinding|
- |SturmHabichtCoefficients| |myDegree| |content| |showTheRoutinesTable|
- |leftLcm| |stoseInvertibleSet| UP2UTS |drawToScale| |e04mbf| |s19aaf|
- |laplace| |monicDecomposeIfCan| |irreducible?| |setLabelValue|
- |shufflein| |writeBytes!| |extractTop!| |backOldPos| |algebraicSort|
- |debug| |showScalarValues| |repeating| |arg1| |factorsOfDegree|
- |divisor| |digits| |quasiMonic?| |integralCoordinates| |s19abf|
- |evaluateInverse| |nthFractionalTerm| |sort!| D |arg2| |cosSinInfo|
- |light| |stFunc2| |palgintegrate| |exponential1| |factorGroebnerBasis|
- |modifyPointData| |indices| |stoseInvertible?| |primintegrate|
- |hconcat| |zeroSetSplit| |e02bdf| |mainMonomials| |palginfieldint|
- |infix| |basisOfMiddleNucleus| |polygon| |conditions|
- |genericRightTrace| |nlde| |janko2| |primPartElseUnitCanonical!|
- |tableForDiscreteLogarithm| |conjugate| |sPol| |cycleTail|
- |cardinality| |commutator| |match| |kroneckerDelta| |e02dcf|
- |getStream| |f04qaf| |nand| |logical?| |fractRagits|
- |viewWriteAvailable| |integral| |setvalue!| |iidprod| |schwerpunkt|
- |cyclicParents| |Beta| |palgLODE0| |quadraticForm| |computeInt|
- |d01fcf| |getOrder| |zoom| |sequence| |Lazard2| |OMserve| |wholeRadix|
- |readIfCan!| |resetAttributeButtons| |hexDigit| |e01bff|
- |makeVariable| |localReal?| |zeroMatrix| |coerceListOfPairs| |push!|
- |sec2cos| |generalTwoFactor| |iiacot| |genericRightMinimalPolynomial|
- |OMputAtp| |rightQuotient| |lambert| |hasPredicate?| |resultantnaif|
- |cross| |nodeOf?| |ScanFloatIgnoreSpaces| |purelyAlgebraic?|
- |sparsityIF| |collectUpper| |curryLeft| |pointLists| |zero?|
- |rowEchelon| |pleskenSplit| |complexNumericIfCan| |moebius|
- |fixedPoints| |print| |logIfCan| |directory| |reset| |lfunc|
- |curveColor| |supersub| |userOrdered?| |clipBoolean| |resolve|
- |OMputEndApp| |acschIfCan| |modulus| |coefficient| |identityMatrix|
- |flexible?| |reorder| |choosemon| |quoByVar| |expenseOfEvaluation|
- |prepareSubResAlgo| |generalizedInverse| |d02ejf| |write|
- |outputAsFortran| |getlo| |first| |checkRur| |f04arf| |limit|
- |sizePascalTriangle| Y |iisech| |increment| |outputGeneral| |plus!|
- |save| |testDim| |rest| |clip| |cAcot| |OMputEndBind|
- |rectangularMatrix| |splitConstant| |f01qcf|
- |conditionsForIdempotents| |c06ekf| |reify| |substitute| |name|
- |d01asf| |string?| |linearDependenceOverZ| |solid?| |e02zaf| |besselY|
- |maxIndex| |imagi| |removeDuplicates| F |body| |inverse| |pmintegrate|
- |patternMatch| |LagrangeInterpolation| |f04faf| |evaluate| |phiCoord|
- |d03edf| |primitivePart| |untab| |normalizeIfCan| |badNum| |rotate|
- |subset?| |createIrreduciblePoly| |Is| |binomial| |pair?| ~ |f04mbf|
- |cCoth| |less?| |Nul| |basicSet| |csubst| |findCycle| |dmp2rfi|
- |birth| |powers| |moduleSum| |infinite?| |vark|
- |topFortranOutputStack| |OMconnInDevice| |primPartElseUnitCanonical|
- |retract| |maxint| |makeResult| |open| |squareTop| |rightNorm| |fmecg|
- |rootSimp| |/\\| |normal?| |numberOfComponents| |scripted?|
- |principalIdeal| |stopTable!| |flatten| |selectNonFiniteRoutines|
- |brillhartIrreducible?| |ListOfTerms| |unitCanonical| |\\/|
- |OMgetEndAttr| |numberOfComposites| |recip| |leadingCoefficientRicDE|
- |refine| |cAcoth| |port| |goodPoint| |ratDsolve| |ef2edf| |iisin|
- |scopes| |dark| |quatern| |generalInfiniteProduct| |f02bjf|
- |rightUnit| |hclf| |meshFun2Var| |s17akf| |appendPoint|
- |factorFraction| |randomR| |clipSurface| |cAsec| ** |checkPrecision|
- |t| |f02adf| |clearDenominator| |absolutelyIrreducible?| |shift|
- |perfectNthPower?| |getMatch| |orbit| |direction| |unitsColorDefault|
- |legendreP| |replace| |rightFactorIfCan| |e02agf| |cyclicGroup|
- |impliesOperands| |subResultantChain| |ipow| |shiftLeft| |secIfCan|
- |iisec| |collect| |transpose| |rischNormalize| EQ |fglmIfCan| |term|
- |clearTheSymbolTable| |ode| |retractIfCan| |ScanArabic|
- |extendedEuclidean| |listBranches| |callForm?| |multiEuclideanTree|
- |revert| |transcendentalDecompose| |makingStats?| |subMatrix|
- |property| |specialTrigs| |every?| |Ei| |numer| |generateIrredPoly|
- |clearCache| |f2df| |changeName| |innerint| |permutation| |bottom!|
- |rightMinimalPolynomial| |f07fef| |cyclotomic| |denom| |c06ebf|
- |leadingBasisTerm| |exprToUPS| |autoReduced?| |OMencodingBinary|
- |exactQuotient| |leastPower| |outerProduct| |key?|
- |algebraicCoefficients?| |c05nbf| |sincos|
- |rewriteSetByReducingWithParticularGenerators| |cosh2sech| |aCubic|
- |pseudoDivide| |units| |setProperty| |cRationalPower| |leftUnits| |pi|
- |OMputError| |selectFiniteRoutines| |triangulate| |makeCos|
- |decompose| |setProperties| |leaf?| |updatF| |showTheIFTable|
- |bumprow| |infinity| |green| |removeRedundantFactorsInContents|
- |ReduceOrder| |genericRightTraceForm| |outputForm| |makeSeries|
- |intChoose| |category| |zeroOf| |trivialIdeal?|
- |standardBasisOfCyclicSubmodule| |super| |lazyVariations| |elementary|
- |reflect| |inverseIntegralMatrixAtInfinity| |connectTo| |domain|
- |insertBottom!| |identity| |supRittWu?| |factors| |eq?| |compBound|
- |elem?| |sqfree| |package| |nextPrimitiveNormalPoly|
- |degreeSubResultantEuclidean| |makeGraphImage| |kernel| |merge|
- |bindings| |code| |axesColorDefault| |simplify| |graphState| |map|
- |modTree| |draw| |pointData| |drawCurves| |viewSizeDefault|
- |fprindINFO| |lyndonIfCan| |iisqrt2| |iiexp| |printCode| |magnitude|
- |traceMatrix| |d01aqf| |wrregime| |e02ahf| |realEigenvalues| |terms|
- |lazyPremWithDefault| |satisfy?| |nextSublist| |mergeDifference|
- |genericPosition| |clikeUniv| |e01sbf| |lquo| |mapUnivariate| |lex|
- |setRow!| |rationalFunction| |internalZeroSetSplit| |dom| |ramified?|
- |solveLinear| |represents| |totalGroebner| |f02agf| |makeObject|
- |yCoordinates| |physicalLength!| |inputOutputBinaryFile| |numeric|
- |diagonal| |removeCoshSq| |convert| |iidsum| |computeBasis|
- |ScanRoman| |expr| |radical| |monicDivide| |isobaric?| |s17dhf|
- |nextNormalPrimitivePoly| |startTableInvSet!| |d01gbf| |sayLength|
- |cyclicSubmodule| |coef| |setColumn!| |sample| |changeWeightLevel|
- |pole?| |tanSum| |llprop| |stripCommentsAndBlanks| |pointSizeDefault|
- |imaginary| |quadratic?| |unit| |antiCommutator| |OMgetAtp| UTS2UP
- |currentScope| |selectAndPolynomials| |primitivePart!| |title|
- |patternMatchTimes| |acosIfCan| |factorsOfCyclicGroupSize|
- |nextNormalPoly| |cExp| |options| |f07aef| |differentialVariables|
- |expandPower| |getMultiplicationTable| |scan| |iiacsc| |members|
- |s18acf| |nil?| |invertIfCan| |intersect| |anfactor| |mindegTerm|
- |integralDerivationMatrix| |optAttributes| |currentCategoryFrame|
- |mkcomm| |e04ucf| |hermite| |e| |ran| |f02axf| |overlabel| |string|
- |strongGenerators| |nthFlag| |simplifyExp| |s21bbf| |maxColIndex|
- |bat| |sumSquares| |moduloP| |bitLength| |nthCoef| |parametersOf|
- |nonSingularModel| |cot2trig| |mapdiv| |copies| |readByte!|
- |showTypeInOutput| |bivariate?| |pquo| |pdf2df|
- |genericRightDiscriminant| |viewport2D| |mesh?| |polygon?| |polyRDE|
- |lighting| |baseRDEsys| |returnType!| |next| |regularRepresentation|
- |seriesSolve| |getOperands| |gcdprim| |continuedFraction|
- |constantCoefficientRicDE| |lllip| |setelt!| |mainVariable?|
- |removeRoughlyRedundantFactorsInContents| |leadingExponent|
- |trapezoidalo| |iiabs| |completeHensel| |predicate| |linGenPos|
- |null?| |setTopPredicate| |antisymmetric?| |swap!|
- |ScanFloatIgnoreSpacesIfCan| |roughBase?| |rightExtendedGcd|
- |semiResultantReduitEuclidean| |is?| |critpOrder| |asechIfCan|
- |leadingIndex| |divisors| |makeTerm| |s19adf| |plusInfinity|
- |completeEchelonBasis| |split| |primitiveElement| |high| |mainContent|
- |normalise| |setCondition!| |nthFactor| |typeLists|
- |rootOfIrreduciblePoly| |rk4a| |minusInfinity| |realRoots|
- |internalSubPolSet?| |algint| |e01daf| |degreePartition|
- |messagePrint| |solid| |multiple?| |tubePoints|
- |sumOfKthPowerDivisors| |declare| |curve| |completeSmith| |resetNew|
- |Vectorise| |width| |tubeRadiusDefault| |monomial?| |OMread|
- |selectODEIVPRoutines| |integerBound| |resize| |ODESolve|
- |rubiksGroup| |unknown| |errorKind| |f02ajf| |distribute| |addPoint2|
- |decrease| |Frobenius| |factorial| |palgLODE| |fixedPointExquo| |kmax|
- |linear?| |spherical| |roughUnitIdeal?| |complexIntegrate|
- |OMgetEndBind| |primitive?| |intcompBasis| |sts2stst| |qelt|
- |universe| |in?| |getButtonValue| |signatureAst|
- |integralBasisAtInfinity| |lfintegrate| |graeffe| |qsetelt|
- |primaryDecomp| |leader| |contract| |palgint| |isPower| |parameters|
- |linearAssociatedExp| |createRandomElement| |isExpt| |plotPolar|
- |derivative| |type| |toseSquareFreePart| |d01gaf| |xRange| |multMonom|
- |deepCopy| |nextPrimitivePoly| |f04axf| |sort| |ramifiedAtInfinity?|
- |e02akf| |size?| |insertTop!| |binaryFunction| |yRange|
- |blankSeparate| |selectPolynomials| |paraboloidal| |subPolSet?|
- |rootKerSimp| |identification| |fortran| |module| |over| |mulmod|
- |zRange| |realEigenvectors| |contours| |optional| |mdeg|
- |extensionDegree| |numericalOptimization| |minimumDegree|
- |getConstant| |map!| |Ci| |OMputEndAttr| |iicsc| |thetaCoord|
- |fortranDoubleComplex| |meshPar1Var| |makeUnit| |exactQuotient!|
- |qsetelt!| |safeCeiling| |d03faf| |iteratedInitials| |ref|
- |algebraicDecompose| |currentEnv| |rangePascalTriangle| |delta|
- |random| |nullSpace| |and?| |real?| |root?| |setchildren!|
- |mainDefiningPolynomial| |tRange| |lazyPrem| |quadratic| |mat|
- |createNormalElement| |shallowExpand| |expandLog| |operation|
- |tanhIfCan| |complexEigenvectors| |evenInfiniteProduct| |cAcsc|
- |empty?| |coefficients| |repSq| |graphStates| |constantIfCan| |f02akf|
- |cothIfCan| |setnext!| |printInfo!| |nullary?| |binaryTournament|
- |unravel| |companionBlocks| |mapExpon| |outputBinaryFile| |datalist|
- |totalfract| |e04fdf| |symmetricTensors| |realElementary| |c06gbf|
- |dequeue| |complement| |head| |elements| |exprHasLogarithmicWeights|
- |getSyntaxFormsFromFile| |delete!| |subQuasiComponent?| |singular?|
- |tanAn| |ptFunc| |inGroundField?| |complementaryBasis| |augment|
- SEGMENT |numberOfHues| |polygamma| |minGbasis| |besselI| |e02dff|
- |depth| |eigenvectors| |elliptic| |computeCycleEntry| |trim|
- |startPolynomial| |prindINFO| |partitions| |createNormalPoly| |e04jaf|
- |lambda| |message| |member?| |Gamma| |singularitiesOf| |startStats!|
- |vector| |categoryFrame| |moreAlgebraic?| |stoseInvertible?sqfreg|
- |printHeader| |comment| |beauzamyBound| |integralAtInfinity?| |taylor|
- |overbar| |parabolic| |solveLinearPolynomialEquationByRecursion|
- |differentiate| |innerEigenvectors| |ksec| |leaves| |setEpilogue!|
- |getGoodPrime| |replaceKthElement| |explogs2trigs| |laurent|
- |discriminant| |atanIfCan| |getGraph| |script| |df2st| |iicot|
- |acothIfCan| |exprToXXP| |solveid| |tower| |euclideanGroebner|
- |dimensionsOf| |puiseux| |makeop| |radix| |extendedIntegrate|
- |ratDenom| |halfExtendedResultant2| |seed| |radicalEigenvectors|
- |dihedral| |s18dcf| |linearAssociatedLog| |padecf| |setStatus|
- |condition| |mantissa| |pToHdmp| |associatorDependence|
- |taylorQuoByVar| |basisOfCentroid| |numberOfNormalPoly| |setImagSteps|
- |critBonD| |inv| |fintegrate| |presuper| |SturmHabichtMultiple|
- |elRow1!| |tex| |cons| |adjoint| |expressIdealMember| |level|
- |ParCond| |discriminantEuclidean| |hessian| |extendedSubResultantGcd|
- |ground?| |mapGen| |nonQsign| |integer?| |tab1| |d02bhf| |determinant|
- |e02bef| |relativeApprox| |eq| |upperCase| |domainOf| |rowEch| |lift|
- |error| |outputFixed| |ground| |returnTypeOf|
- |cyclotomicFactorization| |selectSumOfSquaresRoutines|
- |sortConstraints| |modularFactor| |iter| |d01bbf| |euler|
- |pseudoQuotient| |showTheFTable| |numberOfImproperPartitions|
- |shanksDiscLogAlgorithm| |reduce| |leadingMonomial| |leftDivide|
- |assert| |oddintegers| |someBasis| |complexNumeric| |enterPointData|
- |OMputAttr| |bright| |wreath| |viewPosDefault|
- |stoseInternalLastSubResultant| |infRittWu?| |weights|
- |leadingCoefficient| |resetVariableOrder| |mirror| |e02baf| |rules|
- |mr| |iicos| |insertRoot!| |rightRankPolynomial| |rightTrace| |quote|
- |kernels| |makeSin| |primitiveMonomials| |regime| |quasiAlgebraicSet|
- |randnum| |Si| |balancedFactorisation| |leftRankPolynomial| |legendre|
- |divide| |leadingIdeal| |rationalIfCan| |reductum|
- |indiceSubResultantEuclidean| |univariate| |upDateBranches|
- |alphanumeric| |source| |rightLcm| |leastMonomial| |s21bcf| |term?|
- |dec| |harmonic| |e02aef| |romberg| |extractClosed|
- |mainCharacterization| |superHeight| |listOfLists| |lexico| |tableau|
- |fortranCharacter| |primextintfrac| |f04asf| |polyRicDE| ~=
- |quasiRegular| |basisOfCenter| |c02agf| |genericLeftNorm|
- |radicalEigenvector| |associatedEquations| |pol| |s17acf|
- |selectfirst| |factor| |coerce| |ParCondList| |minRowIndex|
- |pointColorDefault| |exp| |pascalTriangle| |pushdown|
- |curveColorPalette| |sqrt| |aromberg| |notOperand| |create|
- |construct| |groebgen| |f02wef| |inverseLaplace|
- |firstUncouplingMatrix| |normalForm| |subNode?| |physicalLength|
- |fractionFreeGauss!| |OMgetString| |column| |real| |lazyEvaluate|
- |d01alf| |move| |target| |showRegion| |tablePow| |mainPrimitivePart|
- |palglimint0| |perfectSquare?| |slash| |bounds| |imag| |delete|
- |laguerre| |stiffnessAndStabilityFactor| |quasiRegular?| |f02fjf|
- |monomRDE| |directProduct| NOT |fixPredicate| |probablyZeroDim?|
- |cyclePartition| |internalAugment| |compile| |diophantineSystem|
- |multinomial| |jacobi| |gcdcofact| |univariatePolynomialsGcds| OR
- |npcoef| |semiLastSubResultantEuclidean| |complexSolve| |drawStyle|
- |one?| |iiasech| |e01saf| |doubleRank| |mainExpression| |polar| AND
- |permanent| |more?| |brace| |cycleEntry| |atrapezoidal| |viewport3D|
- |has?| |complexLimit| |hypergeometric0F1|
- |rewriteIdealWithQuasiMonicGenerators| |OMputEndAtp| |destruct|
- |tan2trig| |d02raf| |functionIsContinuousAtEndPoints| |gcdPolynomial|
- |stopMusserTrials| |linearlyDependent?| |numericIfCan|
- |indicialEquations| |shade| |sechIfCan| |Aleph| |ravel|
- |partialFraction| |parent| |monicRightDivide| |monomials| |generic?|
- |sinhIfCan| |validExponential| |frobenius| |dualSignature| |reshape|
- |OMgetEndObject| |coordinate| |nextLatticePermutation| |clearTable!|
- |writable?| |hspace| |rowEchLocal| |complexZeros| |cTanh| |chiSquare|
- |meshPar2Var| |lo| |numberOfCycles| |positive?| |iicoth|
- |linkToFortran| |monomial| |truncate| |digit?| |branchPoint?|
- |predicates| |restorePrecision| |algebraic?| |char| |setPoly|
- |factorSFBRlcUnit| |addMatch| |numFunEvals3D| |multivariate|
- |lastSubResultant| |anticoord| |f02aef| |unitNormalize|
- |insertionSort!| |digit| |roughBasicSet| |leftRank| |setelt|
- |variables| |shallowCopy| |listRepresentation| |rotatey| |f02aff|
- |expenseOfEvaluationIF| |stoseLastSubResultant| |nary?| |varselect|
- |makeSUP| |setProperty!| |positiveRemainder| |conjug|
- |transcendenceDegree| |update| |combineFeatureCompatibility| |e02bbf|
- * |rootSplit| |times!| |copy| |initTable!| |directSum| |subTriSet?|
- |simpleBounds?| |fortranCompilerName| |rotatex| |problemPoints|
- |fortranComplex| |uniform01| |d02kef| |possiblyNewVariety?|
- |squareFree| |testModulus| |headAst| |ellipticCylindrical| |float|
- |qqq| |initial| |halfExtendedSubResultantGcd2| |alternating| |e02gaf|
- |critB| |f02awf| |prevPrime| |OMgetVariable| |expIfCan|
- |removeConstantTerm| |swapColumns!| |autoCoerce| |splitNodeOf!|
- |rCoord| |asinhIfCan| |measure| |cycleSplit!| |prologue|
- |principalAncestors| |csc2sin| |zeroDimPrimary?| |dequeue!|
- |leftRegularRepresentation| |diagonalProduct| |makeRecord|
- |stoseIntegralLastSubResultant| |dflist| |match?| |prime| |position|
- |iipow| |s17def| |generalLambert| |yellow| |merge!|
- |possiblyInfinite?| |cSin| |maxRowIndex| |nonLinearPart|
- |radicalRoots| |lprop| |rightTraceMatrix| |nextPrime| |e04dgf|
- |FormatArabic| |factorByRecursion| |newSubProgram| |cotIfCan| |acosh|
- |jordanAlgebra?| |exponents| |getMultiplicationMatrix| |finiteBasis|
- |mergeFactors| |mapDown!| |child?| |convergents| |weight| |flagFactor|
- |atanh| |numericalIntegration| |iflist2Result|
- |stoseInvertibleSetsqfreg| |symmetricSquare| |pile| |d01akf| |e02adf|
- |f07fdf| |multiplyExponents| |acoth| |makeViewport3D| |push|
- |numberOfVariables| |univariatePolynomial| |calcRanges|
- |decomposeFunc| |weakBiRank| |ord| |iomode| |isPlus| |assign| |asech|
- |failed| |iiacsch| |numberOfPrimitivePoly| |f01rdf| GE |rootNormalize|
- |primlimitedint| |linSolve| |df2ef| |setFieldInfo| |radicalSimplify|
- |eisensteinIrreducible?| |removeCosSq| |commutative?| |sumOfDivisors|
- |radicalEigenvalues| |yCoord| |iFTable| GT
- |tryFunctionalDecomposition| |denominator| |laurentIfCan|
- |numberOfIrreduciblePoly| |normalizedAssociate| |f04maf| |tan2cot|
- |multiple| |controlPanel| |monomialIntegrate| |e02bcf| |normalized?|
- |changeThreshhold| |removeSuperfluousQuasiComponents| LE
- |basisOfLeftNucleus| |binaryTree| |primintfldpoly| |printStatement|
- |quasiComponent| |zero| |applyQuote| |lifting1| |normalizedDivide|
- |abs| |diag| |OMgetSymbol| |solveInField| LT |increasePrecision|
- |splitDenominator| |exponential| |iifact| |s15aef| |intensity|
- |rotatez| |numberOfOperations| |even?| |youngGroup|
- |rewriteIdealWithHeadRemainder| |denominators| |schema| |floor|
- |gcdcofactprim| |And| |droot| |degree| |rst| |f04jgf| |capacity|
- |iicosh| |cAtan| |e02ajf| |updatD| |screenResolution| |symFunc|
- |stirling2| |distFact| |Or| |coord| |conditionP| |indiceSubResultant|
- |ruleset| |clipWithRanges| |c06gsf| |s20acf| |enumerate| |palgRDE0|
- |viewDeltaXDefault| |closeComponent| |numberOfChildren| |element?|
- |ode2| |OMconnectTCP| |diagonals| |e01sff| |maxrank| |invertible?|
- |currentSubProgram| |branchPointAtInfinity?| |polyPart|
- |reciprocalPolynomial| |completeEval| |leftRecip| |ricDsolve|
- |groebnerFactorize| |certainlySubVariety?| |cSinh| |rischDEsys|
- |trigs2explogs| |stoseSquareFreePart| |OMopenFile| |primes|
- |deepestInitial| |rightRank| |getDatabase| |monicModulo|
- |outputAsScript| |totolex| |suchThat| |selectPDERoutines| |entries|
- |complexNormalize| |rowEchelonLocal| |hdmpToDmp| |mapUnivariateIfCan|
- |LiePolyIfCan| |makeSketch| |powern| |unit?| |expt|
- |solveLinearPolynomialEquationByFractions| |imagK|
- |semiDegreeSubResultantEuclidean| |lowerCase| |result| |vectorise|
- |fractRadix| |algintegrate| |primeFactor| |plenaryPower|
- |radicalOfLeftTraceForm| |subresultantVector| |consnewpol|
- |substring?| |log| |OMgetType| |ode1| |mightHaveRoots| |mvar|
- |properties| |singularAtInfinity?| |mathieu11| |root| |hdmpToP| |cup|
- |returns| |alternatingGroup| |fi2df| |getCurve| |reduceLODE|
- |var1StepsDefault| |OMputEndObject| |translate| |adaptive3D?|
- |primeFrobenius| |addmod| |nil| |infinite| |arbitraryExponent|
- |approximate| |complex| |shallowMutable| |canonical| |noetherian|
- |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
- |commutative|) \ No newline at end of file
+ |Record| |Union| |moebiusMu| |factorset| |powmod| |sort| |deref|
+ |extendedResultant| |gcdPrimitive| |tubePlot| |rotate|
+ |brillhartIrreducible?| |zeroSetSplitIntoTriangularSystems| |freeOf?|
+ |rowEchelon| |complementaryBasis| |evenInfiniteProduct| |separate|
+ |lagrange| |setMinPoints| |fortran| |members| |mapUnivariate|
+ |quotient| |generalizedContinuumHypothesisAssumed| |poisson| |cAcoth|
+ |cyclePartition| |rightUnits| |sub| |palginfieldint| |asinhIfCan|
+ |setPredicates| |startStats!| |makeGraphImage| |sequence|
+ |safeCeiling| |bat| |LazardQuotient2| |initTable!|
+ |topFortranOutputStack| |showArrayValues| |cos2sec| |dot| |null?|
+ |stoseInvertible?| |find| |signAround| |random| |radPoly|
+ |OMputEndAtp| |e04fdf| |e02dff| |getMeasure| |OMgetApp|
+ |viewWriteAvailable| |complexEigenvectors| |rectangularMatrix| |critT|
+ |setIntersection| |cyclicSubmodule| |iiabs| |lazyPquo| |finite?|
+ |perfectNthRoot| |removeSuperfluousQuasiComponents| |rootNormalize|
+ |presub| |presuper| |setrest!| |leftRegularRepresentation| |setUnion|
+ |rightMult| |const| |mainVariable| |ideal| |setnext!| |roughBase?|
+ |extractProperty| |reciprocalPolynomial| |power| |copyInto!|
+ |bivariateSLPEBR| |apply| |digits| |mapdiv| |datalist|
+ |patternMatchTimes| |currentEnv| |s17aef| |OMgetVariable| |green|
+ |createNormalPoly| |pushdown| |nil| |virtualDegree| |wholeRadix|
+ |rightDiscriminant| |diagonalProduct| |bit?| |leadingIdeal|
+ |symmetricProduct| |OMsetEncoding| |monomial| |floor| |df2ef| |index?|
+ |integralBasisAtInfinity| |coth2trigh| |size| |derivative|
+ |quotientByP| |call| |palgint| |capacity| |c05nbf| |satisfy?|
+ |multivariate| |removeCoshSq| |preprocess| |depth| |quasiComponent|
+ |limitedIntegrate| |merge| |e02zaf| |interReduce| |imagj|
+ |monicDecomposeIfCan| |variables| |leftQuotient| |RittWuCompare|
+ |setProperties| |extend| |approximate| |function| |reduceLODE|
+ |characteristicSerie| |curryLeft| |float?| |scopes| |repeatUntilLoop|
+ |makingStats?| |makeUnit| |roughBasicSet| |linSolve| |id| |complex|
+ |factorByRecursion| |qroot| |first| |rk4a| |rationalFunction|
+ |besselI| |byte| |monicRightDivide| |argscript| |coerceImages|
+ |stoseInvertibleSetreg| |predicates| |squareFreeFactors| |eval| |rest|
+ |jordanAdmissible?| |OMunhandledSymbol| |list?| |computeCycleEntry|
+ |script| |formula| |numericIfCan| |hasoln| |screenResolution| |delay|
+ |table| |problemPoints| |iflist2Result| |substitute| |f04atf| |close|
+ |numberOfCycles| |rk4f| |exponentialOrder| |groebnerIdeal| |f07fdf|
+ |qinterval| |e01bff| |closedCurve?| |new| |obj| |removeDuplicates|
+ |romberg| |selectFiniteRoutines| |clearFortranOutputStack|
+ |chebyshevT| |charpol| |dihedralGroup| |zeroVector| |c06gcf|
+ |cosIfCan| |taylor| |getOperator| |generalPosition| |search|
+ |arrayStack| |genericLeftNorm| |ParCondList| |remove|
+ |sturmVariationsOf| |display| |wordsForStrongGenerators| |printTypes|
+ |cache| |sinh2csch| |tex| BY |tab1| |laurent| |monicLeftDivide|
+ |cycleRagits| |leftFactor| |fintegrate| |setErrorBound| |checkForZero|
+ |operation| |OMgetAtp| |orbit| |monic?| |tower| |heap| |and?| |nrows|
+ |constant| |puiseux| |fractRagits| |setref| |froot| |stopTableGcd!|
+ |last| |cyclicCopy| |fixedPointExquo| |mesh| |stripCommentsAndBlanks|
+ |addPointLast| |ncols| |roman| |totalDifferential| |internal?|
+ |frobenius| |indicialEquationAtInfinity| |assoc| |someBasis| |Si|
+ |intcompBasis| |oddlambert| |mkcomm| |bezoutMatrix|
+ |leftCharacteristicPolynomial| |inv| |stFuncN| |e02ahf| |evenlambert|
+ |genericRightTrace| |squareMatrix| |s17dcf| |listRepresentation|
+ |vertConcat| |tubePoints| |leftRemainder| |ground?| |rdregime|
+ |noLinearFactor?| |OMgetEndObject| |input| |showScalarValues|
+ |vectorise| |diff| |yCoord| |lazyPrem| |ground| |cRationalPower|
+ |subResultantsChain| |graphs| |OMputEndBVar| |nextPartition|
+ |computeInt| |clip| |rank| |coth2tanh| |library| |outputForm| |curry|
+ |oneDimensionalArray| |primeFrobenius| |s17aff| |complexNumeric|
+ |leadingMonomial| |getCurve| |listLoops| |cartesian| |lcm| |e01saf|
+ |distribute| |epilogue| |d01ajf| |option?| |factorsOfDegree|
+ |OMputString| |leadingCoefficient| |squareFreePart|
+ |setScreenResolution3D| |rules| |idealiser| |univariate?| |mapDown!|
+ |euler| |algebraicDecompose| |bezoutDiscriminant| |kernels| |plus!|
+ |primitiveMonomials| |parametersOf| |region| |left| |exactQuotient|
+ |pack!| |append| |modifyPoint| |selectPolynomials| |powern|
+ |bipolarCylindrical| |coerceP| |sayLength| |dAndcExp| |frst|
+ |viewZoomDefault| |semicolonSeparate| |reductum| |univariate| |right|
+ |exprToXXP| |gcd| |cycleLength| |integralBasis| |headAst| |set|
+ |zeroDimensional?| |removeRoughlyRedundantFactorsInContents| |size?|
+ |lastSubResultant| |partition| |possiblyNewVariety?| |prefixRagits|
+ |factorFraction| |palgRDE0| |cAtan| |false| |iiacos| |primextintfrac|
+ |polyRDE| |returnType!| |insertRoot!| |iiasinh| |appendPoint|
+ |primextendedint| |sum| |f02agf| |pureLex| |pushdterm|
+ |currentSubProgram| |nextNormalPoly| |ratPoly| |complexIntegrate|
+ |evaluate| |integral?| |factor| |binaryTree|
+ |rightCharacteristicPolynomial| |putColorInfo| |var1Steps| |randomLC|
+ |nextItem| |isPlus| |sqrt| |OMputError| |startPolynomial| |gderiv|
+ |string?| |shanksDiscLogAlgorithm| |sizeLess?| |norm| |real| |htrigs|
+ |aQuartic| |prinb| |geometric| |lp| |swapRows!| |internalIntegrate0|
+ |backOldPos| |lexGroebner| |semiDegreeSubResultantEuclidean| |imag|
+ |s18def| |ptree| |equality| |changeMeasure| |c05adf| |directProduct|
+ |topPredicate| |idealSimplify| |remainder| |OMopenFile| |superscript|
+ |showSummary| |insertBottom!| |numberOfFractionalTerms| |coleman|
+ |probablyZeroDim?| |radicalEigenvectors| |interpretString| |midpoints|
+ |integralLastSubResultant| |iiacsc| |leftLcm|
+ |internalLastSubResultant| |binary| |maxColIndex| |brace|
+ |binomThmExpt| |inconsistent?| |point?| |hash| |showAttributes|
+ |f02aef| |ScanFloatIgnoreSpacesIfCan| |rubiksGroup| |operators|
+ |OMencodingBinary| |destruct| |edf2fi| |show| |count| |smith|
+ |setlast!| |clikeUniv| |reducedContinuedFraction| |e02aef| |symbol|
+ |solid?| |midpoint| = |slex| |makeViewport3D| |constDsolve|
+ |viewport3D| |palgLODE| |expression| |setPrologue!| |pquo|
+ |singleFactorBound| |listOfMonoms| |trace| |lo| |laplace| |asinIfCan|
+ |realSolve| |fortranLinkerArgs| |integer| |algebraic?| |edf2ef|
+ |gbasis| < |collectUpper| |exquo| |incr| |associatorDependence|
+ |cycle| |charthRoot| |antiCommutator| > |div| |latex| |cot2trig|
+ |build| |iterationVar| |diophantineSystem| |unitNormal|
+ |pushNewContour| |makeSketch| |drawComplex| <= |quo|
+ |quasiMonicPolynomials| |changeThreshhold| |OMlistSymbols|
+ |incrementKthElement| |bat1| |viewDefaults| |mkAnswer| >=
+ |scanOneDimSubspaces| |label| |llprop| |purelyAlgebraic?| |adaptive|
+ |limitPlus| |sdf2lst| |linearlyDependentOverZ?| |drawToScale|
+ |inGroundField?| |rem| |partialFraction| |newTypeLists|
+ |createPrimitiveElement| |updatD| |realEigenvectors| |fill!|
+ |fixedDivisor| |ip4Address| |expandPower| |primitive?| |measure|
+ |listConjugateBases| |LyndonCoordinates| |eisensteinIrreducible?|
+ |prevPrime| |skewSFunction| |symmetric?| |branchPoint?| |compBound| +
+ |equiv?| |d01akf| |sPol| |f01rdf| |upperCase!| |credPol| |transpose|
+ |SFunction| |zeroSquareMatrix| |groebSolve| -
+ |rewriteIdealWithRemainder| |outputArgs| |mapUnivariateIfCan| |isList|
+ |initiallyReduce| |critBonD| |setAdaptive3D| |numericalIntegration| /
+ |ode2| |plotPolar| |points| |e02daf| |f04jgf| |setProperty!| |imagE|
+ |partitions| |integrate| |leftExtendedGcd| |basisOfLeftNucleus|
+ |infLex?| |expIfCan| |nor| |rCoord| |constructor| |s17ahf|
+ |monomRDEsys| |rquo| |divideExponents| |symmetricRemainder| |trim|
+ |element?| |findCycle| |f04faf| |pdct|
+ |createLowComplexityNormalBasis| |nextPrimitiveNormalPoly| |option|
+ |signatureAst| |mergeFactors| |critMonD1| |low| |elliptic| |e02bdf|
+ |errorInfo| |rootSimp| |color| |argument| |f02ajf| |blankSeparate|
+ |symmetricGroup| |nothing| |createRandomElement| |addBadValue|
+ |listYoungTableaus| |FormatRoman| |polyRicDE| |setStatus| |refine|
+ |exprHasWeightCosWXorSinWX| |d01bbf| |diagonal| |airyAi| |f04mbf|
+ |mainValue| |paren| |zoom| |graphImage| |univcase| |leftZero|
+ |divisor| |charClass| |complete| |hexDigit| |OMputBind|
+ |representationType| |s20adf| |binaryTournament| |testDim|
+ |goodnessOfFit| |addMatch| |cothIfCan| |kovacic| |acscIfCan|
+ |pascalTriangle| |wordInGenerators| |objectOf| |basisOfCentroid|
+ |discreteLog| |permanent| |cardinality| |lfextlimint| |UnVectorise|
+ |schema| |nullary| |outputList| |rightTrim| |powerAssociative?|
+ |coerceListOfPairs| |invertible?| |debug3D| |quadratic|
+ |leftExactQuotient| |empty?| |factorOfDegree| |OMencodingUnknown|
+ |leftTrim| |myDegree| |hexDigit?| |resultantReduit| |gcdcofactprim|
+ |nextColeman| |qPot| |po| |simpleBounds?| |nodes| |rightFactorIfCan|
+ |mainMonomial| |karatsubaOnce| UP2UTS |Hausdorff|
+ |factorSquareFreeByRecursion| |setScreenResolution| |bipolar| |s17akf|
+ |enumerate| |roughSubIdeal?| |allRootsOf| |yellow| |elem?| |multiple?|
+ |nlde| |rarrow| |axesColorDefault| |randnum| |exteriorDifferential|
+ |squareTop| |hMonic| |resultantEuclidean| |s18adf| |sample| |s21bbf|
+ |collect| |BumInSepFFE| |setvalue!| |orthonormalBasis| |divide| |li|
+ |ran| |setright!| |drawCurves| |monomialIntPoly| |degreeSubResultant|
+ |trivialIdeal?| |fTable| |stoseSquareFreePart| |initials| |e01sff|
+ |setleft!| |choosemon| |zeroDimPrime?| |addiag| |quadraticForm|
+ |applyRules| |s14aaf| |reflect| |minimumExponent| |optional?|
+ |composite| |tubeRadius| |acschIfCan| |module| |testModulus|
+ |selectsecond| |lazyPremWithDefault| |generalInfiniteProduct| |light|
+ |roughUnitIdeal?| |seed| |distance| |rroot| |coord| |getPickedPoints|
+ |lieAlgebra?| |selectMultiDimensionalRoutines| |OMputEndObject|
+ |hasPredicate?| |mainKernel| |bsolve| |c02agf| |comparison| |back|
+ |keys| |positiveSolve| |hi| |sortConstraints| |relationsIdeal|
+ |primitiveElement| |iExquo| |autoReduced?| |e02gaf| |eulerE|
+ |composites| |expenseOfEvaluation| |outputGeneral| |e02akf| |root?|
+ |s21baf| |irreducibleFactors| |OMbindTCP| |scalarTypeOf| |acoshIfCan|
+ |constantLeft| |maxint| |denomRicDE| |iteratedInitials| |intChoose|
+ |removeRedundantFactorsInPols| |binarySearchTree| |totalGroebner|
+ |unprotectedRemoveRedundantFactors| |yRange| |alphabetic| |repeating|
+ |fibonacci| |OMgetSymbol| |uncouplingMatrices| |normalElement|
+ |constantIfCan| |digamma| |extractPoint| |zRange| |BasicMethod|
+ |areEquivalent?| |jacobi| |tRange| |cAsech| |e04dgf|
+ |fullPartialFraction| |gcdPolynomial| |map!| |intPatternMatch|
+ |numberOfMonomials| |rationalPower| |stopTableInvSet!| |ode|
+ |fixPredicate| |numberOfImproperPartitions| |qsetelt!|
+ |collectQuasiMonic| |explicitlyEmpty?| |atanhIfCan| |B1solve|
+ |irreducibleRepresentation| |complement| |checkRur| |OMputApp|
+ |overbar| |test| |e02bef| |showFortranOutputStack|
+ |internalSubQuasiComponent?| |indicialEquations| |tubePointsDefault|
+ |factorList| |sup| |decompose| |monomial?| |minordet| |tanh2coth|
+ |reduced?| |airyBi| |generate| |iiexp| |getConstant| |symFunc|
+ |factorial| |insertMatch| |pomopo!| |rightUnit| |bytes| |arbitrary|
+ |prefix| |df2st| |lazyPseudoQuotient| |negative?|
+ |createNormalElement| |simplifyExp| |rk4| |delete!| |equiv|
+ |OMreceive| |particularSolution| |expressIdealMember| |tan2cot|
+ |c06fpf| |f01bsf| |raisePolynomial| |every?| |integralMatrix| |acsch|
+ |double?| |compose| |semiSubResultantGcdEuclidean1| |karatsuba|
+ |getBadValues| |generalTwoFactor| |nary?| |associatedSystem|
+ |rightOne| |limit| |resultantReduitEuclidean| |rootsOf| |algintegrate|
+ |d02raf| |pointColorDefault| |subscriptedVariables| |OMconnOutDevice|
+ |generic?| |byteBuffer| |bfEntry| |cTanh| |null| |uniform01| |or?|
+ |clearTable!| |f04mcf| |extendedIntegrate| |initiallyReduced?|
+ |innerint| |getCode| |singularAtInfinity?| |useEisensteinCriterion?|
+ |extendedint| |not| |stoseInternalLastSubResultant| |f04adf|
+ |overset?| |acothIfCan| |dim| |simplifyLog| |extractTop!| |implies|
+ |d02gbf| |wordInStrongGenerators| |and| |se2rfi| |Is| |mathieu11|
+ |untab| |eigenvalues| |rotatez| |commaSeparate| |getGoodPrime|
+ |anfactor| |or| |exprHasAlgebraicWeight| |diagonal?| |c06ebf|
+ |halfExtendedSubResultantGcd1| |conjug| |diagonals| |outputFloating|
+ |nextsousResultant2| |stopTable!| |xor| |nextPrime| |integerBound|
+ |Nul| |overlabel| |userOrdered?| |front| |parametric?| |setLength!|
+ |elseBranch| |indicialEquation| |case| |monomRDE| |multiEuclideanTree|
+ |cCot| |isobaric?| |prepareSubResAlgo| |graphCurves| |quatern|
+ |mainVariables| |round| |Zero| |symbolTable| |OMParseError?| |term?|
+ |iiatanh| |associative?| |readLineIfCan!| |wholeRagits|
+ |basisOfMiddleNucleus| |certainlySubVariety?| |viewDeltaYDefault|
+ |One| |baseRDE| |startTableInvSet!| |/\\| |SturmHabichtCoefficients|
+ |permutation| |rightTrace| |OMputAttr| |less?|
+ |semiResultantEuclideannaif| |asecIfCan| |ode1| |localUnquote|
+ |useNagFunctions| |\\/| |buildSyntax| |edf2df| |shiftLeft|
+ |var2StepsDefault| |OMsupportsCD?| |primPartElseUnitCanonical|
+ |arguments| |elementary| |bandedJacobian| |ratpart|
+ |definingEquations| |s20acf| |subtractIfCan| |thetaCoord|
+ |getOperands| |key| |connect| |csubst| |prod| |divideIfCan|
+ |represents| |lazy?| |e01sef| |conjugate| |c06ekf| |center|
+ |increment| |resetAttributeButtons| |upperCase| |quadratic?| |cCsc|
+ |whitePoint| |inverseIntegralMatrixAtInfinity| |filename| |palglimint|
+ |mapGen| |root| |splitNodeOf!| |rk4qc| |outputAsTex| |elt| |csc2sin|
+ |multiplyCoefficients| |log2| |primintegrate| |npcoef| |crest| |not?|
+ |second| |selectOptimizationRoutines| |vspace| |cycles|
+ |oddInfiniteProduct| |range| |mainCoefficients| |palgLODE0|
+ |irreducibleFactor| |parse| |third| |mainContent| |cyclicEqual?|
+ |style| |tensorProduct| |linearAssociatedOrder|
+ |pushFortranOutputStack| |coefChoose| |createIrreduciblePoly|
+ |factorAndSplit| |f02bjf| |setelt!| |cross| |computeBasis| |modTree|
+ |orOperands| |popFortranOutputStack| |leftDivide| |lazyPseudoDivide|
+ |univariatePolynomials| |clearTheFTable| |limitedint|
+ |sizePascalTriangle| |balancedBinaryTree| |inR?| |diag| |split| |cup|
+ |removeSinSq| |cylindrical| |errorKind| |queue| |createThreeSpace|
+ |lyndon| |maxrow| |normalDenom| |lazyVariations| |setprevious!|
+ |setProperties!| |splitSquarefree| |factorials| |outputFixed|
+ |expintfldpoly| |getlo| |shuffle| |innerSolve1| |numberOfComposites|
+ |bits| |hcrf| |minPoints3D| |expr| |totalLex| |complexNormalize|
+ |cAtanh| |goto| |fixedPoints| |lepol| |sec2cos| |fillPascalTriangle|
+ |genericRightTraceForm| |cAcsch| |cAcosh| |explogs2trigs|
+ |atrapezoidal| |sqfrFactor| |clearTheSymbolTable| |shrinkable|
+ |tan2trig| |systemCommand| |kind| |OMputFloat| |f02axf|
+ |primPartElseUnitCanonical!| |transcendenceDegree|
+ |basisOfRightAnnihilator| |safeFloor| |principalIdeal| |escape|
+ |setClipValue| |c05pbf| |op| |highCommonTerms| |leftMinimalPolynomial|
+ |interval| |cCoth| |rightAlternative?| |minPol| |integer?|
+ |permutationRepresentation| |subNodeOf?| |stack| |oblateSpheroidal|
+ |cCosh| |createGenericMatrix| |variable| |dn| |symmetricTensors|
+ |rightMinimalPolynomial| |minimumDegree| |move| |doubleResultant|
+ |integralAtInfinity?| |normal| |cAsinh| |clearTheIFTable| |iterators|
+ |primitivePart| |computePowers| |extractIndex| |hermite| |f04maf|
+ |nextLatticePermutation| |complex?| |repeating?| |linearAssociatedLog|
+ |semiResultantEuclidean1| |leftGcd| |makeResult| |index|
+ |returnTypeOf| |indiceSubResultantEuclidean| |groebnerFactorize|
+ |lambert| |physicalLength| |degreeSubResultantEuclidean| |mainForm|
+ |pr2dmp| |completeSmith| |genericLeftTrace| |ddFact| |symbolTableOf|
+ |unaryFunction| |stronglyReduce| |singular?| |toseInvertible?|
+ |solveLinearPolynomialEquationByRecursion| |callForm?| |ceiling|
+ |partialQuotients| |s01eaf| |lifting| |loadNativeModule| |moduleSum|
+ |adjoint| |makeSin| |showTheFTable| |reify| |sinhIfCan| |union|
+ |number?| |leftUnit| |pair| |viewWriteDefault| |c06gbf| |pow|
+ |diagonalMatrix| |indices| |viewPosDefault| |specialTrigs|
+ |chineseRemainder| |trigs| |palglimint0| |terms|
+ |selectSumOfSquaresRoutines| |infiniteProduct| |triangularSystems|
+ |principalAncestors| |reopen!| |makeTerm| |alphanumeric| |generalSqFr|
+ |decimal| |rowEch| |hasHi| |measure2Result| |setEpilogue!|
+ |complexSolve| |lastSubResultantEuclidean| |stoseLastSubResultant|
+ |linearPart| |chebyshevU| |normalise| |OMcloseConn| |numberOfHues|
+ |dimensionsOf| |dequeue| |double| |outputSpacing| |rightTraceMatrix|
+ |value| |characteristicPolynomial| |ipow| |square?| |horizConcat|
+ |shade| |getGraph| |c06eaf| |adaptive?| |f02fjf| |factorSquareFree|
+ |nullary?| |setRealSteps| |seriesSolve| |newReduc| |f04arf|
+ |antiCommutative?| |alphanumeric?| |leftRankPolynomial| |makeFR|
+ |tubeRadiusDefault| |complexExpand| |enterPointData| |cosh2sech|
+ |conditionsForIdempotents| |iCompose| |cSin| |edf2efi| |hex| |s21bcf|
+ |interpolate| |getDatabase| |OMputSymbol| |supersub| |tablePow|
+ |simpson| |elColumn2!| |stirling1| |gradient| |tab|
+ |algebraicVariables| |setAdaptive| |cyclotomic| |exponential|
+ |normalize| |localIntegralBasis| |e02bbf| |setleaves!| |solveRetract|
+ |decrease| |tube| |droot| |contains?| |selectODEIVPRoutines|
+ |commutativeEquality| |changeVar| |rule| |high| |nullSpace|
+ |associatedEquations| |removeIrreducibleRedundantFactors|
+ |primlimitedint| |nativeModuleExtension| |say| |removeConstantTerm|
+ |int| |setRow!| |monicDivide| |polynomialZeros| |discriminant|
+ |systemSizeIF| |singularitiesOf| |nthRoot| |declare!| |c06fqf|
+ |e02dcf| |duplicates?| |is?| |readLine!| |multiEuclidean|
+ |factorSFBRlcUnit| |bitCoef| |cAsec| |viewport2D| |readByte!|
+ |writeBytes!| |screenResolution3D| |rootRadius| |rootBound|
+ |firstDenom| |enterInCache| |cTan| |iisqrt3| |notOperand| |f02xef|
+ |intersect| |hitherPlane| |HermiteIntegrate| |OMputEndError|
+ |setLegalFortranSourceExtensions| |contours| |bothWays| |graeffe|
+ |att2Result| |imaginary| |useEisensteinCriterion| |e04naf|
+ |meshPar2Var| |radix| |e02bcf| |quoByVar| |nthr| |cCsch| |mirror|
+ |middle| |intensity| |OMgetEndBVar| |univariatePolynomialsGcds|
+ |structuralConstants| |variationOfParameters| |setFormula!|
+ |linearDependence| |bracket| |orbits| |subTriSet?| |void| |directory|
+ |reset| |subst| |symmetricDifference| |ocf2ocdf|
+ |extendedSubResultantGcd| |startTable!| |d02gaf| |rowEchLocal|
+ |supRittWu?| |lowerPolynomial| |outlineRender| |determinant|
+ |writeByte!| |getMatch| |resultantnaif| |linearlyDependent?| |slash|
+ |constantRight| |segment| |f02bbf| |rombergo| |write|
+ |outputAsFortran| |coefficient| |times!| |stoseInvertible?sqfreg|
+ |controlPanel| |reverse| |purelyAlgebraicLeadingMonomial?| |moduloP|
+ |coercePreimagesImages| |createLowComplexityTable| |reseed| |save|
+ |subResultantGcd| |integerIfCan| |e02def| |critM| |subresultantVector|
+ |inverseIntegralMatrix| |host| |fortranInteger| |component| |entry|
+ |exptMod| |derivationCoordinates| |aQuadratic| |entries|
+ |partialDenominators| |symmetricSquare| |realZeros| GF2FG
+ |quotedOperators| |genericRightMinimalPolynomial| |belong?| |sign|
+ |explicitlyFinite?| |c06frf| |read!| |OMsupportsSymbol?| |dflist|
+ |argumentList!| |objects| |cSec| |mainDefiningPolynomial|
+ |numberOfVariables| |comment| |numberOfComputedEntries|
+ |impliesOperands| |c02aff| |omError| |integralCoordinates|
+ |PollardSmallFactor| |base| |checkPrecision| |exactQuotient!|
+ |trace2PowMod| |rewriteIdealWithQuasiMonicGenerators| |s17acf|
+ |selectOrPolynomials| |separateDegrees| |minimalPolynomial| |leftMult|
+ |halfExtendedResultant1| |traceMatrix| |leftDiscriminant|
+ |KrullNumber| |replaceKthElement| |makeMulti| |chainSubResultants|
+ |triangular?| |iitan| |d01gaf| |recolor| |nonLinearPart| |localAbs|
+ |d01amf| |pointColorPalette| |normDeriv2| |totalDegree| |iiasin|
+ |s17adf| |iiasech| |flatten| |e01bef| |laguerre| |hasTopPredicate?|
+ |iibinom| |mathieu24| |factor1| |ratDsolve| |open?| |isOpen?|
+ |rightZero| |concat| |node?| |rootDirectory| |iisin|
+ |createPrimitiveNormalPoly| |squareFreeLexTriangular| |GospersMethod|
+ |perfectSqrt| |trunc| |tanhIfCan| |top| |even?| |prime?|
+ |lineColorDefault| |minGbasis| |nthFactor| |prem| |coefficients|
+ |convergents| |trailingCoefficient| |column| |trapezoidalo|
+ |firstUncouplingMatrix| |ref| |definingInequation| |domainOf|
+ |getZechTable| |constantCoefficientRicDE| |child| |true|
+ |laurentIfCan| |f01ref| |insertionSort!| |ffactor| |constantOpIfCan|
+ |eulerPhi| |mainCharacterization| |identitySquareMatrix| |getRef|
+ |maxdeg| |OMencodingXML| |radicalEigenvalues| |bringDown| |multisect|
+ |linear?| |mainExpression| |modularGcdPrimitive| |denomLODE|
+ |lowerCase| |fortranLogical| |factorGroebnerBasis| |s13adf| |exQuo|
+ |currentScope| |divisorCascade| |maxIndex| |functionIsOscillatory|
+ |f07aef| |mvar| |euclideanNormalForm| |central?| |physicalLength!|
+ |LazardQuotient| |ramified?| |s18aef| |previous|
+ |useSingleFactorBound| |bezoutResultant| |c06fuf| |collectUnder|
+ |exp1| |internalDecompose| |printInfo| |bumprow| |leadingIndex|
+ |zero?| |outputMeasure| |outerProduct| |nthExpon| |minColIndex|
+ |contract| |bernoulli| |signature| |logical?| |parent| |meshPar1Var|
+ |internalSubPolSet?| |rootOfIrreduciblePoly| |varList| |pToDmp|
+ |tanh2trigh| |setCondition!| |pmComplexintegrate| |cotIfCan| |chvar|
+ |fi2df| |OMread| |finiteBound| |infinityNorm| |dfRange| |connectTo|
+ |adaptive3D?| |algebraicCoefficients?| |weakBiRank| |distdfact|
+ |external?| |fortranCharacter| |semiSubResultantGcdEuclidean2|
+ |rightGcd| |packageCall| |space| |close!| |linGenPos| |subPolSet?|
+ |subMatrix| |acosIfCan| |redPo| |consnewpol| |d02bbf| |primeFactor|
+ |cyclicGroup| |euclideanGroebner| |unitsColorDefault| |alphabetic?|
+ |delete| |semiDiscriminantEuclidean| |unitCanonical| |e04mbf| |birth|
+ |totalfract| |matrix| |minus!| |key?| |restorePrecision|
+ |OMputEndBind| |qqq| |denominator| |irreducible?| |OMgetEndError|
+ |shallowCopy| |vark| |mainVariable?| |doubleRank| |bitTruth| |exists?|
+ |polyPart| |btwFact| |copy!| |s18acf| |basicSet| |polygon?|
+ |atanIfCan| |genericRightDiscriminant| |clipSurface|
+ |tryFunctionalDecomposition| |subHeight| |writeLine!| |optimize|
+ |cycleEntry| |differentialVariables| |unary?| |createPrimitivePoly|
+ |antiAssociative?| |zero| |iitanh| |f02aff| |lowerCase?|
+ |removeRedundantFactorsInContents| |taylorIfCan| |degree|
+ |primitivePart!| |perfectSquare?| |musserTrials| |sinhcosh|
+ |printStatement| |imagK| |lazyIntegrate| |reducedQPowers|
+ |leftFactorIfCan| |PDESolve| |currentCategoryFrame| |lfintegrate|
+ |d01asf| |And| |readIfCan!| |dualSignature| |removeZeroes| |modulus|
+ |fortranLiteralLine| |zag| |makeYoungTableau| |extendIfCan|
+ |goodPoint| |ScanFloatIgnoreSpaces| |leftTraceMatrix| |Or|
+ |removeRedundantFactors| |forLoop| |unitVector| |digit?| |OMgetFloat|
+ |cond| |bombieriNorm| |OMopenString| |alternatingGroup| |augment|
+ |Not| |block| |normInvertible?| |constantOperator|
+ |sumOfKthPowerDivisors| |cubic| |rationalIfCan| |twist| |mkIntegral|
+ |doubleDisc| |zCoord| |asechIfCan| |stoseIntegralLastSubResultant|
+ |OMgetString| |setAttributeButtonStep| |sech2cosh|
+ |rangePascalTriangle| |plus| |wholePart| F2FG |OMputBVar|
+ |patternVariable| |viewpoint| |mindeg| |toroidal|
+ |cyclotomicDecomposition| |imagJ| |realElementary| |roughEqualIdeals?|
+ |iiGamma| |internalAugment| |integralRepresents| |cschIfCan| |zeroOf|
+ |perfectNthPower?| |OMgetEndApp| |setStatus!| |cosh| |noKaratsuba|
+ |polyred| |setColumn!| |stoseInvertibleSetsqfreg|
+ |rightFactorCandidate| |besselY| |log10| |inverseLaplace| |cscIfCan|
+ |tanh| |setClosed| |showRegion| |solveLinearlyOverQ| |extension|
+ |internalInfRittWu?| |makeCrit| |pointLists| |max|
+ |lastSubResultantElseSplit| |atom?| |leftRank| |biRank| |leftUnits|
+ |bitand| |f07fef| |OMgetBind| |coth| |times| |csch2sinh| |kmax|
+ |radicalEigenvector| |quartic| |extractIfCan| |overlap| |isQuotient|
+ |generalizedInverse| |besselJ| |bitior| |OMputObject| |bumptab| |sech|
+ |stronglyReduced?| |cycleElt| |genericPosition| |cyclicEntries|
+ |subSet| |addPoint2| |eq?| |numberOfOperations| |bottom!| |laplacian|
+ |setPoly| |csch| |pToHdmp| |basisOfRightNucleus| |swap!| |bag|
+ |pointSizeDefault| |unit| |linears| |exponential1| |characteristicSet|
+ |asinh| |possiblyInfinite?| |normalized?| |e02ddf| |mpsode|
+ |bivariatePolynomials| |showAll?| |combineFeatureCompatibility|
+ |iiacot| |uniform| |integral| |subResultantChain| |acosh| |monom|
+ |qualifier| |showTheIFTable| |zeroSetSplit| |quasiMonic?|
+ |SturmHabichtSequence| |dihedral| |resultant| |nonSingularModel|
+ |commutative?| |palgint0| |atanh| |createZechTable| |firstSubsetGray|
+ |saturate| |expandTrigProducts| |dominantTerm| |height|
+ |radicalOfLeftTraceForm| |polygon| |binaryFunction|
+ |subResultantGcdEuclidean| |acoth| |leaf?| |nextSubsetGray| |quoted?|
+ |newSubProgram| |solveLinearPolynomialEquationByFractions| |hdmpToP|
+ |cn| |cap| |common| |exprex| |d01apf| |s13acf| |invmultisect|
+ |semiIndiceSubResultantEuclidean| |asech| |factorsOfCyclicGroupSize|
+ |rename!| |dimension| |ellipticCylindrical| |toseSquareFreePart|
+ |pointColor| |readBytes!| |maxRowIndex| |traverse| |tree| |merge!|
+ |contractSolve| |trueEqual| |sin?| |processTemplate| |s19acf|
+ |mapmult| |setPosition| |rangeIsFinite| |iisech| |declare| |bounds|
+ |noncommutativeJordanAlgebra?| |multiple| |s21bdf| |hdmpToDmp|
+ |extractClosed| UTS2UP |laguerreL| |debug| |quickSort| |one?|
+ |increasePrecision| |zeroDim?| |fracPart| |applyQuote|
+ |balancedFactorisation| |baseRDEsys| |bernoulliB| |rspace| D |child?|
+ |tValues| |postfix| |ListOfTerms| |mesh?| |toseInvertibleSet| |tail|
+ |scan| |compactFraction| |viewDeltaXDefault| |toScale| |real?|
+ |infieldIntegrate| |polarCoordinates| |unitNormalize| |lieAdmissible?|
+ |leftAlternative?| |eigenvectors| |lists| |yCoordinates| |dmpToHdmp|
+ |continuedFraction| |supDimElseRittWu?| |iicsc| |acotIfCan|
+ |fullDisplay| |ruleset| |rewriteSetWithReduction| |OMgetEndAtp|
+ |linearAssociatedExp| |figureUnits| |expint| |showTheSymbolTable|
+ |sts2stst| |getButtonValue| |generator| |s15adf| |algebraicOf|
+ |primaryDecomp| |inputBinaryFile| |anticoord| |d01fcf|
+ |OMUnknownSymbol?| |splitLinear| |genericRightNorm| |associates?|
+ |firstNumer| |empty| |An| |inverseColeman| |s17dlf| |lift|
+ |deleteProperty!| |cAcsc| |cAcot| |internalZeroSetSplit|
+ |drawComplexVectorField| |setMaxPoints3D| |ef2edf|
+ |selectIntegrationRoutines| |suchThat| |solveLinearPolynomialEquation|
+ |reduce| |weierstrass| Y |reindex| |ramifiedAtInfinity?|
+ |setImagSteps| |usingTable?| |leadingCoefficientRicDE| |nsqfree|
+ |rename| |makeFloatFunction| |polygamma| |unrankImproperPartitions0|
+ |lookup| |f02awf| |branchPointAtInfinity?| |positive?|
+ |functionIsContinuousAtEndPoints| |plenaryPower| |implies?| |tanSum|
+ |reducedForm| |cyclotomicFactorization| |sechIfCan| |ignore?|
+ |ODESolve| |inspect| |prindINFO| |vector| F |numFunEvals3D|
+ |magnitude| |minPoly| |exprToGenUPS| |separateFactors| |infinite?|
+ |fortranComplex| |cycleTail| |primintfldpoly| |closedCurve| |print|
+ |startTableGcd!| |generators| |cAsin| |OMReadError?| |lflimitedint|
+ |setValue!| |iisec| |imagI| |lexTriangular| |e02ajf| |resolve|
+ |lazyGintegrate| |differentiate| |bivariate?| |palgintegrate|
+ |components| |notelem| |polCase| |multiplyExponents| |c06ecf| |OMsend|
+ |countRealRootsMultiple| |direction| |basisOfCenter| |d01anf|
+ |resetBadValues| |dequeue!| |palgextint0| |d03faf| |radicalSimplify|
+ |indiceSubResultant| |decomposeFunc| |OMconnectTCP| |s14baf|
+ |normal01| |printStats!| |optAttributes| |rst| |bindings|
+ |companionBlocks| |rotatey| |solveid| |LiePoly| |name|
+ |absolutelyIrreducible?| |graphStates| |SturmHabicht|
+ |parabolicCylindrical| |changeNameToObjf| |constantToUnaryFunction|
+ |LyndonBasis| |iFTable| |ptFunc| |body| |finiteBasis| |pole?|
+ |parents| |inputOutputBinaryFile| |lfinfieldint| |pair?|
+ |var1StepsDefault| |xn| |palgRDE| |sin2csc| |trigs2explogs| |c06gqf|
+ |chiSquare1| |pseudoRemainder| |prinpolINFO| |retractable?|
+ |schwerpunkt| |pop!| ** |maximumExponent| |box| |dmp2rfi|
+ |maxPoints3D| |outputBinaryFile| |stop| |imports| |rightExactQuotient|
+ |showTheRoutinesTable| |f01qef| |withPredicates| ~ |alternating|
+ |insert| |tableau| |LiePolyIfCan| |polar| |invertibleSet| |solid|
+ |generateIrredPoly| |primes| |removeZero| |cfirst| |precision|
+ |sinIfCan| |OMputEndAttr| |OMgetEndBind| |pile| |mat| EQ
+ |showIntensityFunctions| |constant?| |rootPoly| |leadingSupport|
+ |open| |condition| |rowEchelonLocal| |flagFactor|
+ |rightRankPolynomial| |inRadical?| |integralDerivationMatrix| |cSech|
+ |basisOfLeftNucloid| |twoFactor| |prinshINFO| |OMencodingSGML|
+ |mkPrim| |level| |port| |zeroMatrix| |linearDependenceOverZ| |linear|
+ |algebraicSort| |listexp| |fractRadix| |rational| |eigenMatrix|
+ |transcendent?| |mapMatrixIfCan| |replace| |unit?| |eq|
+ |matrixDimensions| |pushup| |denominators| |numberOfPrimitivePoly|
+ |rootPower| |generalizedEigenvector| |iter| |shift| |t| |nullity|
+ |monomials| |reduceByQuasiMonic| |polynomial| |numberOfChildren|
+ |s19aaf| |point| |getExplanations| |univariateSolve| |f01qdf|
+ |abelianGroup| |quasiAlgebraicSet| |nilFactor| |addmod| |compdegd|
+ |OMlistCDs| |mulmod| |cosSinInfo| |select!| |makeSeries|
+ |getVariableOrder| |vedf2vef| |associator| |OMreadStr| |leftPower|
+ |iprint| |factorSquareFreePolynomial| |powerSum| |hasSolution?|
+ |category| |top!| |modularFactor| |odd?| |lSpaceBasis| |f2st|
+ |reorder| |series| |linearPolynomials| |infieldint| |property|
+ |domain| |truncate| |createMultiplicationMatrix| |numFunEvals|
+ |separant| |redPol| |dimensions| |permutations| |badNum| |package|
+ |submod| |taylorQuoByVar| |squareFree| |OMreadFile| |clearCache|
+ |s13aaf| |LagrangeInterpolation| |createNormalPrimitivePoly| |f04asf|
+ |identification| |distFact| |isExpt| |mathieu12| |iiasec| |makeSUP|
+ |OMputEndApp| |getOrder| |units| |cAcos| |getSyntaxFormsFromFile|
+ |exp| |generalLambert| |expPot| |min| |atoms| |iiacoth| |fmecg|
+ |fractionFreeGauss!| |initializeGroupForWordProblem|
+ |factorPolynomial| |logpart| |prolateSpheroidal| |identity| |makeCos|
+ |ranges| |mix| |any| |inrootof| |numerator| |super| |legendre|
+ |totolex| |unrankImproperPartitions1| |lfextendedint|
+ |halfExtendedResultant2| |shellSort| |recip| |hypergeometric0F1|
+ |expextendedint| |nthExponent| |nthFlag| |reduction| |output|
+ |compile| |e04ucf| |printCode| |fprindINFO| |maxrank|
+ |partialNumerators| |operator| |cot2tan| |code| |exprToUPS|
+ |matrixGcd| |showTypeInOutput| |leastAffineMultiple| |externalList|
+ |principal?| |OMgetInteger| |printingInfo?| |setProperty|
+ |nextNormalPrimitivePoly| |e04gcf| |parseString| |rightRecip|
+ |stoseInvertibleSet| |corrPoly| |sequences| |#| |meshFun2Var|
+ |rightDivide| |iicot| |argumentListOf| |doubleComplex?| |coordinate|
+ |bfKeys| |minimize| |algDsolve| |tanintegrate| |removeCosSq|
+ |knownInfBasis| |inHallBasis?| |OMgetObject| |dom| |minRowIndex|
+ |setOrder| |getMultiplicationMatrix| |in?| |incrementBy| |isOp|
+ |changeName| |numeric| |extract!| |sumOfSquares| |mapExponents|
+ |transcendentalDecompose| |psolve| |regime| |rischDEsys| |expand|
+ |radical| |positiveRemainder| |critB| |f04axf| |node| |lexico| |tanAn|
+ |prepareDecompose| |filterWhile| |scalarMatrix|
+ |genericLeftMinimalPolynomial| |torsion?| |unvectorise|
+ |makeViewport2D| |groebner?| |s17agf| |filterUntil| |fortranTypeOf|
+ |coshIfCan| |moebius| |deleteRoutine!| |ldf2vmf| |conditionP|
+ |pushuconst| |solveInField| |setTex!| |select| |sncndn| |dioSolve|
+ |rootOf| |brillhartTrials| |numberOfNormalPoly| |title| |localReal?|
+ |drawStyle| |groebgen| |options| |standardBasisOfCyclicSubmodule|
+ |nextsubResultant2| |euclideanSize| |pointPlot| |parts|
+ |generalizedContinuumHypothesisAssumed?| |internalIntegrate| |head|
+ |zeroDimPrimary?| |OMserve| |unravel| |coerceL| |dictionary|
+ |andOperands| |boundOfCauchy| |getProperties| |subspace| |normal?|
+ |axes| |increase| |scripted?| |leviCivitaSymbol| |rightNorm| |e|
+ |initial| |expenseOfEvaluationIF| |mainMonomials| |stFunc2| |string|
+ |dimensionOfIrreducibleRepresentation| |karatsubaDivide|
+ |integralMatrixAtInfinity| |binomial| |fortranLiteral|
+ |normalizeIfCan| |reducedSystem| |plusInfinity| |iisinh| |s17dgf|
+ |FormatArabic| |meatAxe| |s14abf| |content| |gcdprim| |perspective|
+ |gcdcofact| |makeRecord| |minusInfinity| |product| |ParCond| |length|
+ |leftTrace| |blue| |graphState| |resize| |clipBoolean| |s18aff|
+ |newLine| |linkToFortran| |mappingAst| |scripts| |rotatex| |d01gbf|
+ |simplifyPower| |patternMatch| |ratDenom| |heapSort| |rootKerSimp|
+ |curveColor| |changeWeightLevel| |mapExpon| |isTimes| |Ei|
+ |crushedSet| FG2F |OMputInteger| |weight| |power!| |ScanArabic|
+ |colorFunction| |iomode| |predicate| |cPower| |messagePrint|
+ |leadingBasisTerm| |leftOne| |var2Steps| |stirling2| |minPoints|
+ |rationalApproximation| |tanNa| |removeRoughlyRedundantFactorsInPol|
+ |kroneckerDelta| |definingPolynomial| |OMgetEndAttr|
+ |sylvesterSequence| |exprHasLogarithmicWeights| |recur|
+ |selectNonFiniteRoutines| |nodeOf?| |elRow2!| |numberOfComponents|
+ |hyperelliptic| |permutationGroup| |insert!| |cLog| |e04ycf| |type|
+ |equation| |safetyMargin| |OMwrite| |cCos| |multiset|
+ |resultantEuclideannaif| |create3Space| |complexRoots| |divergence|
+ |iidprod| |hclf| |palgextint| |sylvesterMatrix| |janko2|
+ |rightRegularRepresentation| |closeComponent| |width| |inf|
+ |setMaxPoints| |secIfCan| |deepestTail| |jacobiIdentity?| |pdf2ef|
+ |complexForm| |simplify| |laurentRep| |flexible?| |sort!| |entry?|
+ |showAllElements| |LyndonWordsList1| |compiledFunction| |variable?|
+ |list| |genericLeftDiscriminant| |harmonic| |basis|
+ |rewriteIdealWithHeadRemainder| |beauzamyBound| |LowTriBddDenomInv|
+ |any?| |fortranCompilerName| |besselK| |taylorRep| |car|
+ |setMinPoints3D| |init| |primlimintfrac| |endSubProgram| |transform|
+ |pushucoef| |leader| |rationalPoints| |e02adf| |findBinding|
+ |conjugates| |cdr| |character?| |medialSet| |parameters| |arg1|
+ |varselect| |ricDsolve| |basisOfRightNucloid| |recoverAfterFail|
+ |Aleph| |setDifference| |antisymmetricTensors|
+ |removeSuperfluousCases| |more?| |curryRight| |mathieu23| |arg2|
+ |completeEchelonBasis| |abs| |fortranDouble| |rightRemainder|
+ |divisors| |Ci| |aspFilename| |accuracyIF| |d03eef| |stopMusserTrials|
+ |Gamma| |nthRootIfCan| |push!| |solveLinear| |nthCoef|
+ |genericLeftTraceForm| |iicosh| |f02abf| |conditions| |optional|
+ |directSum| |term| |largest| LODO2FUN |isPower| |c06gsf|
+ |flexibleArray| |cSinh| |removeDuplicates!| |mindegTerm| |match|
+ |tanQ| |sizeMultiplication| |mergeDifference| |over| |result|
+ |shiftRight| |tanIfCan| |mapBivariate| |d02kef| |s17def| |oddintegers|
+ |delta| |substring?| |relativeApprox| |resetVariableOrder|
+ |decreasePrecision| |compound?| |properties| |wronskianMatrix|
+ |rational?| |clearDenominator| |commutator| |OMputVariable|
+ |OMconnInDevice| |zerosOf| |useSingleFactorBound?| |wreath|
+ |pseudoDivide| |translate| |OMgetError| |d03edf| |minset| |conical|
+ |stiffnessAndStabilityOfODEIF| |getMultiplicationTable| |suffix?|
+ |generic| |ksec| |symmetricPower| |calcRanges| |morphism| |iicos|
+ |viewSizeDefault| |writable?| |curve?| |logGamma| |pattern| |hspace|
+ |tryFunctionalDecomposition?| |subscript| |quasiRegular| |rotate!|
+ |lquo| |nextPrimitivePoly| |f01maf| |prefix?| |iilog| |rightQuotient|
+ |triangulate| |revert| |s17ajf| |sn| |fractionPart| |iipow|
+ |pmintegrate| |elRow1!| |row| |upperCase?| |leftNorm| SEGMENT
+ |cyclic?| |getIdentifier| |curve| |homogeneous?| |Lazard2|
+ |numberOfFactors| |unexpand| |strongGenerators| |subQuasiComponent?|
+ |completeHermite| |semiResultantEuclidean2| |HenselLift| |setfirst!|
+ |OMgetType| |infRittWu?| |lambda| |message| |wrregime| |solve|
+ |gramschmidt| |closed?| |iidsum| |purelyTranscendental?| |lfunc|
+ |maxPoints| |weights| |evaluateInverse| |createMultiplicationTable|
+ |aromberg| |f02akf| |s17dhf| |neglist| |torsionIfCan| |Beta|
+ |semiResultantReduitEuclidean| |leaves| |f2df| |shallowExpand|
+ |iicsch| |outputAsScript| |semiLastSubResultantEuclidean|
+ |hostPlatform| |nextIrreduciblePoly| |rightRank| |f01mcf|
+ |setchildren!| |f01qcf| |OMUnknownCD?| |infix?| |iiacsch| |fixedPoint|
+ |approxSqrt| |nonQsign| |interpret| |subset?| |makeVariable|
+ |ReduceOrder| |pleskenSplit| |nthFractionalTerm| |mask| |binding|
+ |d02ejf| |rootProduct| |thenBranch| |parabolic| |padicallyExpand|
+ |chiSquare| |e01daf| |scale| |d01alf| |numericalOptimization|
+ |henselFact| |viewPhiDefault| |UP2ifCan| |mantissa| |complexLimit|
+ |swapColumns!| |hessian| |cons| |rightPower| |realEigenvalues|
+ |e01baf| |normalizedAssociate| |invertIfCan| |subNode?|
+ |subresultantSequence| |exponents| |socf2socdf|
+ |rewriteSetByReducingWithParticularGenerators| |retract| |surface|
+ |bumptab1| |error| |lintgcd| |minrank| |quote| |shufflein| |dark|
+ |algSplitSimple| |idealiserMatrix| |moreAlgebraic?| |just|
+ |lazyResidueClass| |cyclic| |octon| |assert| |innerSolve|
+ |branchIfCan| |status| |bright| |Lazard| |padicFraction|
+ |splitDenominator| |degreePartition| |redpps| |basisOfLeftAnnihilator|
+ |viewThetaDefault| |leastMonomial| |modifyPointData| |mr|
+ |coordinates| |sumOfDivisors| |listOfLists| |divideIfCan!| |optpair|
+ |write!| |minIndex| |badValues| |lprop| |printInfo!| |d02cjf|
+ |listBranches| |sturmSequence| |changeBase| |getProperty| |sh|
+ |movedPoints| |quasiRegular?| |computeCycleLength| |linearMatrix|
+ |source| |removeSquaresIfCan| |enqueue!| |erf| |complexEigenvalues|
+ |dec| NOT |OMclose| |symbol?| |toseLastSubResultant| |remove!|
+ |d02bhf| |qfactor| |mightHaveRoots| |fglmIfCan| |UpTriBddDenomInv|
+ |iiperm| |categories| OR |e01bgf| |extractSplittingLeaf|
+ |complexElementary| ~= |bandedHessian| |arity| |typeList|
+ |tracePowMod| |df2fi| |retractIfCan| |constantKernel| AND |Vectorise|
+ |invertibleElseSplit?| |coerce| |check| |mapCoef| |dilog| |jacobian|
+ |isConnected?| |reverseLex| |basisOfNucleus| |numer| |construct|
+ |expandLog| |headReduced?| |pseudoQuotient| |whileLoop|
+ |showClipRegion| |basisOfCommutingElements| |countable?| |redmat|
+ |lowerCase!| |sin| |nand| |fortranReal| |RemainderList| |denom|
+ |squareFreePolynomial| |solve1| |infix| |iiatan| |categoryFrame|
+ |f07adf| |target| |radicalSolve| |cos| |sumSquares| |putGraph|
+ |duplicates| |prologue| |whatInfinity| |splitConstant| |sqfree|
+ |mapSolve| |leftRecip| |tan| |intermediateResultsIF|
+ |fortranDoubleComplex| |pi| |makeop| |xCoord| |asimpson| |integers|
+ |mdeg| |cot| |continue| |reverse!| |SturmHabichtMultiple| |iisqrt2|
+ |clipPointsDefault| |infinity| |universe| |iiacosh|
+ |functionIsFracPolynomial?| |rightExtendedGcd| |normalizedDivide|
+ |sec| |numerators| |member?| |paraboloidal| |realRoots| |ScanRoman|
+ |s18dcf| |elements| |lex| |complexNumericIfCan| |csc|
+ |seriesToOutputForm| |colorDef| |copies| |failed?| |upDateBranches|
+ |mainSquareFreePart| |returns| |inc| |lifting1| |asin|
+ |curveColorPalette| |componentUpperBound| |deepExpand| |kernel|
+ |unmakeSUP| |extractBottom!| |iicoth| |e02agf| |f02adf| |ravel|
+ |e04jaf| |acos| |headReduce| |critMTonD1| |map| |updatF| * |draw|
+ |completeHensel| |s15aef| |ldf2lst| |phiCoord| |create|
+ |numberOfDivisors| |reshape| |f01brf| |atan| |setFieldInfo|
+ |monicModulo| |exportedOperators| |explimitedint| |gethi|
+ |stosePrepareSubResAlgo| |sincos| |nextSublist| |dmpToP| |acot|
+ |equivOperands| |setOfMinN| |regularRepresentation| |clipParametric|
+ |deriv| |selectPDERoutines| |asec| |extensionDegree| |char|
+ |identityMatrix| |setsubMatrix!| |validExponential|
+ |doubleFloatFormat| |mathieu22| |has?| |pol| |OMgetAttr| |acsc|
+ |coHeight| |f04qaf| |order| |stiffnessAndStabilityFactor| |resetNew|
+ |makeObject| |setelt| |isAbsolutelyIrreducible?| |eof?| |pointData|
+ |iroot| |sinh| |concat!| |convert| |readable?| |lazyEvaluate| |hue|
+ |red| |rootSplit| |multinomial| |setVariableOrder| |update|
+ |leastPower| |s19adf| |relerror| |squareFreePrim| |copy| |coef|
+ |removeRoughlyRedundantFactorsInPols| |scaleRoots| |f02aaf| |ridHack1|
+ |subCase?| |reduceBasisAtInfinity| |OMputAtp| |exponent| |rightLcm|
+ |part?| |genus| |superHeight| |getStream| |rur| |hconcat| |rdHack1|
+ |float| |digit| |tableForDiscreteLogarithm| |push| |insertTop!|
+ |logIfCan| |lllip| |deepCopy| |expintegrate| |d01aqf| |expt|
+ |monicRightFactorIfCan| |autoCoerce| |df2mf| |unparse| |s19abf|
+ |discriminantEuclidean| |inverse| |failed| |pdf2df| |OMmakeConn|
+ |lazyPseudoRemainder| |univariatePolynomial| |selectfirst|
+ |leadingExponent| |groebner| |lyndon?| |f01rcf| |prime| |match?|
+ |position| |assign| |commonDenominator| |LyndonWordsList| RF2UTS
+ |padecf| |cExp| |e02baf| |addMatchRestricted| |multMonom|
+ |countRealRoots| |innerEigenvectors| |antisymmetric?| |setLabelValue|
+ |aCubic| |mainPrimitivePart| |clipWithRanges| |extendedEuclidean|
+ |plot| |rischNormalize| |split!| |youngGroup| |children| |iifact|
+ |characteristic| |monomialIntegrate| |position!| |complexZeros|
+ |fortranCarriageReturn| |shiftRoots| |setTopPredicate| |coerceS|
+ |lazyIrreducibleFactors| |sorted?| |printHeader| |triangSolve|
+ |typeLists| |bitLength| |matrixConcat3D| |algint| |aLinear|
+ |numberOfIrreduciblePoly| |imagk| |normalForm| |radicalRoots|
+ |approximants| |approxNthRoot| |factors| |monicCompleteDecompose|
+ |makeEq| |Frobenius| |comp| |rischDE| |setEmpty!| GE |quadraticNorm|
+ |rightScalarTimes!| |normalDeriv| |lhs| |difference| |rationalPoint?|
+ |simpsono| |ord| |OMgetBVar| |explicitEntries?| |opeval| |makeprod| GT
+ |critpOrder| |hermiteH| |invmod| |rhs| |addPoint| |repSq|
+ |eyeDistance| |completeEval| |weighted| |next| |lighting| |randomR|
+ |routines| LE |leftScalarTimes!| |headRemainder| |reducedDiscriminant|
+ |lllp| |setButtonValue| |defineProperty| |doublyTransitive?|
+ |endOfFile?| |mapUp!| |alternative?| LT |summation|
+ |normalizeAtInfinity| |swap| |sparsityIF| |spherical| |removeSinhSq|
+ |modularGcd| |pade| |isMult| |bubbleSort!| |lyndonIfCan| |powers|
+ |updateStatus!| |elliptic?| |stFunc1| |leadingTerm| |qelt|
+ |trapezoidal| |legendreP| |symbolIfCan| |log| |e01bhf| |normFactors|
+ |generalizedEigenvectors| |nil?| |eigenvector| |qsetelt|
+ |cyclicParents| |e01sbf| |selectAndPolynomials| |imagi|
+ |halfExtendedSubResultantGcd2| |singRicDE| |vconcat|
+ |stoseInvertible?reg| |loopPoints| |cycleSplit!| |unknown| |pastel|
+ |jordanAlgebra?| |deepestInitial| |f02wef| |xRange| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 7eb7d312..83034f54 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5247 +1,5282 @@
-(3184443 . 3440300519)
-((-2878 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-3041 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4077 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-1213 (-558)) |#2|) 34)) (-2240 (($ $) 59)) (-3866 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-4145 (((-558) (-1 (-112) |#2|) $) 22) (((-558) |#2| $) NIL) (((-558) |#2| $ (-558)) 73)) (-2917 (((-635 |#2|) $) 13)) (-3391 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-3674 (($ (-1 |#2| |#2|) $) 29)) (-3397 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1363 (($ |#2| $ (-558)) NIL) (($ $ $ (-558)) 50)) (-2820 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-3314 (((-112) (-1 (-112) |#2|) $) 21)) (-2276 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) NIL) (($ $ (-1213 (-558))) 49)) (-3976 (($ $ (-558)) 56) (($ $ (-1213 (-558))) 55)) (-1698 (((-762) (-1 (-112) |#2|) $) 26) (((-762) |#2| $) NIL)) (-2834 (($ $ $ (-558)) 52)) (-4098 (($ $) 51)) (-3952 (($ (-635 |#2|)) 53)) (-2683 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-635 $)) 62)) (-3940 (((-853) $) 69)) (-2831 (((-112) (-1 (-112) |#2|) $) 20)) (-1708 (((-112) $ $) 72)) (-1728 (((-112) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1708 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -3041 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -2834 (|#1| |#1| |#1| (-558))) (-15 -2878 ((-112) |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -4145 ((-558) |#2| |#1| (-558))) (-15 -4145 ((-558) |#2| |#1|)) (-15 -4145 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -2878 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4077 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -3976 (|#1| |#1| (-1213 (-558)))) (-15 -3976 (|#1| |#1| (-558))) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -2820 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2276 (|#2| |#1| (-558))) (-15 -2276 (|#2| |#1| (-558) |#2|)) (-15 -4077 (|#2| |#1| (-558) |#2|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -2917 ((-635 |#2|) |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4098 (|#1| |#1|))) (-19 |#2|) (-1200)) (T -18))
+(3189406 . 3440472358)
+((-4268 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-3702 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4167 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-1220 (-561)) |#2|) 34)) (-4075 (($ $) 59)) (-3185 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-4235 (((-561) (-1 (-112) |#2|) $) 22) (((-561) |#2| $) NIL) (((-561) |#2| $ (-561)) 73)) (-3571 (((-638 |#2|) $) 13)) (-1407 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-2065 (($ (-1 |#2| |#2|) $) 29)) (-4120 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3312 (($ |#2| $ (-561)) NIL) (($ $ $ (-561)) 50)) (-1330 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2123 (((-112) (-1 (-112) |#2|) $) 21)) (-2277 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) NIL) (($ $ (-1220 (-561))) 49)) (-2849 (($ $ (-561)) 56) (($ $ (-1220 (-561))) 55)) (-1724 (((-765) (-1 (-112) |#2|) $) 26) (((-765) |#2| $) NIL)) (-1365 (($ $ $ (-561)) 52)) (-4187 (($ $) 51)) (-4031 (($ (-638 |#2|)) 53)) (-2725 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-638 $)) 62)) (-4022 (((-856) $) 69)) (-3715 (((-112) (-1 (-112) |#2|) $) 20)) (-1733 (((-112) $ $) 72)) (-1754 (((-112) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -3702 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -1365 (|#1| |#1| |#1| (-561))) (-15 -4268 ((-112) |#1|)) (-15 -1407 (|#1| |#1| |#1|)) (-15 -4235 ((-561) |#2| |#1| (-561))) (-15 -4235 ((-561) |#2| |#1|)) (-15 -4235 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4268 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1407 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4167 (|#2| |#1| (-1220 (-561)) |#2|)) (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -2849 (|#1| |#1| (-1220 (-561)))) (-15 -2849 (|#1| |#1| (-561))) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2725 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -1330 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2277 (|#2| |#1| (-561))) (-15 -2277 (|#2| |#1| (-561) |#2|)) (-15 -4167 (|#2| |#1| (-561) |#2|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -3571 ((-638 |#2|) |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4187 (|#1| |#1|))) (-19 |#2|) (-1205)) (T -18))
NIL
-(-10 -8 (-15 -1708 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -3041 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -2834 (|#1| |#1| |#1| (-558))) (-15 -2878 ((-112) |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -4145 ((-558) |#2| |#1| (-558))) (-15 -4145 ((-558) |#2| |#1|)) (-15 -4145 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -2878 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4077 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -3976 (|#1| |#1| (-1213 (-558)))) (-15 -3976 (|#1| |#1| (-558))) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -2820 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2276 (|#2| |#1| (-558))) (-15 -2276 (|#2| |#1| (-558) |#2|)) (-15 -4077 (|#2| |#1| (-558) |#2|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -2917 ((-635 |#2|) |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4098 (|#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4384))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4384))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-2240 (($ $) 90 (|has| $ (-6 -4384)))) (-1911 (($ $) 100)) (-3188 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 51)) (-4145 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-2142 (($ $ $) 87 (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-2281 (($ $ $) 86 (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 42 (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2830 (($ $ |#1|) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2834 (($ $ $ (-558)) 91 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 70)) (-2683 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 82 (|has| |#1| (-841)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-19 |#1|) (-139) (-1200)) (T -19))
+(-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -3702 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -1365 (|#1| |#1| |#1| (-561))) (-15 -4268 ((-112) |#1|)) (-15 -1407 (|#1| |#1| |#1|)) (-15 -4235 ((-561) |#2| |#1| (-561))) (-15 -4235 ((-561) |#2| |#1|)) (-15 -4235 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4268 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1407 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4167 (|#2| |#1| (-1220 (-561)) |#2|)) (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -2849 (|#1| |#1| (-1220 (-561)))) (-15 -2849 (|#1| |#1| (-561))) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2725 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -1330 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2277 (|#2| |#1| (-561))) (-15 -2277 (|#2| |#1| (-561) |#2|)) (-15 -4167 (|#2| |#1| (-561) |#2|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -3571 ((-638 |#2|) |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4187 (|#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4391))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4391))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 58 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-4075 (($ $) 90 (|has| $ (-6 -4391)))) (-2638 (($ $) 100)) (-1472 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 51)) (-4235 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3443 (($ $ $) 87 (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2986 (($ $ $) 86 (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 42 (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1799 (($ $ |#1|) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1220 (-561))) 63)) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1365 (($ $ $ (-561)) 91 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 70)) (-2725 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1773 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 82 (|has| |#1| (-844)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-19 |#1|) (-139) (-1205)) (T -19))
NIL
-(-13 (-372 |t#1|) (-10 -7 (-6 -4384)))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T))
-((-1868 (((-3 $ "failed") $ $) 12)) (-1796 (($ $) NIL) (($ $ $) 9)) (* (($ (-911) $) NIL) (($ (-762) $) 16) (($ (-558) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1868 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-21)) (T -20))
+(-13 (-372 |t#1|) (-10 -7 (-6 -4391)))
+(((-34) . T) ((-102) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T))
+((-2249 (((-3 $ "failed") $ $) 12)) (-1824 (($ $) NIL) (($ $ $) 9)) (* (($ (-914) $) NIL) (($ (-765) $) 16) (($ (-561) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -2249 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1868 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20)))
+(-10 -8 (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -2249 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20)))
(((-21) (-139)) (T -21))
-((-1796 (*1 *1 *1) (-4 *1 (-21))) (-1796 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-558)))))
-(-13 (-130) (-10 -8 (-15 -1796 ($ $)) (-15 -1796 ($ $ $)) (-15 * ($ (-558) $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3124 (((-112) $) 10)) (-3457 (($) 15)) (* (($ (-911) $) 14) (($ (-762) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-762) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 -3457 (|#1|)) (-15 * (|#1| (-911) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-762) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 -3457 (|#1|)) (-15 * (|#1| (-911) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
+((-1824 (*1 *1 *1) (-4 *1 (-21))) (-1824 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-561)))))
+(-13 (-130) (-10 -8 (-15 -1824 ($ $)) (-15 -1824 ($ $ $)) (-15 * ($ (-561) $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-2800 (((-112) $) 10)) (-1965 (($) 15)) (* (($ (-914) $) 14) (($ (-765) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -2800 ((-112) |#1|)) (-15 -1965 (|#1|)) (-15 * (|#1| (-914) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -2800 ((-112) |#1|)) (-15 -1965 (|#1|)) (-15 * (|#1| (-914) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
(((-23) (-139)) (T -23))
-((-2207 (*1 *1) (-4 *1 (-23))) (-3457 (*1 *1) (-4 *1 (-23))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-762)))))
-(-13 (-25) (-10 -8 (-15 (-2207) ($) -2010) (-15 -3457 ($) -2010) (-15 -3124 ((-112) $)) (-15 * ($ (-762) $))))
-(((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((* (($ (-911) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-911) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-911) |#1|)))
-((-3929 (((-112) $ $) 7)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13)))
+((-2211 (*1 *1) (-4 *1 (-23))) (-1965 (*1 *1) (-4 *1 (-23))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-765)))))
+(-13 (-25) (-10 -8 (-15 (-2211) ($) -1514) (-15 -1965 ($) -1514) (-15 -2800 ((-112) $)) (-15 * ($ (-765) $))))
+(((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((* (($ (-914) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-914) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-914) |#1|)))
+((-4011 (((-112) $ $) 7)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13)))
(((-25) (-139)) (T -25))
-((-1785 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-911)))))
-(-13 (-1087) (-10 -8 (-15 -1785 ($ $ $)) (-15 * ($ (-911) $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2598 (((-635 $) (-942 $)) 29) (((-635 $) (-1159 $)) 16) (((-635 $) (-1159 $) (-1163)) 20)) (-3368 (($ (-942 $)) 27) (($ (-1159 $)) 11) (($ (-1159 $) (-1163)) 54)) (-1571 (((-635 $) (-942 $)) 30) (((-635 $) (-1159 $)) 18) (((-635 $) (-1159 $) (-1163)) 19)) (-2363 (($ (-942 $)) 28) (($ (-1159 $)) 13) (($ (-1159 $) (-1163)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2598 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -2598 ((-635 |#1|) (-1159 |#1|))) (-15 -2598 ((-635 |#1|) (-942 |#1|))) (-15 -3368 (|#1| (-1159 |#1|) (-1163))) (-15 -3368 (|#1| (-1159 |#1|))) (-15 -3368 (|#1| (-942 |#1|))) (-15 -1571 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1571 ((-635 |#1|) (-1159 |#1|))) (-15 -1571 ((-635 |#1|) (-942 |#1|))) (-15 -2363 (|#1| (-1159 |#1|) (-1163))) (-15 -2363 (|#1| (-1159 |#1|))) (-15 -2363 (|#1| (-942 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2598 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -2598 ((-635 |#1|) (-1159 |#1|))) (-15 -2598 ((-635 |#1|) (-942 |#1|))) (-15 -3368 (|#1| (-1159 |#1|) (-1163))) (-15 -3368 (|#1| (-1159 |#1|))) (-15 -3368 (|#1| (-942 |#1|))) (-15 -1571 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1571 ((-635 |#1|) (-1159 |#1|))) (-15 -1571 ((-635 |#1|) (-942 |#1|))) (-15 -2363 (|#1| (-1159 |#1|) (-1163))) (-15 -2363 (|#1| (-1159 |#1|))) (-15 -2363 (|#1| (-942 |#1|))))
-((-3929 (((-112) $ $) 7)) (-2598 (((-635 $) (-942 $)) 81) (((-635 $) (-1159 $)) 80) (((-635 $) (-1159 $) (-1163)) 79)) (-3368 (($ (-942 $)) 84) (($ (-1159 $)) 83) (($ (-1159 $) (-1163)) 82)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-3948 (($ $) 93)) (-1599 (((-112) $ $) 60)) (-3457 (($) 17 T CONST)) (-1571 (((-635 $) (-942 $)) 87) (((-635 $) (-1159 $)) 86) (((-635 $) (-1159 $) (-1163)) 85)) (-2363 (($ (-942 $)) 90) (($ (-1159 $)) 89) (($ (-1159 $) (-1163)) 88)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-2992 (((-112) $) 72)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 92)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 66)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 91)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+((-1813 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-914)))))
+(-13 (-1090) (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ (-914) $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-3803 (((-638 $) (-945 $)) 29) (((-638 $) (-1162 $)) 16) (((-638 $) (-1162 $) (-1166)) 20)) (-2964 (($ (-945 $)) 27) (($ (-1162 $)) 11) (($ (-1162 $) (-1166)) 54)) (-2137 (((-638 $) (-945 $)) 30) (((-638 $) (-1162 $)) 18) (((-638 $) (-1162 $) (-1166)) 19)) (-3559 (($ (-945 $)) 28) (($ (-1162 $)) 13) (($ (-1162 $) (-1166)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3803 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -3803 ((-638 |#1|) (-1162 |#1|))) (-15 -3803 ((-638 |#1|) (-945 |#1|))) (-15 -2964 (|#1| (-1162 |#1|) (-1166))) (-15 -2964 (|#1| (-1162 |#1|))) (-15 -2964 (|#1| (-945 |#1|))) (-15 -2137 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2137 ((-638 |#1|) (-1162 |#1|))) (-15 -2137 ((-638 |#1|) (-945 |#1|))) (-15 -3559 (|#1| (-1162 |#1|) (-1166))) (-15 -3559 (|#1| (-1162 |#1|))) (-15 -3559 (|#1| (-945 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -3803 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -3803 ((-638 |#1|) (-1162 |#1|))) (-15 -3803 ((-638 |#1|) (-945 |#1|))) (-15 -2964 (|#1| (-1162 |#1|) (-1166))) (-15 -2964 (|#1| (-1162 |#1|))) (-15 -2964 (|#1| (-945 |#1|))) (-15 -2137 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2137 ((-638 |#1|) (-1162 |#1|))) (-15 -2137 ((-638 |#1|) (-945 |#1|))) (-15 -3559 (|#1| (-1162 |#1|) (-1166))) (-15 -3559 (|#1| (-1162 |#1|))) (-15 -3559 (|#1| (-945 |#1|))))
+((-4011 (((-112) $ $) 7)) (-3803 (((-638 $) (-945 $)) 81) (((-638 $) (-1162 $)) 80) (((-638 $) (-1162 $) (-1166)) 79)) (-2964 (($ (-945 $)) 84) (($ (-1162 $)) 83) (($ (-1162 $) (-1166)) 82)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1665 (($ $) 93)) (-1671 (((-112) $ $) 60)) (-1965 (($) 17 T CONST)) (-2137 (((-638 $) (-945 $)) 87) (((-638 $) (-1162 $)) 86) (((-638 $) (-1162 $) (-1166)) 85)) (-3559 (($ (-945 $)) 90) (($ (-1162 $)) 89) (($ (-1162 $) (-1166)) 88)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2737 (((-112) $) 72)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 92)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 66)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 91)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
(((-27) (-139)) (T -27))
-((-2363 (*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27)))) (-2363 (*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27)))) (-2363 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27)))) (-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27)) (-5 *2 (-635 *1)))))
-(-13 (-362) (-992) (-10 -8 (-15 -2363 ($ (-942 $))) (-15 -2363 ($ (-1159 $))) (-15 -2363 ($ (-1159 $) (-1163))) (-15 -1571 ((-635 $) (-942 $))) (-15 -1571 ((-635 $) (-1159 $))) (-15 -1571 ((-635 $) (-1159 $) (-1163))) (-15 -3368 ($ (-942 $))) (-15 -3368 ($ (-1159 $))) (-15 -3368 ($ (-1159 $) (-1163))) (-15 -2598 ((-635 $) (-942 $))) (-15 -2598 ((-635 $) (-1159 $))) (-15 -2598 ((-635 $) (-1159 $) (-1163)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-992) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
-((-2598 (((-635 $) (-942 $)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-1159 $) (-1163)) 50) (((-635 $) $) 19) (((-635 $) $ (-1163)) 41)) (-3368 (($ (-942 $)) NIL) (($ (-1159 $)) NIL) (($ (-1159 $) (-1163)) 52) (($ $) 17) (($ $ (-1163)) 37)) (-1571 (((-635 $) (-942 $)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-1159 $) (-1163)) 48) (((-635 $) $) 15) (((-635 $) $ (-1163)) 43)) (-2363 (($ (-942 $)) NIL) (($ (-1159 $)) NIL) (($ (-1159 $) (-1163)) NIL) (($ $) 12) (($ $ (-1163)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2598 ((-635 |#1|) |#1| (-1163))) (-15 -3368 (|#1| |#1| (-1163))) (-15 -2598 ((-635 |#1|) |#1|)) (-15 -3368 (|#1| |#1|)) (-15 -1571 ((-635 |#1|) |#1| (-1163))) (-15 -2363 (|#1| |#1| (-1163))) (-15 -1571 ((-635 |#1|) |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2598 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -2598 ((-635 |#1|) (-1159 |#1|))) (-15 -2598 ((-635 |#1|) (-942 |#1|))) (-15 -3368 (|#1| (-1159 |#1|) (-1163))) (-15 -3368 (|#1| (-1159 |#1|))) (-15 -3368 (|#1| (-942 |#1|))) (-15 -1571 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1571 ((-635 |#1|) (-1159 |#1|))) (-15 -1571 ((-635 |#1|) (-942 |#1|))) (-15 -2363 (|#1| (-1159 |#1|) (-1163))) (-15 -2363 (|#1| (-1159 |#1|))) (-15 -2363 (|#1| (-942 |#1|)))) (-29 |#2|) (-13 (-841) (-550))) (T -28))
-NIL
-(-10 -8 (-15 -2598 ((-635 |#1|) |#1| (-1163))) (-15 -3368 (|#1| |#1| (-1163))) (-15 -2598 ((-635 |#1|) |#1|)) (-15 -3368 (|#1| |#1|)) (-15 -1571 ((-635 |#1|) |#1| (-1163))) (-15 -2363 (|#1| |#1| (-1163))) (-15 -1571 ((-635 |#1|) |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2598 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -2598 ((-635 |#1|) (-1159 |#1|))) (-15 -2598 ((-635 |#1|) (-942 |#1|))) (-15 -3368 (|#1| (-1159 |#1|) (-1163))) (-15 -3368 (|#1| (-1159 |#1|))) (-15 -3368 (|#1| (-942 |#1|))) (-15 -1571 ((-635 |#1|) (-1159 |#1|) (-1163))) (-15 -1571 ((-635 |#1|) (-1159 |#1|))) (-15 -1571 ((-635 |#1|) (-942 |#1|))) (-15 -2363 (|#1| (-1159 |#1|) (-1163))) (-15 -2363 (|#1| (-1159 |#1|))) (-15 -2363 (|#1| (-942 |#1|))))
-((-3929 (((-112) $ $) 7)) (-2598 (((-635 $) (-942 $)) 81) (((-635 $) (-1159 $)) 80) (((-635 $) (-1159 $) (-1163)) 79) (((-635 $) $) 125) (((-635 $) $ (-1163)) 123)) (-3368 (($ (-942 $)) 84) (($ (-1159 $)) 83) (($ (-1159 $) (-1163)) 82) (($ $) 126) (($ $ (-1163)) 124)) (-3124 (((-112) $) 16)) (-4078 (((-635 (-1163)) $) 200)) (-3907 (((-406 (-1159 $)) $ (-604 $)) 232 (|has| |#1| (-550)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-3798 (((-635 (-604 $)) $) 163)) (-1868 (((-3 $ "failed") $ $) 19)) (-2564 (($ $ (-635 (-604 $)) (-635 $)) 153) (($ $ (-635 (-293 $))) 152) (($ $ (-293 $)) 151)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-3948 (($ $) 93)) (-1599 (((-112) $ $) 60)) (-3457 (($) 17 T CONST)) (-1571 (((-635 $) (-942 $)) 87) (((-635 $) (-1159 $)) 86) (((-635 $) (-1159 $) (-1163)) 85) (((-635 $) $) 129) (((-635 $) $ (-1163)) 127)) (-2363 (($ (-942 $)) 90) (($ (-1159 $)) 89) (($ (-1159 $) (-1163)) 88) (($ $) 130) (($ $ (-1163)) 128)) (-3302 (((-3 (-942 |#1|) "failed") $) 250 (|has| |#1| (-1039))) (((-3 (-406 (-942 |#1|)) "failed") $) 234 (|has| |#1| (-550))) (((-3 |#1| "failed") $) 196) (((-3 (-558) "failed") $) 193 (|has| |#1| (-1028 (-558)))) (((-3 (-1163) "failed") $) 187) (((-3 (-604 $) "failed") $) 138) (((-3 (-406 (-558)) "failed") $) 121 (-3994 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-3226 (((-942 |#1|) $) 249 (|has| |#1| (-1039))) (((-406 (-942 |#1|)) $) 233 (|has| |#1| (-550))) ((|#1| $) 195) (((-558) $) 194 (|has| |#1| (-1028 (-558)))) (((-1163) $) 186) (((-604 $) $) 137) (((-406 (-558)) $) 122 (-3994 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-1709 (($ $ $) 56)) (-1918 (((-679 |#1|) (-679 $)) 240 (|has| |#1| (-1039))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 239 (|has| |#1| (-1039))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 120 (-3994 (-2157 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-2157 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (((-679 (-558)) (-679 $)) 119 (-3994 (-2157 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-2157 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-2992 (((-112) $) 72)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 192 (|has| |#1| (-876 (-378)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 191 (|has| |#1| (-876 (-558))))) (-2058 (($ (-635 $)) 157) (($ $) 156)) (-2380 (((-635 (-114)) $) 164)) (-2154 (((-114) (-114)) 165)) (-3999 (((-112) $) 31)) (-1495 (((-112) $) 185 (|has| $ (-1028 (-558))))) (-2772 (($ $) 217 (|has| |#1| (-1039)))) (-3316 (((-1112 |#1| (-604 $)) $) 216 (|has| |#1| (-1039)))) (-2136 (($ $ (-558)) 92)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2550 (((-1159 $) (-604 $)) 182 (|has| $ (-1039)))) (-2142 (($ $ $) 136)) (-2281 (($ $ $) 135)) (-3397 (($ (-1 $ $) (-604 $)) 171)) (-2025 (((-3 (-604 $) "failed") $) 161)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3892 (((-635 (-604 $)) $) 162)) (-3390 (($ (-114) (-635 $)) 170) (($ (-114) $) 169)) (-2819 (((-3 (-635 $) "failed") $) 211 (|has| |#1| (-1099)))) (-3633 (((-3 (-2 (|:| |val| $) (|:| -1857 (-558))) "failed") $) 220 (|has| |#1| (-1039)))) (-4195 (((-3 (-635 $) "failed") $) 213 (|has| |#1| (-25)))) (-2320 (((-3 (-2 (|:| -3455 (-558)) (|:| |var| (-604 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3637 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-1163)) 219 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-114)) 218 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $) 212 (|has| |#1| (-1099)))) (-3557 (((-112) $ (-1163)) 168) (((-112) $ (-114)) 167)) (-3823 (($ $) 71)) (-2361 (((-762) $) 160)) (-1688 (((-1107) $) 10)) (-3837 (((-112) $) 198)) (-3853 ((|#1| $) 199)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-1711 (((-112) $ (-1163)) 173) (((-112) $ $) 172)) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-4254 (((-112) $) 184 (|has| $ (-1028 (-558))))) (-1369 (($ $ (-1163) (-762) (-1 $ $)) 224 (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ (-635 $))) 223 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) 222 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) 221 (|has| |#1| (-1039))) (($ $ (-635 (-114)) (-635 $) (-1163)) 210 (|has| |#1| (-606 (-534)))) (($ $ (-114) $ (-1163)) 209 (|has| |#1| (-606 (-534)))) (($ $) 208 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163))) 207 (|has| |#1| (-606 (-534)))) (($ $ (-1163)) 206 (|has| |#1| (-606 (-534)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-635 $))) 180) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 179) (($ $ (-635 (-114)) (-635 (-1 $ $))) 178) (($ $ (-1163) (-1 $ $)) 177) (($ $ (-1163) (-1 $ (-635 $))) 176) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 175) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 174) (($ $ (-635 $) (-635 $)) 145) (($ $ $ $) 144) (($ $ (-293 $)) 143) (($ $ (-635 (-293 $))) 142) (($ $ (-635 (-604 $)) (-635 $)) 141) (($ $ (-604 $) $) 140)) (-1562 (((-762) $) 59)) (-2276 (($ (-114) (-635 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3604 (($ $ $) 159) (($ $) 158)) (-3780 (($ $ (-1163)) 248 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 247 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 246 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) 245 (|has| |#1| (-1039)))) (-4218 (($ $) 227 (|has| |#1| (-550)))) (-3327 (((-1112 |#1| (-604 $)) $) 226 (|has| |#1| (-550)))) (-2297 (($ $) 183 (|has| $ (-1039)))) (-3441 (((-534) $) 254 (|has| |#1| (-606 (-534)))) (($ (-417 $)) 225 (|has| |#1| (-550))) (((-882 (-378)) $) 190 (|has| |#1| (-606 (-882 (-378))))) (((-882 (-558)) $) 189 (|has| |#1| (-606 (-882 (-558)))))) (-3068 (($ $ $) 253 (|has| |#1| (-471)))) (-3072 (($ $ $) 252 (|has| |#1| (-471)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ (-942 |#1|)) 251 (|has| |#1| (-1039))) (($ (-406 (-942 |#1|))) 235 (|has| |#1| (-550))) (($ (-406 (-942 (-406 |#1|)))) 231 (|has| |#1| (-550))) (($ (-942 (-406 |#1|))) 230 (|has| |#1| (-550))) (($ (-406 |#1|)) 229 (|has| |#1| (-550))) (($ (-1112 |#1| (-604 $))) 215 (|has| |#1| (-1039))) (($ |#1|) 197) (($ (-1163)) 188) (($ (-604 $)) 139)) (-1487 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2638 (($ (-635 $)) 155) (($ $) 154)) (-2480 (((-112) (-114)) 166)) (-2671 (((-112) $ $) 40)) (-4238 (($ (-1163) (-635 $)) 205) (($ (-1163) $ $ $ $) 204) (($ (-1163) $ $ $) 203) (($ (-1163) $ $) 202) (($ (-1163) $) 201)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-1163)) 244 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 243 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 242 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) 241 (|has| |#1| (-1039)))) (-1757 (((-112) $ $) 133)) (-1737 (((-112) $ $) 132)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 134)) (-1728 (((-112) $ $) 131)) (-1805 (($ $ $) 66) (($ (-1112 |#1| (-604 $)) (-1112 |#1| (-604 $))) 228 (|has| |#1| (-550)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 91)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171)))))
-(((-29 |#1|) (-139) (-13 (-841) (-550))) (T -29))
-((-2363 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550))))) (-1571 (*1 *2 *1) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-2363 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550))))) (-1571 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4)))) (-3368 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550))))) (-2598 (*1 *2 *1) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550))))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-429 |t#1|) (-10 -8 (-15 -2363 ($ $)) (-15 -1571 ((-635 $) $)) (-15 -2363 ($ $ (-1163))) (-15 -1571 ((-635 $) $ (-1163))) (-15 -3368 ($ $)) (-15 -2598 ((-635 $) $)) (-15 -3368 ($ $ (-1163))) (-15 -2598 ((-635 $) $ (-1163)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 #1=(-406 (-942 |#1|))) |has| |#1| (-550)) ((-608 (-558)) . T) ((-608 #2=(-604 $)) . T) ((-608 #3=(-942 |#1|)) |has| |#1| (-1039)) ((-608 #4=(-1163)) . T) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-301) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1039)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-429 |#1|) . T) ((-450) . T) ((-471) |has| |#1| (-471)) ((-512 (-604 $) $) . T) ((-512 $ $) . T) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) |has| |#1| (-171)) ((-638 $) . T) ((-631 (-558)) -12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) ((-631 |#1|) |has| |#1| (-1039)) ((-708 #0#) . T) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) . T) ((-717) . T) ((-841) . T) ((-890 (-1163)) |has| |#1| (-1039)) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-910) . T) ((-992) . T) ((-1028 (-406 (-558))) -3994 (|has| |#1| (-1028 (-406 (-558)))) (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) ((-1028 #1#) |has| |#1| (-550)) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #2#) . T) ((-1028 #3#) |has| |#1| (-1039)) ((-1028 #4#) . T) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) |has| |#1| (-171)) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1200) . T) ((-1204) . T))
-((-3654 (((-1081 (-224)) $) NIL)) (-3643 (((-1081 (-224)) $) NIL)) (-3250 (($ $ (-224)) 125)) (-4324 (($ (-942 (-558)) (-1163) (-1163) (-1081 (-406 (-558))) (-1081 (-406 (-558)))) 82)) (-3305 (((-635 (-635 (-933 (-224)))) $) 137)) (-3940 (((-853) $) 149)))
-(((-30) (-13 (-945) (-10 -8 (-15 -4324 ($ (-942 (-558)) (-1163) (-1163) (-1081 (-406 (-558))) (-1081 (-406 (-558))))) (-15 -3250 ($ $ (-224)))))) (T -30))
-((-4324 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-942 (-558))) (-5 *3 (-1163)) (-5 *4 (-1081 (-406 (-558)))) (-5 *1 (-30)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))))
-(-13 (-945) (-10 -8 (-15 -4324 ($ (-942 (-558)) (-1163) (-1163) (-1081 (-406 (-558))) (-1081 (-406 (-558))))) (-15 -3250 ($ $ (-224)))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-1122) $) 11)) (-2636 (((-1122) $) 9)) (-1708 (((-112) $ $) NIL)))
-(((-31) (-13 (-1070) (-10 -8 (-15 -2636 ((-1122) $)) (-15 -3190 ((-1122) $))))) (T -31))
-((-2636 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31)))))
-(-13 (-1070) (-10 -8 (-15 -2636 ((-1122) $)) (-15 -3190 ((-1122) $))))
-((-2363 ((|#2| (-1159 |#2|) (-1163)) 43)) (-2154 (((-114) (-114)) 56)) (-2550 (((-1159 |#2|) (-604 |#2|)) 133 (|has| |#1| (-1028 (-558))))) (-1631 ((|#2| |#1| (-558)) 123 (|has| |#1| (-1028 (-558))))) (-1424 ((|#2| (-1159 |#2|) |#2|) 30)) (-4262 (((-853) (-635 |#2|)) 85)) (-2297 ((|#2| |#2|) 129 (|has| |#1| (-1028 (-558))))) (-2480 (((-112) (-114)) 18)) (** ((|#2| |#2| (-406 (-558))) 96 (|has| |#1| (-1028 (-558))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -2363 (|#2| (-1159 |#2|) (-1163))) (-15 -2154 ((-114) (-114))) (-15 -2480 ((-112) (-114))) (-15 -1424 (|#2| (-1159 |#2|) |#2|)) (-15 -4262 ((-853) (-635 |#2|))) (IF (|has| |#1| (-1028 (-558))) (PROGN (-15 ** (|#2| |#2| (-406 (-558)))) (-15 -2550 ((-1159 |#2|) (-604 |#2|))) (-15 -2297 (|#2| |#2|)) (-15 -1631 (|#2| |#1| (-558)))) |%noBranch|)) (-13 (-841) (-550)) (-429 |#1|)) (T -32))
-((-1631 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1028 *4)) (-4 *3 (-13 (-841) (-550))))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-1028 (-558))) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-604 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1028 (-558))) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-1159 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-1028 (-558))) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-853)) (-5 *1 (-32 *4 *5)))) (-1424 (*1 *2 *3 *2) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-32 *4 *2)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-32 *3 *4)) (-4 *4 (-429 *3)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *2)) (-5 *4 (-1163)) (-4 *2 (-429 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-841) (-550))))))
-(-10 -7 (-15 -2363 (|#2| (-1159 |#2|) (-1163))) (-15 -2154 ((-114) (-114))) (-15 -2480 ((-112) (-114))) (-15 -1424 (|#2| (-1159 |#2|) |#2|)) (-15 -4262 ((-853) (-635 |#2|))) (IF (|has| |#1| (-1028 (-558))) (PROGN (-15 ** (|#2| |#2| (-406 (-558)))) (-15 -2550 ((-1159 |#2|) (-604 |#2|))) (-15 -2297 (|#2| |#2|)) (-15 -1631 (|#2| |#1| (-558)))) |%noBranch|))
-((-3651 (((-112) $ (-762)) 16)) (-3457 (($) 10)) (-4007 (((-112) $ (-762)) 15)) (-3212 (((-112) $ (-762)) 14)) (-3382 (((-112) $ $) 8)) (-3711 (((-112) $) 13)))
-(((-33 |#1|) (-10 -8 (-15 -3457 (|#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762))) (-15 -3711 ((-112) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -3457 (|#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762))) (-15 -3711 ((-112) |#1|)) (-15 -3382 ((-112) |#1| |#1|)))
-((-3651 (((-112) $ (-762)) 8)) (-3457 (($) 7 T CONST)) (-4007 (((-112) $ (-762)) 9)) (-3212 (((-112) $ (-762)) 10)) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-4098 (($ $) 13)) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
+((-3559 (*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27)))) (-3559 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27)))) (-2964 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1)))) (-3803 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-638 *1)))))
+(-13 (-362) (-995) (-10 -8 (-15 -3559 ($ (-945 $))) (-15 -3559 ($ (-1162 $))) (-15 -3559 ($ (-1162 $) (-1166))) (-15 -2137 ((-638 $) (-945 $))) (-15 -2137 ((-638 $) (-1162 $))) (-15 -2137 ((-638 $) (-1162 $) (-1166))) (-15 -2964 ($ (-945 $))) (-15 -2964 ($ (-1162 $))) (-15 -2964 ($ (-1162 $) (-1166))) (-15 -3803 ((-638 $) (-945 $))) (-15 -3803 ((-638 $) (-1162 $))) (-15 -3803 ((-638 $) (-1162 $) (-1166)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-995) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
+((-3803 (((-638 $) (-945 $)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-1162 $) (-1166)) 50) (((-638 $) $) 19) (((-638 $) $ (-1166)) 41)) (-2964 (($ (-945 $)) NIL) (($ (-1162 $)) NIL) (($ (-1162 $) (-1166)) 52) (($ $) 17) (($ $ (-1166)) 37)) (-2137 (((-638 $) (-945 $)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-1162 $) (-1166)) 48) (((-638 $) $) 15) (((-638 $) $ (-1166)) 43)) (-3559 (($ (-945 $)) NIL) (($ (-1162 $)) NIL) (($ (-1162 $) (-1166)) NIL) (($ $) 12) (($ $ (-1166)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3803 ((-638 |#1|) |#1| (-1166))) (-15 -2964 (|#1| |#1| (-1166))) (-15 -3803 ((-638 |#1|) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -2137 ((-638 |#1|) |#1| (-1166))) (-15 -3559 (|#1| |#1| (-1166))) (-15 -2137 ((-638 |#1|) |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -3803 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -3803 ((-638 |#1|) (-1162 |#1|))) (-15 -3803 ((-638 |#1|) (-945 |#1|))) (-15 -2964 (|#1| (-1162 |#1|) (-1166))) (-15 -2964 (|#1| (-1162 |#1|))) (-15 -2964 (|#1| (-945 |#1|))) (-15 -2137 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2137 ((-638 |#1|) (-1162 |#1|))) (-15 -2137 ((-638 |#1|) (-945 |#1|))) (-15 -3559 (|#1| (-1162 |#1|) (-1166))) (-15 -3559 (|#1| (-1162 |#1|))) (-15 -3559 (|#1| (-945 |#1|)))) (-29 |#2|) (-13 (-844) (-553))) (T -28))
+NIL
+(-10 -8 (-15 -3803 ((-638 |#1|) |#1| (-1166))) (-15 -2964 (|#1| |#1| (-1166))) (-15 -3803 ((-638 |#1|) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -2137 ((-638 |#1|) |#1| (-1166))) (-15 -3559 (|#1| |#1| (-1166))) (-15 -2137 ((-638 |#1|) |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -3803 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -3803 ((-638 |#1|) (-1162 |#1|))) (-15 -3803 ((-638 |#1|) (-945 |#1|))) (-15 -2964 (|#1| (-1162 |#1|) (-1166))) (-15 -2964 (|#1| (-1162 |#1|))) (-15 -2964 (|#1| (-945 |#1|))) (-15 -2137 ((-638 |#1|) (-1162 |#1|) (-1166))) (-15 -2137 ((-638 |#1|) (-1162 |#1|))) (-15 -2137 ((-638 |#1|) (-945 |#1|))) (-15 -3559 (|#1| (-1162 |#1|) (-1166))) (-15 -3559 (|#1| (-1162 |#1|))) (-15 -3559 (|#1| (-945 |#1|))))
+((-4011 (((-112) $ $) 7)) (-3803 (((-638 $) (-945 $)) 81) (((-638 $) (-1162 $)) 80) (((-638 $) (-1162 $) (-1166)) 79) (((-638 $) $) 125) (((-638 $) $ (-1166)) 123)) (-2964 (($ (-945 $)) 84) (($ (-1162 $)) 83) (($ (-1162 $) (-1166)) 82) (($ $) 126) (($ $ (-1166)) 124)) (-2800 (((-112) $) 16)) (-1412 (((-638 (-1166)) $) 200)) (-1620 (((-406 (-1162 $)) $ (-607 $)) 232 (|has| |#1| (-553)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-1510 (((-638 (-607 $)) $) 163)) (-2249 (((-3 $ "failed") $ $) 19)) (-2612 (($ $ (-638 (-607 $)) (-638 $)) 153) (($ $ (-638 (-293 $))) 152) (($ $ (-293 $)) 151)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1665 (($ $) 93)) (-1671 (((-112) $ $) 60)) (-1965 (($) 17 T CONST)) (-2137 (((-638 $) (-945 $)) 87) (((-638 $) (-1162 $)) 86) (((-638 $) (-1162 $) (-1166)) 85) (((-638 $) $) 129) (((-638 $) $ (-1166)) 127)) (-3559 (($ (-945 $)) 90) (($ (-1162 $)) 89) (($ (-1162 $) (-1166)) 88) (($ $) 130) (($ $ (-1166)) 128)) (-4017 (((-3 (-945 |#1|) "failed") $) 250 (|has| |#1| (-1042))) (((-3 (-406 (-945 |#1|)) "failed") $) 234 (|has| |#1| (-553))) (((-3 |#1| "failed") $) 196) (((-3 (-561) "failed") $) 193 (|has| |#1| (-1031 (-561)))) (((-3 (-1166) "failed") $) 187) (((-3 (-607 $) "failed") $) 138) (((-3 (-406 (-561)) "failed") $) 121 (-4007 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-3938 (((-945 |#1|) $) 249 (|has| |#1| (-1042))) (((-406 (-945 |#1|)) $) 233 (|has| |#1| (-553))) ((|#1| $) 195) (((-561) $) 194 (|has| |#1| (-1031 (-561)))) (((-1166) $) 186) (((-607 $) $) 137) (((-406 (-561)) $) 122 (-4007 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-1793 (($ $ $) 56)) (-3602 (((-682 |#1|) (-682 $)) 240 (|has| |#1| (-1042))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 239 (|has| |#1| (-1042))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 120 (-4007 (-2170 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (-2170 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (((-682 (-561)) (-682 $)) 119 (-4007 (-2170 (|has| |#1| (-1042)) (|has| |#1| (-634 (-561)))) (-2170 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2737 (((-112) $) 72)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 192 (|has| |#1| (-879 (-378)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 191 (|has| |#1| (-879 (-561))))) (-1890 (($ (-638 $)) 157) (($ $) 156)) (-1719 (((-638 (-114)) $) 164)) (-3479 (((-114) (-114)) 165)) (-3113 (((-112) $) 31)) (-3402 (((-112) $) 185 (|has| $ (-1031 (-561))))) (-3458 (($ $) 217 (|has| |#1| (-1042)))) (-4030 (((-1115 |#1| (-607 $)) $) 216 (|has| |#1| (-1042)))) (-2556 (($ $ (-561)) 92)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-3217 (((-1162 $) (-607 $)) 182 (|has| $ (-1042)))) (-3443 (($ $ $) 136)) (-2986 (($ $ $) 135)) (-4120 (($ (-1 $ $) (-607 $)) 171)) (-2012 (((-3 (-607 $) "failed") $) 161)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1600 (((-638 (-607 $)) $) 162)) (-4109 (($ (-114) (-638 $)) 170) (($ (-114) $) 169)) (-3638 (((-3 (-638 $) "failed") $) 211 (|has| |#1| (-1102)))) (-3772 (((-3 (-2 (|:| |val| $) (|:| -4196 (-561))) "failed") $) 220 (|has| |#1| (-1042)))) (-1664 (((-3 (-638 $) "failed") $) 213 (|has| |#1| (-25)))) (-4336 (((-3 (-2 (|:| -4188 (-561)) (|:| |var| (-607 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3431 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-1166)) 219 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-114)) 218 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $) 212 (|has| |#1| (-1102)))) (-2561 (((-112) $ (-1166)) 168) (((-112) $ (-114)) 167)) (-1540 (($ $) 71)) (-3061 (((-765) $) 160)) (-1714 (((-1110) $) 10)) (-1551 (((-112) $) 198)) (-1561 ((|#1| $) 199)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1297 (((-112) $ (-1166)) 173) (((-112) $ $) 172)) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-2736 (((-112) $) 184 (|has| $ (-1031 (-561))))) (-1444 (($ $ (-1166) (-765) (-1 $ $)) 224 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-638 $))) 223 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) 222 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) 221 (|has| |#1| (-1042))) (($ $ (-638 (-114)) (-638 $) (-1166)) 210 (|has| |#1| (-609 (-534)))) (($ $ (-114) $ (-1166)) 209 (|has| |#1| (-609 (-534)))) (($ $) 208 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166))) 207 (|has| |#1| (-609 (-534)))) (($ $ (-1166)) 206 (|has| |#1| (-609 (-534)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-638 $))) 180) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 179) (($ $ (-638 (-114)) (-638 (-1 $ $))) 178) (($ $ (-1166) (-1 $ $)) 177) (($ $ (-1166) (-1 $ (-638 $))) 176) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 175) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 174) (($ $ (-638 $) (-638 $)) 145) (($ $ $ $) 144) (($ $ (-293 $)) 143) (($ $ (-638 (-293 $))) 142) (($ $ (-638 (-607 $)) (-638 $)) 141) (($ $ (-607 $) $) 140)) (-3569 (((-765) $) 59)) (-2277 (($ (-114) (-638 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-1584 (($ $ $) 159) (($ $) 158)) (-3238 (($ $ (-1166)) 248 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 247 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 246 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) 245 (|has| |#1| (-1042)))) (-2861 (($ $) 227 (|has| |#1| (-553)))) (-4045 (((-1115 |#1| (-607 $)) $) 226 (|has| |#1| (-553)))) (-3660 (($ $) 183 (|has| $ (-1042)))) (-4174 (((-534) $) 254 (|has| |#1| (-609 (-534)))) (($ (-417 $)) 225 (|has| |#1| (-553))) (((-885 (-378)) $) 190 (|has| |#1| (-609 (-885 (-378))))) (((-885 (-561)) $) 189 (|has| |#1| (-609 (-885 (-561)))))) (-2260 (($ $ $) 253 (|has| |#1| (-471)))) (-3800 (($ $ $) 252 (|has| |#1| (-471)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ (-945 |#1|)) 251 (|has| |#1| (-1042))) (($ (-406 (-945 |#1|))) 235 (|has| |#1| (-553))) (($ (-406 (-945 (-406 |#1|)))) 231 (|has| |#1| (-553))) (($ (-945 (-406 |#1|))) 230 (|has| |#1| (-553))) (($ (-406 |#1|)) 229 (|has| |#1| (-553))) (($ (-1115 |#1| (-607 $))) 215 (|has| |#1| (-1042))) (($ |#1|) 197) (($ (-1166)) 188) (($ (-607 $)) 139)) (-1760 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-3300 (($ (-638 $)) 155) (($ $) 154)) (-2665 (((-112) (-114)) 166)) (-3168 (((-112) $ $) 40)) (-3117 (($ (-1166) (-638 $)) 205) (($ (-1166) $ $ $ $) 204) (($ (-1166) $ $ $) 203) (($ (-1166) $ $) 202) (($ (-1166) $) 201)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-1166)) 244 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 243 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 242 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) 241 (|has| |#1| (-1042)))) (-1782 (((-112) $ $) 133)) (-1762 (((-112) $ $) 132)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 134)) (-1754 (((-112) $ $) 131)) (-1833 (($ $ $) 66) (($ (-1115 |#1| (-607 $)) (-1115 |#1| (-607 $))) 228 (|has| |#1| (-553)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 91)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171)))))
+(((-29 |#1|) (-139) (-13 (-844) (-553))) (T -29))
+((-3559 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553))))) (-2137 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3)))) (-3559 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553))))) (-2137 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *4)))) (-2964 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553))))) (-3803 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553))))) (-3803 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-429 |t#1|) (-10 -8 (-15 -3559 ($ $)) (-15 -2137 ((-638 $) $)) (-15 -3559 ($ $ (-1166))) (-15 -2137 ((-638 $) $ (-1166))) (-15 -2964 ($ $)) (-15 -3803 ((-638 $) $)) (-15 -2964 ($ $ (-1166))) (-15 -3803 ((-638 $) $ (-1166)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 #1=(-406 (-945 |#1|))) |has| |#1| (-553)) ((-611 (-561)) . T) ((-611 #2=(-607 $)) . T) ((-611 #3=(-945 |#1|)) |has| |#1| (-1042)) ((-611 #4=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-301) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-429 |#1|) . T) ((-450) . T) ((-471) |has| |#1| (-471)) ((-512 (-607 $) $) . T) ((-512 $ $) . T) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) . T) ((-634 (-561)) -12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #0#) . T) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-913) . T) ((-995) . T) ((-1031 (-406 (-561))) -4007 (|has| |#1| (-1031 (-406 (-561)))) (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) ((-1031 #1#) |has| |#1| (-553)) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #2#) . T) ((-1031 #3#) |has| |#1| (-1042)) ((-1031 #4#) . T) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1205) . T) ((-1209) . T))
+((-2046 (((-1084 (-224)) $) NIL)) (-4370 (((-1084 (-224)) $) NIL)) (-1883 (($ $ (-224)) 125)) (-1771 (($ (-945 (-561)) (-1166) (-1166) (-1084 (-406 (-561))) (-1084 (-406 (-561)))) 82)) (-3980 (((-638 (-638 (-936 (-224)))) $) 137)) (-4022 (((-856) $) 149)))
+(((-30) (-13 (-948) (-10 -8 (-15 -1771 ($ (-945 (-561)) (-1166) (-1166) (-1084 (-406 (-561))) (-1084 (-406 (-561))))) (-15 -1883 ($ $ (-224)))))) (T -30))
+((-1771 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-945 (-561))) (-5 *3 (-1166)) (-5 *4 (-1084 (-406 (-561)))) (-5 *1 (-30)))) (-1883 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))))
+(-13 (-948) (-10 -8 (-15 -1771 ($ (-945 (-561)) (-1166) (-1166) (-1084 (-406 (-561))) (-1084 (-406 (-561))))) (-15 -1883 ($ $ (-224)))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-1125) $) 11)) (-2684 (((-1125) $) 9)) (-1733 (((-112) $ $) NIL)))
+(((-31) (-13 (-1073) (-10 -8 (-15 -2684 ((-1125) $)) (-15 -3279 ((-1125) $))))) (T -31))
+((-2684 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))))
+(-13 (-1073) (-10 -8 (-15 -2684 ((-1125) $)) (-15 -3279 ((-1125) $))))
+((-3559 ((|#2| (-1162 |#2|) (-1166)) 43)) (-3479 (((-114) (-114)) 56)) (-3217 (((-1162 |#2|) (-607 |#2|)) 133 (|has| |#1| (-1031 (-561))))) (-4171 ((|#2| |#1| (-561)) 123 (|has| |#1| (-1031 (-561))))) (-3457 ((|#2| (-1162 |#2|) |#2|) 30)) (-2535 (((-856) (-638 |#2|)) 85)) (-3660 ((|#2| |#2|) 129 (|has| |#1| (-1031 (-561))))) (-2665 (((-112) (-114)) 18)) (** ((|#2| |#2| (-406 (-561))) 96 (|has| |#1| (-1031 (-561))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3559 (|#2| (-1162 |#2|) (-1166))) (-15 -3479 ((-114) (-114))) (-15 -2665 ((-112) (-114))) (-15 -3457 (|#2| (-1162 |#2|) |#2|)) (-15 -2535 ((-856) (-638 |#2|))) (IF (|has| |#1| (-1031 (-561))) (PROGN (-15 ** (|#2| |#2| (-406 (-561)))) (-15 -3217 ((-1162 |#2|) (-607 |#2|))) (-15 -3660 (|#2| |#2|)) (-15 -4171 (|#2| |#1| (-561)))) |%noBranch|)) (-13 (-844) (-553)) (-429 |#1|)) (T -32))
+((-4171 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1031 *4)) (-4 *3 (-13 (-844) (-553))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-1031 (-561))) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1031 (-561))) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-1162 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-1031 (-561))) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-856)) (-5 *1 (-32 *4 *5)))) (-3457 (*1 *2 *3 *2) (-12 (-5 *3 (-1162 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-32 *4 *2)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-32 *3 *4)) (-4 *4 (-429 *3)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *2)) (-5 *4 (-1166)) (-4 *2 (-429 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-844) (-553))))))
+(-10 -7 (-15 -3559 (|#2| (-1162 |#2|) (-1166))) (-15 -3479 ((-114) (-114))) (-15 -2665 ((-112) (-114))) (-15 -3457 (|#2| (-1162 |#2|) |#2|)) (-15 -2535 ((-856) (-638 |#2|))) (IF (|has| |#1| (-1031 (-561))) (PROGN (-15 ** (|#2| |#2| (-406 (-561)))) (-15 -3217 ((-1162 |#2|) (-607 |#2|))) (-15 -3660 (|#2| |#2|)) (-15 -4171 (|#2| |#1| (-561)))) |%noBranch|))
+((-1630 (((-112) $ (-765)) 16)) (-1965 (($) 10)) (-3744 (((-112) $ (-765)) 15)) (-2230 (((-112) $ (-765)) 14)) (-3016 (((-112) $ $) 8)) (-1928 (((-112) $) 13)))
+(((-33 |#1|) (-10 -8 (-15 -1965 (|#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765))) (-15 -1928 ((-112) |#1|)) (-15 -3016 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -1965 (|#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765))) (-15 -1928 ((-112) |#1|)) (-15 -3016 ((-112) |#1| |#1|)))
+((-1630 (((-112) $ (-765)) 8)) (-1965 (($) 7 T CONST)) (-3744 (((-112) $ (-765)) 9)) (-2230 (((-112) $ (-765)) 10)) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-4187 (($ $) 13)) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
(((-34) (-139)) (T -34))
-((-3382 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4098 (*1 *1 *1) (-4 *1 (-34))) (-2876 (*1 *1) (-4 *1 (-34))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3212 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))) (-4007 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))) (-3651 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))) (-3457 (*1 *1) (-4 *1 (-34))) (-1596 (*1 *2 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-34)) (-5 *2 (-762)))))
-(-13 (-1200) (-10 -8 (-15 -3382 ((-112) $ $)) (-15 -4098 ($ $)) (-15 -2876 ($)) (-15 -3711 ((-112) $)) (-15 -3212 ((-112) $ (-762))) (-15 -4007 ((-112) $ (-762))) (-15 -3651 ((-112) $ (-762))) (-15 -3457 ($) -2010) (IF (|has| $ (-6 -4383)) (-15 -1596 ((-762) $)) |%noBranch|)))
-(((-1200) . T))
-((-4175 (($ $) 11)) (-2325 (($ $) 10)) (-4197 (($ $) 9)) (-2038 (($ $) 8)) (-4185 (($ $) 7)) (-4164 (($ $) 6)))
+((-3016 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4187 (*1 *1 *1) (-4 *1 (-34))) (-3170 (*1 *1) (-4 *1 (-34))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2230 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-3744 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-1630 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-1965 (*1 *1) (-4 *1 (-34))) (-3498 (*1 *2 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-34)) (-5 *2 (-765)))))
+(-13 (-1205) (-10 -8 (-15 -3016 ((-112) $ $)) (-15 -4187 ($ $)) (-15 -3170 ($)) (-15 -1928 ((-112) $)) (-15 -2230 ((-112) $ (-765))) (-15 -3744 ((-112) $ (-765))) (-15 -1630 ((-112) $ (-765))) (-15 -1965 ($) -1514) (IF (|has| $ (-6 -4390)) (-15 -3498 ((-765) $)) |%noBranch|)))
+(((-1205) . T))
+((-3055 (($ $) 11)) (-3031 (($ $) 10)) (-3081 (($ $) 9)) (-2125 (($ $) 8)) (-3066 (($ $) 7)) (-3043 (($ $) 6)))
(((-35) (-139)) (T -35))
-((-4175 (*1 *1 *1) (-4 *1 (-35))) (-2325 (*1 *1 *1) (-4 *1 (-35))) (-4197 (*1 *1 *1) (-4 *1 (-35))) (-2038 (*1 *1 *1) (-4 *1 (-35))) (-4185 (*1 *1 *1) (-4 *1 (-35))) (-4164 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -4164 ($ $)) (-15 -4185 ($ $)) (-15 -2038 ($ $)) (-15 -4197 ($ $)) (-15 -2325 ($ $)) (-15 -4175 ($ $))))
-((-3929 (((-112) $ $) 19 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2426 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 125)) (-1611 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 148)) (-2427 (($ $) 146)) (-1379 (($) 72) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 71)) (-3552 (((-1251) $ |#1| |#1|) 99 (|has| $ (-6 -4384))) (((-1251) $ (-558) (-558)) 178 (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) 159 (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3041 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 200 (|has| $ (-6 -4384))) (($ $) 199 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)) (|has| $ (-6 -4384))))) (-3648 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3651 (((-112) $ (-762)) 8)) (-3083 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 134 (|has| $ (-6 -4384)))) (-1649 (($ $ $) 155 (|has| $ (-6 -4384)))) (-2851 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 157 (|has| $ (-6 -4384)))) (-2444 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 153 (|has| $ (-6 -4384)))) (-4077 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 189 (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-1213 (-558)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 160 (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "last" (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 158 (|has| $ (-6 -4384))) (($ $ "rest" $) 156 (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "first" (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 154 (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "value" (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 133 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 132 (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 45 (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 216)) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 55 (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 175 (|has| $ (-6 -4383)))) (-1601 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 147)) (-2623 (((-3 |#2| "failed") |#1| $) 61)) (-3457 (($) 7 T CONST)) (-2240 (($ $) 201 (|has| $ (-6 -4384)))) (-1911 (($ $) 211)) (-3168 (($ $ (-762)) 142) (($ $) 140)) (-1958 (($ $) 214 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-3188 (($ $) 58 (-3994 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383))) (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 46 (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 220) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 215 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 54 (|has| $ (-6 -4383))) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 174 (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 56 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 53 (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 52 (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 176 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 173 (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 172 (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 190 (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) 88) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) 188)) (-4151 (((-112) $) 192)) (-4145 (((-558) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 208) (((-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 207 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) (((-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) 206 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 30 (|has| $ (-6 -4383))) (((-635 |#2|) $) 79 (|has| $ (-6 -4383))) (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 114 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 123)) (-2201 (((-112) $ $) 131 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-1395 (($ (-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 169)) (-4007 (((-112) $ (-762)) 9)) (-2192 ((|#1| $) 96 (|has| |#1| (-841))) (((-558) $) 180 (|has| (-558) (-841)))) (-2142 (($ $ $) 198 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-4150 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3391 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 29 (|has| $ (-6 -4383))) (((-635 |#2|) $) 80 (|has| $ (-6 -4383))) (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 115 (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383)))) (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383))))) (-3186 ((|#1| $) 95 (|has| |#1| (-841))) (((-558) $) 181 (|has| (-558) (-841)))) (-2281 (($ $ $) 197 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 34 (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4384))) (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 110 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 109)) (-2411 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 225)) (-3212 (((-112) $ (-762)) 10)) (-3783 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 128)) (-3355 (((-112) $) 124)) (-2510 (((-1145) $) 22 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-1514 (($ $ (-762)) 145) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 143)) (-1934 (((-635 |#1|) $) 63)) (-3336 (((-112) |#1| $) 64)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 39)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 40) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) 219) (($ $ $ (-558)) 218)) (-1363 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) 162) (($ $ $ (-558)) 161)) (-3051 (((-635 |#1|) $) 93) (((-635 (-558)) $) 183)) (-2740 (((-112) |#1| $) 92) (((-112) (-558) $) 184)) (-1688 (((-1107) $) 21 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-3156 ((|#2| $) 97 (|has| |#1| (-841))) (($ $ (-762)) 139) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 137)) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 51) (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 171)) (-2830 (($ $ |#2|) 98 (|has| $ (-6 -4384))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 179 (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 41)) (-1890 (((-112) $) 191)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 32 (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 112 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) 26 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 25 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 24 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 23 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 121 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 120 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 119 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) 118 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 182 (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-4318 (((-635 |#2|) $) 91) (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 185)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 187) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) 186) (($ $ (-1213 (-558))) 165) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "first") 138) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "value") 126)) (-1904 (((-558) $ $) 129)) (-1966 (($) 49) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 48)) (-3738 (($ $ (-558)) 222) (($ $ (-1213 (-558))) 221)) (-3976 (($ $ (-558)) 164) (($ $ (-1213 (-558))) 163)) (-1609 (((-112) $) 127)) (-3070 (($ $) 151)) (-4132 (($ $) 152 (|has| $ (-6 -4384)))) (-2398 (((-762) $) 150)) (-4009 (($ $) 149)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 31 (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-762) |#2| $) 81 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 113 (|has| $ (-6 -4383)))) (-2834 (($ $ $ (-558)) 202 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534)))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 50) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 170)) (-1651 (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 224) (($ $ $) 223)) (-2683 (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 168) (($ (-635 $)) 167) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 136) (($ $ $) 135)) (-3940 (((-853) $) 18 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853)))))) (-1384 (((-635 $) $) 122)) (-4171 (((-112) $ $) 130 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 42)) (-1526 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") |#1| $) 108)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 33 (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 111 (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) 195 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1737 (((-112) $ $) 194 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1708 (((-112) $ $) 20 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-1749 (((-112) $ $) 196 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1728 (((-112) $ $) 193 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-36 |#1| |#2|) (-139) (-1087) (-1087)) (T -36))
-((-1526 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-2 (|:| -2176 *3) (|:| -1925 *4))))))
-(-13 (-1176 |t#1| |t#2|) (-656 (-2 (|:| -2176 |t#1|) (|:| -1925 |t#2|))) (-10 -8 (-15 -1526 ((-3 (-2 (|:| -2176 |t#1|) (|:| -1925 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((-102) -3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841))) ((-605 (-853)) -3994 (|has| |#2| (-1087)) (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853)))) ((-150 #1=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((-606 (-534)) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 #2=(-558) #1#) . T) ((-285 |#1| |#2|) . T) ((-287 #2# #1#) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-281 #1#) . T) ((-372 #1#) . T) ((-487 #1#) . T) ((-487 |#2|) . T) ((-596 #2# #1#) . T) ((-596 |#1| |#2|) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-602 |#1| |#2|) . T) ((-641 #1#) . T) ((-656 #1#) . T) ((-841) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)) ((-1000 #1#) . T) ((-1087) -3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841))) ((-1136 #1#) . T) ((-1176 |#1| |#2|) . T) ((-1200) . T) ((-1234 #1#) . T))
-((-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-38 |#2|) (-171)) (T -37))
-NIL
-(-10 -8 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3055 (*1 *1 *1) (-4 *1 (-35))) (-3031 (*1 *1 *1) (-4 *1 (-35))) (-3081 (*1 *1 *1) (-4 *1 (-35))) (-2125 (*1 *1 *1) (-4 *1 (-35))) (-3066 (*1 *1 *1) (-4 *1 (-35))) (-3043 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3043 ($ $)) (-15 -3066 ($ $)) (-15 -2125 ($ $)) (-15 -3081 ($ $)) (-15 -3031 ($ $)) (-15 -3055 ($ $))))
+((-4011 (((-112) $ $) 19 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-2484 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 125)) (-2295 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 148)) (-3129 (($ $) 146)) (-1456 (($) 72) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 71)) (-3024 (((-1258) $ |#1| |#1|) 99 (|has| $ (-6 -4391))) (((-1258) $ (-561) (-561)) 178 (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) 159 (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-3702 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 200 (|has| $ (-6 -4391))) (($ $) 199 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)) (|has| $ (-6 -4391))))) (-1289 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1630 (((-112) $ (-765)) 8)) (-1969 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 134 (|has| $ (-6 -4391)))) (-1353 (($ $ $) 155 (|has| $ (-6 -4391)))) (-1726 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 157 (|has| $ (-6 -4391)))) (-3861 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 153 (|has| $ (-6 -4391)))) (-4167 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 189 (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-1220 (-561)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 160 (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "last" (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 158 (|has| $ (-6 -4391))) (($ $ "rest" $) 156 (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "first" (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 154 (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "value" (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 133 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 132 (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 45 (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 216)) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 55 (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 175 (|has| $ (-6 -4390)))) (-2285 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 147)) (-1485 (((-3 |#2| "failed") |#1| $) 61)) (-1965 (($) 7 T CONST)) (-4075 (($ $) 201 (|has| $ (-6 -4391)))) (-2638 (($ $) 211)) (-1445 (($ $ (-765)) 142) (($ $) 140)) (-3776 (($ $) 214 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1472 (($ $) 58 (-4007 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390))) (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 46 (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 220) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 215 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 54 (|has| $ (-6 -4390))) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 174 (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 56 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 53 (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 52 (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 176 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 173 (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 172 (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 190 (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) 88) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) 188)) (-3032 (((-112) $) 192)) (-4235 (((-561) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 208) (((-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 207 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) (((-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) 206 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 30 (|has| $ (-6 -4390))) (((-638 |#2|) $) 79 (|has| $ (-6 -4390))) (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 114 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 123)) (-2726 (((-112) $ $) 131 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1470 (($ (-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 169)) (-3744 (((-112) $ (-765)) 9)) (-3975 ((|#1| $) 96 (|has| |#1| (-844))) (((-561) $) 180 (|has| (-561) (-844)))) (-3443 (($ $ $) 198 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-3092 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1407 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 29 (|has| $ (-6 -4390))) (((-638 |#2|) $) 80 (|has| $ (-6 -4390))) (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 115 (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390)))) (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390))))) (-2780 ((|#1| $) 95 (|has| |#1| (-844))) (((-561) $) 181 (|has| (-561) (-844)))) (-2986 (($ $ $) 197 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 34 (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4391))) (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 110 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 109)) (-3708 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 225)) (-2230 (((-112) $ (-765)) 10)) (-3884 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 128)) (-3067 (((-112) $) 124)) (-1764 (((-1148) $) 22 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-1520 (($ $ (-765)) 145) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 143)) (-2017 (((-638 |#1|) $) 63)) (-2857 (((-112) |#1| $) 64)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 39)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 40) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) 219) (($ $ $ (-561)) 218)) (-3312 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) 162) (($ $ $ (-561)) 161)) (-2451 (((-638 |#1|) $) 93) (((-638 (-561)) $) 183)) (-1390 (((-112) |#1| $) 92) (((-112) (-561) $) 184)) (-1714 (((-1110) $) 21 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-1433 ((|#2| $) 97 (|has| |#1| (-844))) (($ $ (-765)) 139) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 137)) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 51) (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 171)) (-1799 (($ $ |#2|) 98 (|has| $ (-6 -4391))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 179 (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 41)) (-2667 (((-112) $) 191)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 32 (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 112 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) 26 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 25 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 24 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 23 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 121 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 120 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 119 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) 118 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 182 (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-2658 (((-638 |#2|) $) 91) (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 185)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 187) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) 186) (($ $ (-1220 (-561))) 165) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "first") 138) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "value") 126)) (-2004 (((-561) $ $) 129)) (-3579 (($) 49) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 48)) (-2114 (($ $ (-561)) 222) (($ $ (-1220 (-561))) 221)) (-2849 (($ $ (-561)) 164) (($ $ (-1220 (-561))) 163)) (-3849 (((-112) $) 127)) (-3222 (($ $) 151)) (-4364 (($ $) 152 (|has| $ (-6 -4391)))) (-1624 (((-765) $) 150)) (-2883 (($ $) 149)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 31 (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 113 (|has| $ (-6 -4390)))) (-1365 (($ $ $ (-561)) 202 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534)))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 50) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 170)) (-4173 (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 224) (($ $ $) 223)) (-2725 (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 168) (($ (-638 $)) 167) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 136) (($ $ $) 135)) (-4022 (((-856) $) 18 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856)))))) (-4257 (((-638 $) $) 122)) (-3123 (((-112) $ $) 130 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 42)) (-1532 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") |#1| $) 108)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 33 (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 111 (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) 195 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1762 (((-112) $ $) 194 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1733 (((-112) $ $) 20 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-1773 (((-112) $ $) 196 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1754 (((-112) $ $) 193 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-36 |#1| |#2|) (-139) (-1090) (-1090)) (T -36))
+((-1532 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| -2252 *3) (|:| -2654 *4))))))
+(-13 (-1181 |t#1| |t#2|) (-659 (-2 (|:| -2252 |t#1|) (|:| -2654 |t#2|))) (-10 -8 (-15 -1532 ((-3 (-2 (|:| -2252 |t#1|) (|:| -2654 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((-102) -4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844))) ((-608 (-856)) -4007 (|has| |#2| (-1090)) (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856)))) ((-150 #1=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((-609 (-534)) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 #2=(-561) #1#) . T) ((-285 |#1| |#2|) . T) ((-287 #2# #1#) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-281 #1#) . T) ((-372 #1#) . T) ((-487 #1#) . T) ((-487 |#2|) . T) ((-599 #2# #1#) . T) ((-599 |#1| |#2|) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-605 |#1| |#2|) . T) ((-644 #1#) . T) ((-659 #1#) . T) ((-844) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)) ((-1003 #1#) . T) ((-1090) -4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844))) ((-1139 #1#) . T) ((-1181 |#1| |#2|) . T) ((-1205) . T) ((-1241 #1#) . T))
+((-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-38 |#2|) (-171)) (T -37))
+NIL
+(-10 -8 (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-38 |#1|) (-139) (-171)) (T -38))
NIL
-(-13 (-1039) (-708 |t#1|) (-608 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3566 (((-417 |#1|) |#1|) 41)) (-3939 (((-417 |#1|) |#1|) 30) (((-417 |#1|) |#1| (-635 (-48))) 33)) (-1468 (((-112) |#1|) 56)))
-(((-39 |#1|) (-10 -7 (-15 -3939 ((-417 |#1|) |#1| (-635 (-48)))) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -3566 ((-417 |#1|) |#1|)) (-15 -1468 ((-112) |#1|))) (-1222 (-48))) (T -39))
-((-1468 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))) (-3566 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))) (-3939 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))))
-(-10 -7 (-15 -3939 ((-417 |#1|) |#1| (-635 (-48)))) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -3566 ((-417 |#1|) |#1|)) (-15 -1468 ((-112) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3435 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-3244 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4326 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-3409 (((-679 (-406 |#2|)) (-1246 $)) NIL) (((-679 (-406 |#2|))) NIL)) (-1719 (((-406 |#2|) $) NIL)) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-406 |#2|) (-348)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4110 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1599 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2507 (((-762)) NIL (|has| (-406 |#2|) (-367)))) (-4348 (((-112)) NIL)) (-3740 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-406 |#2|) $) NIL)) (-3431 (($ (-1246 (-406 |#2|)) (-1246 $)) NIL) (($ (-1246 (-406 |#2|))) 57) (($ (-1246 |#2|) |#2|) 125)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1709 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3533 (((-679 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-406 |#2|))) (|:| |vec| (-1246 (-406 |#2|)))) (-679 $) (-1246 $)) NIL) (((-679 (-406 |#2|)) (-679 $)) NIL)) (-2191 (((-1246 $) (-1246 $)) NIL)) (-3866 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3248 (((-3 $ "failed") $) NIL)) (-2352 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-2922 (((-112) |#1| |#1|) NIL)) (-1489 (((-911)) NIL)) (-3692 (($) NIL (|has| (-406 |#2|) (-367)))) (-3649 (((-112)) NIL)) (-3429 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2881 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-3199 (($ $) NIL)) (-3567 (($) NIL (|has| (-406 |#2|) (-348)))) (-3617 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-4362 (($ $ (-762)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2992 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-2532 (((-911) $) NIL (|has| (-406 |#2|) (-348))) (((-824 (-911)) $) NIL (|has| (-406 |#2|) (-348)))) (-3999 (((-112) $) NIL)) (-3236 (((-762)) NIL)) (-2481 (((-1246 $) (-1246 $)) 102)) (-1423 (((-406 |#2|) $) NIL)) (-3515 (((-635 (-942 |#1|)) (-1163)) NIL (|has| |#1| (-362)))) (-2521 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1715 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-1486 (((-911) $) NIL (|has| (-406 |#2|) (-367)))) (-3850 ((|#3| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2510 (((-1145) $) NIL)) (-1472 (((-1251) (-762)) 79)) (-3375 (((-679 (-406 |#2|))) 51)) (-2693 (((-679 (-406 |#2|))) 44)) (-3823 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2333 (($ (-1246 |#2|) |#2|) 126)) (-1959 (((-679 (-406 |#2|))) 45)) (-2216 (((-679 (-406 |#2|))) 43)) (-3493 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3037 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 64)) (-3625 (((-1246 $)) 42)) (-2999 (((-1246 $)) 41)) (-3775 (((-112) $) NIL)) (-2960 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1823 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2349 (($ (-911)) NIL (|has| (-406 |#2|) (-367)))) (-2404 (((-3 |#2| "failed")) NIL)) (-1688 (((-1107) $) NIL)) (-1995 (((-762)) NIL)) (-2461 (($) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| (-406 |#2|) (-362)))) (-1544 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| (-406 |#2|) (-348)))) (-3939 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2861 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1562 (((-762) $) NIL (|has| (-406 |#2|) (-362)))) (-2276 ((|#1| $ |#1| |#1|) NIL)) (-3754 (((-3 |#2| "failed")) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3789 (((-406 |#2|) (-1246 $)) NIL) (((-406 |#2|)) 39)) (-2551 (((-762) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-762) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-3780 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2355 (((-679 (-406 |#2|)) (-1246 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-2297 ((|#3|) 50)) (-2933 (($) NIL (|has| (-406 |#2|) (-348)))) (-2979 (((-1246 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) (-1246 $) (-1246 $)) NIL) (((-1246 (-406 |#2|)) $) 58) (((-679 (-406 |#2|)) (-1246 $)) 103)) (-3441 (((-1246 (-406 |#2|)) $) NIL) (($ (-1246 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-406 |#2|) (-348)))) (-3744 (((-1246 $) (-1246 $)) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-558))) NIL (-3994 (|has| (-406 |#2|) (-1028 (-406 (-558)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1487 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-1969 ((|#3| $) NIL)) (-2417 (((-762)) NIL)) (-4296 (((-112)) 37)) (-4059 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-2743 (((-1246 $)) 93)) (-2671 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3276 (((-112)) NIL)) (-2207 (($) 16 T CONST)) (-2220 (($) 26 T CONST)) (-3042 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-558)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-558))) NIL (|has| (-406 |#2|) (-362)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -1472 ((-1251) (-762))))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) |#3|) (T -40))
-((-1472 (*1 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *2 (-1251)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1222 (-406 *5))) (-14 *7 *6))))
-(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -1472 ((-1251) (-762)))))
-((-4096 ((|#2| |#2|) 48)) (-3233 ((|#2| |#2|) 119 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-2526 ((|#2| |#2|) 86 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-2725 ((|#2| |#2|) 87 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-3659 ((|#2| (-114) |#2| (-762)) 115 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-841)) (|has| |#1| (-1028 (-558)))))) (-1534 (((-1159 |#2|) |#2|) 45)) (-3805 ((|#2| |#2| (-635 (-604 |#2|))) 18) ((|#2| |#2| (-635 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -4096 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3805 (|#2| |#2| |#2|)) (-15 -3805 (|#2| |#2| (-635 |#2|))) (-15 -3805 (|#2| |#2| (-635 (-604 |#2|)))) (-15 -1534 ((-1159 |#2|) |#2|)) (IF (|has| |#1| (-841)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1028 (-558))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -2725 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -3659 (|#2| (-114) |#2| (-762)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-550) (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 |#1| (-604 $)) $)) (-15 -3327 ((-1112 |#1| (-604 $)) $)) (-15 -3940 ($ (-1112 |#1| (-604 $))))))) (T -41))
-((-3659 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-762)) (-4 *5 (-450)) (-4 *5 (-841)) (-4 *5 (-1028 (-558))) (-4 *5 (-550)) (-5 *1 (-41 *5 *2)) (-4 *2 (-429 *5)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *5 (-604 $)) $)) (-15 -3327 ((-1112 *5 (-604 $)) $)) (-15 -3940 ($ (-1112 *5 (-604 $))))))))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558))) (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $)) (-15 -3327 ((-1112 *3 (-604 $)) $)) (-15 -3940 ($ (-1112 *3 (-604 $))))))))) (-2526 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558))) (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $)) (-15 -3327 ((-1112 *3 (-604 $)) $)) (-15 -3940 ($ (-1112 *3 (-604 $))))))))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558))) (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $)) (-15 -3327 ((-1112 *3 (-604 $)) $)) (-15 -3940 ($ (-1112 *3 (-604 $))))))))) (-1534 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1159 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *4 (-604 $)) $)) (-15 -3327 ((-1112 *4 (-604 $)) $)) (-15 -3940 ($ (-1112 *4 (-604 $))))))))) (-3805 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-604 *2))) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *4 (-604 $)) $)) (-15 -3327 ((-1112 *4 (-604 $)) $)) (-15 -3940 ($ (-1112 *4 (-604 $))))))) (-4 *4 (-550)) (-5 *1 (-41 *4 *2)))) (-3805 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *4 (-604 $)) $)) (-15 -3327 ((-1112 *4 (-604 $)) $)) (-15 -3940 ($ (-1112 *4 (-604 $))))))) (-4 *4 (-550)) (-5 *1 (-41 *4 *2)))) (-3805 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $)) (-15 -3327 ((-1112 *3 (-604 $)) $)) (-15 -3940 ($ (-1112 *3 (-604 $))))))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $)) (-15 -3327 ((-1112 *3 (-604 $)) $)) (-15 -3940 ($ (-1112 *3 (-604 $))))))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $)) (-15 -3327 ((-1112 *3 (-604 $)) $)) (-15 -3940 ($ (-1112 *3 (-604 $))))))))))
-(-10 -7 (-15 -4096 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3805 (|#2| |#2| |#2|)) (-15 -3805 (|#2| |#2| (-635 |#2|))) (-15 -3805 (|#2| |#2| (-635 (-604 |#2|)))) (-15 -1534 ((-1159 |#2|) |#2|)) (IF (|has| |#1| (-841)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1028 (-558))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -2725 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -3659 (|#2| (-114) |#2| (-762)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3939 (((-417 (-1159 |#3|)) (-1159 |#3|) (-635 (-48))) 23) (((-417 |#3|) |#3| (-635 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3939 ((-417 |#3|) |#3| (-635 (-48)))) (-15 -3939 ((-417 (-1159 |#3|)) (-1159 |#3|) (-635 (-48))))) (-841) (-784) (-939 (-48) |#2| |#1|)) (T -42))
-((-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *7 (-939 (-48) *6 *5)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-939 (-48) *6 *5)))))
-(-10 -7 (-15 -3939 ((-417 |#3|) |#3| (-635 (-48)))) (-15 -3939 ((-417 (-1159 |#3|)) (-1159 |#3|) (-635 (-48)))))
-((-4192 (((-762) |#2|) 65)) (-4311 (((-762) |#2|) 68)) (-4338 (((-635 |#2|)) 33)) (-4076 (((-762) |#2|) 67)) (-4002 (((-762) |#2|) 64)) (-1459 (((-762) |#2|) 66)) (-2235 (((-635 (-679 |#1|))) 60)) (-1731 (((-635 |#2|)) 55)) (-2713 (((-635 |#2|) |#2|) 43)) (-2674 (((-635 |#2|)) 57)) (-3060 (((-635 |#2|)) 56)) (-1597 (((-635 (-679 |#1|))) 48)) (-4232 (((-635 |#2|)) 54)) (-1347 (((-635 |#2|) |#2|) 42)) (-1883 (((-635 |#2|)) 50)) (-3819 (((-635 (-679 |#1|))) 61)) (-3931 (((-635 |#2|)) 59)) (-2743 (((-1246 |#2|) (-1246 |#2|)) 83 (|has| |#1| (-306)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -4076 ((-762) |#2|)) (-15 -4311 ((-762) |#2|)) (-15 -4002 ((-762) |#2|)) (-15 -4192 ((-762) |#2|)) (-15 -1459 ((-762) |#2|)) (-15 -1883 ((-635 |#2|))) (-15 -1347 ((-635 |#2|) |#2|)) (-15 -2713 ((-635 |#2|) |#2|)) (-15 -4232 ((-635 |#2|))) (-15 -1731 ((-635 |#2|))) (-15 -3060 ((-635 |#2|))) (-15 -2674 ((-635 |#2|))) (-15 -3931 ((-635 |#2|))) (-15 -1597 ((-635 (-679 |#1|)))) (-15 -2235 ((-635 (-679 |#1|)))) (-15 -3819 ((-635 (-679 |#1|)))) (-15 -4338 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2743 ((-1246 |#2|) (-1246 |#2|))) |%noBranch|)) (-550) (-416 |#1|)) (T -43))
-((-2743 (*1 *2 *2) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) (-4 *3 (-550)) (-5 *1 (-43 *3 *4)))) (-4338 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3819 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2235 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1597 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3931 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2674 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3060 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1731 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-4232 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1883 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-4311 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))))
-(-10 -7 (-15 -4076 ((-762) |#2|)) (-15 -4311 ((-762) |#2|)) (-15 -4002 ((-762) |#2|)) (-15 -4192 ((-762) |#2|)) (-15 -1459 ((-762) |#2|)) (-15 -1883 ((-635 |#2|))) (-15 -1347 ((-635 |#2|) |#2|)) (-15 -2713 ((-635 |#2|) |#2|)) (-15 -4232 ((-635 |#2|))) (-15 -1731 ((-635 |#2|))) (-15 -3060 ((-635 |#2|))) (-15 -2674 ((-635 |#2|))) (-15 -3931 ((-635 |#2|))) (-15 -1597 ((-635 (-679 |#1|)))) (-15 -2235 ((-635 (-679 |#1|)))) (-15 -3819 ((-635 (-679 |#1|)))) (-15 -4338 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2743 ((-1246 |#2|) (-1246 |#2|))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3466 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-1644 (((-1246 (-679 |#1|)) (-1246 $)) NIL) (((-1246 (-679 |#1|))) 24)) (-3871 (((-1246 $)) 51)) (-3457 (($) NIL T CONST)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (|has| |#1| (-550)))) (-3262 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-4157 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) NIL)) (-3890 ((|#1| $) NIL)) (-1398 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-2113 (((-3 $ "failed") $) NIL (|has| |#1| (-550)))) (-3889 (((-1159 (-942 |#1|))) NIL (|has| |#1| (-362)))) (-2943 (($ $ (-911)) NIL)) (-3231 ((|#1| $) NIL)) (-3324 (((-1159 |#1|) $) NIL (|has| |#1| (-550)))) (-2392 ((|#1| (-1246 $)) NIL) ((|#1|) NIL)) (-1292 (((-1159 |#1|) $) NIL)) (-2706 (((-112)) 87)) (-3431 (($ (-1246 |#1|) (-1246 $)) NIL) (($ (-1246 |#1|)) NIL)) (-3248 (((-3 $ "failed") $) 14 (|has| |#1| (-550)))) (-1489 (((-911)) 52)) (-1831 (((-112)) NIL)) (-4337 (($ $ (-911)) NIL)) (-1889 (((-112)) NIL)) (-1508 (((-112)) NIL)) (-2728 (((-112)) 89)) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (|has| |#1| (-550)))) (-2251 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-2284 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) NIL)) (-2818 ((|#1| $) NIL)) (-4138 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-4300 (((-3 $ "failed") $) NIL (|has| |#1| (-550)))) (-3900 (((-1159 (-942 |#1|))) NIL (|has| |#1| (-362)))) (-1794 (($ $ (-911)) NIL)) (-2815 ((|#1| $) NIL)) (-1637 (((-1159 |#1|) $) NIL (|has| |#1| (-550)))) (-2408 ((|#1| (-1246 $)) NIL) ((|#1|) NIL)) (-2889 (((-1159 |#1|) $) NIL)) (-1475 (((-112)) 86)) (-2510 (((-1145) $) NIL)) (-4165 (((-112)) 93)) (-1323 (((-112)) 92)) (-1310 (((-112)) 94)) (-1688 (((-1107) $) NIL)) (-3145 (((-112)) 88)) (-2276 ((|#1| $ (-558)) 54)) (-2979 (((-1246 |#1|) $ (-1246 $)) 48) (((-679 |#1|) (-1246 $) (-1246 $)) NIL) (((-1246 |#1|) $) 28) (((-679 |#1|) (-1246 $)) NIL)) (-3441 (((-1246 |#1|) $) NIL) (($ (-1246 |#1|)) NIL)) (-3175 (((-635 (-942 |#1|)) (-1246 $)) NIL) (((-635 (-942 |#1|))) NIL)) (-3072 (($ $ $) NIL)) (-4211 (((-112)) 84)) (-3940 (((-853) $) 69) (($ (-1246 |#1|)) 22)) (-2743 (((-1246 $)) 45)) (-3817 (((-635 (-1246 |#1|))) NIL (|has| |#1| (-550)))) (-2536 (($ $ $ $) NIL)) (-2667 (((-112)) 82)) (-2484 (($ (-679 |#1|) $) 18)) (-3467 (($ $ $) NIL)) (-2249 (((-112)) 85)) (-2835 (((-112)) 83)) (-2274 (((-112)) 81)) (-2207 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1129 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-416 |#1|) (-638 (-1129 |#2| |#1|)) (-10 -8 (-15 -3940 ($ (-1246 |#1|))))) (-362) (-911) (-635 (-1163)) (-1246 (-679 |#1|))) (T -44))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-14 *6 (-1246 (-679 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))))))
-(-13 (-416 |#1|) (-638 (-1129 |#2| |#1|)) (-10 -8 (-15 -3940 ($ (-1246 |#1|)))))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-2426 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-1611 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2427 (($ $) NIL)) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3552 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4384))) (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3041 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841))))) (-3648 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-3083 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384)))) (-1649 (($ $ $) 27 (|has| $ (-6 -4384)))) (-2851 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384)))) (-2444 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 29 (|has| $ (-6 -4384)))) (-4077 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-1213 (-558)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "last" (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384))) (($ $ "rest" $) NIL (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "first" (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "value" (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-1601 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2623 (((-3 |#2| "failed") |#1| $) 37)) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3168 (($ $ (-762)) NIL) (($ $) 24)) (-1958 (($ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4384))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) NIL)) (-4151 (((-112) $) NIL)) (-4145 (((-558) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (((-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) (((-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 18 (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383))) (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 18 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-1395 (($ (-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 ((|#1| $) NIL (|has| |#1| (-841))) (((-558) $) 32 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-4150 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3391 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383))) (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-3186 ((|#1| $) NIL (|has| |#1| (-841))) (((-558) $) 34 (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384))) (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2411 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-3783 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-3355 (((-112) $) NIL)) (-2510 (((-1145) $) 41 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1514 (($ $ (-762)) NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-1934 (((-635 |#1|) $) 20)) (-3336 (((-112) |#1| $) NIL)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-1363 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 |#1|) $) NIL) (((-635 (-558)) $) NIL)) (-2740 (((-112) |#1| $) NIL) (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#2| $) NIL (|has| |#1| (-841))) (($ $ (-762)) NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 23)) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-1890 (((-112) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-4318 (((-635 |#2|) $) NIL) (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 17)) (-3711 (((-112) $) 16)) (-2876 (($) 13)) (-2276 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ (-558)) NIL) (($ $ (-1213 (-558))) NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "first") NIL) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $ "value") NIL)) (-1904 (((-558) $ $) NIL)) (-1966 (($) 12) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3738 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1609 (((-112) $) NIL)) (-3070 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4384)))) (-2398 (((-762) $) NIL)) (-4009 (($ $) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1651 (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL) (($ $ $) NIL)) (-2683 (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL) (($ (-635 $)) NIL) (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 25) (($ $ $) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1526 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") |#1| $) 43)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1749 (((-112) $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-841)))) (-1596 (((-762) $) 22 (|has| $ (-6 -4383)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1087) (-1087)) (T -45))
+(-13 (-1042) (-711 |t#1|) (-611 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-2321 (((-417 |#1|) |#1|) 41)) (-1657 (((-417 |#1|) |#1|) 30) (((-417 |#1|) |#1| (-638 (-48))) 33)) (-4323 (((-112) |#1|) 56)))
+(((-39 |#1|) (-10 -7 (-15 -1657 ((-417 |#1|) |#1| (-638 (-48)))) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -2321 ((-417 |#1|) |#1|)) (-15 -4323 ((-112) |#1|))) (-1229 (-48))) (T -39))
+((-4323 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-2321 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-1657 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))))
+(-10 -7 (-15 -1657 ((-417 |#1|) |#1| (-638 (-48)))) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -2321 ((-417 |#1|) |#1|)) (-15 -4323 ((-112) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3142 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2851 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3359 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-2695 (((-682 (-406 |#2|)) (-1253 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-1744 (((-406 |#2|) $) NIL)) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-406 |#2|) (-348)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3422 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1671 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1393 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-2156 (((-112)) NIL)) (-2428 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-406 |#2|) $) NIL)) (-2257 (($ (-1253 (-406 |#2|)) (-1253 $)) NIL) (($ (-1253 (-406 |#2|))) 57) (($ (-1253 |#2|) |#2|) 125)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1793 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4145 (((-682 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-4194 (((-1253 $) (-1253 $)) NIL)) (-3185 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3466 (((-3 $ "failed") $) NIL)) (-3727 (((-638 (-638 |#1|))) NIL (|has| |#1| (-367)))) (-4295 (((-112) |#1| |#1|) NIL)) (-1569 (((-914)) NIL)) (-1332 (($) NIL (|has| (-406 |#2|) (-367)))) (-3189 (((-112)) NIL)) (-2788 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1774 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| (-406 |#2|) (-362)))) (-2401 (($ $) NIL)) (-2022 (($) NIL (|has| (-406 |#2|) (-348)))) (-1803 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-1575 (($ $ (-765)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2737 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4163 (((-914) $) NIL (|has| (-406 |#2|) (-348))) (((-827 (-914)) $) NIL (|has| (-406 |#2|) (-348)))) (-3113 (((-112) $) NIL)) (-3668 (((-765)) NIL)) (-4329 (((-1253 $) (-1253 $)) 102)) (-1672 (((-406 |#2|) $) NIL)) (-3052 (((-638 (-945 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-1663 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2692 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-3198 (((-914) $) NIL (|has| (-406 |#2|) (-367)))) (-3174 ((|#3| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1764 (((-1148) $) NIL)) (-3510 (((-1258) (-765)) 79)) (-2269 (((-682 (-406 |#2|))) 51)) (-2650 (((-682 (-406 |#2|))) 44)) (-1540 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2962 (($ (-1253 |#2|) |#2|) 126)) (-3598 (((-682 (-406 |#2|))) 45)) (-2124 (((-682 (-406 |#2|))) 43)) (-3339 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2682 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 64)) (-1391 (((-1253 $)) 42)) (-1625 (((-1253 $)) 41)) (-2396 (((-112) $) NIL)) (-1656 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3721 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2413 (($ (-914)) NIL (|has| (-406 |#2|) (-367)))) (-3669 (((-3 |#2| "failed")) NIL)) (-1714 (((-1110) $) NIL)) (-4199 (((-765)) NIL)) (-3158 (($) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| (-406 |#2|) (-362)))) (-1623 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| (-406 |#2|) (-348)))) (-1657 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1756 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3569 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-2277 ((|#1| $ |#1| |#1|) NIL)) (-1867 (((-3 |#2| "failed")) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2553 (((-406 |#2|) (-1253 $)) NIL) (((-406 |#2|)) 39)) (-1913 (((-765) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-3238 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2656 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3660 ((|#3|) 50)) (-1796 (($) NIL (|has| (-406 |#2|) (-348)))) (-3969 (((-1253 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 |#2|)) $) 58) (((-682 (-406 |#2|)) (-1253 $)) 103)) (-4174 (((-1253 (-406 |#2|)) $) NIL) (($ (-1253 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-348)))) (-1299 (((-1253 $) (-1253 $)) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-561))) NIL (-4007 (|has| (-406 |#2|) (-1031 (-406 (-561)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1760 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2485 ((|#3| $) NIL)) (-4259 (((-765)) NIL)) (-3200 (((-112)) 37)) (-1811 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-3711 (((-1253 $)) 93)) (-3168 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3947 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3270 (((-112)) NIL)) (-2211 (($) 16 T CONST)) (-2222 (($) 26 T CONST)) (-3122 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-561)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-561))) NIL (|has| (-406 |#2|) (-362)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -3510 ((-1258) (-765))))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) |#3|) (T -40))
+((-3510 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *2 (-1258)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1229 (-406 *5))) (-14 *7 *6))))
+(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -3510 ((-1258) (-765)))))
+((-4179 ((|#2| |#2|) 48)) (-1870 ((|#2| |#2|) 119 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-3911 ((|#2| |#2|) 86 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-3365 ((|#2| |#2|) 87 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-3634 ((|#2| (-114) |#2| (-765)) 115 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-561)))))) (-1653 (((-1162 |#2|) |#2|) 45)) (-3632 ((|#2| |#2| (-638 (-607 |#2|))) 18) ((|#2| |#2| (-638 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -4179 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3632 (|#2| |#2| |#2|)) (-15 -3632 (|#2| |#2| (-638 |#2|))) (-15 -3632 (|#2| |#2| (-638 (-607 |#2|)))) (-15 -1653 ((-1162 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-561))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -3365 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -3634 (|#2| (-114) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-553) (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 |#1| (-607 $)) $)) (-15 -4045 ((-1115 |#1| (-607 $)) $)) (-15 -4022 ($ (-1115 |#1| (-607 $))))))) (T -41))
+((-3634 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844)) (-4 *5 (-1031 (-561))) (-4 *5 (-553)) (-5 *1 (-41 *5 *2)) (-4 *2 (-429 *5)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *5 (-607 $)) $)) (-15 -4045 ((-1115 *5 (-607 $)) $)) (-15 -4022 ($ (-1115 *5 (-607 $))))))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561))) (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $)) (-15 -4045 ((-1115 *3 (-607 $)) $)) (-15 -4022 ($ (-1115 *3 (-607 $))))))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561))) (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $)) (-15 -4045 ((-1115 *3 (-607 $)) $)) (-15 -4022 ($ (-1115 *3 (-607 $))))))))) (-3365 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561))) (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $)) (-15 -4045 ((-1115 *3 (-607 $)) $)) (-15 -4022 ($ (-1115 *3 (-607 $))))))))) (-1653 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-1162 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *4 (-607 $)) $)) (-15 -4045 ((-1115 *4 (-607 $)) $)) (-15 -4022 ($ (-1115 *4 (-607 $))))))))) (-3632 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-607 *2))) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *4 (-607 $)) $)) (-15 -4045 ((-1115 *4 (-607 $)) $)) (-15 -4022 ($ (-1115 *4 (-607 $))))))) (-4 *4 (-553)) (-5 *1 (-41 *4 *2)))) (-3632 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *4 (-607 $)) $)) (-15 -4045 ((-1115 *4 (-607 $)) $)) (-15 -4022 ($ (-1115 *4 (-607 $))))))) (-4 *4 (-553)) (-5 *1 (-41 *4 *2)))) (-3632 (*1 *2 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $)) (-15 -4045 ((-1115 *3 (-607 $)) $)) (-15 -4022 ($ (-1115 *3 (-607 $))))))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $)) (-15 -4045 ((-1115 *3 (-607 $)) $)) (-15 -4022 ($ (-1115 *3 (-607 $))))))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $)) (-15 -4045 ((-1115 *3 (-607 $)) $)) (-15 -4022 ($ (-1115 *3 (-607 $))))))))))
+(-10 -7 (-15 -4179 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3632 (|#2| |#2| |#2|)) (-15 -3632 (|#2| |#2| (-638 |#2|))) (-15 -3632 (|#2| |#2| (-638 (-607 |#2|)))) (-15 -1653 ((-1162 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-561))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -3365 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -3634 (|#2| (-114) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1657 (((-417 (-1162 |#3|)) (-1162 |#3|) (-638 (-48))) 23) (((-417 |#3|) |#3| (-638 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1657 ((-417 |#3|) |#3| (-638 (-48)))) (-15 -1657 ((-417 (-1162 |#3|)) (-1162 |#3|) (-638 (-48))))) (-844) (-787) (-942 (-48) |#2| |#1|)) (T -42))
+((-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *7 (-942 (-48) *6 *5)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-942 (-48) *6 *5)))))
+(-10 -7 (-15 -1657 ((-417 |#3|) |#3| (-638 (-48)))) (-15 -1657 ((-417 (-1162 |#3|)) (-1162 |#3|) (-638 (-48)))))
+((-2828 (((-765) |#2|) 65)) (-3892 (((-765) |#2|) 68)) (-3062 (((-638 |#2|)) 33)) (-2989 (((-765) |#2|) 67)) (-2867 (((-765) |#2|) 64)) (-2990 (((-765) |#2|) 66)) (-3738 (((-638 (-682 |#1|))) 60)) (-3023 (((-638 |#2|)) 55)) (-2369 (((-638 |#2|) |#2|) 43)) (-4029 (((-638 |#2|)) 57)) (-2219 (((-638 |#2|)) 56)) (-3341 (((-638 (-682 |#1|))) 48)) (-1844 (((-638 |#2|)) 54)) (-3964 (((-638 |#2|) |#2|) 42)) (-4037 (((-638 |#2|)) 50)) (-1912 (((-638 (-682 |#1|))) 61)) (-3249 (((-638 |#2|)) 59)) (-3711 (((-1253 |#2|) (-1253 |#2|)) 83 (|has| |#1| (-306)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -2989 ((-765) |#2|)) (-15 -3892 ((-765) |#2|)) (-15 -2867 ((-765) |#2|)) (-15 -2828 ((-765) |#2|)) (-15 -2990 ((-765) |#2|)) (-15 -4037 ((-638 |#2|))) (-15 -3964 ((-638 |#2|) |#2|)) (-15 -2369 ((-638 |#2|) |#2|)) (-15 -1844 ((-638 |#2|))) (-15 -3023 ((-638 |#2|))) (-15 -2219 ((-638 |#2|))) (-15 -4029 ((-638 |#2|))) (-15 -3249 ((-638 |#2|))) (-15 -3341 ((-638 (-682 |#1|)))) (-15 -3738 ((-638 (-682 |#1|)))) (-15 -1912 ((-638 (-682 |#1|)))) (-15 -3062 ((-638 |#2|))) (IF (|has| |#1| (-306)) (-15 -3711 ((-1253 |#2|) (-1253 |#2|))) |%noBranch|)) (-553) (-416 |#1|)) (T -43))
+((-3711 (*1 *2 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) (-4 *3 (-553)) (-5 *1 (-43 *3 *4)))) (-3062 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1912 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3738 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3341 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3249 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-4029 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2219 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3023 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1844 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-3964 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-4037 (*1 *2) (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2990 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2867 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-3892 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2989 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))))
+(-10 -7 (-15 -2989 ((-765) |#2|)) (-15 -3892 ((-765) |#2|)) (-15 -2867 ((-765) |#2|)) (-15 -2828 ((-765) |#2|)) (-15 -2990 ((-765) |#2|)) (-15 -4037 ((-638 |#2|))) (-15 -3964 ((-638 |#2|) |#2|)) (-15 -2369 ((-638 |#2|) |#2|)) (-15 -1844 ((-638 |#2|))) (-15 -3023 ((-638 |#2|))) (-15 -2219 ((-638 |#2|))) (-15 -4029 ((-638 |#2|))) (-15 -3249 ((-638 |#2|))) (-15 -3341 ((-638 (-682 |#1|)))) (-15 -3738 ((-638 (-682 |#1|)))) (-15 -1912 ((-638 (-682 |#1|)))) (-15 -3062 ((-638 |#2|))) (IF (|has| |#1| (-306)) (-15 -3711 ((-1253 |#2|) (-1253 |#2|))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3027 (((-3 $ "failed")) NIL (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-2602 (((-1253 (-682 |#1|)) (-1253 $)) NIL) (((-1253 (-682 |#1|))) 24)) (-1533 (((-1253 $)) 51)) (-1965 (($) NIL T CONST)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (|has| |#1| (-553)))) (-2104 (((-3 $ "failed")) NIL (|has| |#1| (-553)))) (-2483 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-2228 ((|#1| $) NIL)) (-3689 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-3494 (((-3 $ "failed") $) NIL (|has| |#1| (-553)))) (-3337 (((-1162 (-945 |#1|))) NIL (|has| |#1| (-362)))) (-3928 (($ $ (-914)) NIL)) (-3589 ((|#1| $) NIL)) (-2392 (((-1162 |#1|) $) NIL (|has| |#1| (-553)))) (-1381 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1659 (((-1162 |#1|) $) NIL)) (-2380 (((-112)) 87)) (-2257 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) NIL)) (-3466 (((-3 $ "failed") $) 14 (|has| |#1| (-553)))) (-1569 (((-914)) 52)) (-1922 (((-112)) NIL)) (-3203 (($ $ (-914)) NIL)) (-3104 (((-112)) NIL)) (-2008 (((-112)) NIL)) (-3138 (((-112)) 89)) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (|has| |#1| (-553)))) (-2445 (((-3 $ "failed")) NIL (|has| |#1| (-553)))) (-2919 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-3618 ((|#1| $) NIL)) (-1354 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-4063 (((-3 $ "failed") $) NIL (|has| |#1| (-553)))) (-2502 (((-1162 (-945 |#1|))) NIL (|has| |#1| (-362)))) (-3394 (($ $ (-914)) NIL)) (-3847 ((|#1| $) NIL)) (-2377 (((-1162 |#1|) $) NIL (|has| |#1| (-553)))) (-2696 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1539 (((-1162 |#1|) $) NIL)) (-3139 (((-112)) 86)) (-1764 (((-1148) $) NIL)) (-4367 (((-112)) 93)) (-1446 (((-112)) 92)) (-3696 (((-112)) 94)) (-1714 (((-1110) $) NIL)) (-3701 (((-112)) 88)) (-2277 ((|#1| $ (-561)) 54)) (-3969 (((-1253 |#1|) $ (-1253 $)) 48) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) 28) (((-682 |#1|) (-1253 $)) NIL)) (-4174 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL)) (-2508 (((-638 (-945 |#1|)) (-1253 $)) NIL) (((-638 (-945 |#1|))) NIL)) (-3800 (($ $ $) NIL)) (-3053 (((-112)) 84)) (-4022 (((-856) $) 69) (($ (-1253 |#1|)) 22)) (-3711 (((-1253 $)) 45)) (-1758 (((-638 (-1253 |#1|))) NIL (|has| |#1| (-553)))) (-3392 (($ $ $ $) NIL)) (-2216 (((-112)) 82)) (-1367 (($ (-682 |#1|) $) 18)) (-1761 (($ $ $) NIL)) (-2500 (((-112)) 85)) (-2887 (((-112)) 83)) (-4326 (((-112)) 81)) (-2211 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1132 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-416 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4022 ($ (-1253 |#1|))))) (-362) (-914) (-638 (-1166)) (-1253 (-682 |#1|))) (T -44))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-14 *6 (-1253 (-682 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))))))
+(-13 (-416 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4022 ($ (-1253 |#1|)))))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2484 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2295 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3129 (($ $) NIL)) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3024 (((-1258) $ |#1| |#1|) NIL (|has| $ (-6 -4391))) (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-3702 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844))))) (-1289 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-1969 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391)))) (-1353 (($ $ $) 27 (|has| $ (-6 -4391)))) (-1726 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391)))) (-3861 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 29 (|has| $ (-6 -4391)))) (-4167 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-1220 (-561)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "last" (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391))) (($ $ "rest" $) NIL (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "first" (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "value" (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2285 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-1485 (((-3 |#2| "failed") |#1| $) 37)) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1445 (($ $ (-765)) NIL) (($ $) 24)) (-3776 (($ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4391))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) NIL)) (-3032 (((-112) $) NIL)) (-4235 (((-561) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (((-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) (((-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 18 (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390))) (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 18 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1470 (($ (-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 ((|#1| $) NIL (|has| |#1| (-844))) (((-561) $) 32 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-3092 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1407 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390))) (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-2780 ((|#1| $) NIL (|has| |#1| (-844))) (((-561) $) 34 (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391))) (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-3708 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-3884 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-3067 (((-112) $) NIL)) (-1764 (((-1148) $) 41 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1520 (($ $ (-765)) NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2017 (((-638 |#1|) $) 20)) (-2857 (((-112) |#1| $) NIL)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-3312 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 |#1|) $) NIL) (((-638 (-561)) $) NIL)) (-1390 (((-112) |#1| $) NIL) (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#2| $) NIL (|has| |#1| (-844))) (($ $ (-765)) NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 23)) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2667 (((-112) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-2658 (((-638 |#2|) $) NIL) (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 17)) (-1928 (((-112) $) 16)) (-3170 (($) 13)) (-2277 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ (-561)) NIL) (($ $ (-1220 (-561))) NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "first") NIL) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $ "value") NIL)) (-2004 (((-561) $ $) NIL)) (-3579 (($) 12) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-2114 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-3849 (((-112) $) NIL)) (-3222 (($ $) NIL)) (-4364 (($ $) NIL (|has| $ (-6 -4391)))) (-1624 (((-765) $) NIL)) (-2883 (($ $) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-4173 (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL) (($ $ $) NIL)) (-2725 (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL) (($ (-638 $)) NIL) (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 25) (($ $ $) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-1532 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") |#1| $) 43)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1773 (((-112) $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-844)))) (-3498 (((-765) $) 22 (|has| $ (-6 -4390)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1090) (-1090)) (T -45))
NIL
(-36 |#1| |#2|)
-((-3594 (((-112) $) 12)) (-3397 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-558)) $) 25) (($ $ (-406 (-558))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3594 ((-112) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-47 |#2| |#3|) (-1039) (-783)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3594 ((-112) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-3594 (((-112) $) 65)) (-4056 (($ |#1| |#2|) 64)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-4263 ((|#2| $) 67)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3143 ((|#1| $ |#2|) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-47 |#1| |#2|) (-139) (-1039) (-783)) (T -47))
-((-3881 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-3867 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-112)))) (-4056 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-3143 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-1805 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *2 (-362)))))
-(-13 (-1039) (-111 |t#1| |t#1|) (-10 -8 (-15 -3881 (|t#1| $)) (-15 -3867 ($ $)) (-15 -4263 (|t#2| $)) (-15 -3397 ($ (-1 |t#1| |t#1|) $)) (-15 -3594 ((-112) $)) (-15 -4056 ($ |t#1| |t#2|)) (-15 -3905 ($ $)) (-15 -3143 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -1805 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-550)) (-6 (-550)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (-6 (-38 (-406 (-558)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-289) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2598 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-3368 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-3124 (((-112) $) 11)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-3798 (((-635 (-604 $)) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2564 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-3948 (($ $) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-1571 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-2363 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-3302 (((-3 (-604 $) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL)) (-3226 (((-604 $) $) NIL) (((-558) $) NIL) (((-406 (-558)) $) NIL)) (-1709 (($ $ $) NIL)) (-1918 (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-406 (-558)))) (|:| |vec| (-1246 (-406 (-558))))) (-679 $) (-1246 $)) NIL) (((-679 (-406 (-558))) (-679 $)) NIL)) (-3866 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2058 (($ $) NIL) (($ (-635 $)) NIL)) (-2380 (((-635 (-114)) $) NIL)) (-2154 (((-114) (-114)) NIL)) (-3999 (((-112) $) 14)) (-1495 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-3316 (((-1112 (-558) (-604 $)) $) NIL)) (-2136 (($ $ (-558)) NIL)) (-1423 (((-1159 $) (-1159 $) (-604 $)) NIL) (((-1159 $) (-1159 $) (-635 (-604 $))) NIL) (($ $ (-604 $)) NIL) (($ $ (-635 (-604 $))) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2550 (((-1159 $) (-604 $)) NIL (|has| $ (-1039)))) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 $ $) (-604 $)) NIL)) (-2025 (((-3 (-604 $) "failed") $) NIL)) (-1500 (($ (-635 $)) NIL) (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-3892 (((-635 (-604 $)) $) NIL)) (-3390 (($ (-114) $) NIL) (($ (-114) (-635 $)) NIL)) (-3557 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) NIL)) (-3823 (($ $) NIL)) (-2361 (((-762) $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1711 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4254 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-1369 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1562 (((-762) $) NIL)) (-2276 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3604 (($ $) NIL) (($ $ $) NIL)) (-3780 (($ $ (-762)) NIL) (($ $) NIL)) (-3327 (((-1112 (-558) (-604 $)) $) NIL)) (-2297 (($ $) NIL (|has| $ (-1039)))) (-3441 (((-378) $) NIL) (((-224) $) NIL) (((-168 (-378)) $) NIL)) (-3940 (((-853) $) NIL) (($ (-604 $)) NIL) (($ (-406 (-558))) NIL) (($ $) NIL) (($ (-558)) NIL) (($ (-1112 (-558) (-604 $))) NIL)) (-2417 (((-762)) NIL)) (-2638 (($ $) NIL) (($ (-635 $)) NIL)) (-2480 (((-112) (-114)) NIL)) (-2671 (((-112) $ $) NIL)) (-2207 (($) 7 T CONST)) (-2220 (($) 12 T CONST)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 16)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL)) (-1796 (($ $ $) 15) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-406 (-558))) NIL) (($ $ (-558)) NIL) (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ $ $) NIL) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
-(((-48) (-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3940 ($ (-1112 (-558) (-604 $)))) (-15 -3316 ((-1112 (-558) (-604 $)) $)) (-15 -3327 ((-1112 (-558) (-604 $)) $)) (-15 -3866 ($ $)) (-15 -1423 ((-1159 $) (-1159 $) (-604 $))) (-15 -1423 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -1423 ($ $ (-604 $))) (-15 -1423 ($ $ (-635 (-604 $))))))) (T -48))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48)))) (-3866 (*1 *1 *1) (-5 *1 (-48))) (-1423 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-604 (-48))) (-5 *1 (-48)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-635 (-604 (-48)))) (-5 *1 (-48)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-604 (-48))) (-5 *1 (-48)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-48)))) (-5 *1 (-48)))))
-(-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3940 ($ (-1112 (-558) (-604 $)))) (-15 -3316 ((-1112 (-558) (-604 $)) $)) (-15 -3327 ((-1112 (-558) (-604 $)) $)) (-15 -3866 ($ $)) (-15 -1423 ((-1159 $) (-1159 $) (-604 $))) (-15 -1423 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -1423 ($ $ (-604 $))) (-15 -1423 ($ $ (-635 (-604 $))))))
-((-3929 (((-112) $ $) NIL)) (-3634 (((-635 (-1163)) $) 17)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 7)) (-3190 (((-1168) $) 18)) (-1708 (((-112) $ $) NIL)))
-(((-49) (-13 (-1087) (-10 -8 (-15 -3634 ((-635 (-1163)) $)) (-15 -3190 ((-1168) $))))) (T -49))
-((-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-49)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-49)))))
-(-13 (-1087) (-10 -8 (-15 -3634 ((-635 (-1163)) $)) (-15 -3190 ((-1168) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 61)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2534 (((-112) $) 20)) (-3302 (((-3 |#1| "failed") $) 23)) (-3226 ((|#1| $) 24)) (-3905 (($ $) 28)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3881 ((|#1| $) 21)) (-3329 (($ $) 50)) (-2510 (((-1145) $) NIL)) (-2691 (((-112) $) 30)) (-1688 (((-1107) $) NIL)) (-2461 (($ (-762)) 48)) (-3944 (($ (-635 (-558))) 49)) (-4263 (((-762) $) 31)) (-3940 (((-853) $) 64) (($ (-558)) 45) (($ |#1|) 43)) (-3143 ((|#1| $ $) 19)) (-2417 (((-762)) 47)) (-2207 (($) 32 T CONST)) (-2220 (($) 14 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 40)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-50 |#1| |#2|) (-13 (-612 |#1|) (-1028 |#1|) (-10 -8 (-15 -3881 (|#1| $)) (-15 -3329 ($ $)) (-15 -3905 ($ $)) (-15 -3143 (|#1| $ $)) (-15 -2461 ($ (-762))) (-15 -3944 ($ (-635 (-558)))) (-15 -2691 ((-112) $)) (-15 -2534 ((-112) $)) (-15 -4263 ((-762) $)) (-15 -3397 ($ (-1 |#1| |#1|) $)))) (-1039) (-635 (-1163))) (T -50))
-((-3881 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163))))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163))))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163))))) (-3143 (*1 *2 *1 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163))))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-635 (-1163))))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-50 *3 *4)) (-14 *4 (-635 (-1163))))))
-(-13 (-612 |#1|) (-1028 |#1|) (-10 -8 (-15 -3881 (|#1| $)) (-15 -3329 ($ $)) (-15 -3905 ($ $)) (-15 -3143 (|#1| $ $)) (-15 -2461 ($ (-762))) (-15 -3944 ($ (-635 (-558)))) (-15 -2691 ((-112) $)) (-15 -2534 ((-112) $)) (-15 -4263 ((-762) $)) (-15 -3397 ($ (-1 |#1| |#1|) $))))
-((-2534 (((-112) (-52)) 13)) (-3302 (((-3 |#1| "failed") (-52)) 21)) (-3226 ((|#1| (-52)) 22)) (-3940 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -3940 ((-52) |#1|)) (-15 -3302 ((-3 |#1| "failed") (-52))) (-15 -2534 ((-112) (-52))) (-15 -3226 (|#1| (-52)))) (-1200)) (T -51))
-((-3226 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1200)))) (-3302 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1200)))))
-(-10 -7 (-15 -3940 ((-52) |#1|)) (-15 -3302 ((-3 |#1| "failed") (-52))) (-15 -2534 ((-112) (-52))) (-15 -3226 (|#1| (-52))))
-((-3929 (((-112) $ $) NIL)) (-3520 (((-1145) (-112)) 25)) (-2121 (((-853) $) 24)) (-1402 (((-765) $) 12)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3848 (((-853) $) 16)) (-3428 (((-1091) $) 14)) (-3940 (((-853) $) 32)) (-2787 (($ (-1091) (-765)) 33)) (-1708 (((-112) $ $) 18)))
-(((-52) (-13 (-1087) (-10 -8 (-15 -2787 ($ (-1091) (-765))) (-15 -3848 ((-853) $)) (-15 -2121 ((-853) $)) (-15 -3428 ((-1091) $)) (-15 -1402 ((-765) $)) (-15 -3520 ((-1145) (-112)))))) (T -52))
-((-2787 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-765)) (-5 *1 (-52)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-52)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-52)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1145)) (-5 *1 (-52)))))
-(-13 (-1087) (-10 -8 (-15 -2787 ($ (-1091) (-765))) (-15 -3848 ((-853) $)) (-15 -2121 ((-853) $)) (-15 -3428 ((-1091) $)) (-15 -1402 ((-765) $)) (-15 -3520 ((-1145) (-112)))))
-((-2484 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2484 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1039) (-638 |#1|) (-843 |#1|)) (T -53))
-((-2484 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-638 *5)) (-4 *5 (-1039)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-843 *5)))))
-(-10 -7 (-15 -2484 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2104 ((|#3| |#3| (-635 (-1163))) 35)) (-1373 ((|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3| (-911)) 22) ((|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3|) 20)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1373 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3|)) (-15 -1373 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3| (-911))) (-15 -2104 (|#3| |#3| (-635 (-1163))))) (-1087) (-13 (-1039) (-876 |#1|) (-841) (-606 (-882 |#1|))) (-13 (-429 |#2|) (-876 |#1|) (-606 (-882 |#1|)))) (T -54))
-((-2104 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))) (-1373 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 (-1063 *5 *6 *2))) (-5 *4 (-911)) (-4 *5 (-1087)) (-4 *6 (-13 (-1039) (-876 *5) (-841) (-606 (-882 *5)))) (-4 *2 (-13 (-429 *6) (-876 *5) (-606 (-882 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1373 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-1063 *4 *5 *2))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -1373 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3|)) (-15 -1373 (|#3| (-635 (-1063 |#1| |#2| |#3|)) |#3| (-911))) (-15 -2104 (|#3| |#3| (-635 (-1163)))))
-((-3929 (((-112) $ $) NIL)) (-3302 (((-3 (-762) "failed") $) 22)) (-3226 (((-762) $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) 9)) (-3940 (((-853) $) 16) (($ (-762)) 20)) (-2126 (($) 7 T CONST)) (-1708 (((-112) $ $) 11)))
-(((-55) (-13 (-1087) (-1028 (-762)) (-10 -8 (-15 -2126 ($) -2010)))) (T -55))
-((-2126 (*1 *1) (-5 *1 (-55))))
-(-13 (-1087) (-1028 (-762)) (-10 -8 (-15 -2126 ($) -2010)))
-((-3651 (((-112) $ (-762)) 23)) (-3425 (($ $ (-558) |#3|) 47)) (-3456 (($ $ (-558) |#4|) 51)) (-2500 ((|#3| $ (-558)) 60)) (-2917 (((-635 |#2|) $) 30)) (-4007 (((-112) $ (-762)) 25)) (-3764 (((-112) |#2| $) 55)) (-3674 (($ (-1 |#2| |#2|) $) 38)) (-3397 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3212 (((-112) $ (-762)) 24)) (-2830 (($ $ |#2|) 35)) (-3314 (((-112) (-1 (-112) |#2|) $) 19)) (-2276 ((|#2| $ (-558) (-558)) NIL) ((|#2| $ (-558) (-558) |#2|) 27)) (-1698 (((-762) (-1 (-112) |#2|) $) 28) (((-762) |#2| $) 57)) (-4098 (($ $) 34)) (-3962 ((|#4| $ (-558)) 63)) (-3940 (((-853) $) 69)) (-2831 (((-112) (-1 (-112) |#2|) $) 18)) (-1708 (((-112) $ $) 54)) (-1596 (((-762) $) 26)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-558) |#4|)) (-15 -3425 (|#1| |#1| (-558) |#3|)) (-15 -2917 ((-635 |#2|) |#1|)) (-15 -3962 (|#4| |#1| (-558))) (-15 -2500 (|#3| |#1| (-558))) (-15 -2276 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) (-558))) (-15 -2830 (|#1| |#1| |#2|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3764 ((-112) |#2| |#1|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762))) (-15 -4098 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1200) (-372 |#2|) (-372 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-558) |#4|)) (-15 -3425 (|#1| |#1| (-558) |#3|)) (-15 -2917 ((-635 |#2|) |#1|)) (-15 -3962 (|#4| |#1| (-558))) (-15 -2500 (|#3| |#1| (-558))) (-15 -2276 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) (-558))) (-15 -2830 (|#1| |#1| |#2|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3764 ((-112) |#2| |#1|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762))) (-15 -4098 (|#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#1| $ (-558) (-558) |#1|) 44)) (-3425 (($ $ (-558) |#2|) 42)) (-3456 (($ $ (-558) |#3|) 41)) (-3457 (($) 7 T CONST)) (-2500 ((|#2| $ (-558)) 46)) (-3683 ((|#1| $ (-558) (-558) |#1|) 43)) (-3620 ((|#1| $ (-558) (-558)) 48)) (-2917 (((-635 |#1|) $) 30)) (-1430 (((-762) $) 51)) (-1395 (($ (-762) (-762) |#1|) 57)) (-1444 (((-762) $) 50)) (-4007 (((-112) $ (-762)) 9)) (-3942 (((-558) $) 55)) (-1478 (((-558) $) 53)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4153 (((-558) $) 54)) (-3508 (((-558) $) 52)) (-3674 (($ (-1 |#1| |#1|) $) 34)) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) 56)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) (-558)) 49) ((|#1| $ (-558) (-558) |#1|) 47)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3962 ((|#3| $ (-558)) 45)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-57 |#1| |#2| |#3|) (-139) (-1200) (-372 |t#1|) (-372 |t#1|)) (T -57))
-((-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1395 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-762)) (-4 *3 (-1200)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2830 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1200)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-558)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-762)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-762)))) (-2276 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1200)))) (-3620 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1200)))) (-2276 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-2500 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1200)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-3962 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1200)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-635 *3)))) (-4077 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-3683 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-3425 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1200)) (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1200)) (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3397 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3397 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(-13 (-487 |t#1|) (-10 -8 (-6 -4384) (-6 -4383) (-15 -1395 ($ (-762) (-762) |t#1|)) (-15 -2830 ($ $ |t#1|)) (-15 -3942 ((-558) $)) (-15 -4153 ((-558) $)) (-15 -1478 ((-558) $)) (-15 -3508 ((-558) $)) (-15 -1430 ((-762) $)) (-15 -1444 ((-762) $)) (-15 -2276 (|t#1| $ (-558) (-558))) (-15 -3620 (|t#1| $ (-558) (-558))) (-15 -2276 (|t#1| $ (-558) (-558) |t#1|)) (-15 -2500 (|t#2| $ (-558))) (-15 -3962 (|t#3| $ (-558))) (-15 -2917 ((-635 |t#1|) $)) (-15 -4077 (|t#1| $ (-558) (-558) |t#1|)) (-15 -3683 (|t#1| $ (-558) (-558) |t#1|)) (-15 -3425 ($ $ (-558) |t#2|)) (-15 -3456 ($ $ (-558) |t#3|)) (-15 -3397 ($ (-1 |t#1| |t#1|) $)) (-15 -3674 ($ (-1 |t#1| |t#1|) $)) (-15 -3397 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3397 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3484 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3866 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3397 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -3484 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3397 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1200) (-1200)) (T -58))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-58 *5 *2)))) (-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -3484 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3397 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) |#1|) 11 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-2229 (($ (-635 |#1|)) 13) (($ (-762) |#1|) 14)) (-1395 (($ (-762) |#1|) 9)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 7)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2229 ($ (-635 |#1|))) (-15 -2229 ($ (-762) |#1|)))) (-1200)) (T -59))
-((-2229 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-59 *3)))) (-2229 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-59 *3)) (-4 *3 (-1200)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2229 ($ (-635 |#1|))) (-15 -2229 ($ (-762) |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) (-558) |#1|) NIL)) (-3425 (($ $ (-558) (-59 |#1|)) NIL)) (-3456 (($ $ (-558) (-59 |#1|)) NIL)) (-3457 (($) NIL T CONST)) (-2500 (((-59 |#1|) $ (-558)) NIL)) (-3683 ((|#1| $ (-558) (-558) |#1|) NIL)) (-3620 ((|#1| $ (-558) (-558)) NIL)) (-2917 (((-635 |#1|) $) NIL)) (-1430 (((-762) $) NIL)) (-1395 (($ (-762) (-762) |#1|) NIL)) (-1444 (((-762) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-3942 (((-558) $) NIL)) (-1478 (((-558) $) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4153 (((-558) $) NIL)) (-3508 (((-558) $) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3962 (((-59 |#1|) $ (-558)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4384))) (-1200)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4384)))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 74) (((-3 $ "failed") (-1246 (-315 (-558)))) 63) (((-3 $ "failed") (-1246 (-942 (-378)))) 94) (((-3 $ "failed") (-1246 (-942 (-558)))) 84) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 52) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 39)) (-3226 (($ (-1246 (-315 (-378)))) 70) (($ (-1246 (-315 (-558)))) 59) (($ (-1246 (-942 (-378)))) 90) (($ (-1246 (-942 (-558)))) 80) (($ (-1246 (-406 (-942 (-378))))) 48) (($ (-1246 (-406 (-942 (-558))))) 32)) (-3154 (((-1251) $) 120)) (-3940 (((-853) $) 113) (($ (-635 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 101) (($ (-1246 (-338 (-3952 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3952) (-689)))) 31)))
-(((-61 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3952) (-689))))))) (-1163)) (T -61))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3952) (-689)))) (-5 *1 (-61 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3952) (-689)))))))
-((-3154 (((-1251) $) 53) (((-1251)) 54)) (-3940 (((-853) $) 50)))
-(((-62 |#1|) (-13 (-394) (-10 -7 (-15 -3154 ((-1251))))) (-1163)) (T -62))
-((-3154 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-62 *3)) (-14 *3 (-1163)))))
-(-13 (-394) (-10 -7 (-15 -3154 ((-1251)))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 145) (((-3 $ "failed") (-1246 (-315 (-558)))) 135) (((-3 $ "failed") (-1246 (-942 (-378)))) 165) (((-3 $ "failed") (-1246 (-942 (-558)))) 155) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 124) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 112)) (-3226 (($ (-1246 (-315 (-378)))) 141) (($ (-1246 (-315 (-558)))) 131) (($ (-1246 (-942 (-378)))) 161) (($ (-1246 (-942 (-558)))) 151) (($ (-1246 (-406 (-942 (-378))))) 120) (($ (-1246 (-406 (-942 (-558))))) 105)) (-3154 (((-1251) $) 98)) (-3940 (((-853) $) 92) (($ (-635 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 32) (($ (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689)))) 90)))
-(((-63 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689))))))) (-1163)) (T -63))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689)))) (-5 *1 (-63 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689)))))))
-((-3302 (((-3 $ "failed") (-315 (-378))) 41) (((-3 $ "failed") (-315 (-558))) 46) (((-3 $ "failed") (-942 (-378))) 50) (((-3 $ "failed") (-942 (-558))) 54) (((-3 $ "failed") (-406 (-942 (-378)))) 36) (((-3 $ "failed") (-406 (-942 (-558)))) 29)) (-3226 (($ (-315 (-378))) 39) (($ (-315 (-558))) 44) (($ (-942 (-378))) 48) (($ (-942 (-558))) 52) (($ (-406 (-942 (-378)))) 34) (($ (-406 (-942 (-558)))) 26)) (-3154 (((-1251) $) 76)) (-3940 (((-853) $) 69) (($ (-635 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 64) (($ (-338 (-3952 (QUOTE X)) (-3952) (-689))) 25)))
-(((-64 |#1|) (-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952 (QUOTE X)) (-3952) (-689)))))) (-1163)) (T -64))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-338 (-3952 (QUOTE X)) (-3952) (-689))) (-5 *1 (-64 *3)) (-14 *3 (-1163)))))
-(-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952 (QUOTE X)) (-3952) (-689))))))
-((-3302 (((-3 $ "failed") (-679 (-315 (-378)))) 109) (((-3 $ "failed") (-679 (-315 (-558)))) 97) (((-3 $ "failed") (-679 (-942 (-378)))) 131) (((-3 $ "failed") (-679 (-942 (-558)))) 120) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 85) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 71)) (-3226 (($ (-679 (-315 (-378)))) 105) (($ (-679 (-315 (-558)))) 93) (($ (-679 (-942 (-378)))) 127) (($ (-679 (-942 (-558)))) 116) (($ (-679 (-406 (-942 (-378))))) 81) (($ (-679 (-406 (-942 (-558))))) 64)) (-3154 (((-1251) $) 139)) (-3940 (((-853) $) 133) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 31) (($ (-679 (-338 (-3952) (-3952 (QUOTE X) (QUOTE HESS)) (-689)))) 54)))
-(((-65 |#1|) (-13 (-383) (-608 (-679 (-338 (-3952) (-3952 (QUOTE X) (QUOTE HESS)) (-689))))) (-1163)) (T -65))
-NIL
-(-13 (-383) (-608 (-679 (-338 (-3952) (-3952 (QUOTE X) (QUOTE HESS)) (-689)))))
-((-3302 (((-3 $ "failed") (-315 (-378))) 59) (((-3 $ "failed") (-315 (-558))) 64) (((-3 $ "failed") (-942 (-378))) 68) (((-3 $ "failed") (-942 (-558))) 72) (((-3 $ "failed") (-406 (-942 (-378)))) 54) (((-3 $ "failed") (-406 (-942 (-558)))) 47)) (-3226 (($ (-315 (-378))) 57) (($ (-315 (-558))) 62) (($ (-942 (-378))) 66) (($ (-942 (-558))) 70) (($ (-406 (-942 (-378)))) 52) (($ (-406 (-942 (-558)))) 44)) (-3154 (((-1251) $) 81)) (-3940 (((-853) $) 75) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 31) (($ (-338 (-3952) (-3952 (QUOTE XC)) (-689))) 39)))
-(((-66 |#1|) (-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952) (-3952 (QUOTE XC)) (-689)))))) (-1163)) (T -66))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-338 (-3952) (-3952 (QUOTE XC)) (-689))) (-5 *1 (-66 *3)) (-14 *3 (-1163)))))
-(-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952) (-3952 (QUOTE XC)) (-689))))))
-((-3154 (((-1251) $) 63)) (-3940 (((-853) $) 57) (($ (-679 (-689))) 49) (($ (-635 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 53)))
-(((-67 |#1|) (-382) (-1163)) (T -67))
+((-2092 (((-112) $) 12)) (-4120 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-561)) $) 25) (($ $ (-406 (-561))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-47 |#2| |#3|) (-1042) (-786)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-2092 (((-112) $) 65)) (-1387 (($ |#1| |#2|) 64)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-2894 ((|#2| $) 67)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2634 ((|#1| $ |#2|) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-47 |#1| |#2|) (-139) (-1042) (-786)) (T -47))
+((-1590 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-1387 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-1833 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-362)))))
+(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (-15 -1590 (|t#1| $)) (-15 -1578 ($ $)) (-15 -2894 (|t#2| $)) (-15 -4120 ($ (-1 |t#1| |t#1|) $)) (-15 -2092 ((-112) $)) (-15 -1387 ($ |t#1| |t#2|)) (-15 -1619 ($ $)) (-15 -2634 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -1833 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-553)) (-6 (-553)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (-6 (-38 (-406 (-561)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-289) |has| |#1| (-553)) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-3803 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-2964 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-2800 (((-112) $) 11)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-1510 (((-638 (-607 $)) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2612 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1665 (($ $) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-2137 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-3559 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-4017 (((-3 (-607 $) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL)) (-3938 (((-607 $) $) NIL) (((-561) $) NIL) (((-406 (-561)) $) NIL)) (-1793 (($ $ $) NIL)) (-3602 (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-406 (-561)))) (|:| |vec| (-1253 (-406 (-561))))) (-682 $) (-1253 $)) NIL) (((-682 (-406 (-561))) (-682 $)) NIL)) (-3185 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1890 (($ $) NIL) (($ (-638 $)) NIL)) (-1719 (((-638 (-114)) $) NIL)) (-3479 (((-114) (-114)) NIL)) (-3113 (((-112) $) 14)) (-3402 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-4030 (((-1115 (-561) (-607 $)) $) NIL)) (-2556 (($ $ (-561)) NIL)) (-1672 (((-1162 $) (-1162 $) (-607 $)) NIL) (((-1162 $) (-1162 $) (-638 (-607 $))) NIL) (($ $ (-607 $)) NIL) (($ $ (-638 (-607 $))) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3217 (((-1162 $) (-607 $)) NIL (|has| $ (-1042)))) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 $ $) (-607 $)) NIL)) (-2012 (((-3 (-607 $) "failed") $) NIL)) (-1582 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1600 (((-638 (-607 $)) $) NIL)) (-4109 (($ (-114) $) NIL) (($ (-114) (-638 $)) NIL)) (-2561 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) NIL)) (-1540 (($ $) NIL)) (-3061 (((-765) $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1297 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2736 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1444 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3569 (((-765) $) NIL)) (-2277 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1584 (($ $) NIL) (($ $ $) NIL)) (-3238 (($ $ (-765)) NIL) (($ $) NIL)) (-4045 (((-1115 (-561) (-607 $)) $) NIL)) (-3660 (($ $) NIL (|has| $ (-1042)))) (-4174 (((-378) $) NIL) (((-224) $) NIL) (((-168 (-378)) $) NIL)) (-4022 (((-856) $) NIL) (($ (-607 $)) NIL) (($ (-406 (-561))) NIL) (($ $) NIL) (($ (-561)) NIL) (($ (-1115 (-561) (-607 $))) NIL)) (-4259 (((-765)) NIL)) (-3300 (($ $) NIL) (($ (-638 $)) NIL)) (-2665 (((-112) (-114)) NIL)) (-3168 (((-112) $ $) NIL)) (-2211 (($) 7 T CONST)) (-2222 (($) 12 T CONST)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 16)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL)) (-1824 (($ $ $) 15) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-406 (-561))) NIL) (($ $ (-561)) NIL) (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ $ $) NIL) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
+(((-48) (-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4022 ($ (-1115 (-561) (-607 $)))) (-15 -4030 ((-1115 (-561) (-607 $)) $)) (-15 -4045 ((-1115 (-561) (-607 $)) $)) (-15 -3185 ($ $)) (-15 -1672 ((-1162 $) (-1162 $) (-607 $))) (-15 -1672 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -1672 ($ $ (-607 $))) (-15 -1672 ($ $ (-638 (-607 $))))))) (T -48))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48)))) (-3185 (*1 *1 *1) (-5 *1 (-48))) (-1672 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-607 (-48))) (-5 *1 (-48)))) (-1672 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-638 (-607 (-48)))) (-5 *1 (-48)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-48))) (-5 *1 (-48)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-48)))) (-5 *1 (-48)))))
+(-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4022 ($ (-1115 (-561) (-607 $)))) (-15 -4030 ((-1115 (-561) (-607 $)) $)) (-15 -4045 ((-1115 (-561) (-607 $)) $)) (-15 -3185 ($ $)) (-15 -1672 ((-1162 $) (-1162 $) (-607 $))) (-15 -1672 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -1672 ($ $ (-607 $))) (-15 -1672 ($ $ (-638 (-607 $))))))
+((-4011 (((-112) $ $) NIL)) (-3734 (((-638 (-1166)) $) 17)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 7)) (-3279 (((-1171) $) 18)) (-1733 (((-112) $ $) NIL)))
+(((-49) (-13 (-1090) (-10 -8 (-15 -3734 ((-638 (-1166)) $)) (-15 -3279 ((-1171) $))))) (T -49))
+((-3734 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-49)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49)))))
+(-13 (-1090) (-10 -8 (-15 -3734 ((-638 (-1166)) $)) (-15 -3279 ((-1171) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 61)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3295 (((-112) $) 20)) (-4017 (((-3 |#1| "failed") $) 23)) (-3938 ((|#1| $) 24)) (-1619 (($ $) 28)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-1590 ((|#1| $) 21)) (-3651 (($ $) 50)) (-1764 (((-1148) $) NIL)) (-3852 (((-112) $) 30)) (-1714 (((-1110) $) NIL)) (-3158 (($ (-765)) 48)) (-3440 (($ (-638 (-561))) 49)) (-2894 (((-765) $) 31)) (-4022 (((-856) $) 64) (($ (-561)) 45) (($ |#1|) 43)) (-2634 ((|#1| $ $) 19)) (-4259 (((-765)) 47)) (-2211 (($) 32 T CONST)) (-2222 (($) 14 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 40)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-50 |#1| |#2|) (-13 (-615 |#1|) (-1031 |#1|) (-10 -8 (-15 -1590 (|#1| $)) (-15 -3651 ($ $)) (-15 -1619 ($ $)) (-15 -2634 (|#1| $ $)) (-15 -3158 ($ (-765))) (-15 -3440 ($ (-638 (-561)))) (-15 -3852 ((-112) $)) (-15 -3295 ((-112) $)) (-15 -2894 ((-765) $)) (-15 -4120 ($ (-1 |#1| |#1|) $)))) (-1042) (-638 (-1166))) (T -50))
+((-1590 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166))))) (-3651 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166))))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166))))) (-2634 (*1 *2 *1 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166))))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-638 (-1166))))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-50 *3 *4)) (-14 *4 (-638 (-1166))))))
+(-13 (-615 |#1|) (-1031 |#1|) (-10 -8 (-15 -1590 (|#1| $)) (-15 -3651 ($ $)) (-15 -1619 ($ $)) (-15 -2634 (|#1| $ $)) (-15 -3158 ($ (-765))) (-15 -3440 ($ (-638 (-561)))) (-15 -3852 ((-112) $)) (-15 -3295 ((-112) $)) (-15 -2894 ((-765) $)) (-15 -4120 ($ (-1 |#1| |#1|) $))))
+((-3295 (((-112) (-52)) 13)) (-4017 (((-3 |#1| "failed") (-52)) 21)) (-3938 ((|#1| (-52)) 22)) (-4022 (((-52) |#1|) 18)))
+(((-51 |#1|) (-10 -7 (-15 -4022 ((-52) |#1|)) (-15 -4017 ((-3 |#1| "failed") (-52))) (-15 -3295 ((-112) (-52))) (-15 -3938 (|#1| (-52)))) (-1205)) (T -51))
+((-3938 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1205)))) (-4017 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205)))) (-4022 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1205)))))
+(-10 -7 (-15 -4022 ((-52) |#1|)) (-15 -4017 ((-3 |#1| "failed") (-52))) (-15 -3295 ((-112) (-52))) (-15 -3938 (|#1| (-52))))
+((-4011 (((-112) $ $) NIL)) (-3484 (((-1148) (-112)) 25)) (-1911 (((-856) $) 24)) (-1471 (((-768) $) 12)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2750 (((-856) $) 16)) (-3513 (((-1094) $) 14)) (-4022 (((-856) $) 32)) (-3456 (($ (-1094) (-768)) 33)) (-1733 (((-112) $ $) 18)))
+(((-52) (-13 (-1090) (-10 -8 (-15 -3456 ($ (-1094) (-768))) (-15 -2750 ((-856) $)) (-15 -1911 ((-856) $)) (-15 -3513 ((-1094) $)) (-15 -1471 ((-768) $)) (-15 -3484 ((-1148) (-112)))))) (T -52))
+((-3456 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-768)) (-5 *1 (-52)))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-52)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-52)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-52)))))
+(-13 (-1090) (-10 -8 (-15 -3456 ($ (-1094) (-768))) (-15 -2750 ((-856) $)) (-15 -1911 ((-856) $)) (-15 -3513 ((-1094) $)) (-15 -1471 ((-768) $)) (-15 -3484 ((-1148) (-112)))))
+((-1367 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1367 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1042) (-641 |#1|) (-846 |#1|)) (T -53))
+((-1367 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5)))))
+(-10 -7 (-15 -1367 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2234 ((|#3| |#3| (-638 (-1166))) 35)) (-1988 ((|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3| (-914)) 22) ((|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3|) 20)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1988 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3|)) (-15 -1988 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3| (-914))) (-15 -2234 (|#3| |#3| (-638 (-1166))))) (-1090) (-13 (-1042) (-879 |#1|) (-844) (-609 (-885 |#1|))) (-13 (-429 |#2|) (-879 |#1|) (-609 (-885 |#1|)))) (T -54))
+((-2234 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))) (-1988 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-638 (-1066 *5 *6 *2))) (-5 *4 (-914)) (-4 *5 (-1090)) (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-885 *5)))) (-4 *2 (-13 (-429 *6) (-879 *5) (-609 (-885 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1988 (*1 *2 *3 *2) (-12 (-5 *3 (-638 (-1066 *4 *5 *2))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1988 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3|)) (-15 -1988 (|#3| (-638 (-1066 |#1| |#2| |#3|)) |#3| (-914))) (-15 -2234 (|#3| |#3| (-638 (-1166)))))
+((-4011 (((-112) $ $) NIL)) (-4017 (((-3 (-765) "failed") $) 22)) (-3938 (((-765) $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) 9)) (-4022 (((-856) $) 16) (($ (-765)) 20)) (-2106 (($) 7 T CONST)) (-1733 (((-112) $ $) 11)))
+(((-55) (-13 (-1090) (-1031 (-765)) (-10 -8 (-15 -2106 ($) -1514)))) (T -55))
+((-2106 (*1 *1) (-5 *1 (-55))))
+(-13 (-1090) (-1031 (-765)) (-10 -8 (-15 -2106 ($) -1514)))
+((-1630 (((-112) $ (-765)) 23)) (-2550 (($ $ (-561) |#3|) 47)) (-2971 (($ $ (-561) |#4|) 51)) (-3845 ((|#3| $ (-561)) 60)) (-3571 (((-638 |#2|) $) 30)) (-3744 (((-112) $ (-765)) 25)) (-4087 (((-112) |#2| $) 55)) (-2065 (($ (-1 |#2| |#2|) $) 38)) (-4120 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-2230 (((-112) $ (-765)) 24)) (-1799 (($ $ |#2|) 35)) (-2123 (((-112) (-1 (-112) |#2|) $) 19)) (-2277 ((|#2| $ (-561) (-561)) NIL) ((|#2| $ (-561) (-561) |#2|) 27)) (-1724 (((-765) (-1 (-112) |#2|) $) 28) (((-765) |#2| $) 57)) (-4187 (($ $) 34)) (-2745 ((|#4| $ (-561)) 63)) (-4022 (((-856) $) 69)) (-3715 (((-112) (-1 (-112) |#2|) $) 18)) (-1733 (((-112) $ $) 54)) (-3498 (((-765) $) 26)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2971 (|#1| |#1| (-561) |#4|)) (-15 -2550 (|#1| |#1| (-561) |#3|)) (-15 -3571 ((-638 |#2|) |#1|)) (-15 -2745 (|#4| |#1| (-561))) (-15 -3845 (|#3| |#1| (-561))) (-15 -2277 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) (-561))) (-15 -1799 (|#1| |#1| |#2|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4087 ((-112) |#2| |#1|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765))) (-15 -4187 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1205) (-372 |#2|) (-372 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2971 (|#1| |#1| (-561) |#4|)) (-15 -2550 (|#1| |#1| (-561) |#3|)) (-15 -3571 ((-638 |#2|) |#1|)) (-15 -2745 (|#4| |#1| (-561))) (-15 -3845 (|#3| |#1| (-561))) (-15 -2277 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) (-561))) (-15 -1799 (|#1| |#1| |#2|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4087 ((-112) |#2| |#1|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765))) (-15 -4187 (|#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#1| $ (-561) (-561) |#1|) 44)) (-2550 (($ $ (-561) |#2|) 42)) (-2971 (($ $ (-561) |#3|) 41)) (-1965 (($) 7 T CONST)) (-3845 ((|#2| $ (-561)) 46)) (-2073 ((|#1| $ (-561) (-561) |#1|) 43)) (-4344 ((|#1| $ (-561) (-561)) 48)) (-3571 (((-638 |#1|) $) 30)) (-1513 (((-765) $) 51)) (-1470 (($ (-765) (-765) |#1|) 57)) (-1526 (((-765) $) 50)) (-3744 (((-112) $ (-765)) 9)) (-3514 (((-561) $) 55)) (-2804 (((-561) $) 53)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3089 (((-561) $) 54)) (-1709 (((-561) $) 52)) (-2065 (($ (-1 |#1| |#1|) $) 34)) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) 56)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) (-561)) 49) ((|#1| $ (-561) (-561) |#1|) 47)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-2745 ((|#3| $ (-561)) 45)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-57 |#1| |#2| |#3|) (-139) (-1205) (-372 |t#1|) (-372 |t#1|)) (T -57))
+((-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1470 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1205)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1799 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1205)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-561)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-765)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-765)))) (-2277 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1205)))) (-4344 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1205)))) (-2277 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1205)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2745 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1205)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-638 *3)))) (-4167 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-2073 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-2550 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1205)) (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))) (-2971 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1205)) (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))) (-2065 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4120 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4120 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(-13 (-487 |t#1|) (-10 -8 (-6 -4391) (-6 -4390) (-15 -1470 ($ (-765) (-765) |t#1|)) (-15 -1799 ($ $ |t#1|)) (-15 -3514 ((-561) $)) (-15 -3089 ((-561) $)) (-15 -2804 ((-561) $)) (-15 -1709 ((-561) $)) (-15 -1513 ((-765) $)) (-15 -1526 ((-765) $)) (-15 -2277 (|t#1| $ (-561) (-561))) (-15 -4344 (|t#1| $ (-561) (-561))) (-15 -2277 (|t#1| $ (-561) (-561) |t#1|)) (-15 -3845 (|t#2| $ (-561))) (-15 -2745 (|t#3| $ (-561))) (-15 -3571 ((-638 |t#1|) $)) (-15 -4167 (|t#1| $ (-561) (-561) |t#1|)) (-15 -2073 (|t#1| $ (-561) (-561) |t#1|)) (-15 -2550 ($ $ (-561) |t#2|)) (-15 -2971 ($ $ (-561) |t#3|)) (-15 -4120 ($ (-1 |t#1| |t#1|) $)) (-15 -2065 ($ (-1 |t#1| |t#1|) $)) (-15 -4120 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4120 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-3130 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3185 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4120 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -3130 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4120 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1205) (-1205)) (T -58))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-58 *5 *2)))) (-3130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -3130 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4120 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) |#1|) 11 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1574 (($ (-638 |#1|)) 13) (($ (-765) |#1|) 14)) (-1470 (($ (-765) |#1|) 9)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 7)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1574 ($ (-638 |#1|))) (-15 -1574 ($ (-765) |#1|)))) (-1205)) (T -59))
+((-1574 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-59 *3)))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-59 *3)) (-4 *3 (-1205)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1574 ($ (-638 |#1|))) (-15 -1574 ($ (-765) |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) (-561) |#1|) NIL)) (-2550 (($ $ (-561) (-59 |#1|)) NIL)) (-2971 (($ $ (-561) (-59 |#1|)) NIL)) (-1965 (($) NIL T CONST)) (-3845 (((-59 |#1|) $ (-561)) NIL)) (-2073 ((|#1| $ (-561) (-561) |#1|) NIL)) (-4344 ((|#1| $ (-561) (-561)) NIL)) (-3571 (((-638 |#1|) $) NIL)) (-1513 (((-765) $) NIL)) (-1470 (($ (-765) (-765) |#1|) NIL)) (-1526 (((-765) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3514 (((-561) $) NIL)) (-2804 (((-561) $) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3089 (((-561) $) NIL)) (-1709 (((-561) $) NIL)) (-2065 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-2745 (((-59 |#1|) $ (-561)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4391))) (-1205)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4391)))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 74) (((-3 $ "failed") (-1253 (-315 (-561)))) 63) (((-3 $ "failed") (-1253 (-945 (-378)))) 94) (((-3 $ "failed") (-1253 (-945 (-561)))) 84) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 52) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 39)) (-3938 (($ (-1253 (-315 (-378)))) 70) (($ (-1253 (-315 (-561)))) 59) (($ (-1253 (-945 (-378)))) 90) (($ (-1253 (-945 (-561)))) 80) (($ (-1253 (-406 (-945 (-378))))) 48) (($ (-1253 (-406 (-945 (-561))))) 32)) (-2633 (((-1258) $) 120)) (-4022 (((-856) $) 113) (($ (-638 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 101) (($ (-1253 (-338 (-4031 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4031) (-692)))) 31)))
+(((-61 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4031) (-692))))))) (-1166)) (T -61))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4031) (-692)))) (-5 *1 (-61 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4031) (-692)))))))
+((-2633 (((-1258) $) 53) (((-1258)) 54)) (-4022 (((-856) $) 50)))
+(((-62 |#1|) (-13 (-394) (-10 -7 (-15 -2633 ((-1258))))) (-1166)) (T -62))
+((-2633 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-62 *3)) (-14 *3 (-1166)))))
+(-13 (-394) (-10 -7 (-15 -2633 ((-1258)))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 145) (((-3 $ "failed") (-1253 (-315 (-561)))) 135) (((-3 $ "failed") (-1253 (-945 (-378)))) 165) (((-3 $ "failed") (-1253 (-945 (-561)))) 155) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 124) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 112)) (-3938 (($ (-1253 (-315 (-378)))) 141) (($ (-1253 (-315 (-561)))) 131) (($ (-1253 (-945 (-378)))) 161) (($ (-1253 (-945 (-561)))) 151) (($ (-1253 (-406 (-945 (-378))))) 120) (($ (-1253 (-406 (-945 (-561))))) 105)) (-2633 (((-1258) $) 98)) (-4022 (((-856) $) 92) (($ (-638 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 32) (($ (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692)))) 90)))
+(((-63 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692))))))) (-1166)) (T -63))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692)))) (-5 *1 (-63 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692)))))))
+((-4017 (((-3 $ "failed") (-315 (-378))) 41) (((-3 $ "failed") (-315 (-561))) 46) (((-3 $ "failed") (-945 (-378))) 50) (((-3 $ "failed") (-945 (-561))) 54) (((-3 $ "failed") (-406 (-945 (-378)))) 36) (((-3 $ "failed") (-406 (-945 (-561)))) 29)) (-3938 (($ (-315 (-378))) 39) (($ (-315 (-561))) 44) (($ (-945 (-378))) 48) (($ (-945 (-561))) 52) (($ (-406 (-945 (-378)))) 34) (($ (-406 (-945 (-561)))) 26)) (-2633 (((-1258) $) 76)) (-4022 (((-856) $) 69) (($ (-638 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 64) (($ (-338 (-4031 (QUOTE X)) (-4031) (-692))) 25)))
+(((-64 |#1|) (-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031 (QUOTE X)) (-4031) (-692)))))) (-1166)) (T -64))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-338 (-4031 (QUOTE X)) (-4031) (-692))) (-5 *1 (-64 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031 (QUOTE X)) (-4031) (-692))))))
+((-4017 (((-3 $ "failed") (-682 (-315 (-378)))) 109) (((-3 $ "failed") (-682 (-315 (-561)))) 97) (((-3 $ "failed") (-682 (-945 (-378)))) 131) (((-3 $ "failed") (-682 (-945 (-561)))) 120) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 85) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 71)) (-3938 (($ (-682 (-315 (-378)))) 105) (($ (-682 (-315 (-561)))) 93) (($ (-682 (-945 (-378)))) 127) (($ (-682 (-945 (-561)))) 116) (($ (-682 (-406 (-945 (-378))))) 81) (($ (-682 (-406 (-945 (-561))))) 64)) (-2633 (((-1258) $) 139)) (-4022 (((-856) $) 133) (($ (-638 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 31) (($ (-682 (-338 (-4031) (-4031 (QUOTE X) (QUOTE HESS)) (-692)))) 54)))
+(((-65 |#1|) (-13 (-383) (-611 (-682 (-338 (-4031) (-4031 (QUOTE X) (QUOTE HESS)) (-692))))) (-1166)) (T -65))
+NIL
+(-13 (-383) (-611 (-682 (-338 (-4031) (-4031 (QUOTE X) (QUOTE HESS)) (-692)))))
+((-4017 (((-3 $ "failed") (-315 (-378))) 59) (((-3 $ "failed") (-315 (-561))) 64) (((-3 $ "failed") (-945 (-378))) 68) (((-3 $ "failed") (-945 (-561))) 72) (((-3 $ "failed") (-406 (-945 (-378)))) 54) (((-3 $ "failed") (-406 (-945 (-561)))) 47)) (-3938 (($ (-315 (-378))) 57) (($ (-315 (-561))) 62) (($ (-945 (-378))) 66) (($ (-945 (-561))) 70) (($ (-406 (-945 (-378)))) 52) (($ (-406 (-945 (-561)))) 44)) (-2633 (((-1258) $) 81)) (-4022 (((-856) $) 75) (($ (-638 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 31) (($ (-338 (-4031) (-4031 (QUOTE XC)) (-692))) 39)))
+(((-66 |#1|) (-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031) (-4031 (QUOTE XC)) (-692)))))) (-1166)) (T -66))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-338 (-4031) (-4031 (QUOTE XC)) (-692))) (-5 *1 (-66 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031) (-4031 (QUOTE XC)) (-692))))))
+((-2633 (((-1258) $) 63)) (-4022 (((-856) $) 57) (($ (-682 (-692))) 49) (($ (-638 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 53)))
+(((-67 |#1|) (-382) (-1166)) (T -67))
NIL
(-382)
-((-3154 (((-1251) $) 64)) (-3940 (((-853) $) 58) (($ (-679 (-689))) 50) (($ (-635 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 55)))
-(((-68 |#1|) (-382) (-1163)) (T -68))
+((-2633 (((-1258) $) 64)) (-4022 (((-856) $) 58) (($ (-682 (-692))) 50) (($ (-638 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 55)))
+(((-68 |#1|) (-382) (-1166)) (T -68))
NIL
(-382)
-((-3154 (((-1251) $) NIL) (((-1251)) 32)) (-3940 (((-853) $) NIL)))
-(((-69 |#1|) (-13 (-394) (-10 -7 (-15 -3154 ((-1251))))) (-1163)) (T -69))
-((-3154 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-69 *3)) (-14 *3 (-1163)))))
-(-13 (-394) (-10 -7 (-15 -3154 ((-1251)))))
-((-3154 (((-1251) $) 73)) (-3940 (((-853) $) 67) (($ (-679 (-689))) 59) (($ (-635 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 58)))
-(((-70 |#1|) (-382) (-1163)) (T -70))
+((-2633 (((-1258) $) NIL) (((-1258)) 32)) (-4022 (((-856) $) NIL)))
+(((-69 |#1|) (-13 (-394) (-10 -7 (-15 -2633 ((-1258))))) (-1166)) (T -69))
+((-2633 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-69 *3)) (-14 *3 (-1166)))))
+(-13 (-394) (-10 -7 (-15 -2633 ((-1258)))))
+((-2633 (((-1258) $) 73)) (-4022 (((-856) $) 67) (($ (-682 (-692))) 59) (($ (-638 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 58)))
+(((-70 |#1|) (-382) (-1166)) (T -70))
NIL
(-382)
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 103) (((-3 $ "failed") (-1246 (-315 (-558)))) 92) (((-3 $ "failed") (-1246 (-942 (-378)))) 123) (((-3 $ "failed") (-1246 (-942 (-558)))) 113) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 81) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 68)) (-3226 (($ (-1246 (-315 (-378)))) 99) (($ (-1246 (-315 (-558)))) 88) (($ (-1246 (-942 (-378)))) 119) (($ (-1246 (-942 (-558)))) 109) (($ (-1246 (-406 (-942 (-378))))) 77) (($ (-1246 (-406 (-942 (-558))))) 61)) (-3154 (((-1251) $) 136)) (-3940 (((-853) $) 130) (($ (-635 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 53) (($ (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689)))) 54)))
-(((-71 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689))))))) (-1163)) (T -71))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689)))) (-5 *1 (-71 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689)))))))
-((-3154 (((-1251) $) 32) (((-1251)) 31)) (-3940 (((-853) $) 35)))
-(((-72 |#1|) (-13 (-394) (-10 -7 (-15 -3154 ((-1251))))) (-1163)) (T -72))
-((-3154 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-72 *3)) (-14 *3 (-1163)))))
-(-13 (-394) (-10 -7 (-15 -3154 ((-1251)))))
-((-3154 (((-1251) $) 63)) (-3940 (((-853) $) 57) (($ (-679 (-689))) 49) (($ (-635 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 48)))
-(((-73 |#1|) (-382) (-1163)) (T -73))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 103) (((-3 $ "failed") (-1253 (-315 (-561)))) 92) (((-3 $ "failed") (-1253 (-945 (-378)))) 123) (((-3 $ "failed") (-1253 (-945 (-561)))) 113) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 81) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 68)) (-3938 (($ (-1253 (-315 (-378)))) 99) (($ (-1253 (-315 (-561)))) 88) (($ (-1253 (-945 (-378)))) 119) (($ (-1253 (-945 (-561)))) 109) (($ (-1253 (-406 (-945 (-378))))) 77) (($ (-1253 (-406 (-945 (-561))))) 61)) (-2633 (((-1258) $) 136)) (-4022 (((-856) $) 130) (($ (-638 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 53) (($ (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692)))) 54)))
+(((-71 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692))))))) (-1166)) (T -71))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692)))) (-5 *1 (-71 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692)))))))
+((-2633 (((-1258) $) 32) (((-1258)) 31)) (-4022 (((-856) $) 35)))
+(((-72 |#1|) (-13 (-394) (-10 -7 (-15 -2633 ((-1258))))) (-1166)) (T -72))
+((-2633 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-72 *3)) (-14 *3 (-1166)))))
+(-13 (-394) (-10 -7 (-15 -2633 ((-1258)))))
+((-2633 (((-1258) $) 63)) (-4022 (((-856) $) 57) (($ (-682 (-692))) 49) (($ (-638 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 48)))
+(((-73 |#1|) (-382) (-1166)) (T -73))
NIL
(-382)
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 125) (((-3 $ "failed") (-1246 (-315 (-558)))) 115) (((-3 $ "failed") (-1246 (-942 (-378)))) 145) (((-3 $ "failed") (-1246 (-942 (-558)))) 135) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 105) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 93)) (-3226 (($ (-1246 (-315 (-378)))) 121) (($ (-1246 (-315 (-558)))) 111) (($ (-1246 (-942 (-378)))) 141) (($ (-1246 (-942 (-558)))) 131) (($ (-1246 (-406 (-942 (-378))))) 101) (($ (-1246 (-406 (-942 (-558))))) 86)) (-3154 (((-1251) $) 78)) (-3940 (((-853) $) 27) (($ (-635 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 71) (($ (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))) 65)))
-(((-74 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689))))))) (-1163)) (T -74))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))) (-5 *1 (-74 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 130) (((-3 $ "failed") (-1246 (-315 (-558)))) 119) (((-3 $ "failed") (-1246 (-942 (-378)))) 150) (((-3 $ "failed") (-1246 (-942 (-558)))) 140) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 108) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 95)) (-3226 (($ (-1246 (-315 (-378)))) 126) (($ (-1246 (-315 (-558)))) 115) (($ (-1246 (-942 (-378)))) 146) (($ (-1246 (-942 (-558)))) 136) (($ (-1246 (-406 (-942 (-378))))) 104) (($ (-1246 (-406 (-942 (-558))))) 88)) (-3154 (((-1251) $) 79)) (-3940 (((-853) $) 71) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) NIL) (($ (-1246 (-338 (-3952 (QUOTE X) (QUOTE EPS)) (-3952 (QUOTE -3161)) (-689)))) 66)))
-(((-75 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X) (QUOTE EPS)) (-3952 (QUOTE -3161)) (-689))))))) (-1163) (-1163) (-1163)) (T -75))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952 (QUOTE X) (QUOTE EPS)) (-3952 (QUOTE -3161)) (-689)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163)) (-14 *5 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X) (QUOTE EPS)) (-3952 (QUOTE -3161)) (-689)))))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 134) (((-3 $ "failed") (-1246 (-315 (-558)))) 123) (((-3 $ "failed") (-1246 (-942 (-378)))) 154) (((-3 $ "failed") (-1246 (-942 (-558)))) 144) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 112) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 99)) (-3226 (($ (-1246 (-315 (-378)))) 130) (($ (-1246 (-315 (-558)))) 119) (($ (-1246 (-942 (-378)))) 150) (($ (-1246 (-942 (-558)))) 140) (($ (-1246 (-406 (-942 (-378))))) 108) (($ (-1246 (-406 (-942 (-558))))) 92)) (-3154 (((-1251) $) 83)) (-3940 (((-853) $) 75) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) NIL) (($ (-1246 (-338 (-3952 (QUOTE EPS)) (-3952 (QUOTE YA) (QUOTE YB)) (-689)))) 70)))
-(((-76 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE EPS)) (-3952 (QUOTE YA) (QUOTE YB)) (-689))))))) (-1163) (-1163) (-1163)) (T -76))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952 (QUOTE EPS)) (-3952 (QUOTE YA) (QUOTE YB)) (-689)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163)) (-14 *5 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE EPS)) (-3952 (QUOTE YA) (QUOTE YB)) (-689)))))))
-((-3302 (((-3 $ "failed") (-315 (-378))) 82) (((-3 $ "failed") (-315 (-558))) 87) (((-3 $ "failed") (-942 (-378))) 91) (((-3 $ "failed") (-942 (-558))) 95) (((-3 $ "failed") (-406 (-942 (-378)))) 77) (((-3 $ "failed") (-406 (-942 (-558)))) 70)) (-3226 (($ (-315 (-378))) 80) (($ (-315 (-558))) 85) (($ (-942 (-378))) 89) (($ (-942 (-558))) 93) (($ (-406 (-942 (-378)))) 75) (($ (-406 (-942 (-558)))) 67)) (-3154 (((-1251) $) 62)) (-3940 (((-853) $) 50) (($ (-635 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 54) (($ (-338 (-3952) (-3952 (QUOTE X)) (-689))) 47)))
-(((-77 |#1|) (-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952) (-3952 (QUOTE X)) (-689)))))) (-1163)) (T -77))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-338 (-3952) (-3952 (QUOTE X)) (-689))) (-5 *1 (-77 *3)) (-14 *3 (-1163)))))
-(-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952) (-3952 (QUOTE X)) (-689))))))
-((-3302 (((-3 $ "failed") (-315 (-378))) 46) (((-3 $ "failed") (-315 (-558))) 51) (((-3 $ "failed") (-942 (-378))) 55) (((-3 $ "failed") (-942 (-558))) 59) (((-3 $ "failed") (-406 (-942 (-378)))) 41) (((-3 $ "failed") (-406 (-942 (-558)))) 34)) (-3226 (($ (-315 (-378))) 44) (($ (-315 (-558))) 49) (($ (-942 (-378))) 53) (($ (-942 (-558))) 57) (($ (-406 (-942 (-378)))) 39) (($ (-406 (-942 (-558)))) 31)) (-3154 (((-1251) $) 80)) (-3940 (((-853) $) 74) (($ (-635 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 69) (($ (-338 (-3952) (-3952 (QUOTE X)) (-689))) 30)))
-(((-78 |#1|) (-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952) (-3952 (QUOTE X)) (-689)))))) (-1163)) (T -78))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-338 (-3952) (-3952 (QUOTE X)) (-689))) (-5 *1 (-78 *3)) (-14 *3 (-1163)))))
-(-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952) (-3952 (QUOTE X)) (-689))))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 89) (((-3 $ "failed") (-1246 (-315 (-558)))) 78) (((-3 $ "failed") (-1246 (-942 (-378)))) 109) (((-3 $ "failed") (-1246 (-942 (-558)))) 99) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 67) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 54)) (-3226 (($ (-1246 (-315 (-378)))) 85) (($ (-1246 (-315 (-558)))) 74) (($ (-1246 (-942 (-378)))) 105) (($ (-1246 (-942 (-558)))) 95) (($ (-1246 (-406 (-942 (-378))))) 63) (($ (-1246 (-406 (-942 (-558))))) 47)) (-3154 (((-1251) $) 125)) (-3940 (((-853) $) 119) (($ (-635 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 115) (($ (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689)))) 38)))
-(((-79 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689))))))) (-1163)) (T -79))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689)))) (-5 *1 (-79 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE XC)) (-689)))))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 143) (((-3 $ "failed") (-1246 (-315 (-558)))) 133) (((-3 $ "failed") (-1246 (-942 (-378)))) 163) (((-3 $ "failed") (-1246 (-942 (-558)))) 153) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 123) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 111)) (-3226 (($ (-1246 (-315 (-378)))) 139) (($ (-1246 (-315 (-558)))) 129) (($ (-1246 (-942 (-378)))) 159) (($ (-1246 (-942 (-558)))) 149) (($ (-1246 (-406 (-942 (-378))))) 119) (($ (-1246 (-406 (-942 (-558))))) 104)) (-3154 (((-1251) $) 97)) (-3940 (((-853) $) 91) (($ (-635 (-329))) 82) (($ (-329)) 89) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 87) (($ (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))) 83)))
-(((-80 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689))))))) (-1163)) (T -80))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))) (-5 *1 (-80 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 78) (((-3 $ "failed") (-1246 (-315 (-558)))) 67) (((-3 $ "failed") (-1246 (-942 (-378)))) 98) (((-3 $ "failed") (-1246 (-942 (-558)))) 88) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 56) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 43)) (-3226 (($ (-1246 (-315 (-378)))) 74) (($ (-1246 (-315 (-558)))) 63) (($ (-1246 (-942 (-378)))) 94) (($ (-1246 (-942 (-558)))) 84) (($ (-1246 (-406 (-942 (-378))))) 52) (($ (-1246 (-406 (-942 (-558))))) 36)) (-3154 (((-1251) $) 124)) (-3940 (((-853) $) 118) (($ (-635 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 113) (($ (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))) 35)))
-(((-81 |#1|) (-13 (-439) (-608 (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689))))) (-1163)) (T -81))
-NIL
-(-13 (-439) (-608 (-1246 (-338 (-3952) (-3952 (QUOTE X)) (-689)))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 95) (((-3 $ "failed") (-1246 (-315 (-558)))) 84) (((-3 $ "failed") (-1246 (-942 (-378)))) 115) (((-3 $ "failed") (-1246 (-942 (-558)))) 105) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 73) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 60)) (-3226 (($ (-1246 (-315 (-378)))) 91) (($ (-1246 (-315 (-558)))) 80) (($ (-1246 (-942 (-378)))) 111) (($ (-1246 (-942 (-558)))) 101) (($ (-1246 (-406 (-942 (-378))))) 69) (($ (-1246 (-406 (-942 (-558))))) 53)) (-3154 (((-1251) $) 45)) (-3940 (((-853) $) 39) (($ (-635 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 35) (($ (-1246 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689)))) 30)))
-(((-82 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689))))))) (-1163)) (T -82))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689)))) (-5 *1 (-82 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689)))))))
-((-3302 (((-3 $ "failed") (-679 (-315 (-378)))) 115) (((-3 $ "failed") (-679 (-315 (-558)))) 104) (((-3 $ "failed") (-679 (-942 (-378)))) 137) (((-3 $ "failed") (-679 (-942 (-558)))) 126) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 93) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 80)) (-3226 (($ (-679 (-315 (-378)))) 111) (($ (-679 (-315 (-558)))) 100) (($ (-679 (-942 (-378)))) 133) (($ (-679 (-942 (-558)))) 122) (($ (-679 (-406 (-942 (-378))))) 89) (($ (-679 (-406 (-942 (-558))))) 73)) (-3154 (((-1251) $) 63)) (-3940 (((-853) $) 50) (($ (-635 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 55) (($ (-679 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689)))) 47)))
-(((-83 |#1|) (-13 (-383) (-10 -8 (-15 -3940 ($ (-679 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689))))))) (-1163)) (T -83))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-679 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689)))) (-5 *1 (-83 *3)) (-14 *3 (-1163)))))
-(-13 (-383) (-10 -8 (-15 -3940 ($ (-679 (-338 (-3952 (QUOTE X) (QUOTE -3161)) (-3952) (-689)))))))
-((-3302 (((-3 $ "failed") (-679 (-315 (-378)))) 112) (((-3 $ "failed") (-679 (-315 (-558)))) 100) (((-3 $ "failed") (-679 (-942 (-378)))) 134) (((-3 $ "failed") (-679 (-942 (-558)))) 123) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 88) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 74)) (-3226 (($ (-679 (-315 (-378)))) 108) (($ (-679 (-315 (-558)))) 96) (($ (-679 (-942 (-378)))) 130) (($ (-679 (-942 (-558)))) 119) (($ (-679 (-406 (-942 (-378))))) 84) (($ (-679 (-406 (-942 (-558))))) 67)) (-3154 (((-1251) $) 59)) (-3940 (((-853) $) 53) (($ (-635 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 44) (($ (-679 (-338 (-3952 (QUOTE X)) (-3952) (-689)))) 45)))
-(((-84 |#1|) (-13 (-383) (-10 -8 (-15 -3940 ($ (-679 (-338 (-3952 (QUOTE X)) (-3952) (-689))))))) (-1163)) (T -84))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-679 (-338 (-3952 (QUOTE X)) (-3952) (-689)))) (-5 *1 (-84 *3)) (-14 *3 (-1163)))))
-(-13 (-383) (-10 -8 (-15 -3940 ($ (-679 (-338 (-3952 (QUOTE X)) (-3952) (-689)))))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 104) (((-3 $ "failed") (-1246 (-315 (-558)))) 93) (((-3 $ "failed") (-1246 (-942 (-378)))) 124) (((-3 $ "failed") (-1246 (-942 (-558)))) 114) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 82) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 69)) (-3226 (($ (-1246 (-315 (-378)))) 100) (($ (-1246 (-315 (-558)))) 89) (($ (-1246 (-942 (-378)))) 120) (($ (-1246 (-942 (-558)))) 110) (($ (-1246 (-406 (-942 (-378))))) 78) (($ (-1246 (-406 (-942 (-558))))) 62)) (-3154 (((-1251) $) 46)) (-3940 (((-853) $) 40) (($ (-635 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 52) (($ (-1246 (-338 (-3952 (QUOTE X)) (-3952) (-689)))) 37)))
-(((-85 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X)) (-3952) (-689))))))) (-1163)) (T -85))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952 (QUOTE X)) (-3952) (-689)))) (-5 *1 (-85 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X)) (-3952) (-689)))))))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 79) (((-3 $ "failed") (-1246 (-315 (-558)))) 68) (((-3 $ "failed") (-1246 (-942 (-378)))) 99) (((-3 $ "failed") (-1246 (-942 (-558)))) 89) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 57) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 44)) (-3226 (($ (-1246 (-315 (-378)))) 75) (($ (-1246 (-315 (-558)))) 64) (($ (-1246 (-942 (-378)))) 95) (($ (-1246 (-942 (-558)))) 85) (($ (-1246 (-406 (-942 (-378))))) 53) (($ (-1246 (-406 (-942 (-558))))) 37)) (-3154 (((-1251) $) 125)) (-3940 (((-853) $) 119) (($ (-635 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 114) (($ (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689)))) 36)))
-(((-86 |#1|) (-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689))))))) (-1163)) (T -86))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689)))) (-5 *1 (-86 *3)) (-14 *3 (-1163)))))
-(-13 (-439) (-10 -8 (-15 -3940 ($ (-1246 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689)))))))
-((-3302 (((-3 $ "failed") (-679 (-315 (-378)))) 113) (((-3 $ "failed") (-679 (-315 (-558)))) 101) (((-3 $ "failed") (-679 (-942 (-378)))) 135) (((-3 $ "failed") (-679 (-942 (-558)))) 124) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 89) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 75)) (-3226 (($ (-679 (-315 (-378)))) 109) (($ (-679 (-315 (-558)))) 97) (($ (-679 (-942 (-378)))) 131) (($ (-679 (-942 (-558)))) 120) (($ (-679 (-406 (-942 (-378))))) 85) (($ (-679 (-406 (-942 (-558))))) 68)) (-3154 (((-1251) $) 59)) (-3940 (((-853) $) 53) (($ (-635 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 48) (($ (-679 (-338 (-3952 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3952) (-689)))) 44)))
-(((-87 |#1|) (-13 (-383) (-10 -8 (-15 -3940 ($ (-679 (-338 (-3952 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3952) (-689))))))) (-1163)) (T -87))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-679 (-338 (-3952 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3952) (-689)))) (-5 *1 (-87 *3)) (-14 *3 (-1163)))))
-(-13 (-383) (-10 -8 (-15 -3940 ($ (-679 (-338 (-3952 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3952) (-689)))))))
-((-3154 (((-1251) $) 44)) (-3940 (((-853) $) 38) (($ (-1246 (-689))) 93) (($ (-635 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 33)))
-(((-88 |#1|) (-438) (-1163)) (T -88))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 125) (((-3 $ "failed") (-1253 (-315 (-561)))) 115) (((-3 $ "failed") (-1253 (-945 (-378)))) 145) (((-3 $ "failed") (-1253 (-945 (-561)))) 135) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 105) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 93)) (-3938 (($ (-1253 (-315 (-378)))) 121) (($ (-1253 (-315 (-561)))) 111) (($ (-1253 (-945 (-378)))) 141) (($ (-1253 (-945 (-561)))) 131) (($ (-1253 (-406 (-945 (-378))))) 101) (($ (-1253 (-406 (-945 (-561))))) 86)) (-2633 (((-1258) $) 78)) (-4022 (((-856) $) 27) (($ (-638 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 71) (($ (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))) 65)))
+(((-74 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692))))))) (-1166)) (T -74))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))) (-5 *1 (-74 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 130) (((-3 $ "failed") (-1253 (-315 (-561)))) 119) (((-3 $ "failed") (-1253 (-945 (-378)))) 150) (((-3 $ "failed") (-1253 (-945 (-561)))) 140) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 108) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 95)) (-3938 (($ (-1253 (-315 (-378)))) 126) (($ (-1253 (-315 (-561)))) 115) (($ (-1253 (-945 (-378)))) 146) (($ (-1253 (-945 (-561)))) 136) (($ (-1253 (-406 (-945 (-378))))) 104) (($ (-1253 (-406 (-945 (-561))))) 88)) (-2633 (((-1258) $) 79)) (-4022 (((-856) $) 71) (($ (-638 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) NIL) (($ (-1253 (-338 (-4031 (QUOTE X) (QUOTE EPS)) (-4031 (QUOTE -3187)) (-692)))) 66)))
+(((-75 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X) (QUOTE EPS)) (-4031 (QUOTE -3187)) (-692))))))) (-1166) (-1166) (-1166)) (T -75))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031 (QUOTE X) (QUOTE EPS)) (-4031 (QUOTE -3187)) (-692)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X) (QUOTE EPS)) (-4031 (QUOTE -3187)) (-692)))))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 134) (((-3 $ "failed") (-1253 (-315 (-561)))) 123) (((-3 $ "failed") (-1253 (-945 (-378)))) 154) (((-3 $ "failed") (-1253 (-945 (-561)))) 144) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 112) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 99)) (-3938 (($ (-1253 (-315 (-378)))) 130) (($ (-1253 (-315 (-561)))) 119) (($ (-1253 (-945 (-378)))) 150) (($ (-1253 (-945 (-561)))) 140) (($ (-1253 (-406 (-945 (-378))))) 108) (($ (-1253 (-406 (-945 (-561))))) 92)) (-2633 (((-1258) $) 83)) (-4022 (((-856) $) 75) (($ (-638 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) NIL) (($ (-1253 (-338 (-4031 (QUOTE EPS)) (-4031 (QUOTE YA) (QUOTE YB)) (-692)))) 70)))
+(((-76 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE EPS)) (-4031 (QUOTE YA) (QUOTE YB)) (-692))))))) (-1166) (-1166) (-1166)) (T -76))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031 (QUOTE EPS)) (-4031 (QUOTE YA) (QUOTE YB)) (-692)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE EPS)) (-4031 (QUOTE YA) (QUOTE YB)) (-692)))))))
+((-4017 (((-3 $ "failed") (-315 (-378))) 82) (((-3 $ "failed") (-315 (-561))) 87) (((-3 $ "failed") (-945 (-378))) 91) (((-3 $ "failed") (-945 (-561))) 95) (((-3 $ "failed") (-406 (-945 (-378)))) 77) (((-3 $ "failed") (-406 (-945 (-561)))) 70)) (-3938 (($ (-315 (-378))) 80) (($ (-315 (-561))) 85) (($ (-945 (-378))) 89) (($ (-945 (-561))) 93) (($ (-406 (-945 (-378)))) 75) (($ (-406 (-945 (-561)))) 67)) (-2633 (((-1258) $) 62)) (-4022 (((-856) $) 50) (($ (-638 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 54) (($ (-338 (-4031) (-4031 (QUOTE X)) (-692))) 47)))
+(((-77 |#1|) (-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031) (-4031 (QUOTE X)) (-692)))))) (-1166)) (T -77))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-338 (-4031) (-4031 (QUOTE X)) (-692))) (-5 *1 (-77 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031) (-4031 (QUOTE X)) (-692))))))
+((-4017 (((-3 $ "failed") (-315 (-378))) 46) (((-3 $ "failed") (-315 (-561))) 51) (((-3 $ "failed") (-945 (-378))) 55) (((-3 $ "failed") (-945 (-561))) 59) (((-3 $ "failed") (-406 (-945 (-378)))) 41) (((-3 $ "failed") (-406 (-945 (-561)))) 34)) (-3938 (($ (-315 (-378))) 44) (($ (-315 (-561))) 49) (($ (-945 (-378))) 53) (($ (-945 (-561))) 57) (($ (-406 (-945 (-378)))) 39) (($ (-406 (-945 (-561)))) 31)) (-2633 (((-1258) $) 80)) (-4022 (((-856) $) 74) (($ (-638 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 69) (($ (-338 (-4031) (-4031 (QUOTE X)) (-692))) 30)))
+(((-78 |#1|) (-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031) (-4031 (QUOTE X)) (-692)))))) (-1166)) (T -78))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-338 (-4031) (-4031 (QUOTE X)) (-692))) (-5 *1 (-78 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031) (-4031 (QUOTE X)) (-692))))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 89) (((-3 $ "failed") (-1253 (-315 (-561)))) 78) (((-3 $ "failed") (-1253 (-945 (-378)))) 109) (((-3 $ "failed") (-1253 (-945 (-561)))) 99) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 67) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 54)) (-3938 (($ (-1253 (-315 (-378)))) 85) (($ (-1253 (-315 (-561)))) 74) (($ (-1253 (-945 (-378)))) 105) (($ (-1253 (-945 (-561)))) 95) (($ (-1253 (-406 (-945 (-378))))) 63) (($ (-1253 (-406 (-945 (-561))))) 47)) (-2633 (((-1258) $) 125)) (-4022 (((-856) $) 119) (($ (-638 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 115) (($ (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692)))) 38)))
+(((-79 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692))))))) (-1166)) (T -79))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692)))) (-5 *1 (-79 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE XC)) (-692)))))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 143) (((-3 $ "failed") (-1253 (-315 (-561)))) 133) (((-3 $ "failed") (-1253 (-945 (-378)))) 163) (((-3 $ "failed") (-1253 (-945 (-561)))) 153) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 123) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 111)) (-3938 (($ (-1253 (-315 (-378)))) 139) (($ (-1253 (-315 (-561)))) 129) (($ (-1253 (-945 (-378)))) 159) (($ (-1253 (-945 (-561)))) 149) (($ (-1253 (-406 (-945 (-378))))) 119) (($ (-1253 (-406 (-945 (-561))))) 104)) (-2633 (((-1258) $) 97)) (-4022 (((-856) $) 91) (($ (-638 (-329))) 82) (($ (-329)) 89) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 87) (($ (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))) 83)))
+(((-80 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692))))))) (-1166)) (T -80))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))) (-5 *1 (-80 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 78) (((-3 $ "failed") (-1253 (-315 (-561)))) 67) (((-3 $ "failed") (-1253 (-945 (-378)))) 98) (((-3 $ "failed") (-1253 (-945 (-561)))) 88) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 56) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 43)) (-3938 (($ (-1253 (-315 (-378)))) 74) (($ (-1253 (-315 (-561)))) 63) (($ (-1253 (-945 (-378)))) 94) (($ (-1253 (-945 (-561)))) 84) (($ (-1253 (-406 (-945 (-378))))) 52) (($ (-1253 (-406 (-945 (-561))))) 36)) (-2633 (((-1258) $) 124)) (-4022 (((-856) $) 118) (($ (-638 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 113) (($ (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))) 35)))
+(((-81 |#1|) (-13 (-439) (-611 (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692))))) (-1166)) (T -81))
+NIL
+(-13 (-439) (-611 (-1253 (-338 (-4031) (-4031 (QUOTE X)) (-692)))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 95) (((-3 $ "failed") (-1253 (-315 (-561)))) 84) (((-3 $ "failed") (-1253 (-945 (-378)))) 115) (((-3 $ "failed") (-1253 (-945 (-561)))) 105) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 73) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 60)) (-3938 (($ (-1253 (-315 (-378)))) 91) (($ (-1253 (-315 (-561)))) 80) (($ (-1253 (-945 (-378)))) 111) (($ (-1253 (-945 (-561)))) 101) (($ (-1253 (-406 (-945 (-378))))) 69) (($ (-1253 (-406 (-945 (-561))))) 53)) (-2633 (((-1258) $) 45)) (-4022 (((-856) $) 39) (($ (-638 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 35) (($ (-1253 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692)))) 30)))
+(((-82 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692))))))) (-1166)) (T -82))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692)))) (-5 *1 (-82 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692)))))))
+((-4017 (((-3 $ "failed") (-682 (-315 (-378)))) 115) (((-3 $ "failed") (-682 (-315 (-561)))) 104) (((-3 $ "failed") (-682 (-945 (-378)))) 137) (((-3 $ "failed") (-682 (-945 (-561)))) 126) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 93) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 80)) (-3938 (($ (-682 (-315 (-378)))) 111) (($ (-682 (-315 (-561)))) 100) (($ (-682 (-945 (-378)))) 133) (($ (-682 (-945 (-561)))) 122) (($ (-682 (-406 (-945 (-378))))) 89) (($ (-682 (-406 (-945 (-561))))) 73)) (-2633 (((-1258) $) 63)) (-4022 (((-856) $) 50) (($ (-638 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 55) (($ (-682 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692)))) 47)))
+(((-83 |#1|) (-13 (-383) (-10 -8 (-15 -4022 ($ (-682 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692))))))) (-1166)) (T -83))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692)))) (-5 *1 (-83 *3)) (-14 *3 (-1166)))))
+(-13 (-383) (-10 -8 (-15 -4022 ($ (-682 (-338 (-4031 (QUOTE X) (QUOTE -3187)) (-4031) (-692)))))))
+((-4017 (((-3 $ "failed") (-682 (-315 (-378)))) 112) (((-3 $ "failed") (-682 (-315 (-561)))) 100) (((-3 $ "failed") (-682 (-945 (-378)))) 134) (((-3 $ "failed") (-682 (-945 (-561)))) 123) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 88) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 74)) (-3938 (($ (-682 (-315 (-378)))) 108) (($ (-682 (-315 (-561)))) 96) (($ (-682 (-945 (-378)))) 130) (($ (-682 (-945 (-561)))) 119) (($ (-682 (-406 (-945 (-378))))) 84) (($ (-682 (-406 (-945 (-561))))) 67)) (-2633 (((-1258) $) 59)) (-4022 (((-856) $) 53) (($ (-638 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 44) (($ (-682 (-338 (-4031 (QUOTE X)) (-4031) (-692)))) 45)))
+(((-84 |#1|) (-13 (-383) (-10 -8 (-15 -4022 ($ (-682 (-338 (-4031 (QUOTE X)) (-4031) (-692))))))) (-1166)) (T -84))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-4031 (QUOTE X)) (-4031) (-692)))) (-5 *1 (-84 *3)) (-14 *3 (-1166)))))
+(-13 (-383) (-10 -8 (-15 -4022 ($ (-682 (-338 (-4031 (QUOTE X)) (-4031) (-692)))))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 104) (((-3 $ "failed") (-1253 (-315 (-561)))) 93) (((-3 $ "failed") (-1253 (-945 (-378)))) 124) (((-3 $ "failed") (-1253 (-945 (-561)))) 114) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 82) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 69)) (-3938 (($ (-1253 (-315 (-378)))) 100) (($ (-1253 (-315 (-561)))) 89) (($ (-1253 (-945 (-378)))) 120) (($ (-1253 (-945 (-561)))) 110) (($ (-1253 (-406 (-945 (-378))))) 78) (($ (-1253 (-406 (-945 (-561))))) 62)) (-2633 (((-1258) $) 46)) (-4022 (((-856) $) 40) (($ (-638 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 52) (($ (-1253 (-338 (-4031 (QUOTE X)) (-4031) (-692)))) 37)))
+(((-85 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X)) (-4031) (-692))))))) (-1166)) (T -85))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031 (QUOTE X)) (-4031) (-692)))) (-5 *1 (-85 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X)) (-4031) (-692)))))))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 79) (((-3 $ "failed") (-1253 (-315 (-561)))) 68) (((-3 $ "failed") (-1253 (-945 (-378)))) 99) (((-3 $ "failed") (-1253 (-945 (-561)))) 89) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 57) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 44)) (-3938 (($ (-1253 (-315 (-378)))) 75) (($ (-1253 (-315 (-561)))) 64) (($ (-1253 (-945 (-378)))) 95) (($ (-1253 (-945 (-561)))) 85) (($ (-1253 (-406 (-945 (-378))))) 53) (($ (-1253 (-406 (-945 (-561))))) 37)) (-2633 (((-1258) $) 125)) (-4022 (((-856) $) 119) (($ (-638 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 114) (($ (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692)))) 36)))
+(((-86 |#1|) (-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692))))))) (-1166)) (T -86))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692)))) (-5 *1 (-86 *3)) (-14 *3 (-1166)))))
+(-13 (-439) (-10 -8 (-15 -4022 ($ (-1253 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692)))))))
+((-4017 (((-3 $ "failed") (-682 (-315 (-378)))) 113) (((-3 $ "failed") (-682 (-315 (-561)))) 101) (((-3 $ "failed") (-682 (-945 (-378)))) 135) (((-3 $ "failed") (-682 (-945 (-561)))) 124) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 89) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 75)) (-3938 (($ (-682 (-315 (-378)))) 109) (($ (-682 (-315 (-561)))) 97) (($ (-682 (-945 (-378)))) 131) (($ (-682 (-945 (-561)))) 120) (($ (-682 (-406 (-945 (-378))))) 85) (($ (-682 (-406 (-945 (-561))))) 68)) (-2633 (((-1258) $) 59)) (-4022 (((-856) $) 53) (($ (-638 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 48) (($ (-682 (-338 (-4031 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4031) (-692)))) 44)))
+(((-87 |#1|) (-13 (-383) (-10 -8 (-15 -4022 ($ (-682 (-338 (-4031 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4031) (-692))))))) (-1166)) (T -87))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-4031 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4031) (-692)))) (-5 *1 (-87 *3)) (-14 *3 (-1166)))))
+(-13 (-383) (-10 -8 (-15 -4022 ($ (-682 (-338 (-4031 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4031) (-692)))))))
+((-2633 (((-1258) $) 44)) (-4022 (((-856) $) 38) (($ (-1253 (-692))) 93) (($ (-638 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 33)))
+(((-88 |#1|) (-438) (-1166)) (T -88))
NIL
(-438)
-((-3302 (((-3 $ "failed") (-315 (-378))) 47) (((-3 $ "failed") (-315 (-558))) 52) (((-3 $ "failed") (-942 (-378))) 56) (((-3 $ "failed") (-942 (-558))) 60) (((-3 $ "failed") (-406 (-942 (-378)))) 42) (((-3 $ "failed") (-406 (-942 (-558)))) 35)) (-3226 (($ (-315 (-378))) 45) (($ (-315 (-558))) 50) (($ (-942 (-378))) 54) (($ (-942 (-558))) 58) (($ (-406 (-942 (-378)))) 40) (($ (-406 (-942 (-558)))) 32)) (-3154 (((-1251) $) 90)) (-3940 (((-853) $) 84) (($ (-635 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 76) (($ (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689))) 31)))
-(((-89 |#1|) (-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689)))))) (-1163)) (T -89))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689))) (-5 *1 (-89 *3)) (-14 *3 (-1163)))))
-(-13 (-395) (-10 -8 (-15 -3940 ($ (-338 (-3952 (QUOTE X)) (-3952 (QUOTE -3161)) (-689))))))
-((-2843 (((-1246 (-679 |#1|)) (-679 |#1|)) 54)) (-2470 (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 (-635 (-911))))) |#2| (-911)) 44)) (-3935 (((-2 (|:| |minor| (-635 (-911))) (|:| -3846 |#2|) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 |#2|))) |#2| (-911)) 65 (|has| |#1| (-362)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -2470 ((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 (-635 (-911))))) |#2| (-911))) (-15 -2843 ((-1246 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-362)) (-15 -3935 ((-2 (|:| |minor| (-635 (-911))) (|:| -3846 |#2|) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 |#2|))) |#2| (-911))) |%noBranch|)) (-550) (-646 |#1|)) (T -90))
-((-3935 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |minor| (-635 (-911))) (|:| -3846 *3) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))) (-2843 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-679 *4)) (-4 *5 (-646 *4)))) (-2470 (*1 *2 *3 *4) (-12 (-4 *5 (-550)) (-5 *2 (-2 (|:| -3702 (-679 *5)) (|:| |vec| (-1246 (-635 (-911)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))))
-(-10 -7 (-15 -2470 ((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 (-635 (-911))))) |#2| (-911))) (-15 -2843 ((-1246 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-362)) (-15 -3935 ((-2 (|:| |minor| (-635 (-911))) (|:| -3846 |#2|) (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 |#2|))) |#2| (-911))) |%noBranch|))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1999 ((|#1| $) 35)) (-3651 (((-112) $ (-762)) NIL)) (-3457 (($) NIL T CONST)) (-3106 ((|#1| |#1| $) 30)) (-1627 ((|#1| $) 28)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1498 ((|#1| $) NIL)) (-2650 (($ |#1| $) 31)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2533 ((|#1| $) 29)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 16)) (-2876 (($) 39)) (-3752 (((-762) $) 26)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 15)) (-3940 (((-853) $) 25 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) NIL)) (-2940 (($ (-635 |#1|)) 37)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 13 (|has| |#1| (-1087)))) (-1596 (((-762) $) 10 (|has| $ (-6 -4383)))))
-(((-91 |#1|) (-13 (-1108 |#1|) (-10 -8 (-15 -2940 ($ (-635 |#1|))))) (-1087)) (T -91))
-((-2940 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-91 *3)))))
-(-13 (-1108 |#1|) (-10 -8 (-15 -2940 ($ (-635 |#1|)))))
-((-3940 (((-853) $) 13) (($ (-1168)) 9) (((-1168) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -3940 ((-1168) |#1|)) (-15 -3940 (|#1| (-1168))) (-15 -3940 ((-853) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -3940 ((-1168) |#1|)) (-15 -3940 (|#1| (-1168))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-1168)) 16) (((-1168) $) 15)) (-1708 (((-112) $ $) 6)))
+((-4017 (((-3 $ "failed") (-315 (-378))) 47) (((-3 $ "failed") (-315 (-561))) 52) (((-3 $ "failed") (-945 (-378))) 56) (((-3 $ "failed") (-945 (-561))) 60) (((-3 $ "failed") (-406 (-945 (-378)))) 42) (((-3 $ "failed") (-406 (-945 (-561)))) 35)) (-3938 (($ (-315 (-378))) 45) (($ (-315 (-561))) 50) (($ (-945 (-378))) 54) (($ (-945 (-561))) 58) (($ (-406 (-945 (-378)))) 40) (($ (-406 (-945 (-561)))) 32)) (-2633 (((-1258) $) 90)) (-4022 (((-856) $) 84) (($ (-638 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 76) (($ (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692))) 31)))
+(((-89 |#1|) (-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692)))))) (-1166)) (T -89))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692))) (-5 *1 (-89 *3)) (-14 *3 (-1166)))))
+(-13 (-395) (-10 -8 (-15 -4022 ($ (-338 (-4031 (QUOTE X)) (-4031 (QUOTE -3187)) (-692))))))
+((-2051 (((-1253 (-682 |#1|)) (-682 |#1|)) 54)) (-2133 (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 (-638 (-914))))) |#2| (-914)) 44)) (-2543 (((-2 (|:| |minor| (-638 (-914))) (|:| -3360 |#2|) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 |#2|))) |#2| (-914)) 65 (|has| |#1| (-362)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -2133 ((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 (-638 (-914))))) |#2| (-914))) (-15 -2051 ((-1253 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -2543 ((-2 (|:| |minor| (-638 (-914))) (|:| -3360 |#2|) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 |#2|))) |#2| (-914))) |%noBranch|)) (-553) (-649 |#1|)) (T -90))
+((-2543 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |minor| (-638 (-914))) (|:| -3360 *3) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))) (-2051 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-682 *4)) (-4 *5 (-649 *4)))) (-2133 (*1 *2 *3 *4) (-12 (-4 *5 (-553)) (-5 *2 (-2 (|:| -3327 (-682 *5)) (|:| |vec| (-1253 (-638 (-914)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))))
+(-10 -7 (-15 -2133 ((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 (-638 (-914))))) |#2| (-914))) (-15 -2051 ((-1253 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -2543 ((-2 (|:| |minor| (-638 (-914))) (|:| -3360 |#2|) (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 |#2|))) |#2| (-914))) |%noBranch|))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2735 ((|#1| $) 35)) (-1630 (((-112) $ (-765)) NIL)) (-1965 (($) NIL T CONST)) (-3760 ((|#1| |#1| $) 30)) (-3297 ((|#1| $) 28)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3211 ((|#1| $) NIL)) (-3671 (($ |#1| $) 31)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3522 ((|#1| $) 29)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 16)) (-3170 (($) 39)) (-1404 (((-765) $) 26)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 15)) (-4022 (((-856) $) 25 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) NIL)) (-1486 (($ (-638 |#1|)) 37)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 13 (|has| |#1| (-1090)))) (-3498 (((-765) $) 10 (|has| $ (-6 -4390)))))
+(((-91 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -1486 ($ (-638 |#1|))))) (-1090)) (T -91))
+((-1486 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-91 *3)))))
+(-13 (-1111 |#1|) (-10 -8 (-15 -1486 ($ (-638 |#1|)))))
+((-4022 (((-856) $) 13) (($ (-1171)) 9) (((-1171) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -4022 ((-1171) |#1|)) (-15 -4022 (|#1| (-1171))) (-15 -4022 ((-856) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -4022 ((-1171) |#1|)) (-15 -4022 (|#1| (-1171))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-1733 (((-112) $ $) 6)))
(((-93) (-139)) (T -93))
NIL
-(-13 (-1087) (-488 (-1168)))
-(((-102) . T) ((-608 #0=(-1168)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T))
-((-2233 (($ $) 10)) (-2244 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -2244 (|#1| |#1|)) (-15 -2233 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1090) (-488 (-1171)))
+(((-102) . T) ((-611 #0=(-1171)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T))
+((-4149 (($ $) 10)) (-4160 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -4160 (|#1| |#1|)) (-15 -4149 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -2244 (|#1| |#1|)) (-15 -2233 (|#1| |#1|)))
-((-2209 (($ $) 11)) (-2184 (($ $) 10)) (-2233 (($ $) 9)) (-2244 (($ $) 8)) (-2221 (($ $) 7)) (-2195 (($ $) 6)))
+(-10 -8 (-15 -4160 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)))
+((-4132 (($ $) 11)) (-4105 (($ $) 10)) (-4149 (($ $) 9)) (-4160 (($ $) 8)) (-4142 (($ $) 7)) (-4117 (($ $) 6)))
(((-95) (-139)) (T -95))
-((-2209 (*1 *1 *1) (-4 *1 (-95))) (-2184 (*1 *1 *1) (-4 *1 (-95))) (-2233 (*1 *1 *1) (-4 *1 (-95))) (-2244 (*1 *1 *1) (-4 *1 (-95))) (-2221 (*1 *1 *1) (-4 *1 (-95))) (-2195 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -2195 ($ $)) (-15 -2221 ($ $)) (-15 -2244 ($ $)) (-15 -2233 ($ $)) (-15 -2184 ($ $)) (-15 -2209 ($ $))))
-((-3929 (((-112) $ $) NIL)) (-3179 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-96) (-13 (-1070) (-10 -8 (-15 -3179 ((-1122) $))))) (T -96))
-((-3179 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-96)))))
-(-13 (-1070) (-10 -8 (-15 -3179 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-1853 (((-378) (-1145) (-378)) 42) (((-378) (-1145) (-1145) (-378)) 41)) (-2214 (((-378) (-378)) 33)) (-3099 (((-1251)) 36)) (-2510 (((-1145) $) NIL)) (-2592 (((-378) (-1145) (-1145)) 46) (((-378) (-1145)) 48)) (-1688 (((-1107) $) NIL)) (-3623 (((-378) (-1145) (-1145)) 47)) (-3606 (((-378) (-1145) (-1145)) 49) (((-378) (-1145)) 50)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-97) (-13 (-1087) (-10 -7 (-15 -2592 ((-378) (-1145) (-1145))) (-15 -2592 ((-378) (-1145))) (-15 -3606 ((-378) (-1145) (-1145))) (-15 -3606 ((-378) (-1145))) (-15 -3623 ((-378) (-1145) (-1145))) (-15 -3099 ((-1251))) (-15 -2214 ((-378) (-378))) (-15 -1853 ((-378) (-1145) (-378))) (-15 -1853 ((-378) (-1145) (-1145) (-378))) (-6 -4383)))) (T -97))
-((-2592 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3606 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3623 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3099 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-97)))) (-2214 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))) (-1853 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97)))) (-1853 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97)))))
-(-13 (-1087) (-10 -7 (-15 -2592 ((-378) (-1145) (-1145))) (-15 -2592 ((-378) (-1145))) (-15 -3606 ((-378) (-1145) (-1145))) (-15 -3606 ((-378) (-1145))) (-15 -3623 ((-378) (-1145) (-1145))) (-15 -3099 ((-1251))) (-15 -2214 ((-378) (-378))) (-15 -1853 ((-378) (-1145) (-378))) (-15 -1853 ((-378) (-1145) (-1145) (-378))) (-6 -4383)))
+((-4132 (*1 *1 *1) (-4 *1 (-95))) (-4105 (*1 *1 *1) (-4 *1 (-95))) (-4149 (*1 *1 *1) (-4 *1 (-95))) (-4160 (*1 *1 *1) (-4 *1 (-95))) (-4142 (*1 *1 *1) (-4 *1 (-95))) (-4117 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -4117 ($ $)) (-15 -4142 ($ $)) (-15 -4160 ($ $)) (-15 -4149 ($ $)) (-15 -4105 ($ $)) (-15 -4132 ($ $))))
+((-4011 (((-112) $ $) NIL)) (-3269 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-96) (-13 (-1073) (-10 -8 (-15 -3269 ((-1125) $))))) (T -96))
+((-3269 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-96)))))
+(-13 (-1073) (-10 -8 (-15 -3269 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-4321 (((-378) (-1148) (-378)) 42) (((-378) (-1148) (-1148) (-378)) 41)) (-2945 (((-378) (-378)) 33)) (-2264 (((-1258)) 36)) (-1764 (((-1148) $) NIL)) (-3586 (((-378) (-1148) (-1148)) 46) (((-378) (-1148)) 48)) (-1714 (((-1110) $) NIL)) (-3157 (((-378) (-1148) (-1148)) 47)) (-2533 (((-378) (-1148) (-1148)) 49) (((-378) (-1148)) 50)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-97) (-13 (-1090) (-10 -7 (-15 -3586 ((-378) (-1148) (-1148))) (-15 -3586 ((-378) (-1148))) (-15 -2533 ((-378) (-1148) (-1148))) (-15 -2533 ((-378) (-1148))) (-15 -3157 ((-378) (-1148) (-1148))) (-15 -2264 ((-1258))) (-15 -2945 ((-378) (-378))) (-15 -4321 ((-378) (-1148) (-378))) (-15 -4321 ((-378) (-1148) (-1148) (-378))) (-6 -4390)))) (T -97))
+((-3586 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2533 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3157 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2264 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-97)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))) (-4321 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97)))) (-4321 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97)))))
+(-13 (-1090) (-10 -7 (-15 -3586 ((-378) (-1148) (-1148))) (-15 -3586 ((-378) (-1148))) (-15 -2533 ((-378) (-1148) (-1148))) (-15 -2533 ((-378) (-1148))) (-15 -3157 ((-378) (-1148) (-1148))) (-15 -2264 ((-1258))) (-15 -2945 ((-378) (-378))) (-15 -4321 ((-378) (-1148) (-378))) (-15 -4321 ((-378) (-1148) (-1148) (-378))) (-6 -4390)))
NIL
(((-98) (-139)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4383) (-6 (-4385 "*")) (-6 -4384) (-6 -4380) (-6 -4378) (-6 -4377) (-6 -4376) (-6 -4381) (-6 -4375) (-6 -4374) (-6 -4373) (-6 -4372) (-6 -4371) (-6 -4379) (-6 -4382) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4370)))
-((-3929 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-2059 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-558))) 22)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 14)) (-1688 (((-1107) $) NIL)) (-2276 ((|#1| $ |#1|) 11)) (-3068 (($ $ $) NIL)) (-3072 (($ $ $) NIL)) (-3940 (((-853) $) 20)) (-2220 (($) 8 T CONST)) (-1708 (((-112) $ $) 10)) (-1805 (($ $ $) NIL)) (** (($ $ (-911)) 27) (($ $ (-762)) NIL) (($ $ (-558)) 16)) (* (($ $ $) 28)))
-(((-99 |#1|) (-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -2059 ($ (-1 |#1| |#1|))) (-15 -2059 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2059 ($ (-1 |#1| |#1| (-558)))))) (-1039)) (T -99))
-((-2059 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3)))) (-2059 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3)))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-99 *3)))))
-(-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -2059 ($ (-1 |#1| |#1|))) (-15 -2059 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2059 ($ (-1 |#1| |#1| (-558))))))
-((-3899 (((-417 |#2|) |#2| (-635 |#2|)) 10) (((-417 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3899 ((-417 |#2|) |#2| |#2|)) (-15 -3899 ((-417 |#2|) |#2| (-635 |#2|)))) (-13 (-450) (-146)) (-1222 |#1|)) (T -100))
-((-3899 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-3899 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -3899 ((-417 |#2|) |#2| |#2|)) (-15 -3899 ((-417 |#2|) |#2| (-635 |#2|))))
-((-3929 (((-112) $ $) 9)))
-(((-101 |#1|) (-10 -8 (-15 -3929 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -3929 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-1708 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4390) (-6 (-4392 "*")) (-6 -4391) (-6 -4387) (-6 -4385) (-6 -4384) (-6 -4383) (-6 -4388) (-6 -4382) (-6 -4381) (-6 -4380) (-6 -4379) (-6 -4378) (-6 -4386) (-6 -4389) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4377)))
+((-4011 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-3819 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-561))) 22)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 14)) (-1714 (((-1110) $) NIL)) (-2277 ((|#1| $ |#1|) 11)) (-2260 (($ $ $) NIL)) (-3800 (($ $ $) NIL)) (-4022 (((-856) $) 20)) (-2222 (($) 8 T CONST)) (-1733 (((-112) $ $) 10)) (-1833 (($ $ $) NIL)) (** (($ $ (-914)) 27) (($ $ (-765)) NIL) (($ $ (-561)) 16)) (* (($ $ $) 28)))
+(((-99 |#1|) (-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -3819 ($ (-1 |#1| |#1|))) (-15 -3819 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3819 ($ (-1 |#1| |#1| (-561)))))) (-1042)) (T -99))
+((-3819 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-3819 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-99 *3)))))
+(-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -3819 ($ (-1 |#1| |#1|))) (-15 -3819 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3819 ($ (-1 |#1| |#1| (-561))))))
+((-3118 (((-417 |#2|) |#2| (-638 |#2|)) 10) (((-417 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -3118 ((-417 |#2|) |#2| |#2|)) (-15 -3118 ((-417 |#2|) |#2| (-638 |#2|)))) (-13 (-450) (-146)) (-1229 |#1|)) (T -100))
+((-3118 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-3118 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3118 ((-417 |#2|) |#2| |#2|)) (-15 -3118 ((-417 |#2|) |#2| (-638 |#2|))))
+((-4011 (((-112) $ $) 9)))
+(((-101 |#1|) (-10 -8 (-15 -4011 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -4011 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-1733 (((-112) $ $) 6)))
(((-102) (-139)) (T -102))
-((-3929 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1708 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -1708 ((-112) $ $)) (-15 -3929 ((-112) $ $))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) 13 (|has| $ (-6 -4384)))) (-2228 (($ $ $) NIL (|has| $ (-6 -4384)))) (-2793 (($ $ $) NIL (|has| $ (-6 -4384)))) (-2888 (($ $ (-635 |#1|)) 15)) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) (($ $ "left" $) NIL (|has| $ (-6 -4384))) (($ $ "right" $) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-1540 (($ $) 11)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2840 (($ $ |#1| $) 17)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2544 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4170 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|)) 35)) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-1524 (($ $) 10)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) 12)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 9)) (-2876 (($) 16)) (-2276 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1904 (((-558) $ $) NIL)) (-1609 (((-112) $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1416 (($ (-762) |#1|) 19)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4383) (-6 -4384) (-15 -1416 ($ (-762) |#1|)) (-15 -2888 ($ $ (-635 |#1|))) (-15 -2544 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2544 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4170 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4170 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|))))) (-1087)) (T -103))
-((-1416 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-103 *3)) (-4 *3 (-1087)))) (-2888 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1087)))) (-2544 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (-5 *1 (-103 *2)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1087)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4383) (-6 -4384) (-15 -1416 ($ (-762) |#1|)) (-15 -2888 ($ $ (-635 |#1|))) (-15 -2544 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2544 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4170 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4170 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|)))))
-((-3002 ((|#3| |#2| |#2|) 28)) (-1932 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4385 "*"))))) (-2860 ((|#3| |#2| |#2|) 29)) (-2379 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4385 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3002 (|#3| |#2| |#2|)) (-15 -2860 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4385 "*"))) (PROGN (-15 -1932 (|#1| |#2| |#2|)) (-15 -2379 (|#1| |#2|))) |%noBranch|)) (-1039) (-1222 |#1|) (-677 |#1| |#4| |#5|) (-372 |#1|) (-372 |#1|)) (T -104))
-((-2379 (*1 *2 *3) (-12 (|has| *2 (-6 (-4385 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2)) (-4 *4 (-677 *2 *5 *6)))) (-1932 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4385 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2)) (-4 *4 (-677 *2 *5 *6)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))) (-3002 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))))
-(-10 -7 (-15 -3002 (|#3| |#2| |#2|)) (-15 -2860 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4385 "*"))) (PROGN (-15 -1932 (|#1| |#2| |#2|)) (-15 -2379 (|#1| |#2|))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2700 (((-635 (-1163))) 33)) (-2371 (((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1163)) 35)) (-1708 (((-112) $ $) NIL)))
-(((-105) (-13 (-1087) (-10 -7 (-15 -2700 ((-635 (-1163)))) (-15 -2371 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1163))) (-6 -4383)))) (T -105))
-((-2700 (*1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-105)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224))))) (-5 *1 (-105)))))
-(-13 (-1087) (-10 -7 (-15 -2700 ((-635 (-1163)))) (-15 -2371 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1163))) (-6 -4383)))
-((-2472 (($ (-635 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -2472 (|#1| (-635 |#2|)))) (-107 |#2|) (-1200)) (T -106))
-NIL
-(-10 -8 (-15 -2472 (|#1| (-635 |#2|))))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-3457 (($) 7 T CONST)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-107 |#1|) (-139) (-1200)) (T -107))
-((-2472 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-107 *3)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))) (-2650 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))))
-(-13 (-487 |t#1|) (-10 -8 (-6 -4384) (-15 -2472 ($ (-635 |t#1|))) (-15 -2533 (|t#1| $)) (-15 -2650 ($ |t#1| $)) (-15 -1498 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 (((-558) $) NIL (|has| (-558) (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| (-558) (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-558) (-1028 (-558))))) (-3226 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-558) (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| (-558) (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 (((-558) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2032 (((-112) $) NIL (|has| (-558) (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-558) (-841)))) (-3397 (($ (-1 (-558) (-558)) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-558) (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) NIL)) (-4259 (((-558) $) NIL (|has| (-558) (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-1562 (((-762) $) NIL)) (-2276 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-4218 (($ $) NIL)) (-3327 (((-558) $) NIL)) (-3441 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 8) (($ (-558)) NIL) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL) (((-994 2) $) 10)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2417 (((-762)) NIL)) (-2912 (((-558) $) NIL (|has| (-558) (-543)))) (-2438 (($ (-406 (-558))) 9)) (-2671 (((-112) $ $) NIL)) (-4241 (($ $) NIL (|has| (-558) (-811)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1757 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1805 (($ $ $) NIL) (($ (-558) (-558)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL)))
-(((-108) (-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 2)) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -2438 ($ (-406 (-558))))))) (T -108))
-((-1636 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108)))) (-2438 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108)))))
-(-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 2)) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -2438 ($ (-406 (-558))))))
-((-4347 (((-635 (-955)) $) 14)) (-3179 (((-1163) $) 10)) (-3940 (((-853) $) 23)) (-2631 (($ (-1163) (-635 (-955))) 15)))
-(((-109) (-13 (-605 (-853)) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -4347 ((-635 (-955)) $)) (-15 -2631 ($ (-1163) (-635 (-955))))))) (T -109))
-((-3179 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-109)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-635 (-955))) (-5 *1 (-109)))) (-2631 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-109)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -4347 ((-635 (-955)) $)) (-15 -2631 ($ (-1163) (-635 (-955))))))
-((-3929 (((-112) $ $) NIL)) (-3209 (($ $) NIL)) (-2182 (($ $ $) NIL)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) $) NIL (|has| (-112) (-841))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3041 (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| (-112) (-841)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4384)))) (-3648 (($ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-4077 (((-112) $ (-1213 (-558)) (-112)) NIL (|has| $ (-6 -4384))) (((-112) $ (-558) (-112)) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-1488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-3866 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-3683 (((-112) $ (-558) (-112)) NIL (|has| $ (-6 -4384)))) (-3620 (((-112) $ (-558)) NIL)) (-4145 (((-558) (-112) $ (-558)) NIL (|has| (-112) (-1087))) (((-558) (-112) $) NIL (|has| (-112) (-1087))) (((-558) (-1 (-112) (-112)) $) NIL)) (-2917 (((-635 (-112)) $) NIL (|has| $ (-6 -4383)))) (-2168 (($ $ $) NIL)) (-2143 (($ $) NIL)) (-1942 (($ $ $) NIL)) (-1395 (($ (-762) (-112)) 8)) (-3078 (($ $ $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL)) (-3391 (($ $ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3486 (((-635 (-112)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL)) (-3674 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1363 (($ $ $ (-558)) NIL) (($ (-112) $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-112) $) NIL (|has| (-558) (-841)))) (-2820 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2830 (($ $ (-112)) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-635 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-4318 (((-635 (-112)) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 (($ $ (-1213 (-558))) NIL) (((-112) $ (-558)) NIL) (((-112) $ (-558) (-112)) NIL)) (-3976 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-1698 (((-762) (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087)))) (((-762) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-112) (-606 (-534))))) (-3952 (($ (-635 (-112))) NIL)) (-2683 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3940 (((-853) $) NIL)) (-1657 (($ (-762) (-112)) 9)) (-2831 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-2157 (($ $ $) NIL)) (-3245 (($ $ $) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-3234 (($ $ $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -1657 ($ (-762) (-112)))))) (T -110))
-((-1657 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -1657 ($ (-762) (-112)))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-111 |#1| |#2|) (-139) (-1039) (-1039)) (T -111))
-NIL
-(-13 (-638 |t#1|) (-1045 |t#2|) (-10 -7 (-6 -4378) (-6 -4377)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-1045 |#2|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3209 (($ $) 10)) (-2182 (($ $ $) 15)) (-2708 (($) 7 T CONST)) (-2635 (($ $) 6)) (-2507 (((-762)) 24)) (-3692 (($) 30)) (-2168 (($ $ $) 13)) (-2143 (($ $) 9)) (-1942 (($ $ $) 16)) (-3078 (($ $ $) 17)) (-2142 (($ $ $) NIL) (($) NIL T CONST)) (-2281 (($ $ $) NIL) (($) NIL T CONST)) (-1486 (((-911) $) 29)) (-2510 (((-1145) $) NIL)) (-2349 (($ (-911)) 28)) (-2334 (($ $ $) 20)) (-1688 (((-1107) $) NIL)) (-1556 (($) 8 T CONST)) (-1741 (($ $ $) 21)) (-3441 (((-534) $) 36)) (-3940 (((-853) $) 39)) (-2157 (($ $ $) 11)) (-3245 (($ $ $) 14)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 19)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 22)) (-3234 (($ $ $) 12)))
-(((-112) (-13 (-835) (-651) (-957) (-606 (-534)) (-10 -8 (-15 -2708 ($) -2010) (-15 -1556 ($) -2010) (-15 -2182 ($ $ $)) (-15 -3078 ($ $ $)) (-15 -1942 ($ $ $)) (-15 -2635 ($ $))))) (T -112))
-((-2708 (*1 *1) (-5 *1 (-112))) (-1556 (*1 *1) (-5 *1 (-112))) (-2182 (*1 *1 *1 *1) (-5 *1 (-112))) (-3078 (*1 *1 *1 *1) (-5 *1 (-112))) (-1942 (*1 *1 *1 *1) (-5 *1 (-112))) (-2635 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-835) (-651) (-957) (-606 (-534)) (-10 -8 (-15 -2708 ($) -2010) (-15 -1556 ($) -2010) (-15 -2182 ($ $ $)) (-15 -3078 ($ $ $)) (-15 -1942 ($ $ $)) (-15 -2635 ($ $))))
-((-3196 (((-3 (-1 |#1| (-635 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-635 |#1|))) 11) (((-3 |#1| "failed") (-114) (-635 |#1|)) 21)) (-3639 (((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-635 (-1 |#1| (-635 |#1|)))) 26)) (-1547 (((-114) |#1|) 55 (|has| |#1| (-841)))) (-2414 (((-3 |#1| "failed") (-114)) 49 (|has| |#1| (-841)))))
-(((-113 |#1|) (-10 -7 (-15 -3196 ((-3 |#1| "failed") (-114) (-635 |#1|))) (-15 -3196 ((-114) (-114) (-1 |#1| (-635 |#1|)))) (-15 -3196 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3196 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-114))) (-15 -3639 ((-114) (-114) (-635 (-1 |#1| (-635 |#1|))))) (-15 -3639 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3639 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-114))) (IF (|has| |#1| (-841)) (PROGN (-15 -1547 ((-114) |#1|)) (-15 -2414 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1087)) (T -113))
-((-2414 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1087)) (-4 *2 (-841)) (-5 *1 (-113 *2)))) (-1547 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-841)) (-4 *3 (-1087)))) (-3639 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-1 *4 (-635 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1087)))) (-3639 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-3639 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-3196 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-635 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1087)))) (-3196 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-3196 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1087)) (-5 *1 (-113 *4)))) (-3196 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-635 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1087)))))
-(-10 -7 (-15 -3196 ((-3 |#1| "failed") (-114) (-635 |#1|))) (-15 -3196 ((-114) (-114) (-1 |#1| (-635 |#1|)))) (-15 -3196 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3196 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-114))) (-15 -3639 ((-114) (-114) (-635 (-1 |#1| (-635 |#1|))))) (-15 -3639 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3639 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-114))) (IF (|has| |#1| (-841)) (PROGN (-15 -1547 ((-114) |#1|)) (-15 -2414 ((-3 |#1| "failed") (-114)))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-4173 (((-762) $) 72) (($ $ (-762)) 30)) (-1340 (((-112) $) 32)) (-3345 (($ $ (-1145) (-765)) 26)) (-3354 (($ $ (-45 (-1145) (-765))) 15)) (-3312 (((-3 (-765) "failed") $ (-1145)) 25)) (-4347 (((-45 (-1145) (-765)) $) 14)) (-2154 (($ (-1163)) 17) (($ (-1163) (-762)) 22)) (-3720 (((-112) $) 31)) (-4085 (((-112) $) 33)) (-3179 (((-1163) $) 8)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-3557 (((-112) $ (-1163)) 10)) (-1558 (($ $ (-1 (-534) (-635 (-534)))) 52) (((-3 (-1 (-534) (-635 (-534))) "failed") $) 56)) (-1688 (((-1107) $) NIL)) (-4012 (((-112) $ (-1145)) 29)) (-2644 (($ $ (-1 (-112) $ $)) 35)) (-1490 (((-3 (-1 (-853) (-635 (-853))) "failed") $) 54) (($ $ (-1 (-853) (-635 (-853)))) 41) (($ $ (-1 (-853) (-853))) 43)) (-2123 (($ $ (-1145)) 45)) (-4098 (($ $) 63)) (-2185 (($ $ (-1 (-112) $ $)) 36)) (-3940 (((-853) $) 48)) (-3869 (($ $ (-1145)) 27)) (-1405 (((-3 (-762) "failed") $) 58)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 71)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 78)))
-(((-114) (-13 (-841) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -4347 ((-45 (-1145) (-765)) $)) (-15 -4098 ($ $)) (-15 -2154 ($ (-1163))) (-15 -2154 ($ (-1163) (-762))) (-15 -1405 ((-3 (-762) "failed") $)) (-15 -3720 ((-112) $)) (-15 -1340 ((-112) $)) (-15 -4085 ((-112) $)) (-15 -4173 ((-762) $)) (-15 -4173 ($ $ (-762))) (-15 -2644 ($ $ (-1 (-112) $ $))) (-15 -2185 ($ $ (-1 (-112) $ $))) (-15 -1490 ((-3 (-1 (-853) (-635 (-853))) "failed") $)) (-15 -1490 ($ $ (-1 (-853) (-635 (-853))))) (-15 -1490 ($ $ (-1 (-853) (-853)))) (-15 -1558 ($ $ (-1 (-534) (-635 (-534))))) (-15 -1558 ((-3 (-1 (-534) (-635 (-534))) "failed") $)) (-15 -3557 ((-112) $ (-1163))) (-15 -4012 ((-112) $ (-1145))) (-15 -3869 ($ $ (-1145))) (-15 -2123 ($ $ (-1145))) (-15 -3312 ((-3 (-765) "failed") $ (-1145))) (-15 -3345 ($ $ (-1145) (-765))) (-15 -3354 ($ $ (-45 (-1145) (-765))))))) (T -114))
-((-3179 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-114)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))) (-4098 (*1 *1 *1) (-5 *1 (-114))) (-2154 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-114)))) (-2154 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *1 (-114)))) (-1405 (*1 *2 *1) (|partial| -12 (-5 *2 (-762)) (-5 *1 (-114)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-114)))) (-4173 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-114)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2185 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1490 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114)))) (-1490 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114)))) (-1490 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-853))) (-5 *1 (-114)))) (-1558 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114)))) (-1558 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114)))) (-3557 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-114)))) (-4012 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) (-2123 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))) (-3312 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-765)) (-5 *1 (-114)))) (-3345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-765)) (-5 *1 (-114)))) (-3354 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))))
-(-13 (-841) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -4347 ((-45 (-1145) (-765)) $)) (-15 -4098 ($ $)) (-15 -2154 ($ (-1163))) (-15 -2154 ($ (-1163) (-762))) (-15 -1405 ((-3 (-762) "failed") $)) (-15 -3720 ((-112) $)) (-15 -1340 ((-112) $)) (-15 -4085 ((-112) $)) (-15 -4173 ((-762) $)) (-15 -4173 ($ $ (-762))) (-15 -2644 ($ $ (-1 (-112) $ $))) (-15 -2185 ($ $ (-1 (-112) $ $))) (-15 -1490 ((-3 (-1 (-853) (-635 (-853))) "failed") $)) (-15 -1490 ($ $ (-1 (-853) (-635 (-853))))) (-15 -1490 ($ $ (-1 (-853) (-853)))) (-15 -1558 ($ $ (-1 (-534) (-635 (-534))))) (-15 -1558 ((-3 (-1 (-534) (-635 (-534))) "failed") $)) (-15 -3557 ((-112) $ (-1163))) (-15 -4012 ((-112) $ (-1145))) (-15 -3869 ($ $ (-1145))) (-15 -2123 ($ $ (-1145))) (-15 -3312 ((-3 (-765) "failed") $ (-1145))) (-15 -3345 ($ $ (-1145) (-765))) (-15 -3354 ($ $ (-45 (-1145) (-765))))))
-((-3597 (((-558) |#2|) 37)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -3597 ((-558) |#2|))) (-13 (-362) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -115))
-((-3597 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1028 (-406 *2)))) (-5 *2 (-558)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -3597 ((-558) |#2|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $ (-558)) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-4350 (($ (-1159 (-558)) (-558)) NIL)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2202 (($ $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2532 (((-762) $) NIL)) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3142 (((-558)) NIL)) (-3511 (((-558) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2319 (($ $ (-558)) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3035 (((-1143 (-558)) $) NIL)) (-1559 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL)) (-2417 (((-762)) NIL)) (-2671 (((-112) $ $) NIL)) (-1422 (((-558) $ (-558)) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-859 |#1|) (-558)) (T -116))
-NIL
-(-859 |#1|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| (-116 |#1|) (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-116 |#1|) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-116 |#1|) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-116 |#1|) (-1028 (-558))))) (-3226 (((-116 |#1|) $) NIL) (((-1163) $) NIL (|has| (-116 |#1|) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-116 |#1|) (-1028 (-558)))) (((-558) $) NIL (|has| (-116 |#1|) (-1028 (-558))))) (-1685 (($ $) NIL) (($ (-558) $) NIL)) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-116 |#1|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-116 |#1|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-116 |#1|))) (|:| |vec| (-1246 (-116 |#1|)))) (-679 $) (-1246 $)) NIL) (((-679 (-116 |#1|)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-116 |#1|) (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| (-116 |#1|) (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-116 |#1|) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-116 |#1|) (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 (((-116 |#1|) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1138)))) (-2032 (((-112) $) NIL (|has| (-116 |#1|) (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| (-116 |#1|) (-841)))) (-2281 (($ $ $) NIL (|has| (-116 |#1|) (-841)))) (-3397 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-116 |#1|) (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-4259 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-116 |#1|) (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 (-116 |#1|)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-293 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-293 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-1163)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-512 (-1163) (-116 |#1|)))) (($ $ (-1163) (-116 |#1|)) NIL (|has| (-116 |#1|) (-512 (-1163) (-116 |#1|))))) (-1562 (((-762) $) NIL)) (-2276 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-762)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-4218 (($ $) NIL)) (-3327 (((-116 |#1|) $) NIL)) (-3441 (((-882 (-558)) $) NIL (|has| (-116 |#1|) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-116 |#1|) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-116 |#1|) (-606 (-534)))) (((-378) $) NIL (|has| (-116 |#1|) (-1012))) (((-224) $) NIL (|has| (-116 |#1|) (-1012)))) (-3537 (((-173 (-406 (-558))) $) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-116 |#1|)) NIL) (($ (-1163)) NIL (|has| (-116 |#1|) (-1028 (-1163))))) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-899))) (|has| (-116 |#1|) (-144))))) (-2417 (((-762)) NIL)) (-2912 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-2671 (((-112) $ $) NIL)) (-1422 (((-406 (-558)) $ (-558)) NIL)) (-4241 (($ $) NIL (|has| (-116 |#1|) (-811)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-116 |#1|) (-890 (-1163)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-762)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1757 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-116 |#1|) (-841)))) (-1805 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-982 (-116 |#1|)) (-10 -8 (-15 -1422 ((-406 (-558)) $ (-558))) (-15 -3537 ((-173 (-406 (-558))) $)) (-15 -1685 ($ $)) (-15 -1685 ($ (-558) $)))) (-558)) (T -117))
-((-1422 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-117 *3)) (-14 *3 (-558)))) (-1685 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-558)))) (-1685 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-982 (-116 |#1|)) (-10 -8 (-15 -1422 ((-406 (-558)) $ (-558))) (-15 -3537 ((-173 (-406 (-558))) $)) (-15 -1685 ($ $)) (-15 -1685 ($ (-558) $))))
-((-4077 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-1352 (((-635 $) $) 27)) (-2201 (((-112) $ $) 32)) (-3764 (((-112) |#2| $) 36)) (-3783 (((-635 |#2|) $) 22)) (-3355 (((-112) $) 16)) (-2276 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1609 (((-112) $) 45)) (-3940 (((-853) $) 41)) (-1384 (((-635 $) $) 28)) (-1708 (((-112) $ $) 34)) (-1596 (((-762) $) 43)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -4077 (|#1| |#1| "right" |#1|)) (-15 -4077 (|#1| |#1| "left" |#1|)) (-15 -2276 (|#1| |#1| "right")) (-15 -2276 (|#1| |#1| "left")) (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -2201 ((-112) |#1| |#1|)) (-15 -3783 ((-635 |#2|) |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2276 (|#2| |#1| "value")) (-15 -3355 ((-112) |#1|)) (-15 -1352 ((-635 |#1|) |#1|)) (-15 -1384 ((-635 |#1|) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3764 ((-112) |#2| |#1|)) (-15 -1596 ((-762) |#1|))) (-119 |#2|) (-1200)) (T -118))
-NIL
-(-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -4077 (|#1| |#1| "right" |#1|)) (-15 -4077 (|#1| |#1| "left" |#1|)) (-15 -2276 (|#1| |#1| "right")) (-15 -2276 (|#1| |#1| "left")) (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -2201 ((-112) |#1| |#1|)) (-15 -3783 ((-635 |#2|) |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2276 (|#2| |#1| "value")) (-15 -3355 ((-112) |#1|)) (-15 -1352 ((-635 |#1|) |#1|)) (-15 -1384 ((-635 |#1|) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3764 ((-112) |#2| |#1|)) (-15 -1596 ((-762) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-2228 (($ $ $) 52 (|has| $ (-6 -4384)))) (-2793 (($ $ $) 54 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384))) (($ $ "left" $) 55 (|has| $ (-6 -4384))) (($ $ "right" $) 53 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-3457 (($) 7 T CONST)) (-1540 (($ $) 57)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-1524 (($ $) 59)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1904 (((-558) $ $) 44)) (-1609 (((-112) $) 46)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-119 |#1|) (-139) (-1200)) (T -119))
-((-1524 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-4077 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4384)) (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-2793 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))) (-4077 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4384)) (-4 *1 (-119 *3)) (-4 *3 (-1200)))) (-2228 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))))
-(-13 (-1000 |t#1|) (-10 -8 (-15 -1524 ($ $)) (-15 -2276 ($ $ "left")) (-15 -1540 ($ $)) (-15 -2276 ($ $ "right")) (IF (|has| $ (-6 -4384)) (PROGN (-15 -4077 ($ $ "left" $)) (-15 -2793 ($ $ $)) (-15 -4077 ($ $ "right" $)) (-15 -2228 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-2778 (((-112) |#1|) 24)) (-1359 (((-762) (-762)) 23) (((-762)) 22)) (-3242 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
-(((-120 |#1|) (-10 -7 (-15 -3242 ((-112) |#1|)) (-15 -3242 ((-112) |#1| (-112))) (-15 -1359 ((-762))) (-15 -1359 ((-762) (-762))) (-15 -2778 ((-112) |#1|))) (-1222 (-558))) (T -120))
-((-2778 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-1359 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-3242 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))) (-3242 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
-(-10 -7 (-15 -3242 ((-112) |#1|)) (-15 -3242 ((-112) |#1| (-112))) (-15 -1359 ((-762))) (-15 -1359 ((-762) (-762))) (-15 -2778 ((-112) |#1|)))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) 15)) (-3566 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-2228 (($ $ $) 18 (|has| $ (-6 -4384)))) (-2793 (($ $ $) 20 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) (($ $ "left" $) NIL (|has| $ (-6 -4384))) (($ $ "right" $) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-1540 (($ $) 17)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2840 (($ $ |#1| $) 23)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-1524 (($ $) 19)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-3888 (($ |#1| $) 24)) (-2650 (($ |#1| $) 10)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 14)) (-2876 (($) 8)) (-2276 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1904 (((-558) $ $) NIL)) (-1609 (((-112) $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1344 (($ (-635 |#1|)) 12)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4384) (-6 -4383) (-15 -1344 ($ (-635 |#1|))) (-15 -2650 ($ |#1| $)) (-15 -3888 ($ |#1| $)) (-15 -3566 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-841)) (T -121))
-((-1344 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-121 *3)))) (-2650 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841)))) (-3888 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841)))) (-3566 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-841)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4384) (-6 -4383) (-15 -1344 ($ (-635 |#1|))) (-15 -2650 ($ |#1| $)) (-15 -3888 ($ |#1| $)) (-15 -3566 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-3209 (($ $) 12)) (-2143 (($ $) 10)) (-1942 (($ $ $) 22)) (-3078 (($ $ $) 20)) (-3245 (($ $ $) 18)) (-3234 (($ $ $) 16)))
-(((-122 |#1|) (-10 -8 (-15 -1942 (|#1| |#1| |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -1942 (|#1| |#1| |#1|)) (-15 -3078 (|#1| |#1| |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3209 (($ $) 103)) (-2182 (($ $ $) 25)) (-3552 (((-1251) $ (-558) (-558)) 66 (|has| $ (-6 -4384)))) (-2878 (((-112) $) 98 (|has| (-112) (-841))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3041 (($ $) 102 (-12 (|has| (-112) (-841)) (|has| $ (-6 -4384)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4384)))) (-3648 (($ $) 97 (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3651 (((-112) $ (-762)) 37)) (-4077 (((-112) $ (-1213 (-558)) (-112)) 88 (|has| $ (-6 -4384))) (((-112) $ (-558) (-112)) 54 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4383)))) (-3457 (($) 38 T CONST)) (-2240 (($ $) 100 (|has| $ (-6 -4384)))) (-1911 (($ $) 90)) (-3188 (($ $) 68 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4383))) (($ (-112) $) 69 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4383))))) (-3866 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4383))))) (-3683 (((-112) $ (-558) (-112)) 53 (|has| $ (-6 -4384)))) (-3620 (((-112) $ (-558)) 55)) (-4145 (((-558) (-112) $ (-558)) 95 (|has| (-112) (-1087))) (((-558) (-112) $) 94 (|has| (-112) (-1087))) (((-558) (-1 (-112) (-112)) $) 93)) (-2917 (((-635 (-112)) $) 45 (|has| $ (-6 -4383)))) (-2168 (($ $ $) 26)) (-2143 (($ $) 30)) (-1942 (($ $ $) 28)) (-1395 (($ (-762) (-112)) 77)) (-3078 (($ $ $) 29)) (-4007 (((-112) $ (-762)) 36)) (-2192 (((-558) $) 63 (|has| (-558) (-841)))) (-2142 (($ $ $) 13)) (-3391 (($ $ $) 96 (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3486 (((-635 (-112)) $) 46 (|has| $ (-6 -4383)))) (-3764 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 62 (|has| (-558) (-841)))) (-2281 (($ $ $) 14)) (-3674 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-3212 (((-112) $ (-762)) 35)) (-2510 (((-1145) $) 9)) (-1363 (($ $ $ (-558)) 87) (($ (-112) $ (-558)) 86)) (-3051 (((-635 (-558)) $) 60)) (-2740 (((-112) (-558) $) 59)) (-1688 (((-1107) $) 10)) (-3156 (((-112) $) 64 (|has| (-558) (-841)))) (-2820 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2830 (($ $ (-112)) 65 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-112)) (-635 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-293 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-635 (-293 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))))) (-3382 (((-112) $ $) 31)) (-2149 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-4318 (((-635 (-112)) $) 58)) (-3711 (((-112) $) 34)) (-2876 (($) 33)) (-2276 (($ $ (-1213 (-558))) 83) (((-112) $ (-558)) 57) (((-112) $ (-558) (-112)) 56)) (-3976 (($ $ (-1213 (-558))) 85) (($ $ (-558)) 84)) (-1698 (((-762) (-112) $) 47 (-12 (|has| (-112) (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4383)))) (-2834 (($ $ $ (-558)) 99 (|has| $ (-6 -4384)))) (-4098 (($ $) 32)) (-3441 (((-534) $) 67 (|has| (-112) (-606 (-534))))) (-3952 (($ (-635 (-112))) 76)) (-2683 (($ (-635 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3940 (((-853) $) 11)) (-2831 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4383)))) (-2157 (($ $ $) 27)) (-3245 (($ $ $) 105)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-3234 (($ $ $) 104)) (-1596 (((-762) $) 39 (|has| $ (-6 -4383)))))
+((-4011 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1733 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -1733 ((-112) $ $)) (-15 -4011 ((-112) $ $))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) 13 (|has| $ (-6 -4391)))) (-1974 (($ $ $) NIL (|has| $ (-6 -4391)))) (-1983 (($ $ $) NIL (|has| $ (-6 -4391)))) (-2531 (($ $ (-638 |#1|)) 15)) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) (($ $ "left" $) NIL (|has| $ (-6 -4391))) (($ $ "right" $) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-1621 (($ $) 11)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3534 (($ $ |#1| $) 17)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4325 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1596 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-638 |#1|) |#1| |#1| |#1|)) 35)) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1605 (($ $) 10)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) 12)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 9)) (-3170 (($) 16)) (-2277 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2004 (((-561) $ $) NIL)) (-3849 (((-112) $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2318 (($ (-765) |#1|) 19)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4390) (-6 -4391) (-15 -2318 ($ (-765) |#1|)) (-15 -2531 ($ $ (-638 |#1|))) (-15 -4325 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4325 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1596 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1596 ($ $ |#1| (-1 (-638 |#1|) |#1| |#1| |#1|))))) (-1090)) (T -103))
+((-2318 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1090)))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3)))) (-4325 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1090)))) (-4325 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3)))) (-1596 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-103 *2)))) (-1596 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-638 *2) *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4390) (-6 -4391) (-15 -2318 ($ (-765) |#1|)) (-15 -2531 ($ $ (-638 |#1|))) (-15 -4325 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4325 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1596 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1596 ($ $ |#1| (-1 (-638 |#1|) |#1| |#1| |#1|)))))
+((-3687 ((|#3| |#2| |#2|) 28)) (-2792 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4392 "*"))))) (-1538 ((|#3| |#2| |#2|) 29)) (-1599 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4392 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3687 (|#3| |#2| |#2|)) (-15 -1538 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4392 "*"))) (PROGN (-15 -2792 (|#1| |#2| |#2|)) (-15 -1599 (|#1| |#2|))) |%noBranch|)) (-1042) (-1229 |#1|) (-680 |#1| |#4| |#5|) (-372 |#1|) (-372 |#1|)) (T -104))
+((-1599 (*1 *2 *3) (-12 (|has| *2 (-6 (-4392 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) (-4 *4 (-680 *2 *5 *6)))) (-2792 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4392 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) (-4 *4 (-680 *2 *5 *6)))) (-1538 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))) (-3687 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))))
+(-10 -7 (-15 -3687 (|#3| |#2| |#2|)) (-15 -1538 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4392 "*"))) (PROGN (-15 -2792 (|#1| |#2| |#2|)) (-15 -1599 (|#1| |#2|))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3505 (((-638 (-1166))) 33)) (-2145 (((-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224)))) (-1166)) 35)) (-1733 (((-112) $ $) NIL)))
+(((-105) (-13 (-1090) (-10 -7 (-15 -3505 ((-638 (-1166)))) (-15 -2145 ((-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224)))) (-1166))) (-6 -4390)))) (T -105))
+((-3505 (*1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-105)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224))))) (-5 *1 (-105)))))
+(-13 (-1090) (-10 -7 (-15 -3505 ((-638 (-1166)))) (-15 -2145 ((-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224))) (|:| |singularities| (-1146 (-224)))) (-1166))) (-6 -4390)))
+((-3025 (($ (-638 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3025 (|#1| (-638 |#2|)))) (-107 |#2|) (-1205)) (T -106))
+NIL
+(-10 -8 (-15 -3025 (|#1| (-638 |#2|))))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-1965 (($) 7 T CONST)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-107 |#1|) (-139) (-1205)) (T -107))
+((-3025 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-107 *3)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))) (-3671 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))))
+(-13 (-487 |t#1|) (-10 -8 (-6 -4391) (-15 -3025 ($ (-638 |t#1|))) (-15 -3522 (|t#1| $)) (-15 -3671 ($ |t#1| $)) (-15 -3211 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 (((-561) $) NIL (|has| (-561) (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| (-561) (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-561) (-1031 (-561))))) (-3938 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-561) (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| (-561) (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 (((-561) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-2110 (((-112) $) NIL (|has| (-561) (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-561) (-844)))) (-4120 (($ (-1 (-561) (-561)) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-561) (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) NIL)) (-1388 (((-561) $) NIL (|has| (-561) (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-3569 (((-765) $) NIL)) (-2277 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-2861 (($ $) NIL)) (-4045 (((-561) $) NIL)) (-4174 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 8) (($ (-561)) NIL) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL) (((-997 2) $) 10)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-4259 (((-765)) NIL)) (-2432 (((-561) $) NIL (|has| (-561) (-543)))) (-1708 (($ (-406 (-561))) 9)) (-3168 (((-112) $ $) NIL)) (-3749 (($ $) NIL (|has| (-561) (-814)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1782 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1833 (($ $ $) NIL) (($ (-561) (-561)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL)))
+(((-108) (-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 2)) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -1708 ($ (-406 (-561))))))) (T -108))
+((-3841 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108)))) (-1708 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108)))))
+(-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 2)) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -1708 ($ (-406 (-561))))))
+((-3796 (((-638 (-958)) $) 14)) (-3269 (((-1166) $) 10)) (-4022 (((-856) $) 23)) (-3909 (($ (-1166) (-638 (-958))) 15)))
+(((-109) (-13 (-608 (-856)) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -3796 ((-638 (-958)) $)) (-15 -3909 ($ (-1166) (-638 (-958))))))) (T -109))
+((-3269 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-109)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-638 (-958))) (-5 *1 (-109)))) (-3909 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-109)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -3796 ((-638 (-958)) $)) (-15 -3909 ($ (-1166) (-638 (-958))))))
+((-4011 (((-112) $ $) NIL)) (-3310 (($ $) NIL)) (-2190 (($ $ $) NIL)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3702 (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4391)))) (-1289 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-4167 (((-112) $ (-1220 (-561)) (-112)) NIL (|has| $ (-6 -4391))) (((-112) $ (-561) (-112)) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-1489 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-3185 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-2073 (((-112) $ (-561) (-112)) NIL (|has| $ (-6 -4391)))) (-4344 (((-112) $ (-561)) NIL)) (-4235 (((-561) (-112) $ (-561)) NIL (|has| (-112) (-1090))) (((-561) (-112) $) NIL (|has| (-112) (-1090))) (((-561) (-1 (-112) (-112)) $) NIL)) (-3571 (((-638 (-112)) $) NIL (|has| $ (-6 -4390)))) (-2180 (($ $ $) NIL)) (-2159 (($ $) NIL)) (-1847 (($ $ $) NIL)) (-1470 (($ (-765) (-112)) 8)) (-4042 (($ $ $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL)) (-1407 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1305 (((-638 (-112)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL)) (-2065 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-3312 (($ $ $ (-561)) NIL) (($ (-112) $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-112) $) NIL (|has| (-561) (-844)))) (-1330 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1799 (($ $ (-112)) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-112)) (-638 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-638 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-2658 (((-638 (-112)) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 (($ $ (-1220 (-561))) NIL) (((-112) $ (-561)) NIL) (((-112) $ (-561) (-112)) NIL)) (-2849 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-1724 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-112) (-609 (-534))))) (-4031 (($ (-638 (-112))) NIL)) (-2725 (($ (-638 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4022 (((-856) $) NIL)) (-2342 (($ (-765) (-112)) 9)) (-3715 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-2170 (($ $ $) NIL)) (-2236 (($ $ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-2225 (($ $ $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -2342 ($ (-765) (-112)))))) (T -110))
+((-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -2342 ($ (-765) (-112)))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-111 |#1| |#2|) (-139) (-1042) (-1042)) (T -111))
+NIL
+(-13 (-641 |t#1|) (-1048 |t#2|) (-10 -7 (-6 -4385) (-6 -4384)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-1048 |#2|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-3310 (($ $) 10)) (-2190 (($ $ $) 15)) (-2754 (($) 7 T CONST)) (-2083 (($ $) 6)) (-1393 (((-765)) 24)) (-1332 (($) 30)) (-2180 (($ $ $) 13)) (-2159 (($ $) 9)) (-1847 (($ $ $) 16)) (-4042 (($ $ $) 17)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-3198 (((-914) $) 29)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) 28)) (-2167 (($ $ $) 20)) (-1714 (((-1110) $) NIL)) (-1638 (($) 8 T CONST)) (-2115 (($ $ $) 21)) (-4174 (((-534) $) 36)) (-4022 (((-856) $) 39)) (-2170 (($ $ $) 11)) (-2236 (($ $ $) 14)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 19)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 22)) (-2225 (($ $ $) 12)))
+(((-112) (-13 (-838) (-654) (-960) (-609 (-534)) (-10 -8 (-15 -2754 ($) -1514) (-15 -1638 ($) -1514) (-15 -2190 ($ $ $)) (-15 -4042 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -2083 ($ $))))) (T -112))
+((-2754 (*1 *1) (-5 *1 (-112))) (-1638 (*1 *1) (-5 *1 (-112))) (-2190 (*1 *1 *1 *1) (-5 *1 (-112))) (-4042 (*1 *1 *1 *1) (-5 *1 (-112))) (-1847 (*1 *1 *1 *1) (-5 *1 (-112))) (-2083 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-838) (-654) (-960) (-609 (-534)) (-10 -8 (-15 -2754 ($) -1514) (-15 -1638 ($) -1514) (-15 -2190 ($ $ $)) (-15 -4042 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -2083 ($ $))))
+((-1655 (((-3 (-1 |#1| (-638 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-638 |#1|))) 11) (((-3 |#1| "failed") (-114) (-638 |#1|)) 21)) (-1394 (((-3 (-638 (-1 |#1| (-638 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-638 (-1 |#1| (-638 |#1|)))) 26)) (-2934 (((-114) |#1|) 55 (|has| |#1| (-844)))) (-2759 (((-3 |#1| "failed") (-114)) 49 (|has| |#1| (-844)))))
+(((-113 |#1|) (-10 -7 (-15 -1655 ((-3 |#1| "failed") (-114) (-638 |#1|))) (-15 -1655 ((-114) (-114) (-1 |#1| (-638 |#1|)))) (-15 -1655 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1655 ((-3 (-1 |#1| (-638 |#1|)) "failed") (-114))) (-15 -1394 ((-114) (-114) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1394 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1394 ((-3 (-638 (-1 |#1| (-638 |#1|))) "failed") (-114))) (IF (|has| |#1| (-844)) (PROGN (-15 -2934 ((-114) |#1|)) (-15 -2759 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1090)) (T -113))
+((-2759 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1090)) (-4 *2 (-844)) (-5 *1 (-113 *2)))) (-2934 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-844)) (-4 *3 (-1090)))) (-1394 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-1 *4 (-638 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1090)))) (-1394 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-1394 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 (-1 *4 (-638 *4)))) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-1655 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-638 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1090)))) (-1655 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-1655 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-638 *4))) (-4 *4 (-1090)) (-5 *1 (-113 *4)))) (-1655 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-638 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1090)))))
+(-10 -7 (-15 -1655 ((-3 |#1| "failed") (-114) (-638 |#1|))) (-15 -1655 ((-114) (-114) (-1 |#1| (-638 |#1|)))) (-15 -1655 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1655 ((-3 (-1 |#1| (-638 |#1|)) "failed") (-114))) (-15 -1394 ((-114) (-114) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1394 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1394 ((-3 (-638 (-1 |#1| (-638 |#1|))) "failed") (-114))) (IF (|has| |#1| (-844)) (PROGN (-15 -2934 ((-114) |#1|)) (-15 -2759 ((-3 |#1| "failed") (-114)))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-3643 (((-765) $) 72) (($ $ (-765)) 30)) (-2885 (((-112) $) 32)) (-3490 (($ $ (-1148) (-768)) 26)) (-1415 (($ $ (-45 (-1148) (-768))) 15)) (-3409 (((-3 (-768) "failed") $ (-1148)) 25)) (-3796 (((-45 (-1148) (-768)) $) 14)) (-3479 (($ (-1166)) 17) (($ (-1166) (-765)) 22)) (-2495 (((-112) $) 31)) (-2132 (((-112) $) 33)) (-3269 (((-1166) $) 8)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-2561 (((-112) $ (-1166)) 10)) (-1555 (($ $ (-1 (-534) (-638 (-534)))) 52) (((-3 (-1 (-534) (-638 (-534))) "failed") $) 56)) (-1714 (((-1110) $) NIL)) (-4157 (((-112) $ (-1148)) 29)) (-1687 (($ $ (-1 (-112) $ $)) 35)) (-1491 (((-3 (-1 (-856) (-638 (-856))) "failed") $) 54) (($ $ (-1 (-856) (-638 (-856)))) 41) (($ $ (-1 (-856) (-856))) 43)) (-3175 (($ $ (-1148)) 45)) (-4187 (($ $) 63)) (-2015 (($ $ (-1 (-112) $ $)) 36)) (-4022 (((-856) $) 48)) (-3954 (($ $ (-1148)) 27)) (-4013 (((-3 (-765) "failed") $) 58)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 71)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 78)))
+(((-114) (-13 (-844) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -3796 ((-45 (-1148) (-768)) $)) (-15 -4187 ($ $)) (-15 -3479 ($ (-1166))) (-15 -3479 ($ (-1166) (-765))) (-15 -4013 ((-3 (-765) "failed") $)) (-15 -2495 ((-112) $)) (-15 -2885 ((-112) $)) (-15 -2132 ((-112) $)) (-15 -3643 ((-765) $)) (-15 -3643 ($ $ (-765))) (-15 -1687 ($ $ (-1 (-112) $ $))) (-15 -2015 ($ $ (-1 (-112) $ $))) (-15 -1491 ((-3 (-1 (-856) (-638 (-856))) "failed") $)) (-15 -1491 ($ $ (-1 (-856) (-638 (-856))))) (-15 -1491 ($ $ (-1 (-856) (-856)))) (-15 -1555 ($ $ (-1 (-534) (-638 (-534))))) (-15 -1555 ((-3 (-1 (-534) (-638 (-534))) "failed") $)) (-15 -2561 ((-112) $ (-1166))) (-15 -4157 ((-112) $ (-1148))) (-15 -3954 ($ $ (-1148))) (-15 -3175 ($ $ (-1148))) (-15 -3409 ((-3 (-768) "failed") $ (-1148))) (-15 -3490 ($ $ (-1148) (-768))) (-15 -1415 ($ $ (-45 (-1148) (-768))))))) (T -114))
+((-3269 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-114)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))) (-4187 (*1 *1 *1) (-5 *1 (-114))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-114)))) (-3479 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-114)))) (-4013 (*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-114)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-114)))) (-3643 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-114)))) (-1687 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2015 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1491 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114)))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114)))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-856))) (-5 *1 (-114)))) (-1555 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114)))) (-1555 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114)))) (-2561 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-114)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3954 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114)))) (-3409 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-768)) (-5 *1 (-114)))) (-3490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-768)) (-5 *1 (-114)))) (-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))))
+(-13 (-844) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -3796 ((-45 (-1148) (-768)) $)) (-15 -4187 ($ $)) (-15 -3479 ($ (-1166))) (-15 -3479 ($ (-1166) (-765))) (-15 -4013 ((-3 (-765) "failed") $)) (-15 -2495 ((-112) $)) (-15 -2885 ((-112) $)) (-15 -2132 ((-112) $)) (-15 -3643 ((-765) $)) (-15 -3643 ($ $ (-765))) (-15 -1687 ($ $ (-1 (-112) $ $))) (-15 -2015 ($ $ (-1 (-112) $ $))) (-15 -1491 ((-3 (-1 (-856) (-638 (-856))) "failed") $)) (-15 -1491 ($ $ (-1 (-856) (-638 (-856))))) (-15 -1491 ($ $ (-1 (-856) (-856)))) (-15 -1555 ($ $ (-1 (-534) (-638 (-534))))) (-15 -1555 ((-3 (-1 (-534) (-638 (-534))) "failed") $)) (-15 -2561 ((-112) $ (-1166))) (-15 -4157 ((-112) $ (-1148))) (-15 -3954 ($ $ (-1148))) (-15 -3175 ($ $ (-1148))) (-15 -3409 ((-3 (-768) "failed") $ (-1148))) (-15 -3490 ($ $ (-1148) (-768))) (-15 -1415 ($ $ (-45 (-1148) (-768))))))
+((-2192 (((-561) |#2|) 37)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -2192 ((-561) |#2|))) (-13 (-362) (-1031 (-406 (-561)))) (-1229 |#1|)) (T -115))
+((-2192 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-561)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -2192 ((-561) |#2|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $ (-561)) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-2273 (($ (-1162 (-561)) (-561)) NIL)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1395 (($ $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-4163 (((-765) $) NIL)) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2912 (((-561)) NIL)) (-2640 (((-561) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1416 (($ $ (-561)) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1368 (((-1146 (-561)) $) NIL)) (-1897 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL)) (-4259 (((-765)) NIL)) (-3168 (((-112) $ $) NIL)) (-1417 (((-561) $ (-561)) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-862 |#1|) (-561)) (T -116))
+NIL
+(-862 |#1|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| (-116 |#1|) (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-116 |#1|) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-116 |#1|) (-1031 (-561))))) (-3938 (((-116 |#1|) $) NIL) (((-1166) $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-116 |#1|) (-1031 (-561)))) (((-561) $) NIL (|has| (-116 |#1|) (-1031 (-561))))) (-2911 (($ $) NIL) (($ (-561) $) NIL)) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-116 |#1|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-116 |#1|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-116 |#1|))) (|:| |vec| (-1253 (-116 |#1|)))) (-682 $) (-1253 $)) NIL) (((-682 (-116 |#1|)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-116 |#1|) (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-116 |#1|) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-116 |#1|) (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 (((-116 |#1|) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1141)))) (-2110 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-2986 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-4120 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-116 |#1|) (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-1388 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-116 |#1|) (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 (-116 |#1|)) (-638 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-293 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-638 (-293 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-638 (-1166)) (-638 (-116 |#1|))) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|)))) (($ $ (-1166) (-116 |#1|)) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|))))) (-3569 (((-765) $) NIL)) (-2277 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2861 (($ $) NIL)) (-4045 (((-116 |#1|) $) NIL)) (-4174 (((-885 (-561)) $) NIL (|has| (-116 |#1|) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-116 |#1|) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-116 |#1|) (-609 (-534)))) (((-378) $) NIL (|has| (-116 |#1|) (-1015))) (((-224) $) NIL (|has| (-116 |#1|) (-1015)))) (-3144 (((-173 (-406 (-561))) $) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-116 |#1|)) NIL) (($ (-1166)) NIL (|has| (-116 |#1|) (-1031 (-1166))))) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-902))) (|has| (-116 |#1|) (-144))))) (-4259 (((-765)) NIL)) (-2432 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-3168 (((-112) $ $) NIL)) (-1417 (((-406 (-561)) $ (-561)) NIL)) (-3749 (($ $) NIL (|has| (-116 |#1|) (-814)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1782 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-1833 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-985 (-116 |#1|)) (-10 -8 (-15 -1417 ((-406 (-561)) $ (-561))) (-15 -3144 ((-173 (-406 (-561))) $)) (-15 -2911 ($ $)) (-15 -2911 ($ (-561) $)))) (-561)) (T -117))
+((-1417 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-561)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-117 *3)) (-14 *3 (-561)))) (-2911 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-561)))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-985 (-116 |#1|)) (-10 -8 (-15 -1417 ((-406 (-561)) $ (-561))) (-15 -3144 ((-173 (-406 (-561))) $)) (-15 -2911 ($ $)) (-15 -2911 ($ (-561) $))))
+((-4167 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-1940 (((-638 $) $) 27)) (-2726 (((-112) $ $) 32)) (-4087 (((-112) |#2| $) 36)) (-3884 (((-638 |#2|) $) 22)) (-3067 (((-112) $) 16)) (-2277 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3849 (((-112) $) 45)) (-4022 (((-856) $) 41)) (-4257 (((-638 $) $) 28)) (-1733 (((-112) $ $) 34)) (-3498 (((-765) $) 43)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -4167 (|#1| |#1| "right" |#1|)) (-15 -4167 (|#1| |#1| "left" |#1|)) (-15 -2277 (|#1| |#1| "right")) (-15 -2277 (|#1| |#1| "left")) (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -3884 ((-638 |#2|) |#1|)) (-15 -3849 ((-112) |#1|)) (-15 -2277 (|#2| |#1| "value")) (-15 -3067 ((-112) |#1|)) (-15 -1940 ((-638 |#1|) |#1|)) (-15 -4257 ((-638 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4087 ((-112) |#2| |#1|)) (-15 -3498 ((-765) |#1|))) (-119 |#2|) (-1205)) (T -118))
+NIL
+(-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -4167 (|#1| |#1| "right" |#1|)) (-15 -4167 (|#1| |#1| "left" |#1|)) (-15 -2277 (|#1| |#1| "right")) (-15 -2277 (|#1| |#1| "left")) (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -3884 ((-638 |#2|) |#1|)) (-15 -3849 ((-112) |#1|)) (-15 -2277 (|#2| |#1| "value")) (-15 -3067 ((-112) |#1|)) (-15 -1940 ((-638 |#1|) |#1|)) (-15 -4257 ((-638 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4087 ((-112) |#2| |#1|)) (-15 -3498 ((-765) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-1974 (($ $ $) 52 (|has| $ (-6 -4391)))) (-1983 (($ $ $) 54 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391))) (($ $ "left" $) 55 (|has| $ (-6 -4391))) (($ $ "right" $) 53 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-1965 (($) 7 T CONST)) (-1621 (($ $) 57)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1605 (($ $) 59)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2004 (((-561) $ $) 44)) (-3849 (((-112) $) 46)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-119 |#1|) (-139) (-1205)) (T -119))
+((-1605 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-1621 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-4167 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4391)) (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-1983 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))) (-4167 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4391)) (-4 *1 (-119 *3)) (-4 *3 (-1205)))) (-1974 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))))
+(-13 (-1003 |t#1|) (-10 -8 (-15 -1605 ($ $)) (-15 -2277 ($ $ "left")) (-15 -1621 ($ $)) (-15 -2277 ($ $ "right")) (IF (|has| $ (-6 -4391)) (PROGN (-15 -4167 ($ $ "left" $)) (-15 -1983 ($ $ $)) (-15 -4167 ($ $ "right" $)) (-15 -1974 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-1553 (((-112) |#1|) 24)) (-3560 (((-765) (-765)) 23) (((-765)) 22)) (-1295 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
+(((-120 |#1|) (-10 -7 (-15 -1295 ((-112) |#1|)) (-15 -1295 ((-112) |#1| (-112))) (-15 -3560 ((-765))) (-15 -3560 ((-765) (-765))) (-15 -1553 ((-112) |#1|))) (-1229 (-561))) (T -120))
+((-1553 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))) (-3560 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))) (-3560 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))) (-1295 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))) (-1295 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))))
+(-10 -7 (-15 -1295 ((-112) |#1|)) (-15 -1295 ((-112) |#1| (-112))) (-15 -3560 ((-765))) (-15 -3560 ((-765) (-765))) (-15 -1553 ((-112) |#1|)))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) 15)) (-2321 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-1974 (($ $ $) 18 (|has| $ (-6 -4391)))) (-1983 (($ $ $) 20 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) (($ $ "left" $) NIL (|has| $ (-6 -4391))) (($ $ "right" $) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-1621 (($ $) 17)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3534 (($ $ |#1| $) 23)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1605 (($ $) 19)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1643 (($ |#1| $) 24)) (-3671 (($ |#1| $) 10)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 14)) (-3170 (($) 8)) (-2277 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2004 (((-561) $ $) NIL)) (-3849 (((-112) $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2043 (($ (-638 |#1|)) 12)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4391) (-6 -4390) (-15 -2043 ($ (-638 |#1|))) (-15 -3671 ($ |#1| $)) (-15 -1643 ($ |#1| $)) (-15 -2321 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-844)) (T -121))
+((-2043 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3)))) (-3671 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-1643 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-2321 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-844)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4391) (-6 -4390) (-15 -2043 ($ (-638 |#1|))) (-15 -3671 ($ |#1| $)) (-15 -1643 ($ |#1| $)) (-15 -2321 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-3310 (($ $) 12)) (-2159 (($ $) 10)) (-1847 (($ $ $) 22)) (-4042 (($ $ $) 20)) (-2236 (($ $ $) 18)) (-2225 (($ $ $) 16)))
+(((-122 |#1|) (-10 -8 (-15 -1847 (|#1| |#1| |#1|)) (-15 -4042 (|#1| |#1| |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2236 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -1847 (|#1| |#1| |#1|)) (-15 -4042 (|#1| |#1| |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2236 (|#1| |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-3310 (($ $) 103)) (-2190 (($ $ $) 25)) (-3024 (((-1258) $ (-561) (-561)) 66 (|has| $ (-6 -4391)))) (-4268 (((-112) $) 98 (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3702 (($ $) 102 (-12 (|has| (-112) (-844)) (|has| $ (-6 -4391)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4391)))) (-1289 (($ $) 97 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1630 (((-112) $ (-765)) 37)) (-4167 (((-112) $ (-1220 (-561)) (-112)) 88 (|has| $ (-6 -4391))) (((-112) $ (-561) (-112)) 54 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4390)))) (-1965 (($) 38 T CONST)) (-4075 (($ $) 100 (|has| $ (-6 -4391)))) (-2638 (($ $) 90)) (-1472 (($ $) 68 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4390))) (($ (-112) $) 69 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4390))))) (-3185 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4390))))) (-2073 (((-112) $ (-561) (-112)) 53 (|has| $ (-6 -4391)))) (-4344 (((-112) $ (-561)) 55)) (-4235 (((-561) (-112) $ (-561)) 95 (|has| (-112) (-1090))) (((-561) (-112) $) 94 (|has| (-112) (-1090))) (((-561) (-1 (-112) (-112)) $) 93)) (-3571 (((-638 (-112)) $) 45 (|has| $ (-6 -4390)))) (-2180 (($ $ $) 26)) (-2159 (($ $) 30)) (-1847 (($ $ $) 28)) (-1470 (($ (-765) (-112)) 77)) (-4042 (($ $ $) 29)) (-3744 (((-112) $ (-765)) 36)) (-3975 (((-561) $) 63 (|has| (-561) (-844)))) (-3443 (($ $ $) 13)) (-1407 (($ $ $) 96 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1305 (((-638 (-112)) $) 46 (|has| $ (-6 -4390)))) (-4087 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 62 (|has| (-561) (-844)))) (-2986 (($ $ $) 14)) (-2065 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2230 (((-112) $ (-765)) 35)) (-1764 (((-1148) $) 9)) (-3312 (($ $ $ (-561)) 87) (($ (-112) $ (-561)) 86)) (-2451 (((-638 (-561)) $) 60)) (-1390 (((-112) (-561) $) 59)) (-1714 (((-1110) $) 10)) (-1433 (((-112) $) 64 (|has| (-561) (-844)))) (-1330 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-1799 (($ $ (-112)) 65 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-112)) (-638 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-293 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-638 (-293 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))))) (-3016 (((-112) $ $) 31)) (-3703 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-2658 (((-638 (-112)) $) 58)) (-1928 (((-112) $) 34)) (-3170 (($) 33)) (-2277 (($ $ (-1220 (-561))) 83) (((-112) $ (-561)) 57) (((-112) $ (-561) (-112)) 56)) (-2849 (($ $ (-1220 (-561))) 85) (($ $ (-561)) 84)) (-1724 (((-765) (-112) $) 47 (-12 (|has| (-112) (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4390)))) (-1365 (($ $ $ (-561)) 99 (|has| $ (-6 -4391)))) (-4187 (($ $) 32)) (-4174 (((-534) $) 67 (|has| (-112) (-609 (-534))))) (-4031 (($ (-638 (-112))) 76)) (-2725 (($ (-638 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4022 (((-856) $) 11)) (-3715 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4390)))) (-2170 (($ $ $) 27)) (-2236 (($ $ $) 105)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-2225 (($ $ $) 104)) (-3498 (((-765) $) 39 (|has| $ (-6 -4390)))))
(((-123) (-139)) (T -123))
-((-2143 (*1 *1 *1) (-4 *1 (-123))) (-3078 (*1 *1 *1 *1) (-4 *1 (-123))) (-1942 (*1 *1 *1 *1) (-4 *1 (-123))) (-2157 (*1 *1 *1 *1) (-4 *1 (-123))) (-2168 (*1 *1 *1 *1) (-4 *1 (-123))) (-2182 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-841) (-651) (-19 (-112)) (-10 -8 (-15 -2143 ($ $)) (-15 -3078 ($ $ $)) (-15 -1942 ($ $ $)) (-15 -2157 ($ $ $)) (-15 -2168 ($ $ $)) (-15 -2182 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 #0=(-112)) . T) ((-606 (-534)) |has| (-112) (-606 (-534))) ((-285 #1=(-558) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))) ((-372 #0#) . T) ((-487 #0#) . T) ((-596 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))) ((-641 #0#) . T) ((-651) . T) ((-19 #0#) . T) ((-841) . T) ((-1087) . T) ((-1200) . T))
-((-3674 (($ (-1 |#2| |#2|) $) 22)) (-4098 (($ $) 16)) (-1596 (((-762) $) 24)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -4098 (|#1| |#1|))) (-125 |#2|) (-1087)) (T -124))
-NIL
-(-10 -8 (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -4098 (|#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-2228 (($ $ $) 52 (|has| $ (-6 -4384)))) (-2793 (($ $ $) 54 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384))) (($ $ "left" $) 55 (|has| $ (-6 -4384))) (($ $ "right" $) 53 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-3457 (($) 7 T CONST)) (-1540 (($ $) 57)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-2840 (($ $ |#1| $) 60)) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-1524 (($ $) 59)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1904 (((-558) $ $) 44)) (-1609 (((-112) $) 46)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-125 |#1|) (-139) (-1087)) (T -125))
-((-2840 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1087)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4384) (-6 -4383) (-15 -2840 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-119 |#1|) . T) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) 15)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) 19 (|has| $ (-6 -4384)))) (-2228 (($ $ $) 20 (|has| $ (-6 -4384)))) (-2793 (($ $ $) 18 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) (($ $ "left" $) NIL (|has| $ (-6 -4384))) (($ $ "right" $) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-1540 (($ $) 21)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2840 (($ $ |#1| $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-1524 (($ $) NIL)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2650 (($ |#1| $) 10)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 14)) (-2876 (($) 8)) (-2276 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1904 (((-558) $ $) NIL)) (-1609 (((-112) $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 17)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3721 (($ (-635 |#1|)) 12)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4384) (-15 -3721 ($ (-635 |#1|))) (-15 -2650 ($ |#1| $)))) (-841)) (T -126))
-((-3721 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-126 *3)))) (-2650 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-841)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4384) (-15 -3721 ($ (-635 |#1|))) (-15 -2650 ($ |#1| $))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) 24)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) 26 (|has| $ (-6 -4384)))) (-2228 (($ $ $) 30 (|has| $ (-6 -4384)))) (-2793 (($ $ $) 28 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) (($ $ "left" $) NIL (|has| $ (-6 -4384))) (($ $ "right" $) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-1540 (($ $) 20)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2840 (($ $ |#1| $) 15)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-1524 (($ $) 19)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) 21)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 18)) (-2876 (($) 11)) (-2276 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1904 (((-558) $ $) NIL)) (-1609 (((-112) $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4233 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 10 (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -4233 ($ |#1|)) (-15 -4233 ($ $ |#1| $)))) (-1087)) (T -127))
-((-4233 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087)))) (-4233 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -4233 ($ |#1|)) (-15 -4233 ($ $ |#1| $))))
-((-3929 (((-112) $ $) NIL (|has| (-129) (-1087)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-841)))) (-3041 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| (-129) (-841))))) (-3648 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 (((-129) $ (-558) (-129)) 17 (|has| $ (-6 -4384))) (((-129) $ (-1213 (-558)) (-129)) NIL (|has| $ (-6 -4384)))) (-2230 (((-762) $ (-762)) 7)) (-2072 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-129) (-1087))))) (-1488 (($ (-129) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-129) (-1087)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4383)) (|has| (-129) (-1087)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4383))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4383)))) (-3683 (((-129) $ (-558) (-129)) 16 (|has| $ (-6 -4384)))) (-3620 (((-129) $ (-558)) 13)) (-4145 (((-558) (-1 (-112) (-129)) $) NIL) (((-558) (-129) $) NIL (|has| (-129) (-1087))) (((-558) (-129) $ (-558)) NIL (|has| (-129) (-1087)))) (-2917 (((-635 (-129)) $) NIL (|has| $ (-6 -4383)))) (-1395 (($ (-762) (-129)) 11)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 18 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| (-129) (-841)))) (-3391 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-841)))) (-3486 (((-635 (-129)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-129) (-1087))))) (-3186 (((-558) $) 19 (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-129) (-841)))) (-3674 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| (-129) (-1087)))) (-1363 (($ (-129) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| (-129) (-1087)))) (-3156 (((-129) $) NIL (|has| (-558) (-841)))) (-2820 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2830 (($ $ (-129)) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-129)))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087)))) (($ $ (-293 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087)))) (($ $ (-635 (-129)) (-635 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-129) (-1087))))) (-4318 (((-635 (-129)) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 9)) (-2276 (((-129) $ (-558) (-129)) NIL) (((-129) $ (-558)) 15) (($ $ (-1213 (-558))) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4383))) (((-762) (-129) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-129) (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-129) (-606 (-534))))) (-3952 (($ (-635 (-129))) 29)) (-2683 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-635 $)) NIL)) (-3940 (((-1145) $) 27) (((-853) $) NIL (|has| (-129) (-605 (-853))))) (-4266 (((-762) $) 14)) (-2091 (($ (-762)) 8)) (-2831 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| (-129) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-129) (-841)))) (-1708 (((-112) $ $) 22 (|has| (-129) (-1087)))) (-1749 (((-112) $ $) NIL (|has| (-129) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-129) (-841)))) (-1596 (((-762) $) 20)))
-(((-128) (-13 (-19 (-129)) (-605 (-1145)) (-10 -8 (-15 -2091 ($ (-762))) (-15 -1596 ((-762) $)) (-15 -4266 ((-762) $)) (-15 -2230 ((-762) $ (-762)))))) (T -128))
-((-2091 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128)))) (-2230 (*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-605 (-1145)) (-10 -8 (-15 -2091 ($ (-762))) (-15 -1596 ((-762) $)) (-15 -4266 ((-762) $)) (-15 -2230 ((-762) $ (-762)))))
-((-3929 (((-112) $ $) NIL)) (-3457 (($) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL) (($ (-143)) 9) (((-143) $) 11)) (-1560 (($ (-762)) 6)) (-2946 (($ $ $) 16)) (-2936 (($ $ $) 15)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 13)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 14)))
-(((-129) (-13 (-841) (-488 (-143)) (-10 -8 (-15 -1560 ($ (-762))) (-15 -2936 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3457 ($))))) (T -129))
-((-1560 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-129)))) (-2936 (*1 *1 *1 *1) (-5 *1 (-129))) (-2946 (*1 *1 *1 *1) (-5 *1 (-129))) (-3457 (*1 *1) (-5 *1 (-129))))
-(-13 (-841) (-488 (-143)) (-10 -8 (-15 -1560 ($ (-762))) (-15 -2936 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3457 ($))))
+((-2159 (*1 *1 *1) (-4 *1 (-123))) (-4042 (*1 *1 *1 *1) (-4 *1 (-123))) (-1847 (*1 *1 *1 *1) (-4 *1 (-123))) (-2170 (*1 *1 *1 *1) (-4 *1 (-123))) (-2180 (*1 *1 *1 *1) (-4 *1 (-123))) (-2190 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-844) (-654) (-19 (-112)) (-10 -8 (-15 -2159 ($ $)) (-15 -4042 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -2170 ($ $ $)) (-15 -2180 ($ $ $)) (-15 -2190 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 #0=(-112)) . T) ((-609 (-534)) |has| (-112) (-609 (-534))) ((-285 #1=(-561) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))) ((-372 #0#) . T) ((-487 #0#) . T) ((-599 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))) ((-644 #0#) . T) ((-654) . T) ((-19 #0#) . T) ((-844) . T) ((-1090) . T) ((-1205) . T))
+((-2065 (($ (-1 |#2| |#2|) $) 22)) (-4187 (($ $) 16)) (-3498 (((-765) $) 24)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -4187 (|#1| |#1|))) (-125 |#2|) (-1090)) (T -124))
+NIL
+(-10 -8 (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -4187 (|#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-1974 (($ $ $) 52 (|has| $ (-6 -4391)))) (-1983 (($ $ $) 54 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391))) (($ $ "left" $) 55 (|has| $ (-6 -4391))) (($ $ "right" $) 53 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-1965 (($) 7 T CONST)) (-1621 (($ $) 57)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3534 (($ $ |#1| $) 60)) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1605 (($ $) 59)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2004 (((-561) $ $) 44)) (-3849 (((-112) $) 46)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-125 |#1|) (-139) (-1090)) (T -125))
+((-3534 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1090)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4391) (-6 -4390) (-15 -3534 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-119 |#1|) . T) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) 15)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) 19 (|has| $ (-6 -4391)))) (-1974 (($ $ $) 20 (|has| $ (-6 -4391)))) (-1983 (($ $ $) 18 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) (($ $ "left" $) NIL (|has| $ (-6 -4391))) (($ $ "right" $) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-1621 (($ $) 21)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3534 (($ $ |#1| $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1605 (($ $) NIL)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3671 (($ |#1| $) 10)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 14)) (-3170 (($) 8)) (-2277 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2004 (((-561) $ $) NIL)) (-3849 (((-112) $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 17)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1902 (($ (-638 |#1|)) 12)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4391) (-15 -1902 ($ (-638 |#1|))) (-15 -3671 ($ |#1| $)))) (-844)) (T -126))
+((-1902 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3)))) (-3671 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4391) (-15 -1902 ($ (-638 |#1|))) (-15 -3671 ($ |#1| $))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) 24)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) 26 (|has| $ (-6 -4391)))) (-1974 (($ $ $) 30 (|has| $ (-6 -4391)))) (-1983 (($ $ $) 28 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) (($ $ "left" $) NIL (|has| $ (-6 -4391))) (($ $ "right" $) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-1621 (($ $) 20)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3534 (($ $ |#1| $) 15)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1605 (($ $) 19)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) 21)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 18)) (-3170 (($) 11)) (-2277 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2004 (((-561) $ $) NIL)) (-3849 (((-112) $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1658 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 10 (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1658 ($ |#1|)) (-15 -1658 ($ $ |#1| $)))) (-1090)) (T -127))
+((-1658 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090)))) (-1658 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -1658 ($ |#1|)) (-15 -1658 ($ $ |#1| $))))
+((-4011 (((-112) $ $) NIL (|has| (-129) (-1090)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-844)))) (-3702 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| (-129) (-844))))) (-1289 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 (((-129) $ (-561) (-129)) 17 (|has| $ (-6 -4391))) (((-129) $ (-1220 (-561)) (-129)) NIL (|has| $ (-6 -4391)))) (-2198 (((-765) $ (-765)) 7)) (-3556 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-129) (-1090))))) (-1489 (($ (-129) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-129) (-1090)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4390)) (|has| (-129) (-1090)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4390))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4390)))) (-2073 (((-129) $ (-561) (-129)) 16 (|has| $ (-6 -4391)))) (-4344 (((-129) $ (-561)) 13)) (-4235 (((-561) (-1 (-112) (-129)) $) NIL) (((-561) (-129) $) NIL (|has| (-129) (-1090))) (((-561) (-129) $ (-561)) NIL (|has| (-129) (-1090)))) (-3571 (((-638 (-129)) $) NIL (|has| $ (-6 -4390)))) (-1470 (($ (-765) (-129)) 11)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 18 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| (-129) (-844)))) (-1407 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-844)))) (-1305 (((-638 (-129)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-129) (-1090))))) (-2780 (((-561) $) 19 (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-129) (-844)))) (-2065 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| (-129) (-1090)))) (-3312 (($ (-129) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| (-129) (-1090)))) (-1433 (((-129) $) NIL (|has| (-561) (-844)))) (-1330 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-1799 (($ $ (-129)) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-129)))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090)))) (($ $ (-293 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090)))) (($ $ (-638 (-129)) (-638 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-129) (-1090))))) (-2658 (((-638 (-129)) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 9)) (-2277 (((-129) $ (-561) (-129)) NIL) (((-129) $ (-561)) 15) (($ $ (-1220 (-561))) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4390))) (((-765) (-129) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-129) (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-129) (-609 (-534))))) (-4031 (($ (-638 (-129))) 29)) (-2725 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-638 $)) NIL)) (-4022 (((-1148) $) 27) (((-856) $) NIL (|has| (-129) (-608 (-856))))) (-1398 (((-765) $) 14)) (-2144 (($ (-765)) 8)) (-3715 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| (-129) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-129) (-844)))) (-1733 (((-112) $ $) 22 (|has| (-129) (-1090)))) (-1773 (((-112) $ $) NIL (|has| (-129) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-129) (-844)))) (-3498 (((-765) $) 20)))
+(((-128) (-13 (-19 (-129)) (-608 (-1148)) (-10 -8 (-15 -2144 ($ (-765))) (-15 -3498 ((-765) $)) (-15 -1398 ((-765) $)) (-15 -2198 ((-765) $ (-765)))))) (T -128))
+((-2144 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-2198 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-608 (-1148)) (-10 -8 (-15 -2144 ($ (-765))) (-15 -3498 ((-765) $)) (-15 -1398 ((-765) $)) (-15 -2198 ((-765) $ (-765)))))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1965 (($) NIL)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) 15 T CONST)) (-2986 (($ $ $) NIL) (($) 16 T CONST)) (-3198 (((-914) $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL) (($ (-143)) 9) (((-143) $) 11)) (-1437 (($ (-765)) 6)) (-3006 (($ $ $) 18)) (-2992 (($ $ $) 17)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 13)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 14)))
+(((-129) (-13 (-838) (-488 (-143)) (-10 -8 (-15 -1437 ($ (-765))) (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($))))) (T -129))
+((-1437 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-2992 (*1 *1 *1 *1) (-5 *1 (-129))) (-3006 (*1 *1 *1 *1) (-5 *1 (-129))) (-1965 (*1 *1) (-5 *1 (-129))))
+(-13 (-838) (-488 (-143)) (-10 -8 (-15 -1437 ($ (-765))) (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($))))
((|NonNegativeInteger|) (< |#1| 256))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
(((-130) (-139)) (T -130))
-((-1868 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(-13 (-23) (-10 -8 (-15 -1868 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-1913 (((-1251) $ (-762)) 19)) (-4145 (((-762) $) 20)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)))
+((-2249 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(-13 (-23) (-10 -8 (-15 -2249 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-3099 (((-1258) $ (-765)) 19)) (-4235 (((-765) $) 20)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)))
(((-131) (-139)) (T -131))
-((-4145 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-762)))) (-1913 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-762)) (-5 *2 (-1251)))))
-(-13 (-841) (-10 -8 (-15 -4145 ((-762) $)) (-15 -1913 ((-1251) $ (-762)))))
-(((-102) . T) ((-605 (-853)) . T) ((-841) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 18) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-635 (-1122)) $) 10)) (-1708 (((-112) $ $) NIL)))
-(((-132) (-13 (-1070) (-10 -8 (-15 -3190 ((-635 (-1122)) $))))) (T -132))
-((-3190 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-132)))))
-(-13 (-1070) (-10 -8 (-15 -3190 ((-635 (-1122)) $))))
-((-3929 (((-112) $ $) 34)) (-3124 (((-112) $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-762) "failed") $) 41)) (-3226 (((-762) $) 39)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) 27)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2722 (((-112)) 42)) (-1592 (((-112) (-112)) 44)) (-1825 (((-112) $) 24)) (-1304 (((-112) $) 38)) (-3940 (((-853) $) 22) (($ (-762)) 14)) (-2207 (($) 11 T CONST)) (-2220 (($) 12 T CONST)) (-4028 (($ (-762)) 15)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 25)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 26)) (-1796 (((-3 $ "failed") $ $) 30)) (-1785 (($ $ $) 28)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL) (($ $ $) 37)) (* (($ (-762) $) 33) (($ (-911) $) NIL) (($ $ $) 31)))
-(((-133) (-13 (-841) (-23) (-717) (-1028 (-762)) (-10 -8 (-6 (-4385 "*")) (-15 -1796 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4028 ($ (-762))) (-15 -1825 ((-112) $)) (-15 -1304 ((-112) $)) (-15 -2722 ((-112))) (-15 -1592 ((-112) (-112)))))) (T -133))
-((-1796 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-133)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2722 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(-13 (-841) (-23) (-717) (-1028 (-762)) (-10 -8 (-6 (-4385 "*")) (-15 -1796 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4028 ($ (-762))) (-15 -1825 ((-112) $)) (-15 -1304 ((-112) $)) (-15 -2722 ((-112))) (-15 -1592 ((-112) (-112)))))
-((-4039 (((-135 |#1| |#2| |#4|) (-635 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-3397 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
-(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4039 ((-135 |#1| |#2| |#4|) (-635 |#4|) (-135 |#1| |#2| |#3|))) (-15 -3397 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-558) (-762) (-171) (-171)) (T -134))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4039 ((-135 |#1| |#2| |#4|) (-635 |#4|) (-135 |#1| |#2| |#3|))) (-15 -3397 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
-((-3929 (((-112) $ $) NIL)) (-3722 (($ (-635 |#3|)) 40)) (-3295 (($ $) 99) (($ $ (-558) (-558)) 98)) (-3457 (($) 17)) (-3302 (((-3 |#3| "failed") $) 60)) (-3226 ((|#3| $) NIL)) (-2593 (($ $ (-635 (-558))) 100)) (-4029 (((-635 |#3|) $) 36)) (-1489 (((-762) $) 44)) (-1362 (($ $ $) 93)) (-1443 (($) 43)) (-2510 (((-1145) $) NIL)) (-3074 (($) 16)) (-1688 (((-1107) $) NIL)) (-2276 ((|#3| $) 46) ((|#3| $ (-558)) 47) ((|#3| $ (-558) (-558)) 48) ((|#3| $ (-558) (-558) (-558)) 49) ((|#3| $ (-558) (-558) (-558) (-558)) 50) ((|#3| $ (-635 (-558))) 52)) (-4263 (((-762) $) 45)) (-3631 (($ $ (-558) $ (-558)) 94) (($ $ (-558) (-558)) 96)) (-3940 (((-853) $) 67) (($ |#3|) 68) (($ (-239 |#2| |#3|)) 75) (($ (-1129 |#2| |#3|)) 78) (($ (-635 |#3|)) 53) (($ (-635 $)) 58)) (-2207 (($) 69 T CONST)) (-2220 (($) 70 T CONST)) (-1708 (((-112) $ $) 80)) (-1796 (($ $) 86) (($ $ $) 84)) (-1785 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-558)) 89) (($ (-558) $) 88) (($ $ $) 95)))
-(((-135 |#1| |#2| |#3|) (-13 (-463 |#3| (-762)) (-468 (-558) (-762)) (-10 -8 (-15 -3940 ($ (-239 |#2| |#3|))) (-15 -3940 ($ (-1129 |#2| |#3|))) (-15 -3940 ($ (-635 |#3|))) (-15 -3940 ($ (-635 $))) (-15 -1489 ((-762) $)) (-15 -2276 (|#3| $)) (-15 -2276 (|#3| $ (-558))) (-15 -2276 (|#3| $ (-558) (-558))) (-15 -2276 (|#3| $ (-558) (-558) (-558))) (-15 -2276 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -2276 (|#3| $ (-635 (-558)))) (-15 -1362 ($ $ $)) (-15 * ($ $ $)) (-15 -3631 ($ $ (-558) $ (-558))) (-15 -3631 ($ $ (-558) (-558))) (-15 -3295 ($ $)) (-15 -3295 ($ $ (-558) (-558))) (-15 -2593 ($ $ (-635 (-558)))) (-15 -3074 ($)) (-15 -1443 ($)) (-15 -4029 ((-635 |#3|) $)) (-15 -3722 ($ (-635 |#3|))) (-15 -3457 ($)))) (-558) (-762) (-171)) (T -135))
-((-1362 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1129 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) (-4 *5 (-171)))) (-2276 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-762)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2276 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2276 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2276 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-762)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-558))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-558)) (-14 *5 (-762)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-3631 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-762)) (-4 *5 (-171)))) (-3631 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-762)) (-4 *5 (-171)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-3295 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-762)) (-4 *5 (-171)))) (-2593 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171)))) (-3074 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-1443 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-635 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-762)))) (-3457 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762)) (-4 *4 (-171)))))
-(-13 (-463 |#3| (-762)) (-468 (-558) (-762)) (-10 -8 (-15 -3940 ($ (-239 |#2| |#3|))) (-15 -3940 ($ (-1129 |#2| |#3|))) (-15 -3940 ($ (-635 |#3|))) (-15 -3940 ($ (-635 $))) (-15 -1489 ((-762) $)) (-15 -2276 (|#3| $)) (-15 -2276 (|#3| $ (-558))) (-15 -2276 (|#3| $ (-558) (-558))) (-15 -2276 (|#3| $ (-558) (-558) (-558))) (-15 -2276 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -2276 (|#3| $ (-635 (-558)))) (-15 -1362 ($ $ $)) (-15 * ($ $ $)) (-15 -3631 ($ $ (-558) $ (-558))) (-15 -3631 ($ $ (-558) (-558))) (-15 -3295 ($ $)) (-15 -3295 ($ $ (-558) (-558))) (-15 -2593 ($ $ (-635 (-558)))) (-15 -3074 ($)) (-15 -1443 ($)) (-15 -4029 ((-635 |#3|) $)) (-15 -3722 ($ (-635 |#3|))) (-15 -3457 ($))))
-((-3929 (((-112) $ $) NIL)) (-2385 (((-1122) $) 11)) (-2372 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-136) (-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))) (T -136))
-((-2372 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136)))))
-(-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-2300 (((-1163) $) 10)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-635 (-1122)) $) 12)) (-1708 (((-112) $ $) NIL)))
-(((-137) (-13 (-1070) (-10 -8 (-15 -2300 ((-1163) $)) (-15 -3190 ((-635 (-1122)) $))))) (T -137))
-((-2300 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-137)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-137)))))
-(-13 (-1070) (-10 -8 (-15 -2300 ((-1163) $)) (-15 -3190 ((-635 (-1122)) $))))
-((-3929 (((-112) $ $) NIL)) (-3179 (((-504) $) NIL)) (-2510 (((-1145) $) NIL)) (-2300 (((-185) $) NIL)) (-1688 (((-1107) $) NIL)) (-4038 (((-635 (-112)) $) NIL)) (-3940 (((-853) $) NIL) (((-186) $) 6)) (-1405 (((-55) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-138) (-13 (-184) (-605 (-186)))) (T -138))
-NIL
-(-13 (-184) (-605 (-186)))
-((-4134 (((-635 (-182)) $) 13)) (-2616 (((-635 (-182)) $) 14)) (-1916 (((-635 (-829)) $) 10)) (-1759 (((-138) $) 7)) (-3940 (((-853) $) 16)))
-(((-139) (-13 (-605 (-853)) (-10 -8 (-15 -1759 ((-138) $)) (-15 -1916 ((-635 (-829)) $)) (-15 -4134 ((-635 (-182)) $)) (-15 -2616 ((-635 (-182)) $))))) (T -139))
-((-1759 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-635 (-829))) (-5 *1 (-139)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -1759 ((-138) $)) (-15 -1916 ((-635 (-829)) $)) (-15 -4134 ((-635 (-182)) $)) (-15 -2616 ((-635 (-182)) $))))
-((-3929 (((-112) $ $) NIL)) (-3847 (($) 15 T CONST)) (-3621 (($) NIL (|has| (-143) (-367)))) (-2382 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-1513 (($ $ $) NIL)) (-3204 (((-112) $ $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2507 (((-762)) NIL (|has| (-143) (-367)))) (-1607 (($) NIL) (($ (-635 (-143))) NIL)) (-2256 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-2375 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383))) (($ (-143) $) 51 (|has| $ (-6 -4383)))) (-1488 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-3866 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4383))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4383))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-3692 (($) NIL (|has| (-143) (-367)))) (-2917 (((-635 (-143)) $) 60 (|has| $ (-6 -4383)))) (-2953 (((-112) $ $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2142 (((-143) $) NIL (|has| (-143) (-841)))) (-3486 (((-635 (-143)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-2281 (((-143) $) NIL (|has| (-143) (-841)))) (-3674 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-143) (-143)) $) 55)) (-4331 (($) 16 T CONST)) (-1486 (((-911) $) NIL (|has| (-143) (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-3490 (($ $ $) 29)) (-1498 (((-143) $) 52)) (-2650 (($ (-143) $) 50)) (-2349 (($ (-911)) NIL (|has| (-143) (-367)))) (-3100 (($) 14 T CONST)) (-1688 (((-1107) $) NIL)) (-2820 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2533 (((-143) $) 53)) (-3314 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 48)) (-4074 (($) 13 T CONST)) (-1780 (($ $ $) 31) (($ $ (-143)) NIL)) (-1966 (($ (-635 (-143))) NIL) (($) NIL)) (-1698 (((-762) (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087)))) (((-762) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-1145) $) 36) (((-534) $) NIL (|has| (-143) (-606 (-534)))) (((-635 (-143)) $) 34)) (-3952 (($ (-635 (-143))) NIL)) (-3733 (($ $) 32 (|has| (-143) (-367)))) (-3940 (((-853) $) 46)) (-2302 (($ (-1145)) 12) (($ (-635 (-143))) 43)) (-3071 (((-762) $) NIL)) (-4008 (($) 49) (($ (-635 (-143))) NIL)) (-2472 (($ (-635 (-143))) NIL)) (-2831 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3909 (($) 19 T CONST)) (-2246 (($) 18 T CONST)) (-1708 (((-112) $ $) 22)) (-1596 (((-762) $) 47 (|has| $ (-6 -4383)))))
-(((-140) (-13 (-1087) (-606 (-1145)) (-424 (-143)) (-606 (-635 (-143))) (-10 -8 (-15 -2302 ($ (-1145))) (-15 -2302 ($ (-635 (-143)))) (-15 -4074 ($) -2010) (-15 -3100 ($) -2010) (-15 -3847 ($) -2010) (-15 -4331 ($) -2010) (-15 -2246 ($) -2010) (-15 -3909 ($) -2010)))) (T -140))
-((-2302 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-140)))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140)))) (-4074 (*1 *1) (-5 *1 (-140))) (-3100 (*1 *1) (-5 *1 (-140))) (-3847 (*1 *1) (-5 *1 (-140))) (-4331 (*1 *1) (-5 *1 (-140))) (-2246 (*1 *1) (-5 *1 (-140))) (-3909 (*1 *1) (-5 *1 (-140))))
-(-13 (-1087) (-606 (-1145)) (-424 (-143)) (-606 (-635 (-143))) (-10 -8 (-15 -2302 ($ (-1145))) (-15 -2302 ($ (-635 (-143)))) (-15 -4074 ($) -2010) (-15 -3100 ($) -2010) (-15 -3847 ($) -2010) (-15 -4331 ($) -2010) (-15 -2246 ($) -2010) (-15 -3909 ($) -2010)))
-((-4247 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1515 ((|#1| |#3|) 9)) (-3275 ((|#3| |#3|) 15)))
-(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -1515 (|#1| |#3|)) (-15 -3275 (|#3| |#3|)) (-15 -4247 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-550) (-982 |#1|) (-372 |#2|)) (T -141))
-((-4247 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-372 *5)))) (-3275 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-372 *4)))) (-1515 (*1 *2 *3) (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-372 *4)))))
-(-10 -7 (-15 -1515 (|#1| |#3|)) (-15 -3275 (|#3| |#3|)) (-15 -4247 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3322 (($ $ $) 8)) (-3608 (($ $) 7)) (-3207 (($ $ $) 6)))
+((-4235 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765)))) (-3099 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1258)))))
+(-13 (-844) (-10 -8 (-15 -4235 ((-765) $)) (-15 -3099 ((-1258) $ (-765)))))
+(((-102) . T) ((-608 (-856)) . T) ((-844) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-638 (-1125)) $) 10)) (-1733 (((-112) $ $) NIL)))
+(((-132) (-13 (-1073) (-10 -8 (-15 -3279 ((-638 (-1125)) $))))) (T -132))
+((-3279 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-132)))))
+(-13 (-1073) (-10 -8 (-15 -3279 ((-638 (-1125)) $))))
+((-4011 (((-112) $ $) 34)) (-2800 (((-112) $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-765) "failed") $) 41)) (-3938 (((-765) $) 39)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) 27)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3572 (((-112)) 42)) (-1308 (((-112) (-112)) 44)) (-1347 (((-112) $) 24)) (-4038 (((-112) $) 38)) (-4022 (((-856) $) 22) (($ (-765)) 14)) (-2211 (($) 11 T CONST)) (-2222 (($) 12 T CONST)) (-3740 (($ (-765)) 15)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 25)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 26)) (-1824 (((-3 $ "failed") $ $) 30)) (-1813 (($ $ $) 28)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL) (($ $ $) 37)) (* (($ (-765) $) 33) (($ (-914) $) NIL) (($ $ $) 31)))
+(((-133) (-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4392 "*")) (-15 -1824 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3740 ($ (-765))) (-15 -1347 ((-112) $)) (-15 -4038 ((-112) $)) (-15 -3572 ((-112))) (-15 -1308 ((-112) (-112)))))) (T -133))
+((-1824 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3572 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1308 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4392 "*")) (-15 -1824 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3740 ($ (-765))) (-15 -1347 ((-112) $)) (-15 -4038 ((-112) $)) (-15 -3572 ((-112))) (-15 -1308 ((-112) (-112)))))
+((-4130 (((-135 |#1| |#2| |#4|) (-638 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4120 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
+(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4130 ((-135 |#1| |#2| |#4|) (-638 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4120 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-561) (-765) (-171) (-171)) (T -134))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4130 ((-135 |#1| |#2| |#4|) (-638 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4120 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
+((-4011 (((-112) $ $) NIL)) (-3577 (($ (-638 |#3|)) 40)) (-1820 (($ $) 99) (($ $ (-561) (-561)) 98)) (-1965 (($) 17)) (-4017 (((-3 |#3| "failed") $) 60)) (-3938 ((|#3| $) NIL)) (-3188 (($ $ (-638 (-561))) 100)) (-4115 (((-638 |#3|) $) 36)) (-1569 (((-765) $) 44)) (-3615 (($ $ $) 93)) (-3588 (($) 43)) (-1764 (((-1148) $) NIL)) (-3659 (($) 16)) (-1714 (((-1110) $) NIL)) (-2277 ((|#3| $) 46) ((|#3| $ (-561)) 47) ((|#3| $ (-561) (-561)) 48) ((|#3| $ (-561) (-561) (-561)) 49) ((|#3| $ (-561) (-561) (-561) (-561)) 50) ((|#3| $ (-638 (-561))) 52)) (-2894 (((-765) $) 45)) (-2805 (($ $ (-561) $ (-561)) 94) (($ $ (-561) (-561)) 96)) (-4022 (((-856) $) 67) (($ |#3|) 68) (($ (-239 |#2| |#3|)) 75) (($ (-1132 |#2| |#3|)) 78) (($ (-638 |#3|)) 53) (($ (-638 $)) 58)) (-2211 (($) 69 T CONST)) (-2222 (($) 70 T CONST)) (-1733 (((-112) $ $) 80)) (-1824 (($ $) 86) (($ $ $) 84)) (-1813 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-561)) 89) (($ (-561) $) 88) (($ $ $) 95)))
+(((-135 |#1| |#2| |#3|) (-13 (-463 |#3| (-765)) (-468 (-561) (-765)) (-10 -8 (-15 -4022 ($ (-239 |#2| |#3|))) (-15 -4022 ($ (-1132 |#2| |#3|))) (-15 -4022 ($ (-638 |#3|))) (-15 -4022 ($ (-638 $))) (-15 -1569 ((-765) $)) (-15 -2277 (|#3| $)) (-15 -2277 (|#3| $ (-561))) (-15 -2277 (|#3| $ (-561) (-561))) (-15 -2277 (|#3| $ (-561) (-561) (-561))) (-15 -2277 (|#3| $ (-561) (-561) (-561) (-561))) (-15 -2277 (|#3| $ (-638 (-561)))) (-15 -3615 ($ $ $)) (-15 * ($ $ $)) (-15 -2805 ($ $ (-561) $ (-561))) (-15 -2805 ($ $ (-561) (-561))) (-15 -1820 ($ $)) (-15 -1820 ($ $ (-561) (-561))) (-15 -3188 ($ $ (-638 (-561)))) (-15 -3659 ($)) (-15 -3588 ($)) (-15 -4115 ((-638 |#3|) $)) (-15 -3577 ($ (-638 |#3|))) (-15 -1965 ($)))) (-561) (-765) (-171)) (T -135))
+((-3615 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1132 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 *2) (-4 *5 (-171)))) (-2277 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-561)) (-14 *4 (-765)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2277 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2277 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2277 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-638 (-561))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-561)) (-14 *5 (-765)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-2805 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-2805 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-1820 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-1820 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3659 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-3588 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-638 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3577 (*1 *1 *2) (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561)) (-14 *4 (-765)))) (-1965 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765)) (-4 *4 (-171)))))
+(-13 (-463 |#3| (-765)) (-468 (-561) (-765)) (-10 -8 (-15 -4022 ($ (-239 |#2| |#3|))) (-15 -4022 ($ (-1132 |#2| |#3|))) (-15 -4022 ($ (-638 |#3|))) (-15 -4022 ($ (-638 $))) (-15 -1569 ((-765) $)) (-15 -2277 (|#3| $)) (-15 -2277 (|#3| $ (-561))) (-15 -2277 (|#3| $ (-561) (-561))) (-15 -2277 (|#3| $ (-561) (-561) (-561))) (-15 -2277 (|#3| $ (-561) (-561) (-561) (-561))) (-15 -2277 (|#3| $ (-638 (-561)))) (-15 -3615 ($ $ $)) (-15 * ($ $ $)) (-15 -2805 ($ $ (-561) $ (-561))) (-15 -2805 ($ $ (-561) (-561))) (-15 -1820 ($ $)) (-15 -1820 ($ $ (-561) (-561))) (-15 -3188 ($ $ (-638 (-561)))) (-15 -3659 ($)) (-15 -3588 ($)) (-15 -4115 ((-638 |#3|) $)) (-15 -3577 ($ (-638 |#3|))) (-15 -1965 ($))))
+((-4011 (((-112) $ $) NIL)) (-4306 (((-1125) $) 11)) (-4293 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-136) (-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))) (T -136))
+((-4293 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))))
+(-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-2364 (((-1166) $) 10)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-638 (-1125)) $) 12)) (-1733 (((-112) $ $) NIL)))
+(((-137) (-13 (-1073) (-10 -8 (-15 -2364 ((-1166) $)) (-15 -3279 ((-638 (-1125)) $))))) (T -137))
+((-2364 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-137)))))
+(-13 (-1073) (-10 -8 (-15 -2364 ((-1166) $)) (-15 -3279 ((-638 (-1125)) $))))
+((-4011 (((-112) $ $) NIL)) (-3269 (((-504) $) NIL)) (-1764 (((-1148) $) NIL)) (-2364 (((-185) $) NIL)) (-1714 (((-1110) $) NIL)) (-2910 (((-638 (-112)) $) NIL)) (-4022 (((-856) $) NIL) (((-186) $) 6)) (-4013 (((-55) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-138) (-13 (-184) (-608 (-186)))) (T -138))
+NIL
+(-13 (-184) (-608 (-186)))
+((-2461 (((-638 (-182)) $) 13)) (-3282 (((-638 (-182)) $) 14)) (-4135 (((-638 (-832)) $) 10)) (-1849 (((-138) $) 7)) (-4022 (((-856) $) 16)))
+(((-139) (-13 (-608 (-856)) (-10 -8 (-15 -1849 ((-138) $)) (-15 -4135 ((-638 (-832)) $)) (-15 -2461 ((-638 (-182)) $)) (-15 -3282 ((-638 (-182)) $))))) (T -139))
+((-1849 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-638 (-832))) (-5 *1 (-139)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -1849 ((-138) $)) (-15 -4135 ((-638 (-832)) $)) (-15 -2461 ((-638 (-182)) $)) (-15 -3282 ((-638 (-182)) $))))
+((-4011 (((-112) $ $) NIL)) (-2265 (($) 15 T CONST)) (-4080 (($) NIL (|has| (-143) (-367)))) (-2443 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-2613 (($ $ $) NIL)) (-3903 (((-112) $ $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1393 (((-765)) NIL (|has| (-143) (-367)))) (-1627 (($) NIL) (($ (-638 (-143))) NIL)) (-3388 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-3999 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390))) (($ (-143) $) 51 (|has| $ (-6 -4390)))) (-1489 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-3185 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4390))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4390))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-1332 (($) NIL (|has| (-143) (-367)))) (-3571 (((-638 (-143)) $) 60 (|has| $ (-6 -4390)))) (-4198 (((-112) $ $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3443 (((-143) $) NIL (|has| (-143) (-844)))) (-1305 (((-638 (-143)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-2986 (((-143) $) NIL (|has| (-143) (-844)))) (-2065 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-143) (-143)) $) 55)) (-2773 (($) 16 T CONST)) (-3198 (((-914) $) NIL (|has| (-143) (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2579 (($ $ $) 29)) (-3211 (((-143) $) 52)) (-3671 (($ (-143) $) 50)) (-2413 (($ (-914)) NIL (|has| (-143) (-367)))) (-1898 (($) 14 T CONST)) (-1714 (((-1110) $) NIL)) (-1330 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3522 (((-143) $) 53)) (-2123 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-143)) (-638 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 48)) (-4206 (($) 13 T CONST)) (-4294 (($ $ $) 31) (($ $ (-143)) NIL)) (-3579 (($ (-638 (-143))) NIL) (($) NIL)) (-1724 (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090)))) (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-1148) $) 36) (((-534) $) NIL (|has| (-143) (-609 (-534)))) (((-638 (-143)) $) 34)) (-4031 (($ (-638 (-143))) NIL)) (-2079 (($ $) 32 (|has| (-143) (-367)))) (-4022 (((-856) $) 46)) (-1896 (($ (-1148)) 12) (($ (-638 (-143))) 43)) (-1915 (((-765) $) NIL)) (-1710 (($) 49) (($ (-638 (-143))) NIL)) (-3025 (($ (-638 (-143))) NIL)) (-3715 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-2464 (($) 19 T CONST)) (-2047 (($) 18 T CONST)) (-1733 (((-112) $ $) 22)) (-3498 (((-765) $) 47 (|has| $ (-6 -4390)))))
+(((-140) (-13 (-1090) (-609 (-1148)) (-424 (-143)) (-609 (-638 (-143))) (-10 -8 (-15 -1896 ($ (-1148))) (-15 -1896 ($ (-638 (-143)))) (-15 -4206 ($) -1514) (-15 -1898 ($) -1514) (-15 -2265 ($) -1514) (-15 -2773 ($) -1514) (-15 -2047 ($) -1514) (-15 -2464 ($) -1514)))) (T -140))
+((-1896 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-638 (-143))) (-5 *1 (-140)))) (-4206 (*1 *1) (-5 *1 (-140))) (-1898 (*1 *1) (-5 *1 (-140))) (-2265 (*1 *1) (-5 *1 (-140))) (-2773 (*1 *1) (-5 *1 (-140))) (-2047 (*1 *1) (-5 *1 (-140))) (-2464 (*1 *1) (-5 *1 (-140))))
+(-13 (-1090) (-609 (-1148)) (-424 (-143)) (-609 (-638 (-143))) (-10 -8 (-15 -1896 ($ (-1148))) (-15 -1896 ($ (-638 (-143)))) (-15 -4206 ($) -1514) (-15 -1898 ($) -1514) (-15 -2265 ($) -1514) (-15 -2773 ($) -1514) (-15 -2047 ($) -1514) (-15 -2464 ($) -1514)))
+((-3961 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4237 ((|#1| |#3|) 9)) (-3799 ((|#3| |#3|) 15)))
+(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -4237 (|#1| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3961 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-553) (-985 |#1|) (-372 |#2|)) (T -141))
+((-3961 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-372 *5)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-372 *4)))) (-4237 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-372 *4)))))
+(-10 -7 (-15 -4237 (|#1| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3961 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2227 (($ $ $) 8)) (-2101 (($ $) 7)) (-3599 (($ $ $) 6)))
(((-142) (-139)) (T -142))
-((-3322 (*1 *1 *1 *1) (-4 *1 (-142))) (-3608 (*1 *1 *1) (-4 *1 (-142))) (-3207 (*1 *1 *1 *1) (-4 *1 (-142))))
-(-13 (-10 -8 (-15 -3207 ($ $ $)) (-15 -3608 ($ $)) (-15 -3322 ($ $ $))))
-((-3929 (((-112) $ $) NIL)) (-2798 (((-112) $) 30)) (-3847 (($ $) 43)) (-1506 (($) 17)) (-2507 (((-762)) 10)) (-3692 (($) 16)) (-3891 (($) 18)) (-4193 (((-762) $) 14)) (-2142 (($ $ $) NIL) (($) NIL T CONST)) (-2281 (($ $ $) NIL) (($) NIL T CONST)) (-2897 (((-112) $) 32)) (-4331 (($ $) 44)) (-1486 (((-911) $) 15)) (-2510 (((-1145) $) 38)) (-2349 (($ (-911)) 13)) (-1561 (((-112) $) 28)) (-1688 (((-1107) $) NIL)) (-2880 (($) 19)) (-4058 (((-112) $) 26)) (-3940 (((-853) $) 21)) (-4063 (($ (-762)) 11) (($ (-1145)) 42)) (-2285 (((-112) $) 36)) (-1353 (((-112) $) 34)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 7)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 8)))
-(((-143) (-13 (-835) (-10 -8 (-15 -4193 ((-762) $)) (-15 -4063 ($ (-762))) (-15 -4063 ($ (-1145))) (-15 -1506 ($)) (-15 -3891 ($)) (-15 -2880 ($)) (-15 -3847 ($ $)) (-15 -4331 ($ $)) (-15 -4058 ((-112) $)) (-15 -1561 ((-112) $)) (-15 -1353 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -2897 ((-112) $)) (-15 -2285 ((-112) $))))) (T -143))
-((-4193 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-143)))) (-4063 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-143)))) (-4063 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-143)))) (-1506 (*1 *1) (-5 *1 (-143))) (-3891 (*1 *1) (-5 *1 (-143))) (-2880 (*1 *1) (-5 *1 (-143))) (-3847 (*1 *1 *1) (-5 *1 (-143))) (-4331 (*1 *1 *1) (-5 *1 (-143))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(-13 (-835) (-10 -8 (-15 -4193 ((-762) $)) (-15 -4063 ($ (-762))) (-15 -4063 ($ (-1145))) (-15 -1506 ($)) (-15 -3891 ($)) (-15 -2880 ($)) (-15 -3847 ($ $)) (-15 -4331 ($ $)) (-15 -4058 ((-112) $)) (-15 -1561 ((-112) $)) (-15 -1353 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -2897 ((-112) $)) (-15 -2285 ((-112) $))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-1487 (((-3 $ "failed") $) 35)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-2227 (*1 *1 *1 *1) (-4 *1 (-142))) (-2101 (*1 *1 *1) (-4 *1 (-142))) (-3599 (*1 *1 *1 *1) (-4 *1 (-142))))
+(-13 (-10 -8 (-15 -3599 ($ $ $)) (-15 -2101 ($ $)) (-15 -2227 ($ $ $))))
+((-4011 (((-112) $ $) NIL)) (-3846 (((-112) $) 30)) (-2265 (($ $) 43)) (-2835 (($) 17)) (-1393 (((-765)) 10)) (-1332 (($) 16)) (-3944 (($) 18)) (-4297 (((-765) $) 14)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-2891 (((-112) $) 32)) (-2773 (($ $) 44)) (-3198 (((-914) $) 15)) (-1764 (((-1148) $) 38)) (-2413 (($ (-914)) 13)) (-1933 (((-112) $) 28)) (-1714 (((-1110) $) NIL)) (-2372 (($) 19)) (-2924 (((-112) $) 26)) (-4022 (((-856) $) 21)) (-4151 (($ (-765)) 11) (($ (-1148)) 42)) (-2501 (((-112) $) 36)) (-2848 (((-112) $) 34)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 7)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 8)))
+(((-143) (-13 (-838) (-10 -8 (-15 -4297 ((-765) $)) (-15 -4151 ($ (-765))) (-15 -4151 ($ (-1148))) (-15 -2835 ($)) (-15 -3944 ($)) (-15 -2372 ($)) (-15 -2265 ($ $)) (-15 -2773 ($ $)) (-15 -2924 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -3846 ((-112) $)) (-15 -2891 ((-112) $)) (-15 -2501 ((-112) $))))) (T -143))
+((-4297 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-4151 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-4151 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143)))) (-2835 (*1 *1) (-5 *1 (-143))) (-3944 (*1 *1) (-5 *1 (-143))) (-2372 (*1 *1) (-5 *1 (-143))) (-2265 (*1 *1 *1) (-5 *1 (-143))) (-2773 (*1 *1 *1) (-5 *1 (-143))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(-13 (-838) (-10 -8 (-15 -4297 ((-765) $)) (-15 -4151 ($ (-765))) (-15 -4151 ($ (-1148))) (-15 -2835 ($)) (-15 -3944 ($)) (-15 -2372 ($)) (-15 -2265 ($ $)) (-15 -2773 ($ $)) (-15 -2924 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -3846 ((-112) $)) (-15 -2891 ((-112) $)) (-15 -2501 ((-112) $))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-1760 (((-3 $ "failed") $) 35)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-144) (-139)) (T -144))
-((-1487 (*1 *1 *1) (|partial| -4 *1 (-144))))
-(-13 (-1039) (-10 -8 (-15 -1487 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-1969 ((|#1| (-679 |#1|) |#1|) 19)))
-(((-145 |#1|) (-10 -7 (-15 -1969 (|#1| (-679 |#1|) |#1|))) (-171)) (T -145))
-((-1969 (*1 *2 *3 *2) (-12 (-5 *3 (-679 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))))
-(-10 -7 (-15 -1969 (|#1| (-679 |#1|) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-1760 (*1 *1 *1) (|partial| -4 *1 (-144))))
+(-13 (-1042) (-10 -8 (-15 -1760 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-2485 ((|#1| (-682 |#1|) |#1|) 19)))
+(((-145 |#1|) (-10 -7 (-15 -2485 (|#1| (-682 |#1|) |#1|))) (-171)) (T -145))
+((-2485 (*1 *2 *3 *2) (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))))
+(-10 -7 (-15 -2485 (|#1| (-682 |#1|) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-146) (-139)) (T -146))
NIL
-(-13 (-1039))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-2829 (((-2 (|:| -1857 (-762)) (|:| -3455 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-762)) 69)) (-2538 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-762))) "failed") |#3|) 51)) (-1641 (((-2 (|:| -3455 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-3253 ((|#1| |#3| |#3|) 39)) (-1369 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-2540 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-762))) |#3| |#3|) 48)))
-(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -1641 ((-2 (|:| -3455 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2538 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-762))) "failed") |#3|)) (-15 -2829 ((-2 (|:| -1857 (-762)) (|:| -3455 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-762))) (-15 -3253 (|#1| |#3| |#3|)) (-15 -1369 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -2540 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-762))) |#3| |#3|))) (-1204) (-1222 |#1|) (-1222 (-406 |#2|))) (T -147))
-((-2540 (*1 *2 *3 *3) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-762)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))) (-1369 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1222 *3)))) (-3253 (*1 *2 *3 *3) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-1204)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1222 (-406 *4))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1204)) (-4 *6 (-1222 *5)) (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-762)) (-4 *7 (-1222 *3)))) (-2538 (*1 *2 *3) (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-762)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))) (-1641 (*1 *2 *3) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -3455 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
-(-10 -7 (-15 -1641 ((-2 (|:| -3455 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2538 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-762))) "failed") |#3|)) (-15 -2829 ((-2 (|:| -1857 (-762)) (|:| -3455 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-762))) (-15 -3253 (|#1| |#3| |#3|)) (-15 -1369 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -2540 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-762))) |#3| |#3|)))
-((-1671 (((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|)) 31)))
-(((-148 |#1| |#2|) (-10 -7 (-15 -1671 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|)))) (-543) (-165 |#1|)) (T -148))
-((-1671 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5)) (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5)))))
-(-10 -7 (-15 -1671 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|))))
-((-2072 (($ (-1 (-112) |#2|) $) 29)) (-3188 (($ $) 36)) (-1488 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-3866 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2820 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-3314 (((-112) (-1 (-112) |#2|) $) 16)) (-1698 (((-762) (-1 (-112) |#2|) $) 14) (((-762) |#2| $) NIL)) (-2831 (((-112) (-1 (-112) |#2|) $) 15)) (-1596 (((-762) $) 11)))
-(((-149 |#1| |#2|) (-10 -8 (-15 -3188 (|#1| |#1|)) (-15 -1488 (|#1| |#2| |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2072 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2820 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1596 ((-762) |#1|))) (-150 |#2|) (-1200)) (T -149))
-NIL
-(-10 -8 (-15 -3188 (|#1| |#1|)) (-15 -1488 (|#1| |#2| |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2072 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2820 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1596 ((-762) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-2072 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-3188 (($ $) 41 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4383))) (($ |#1| $) 42 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 40 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 49)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-150 |#1|) (-139) (-1200)) (T -150))
-((-3952 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-150 *3)))) (-2820 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-3866 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-3866 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-1488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *3)) (-4 *3 (-1200)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *3)) (-4 *3 (-1200)))) (-3866 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *2)) (-4 *2 (-1200)))) (-1488 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-150 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))) (-3188 (*1 *1 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-150 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))))
-(-13 (-487 |t#1|) (-10 -8 (-15 -3952 ($ (-635 |t#1|))) (-15 -2820 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4383)) (PROGN (-15 -3866 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3866 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1488 ($ (-1 (-112) |t#1|) $)) (-15 -2072 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -3866 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1488 ($ |t#1| $)) (-15 -3188 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) 85)) (-3999 (((-112) $) NIL)) (-4056 (($ |#2| (-635 (-911))) 55)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3499 (($ (-911)) 47)) (-2887 (((-133)) 23)) (-3940 (((-853) $) 68) (($ (-558)) 45) (($ |#2|) 46)) (-3143 ((|#2| $ (-635 (-911))) 58)) (-2417 (((-762)) 20)) (-2207 (($) 40 T CONST)) (-2220 (($) 43 T CONST)) (-1708 (((-112) $ $) 26)) (-1805 (($ $ |#2|) NIL)) (-1796 (($ $) 34) (($ $ $) 32)) (-1785 (($ $ $) 30)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-151 |#1| |#2| |#3|) (-13 (-1039) (-38 |#2|) (-1253 |#2|) (-10 -8 (-15 -3499 ($ (-911))) (-15 -4056 ($ |#2| (-635 (-911)))) (-15 -3143 (|#2| $ (-635 (-911)))) (-15 -3248 ((-3 $ "failed") $)))) (-911) (-362) (-983 |#1| |#2|)) (T -151))
-((-3248 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-911)) (-4 *3 (-362)) (-14 *4 (-983 *2 *3)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-983 *3 *4)))) (-4056 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-911))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-911)) (-4 *2 (-362)) (-14 *5 (-983 *4 *2)))) (-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-911))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-911)) (-14 *5 (-983 *4 *2)))))
-(-13 (-1039) (-38 |#2|) (-1253 |#2|) (-10 -8 (-15 -3499 ($ (-911))) (-15 -4056 ($ |#2| (-635 (-911)))) (-15 -3143 (|#2| $ (-635 (-911)))) (-15 -3248 ((-3 $ "failed") $))))
-((-4280 (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-1766 (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558))) 64) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917)) 65)) (-3169 (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224))))) 68) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-933 (-224)))) 67) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558))) 59) (((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917)) 60)))
-(((-152) (-10 -7 (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -1766 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -1766 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -4280 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))) (-224) (-224) (-224) (-224))) (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-933 (-224))))) (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))))))) (T -152))
-((-3169 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 (-224))))))) (-3169 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-933 (-224)))))) (-4280 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 *4)))) (|:| |xValues| (-1081 *4)) (|:| |yValues| (-1081 *4)))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 *4)))))) (-1766 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))) (-3169 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224))))) (-5 *1 (-152)))))
-(-10 -7 (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -1766 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917))) (-15 -1766 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-917) (-406 (-558)) (-406 (-558)))) (-15 -4280 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))) (-224) (-224) (-224) (-224))) (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-933 (-224))))) (-15 -3169 ((-2 (|:| |brans| (-635 (-635 (-933 (-224))))) (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))) (-635 (-635 (-933 (-224)))))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-2328 (((-635 (-1122)) $) 15)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 24) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-1122) $) 9)) (-1708 (((-112) $ $) NIL)))
-(((-153) (-13 (-1070) (-10 -8 (-15 -2328 ((-635 (-1122)) $)) (-15 -3190 ((-1122) $))))) (T -153))
-((-2328 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-153)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-153)))))
-(-13 (-1070) (-10 -8 (-15 -2328 ((-635 (-1122)) $)) (-15 -3190 ((-1122) $))))
-((-4047 (((-635 (-168 |#2|)) |#1| |#2|) 45)))
-(((-154 |#1| |#2|) (-10 -7 (-15 -4047 ((-635 (-168 |#2|)) |#1| |#2|))) (-1222 (-168 (-558))) (-13 (-362) (-839))) (T -154))
-((-4047 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-168 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1222 (-168 (-558)))) (-4 *4 (-13 (-362) (-839))))))
-(-10 -7 (-15 -4047 ((-635 (-168 |#2|)) |#1| |#2|)))
-((-3929 (((-112) $ $) NIL)) (-2385 (((-1199) $) 12)) (-2372 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-155) (-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1199) $))))) (T -155))
-((-2372 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-155)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-155)))))
-(-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1199) $))))
-((-3929 (((-112) $ $) NIL)) (-4149 (($) 15)) (-2234 (($) 14)) (-3747 (((-911)) 22)) (-2510 (((-1145) $) NIL)) (-2433 (((-558) $) 19)) (-1688 (((-1107) $) NIL)) (-3360 (($) 16)) (-2322 (($ (-558)) 23)) (-3940 (((-853) $) 29)) (-2885 (($) 17)) (-1708 (((-112) $ $) 13)) (-1785 (($ $ $) 11)) (* (($ (-911) $) 21) (($ (-224) $) 8)))
-(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-911) $)) (-15 * ($ (-224) $)) (-15 -1785 ($ $ $)) (-15 -2234 ($)) (-15 -4149 ($)) (-15 -3360 ($)) (-15 -2885 ($)) (-15 -2433 ((-558) $)) (-15 -3747 ((-911))) (-15 -2322 ($ (-558)))))) (T -156))
-((-1785 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-2234 (*1 *1) (-5 *1 (-156))) (-4149 (*1 *1) (-5 *1 (-156))) (-3360 (*1 *1) (-5 *1 (-156))) (-2885 (*1 *1) (-5 *1 (-156))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-156)))) (-3747 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-156)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-156)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-911) $)) (-15 * ($ (-224) $)) (-15 -1785 ($ $ $)) (-15 -2234 ($)) (-15 -4149 ($)) (-15 -3360 ($)) (-15 -2885 ($)) (-15 -2433 ((-558) $)) (-15 -3747 ((-911))) (-15 -2322 ($ (-558)))))
-((-1755 ((|#2| |#2| (-1079 |#2|)) 88) ((|#2| |#2| (-1163)) 68)) (-1362 ((|#2| |#2| (-1079 |#2|)) 87) ((|#2| |#2| (-1163)) 67)) (-3322 ((|#2| |#2| |#2|) 27)) (-2154 (((-114) (-114)) 99)) (-3290 ((|#2| (-635 |#2|)) 117)) (-4146 ((|#2| (-635 |#2|)) 135)) (-2393 ((|#2| (-635 |#2|)) 125)) (-4249 ((|#2| |#2|) 123)) (-3442 ((|#2| (-635 |#2|)) 111)) (-3084 ((|#2| (-635 |#2|)) 112)) (-1438 ((|#2| (-635 |#2|)) 133)) (-2092 ((|#2| |#2| (-1163)) 56) ((|#2| |#2|) 55)) (-3608 ((|#2| |#2|) 23)) (-3207 ((|#2| |#2| |#2|) 26)) (-2480 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-157 |#1| |#2|) (-10 -7 (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3207 (|#2| |#2| |#2|)) (-15 -3322 (|#2| |#2| |#2|)) (-15 -3608 (|#2| |#2|)) (-15 -2092 (|#2| |#2|)) (-15 -2092 (|#2| |#2| (-1163))) (-15 -1755 (|#2| |#2| (-1163))) (-15 -1755 (|#2| |#2| (-1079 |#2|))) (-15 -1362 (|#2| |#2| (-1163))) (-15 -1362 (|#2| |#2| (-1079 |#2|))) (-15 -4249 (|#2| |#2|)) (-15 -1438 (|#2| (-635 |#2|))) (-15 -2393 (|#2| (-635 |#2|))) (-15 -4146 (|#2| (-635 |#2|))) (-15 -3442 (|#2| (-635 |#2|))) (-15 -3084 (|#2| (-635 |#2|))) (-15 -3290 (|#2| (-635 |#2|)))) (-13 (-841) (-550)) (-429 |#1|)) (T -157))
-((-3290 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-841) (-550))))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1362 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)))) (-1362 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-1755 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)))) (-1755 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-2092 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-2092 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3322 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3207 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *4)) (-4 *4 (-429 *3)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4)))))
-(-10 -7 (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3207 (|#2| |#2| |#2|)) (-15 -3322 (|#2| |#2| |#2|)) (-15 -3608 (|#2| |#2|)) (-15 -2092 (|#2| |#2|)) (-15 -2092 (|#2| |#2| (-1163))) (-15 -1755 (|#2| |#2| (-1163))) (-15 -1755 (|#2| |#2| (-1079 |#2|))) (-15 -1362 (|#2| |#2| (-1163))) (-15 -1362 (|#2| |#2| (-1079 |#2|))) (-15 -4249 (|#2| |#2|)) (-15 -1438 (|#2| (-635 |#2|))) (-15 -2393 (|#2| (-635 |#2|))) (-15 -4146 (|#2| (-635 |#2|))) (-15 -3442 (|#2| (-635 |#2|))) (-15 -3084 (|#2| (-635 |#2|))) (-15 -3290 (|#2| (-635 |#2|))))
-((-4273 ((|#1| |#1| |#1|) 53)) (-2921 ((|#1| |#1| |#1|) 50)) (-3322 ((|#1| |#1| |#1|) 44)) (-1928 ((|#1| |#1|) 35)) (-3990 ((|#1| |#1| (-635 |#1|)) 43)) (-3608 ((|#1| |#1|) 37)) (-3207 ((|#1| |#1| |#1|) 40)))
-(((-158 |#1|) (-10 -7 (-15 -3207 (|#1| |#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -3990 (|#1| |#1| (-635 |#1|))) (-15 -1928 (|#1| |#1|)) (-15 -3322 (|#1| |#1| |#1|)) (-15 -2921 (|#1| |#1| |#1|)) (-15 -4273 (|#1| |#1| |#1|))) (-543)) (T -158))
-((-4273 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-2921 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3322 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1928 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3990 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))) (-3608 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3207 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(-10 -7 (-15 -3207 (|#1| |#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -3990 (|#1| |#1| (-635 |#1|))) (-15 -1928 (|#1| |#1|)) (-15 -3322 (|#1| |#1| |#1|)) (-15 -2921 (|#1| |#1| |#1|)) (-15 -4273 (|#1| |#1| |#1|)))
-((-1755 (($ $ (-1163)) 12) (($ $ (-1079 $)) 11)) (-1362 (($ $ (-1163)) 10) (($ $ (-1079 $)) 9)) (-3322 (($ $ $) 8)) (-2092 (($ $) 14) (($ $ (-1163)) 13)) (-3608 (($ $) 7)) (-3207 (($ $ $) 6)))
+(-13 (-1042))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-3331 (((-2 (|:| -4196 (-765)) (|:| -4188 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765)) 69)) (-1333 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|) 51)) (-2939 (((-2 (|:| -4188 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-2917 ((|#1| |#3| |#3|) 39)) (-1444 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-2819 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|) 48)))
+(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-2 (|:| -4188 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1333 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -3331 ((-2 (|:| -4196 (-765)) (|:| -4188 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -2917 (|#1| |#3| |#3|)) (-15 -1444 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -2819 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|))) (-1209) (-1229 |#1|) (-1229 (-406 |#2|))) (T -147))
+((-2819 (*1 *2 *3 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))) (-1444 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1229 *3)))) (-2917 (*1 *2 *3 *3) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-3331 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1229 *3)))) (-1333 (*1 *2 *3) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))) (-2939 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -4188 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))))
+(-10 -7 (-15 -2939 ((-2 (|:| -4188 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1333 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -3331 ((-2 (|:| -4196 (-765)) (|:| -4188 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -2917 (|#1| |#3| |#3|)) (-15 -1444 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -2819 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|)))
+((-3184 (((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|)) 31)))
+(((-148 |#1| |#2|) (-10 -7 (-15 -3184 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|)))) (-543) (-165 |#1|)) (T -148))
+((-3184 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5)) (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5)))))
+(-10 -7 (-15 -3184 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|))))
+((-3556 (($ (-1 (-112) |#2|) $) 29)) (-1472 (($ $) 36)) (-1489 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-3185 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1330 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2123 (((-112) (-1 (-112) |#2|) $) 16)) (-1724 (((-765) (-1 (-112) |#2|) $) 14) (((-765) |#2| $) NIL)) (-3715 (((-112) (-1 (-112) |#2|) $) 15)) (-3498 (((-765) $) 11)))
+(((-149 |#1| |#2|) (-10 -8 (-15 -1472 (|#1| |#1|)) (-15 -1489 (|#1| |#2| |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1330 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3498 ((-765) |#1|))) (-150 |#2|) (-1205)) (T -149))
+NIL
+(-10 -8 (-15 -1472 (|#1| |#1|)) (-15 -1489 (|#1| |#2| |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1330 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3498 ((-765) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-3556 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-1472 (($ $) 41 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4390))) (($ |#1| $) 42 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 40 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 49)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-150 |#1|) (-139) (-1205)) (T -150))
+((-4031 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-150 *3)))) (-1330 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-3185 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-3185 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-1489 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *3)) (-4 *3 (-1205)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *3)) (-4 *3 (-1205)))) (-3185 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *2)) (-4 *2 (-1205)))) (-1489 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-150 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))) (-1472 (*1 *1 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-150 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))))
+(-13 (-487 |t#1|) (-10 -8 (-15 -4031 ($ (-638 |t#1|))) (-15 -1330 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4390)) (PROGN (-15 -3185 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3185 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1489 ($ (-1 (-112) |t#1|) $)) (-15 -3556 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3185 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1489 ($ |t#1| $)) (-15 -1472 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) 85)) (-3113 (((-112) $) NIL)) (-1387 (($ |#2| (-638 (-914))) 55)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3590 (($ (-914)) 47)) (-3084 (((-133)) 23)) (-4022 (((-856) $) 68) (($ (-561)) 45) (($ |#2|) 46)) (-2634 ((|#2| $ (-638 (-914))) 58)) (-4259 (((-765)) 20)) (-2211 (($) 40 T CONST)) (-2222 (($) 43 T CONST)) (-1733 (((-112) $ $) 26)) (-1833 (($ $ |#2|) NIL)) (-1824 (($ $) 34) (($ $ $) 32)) (-1813 (($ $ $) 30)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-151 |#1| |#2| |#3|) (-13 (-1042) (-38 |#2|) (-1260 |#2|) (-10 -8 (-15 -3590 ($ (-914))) (-15 -1387 ($ |#2| (-638 (-914)))) (-15 -2634 (|#2| $ (-638 (-914)))) (-15 -3466 ((-3 $ "failed") $)))) (-914) (-362) (-986 |#1| |#2|)) (T -151))
+((-3466 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-914)) (-4 *3 (-362)) (-14 *4 (-986 *2 *3)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-986 *3 *4)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-914))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-914)) (-4 *2 (-362)) (-14 *5 (-986 *4 *2)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-638 (-914))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-914)) (-14 *5 (-986 *4 *2)))))
+(-13 (-1042) (-38 |#2|) (-1260 |#2|) (-10 -8 (-15 -3590 ($ (-914))) (-15 -1387 ($ |#2| (-638 (-914)))) (-15 -2634 (|#2| $ (-638 (-914)))) (-15 -3466 ((-3 $ "failed") $))))
+((-4251 (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-4146 (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561))) 64) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920)) 65)) (-1568 (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224))))) 68) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-936 (-224)))) 67) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561))) 59) (((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920)) 60)))
+(((-152) (-10 -7 (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -4146 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -4146 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -4251 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-936 (-224))))) (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))))))) (T -152))
+((-1568 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 (-224))))))) (-1568 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)) (-5 *3 (-638 (-936 (-224)))))) (-4251 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 *4)))) (|:| |xValues| (-1084 *4)) (|:| |yValues| (-1084 *4)))) (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 *4)))))) (-4146 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561))) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-920)) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))) (-1568 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561))) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-920)) (-5 *2 (-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224))))) (-5 *1 (-152)))))
+(-10 -7 (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -4146 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920))) (-15 -4146 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-920) (-406 (-561)) (-406 (-561)))) (-15 -4251 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-936 (-224))))) (-15 -1568 ((-2 (|:| |brans| (-638 (-638 (-936 (-224))))) (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))) (-638 (-638 (-936 (-224)))))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-2400 (((-638 (-1125)) $) 15)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-1125) $) 9)) (-1733 (((-112) $ $) NIL)))
+(((-153) (-13 (-1073) (-10 -8 (-15 -2400 ((-638 (-1125)) $)) (-15 -3279 ((-1125) $))))) (T -153))
+((-2400 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-153)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153)))))
+(-13 (-1073) (-10 -8 (-15 -2400 ((-638 (-1125)) $)) (-15 -3279 ((-1125) $))))
+((-4262 (((-638 (-168 |#2|)) |#1| |#2|) 45)))
+(((-154 |#1| |#2|) (-10 -7 (-15 -4262 ((-638 (-168 |#2|)) |#1| |#2|))) (-1229 (-168 (-561))) (-13 (-362) (-842))) (T -154))
+((-4262 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-168 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1229 (-168 (-561)))) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -4262 ((-638 (-168 |#2|)) |#1| |#2|)))
+((-4011 (((-112) $ $) NIL)) (-4306 (((-1204) $) 12)) (-4293 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-155) (-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1204) $))))) (T -155))
+((-4293 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-155)))))
+(-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1204) $))))
+((-4011 (((-112) $ $) NIL)) (-1953 (($) 15)) (-4178 (($) 14)) (-2478 (((-914)) 22)) (-1764 (((-1148) $) NIL)) (-4177 (((-561) $) 19)) (-1714 (((-1110) $) NIL)) (-1375 (($) 16)) (-1871 (($ (-561)) 23)) (-4022 (((-856) $) 29)) (-3619 (($) 17)) (-1733 (((-112) $ $) 13)) (-1813 (($ $ $) 11)) (* (($ (-914) $) 21) (($ (-224) $) 8)))
+(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-914) $)) (-15 * ($ (-224) $)) (-15 -1813 ($ $ $)) (-15 -4178 ($)) (-15 -1953 ($)) (-15 -1375 ($)) (-15 -3619 ($)) (-15 -4177 ((-561) $)) (-15 -2478 ((-914))) (-15 -1871 ($ (-561)))))) (T -156))
+((-1813 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-4178 (*1 *1) (-5 *1 (-156))) (-1953 (*1 *1) (-5 *1 (-156))) (-1375 (*1 *1) (-5 *1 (-156))) (-3619 (*1 *1) (-5 *1 (-156))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-156)))) (-2478 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-156)))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-156)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-914) $)) (-15 * ($ (-224) $)) (-15 -1813 ($ $ $)) (-15 -4178 ($)) (-15 -1953 ($)) (-15 -1375 ($)) (-15 -3619 ($)) (-15 -4177 ((-561) $)) (-15 -2478 ((-914))) (-15 -1871 ($ (-561)))))
+((-4328 ((|#2| |#2| (-1082 |#2|)) 88) ((|#2| |#2| (-1166)) 68)) (-3615 ((|#2| |#2| (-1082 |#2|)) 87) ((|#2| |#2| (-1166)) 67)) (-2227 ((|#2| |#2| |#2|) 27)) (-3479 (((-114) (-114)) 99)) (-2486 ((|#2| (-638 |#2|)) 117)) (-3842 ((|#2| (-638 |#2|)) 135)) (-4005 ((|#2| (-638 |#2|)) 125)) (-4258 ((|#2| |#2|) 123)) (-3870 ((|#2| (-638 |#2|)) 111)) (-3684 ((|#2| (-638 |#2|)) 112)) (-2718 ((|#2| (-638 |#2|)) 133)) (-2335 ((|#2| |#2| (-1166)) 56) ((|#2| |#2|) 55)) (-2101 ((|#2| |#2|) 23)) (-3599 ((|#2| |#2| |#2|) 26)) (-2665 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-157 |#1| |#2|) (-10 -7 (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3599 (|#2| |#2| |#2|)) (-15 -2227 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -2335 (|#2| |#2| (-1166))) (-15 -4328 (|#2| |#2| (-1166))) (-15 -4328 (|#2| |#2| (-1082 |#2|))) (-15 -3615 (|#2| |#2| (-1166))) (-15 -3615 (|#2| |#2| (-1082 |#2|))) (-15 -4258 (|#2| |#2|)) (-15 -2718 (|#2| (-638 |#2|))) (-15 -4005 (|#2| (-638 |#2|))) (-15 -3842 (|#2| (-638 |#2|))) (-15 -3870 (|#2| (-638 |#2|))) (-15 -3684 (|#2| (-638 |#2|))) (-15 -2486 (|#2| (-638 |#2|)))) (-13 (-844) (-553)) (-429 |#1|)) (T -157))
+((-2486 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-553))))) (-4258 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3615 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)))) (-3615 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-4328 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)))) (-4328 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-2335 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2101 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2227 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3599 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *4)) (-4 *4 (-429 *3)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4)))))
+(-10 -7 (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3599 (|#2| |#2| |#2|)) (-15 -2227 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -2335 (|#2| |#2| (-1166))) (-15 -4328 (|#2| |#2| (-1166))) (-15 -4328 (|#2| |#2| (-1082 |#2|))) (-15 -3615 (|#2| |#2| (-1166))) (-15 -3615 (|#2| |#2| (-1082 |#2|))) (-15 -4258 (|#2| |#2|)) (-15 -2718 (|#2| (-638 |#2|))) (-15 -4005 (|#2| (-638 |#2|))) (-15 -3842 (|#2| (-638 |#2|))) (-15 -3870 (|#2| (-638 |#2|))) (-15 -3684 (|#2| (-638 |#2|))) (-15 -2486 (|#2| (-638 |#2|))))
+((-3654 ((|#1| |#1| |#1|) 53)) (-2521 ((|#1| |#1| |#1|) 50)) (-2227 ((|#1| |#1| |#1|) 44)) (-1632 ((|#1| |#1|) 35)) (-4180 ((|#1| |#1| (-638 |#1|)) 43)) (-2101 ((|#1| |#1|) 37)) (-3599 ((|#1| |#1| |#1|) 40)))
+(((-158 |#1|) (-10 -7 (-15 -3599 (|#1| |#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -4180 (|#1| |#1| (-638 |#1|))) (-15 -1632 (|#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|))) (-543)) (T -158))
+((-3654 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-2521 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-2227 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1632 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-4180 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))) (-2101 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3599 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(-10 -7 (-15 -3599 (|#1| |#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -4180 (|#1| |#1| (-638 |#1|))) (-15 -1632 (|#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)))
+((-4328 (($ $ (-1166)) 12) (($ $ (-1082 $)) 11)) (-3615 (($ $ (-1166)) 10) (($ $ (-1082 $)) 9)) (-2227 (($ $ $) 8)) (-2335 (($ $) 14) (($ $ (-1166)) 13)) (-2101 (($ $) 7)) (-3599 (($ $ $) 6)))
(((-159) (-139)) (T -159))
-((-2092 (*1 *1 *1) (-4 *1 (-159))) (-2092 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))) (-1755 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159)))) (-1362 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))) (-1362 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159)))))
-(-13 (-142) (-10 -8 (-15 -2092 ($ $)) (-15 -2092 ($ $ (-1163))) (-15 -1755 ($ $ (-1163))) (-15 -1755 ($ $ (-1079 $))) (-15 -1362 ($ $ (-1163))) (-15 -1362 ($ $ (-1079 $)))))
+((-2335 (*1 *1 *1) (-4 *1 (-159))) (-2335 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-4328 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))) (-3615 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-3615 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))))
+(-13 (-142) (-10 -8 (-15 -2335 ($ $)) (-15 -2335 ($ $ (-1166))) (-15 -4328 ($ $ (-1166))) (-15 -4328 ($ $ (-1082 $))) (-15 -3615 ($ $ (-1166))) (-15 -3615 ($ $ (-1082 $)))))
(((-142) . T))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-635 (-1122)) $) 9)) (-1708 (((-112) $ $) NIL)))
-(((-160) (-13 (-1070) (-10 -8 (-15 -3190 ((-635 (-1122)) $))))) (T -160))
-((-3190 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-160)))))
-(-13 (-1070) (-10 -8 (-15 -3190 ((-635 (-1122)) $))))
-((-3929 (((-112) $ $) NIL)) (-3496 (($ (-558)) 13) (($ $ $) 14)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 17)) (-1708 (((-112) $ $) 9)))
-(((-161) (-13 (-1087) (-10 -8 (-15 -3496 ($ (-558))) (-15 -3496 ($ $ $))))) (T -161))
-((-3496 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-161)))) (-3496 (*1 *1 *1 *1) (-5 *1 (-161))))
-(-13 (-1087) (-10 -8 (-15 -3496 ($ (-558))) (-15 -3496 ($ $ $))))
-((-2154 (((-114) (-1163)) 97)))
-(((-162) (-10 -7 (-15 -2154 ((-114) (-1163))))) (T -162))
-((-2154 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-114)) (-5 *1 (-162)))))
-(-10 -7 (-15 -2154 ((-114) (-1163))))
-((-1639 ((|#3| |#3|) 19)))
-(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -1639 (|#3| |#3|))) (-1039) (-1222 |#1|) (-1222 |#2|)) (T -163))
-((-1639 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-1222 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1222 *4)))))
-(-10 -7 (-15 -1639 (|#3| |#3|)))
-((-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 216)) (-1719 ((|#2| $) 95)) (-2277 (($ $) 246)) (-2131 (($ $) 240)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 39)) (-2254 (($ $) 244)) (-2109 (($ $) 238)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3226 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 138)) (-1709 (($ $ $) 221)) (-1918 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 154) (((-679 |#2|) (-679 $)) 148)) (-3866 (($ (-1159 |#2|)) 118) (((-3 $ "failed") (-406 (-1159 |#2|))) NIL)) (-3248 (((-3 $ "failed") $) 208)) (-3904 (((-3 (-406 (-558)) "failed") $) 198)) (-2288 (((-112) $) 193)) (-1673 (((-406 (-558)) $) 196)) (-1489 (((-911)) 88)) (-2881 (($ $ $) 223)) (-2310 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-3348 (($) 235)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 185) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 190)) (-1423 ((|#2| $) 93)) (-1715 (((-1159 |#2|) $) 120)) (-3397 (($ (-1 |#2| |#2|) $) 101)) (-4342 (($ $) 237)) (-3850 (((-1159 |#2|) $) 119)) (-3823 (($ $) 201)) (-3464 (($) 96)) (-2321 (((-417 (-1159 $)) (-1159 $)) 87)) (-2796 (((-417 (-1159 $)) (-1159 $)) 56)) (-2861 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3944 (($ $) 236)) (-1562 (((-762) $) 218)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 228)) (-3789 ((|#2| (-1246 $)) NIL) ((|#2|) 90)) (-3780 (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-2297 (((-1159 |#2|)) 113)) (-2265 (($ $) 245)) (-2120 (($ $) 239)) (-2979 (((-1246 |#2|) $ (-1246 $)) 127) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $) 109) (((-679 |#2|) (-1246 $)) NIL)) (-3441 (((-1246 |#2|) $) NIL) (($ (-1246 |#2|)) NIL) (((-1159 |#2|) $) NIL) (($ (-1159 |#2|)) NIL) (((-882 (-558)) $) 176) (((-882 (-378)) $) 180) (((-168 (-378)) $) 166) (((-168 (-224)) $) 161) (((-534) $) 172)) (-3068 (($ $) 97)) (-3940 (((-853) $) 137) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-406 (-558))) NIL) (($ $) NIL)) (-1969 (((-1159 |#2|) $) 23)) (-2417 (((-762)) 99)) (-4175 (($ $) 249)) (-2209 (($ $) 243)) (-2325 (($ $) 247)) (-2184 (($ $) 241)) (-2362 ((|#2| $) 232)) (-4164 (($ $) 248)) (-2195 (($ $) 242)) (-4241 (($ $) 156)) (-1708 (((-112) $ $) 103)) (-1728 (((-112) $ $) 192)) (-1796 (($ $) 105) (($ $ $) NIL)) (-1785 (($ $ $) 104)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-406 (-558))) 266) (($ $ $) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL)))
-(((-164 |#1| |#2|) (-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3940 (|#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2008 ((-2 (|:| -3466 |#1|) (|:| -4370 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1562 ((-762) |#1|)) (-15 -3902 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3441 ((-168 (-224)) |#1|)) (-15 -3441 ((-168 (-378)) |#1|)) (-15 -2131 (|#1| |#1|)) (-15 -2109 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4342 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3348 (|#1|)) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2796 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2321 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -2310 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2362 (|#2| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3068 (|#1| |#1|)) (-15 -3464 (|#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3866 ((-3 |#1| "failed") (-406 (-1159 |#2|)))) (-15 -3850 ((-1159 |#2|) |#1|)) (-15 -3441 (|#1| (-1159 |#2|))) (-15 -3866 (|#1| (-1159 |#2|))) (-15 -2297 ((-1159 |#2|))) (-15 -1918 ((-679 |#2|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3441 ((-1159 |#2|) |#1|)) (-15 -3789 (|#2|)) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -1715 ((-1159 |#2|) |#1|)) (-15 -1969 ((-1159 |#2|) |#1|)) (-15 -3789 (|#2| (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -1423 (|#2| |#1|)) (-15 -1719 (|#2| |#1|)) (-15 -1489 ((-911))) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164))
-((-2417 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-1489 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-911)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-3789 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-2297 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1159 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))))
-(-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3940 (|#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2008 ((-2 (|:| -3466 |#1|) (|:| -4370 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1562 ((-762) |#1|)) (-15 -3902 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3441 ((-168 (-224)) |#1|)) (-15 -3441 ((-168 (-378)) |#1|)) (-15 -2131 (|#1| |#1|)) (-15 -2109 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4342 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3348 (|#1|)) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2796 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2321 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -2310 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2362 (|#2| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3068 (|#1| |#1|)) (-15 -3464 (|#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3866 ((-3 |#1| "failed") (-406 (-1159 |#2|)))) (-15 -3850 ((-1159 |#2|) |#1|)) (-15 -3441 (|#1| (-1159 |#2|))) (-15 -3866 (|#1| (-1159 |#2|))) (-15 -2297 ((-1159 |#2|))) (-15 -1918 ((-679 |#2|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3441 ((-1159 |#2|) |#1|)) (-15 -3789 (|#2|)) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -1715 ((-1159 |#2|) |#1|)) (-15 -1969 ((-1159 |#2|) |#1|)) (-15 -3789 (|#2| (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -1423 (|#2| |#1|)) (-15 -1719 (|#2| |#1|)) (-15 -1489 ((-911))) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 93 (-3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-3244 (($ $) 94 (-3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-4326 (((-112) $) 96 (-3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-3409 (((-679 |#1|) (-1246 $)) 47) (((-679 |#1|)) 62)) (-1719 ((|#1| $) 53)) (-2277 (($ $) 227 (|has| |#1| (-1185)))) (-2131 (($ $) 210 (|has| |#1| (-1185)))) (-3067 (((-1173 (-911) (-762)) (-558)) 146 (|has| |#1| (-348)))) (-1868 (((-3 $ "failed") $ $) 19)) (-2418 (((-417 (-1159 $)) (-1159 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-2018 (($ $) 113 (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-4110 (((-417 $) $) 114 (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-3948 (($ $) 240 (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-1599 (((-112) $ $) 104 (|has| |#1| (-306)))) (-2507 (((-762)) 87 (|has| |#1| (-367)))) (-2254 (($ $) 226 (|has| |#1| (-1185)))) (-2109 (($ $) 211 (|has| |#1| (-1185)))) (-2298 (($ $) 225 (|has| |#1| (-1185)))) (-2158 (($ $) 212 (|has| |#1| (-1185)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 169 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 167 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 164)) (-3226 (((-558) $) 168 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 166 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 165)) (-3431 (($ (-1246 |#1|) (-1246 $)) 49) (($ (-1246 |#1|)) 65)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1709 (($ $ $) 108 (|has| |#1| (-306)))) (-3533 (((-679 |#1|) $ (-1246 $)) 54) (((-679 |#1|) $) 60)) (-1918 (((-679 (-558)) (-679 $)) 163 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 162 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 161) (((-679 |#1|) (-679 $)) 160)) (-3866 (($ (-1159 |#1|)) 157) (((-3 $ "failed") (-406 (-1159 |#1|))) 154 (|has| |#1| (-362)))) (-3248 (((-3 $ "failed") $) 33)) (-3963 ((|#1| $) 252)) (-3904 (((-3 (-406 (-558)) "failed") $) 245 (|has| |#1| (-543)))) (-2288 (((-112) $) 247 (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) 246 (|has| |#1| (-543)))) (-1489 (((-911)) 55)) (-3692 (($) 90 (|has| |#1| (-367)))) (-2881 (($ $ $) 107 (|has| |#1| (-306)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 102 (|has| |#1| (-306)))) (-3567 (($) 148 (|has| |#1| (-348)))) (-3617 (((-112) $) 149 (|has| |#1| (-348)))) (-4362 (($ $ (-762)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2992 (((-112) $) 115 (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-2310 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1048)) (|has| |#1| (-1185))))) (-3348 (($) 237 (|has| |#1| (-1185)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 260 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 259 (|has| |#1| (-876 (-378))))) (-2532 (((-911) $) 151 (|has| |#1| (-348))) (((-824 (-911)) $) 137 (|has| |#1| (-348)))) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 239 (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-1423 ((|#1| $) 52)) (-2521 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 111 (|has| |#1| (-306)))) (-1715 (((-1159 |#1|) $) 45 (|has| |#1| (-362)))) (-2142 (($ $ $) 206 (|has| |#1| (-841)))) (-2281 (($ $ $) 205 (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) 261)) (-1486 (((-911) $) 89 (|has| |#1| (-367)))) (-4342 (($ $) 234 (|has| |#1| (-1185)))) (-3850 (((-1159 |#1|) $) 155)) (-1500 (($ (-635 $)) 100 (-3994 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (($ $ $) 99 (-3994 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-2510 (((-1145) $) 9)) (-3823 (($ $) 116 (|has| |#1| (-362)))) (-1823 (($) 142 (|has| |#1| (-348)) CONST)) (-2349 (($ (-911)) 88 (|has| |#1| (-367)))) (-3464 (($) 256)) (-3975 ((|#1| $) 253)) (-1688 (((-1107) $) 10)) (-2461 (($) 159)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 101 (-3994 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-1544 (($ (-635 $)) 98 (-3994 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (($ $ $) 97 (-3994 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 145 (|has| |#1| (-348)))) (-2321 (((-417 (-1159 $)) (-1159 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-2796 (((-417 (-1159 $)) (-1159 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3939 (((-417 $) $) 112 (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 109 (|has| |#1| (-306)))) (-2861 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 92 (-3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-306)))) (-3944 (($ $) 235 (|has| |#1| (-1185)))) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 263 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 262 (|has| |#1| (-512 (-1163) |#1|)))) (-1562 (((-762) $) 105 (|has| |#1| (-306)))) (-2276 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 106 (|has| |#1| (-306)))) (-3789 ((|#1| (-1246 $)) 48) ((|#1|) 61)) (-2551 (((-762) $) 150 (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) 138 (|has| |#1| (-348)))) (-3780 (($ $ (-1 |#1| |#1|) (-762)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-635 (-1163)) (-635 (-762))) 129 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 130 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 131 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 132 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 134 (-3994 (-2157 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2157 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-3994 (-2157 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2157 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2355 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-2297 (((-1159 |#1|)) 158)) (-2312 (($ $) 224 (|has| |#1| (-1185)))) (-2170 (($ $) 213 (|has| |#1| (-1185)))) (-2933 (($) 147 (|has| |#1| (-348)))) (-2289 (($ $) 223 (|has| |#1| (-1185)))) (-2146 (($ $) 214 (|has| |#1| (-1185)))) (-2265 (($ $) 222 (|has| |#1| (-1185)))) (-2120 (($ $) 215 (|has| |#1| (-1185)))) (-2979 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50) (((-1246 |#1|) $) 67) (((-679 |#1|) (-1246 $)) 66)) (-3441 (((-1246 |#1|) $) 64) (($ (-1246 |#1|)) 63) (((-1159 |#1|) $) 170) (($ (-1159 |#1|)) 156) (((-882 (-558)) $) 258 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 257 (|has| |#1| (-606 (-882 (-378))))) (((-168 (-378)) $) 209 (|has| |#1| (-1012))) (((-168 (-224)) $) 208 (|has| |#1| (-1012))) (((-534) $) 207 (|has| |#1| (-606 (-534))))) (-3068 (($ $) 255)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 144 (-3994 (-2157 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (|has| |#1| (-348))))) (-1436 (($ |#1| |#1|) 254)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ (-406 (-558))) 86 (-3994 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) 91 (-3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-1487 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (-3994 (-2157 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (|has| |#1| (-144))))) (-1969 (((-1159 |#1|) $) 46)) (-2417 (((-762)) 28)) (-2743 (((-1246 $)) 68)) (-4175 (($ $) 233 (|has| |#1| (-1185)))) (-2209 (($ $) 221 (|has| |#1| (-1185)))) (-2671 (((-112) $ $) 95 (-3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))) (-2325 (($ $) 232 (|has| |#1| (-1185)))) (-2184 (($ $) 220 (|has| |#1| (-1185)))) (-4197 (($ $) 231 (|has| |#1| (-1185)))) (-2233 (($ $) 219 (|has| |#1| (-1185)))) (-2362 ((|#1| $) 249 (|has| |#1| (-1185)))) (-2038 (($ $) 230 (|has| |#1| (-1185)))) (-2244 (($ $) 218 (|has| |#1| (-1185)))) (-4185 (($ $) 229 (|has| |#1| (-1185)))) (-2221 (($ $) 217 (|has| |#1| (-1185)))) (-4164 (($ $) 228 (|has| |#1| (-1185)))) (-2195 (($ $) 216 (|has| |#1| (-1185)))) (-4241 (($ $) 250 (|has| |#1| (-1048)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-1 |#1| |#1|) (-762)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-635 (-1163)) (-635 (-762))) 125 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 126 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 127 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 128 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 133 (-3994 (-2157 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2157 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-3994 (-2157 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2157 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-1757 (((-112) $ $) 203 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 202 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 204 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 201 (|has| |#1| (-841)))) (-1805 (($ $ $) 120 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-406 (-558))) 238 (-12 (|has| |#1| (-992)) (|has| |#1| (-1185)))) (($ $ $) 236 (|has| |#1| (-1185))) (($ $ (-558)) 117 (|has| |#1| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-558)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-558))) 118 (|has| |#1| (-362)))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-638 (-1125)) $) 9)) (-1733 (((-112) $ $) NIL)))
+(((-160) (-13 (-1073) (-10 -8 (-15 -3279 ((-638 (-1125)) $))))) (T -160))
+((-3279 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-160)))))
+(-13 (-1073) (-10 -8 (-15 -3279 ((-638 (-1125)) $))))
+((-4011 (((-112) $ $) NIL)) (-1537 (($ (-561)) 13) (($ $ $) 14)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 17)) (-1733 (((-112) $ $) 9)))
+(((-161) (-13 (-1090) (-10 -8 (-15 -1537 ($ (-561))) (-15 -1537 ($ $ $))))) (T -161))
+((-1537 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-161)))) (-1537 (*1 *1 *1 *1) (-5 *1 (-161))))
+(-13 (-1090) (-10 -8 (-15 -1537 ($ (-561))) (-15 -1537 ($ $ $))))
+((-3479 (((-114) (-1166)) 97)))
+(((-162) (-10 -7 (-15 -3479 ((-114) (-1166))))) (T -162))
+((-3479 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-114)) (-5 *1 (-162)))))
+(-10 -7 (-15 -3479 ((-114) (-1166))))
+((-4330 ((|#3| |#3|) 19)))
+(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -4330 (|#3| |#3|))) (-1042) (-1229 |#1|) (-1229 |#2|)) (T -163))
+((-4330 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-1229 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1229 *4)))))
+(-10 -7 (-15 -4330 (|#3| |#3|)))
+((-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 216)) (-1744 ((|#2| $) 95)) (-2978 (($ $) 246)) (-4064 (($ $) 240)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 39)) (-4172 (($ $) 244)) (-4041 (($ $) 238)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3938 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 138)) (-1793 (($ $ $) 221)) (-3602 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 154) (((-682 |#2|) (-682 $)) 148)) (-3185 (($ (-1162 |#2|)) 118) (((-3 $ "failed") (-406 (-1162 |#2|))) NIL)) (-3466 (((-3 $ "failed") $) 208)) (-2937 (((-3 (-406 (-561)) "failed") $) 198)) (-3798 (((-112) $) 193)) (-3354 (((-406 (-561)) $) 196)) (-1569 (((-914)) 88)) (-1774 (($ $ $) 223)) (-3136 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-4067 (($) 235)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 185) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 190)) (-1672 ((|#2| $) 93)) (-2692 (((-1162 |#2|) $) 120)) (-4120 (($ (-1 |#2| |#2|) $) 101)) (-4348 (($ $) 237)) (-3174 (((-1162 |#2|) $) 119)) (-1540 (($ $) 201)) (-2588 (($) 96)) (-3396 (((-417 (-1162 $)) (-1162 $)) 87)) (-3449 (((-417 (-1162 $)) (-1162 $)) 56)) (-1756 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3440 (($ $) 236)) (-3569 (((-765) $) 218)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 228)) (-2553 ((|#2| (-1253 $)) NIL) ((|#2|) 90)) (-3238 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3660 (((-1162 |#2|)) 113)) (-2968 (($ $) 245)) (-4054 (($ $) 239)) (-3969 (((-1253 |#2|) $ (-1253 $)) 127) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 109) (((-682 |#2|) (-1253 $)) NIL)) (-4174 (((-1253 |#2|) $) NIL) (($ (-1253 |#2|)) NIL) (((-1162 |#2|) $) NIL) (($ (-1162 |#2|)) NIL) (((-885 (-561)) $) 176) (((-885 (-378)) $) 180) (((-168 (-378)) $) 166) (((-168 (-224)) $) 161) (((-534) $) 172)) (-2260 (($ $) 97)) (-4022 (((-856) $) 137) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-406 (-561))) NIL) (($ $) NIL)) (-2485 (((-1162 |#2|) $) 23)) (-4259 (((-765)) 99)) (-3055 (($ $) 249)) (-4132 (($ $) 243)) (-3031 (($ $) 247)) (-4105 (($ $) 241)) (-1872 ((|#2| $) 232)) (-3043 (($ $) 248)) (-4117 (($ $) 242)) (-3749 (($ $) 156)) (-1733 (((-112) $ $) 103)) (-1754 (((-112) $ $) 192)) (-1824 (($ $) 105) (($ $ $) NIL)) (-1813 (($ $ $) 104)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-561))) 266) (($ $ $) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL)))
+(((-164 |#1| |#2|) (-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -4022 (|#1| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1769 ((-2 (|:| -3027 |#1|) (|:| -4377 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3569 ((-765) |#1|)) (-15 -1971 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1774 (|#1| |#1| |#1|)) (-15 -1793 (|#1| |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -1754 ((-112) |#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4174 ((-168 (-224)) |#1|)) (-15 -4174 ((-168 (-378)) |#1|)) (-15 -4064 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -4054 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4067 (|#1|)) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -3449 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3396 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3136 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1872 (|#2| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2260 (|#1| |#1|)) (-15 -2588 (|#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3185 ((-3 |#1| "failed") (-406 (-1162 |#2|)))) (-15 -3174 ((-1162 |#2|) |#1|)) (-15 -4174 (|#1| (-1162 |#2|))) (-15 -3185 (|#1| (-1162 |#2|))) (-15 -3660 ((-1162 |#2|))) (-15 -3602 ((-682 |#2|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4174 ((-1162 |#2|) |#1|)) (-15 -2553 (|#2|)) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -2692 ((-1162 |#2|) |#1|)) (-15 -2485 ((-1162 |#2|) |#1|)) (-15 -2553 (|#2| (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1672 (|#2| |#1|)) (-15 -1744 (|#2| |#1|)) (-15 -1569 ((-914))) (-15 -4022 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164))
+((-4259 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-1569 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-914)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-2553 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-3660 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1162 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))))
+(-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -4022 (|#1| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1769 ((-2 (|:| -3027 |#1|) (|:| -4377 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3569 ((-765) |#1|)) (-15 -1971 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1774 (|#1| |#1| |#1|)) (-15 -1793 (|#1| |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -1754 ((-112) |#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4174 ((-168 (-224)) |#1|)) (-15 -4174 ((-168 (-378)) |#1|)) (-15 -4064 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -4054 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4067 (|#1|)) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -3449 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3396 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3136 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1872 (|#2| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2260 (|#1| |#1|)) (-15 -2588 (|#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3185 ((-3 |#1| "failed") (-406 (-1162 |#2|)))) (-15 -3174 ((-1162 |#2|) |#1|)) (-15 -4174 (|#1| (-1162 |#2|))) (-15 -3185 (|#1| (-1162 |#2|))) (-15 -3660 ((-1162 |#2|))) (-15 -3602 ((-682 |#2|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4174 ((-1162 |#2|) |#1|)) (-15 -2553 (|#2|)) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -2692 ((-1162 |#2|) |#1|)) (-15 -2485 ((-1162 |#2|) |#1|)) (-15 -2553 (|#2| (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1672 (|#2| |#1|)) (-15 -1744 (|#2| |#1|)) (-15 -1569 ((-914))) (-15 -4022 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 93 (-4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-2851 (($ $) 94 (-4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3359 (((-112) $) 96 (-4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-2695 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-1744 ((|#1| $) 53)) (-2978 (($ $) 227 (|has| |#1| (-1190)))) (-4064 (($ $) 210 (|has| |#1| (-1190)))) (-4207 (((-1178 (-914) (-765)) (-561)) 146 (|has| |#1| (-348)))) (-2249 (((-3 $ "failed") $ $) 19)) (-4046 (((-417 (-1162 $)) (-1162 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1591 (($ $) 113 (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3422 (((-417 $) $) 114 (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-1665 (($ $) 240 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1671 (((-112) $ $) 104 (|has| |#1| (-306)))) (-1393 (((-765)) 87 (|has| |#1| (-367)))) (-4172 (($ $) 226 (|has| |#1| (-1190)))) (-4041 (($ $) 211 (|has| |#1| (-1190)))) (-3009 (($ $) 225 (|has| |#1| (-1190)))) (-4085 (($ $) 212 (|has| |#1| (-1190)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 169 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 167 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 164)) (-3938 (((-561) $) 168 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 166 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 165)) (-2257 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1793 (($ $ $) 108 (|has| |#1| (-306)))) (-4145 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-3602 (((-682 (-561)) (-682 $)) 163 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 162 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-3185 (($ (-1162 |#1|)) 157) (((-3 $ "failed") (-406 (-1162 |#1|))) 154 (|has| |#1| (-362)))) (-3466 (((-3 $ "failed") $) 33)) (-1673 ((|#1| $) 252)) (-2937 (((-3 (-406 (-561)) "failed") $) 245 (|has| |#1| (-543)))) (-3798 (((-112) $) 247 (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) 246 (|has| |#1| (-543)))) (-1569 (((-914)) 55)) (-1332 (($) 90 (|has| |#1| (-367)))) (-1774 (($ $ $) 107 (|has| |#1| (-306)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 102 (|has| |#1| (-306)))) (-2022 (($) 148 (|has| |#1| (-348)))) (-1803 (((-112) $) 149 (|has| |#1| (-348)))) (-1575 (($ $ (-765)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2737 (((-112) $) 115 (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3136 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4067 (($) 237 (|has| |#1| (-1190)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 260 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 259 (|has| |#1| (-879 (-378))))) (-4163 (((-914) $) 151 (|has| |#1| (-348))) (((-827 (-914)) $) 137 (|has| |#1| (-348)))) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 239 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-1672 ((|#1| $) 52)) (-1663 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 111 (|has| |#1| (-306)))) (-2692 (((-1162 |#1|) $) 45 (|has| |#1| (-362)))) (-3443 (($ $ $) 206 (|has| |#1| (-844)))) (-2986 (($ $ $) 205 (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) 261)) (-3198 (((-914) $) 89 (|has| |#1| (-367)))) (-4348 (($ $) 234 (|has| |#1| (-1190)))) (-3174 (((-1162 |#1|) $) 155)) (-1582 (($ (-638 $)) 100 (-4007 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (($ $ $) 99 (-4007 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-1764 (((-1148) $) 9)) (-1540 (($ $) 116 (|has| |#1| (-362)))) (-3721 (($) 142 (|has| |#1| (-348)) CONST)) (-2413 (($ (-914)) 88 (|has| |#1| (-367)))) (-2588 (($) 256)) (-1684 ((|#1| $) 253)) (-1714 (((-1110) $) 10)) (-3158 (($) 159)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 101 (-4007 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-1623 (($ (-638 $)) 98 (-4007 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (($ $ $) 97 (-4007 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 145 (|has| |#1| (-348)))) (-3396 (((-417 (-1162 $)) (-1162 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-3449 (((-417 (-1162 $)) (-1162 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1657 (((-417 $) $) 112 (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 109 (|has| |#1| (-306)))) (-1756 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 92 (-4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 103 (|has| |#1| (-306)))) (-3440 (($ $) 235 (|has| |#1| (-1190)))) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 263 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 262 (|has| |#1| (-512 (-1166) |#1|)))) (-3569 (((-765) $) 105 (|has| |#1| (-306)))) (-2277 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 106 (|has| |#1| (-306)))) (-2553 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-1913 (((-765) $) 150 (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-348)))) (-3238 (($ $ (-1 |#1| |#1|) (-765)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-638 (-1166)) (-638 (-765))) 129 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 130 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 131 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 132 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 134 (-4007 (-2170 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2170 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-4007 (-2170 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2170 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2656 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3660 (((-1162 |#1|)) 158)) (-3021 (($ $) 224 (|has| |#1| (-1190)))) (-4095 (($ $) 213 (|has| |#1| (-1190)))) (-1796 (($) 147 (|has| |#1| (-348)))) (-2995 (($ $) 223 (|has| |#1| (-1190)))) (-4073 (($ $) 214 (|has| |#1| (-1190)))) (-2968 (($ $) 222 (|has| |#1| (-1190)))) (-4054 (($ $) 215 (|has| |#1| (-1190)))) (-3969 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4174 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63) (((-1162 |#1|) $) 170) (($ (-1162 |#1|)) 156) (((-885 (-561)) $) 258 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 257 (|has| |#1| (-609 (-885 (-378))))) (((-168 (-378)) $) 209 (|has| |#1| (-1015))) (((-168 (-224)) $) 208 (|has| |#1| (-1015))) (((-534) $) 207 (|has| |#1| (-609 (-534))))) (-2260 (($ $) 255)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 144 (-4007 (-2170 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (|has| |#1| (-348))))) (-1430 (($ |#1| |#1|) 254)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ (-406 (-561))) 86 (-4007 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) 91 (-4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-1760 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (-4007 (-2170 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))) (|has| |#1| (-144))))) (-2485 (((-1162 |#1|) $) 46)) (-4259 (((-765)) 28)) (-3711 (((-1253 $)) 68)) (-3055 (($ $) 233 (|has| |#1| (-1190)))) (-4132 (($ $) 221 (|has| |#1| (-1190)))) (-3168 (((-112) $ $) 95 (-4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))) (-3031 (($ $) 232 (|has| |#1| (-1190)))) (-4105 (($ $) 220 (|has| |#1| (-1190)))) (-3081 (($ $) 231 (|has| |#1| (-1190)))) (-4149 (($ $) 219 (|has| |#1| (-1190)))) (-1872 ((|#1| $) 249 (|has| |#1| (-1190)))) (-2125 (($ $) 230 (|has| |#1| (-1190)))) (-4160 (($ $) 218 (|has| |#1| (-1190)))) (-3066 (($ $) 229 (|has| |#1| (-1190)))) (-4142 (($ $) 217 (|has| |#1| (-1190)))) (-3043 (($ $) 228 (|has| |#1| (-1190)))) (-4117 (($ $) 216 (|has| |#1| (-1190)))) (-3749 (($ $) 250 (|has| |#1| (-1051)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-1 |#1| |#1|) (-765)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-638 (-1166)) (-638 (-765))) 125 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 126 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 127 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 128 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 133 (-4007 (-2170 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2170 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-4007 (-2170 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2170 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-1782 (((-112) $ $) 203 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 202 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 204 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 201 (|has| |#1| (-844)))) (-1833 (($ $ $) 120 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-406 (-561))) 238 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) 236 (|has| |#1| (-1190))) (($ $ (-561)) 117 (|has| |#1| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-561)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-561))) 118 (|has| |#1| (-362)))))
(((-165 |#1|) (-139) (-171)) (T -165))
-((-1423 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3464 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3068 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1436 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2861 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1048)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1185)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1048)) (-4 *3 (-1185)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-3904 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))))
-(-13 (-715 |t#1| (-1159 |t#1|)) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-874 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -3464 ($)) (-15 -3068 ($ $)) (-15 -1436 ($ |t#1| |t#1|)) (-15 -3975 (|t#1| $)) (-15 -3963 (|t#1| $)) (-15 -1423 (|t#1| $)) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-550)) (-15 -2861 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4382)) (-6 -4382) |%noBranch|) (IF (|has| |t#1| (-6 -4379)) (-6 -4379) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1012)) (PROGN (-6 (-606 (-168 (-224)))) (-6 (-606 (-168 (-378))))) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -4241 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1185)) (PROGN (-6 (-1185)) (-15 -2362 (|t#1| $)) (IF (|has| |t#1| (-992)) (-6 (-992)) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -2310 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-899)) (IF (|has| |t#1| (-306)) (-6 (-899)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1185)) ((-95) |has| |#1| (-1185)) ((-102) . T) ((-111 #0# #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3994 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-605 (-853)) . T) ((-171) . T) ((-606 (-168 (-224))) |has| |#1| (-1012)) ((-606 (-168 (-378))) |has| |#1| (-1012)) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-606 #1=(-1159 |#1|)) . T) ((-230 |#1|) . T) ((-232) -3994 (|has| |#1| (-348)) (|has| |#1| (-232))) ((-242) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1185)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3994 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -3994 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -3994 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| #1#) . T) ((-408 |#1| #1#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) -3994 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-491) |has| |#1| (-1185)) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-550) -3994 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-638 #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-708 |#1|) . T) ((-708 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-715 |#1| #1#) . T) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-899) -12 (|has| |#1| (-306)) (|has| |#1| (-899))) ((-910) -3994 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-992) -12 (|has| |#1| (-992)) (|has| |#1| (-1185))) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-348)) ((-1185) |has| |#1| (-1185)) ((-1188) |has| |#1| (-1185)) ((-1200) . T) ((-1204) -3994 (|has| |#1| (-348)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))))
-((-3939 (((-417 |#2|) |#2|) 63)))
-(((-166 |#1| |#2|) (-10 -7 (-15 -3939 ((-417 |#2|) |#2|))) (-306) (-1222 (-168 |#1|))) (T -166))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
-(-10 -7 (-15 -3939 ((-417 |#2|) |#2|)))
-((-3397 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -3397 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-171) (-171)) (T -167))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6)))))
-(-10 -7 (-15 -3397 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 33)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-3244 (($ $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-4326 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-3409 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) NIL)) (-1719 ((|#1| $) NIL)) (-2277 (($ $) NIL (|has| |#1| (-1185)))) (-2131 (($ $) NIL (|has| |#1| (-1185)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-348)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-2018 (($ $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-4110 (((-417 $) $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-3948 (($ $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-306)))) (-2507 (((-762)) NIL (|has| |#1| (-367)))) (-2254 (($ $) NIL (|has| |#1| (-1185)))) (-2109 (($ $) NIL (|has| |#1| (-1185)))) (-2298 (($ $) NIL (|has| |#1| (-1185)))) (-2158 (($ $) NIL (|has| |#1| (-1185)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3431 (($ (-1246 |#1|) (-1246 $)) NIL) (($ (-1246 |#1|)) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1709 (($ $ $) NIL (|has| |#1| (-306)))) (-3533 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3866 (($ (-1159 |#1|)) NIL) (((-3 $ "failed") (-406 (-1159 |#1|))) NIL (|has| |#1| (-362)))) (-3248 (((-3 $ "failed") $) NIL)) (-3963 ((|#1| $) 13)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-543)))) (-2288 (((-112) $) NIL (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) NIL (|has| |#1| (-543)))) (-1489 (((-911)) NIL)) (-3692 (($) NIL (|has| |#1| (-367)))) (-2881 (($ $ $) NIL (|has| |#1| (-306)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-306)))) (-3567 (($) NIL (|has| |#1| (-348)))) (-3617 (((-112) $) NIL (|has| |#1| (-348)))) (-4362 (($ $ (-762)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2992 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-2310 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1048)) (|has| |#1| (-1185))))) (-3348 (($) NIL (|has| |#1| (-1185)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| |#1| (-876 (-378))))) (-2532 (((-911) $) NIL (|has| |#1| (-348))) (((-824 (-911)) $) NIL (|has| |#1| (-348)))) (-3999 (((-112) $) 35)) (-2136 (($ $ (-558)) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1185))))) (-1423 ((|#1| $) 46)) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-1715 (((-1159 |#1|) $) NIL (|has| |#1| (-362)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-1486 (((-911) $) NIL (|has| |#1| (-367)))) (-4342 (($ $) NIL (|has| |#1| (-1185)))) (-3850 (((-1159 |#1|) $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1823 (($) NIL (|has| |#1| (-348)) CONST)) (-2349 (($ (-911)) NIL (|has| |#1| (-367)))) (-3464 (($) NIL)) (-3975 ((|#1| $) 15)) (-1688 (((-1107) $) NIL)) (-2461 (($) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-306)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| |#1| (-348)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-899))))) (-3939 (((-417 $) $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-362))))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-306)))) (-2861 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 47 (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-3944 (($ $) NIL (|has| |#1| (-1185)))) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-1562 (((-762) $) NIL (|has| |#1| (-306)))) (-2276 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-306)))) (-3789 ((|#1| (-1246 $)) NIL) ((|#1|) NIL)) (-2551 (((-762) $) NIL (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) NIL (|has| |#1| (-348)))) (-3780 (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2355 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2297 (((-1159 |#1|)) NIL)) (-2312 (($ $) NIL (|has| |#1| (-1185)))) (-2170 (($ $) NIL (|has| |#1| (-1185)))) (-2933 (($) NIL (|has| |#1| (-348)))) (-2289 (($ $) NIL (|has| |#1| (-1185)))) (-2146 (($ $) NIL (|has| |#1| (-1185)))) (-2265 (($ $) NIL (|has| |#1| (-1185)))) (-2120 (($ $) NIL (|has| |#1| (-1185)))) (-2979 (((-1246 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) (-1246 $) (-1246 $)) NIL) (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-3441 (((-1246 |#1|) $) NIL) (($ (-1246 |#1|)) NIL) (((-1159 |#1|) $) NIL) (($ (-1159 |#1|)) NIL) (((-882 (-558)) $) NIL (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#1| (-606 (-882 (-378))))) (((-168 (-378)) $) NIL (|has| |#1| (-1012))) (((-168 (-224)) $) NIL (|has| |#1| (-1012))) (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3068 (($ $) 45)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-348))))) (-1436 (($ |#1| |#1|) 37)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) 36) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-1487 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-1969 (((-1159 |#1|) $) NIL)) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL)) (-4175 (($ $) NIL (|has| |#1| (-1185)))) (-2209 (($ $) NIL (|has| |#1| (-1185)))) (-2671 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-306)) (|has| |#1| (-899))) (|has| |#1| (-550))))) (-2325 (($ $) NIL (|has| |#1| (-1185)))) (-2184 (($ $) NIL (|has| |#1| (-1185)))) (-4197 (($ $) NIL (|has| |#1| (-1185)))) (-2233 (($ $) NIL (|has| |#1| (-1185)))) (-2362 ((|#1| $) NIL (|has| |#1| (-1185)))) (-2038 (($ $) NIL (|has| |#1| (-1185)))) (-2244 (($ $) NIL (|has| |#1| (-1185)))) (-4185 (($ $) NIL (|has| |#1| (-1185)))) (-2221 (($ $) NIL (|has| |#1| (-1185)))) (-4164 (($ $) NIL (|has| |#1| (-1185)))) (-2195 (($ $) NIL (|has| |#1| (-1185)))) (-4241 (($ $) NIL (|has| |#1| (-1048)))) (-2207 (($) 28 T CONST)) (-2220 (($) 30 T CONST)) (-2555 (((-1145) $) 23 (|has| |#1| (-819))) (((-1145) $ (-112)) 25 (|has| |#1| (-819))) (((-1251) (-813) $) 26 (|has| |#1| (-819))) (((-1251) (-813) $ (-112)) 27 (|has| |#1| (-819)))) (-3042 (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 39)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-406 (-558))) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1185)))) (($ $ $) NIL (|has| |#1| (-1185))) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-558))) NIL (|has| |#1| (-362)))))
-(((-168 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|))) (-171)) (T -168))
-NIL
-(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|)))
-((-3441 (((-882 |#1|) |#3|) 22)))
-(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -3441 ((-882 |#1|) |#3|))) (-1087) (-13 (-606 (-882 |#1|)) (-171)) (-165 |#2|)) (T -169))
-((-3441 (*1 *2 *3) (-12 (-4 *5 (-13 (-606 *2) (-171))) (-5 *2 (-882 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1087)) (-4 *3 (-165 *5)))))
-(-10 -7 (-15 -3441 ((-882 |#1|) |#3|)))
-((-3929 (((-112) $ $) NIL)) (-3183 (((-112) $) 9)) (-3583 (((-112) $ (-112)) 11)) (-1395 (($) 12)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-4098 (($ $) 13)) (-3940 (((-853) $) 17)) (-2879 (((-112) $) 8)) (-1464 (((-112) $ (-112)) 10)) (-1708 (((-112) $ $) NIL)))
-(((-170) (-13 (-1087) (-10 -8 (-15 -1395 ($)) (-15 -2879 ((-112) $)) (-15 -3183 ((-112) $)) (-15 -1464 ((-112) $ (-112))) (-15 -3583 ((-112) $ (-112))) (-15 -4098 ($ $))))) (T -170))
-((-1395 (*1 *1) (-5 *1 (-170))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1464 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3583 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-4098 (*1 *1 *1) (-5 *1 (-170))))
-(-13 (-1087) (-10 -8 (-15 -1395 ($)) (-15 -2879 ((-112) $)) (-15 -3183 ((-112) $)) (-15 -1464 ((-112) $ (-112))) (-15 -3583 ((-112) $ (-112))) (-15 -4098 ($ $))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-1672 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2588 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2260 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1430 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1756 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-3749 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-2937 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))))
+(-13 (-718 |t#1| (-1162 |t#1|)) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-877 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -2588 ($)) (-15 -2260 ($ $)) (-15 -1430 ($ |t#1| |t#1|)) (-15 -1684 (|t#1| $)) (-15 -1673 (|t#1| $)) (-15 -1672 (|t#1| $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-6 (-553)) (-15 -1756 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4389)) (-6 -4389) |%noBranch|) (IF (|has| |t#1| (-6 -4386)) (-6 -4386) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-609 (-168 (-224)))) (-6 (-609 (-168 (-378))))) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3749 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1190)) (PROGN (-6 (-1190)) (-15 -1872 (|t#1| $)) (IF (|has| |t#1| (-995)) (-6 (-995)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3136 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-306)) (-6 (-902)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1190)) ((-95) |has| |#1| (-1190)) ((-102) . T) ((-111 #0# #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4007 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-608 (-856)) . T) ((-171) . T) ((-609 (-168 (-224))) |has| |#1| (-1015)) ((-609 (-168 (-378))) |has| |#1| (-1015)) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-609 #1=(-1162 |#1|)) . T) ((-230 |#1|) . T) ((-232) -4007 (|has| |#1| (-348)) (|has| |#1| (-232))) ((-242) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1190)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4007 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -4007 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4007 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| #1#) . T) ((-408 |#1| #1#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) -4007 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-491) |has| |#1| (-1190)) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-553) -4007 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-641 #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-718 |#1| #1#) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-902) -12 (|has| |#1| (-306)) (|has| |#1| (-902))) ((-913) -4007 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-995) -12 (|has| |#1| (-995)) (|has| |#1| (-1190))) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-348)) ((-1190) |has| |#1| (-1190)) ((-1193) |has| |#1| (-1190)) ((-1205) . T) ((-1209) -4007 (|has| |#1| (-348)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-902)))))
+((-1657 (((-417 |#2|) |#2|) 63)))
+(((-166 |#1| |#2|) (-10 -7 (-15 -1657 ((-417 |#2|) |#2|))) (-306) (-1229 (-168 |#1|))) (T -166))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1229 (-168 *4))))))
+(-10 -7 (-15 -1657 ((-417 |#2|) |#2|)))
+((-4120 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -4120 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-171) (-171)) (T -167))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6)))))
+(-10 -7 (-15 -4120 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 33)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-2851 (($ $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3359 (((-112) $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-2695 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-1744 ((|#1| $) NIL)) (-2978 (($ $) NIL (|has| |#1| (-1190)))) (-4064 (($ $) NIL (|has| |#1| (-1190)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-348)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1591 (($ $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3422 (((-417 $) $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-1665 (($ $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-306)))) (-1393 (((-765)) NIL (|has| |#1| (-367)))) (-4172 (($ $) NIL (|has| |#1| (-1190)))) (-4041 (($ $) NIL (|has| |#1| (-1190)))) (-3009 (($ $) NIL (|has| |#1| (-1190)))) (-4085 (($ $) NIL (|has| |#1| (-1190)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-2257 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1793 (($ $ $) NIL (|has| |#1| (-306)))) (-4145 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3185 (($ (-1162 |#1|)) NIL) (((-3 $ "failed") (-406 (-1162 |#1|))) NIL (|has| |#1| (-362)))) (-3466 (((-3 $ "failed") $) NIL)) (-1673 ((|#1| $) 13)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-543)))) (-3798 (((-112) $) NIL (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) NIL (|has| |#1| (-543)))) (-1569 (((-914)) NIL)) (-1332 (($) NIL (|has| |#1| (-367)))) (-1774 (($ $ $) NIL (|has| |#1| (-306)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-306)))) (-2022 (($) NIL (|has| |#1| (-348)))) (-1803 (((-112) $) NIL (|has| |#1| (-348)))) (-1575 (($ $ (-765)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2737 (((-112) $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-3136 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4067 (($) NIL (|has| |#1| (-1190)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| |#1| (-879 (-378))))) (-4163 (((-914) $) NIL (|has| |#1| (-348))) (((-827 (-914)) $) NIL (|has| |#1| (-348)))) (-3113 (((-112) $) 35)) (-2556 (($ $ (-561)) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-1672 ((|#1| $) 46)) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-306)))) (-2692 (((-1162 |#1|) $) NIL (|has| |#1| (-362)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3198 (((-914) $) NIL (|has| |#1| (-367)))) (-4348 (($ $) NIL (|has| |#1| (-1190)))) (-3174 (((-1162 |#1|) $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-3721 (($) NIL (|has| |#1| (-348)) CONST)) (-2413 (($ (-914)) NIL (|has| |#1| (-367)))) (-2588 (($) NIL)) (-1684 ((|#1| $) 15)) (-1714 (((-1110) $) NIL)) (-3158 (($) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-306)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| |#1| (-348)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-902))))) (-1657 (((-417 $) $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-362))))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-306)))) (-1756 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 47 (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-306)))) (-3440 (($ $) NIL (|has| |#1| (-1190)))) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-3569 (((-765) $) NIL (|has| |#1| (-306)))) (-2277 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-306)))) (-2553 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1913 (((-765) $) NIL (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-348)))) (-3238 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2656 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3660 (((-1162 |#1|)) NIL)) (-3021 (($ $) NIL (|has| |#1| (-1190)))) (-4095 (($ $) NIL (|has| |#1| (-1190)))) (-1796 (($) NIL (|has| |#1| (-348)))) (-2995 (($ $) NIL (|has| |#1| (-1190)))) (-4073 (($ $) NIL (|has| |#1| (-1190)))) (-2968 (($ $) NIL (|has| |#1| (-1190)))) (-4054 (($ $) NIL (|has| |#1| (-1190)))) (-3969 (((-1253 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-4174 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL) (((-1162 |#1|) $) NIL) (($ (-1162 |#1|)) NIL) (((-885 (-561)) $) NIL (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#1| (-609 (-885 (-378))))) (((-168 (-378)) $) NIL (|has| |#1| (-1015))) (((-168 (-224)) $) NIL (|has| |#1| (-1015))) (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-2260 (($ $) 45)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-348))))) (-1430 (($ |#1| |#1|) 37)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) 36) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-1760 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-2485 (((-1162 |#1|) $) NIL)) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL)) (-3055 (($ $) NIL (|has| |#1| (-1190)))) (-4132 (($ $) NIL (|has| |#1| (-1190)))) (-3168 (((-112) $ $) NIL (-4007 (-12 (|has| |#1| (-306)) (|has| |#1| (-902))) (|has| |#1| (-553))))) (-3031 (($ $) NIL (|has| |#1| (-1190)))) (-4105 (($ $) NIL (|has| |#1| (-1190)))) (-3081 (($ $) NIL (|has| |#1| (-1190)))) (-4149 (($ $) NIL (|has| |#1| (-1190)))) (-1872 ((|#1| $) NIL (|has| |#1| (-1190)))) (-2125 (($ $) NIL (|has| |#1| (-1190)))) (-4160 (($ $) NIL (|has| |#1| (-1190)))) (-3066 (($ $) NIL (|has| |#1| (-1190)))) (-4142 (($ $) NIL (|has| |#1| (-1190)))) (-3043 (($ $) NIL (|has| |#1| (-1190)))) (-4117 (($ $) NIL (|has| |#1| (-1190)))) (-3749 (($ $) NIL (|has| |#1| (-1051)))) (-2211 (($) 28 T CONST)) (-2222 (($) 30 T CONST)) (-3677 (((-1148) $) 23 (|has| |#1| (-822))) (((-1148) $ (-112)) 25 (|has| |#1| (-822))) (((-1258) (-816) $) 26 (|has| |#1| (-822))) (((-1258) (-816) $ (-112)) 27 (|has| |#1| (-822)))) (-3122 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 39)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-561))) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) NIL (|has| |#1| (-1190))) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-561))) NIL (|has| |#1| (-362)))))
+(((-168 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|))) (-171)) (T -168))
+NIL
+(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|)))
+((-4174 (((-885 |#1|) |#3|) 22)))
+(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -4174 ((-885 |#1|) |#3|))) (-1090) (-13 (-609 (-885 |#1|)) (-171)) (-165 |#2|)) (T -169))
+((-4174 (*1 *2 *3) (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-885 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1090)) (-4 *3 (-165 *5)))))
+(-10 -7 (-15 -4174 ((-885 |#1|) |#3|)))
+((-4011 (((-112) $ $) NIL)) (-1731 (((-112) $) 9)) (-3317 (((-112) $ (-112)) 11)) (-1470 (($) 12)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4187 (($ $) 13)) (-4022 (((-856) $) 17)) (-3869 (((-112) $) 8)) (-1461 (((-112) $ (-112)) 10)) (-1733 (((-112) $ $) NIL)))
+(((-170) (-13 (-1090) (-10 -8 (-15 -1470 ($)) (-15 -3869 ((-112) $)) (-15 -1731 ((-112) $)) (-15 -1461 ((-112) $ (-112))) (-15 -3317 ((-112) $ (-112))) (-15 -4187 ($ $))))) (T -170))
+((-1470 (*1 *1) (-5 *1 (-170))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1461 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3317 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-4187 (*1 *1 *1) (-5 *1 (-170))))
+(-13 (-1090) (-10 -8 (-15 -1470 ($)) (-15 -3869 ((-112) $)) (-15 -1731 ((-112) $)) (-15 -1461 ((-112) $ (-112))) (-15 -3317 ((-112) $ (-112))) (-15 -4187 ($ $))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-171) (-139)) (T -171))
NIL
-(-13 (-1039) (-111 $ $) (-10 -7 (-6 (-4385 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-1388 (($ $) 6)))
+(-13 (-1042) (-111 $ $) (-10 -7 (-6 (-4392 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-2836 (($ $) 6)))
(((-172) (-139)) (T -172))
-((-1388 (*1 *1 *1) (-4 *1 (-172))))
-(-13 (-10 -8 (-15 -1388 ($ $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 ((|#1| $) 74)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) NIL)) (-2653 (($ $) 19)) (-1745 (($ |#1| (-1143 |#1|)) 47)) (-3248 (((-3 $ "failed") $) 116)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2503 (((-1143 |#1|) $) 81)) (-1837 (((-1143 |#1|) $) 78)) (-2406 (((-1143 |#1|) $) 79)) (-3999 (((-112) $) NIL)) (-2982 (((-1143 |#1|) $) 87)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1500 (($ (-635 $)) NIL) (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL)) (-2319 (($ $ (-558)) 90)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-4257 (((-1143 |#1|) $) 88)) (-4172 (((-1143 (-406 |#1|)) $) 14)) (-3537 (($ (-406 |#1|)) 17) (($ |#1| (-1143 |#1|) (-1143 |#1|)) 37)) (-1559 (($ $) 92)) (-3940 (((-853) $) 126) (($ (-558)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-558))) NIL) (($ $) NIL)) (-2417 (((-762)) 63)) (-2671 (((-112) $ $) NIL)) (-2614 (((-1143 (-406 |#1|)) $) 18)) (-2207 (($) 25 T CONST)) (-2220 (($) 28 T CONST)) (-1708 (((-112) $ $) 34)) (-1805 (($ $ $) 114)) (-1796 (($ $) 105) (($ $ $) 102)) (-1785 (($ $ $) 100)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL)))
-(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -3537 ($ (-406 |#1|))) (-15 -3537 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -1745 ($ |#1| (-1143 |#1|))) (-15 -1837 ((-1143 |#1|) $)) (-15 -2406 ((-1143 |#1|) $)) (-15 -2503 ((-1143 |#1|) $)) (-15 -1669 (|#1| $)) (-15 -2653 ($ $)) (-15 -2614 ((-1143 (-406 |#1|)) $)) (-15 -4172 ((-1143 (-406 |#1|)) $)) (-15 -2982 ((-1143 |#1|) $)) (-15 -4257 ((-1143 |#1|) $)) (-15 -2319 ($ $ (-558))) (-15 -1559 ($ $)))) (-306)) (T -173))
-((-3537 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-3537 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1745 (*1 *1 *2 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1669 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-2653 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2319 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1559 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
-(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -3537 ($ (-406 |#1|))) (-15 -3537 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -1745 ($ |#1| (-1143 |#1|))) (-15 -1837 ((-1143 |#1|) $)) (-15 -2406 ((-1143 |#1|) $)) (-15 -2503 ((-1143 |#1|) $)) (-15 -1669 (|#1| $)) (-15 -2653 ($ $)) (-15 -2614 ((-1143 (-406 |#1|)) $)) (-15 -4172 ((-1143 (-406 |#1|)) $)) (-15 -2982 ((-1143 |#1|) $)) (-15 -4257 ((-1143 |#1|) $)) (-15 -2319 ($ $ (-558))) (-15 -1559 ($ $))))
-((-4187 (($ (-109) $) 13)) (-3009 (((-3 (-109) "failed") (-1163) $) 12)) (-3940 (((-853) $) 16)) (-3392 (((-635 (-109)) $) 8)))
-(((-174) (-13 (-605 (-853)) (-10 -8 (-15 -3392 ((-635 (-109)) $)) (-15 -4187 ($ (-109) $)) (-15 -3009 ((-3 (-109) "failed") (-1163) $))))) (T -174))
-((-3392 (*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174)))) (-4187 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-3009 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-174)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3392 ((-635 (-109)) $)) (-15 -4187 ($ (-109) $)) (-15 -3009 ((-3 (-109) "failed") (-1163) $))))
-((-2026 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 40)) (-3613 (((-933 |#1|) (-933 |#1|)) 19)) (-1578 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 36)) (-4004 (((-933 |#1|) (-933 |#1|)) 17)) (-3657 (((-933 |#1|) (-933 |#1|)) 25)) (-1418 (((-933 |#1|) (-933 |#1|)) 24)) (-3778 (((-933 |#1|) (-933 |#1|)) 23)) (-1768 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 37)) (-4113 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 35)) (-3754 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 34)) (-2060 (((-933 |#1|) (-933 |#1|)) 18)) (-1877 (((-1 (-933 |#1|) (-933 |#1|)) |#1| |#1|) 43)) (-1485 (((-933 |#1|) (-933 |#1|)) 8)) (-2412 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 39)) (-2293 (((-1 (-933 |#1|) (-933 |#1|)) |#1|) 38)))
-(((-175 |#1|) (-10 -7 (-15 -1485 ((-933 |#1|) (-933 |#1|))) (-15 -4004 ((-933 |#1|) (-933 |#1|))) (-15 -2060 ((-933 |#1|) (-933 |#1|))) (-15 -3613 ((-933 |#1|) (-933 |#1|))) (-15 -3778 ((-933 |#1|) (-933 |#1|))) (-15 -1418 ((-933 |#1|) (-933 |#1|))) (-15 -3657 ((-933 |#1|) (-933 |#1|))) (-15 -3754 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -4113 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -1578 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -1768 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2293 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2412 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2026 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -1877 ((-1 (-933 |#1|) (-933 |#1|)) |#1| |#1|))) (-13 (-362) (-1185) (-992))) (T -175))
-((-1877 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-2026 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-2412 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-2293 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-1768 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-1578 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-4113 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-3754 (*1 *2 *3) (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1185) (-992))))) (-3657 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992))) (-5 *1 (-175 *3)))))
-(-10 -7 (-15 -1485 ((-933 |#1|) (-933 |#1|))) (-15 -4004 ((-933 |#1|) (-933 |#1|))) (-15 -2060 ((-933 |#1|) (-933 |#1|))) (-15 -3613 ((-933 |#1|) (-933 |#1|))) (-15 -3778 ((-933 |#1|) (-933 |#1|))) (-15 -1418 ((-933 |#1|) (-933 |#1|))) (-15 -3657 ((-933 |#1|) (-933 |#1|))) (-15 -3754 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -4113 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -1578 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -1768 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2293 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2412 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -2026 ((-1 (-933 |#1|) (-933 |#1|)) |#1|)) (-15 -1877 ((-1 (-933 |#1|) (-933 |#1|)) |#1| |#1|)))
-((-1969 ((|#2| |#3|) 27)))
-(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -1969 (|#2| |#3|))) (-171) (-1222 |#1|) (-715 |#1| |#2|)) (T -176))
-((-1969 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1222 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-715 *4 *2)))))
-(-10 -7 (-15 -1969 (|#2| |#3|)))
-((-3193 (((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)) 47 (|has| (-942 |#2|) (-876 |#1|)))))
-(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-942 |#2|) (-876 |#1|)) (-15 -3193 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) |%noBranch|)) (-1087) (-13 (-876 |#1|) (-171)) (-165 |#2|)) (T -177))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *3 (-165 *6)) (-4 (-942 *6) (-876 *5)) (-4 *6 (-13 (-876 *5) (-171))) (-5 *1 (-177 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-942 |#2|) (-876 |#1|)) (-15 -3193 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) |%noBranch|))
-((-3307 (((-635 |#1|) (-635 |#1|) |#1|) 38)) (-3398 (((-635 |#1|) |#1| (-635 |#1|)) 19)) (-2493 (((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|)) 33) ((|#1| (-635 |#1|) (-635 |#1|)) 31)))
-(((-178 |#1|) (-10 -7 (-15 -3398 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2493 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2493 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -3307 ((-635 |#1|) (-635 |#1|) |#1|))) (-306)) (T -178))
-((-3307 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-2493 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-2493 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-3398 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
-(-10 -7 (-15 -3398 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2493 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2493 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -3307 ((-635 |#1|) (-635 |#1|) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3967 (((-1199) $) 13)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1660 (((-1122) $) 10)) (-3940 (((-853) $) 22) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-179) (-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3967 ((-1199) $))))) (T -179))
-((-1660 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-179)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-179)))))
-(-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3967 ((-1199) $))))
-((-3757 (((-2 (|:| |start| |#2|) (|:| -3381 (-417 |#2|))) |#2|) 61)) (-1951 ((|#1| |#1|) 54)) (-3085 (((-168 |#1|) |#2|) 84)) (-1843 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-4298 ((|#2| |#2|) 83)) (-3126 (((-417 |#2|) |#2| |#1|) 114) (((-417 |#2|) |#2| |#1| (-112)) 81)) (-1423 ((|#1| |#2|) 113)) (-3627 ((|#2| |#2|) 120)) (-3939 (((-417 |#2|) |#2|) 135) (((-417 |#2|) |#2| |#1|) 32) (((-417 |#2|) |#2| |#1| (-112)) 134)) (-2844 (((-635 (-2 (|:| -3381 (-635 |#2|)) (|:| -3851 |#1|))) |#2| |#2|) 133) (((-635 (-2 (|:| -3381 (-635 |#2|)) (|:| -3851 |#1|))) |#2| |#2| (-112)) 76)) (-4047 (((-635 (-168 |#1|)) |#2| |#1|) 40) (((-635 (-168 |#1|)) |#2|) 41)))
-(((-180 |#1| |#2|) (-10 -7 (-15 -4047 ((-635 (-168 |#1|)) |#2|)) (-15 -4047 ((-635 (-168 |#1|)) |#2| |#1|)) (-15 -2844 ((-635 (-2 (|:| -3381 (-635 |#2|)) (|:| -3851 |#1|))) |#2| |#2| (-112))) (-15 -2844 ((-635 (-2 (|:| -3381 (-635 |#2|)) (|:| -3851 |#1|))) |#2| |#2|)) (-15 -3939 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3939 ((-417 |#2|) |#2| |#1|)) (-15 -3939 ((-417 |#2|) |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -1423 (|#1| |#2|)) (-15 -3126 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3126 ((-417 |#2|) |#2| |#1|)) (-15 -4298 (|#2| |#2|)) (-15 -1843 (|#1| |#2| |#1|)) (-15 -1843 (|#1| |#2|)) (-15 -3085 ((-168 |#1|) |#2|)) (-15 -1951 (|#1| |#1|)) (-15 -3757 ((-2 (|:| |start| |#2|) (|:| -3381 (-417 |#2|))) |#2|))) (-13 (-362) (-839)) (-1222 (-168 |#1|))) (T -180))
-((-3757 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-2 (|:| |start| *3) (|:| -3381 (-417 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-1951 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-3085 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-839))) (-4 *3 (-1222 *2)))) (-1843 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-1843 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1222 (-168 *3))))) (-3126 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-1423 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1222 (-168 *2))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1222 (-168 *3))))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3939 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-3939 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-2844 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-2 (|:| -3381 (-635 *3)) (|:| -3851 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-2844 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-839))) (-5 *2 (-635 (-2 (|:| -3381 (-635 *3)) (|:| -3851 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1222 (-168 *5))))) (-4047 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))) (-4047 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
-(-10 -7 (-15 -4047 ((-635 (-168 |#1|)) |#2|)) (-15 -4047 ((-635 (-168 |#1|)) |#2| |#1|)) (-15 -2844 ((-635 (-2 (|:| -3381 (-635 |#2|)) (|:| -3851 |#1|))) |#2| |#2| (-112))) (-15 -2844 ((-635 (-2 (|:| -3381 (-635 |#2|)) (|:| -3851 |#1|))) |#2| |#2|)) (-15 -3939 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3939 ((-417 |#2|) |#2| |#1|)) (-15 -3939 ((-417 |#2|) |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -1423 (|#1| |#2|)) (-15 -3126 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3126 ((-417 |#2|) |#2| |#1|)) (-15 -4298 (|#2| |#2|)) (-15 -1843 (|#1| |#2| |#1|)) (-15 -1843 (|#1| |#2|)) (-15 -3085 ((-168 |#1|) |#2|)) (-15 -1951 (|#1| |#1|)) (-15 -3757 ((-2 (|:| |start| |#2|) (|:| -3381 (-417 |#2|))) |#2|)))
-((-1929 (((-3 |#2| "failed") |#2|) 14)) (-1512 (((-762) |#2|) 16)) (-3755 ((|#2| |#2| |#2|) 18)))
-(((-181 |#1| |#2|) (-10 -7 (-15 -1929 ((-3 |#2| "failed") |#2|)) (-15 -1512 ((-762) |#2|)) (-15 -3755 (|#2| |#2| |#2|))) (-1200) (-664 |#1|)) (T -181))
-((-3755 (*1 *2 *2 *2) (-12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2)) (-4 *2 (-664 *3)))) (-1512 (*1 *2 *3) (-12 (-4 *4 (-1200)) (-5 *2 (-762)) (-5 *1 (-181 *4 *3)) (-4 *3 (-664 *4)))) (-1929 (*1 *2 *2) (|partial| -12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2)) (-4 *2 (-664 *3)))))
-(-10 -7 (-15 -1929 ((-3 |#2| "failed") |#2|)) (-15 -1512 ((-762) |#2|)) (-15 -3755 (|#2| |#2| |#2|)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1759 (((-186) $) 7)) (-3940 (((-853) $) 14)) (-2164 (((-635 (-1168)) $) 10)) (-1708 (((-112) $ $) 12)))
-(((-182) (-13 (-1087) (-10 -8 (-15 -1759 ((-186) $)) (-15 -2164 ((-635 (-1168)) $))))) (T -182))
-((-1759 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-182)))))
-(-13 (-1087) (-10 -8 (-15 -1759 ((-186) $)) (-15 -2164 ((-635 (-1168)) $))))
-((-2300 (((-185) $) 8)) (-4038 (((-635 (-112)) $) 13)) (-1405 (((-55) $) 10)))
-(((-183 |#1|) (-10 -8 (-15 -4038 ((-635 (-112)) |#1|)) (-15 -2300 ((-185) |#1|)) (-15 -1405 ((-55) |#1|))) (-184)) (T -183))
-NIL
-(-10 -8 (-15 -4038 ((-635 (-112)) |#1|)) (-15 -2300 ((-185) |#1|)) (-15 -1405 ((-55) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3179 (((-504) $) 14)) (-2510 (((-1145) $) 9)) (-2300 (((-185) $) 18)) (-1688 (((-1107) $) 10)) (-4038 (((-635 (-112)) $) 17)) (-3940 (((-853) $) 11)) (-1405 (((-55) $) 13)) (-1708 (((-112) $ $) 6)))
+((-2836 (*1 *1 *1) (-4 *1 (-172))))
+(-13 (-10 -8 (-15 -2836 ($ $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 ((|#1| $) 74)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) NIL)) (-3206 (($ $) 19)) (-1728 (($ |#1| (-1146 |#1|)) 47)) (-3466 (((-3 $ "failed") $) 116)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-2433 (((-1146 |#1|) $) 81)) (-3478 (((-1146 |#1|) $) 78)) (-2659 (((-1146 |#1|) $) 79)) (-3113 (((-112) $) NIL)) (-4086 (((-1146 |#1|) $) 87)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1582 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL)) (-1416 (($ $ (-561)) 90)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3363 (((-1146 |#1|) $) 88)) (-2743 (((-1146 (-406 |#1|)) $) 14)) (-3144 (($ (-406 |#1|)) 17) (($ |#1| (-1146 |#1|) (-1146 |#1|)) 37)) (-1897 (($ $) 92)) (-4022 (((-856) $) 126) (($ (-561)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-561))) NIL) (($ $) NIL)) (-4259 (((-765)) 63)) (-3168 (((-112) $ $) NIL)) (-4280 (((-1146 (-406 |#1|)) $) 18)) (-2211 (($) 25 T CONST)) (-2222 (($) 28 T CONST)) (-1733 (((-112) $ $) 34)) (-1833 (($ $ $) 114)) (-1824 (($ $) 105) (($ $ $) 102)) (-1813 (($ $ $) 100)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL)))
+(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -3144 ($ (-406 |#1|))) (-15 -3144 ($ |#1| (-1146 |#1|) (-1146 |#1|))) (-15 -1728 ($ |#1| (-1146 |#1|))) (-15 -3478 ((-1146 |#1|) $)) (-15 -2659 ((-1146 |#1|) $)) (-15 -2433 ((-1146 |#1|) $)) (-15 -2949 (|#1| $)) (-15 -3206 ($ $)) (-15 -4280 ((-1146 (-406 |#1|)) $)) (-15 -2743 ((-1146 (-406 |#1|)) $)) (-15 -4086 ((-1146 |#1|) $)) (-15 -3363 ((-1146 |#1|) $)) (-15 -1416 ($ $ (-561))) (-15 -1897 ($ $)))) (-306)) (T -173))
+((-3144 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-3144 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1728 (*1 *1 *2 *3) (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2949 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-3206 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1897 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -3144 ($ (-406 |#1|))) (-15 -3144 ($ |#1| (-1146 |#1|) (-1146 |#1|))) (-15 -1728 ($ |#1| (-1146 |#1|))) (-15 -3478 ((-1146 |#1|) $)) (-15 -2659 ((-1146 |#1|) $)) (-15 -2433 ((-1146 |#1|) $)) (-15 -2949 (|#1| $)) (-15 -3206 ($ $)) (-15 -4280 ((-1146 (-406 |#1|)) $)) (-15 -2743 ((-1146 (-406 |#1|)) $)) (-15 -4086 ((-1146 |#1|) $)) (-15 -3363 ((-1146 |#1|) $)) (-15 -1416 ($ $ (-561))) (-15 -1897 ($ $))))
+((-4208 (($ (-109) $) 13)) (-3729 (((-3 (-109) "failed") (-1166) $) 12)) (-4022 (((-856) $) 16)) (-3264 (((-638 (-109)) $) 8)))
+(((-174) (-13 (-608 (-856)) (-10 -8 (-15 -3264 ((-638 (-109)) $)) (-15 -4208 ($ (-109) $)) (-15 -3729 ((-3 (-109) "failed") (-1166) $))))) (T -174))
+((-3264 (*1 *2 *1) (-12 (-5 *2 (-638 (-109))) (-5 *1 (-174)))) (-4208 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-3729 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3264 ((-638 (-109)) $)) (-15 -4208 ($ (-109) $)) (-15 -3729 ((-3 (-109) "failed") (-1166) $))))
+((-2955 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 40)) (-4332 (((-936 |#1|) (-936 |#1|)) 19)) (-3451 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 36)) (-3315 (((-936 |#1|) (-936 |#1|)) 17)) (-4088 (((-936 |#1|) (-936 |#1|)) 25)) (-3273 (((-936 |#1|) (-936 |#1|)) 24)) (-3913 (((-936 |#1|) (-936 |#1|)) 23)) (-2386 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 37)) (-3085 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 35)) (-1867 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 34)) (-2324 (((-936 |#1|) (-936 |#1|)) 18)) (-3811 (((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|) 43)) (-1581 (((-936 |#1|) (-936 |#1|)) 8)) (-1612 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 39)) (-1948 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 38)))
+(((-175 |#1|) (-10 -7 (-15 -1581 ((-936 |#1|) (-936 |#1|))) (-15 -3315 ((-936 |#1|) (-936 |#1|))) (-15 -2324 ((-936 |#1|) (-936 |#1|))) (-15 -4332 ((-936 |#1|) (-936 |#1|))) (-15 -3913 ((-936 |#1|) (-936 |#1|))) (-15 -3273 ((-936 |#1|) (-936 |#1|))) (-15 -4088 ((-936 |#1|) (-936 |#1|))) (-15 -1867 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3085 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3451 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2386 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1948 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1612 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2955 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3811 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|))) (-13 (-362) (-1190) (-995))) (T -175))
+((-3811 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1612 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1948 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-2386 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-3085 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1867 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))))
+(-10 -7 (-15 -1581 ((-936 |#1|) (-936 |#1|))) (-15 -3315 ((-936 |#1|) (-936 |#1|))) (-15 -2324 ((-936 |#1|) (-936 |#1|))) (-15 -4332 ((-936 |#1|) (-936 |#1|))) (-15 -3913 ((-936 |#1|) (-936 |#1|))) (-15 -3273 ((-936 |#1|) (-936 |#1|))) (-15 -4088 ((-936 |#1|) (-936 |#1|))) (-15 -1867 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3085 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3451 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2386 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1948 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1612 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2955 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3811 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|)))
+((-2485 ((|#2| |#3|) 27)))
+(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -2485 (|#2| |#3|))) (-171) (-1229 |#1|) (-718 |#1| |#2|)) (T -176))
+((-2485 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1229 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-718 *4 *2)))))
+(-10 -7 (-15 -2485 (|#2| |#3|)))
+((-3631 (((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)) 47 (|has| (-945 |#2|) (-879 |#1|)))))
+(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-945 |#2|) (-879 |#1|)) (-15 -3631 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) |%noBranch|)) (-1090) (-13 (-879 |#1|) (-171)) (-165 |#2|)) (T -177))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *3 (-165 *6)) (-4 (-945 *6) (-879 *5)) (-4 *6 (-13 (-879 *5) (-171))) (-5 *1 (-177 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-945 |#2|) (-879 |#1|)) (-15 -3631 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) |%noBranch|))
+((-2203 (((-638 |#1|) (-638 |#1|) |#1|) 38)) (-2309 (((-638 |#1|) |#1| (-638 |#1|)) 19)) (-2454 (((-638 |#1|) (-638 (-638 |#1|)) (-638 |#1|)) 33) ((|#1| (-638 |#1|) (-638 |#1|)) 31)))
+(((-178 |#1|) (-10 -7 (-15 -2309 ((-638 |#1|) |#1| (-638 |#1|))) (-15 -2454 (|#1| (-638 |#1|) (-638 |#1|))) (-15 -2454 ((-638 |#1|) (-638 (-638 |#1|)) (-638 |#1|))) (-15 -2203 ((-638 |#1|) (-638 |#1|) |#1|))) (-306)) (T -178))
+((-2203 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-2454 (*1 *2 *3 *2) (-12 (-5 *3 (-638 (-638 *4))) (-5 *2 (-638 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-2454 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-2309 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(-10 -7 (-15 -2309 ((-638 |#1|) |#1| (-638 |#1|))) (-15 -2454 (|#1| (-638 |#1|) (-638 |#1|))) (-15 -2454 ((-638 |#1|) (-638 (-638 |#1|)) (-638 |#1|))) (-15 -2203 ((-638 |#1|) (-638 |#1|) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-4052 (((-1204) $) 13)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1739 (((-1125) $) 10)) (-4022 (((-856) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-179) (-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -4052 ((-1204) $))))) (T -179))
+((-1739 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-179)))))
+(-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -4052 ((-1204) $))))
+((-1667 (((-2 (|:| |start| |#2|) (|:| -4282 (-417 |#2|))) |#2|) 61)) (-1504 ((|#1| |#1|) 54)) (-3296 (((-168 |#1|) |#2|) 84)) (-2571 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-1363 ((|#2| |#2|) 83)) (-3906 (((-417 |#2|) |#2| |#1|) 114) (((-417 |#2|) |#2| |#1| (-112)) 81)) (-1672 ((|#1| |#2|) 113)) (-2586 ((|#2| |#2|) 120)) (-1657 (((-417 |#2|) |#2|) 135) (((-417 |#2|) |#2| |#1|) 32) (((-417 |#2|) |#2| |#1| (-112)) 134)) (-2779 (((-638 (-2 (|:| -4282 (-638 |#2|)) (|:| -3941 |#1|))) |#2| |#2|) 133) (((-638 (-2 (|:| -4282 (-638 |#2|)) (|:| -3941 |#1|))) |#2| |#2| (-112)) 76)) (-4262 (((-638 (-168 |#1|)) |#2| |#1|) 40) (((-638 (-168 |#1|)) |#2|) 41)))
+(((-180 |#1| |#2|) (-10 -7 (-15 -4262 ((-638 (-168 |#1|)) |#2|)) (-15 -4262 ((-638 (-168 |#1|)) |#2| |#1|)) (-15 -2779 ((-638 (-2 (|:| -4282 (-638 |#2|)) (|:| -3941 |#1|))) |#2| |#2| (-112))) (-15 -2779 ((-638 (-2 (|:| -4282 (-638 |#2|)) (|:| -3941 |#1|))) |#2| |#2|)) (-15 -1657 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1657 ((-417 |#2|) |#2| |#1|)) (-15 -1657 ((-417 |#2|) |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -1672 (|#1| |#2|)) (-15 -3906 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3906 ((-417 |#2|) |#2| |#1|)) (-15 -1363 (|#2| |#2|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -2571 (|#1| |#2|)) (-15 -3296 ((-168 |#1|) |#2|)) (-15 -1504 (|#1| |#1|)) (-15 -1667 ((-2 (|:| |start| |#2|) (|:| -4282 (-417 |#2|))) |#2|))) (-13 (-362) (-842)) (-1229 (-168 |#1|))) (T -180))
+((-1667 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-2 (|:| |start| *3) (|:| -4282 (-417 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-1504 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-168 *2))))) (-3296 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-842))) (-4 *3 (-1229 *2)))) (-2571 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-168 *2))))) (-2571 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-168 *2))))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1229 (-168 *3))))) (-3906 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-3906 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-1672 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-168 *2))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1229 (-168 *3))))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-1657 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-1657 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-2779 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-2 (|:| -4282 (-638 *3)) (|:| -3941 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-2779 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842))) (-5 *2 (-638 (-2 (|:| -4282 (-638 *3)) (|:| -3941 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1229 (-168 *5))))) (-4262 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))))
+(-10 -7 (-15 -4262 ((-638 (-168 |#1|)) |#2|)) (-15 -4262 ((-638 (-168 |#1|)) |#2| |#1|)) (-15 -2779 ((-638 (-2 (|:| -4282 (-638 |#2|)) (|:| -3941 |#1|))) |#2| |#2| (-112))) (-15 -2779 ((-638 (-2 (|:| -4282 (-638 |#2|)) (|:| -3941 |#1|))) |#2| |#2|)) (-15 -1657 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1657 ((-417 |#2|) |#2| |#1|)) (-15 -1657 ((-417 |#2|) |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -1672 (|#1| |#2|)) (-15 -3906 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3906 ((-417 |#2|) |#2| |#1|)) (-15 -1363 (|#2| |#2|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -2571 (|#1| |#2|)) (-15 -3296 ((-168 |#1|) |#2|)) (-15 -1504 (|#1| |#1|)) (-15 -1667 ((-2 (|:| |start| |#2|) (|:| -4282 (-417 |#2|))) |#2|)))
+((-3011 (((-3 |#2| "failed") |#2|) 14)) (-3987 (((-765) |#2|) 16)) (-1449 ((|#2| |#2| |#2|) 18)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -3011 ((-3 |#2| "failed") |#2|)) (-15 -3987 ((-765) |#2|)) (-15 -1449 (|#2| |#2| |#2|))) (-1205) (-667 |#1|)) (T -181))
+((-1449 (*1 *2 *2 *2) (-12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-1205)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3)) (-4 *3 (-667 *4)))) (-3011 (*1 *2 *2) (|partial| -12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))))
+(-10 -7 (-15 -3011 ((-3 |#2| "failed") |#2|)) (-15 -3987 ((-765) |#2|)) (-15 -1449 (|#2| |#2| |#2|)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1849 (((-186) $) 7)) (-4022 (((-856) $) 14)) (-2243 (((-638 (-1171)) $) 10)) (-1733 (((-112) $ $) 12)))
+(((-182) (-13 (-1090) (-10 -8 (-15 -1849 ((-186) $)) (-15 -2243 ((-638 (-1171)) $))))) (T -182))
+((-1849 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-182)))))
+(-13 (-1090) (-10 -8 (-15 -1849 ((-186) $)) (-15 -2243 ((-638 (-1171)) $))))
+((-2364 (((-185) $) 8)) (-2910 (((-638 (-112)) $) 13)) (-4013 (((-55) $) 10)))
+(((-183 |#1|) (-10 -8 (-15 -2910 ((-638 (-112)) |#1|)) (-15 -2364 ((-185) |#1|)) (-15 -4013 ((-55) |#1|))) (-184)) (T -183))
+NIL
+(-10 -8 (-15 -2910 ((-638 (-112)) |#1|)) (-15 -2364 ((-185) |#1|)) (-15 -4013 ((-55) |#1|)))
+((-4011 (((-112) $ $) 7)) (-3269 (((-504) $) 14)) (-1764 (((-1148) $) 9)) (-2364 (((-185) $) 18)) (-1714 (((-1110) $) 10)) (-2910 (((-638 (-112)) $) 17)) (-4022 (((-856) $) 11)) (-4013 (((-55) $) 13)) (-1733 (((-112) $ $) 6)))
(((-184) (-139)) (T -184))
-((-2300 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-635 (-112))))))
-(-13 (-826 (-504)) (-10 -8 (-15 -2300 ((-185) $)) (-15 -4038 ((-635 (-112)) $))))
-(((-102) . T) ((-605 (-853)) . T) ((-826 (-504)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-8 (($) 7 T CONST)) (-3940 (((-853) $) 12)) (-9 (($) 6 T CONST)) (-1708 (((-112) $ $) 10)))
-(((-185) (-13 (-1087) (-10 -8 (-15 -9 ($) -2010) (-15 -8 ($) -2010) (-15 -7 ($) -2010)))) (T -185))
+((-2364 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-638 (-112))))))
+(-13 (-829 (-504)) (-10 -8 (-15 -2364 ((-185) $)) (-15 -2910 ((-638 (-112)) $))))
+(((-102) . T) ((-608 (-856)) . T) ((-829 (-504)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-8 (($) 7 T CONST)) (-4022 (((-856) $) 12)) (-9 (($) 6 T CONST)) (-1733 (((-112) $ $) 10)))
+(((-185) (-13 (-1090) (-10 -8 (-15 -9 ($) -1514) (-15 -8 ($) -1514) (-15 -7 ($) -1514)))) (T -185))
((-9 (*1 *1) (-5 *1 (-185))) (-8 (*1 *1) (-5 *1 (-185))) (-7 (*1 *1) (-5 *1 (-185))))
-(-13 (-1087) (-10 -8 (-15 -9 ($) -2010) (-15 -8 ($) -2010) (-15 -7 ($) -2010)))
-((-3929 (((-112) $ $) NIL)) (-3179 (((-504) $) 8)) (-2510 (((-1145) $) NIL)) (-2300 (((-185) $) 10)) (-1688 (((-1107) $) NIL)) (-4038 (((-635 (-112)) $) NIL)) (-3940 (((-853) $) NIL)) (-1405 (((-55) $) 12)) (-1708 (((-112) $ $) NIL)))
+(-13 (-1090) (-10 -8 (-15 -9 ($) -1514) (-15 -8 ($) -1514) (-15 -7 ($) -1514)))
+((-4011 (((-112) $ $) NIL)) (-3269 (((-504) $) 8)) (-1764 (((-1148) $) NIL)) (-2364 (((-185) $) 10)) (-1714 (((-1110) $) NIL)) (-2910 (((-638 (-112)) $) NIL)) (-4022 (((-856) $) NIL)) (-4013 (((-55) $) 12)) (-1733 (((-112) $ $) NIL)))
(((-186) (-184)) (T -186))
NIL
(-184)
-((-1797 ((|#2| |#2|) 28)) (-3695 (((-112) |#2|) 19)) (-3963 (((-315 |#1|) |#2|) 12)) (-3975 (((-315 |#1|) |#2|) 14)) (-4319 ((|#2| |#2| (-1163)) 68) ((|#2| |#2|) 69)) (-2330 (((-168 (-315 |#1|)) |#2|) 10)) (-1900 ((|#2| |#2| (-1163)) 65) ((|#2| |#2|) 59)))
-(((-187 |#1| |#2|) (-10 -7 (-15 -4319 (|#2| |#2|)) (-15 -4319 (|#2| |#2| (-1163))) (-15 -1900 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1163))) (-15 -3963 ((-315 |#1|) |#2|)) (-15 -3975 ((-315 |#1|) |#2|)) (-15 -3695 ((-112) |#2|)) (-15 -1797 (|#2| |#2|)) (-15 -2330 ((-168 (-315 |#1|)) |#2|))) (-13 (-550) (-841) (-1028 (-558))) (-13 (-27) (-1185) (-429 (-168 |#1|)))) (T -187))
-((-2330 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-1797 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3)))))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-3963 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-1900 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-1900 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3)))))) (-4319 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4)))))) (-4319 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3)))))))
-(-10 -7 (-15 -4319 (|#2| |#2|)) (-15 -4319 (|#2| |#2| (-1163))) (-15 -1900 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1163))) (-15 -3963 ((-315 |#1|) |#2|)) (-15 -3975 ((-315 |#1|) |#2|)) (-15 -3695 ((-112) |#2|)) (-15 -1797 (|#2| |#2|)) (-15 -2330 ((-168 (-315 |#1|)) |#2|)))
-((-2905 (((-1246 (-679 (-942 |#1|))) (-1246 (-679 |#1|))) 24)) (-3940 (((-1246 (-679 (-406 (-942 |#1|)))) (-1246 (-679 |#1|))) 33)))
-(((-188 |#1|) (-10 -7 (-15 -2905 ((-1246 (-679 (-942 |#1|))) (-1246 (-679 |#1|)))) (-15 -3940 ((-1246 (-679 (-406 (-942 |#1|)))) (-1246 (-679 |#1|))))) (-171)) (T -188))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171)) (-5 *2 (-1246 (-679 (-406 (-942 *4))))) (-5 *1 (-188 *4)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171)) (-5 *2 (-1246 (-679 (-942 *4)))) (-5 *1 (-188 *4)))))
-(-10 -7 (-15 -2905 ((-1246 (-679 (-942 |#1|))) (-1246 (-679 |#1|)))) (-15 -3940 ((-1246 (-679 (-406 (-942 |#1|)))) (-1246 (-679 |#1|)))))
-((-3876 (((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558)))) 66)) (-1680 (((-1165 (-406 (-558))) (-635 (-558)) (-635 (-558))) 75)) (-2000 (((-1165 (-406 (-558))) (-558)) 40)) (-1415 (((-1165 (-406 (-558))) (-558)) 52)) (-1369 (((-406 (-558)) (-1165 (-406 (-558)))) 62)) (-3373 (((-1165 (-406 (-558))) (-558)) 32)) (-3809 (((-1165 (-406 (-558))) (-558)) 48)) (-1412 (((-1165 (-406 (-558))) (-558)) 46)) (-4352 (((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558)))) 60)) (-1559 (((-1165 (-406 (-558))) (-558)) 25)) (-2768 (((-406 (-558)) (-1165 (-406 (-558))) (-1165 (-406 (-558)))) 64)) (-4118 (((-1165 (-406 (-558))) (-558)) 30)) (-2099 (((-1165 (-406 (-558))) (-635 (-558))) 72)))
-(((-189) (-10 -7 (-15 -1559 ((-1165 (-406 (-558))) (-558))) (-15 -2000 ((-1165 (-406 (-558))) (-558))) (-15 -3373 ((-1165 (-406 (-558))) (-558))) (-15 -4118 ((-1165 (-406 (-558))) (-558))) (-15 -1412 ((-1165 (-406 (-558))) (-558))) (-15 -3809 ((-1165 (-406 (-558))) (-558))) (-15 -1415 ((-1165 (-406 (-558))) (-558))) (-15 -2768 ((-406 (-558)) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -4352 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -1369 ((-406 (-558)) (-1165 (-406 (-558))))) (-15 -3876 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -2099 ((-1165 (-406 (-558))) (-635 (-558)))) (-15 -1680 ((-1165 (-406 (-558))) (-635 (-558)) (-635 (-558)))))) (T -189))
-((-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-3876 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558))) (-5 *1 (-189)))) (-4352 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))) (-2768 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558))) (-5 *1 (-189)))) (-1415 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-3809 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-1412 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-4118 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-3373 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-2000 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))) (-1559 (*1 *2 *3) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
-(-10 -7 (-15 -1559 ((-1165 (-406 (-558))) (-558))) (-15 -2000 ((-1165 (-406 (-558))) (-558))) (-15 -3373 ((-1165 (-406 (-558))) (-558))) (-15 -4118 ((-1165 (-406 (-558))) (-558))) (-15 -1412 ((-1165 (-406 (-558))) (-558))) (-15 -3809 ((-1165 (-406 (-558))) (-558))) (-15 -1415 ((-1165 (-406 (-558))) (-558))) (-15 -2768 ((-406 (-558)) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -4352 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -1369 ((-406 (-558)) (-1165 (-406 (-558))))) (-15 -3876 ((-1165 (-406 (-558))) (-1165 (-406 (-558))) (-1165 (-406 (-558))))) (-15 -2099 ((-1165 (-406 (-558))) (-635 (-558)))) (-15 -1680 ((-1165 (-406 (-558))) (-635 (-558)) (-635 (-558)))))
-((-3855 (((-417 (-1159 (-558))) (-558)) 28)) (-1753 (((-635 (-1159 (-558))) (-558)) 23)) (-3326 (((-1159 (-558)) (-558)) 21)))
-(((-190) (-10 -7 (-15 -1753 ((-635 (-1159 (-558))) (-558))) (-15 -3326 ((-1159 (-558)) (-558))) (-15 -3855 ((-417 (-1159 (-558))) (-558))))) (T -190))
-((-3855 (*1 *2 *3) (-12 (-5 *2 (-417 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))) (-3326 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-190)) (-5 *3 (-558)))) (-1753 (*1 *2 *3) (-12 (-5 *2 (-635 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))))
-(-10 -7 (-15 -1753 ((-635 (-1159 (-558))) (-558))) (-15 -3326 ((-1159 (-558)) (-558))) (-15 -3855 ((-417 (-1159 (-558))) (-558))))
-((-3766 (((-1143 (-224)) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 103)) (-2701 (((-635 (-1145)) (-1143 (-224))) NIL)) (-2336 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 79)) (-4105 (((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224)))) NIL)) (-1643 (((-635 (-1145)) (-635 (-224))) NIL)) (-3155 (((-224) (-1081 (-834 (-224)))) 24)) (-2479 (((-224) (-1081 (-834 (-224)))) 25)) (-1450 (((-378) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 96)) (-4020 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-3793 (((-1145) (-224)) NIL)) (-2661 (((-1145) (-635 (-1145))) 20)) (-3320 (((-1025) (-1163) (-1163) (-1025)) 13)))
-(((-191) (-10 -7 (-15 -2336 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4020 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3155 ((-224) (-1081 (-834 (-224))))) (-15 -2479 ((-224) (-1081 (-834 (-224))))) (-15 -1450 ((-378) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4105 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -3766 ((-1143 (-224)) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3793 ((-1145) (-224))) (-15 -1643 ((-635 (-1145)) (-635 (-224)))) (-15 -2701 ((-635 (-1145)) (-1143 (-224)))) (-15 -2661 ((-1145) (-635 (-1145)))) (-15 -3320 ((-1025) (-1163) (-1163) (-1025))))) (T -191))
-((-3320 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-191)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-191)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-191)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-191)))) (-4105 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163)) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-191)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-191)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191)))))
-(-10 -7 (-15 -2336 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4020 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3155 ((-224) (-1081 (-834 (-224))))) (-15 -2479 ((-224) (-1081 (-834 (-224))))) (-15 -1450 ((-378) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4105 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -3766 ((-1143 (-224)) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3793 ((-1145) (-224))) (-15 -1643 ((-635 (-1145)) (-635 (-224)))) (-15 -2701 ((-635 (-1145)) (-1143 (-224)))) (-15 -2661 ((-1145) (-635 (-1145)))) (-15 -3320 ((-1025) (-1163) (-1163) (-1025))))
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 55) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-192) (-778)) (T -192))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 60) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-193) (-778)) (T -193))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 69) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-194) (-778)) (T -194))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 56) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-195) (-778)) (T -195))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 67) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-196) (-778)) (T -196))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 73) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-197) (-778)) (T -197))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 80) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-198) (-778)) (T -198))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 70) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-199) (-778)) (T -199))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 65)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-200) (-778)) (T -200))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 63)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-201) (-778)) (T -201))
-NIL
-(-778)
-((-3929 (((-112) $ $) NIL)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 90) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-202) (-778)) (T -202))
-NIL
-(-778)
-((-3005 (((-3 (-2 (|:| -2314 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-3736 (((-558) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-1839 (((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73)))
-(((-203) (-10 -7 (-15 -3005 ((-3 (-2 (|:| -2314 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1839 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3736 ((-558) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203))
-((-3736 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-558)) (-5 *1 (-203)))) (-1839 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-203)))) (-3005 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2314 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
-(-10 -7 (-15 -3005 ((-3 (-2 (|:| -2314 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1839 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3736 ((-558) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-1828 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2517 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-3978 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-679 (-315 (-224)))) 87)) (-3120 (((-378) (-679 (-315 (-224)))) 111)) (-2287 (((-679 (-315 (-224))) (-1246 (-315 (-224))) (-635 (-1163))) 108)) (-2573 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-4083 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-1369 (((-679 (-315 (-224))) (-679 (-315 (-224))) (-635 (-1163)) (-1246 (-315 (-224)))) 100)) (-4093 (((-378) (-378) (-635 (-378))) 105) (((-378) (-378) (-378)) 103)) (-2789 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36)))
-(((-204) (-10 -7 (-15 -4093 ((-378) (-378) (-378))) (-15 -4093 ((-378) (-378) (-635 (-378)))) (-15 -3120 ((-378) (-679 (-315 (-224))))) (-15 -2287 ((-679 (-315 (-224))) (-1246 (-315 (-224))) (-635 (-1163)))) (-15 -1369 ((-679 (-315 (-224))) (-679 (-315 (-224))) (-635 (-1163)) (-1246 (-315 (-224))))) (-15 -3978 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-679 (-315 (-224))))) (-15 -2517 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1828 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4083 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2789 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2573 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204))
-((-2573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-679 (-315 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-1369 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-679 (-315 (-224)))) (-5 *3 (-635 (-1163))) (-5 *4 (-1246 (-315 (-224)))) (-5 *1 (-204)))) (-2287 (*1 *2 *3 *4) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163))) (-5 *2 (-679 (-315 (-224)))) (-5 *1 (-204)))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-679 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4093 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4093 (*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204)))))
-(-10 -7 (-15 -4093 ((-378) (-378) (-378))) (-15 -4093 ((-378) (-378) (-635 (-378)))) (-15 -3120 ((-378) (-679 (-315 (-224))))) (-15 -2287 ((-679 (-315 (-224))) (-1246 (-315 (-224))) (-635 (-1163)))) (-15 -1369 ((-679 (-315 (-224))) (-679 (-315 (-224))) (-635 (-1163)) (-1246 (-315 (-224))))) (-15 -3978 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-679 (-315 (-224))))) (-15 -2517 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1828 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4083 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2789 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2573 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-3929 (((-112) $ $) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-3599 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-1708 (((-112) $ $) NIL)))
-(((-205) (-791)) (T -205))
-NIL
-(-791)
-((-3929 (((-112) $ $) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-3599 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-1708 (((-112) $ $) NIL)))
-(((-206) (-791)) (T -206))
-NIL
-(-791)
-((-3929 (((-112) $ $) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-3599 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-1708 (((-112) $ $) NIL)))
-(((-207) (-791)) (T -207))
-NIL
-(-791)
-((-3929 (((-112) $ $) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-3599 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-1708 (((-112) $ $) NIL)))
-(((-208) (-791)) (T -208))
-NIL
-(-791)
-((-2096 (((-635 (-1163)) (-1163) (-762)) 23)) (-1862 (((-315 (-224)) (-315 (-224))) 31)) (-1773 (((-112) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 73)) (-2093 (((-112) (-224) (-224) (-635 (-315 (-224)))) 44)))
-(((-209) (-10 -7 (-15 -2096 ((-635 (-1163)) (-1163) (-762))) (-15 -1862 ((-315 (-224)) (-315 (-224)))) (-15 -2093 ((-112) (-224) (-224) (-635 (-315 (-224))))) (-15 -1773 ((-112) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))))) (T -209))
-((-1773 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-2093 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-635 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-635 (-1163))) (-5 *1 (-209)) (-5 *3 (-1163)))))
-(-10 -7 (-15 -2096 ((-635 (-1163)) (-1163) (-762))) (-15 -1862 ((-315 (-224)) (-315 (-224)))) (-15 -2093 ((-112) (-224) (-224) (-635 (-315 (-224))))) (-15 -1773 ((-112) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))))
-((-3929 (((-112) $ $) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 26)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2429 (((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 57)) (-1708 (((-112) $ $) NIL)))
-(((-210) (-885)) (T -210))
-NIL
-(-885)
-((-3929 (((-112) $ $) NIL)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 21)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2429 (((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-211) (-885)) (T -211))
-NIL
-(-885)
-((-3929 (((-112) $ $) NIL)) (-3628 ((|#2| $ (-762) |#2|) 11)) (-3620 ((|#2| $ (-762)) 10)) (-1395 (($) 8)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 18)) (-1708 (((-112) $ $) 13)))
-(((-212 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -1395 ($)) (-15 -3620 (|#2| $ (-762))) (-15 -3628 (|#2| $ (-762) |#2|)))) (-911) (-1087)) (T -212))
-((-1395 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1087)))) (-3620 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *2 (-1087)) (-5 *1 (-212 *4 *2)) (-14 *4 (-911)))) (-3628 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-212 *4 *2)) (-14 *4 (-911)) (-4 *2 (-1087)))))
-(-13 (-1087) (-10 -8 (-15 -1395 ($)) (-15 -3620 (|#2| $ (-762))) (-15 -3628 (|#2| $ (-762) |#2|))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1963 (((-1251) $) 36) (((-1251) $ (-911) (-911)) 38)) (-2276 (($ $ (-979)) 19) (((-244 (-1145)) $ (-1163)) 15)) (-1490 (((-1251) $) 34)) (-3940 (((-853) $) 31) (($ (-635 |#1|)) 8)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $ $) 27)) (-1785 (($ $ $) 22)))
-(((-213 |#1|) (-13 (-1087) (-608 (-635 |#1|)) (-10 -8 (-15 -2276 ($ $ (-979))) (-15 -2276 ((-244 (-1145)) $ (-1163))) (-15 -1785 ($ $ $)) (-15 -1796 ($ $ $)) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $)) (-15 -1963 ((-1251) $ (-911) (-911))))) (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $))))) (T -213))
-((-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-979)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $))))))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-244 (-1145))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ *3)) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $))))))) (-1785 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $))))))) (-1796 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $))))))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 (*2 $)) (-15 -1963 (*2 $))))))))
-(-13 (-1087) (-608 (-635 |#1|)) (-10 -8 (-15 -2276 ($ $ (-979))) (-15 -2276 ((-244 (-1145)) $ (-1163))) (-15 -1785 ($ $ $)) (-15 -1796 ($ $ $)) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $)) (-15 -1963 ((-1251) $ (-911) (-911)))))
-((-2816 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2816 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214))
-((-2816 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1222 (-406 *2))) (-4 *2 (-1222 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6)))))
-(-10 -7 (-15 -2816 (|#2| |#4| (-1 |#2| |#2|))))
-((-2625 ((|#2| |#2| (-762) |#2|) 42)) (-1781 ((|#2| |#2| (-762) |#2|) 38)) (-1840 (((-635 |#2|) (-635 (-2 (|:| |deg| (-762)) (|:| -2576 |#2|)))) 56)) (-1732 (((-635 (-2 (|:| |deg| (-762)) (|:| -2576 |#2|))) |#2|) 52)) (-3022 (((-112) |#2|) 49)) (-1758 (((-417 |#2|) |#2|) 76)) (-3939 (((-417 |#2|) |#2|) 75)) (-2863 ((|#2| |#2| (-762) |#2|) 36)) (-1499 (((-2 (|:| |cont| |#1|) (|:| -3381 (-635 (-2 (|:| |irr| |#2|) (|:| -2074 (-558)))))) |#2| (-112)) 68)))
-(((-215 |#1| |#2|) (-10 -7 (-15 -3939 ((-417 |#2|) |#2|)) (-15 -1758 ((-417 |#2|) |#2|)) (-15 -1499 ((-2 (|:| |cont| |#1|) (|:| -3381 (-635 (-2 (|:| |irr| |#2|) (|:| -2074 (-558)))))) |#2| (-112))) (-15 -1732 ((-635 (-2 (|:| |deg| (-762)) (|:| -2576 |#2|))) |#2|)) (-15 -1840 ((-635 |#2|) (-635 (-2 (|:| |deg| (-762)) (|:| -2576 |#2|))))) (-15 -2863 (|#2| |#2| (-762) |#2|)) (-15 -1781 (|#2| |#2| (-762) |#2|)) (-15 -2625 (|#2| |#2| (-762) |#2|)) (-15 -3022 ((-112) |#2|))) (-348) (-1222 |#1|)) (T -215))
-((-3022 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))) (-2625 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1222 *4)))) (-1781 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1222 *4)))) (-2863 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1222 *4)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |deg| (-762)) (|:| -2576 *5)))) (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *2 (-635 *5)) (-5 *1 (-215 *4 *5)))) (-1732 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -2576 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1222 *5)))) (-1758 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -3939 ((-417 |#2|) |#2|)) (-15 -1758 ((-417 |#2|) |#2|)) (-15 -1499 ((-2 (|:| |cont| |#1|) (|:| -3381 (-635 (-2 (|:| |irr| |#2|) (|:| -2074 (-558)))))) |#2| (-112))) (-15 -1732 ((-635 (-2 (|:| |deg| (-762)) (|:| -2576 |#2|))) |#2|)) (-15 -1840 ((-635 |#2|) (-635 (-2 (|:| |deg| (-762)) (|:| -2576 |#2|))))) (-15 -2863 (|#2| |#2| (-762) |#2|)) (-15 -1781 (|#2| |#2| (-762) |#2|)) (-15 -2625 (|#2| |#2| (-762) |#2|)) (-15 -3022 ((-112) |#2|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 (((-558) $) NIL (|has| (-558) (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| (-558) (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-558) (-1028 (-558))))) (-3226 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-558) (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| (-558) (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 (((-558) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2032 (((-112) $) NIL (|has| (-558) (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-558) (-841)))) (-3397 (($ (-1 (-558) (-558)) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-558) (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) NIL)) (-4259 (((-558) $) NIL (|has| (-558) (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-1562 (((-762) $) NIL)) (-2276 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-4218 (($ $) NIL)) (-3327 (((-558) $) NIL)) (-2680 (($ (-406 (-558))) 9)) (-3441 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 8) (($ (-558)) NIL) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL) (((-994 10) $) 10)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2417 (((-762)) NIL)) (-2912 (((-558) $) NIL (|has| (-558) (-543)))) (-2671 (((-112) $ $) NIL)) (-4241 (($ $) NIL (|has| (-558) (-811)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1757 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1805 (($ $ $) NIL) (($ (-558) (-558)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL)))
-(((-216) (-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 10)) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -2680 ($ (-406 (-558))))))) (T -216))
-((-1636 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216)))))
-(-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 10)) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -2680 ($ (-406 (-558))))))
-((-3929 (((-112) $ $) NIL)) (-2751 (((-1105) $) 13)) (-2510 (((-1145) $) NIL)) (-3734 (((-481) $) 10)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 25) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-1122) $) 15)) (-1708 (((-112) $ $) NIL)))
-(((-217) (-13 (-1070) (-10 -8 (-15 -3734 ((-481) $)) (-15 -2751 ((-1105) $)) (-15 -3190 ((-1122) $))))) (T -217))
-((-3734 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217)))) (-2751 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-217)))))
-(-13 (-1070) (-10 -8 (-15 -3734 ((-481) $)) (-15 -2751 ((-1105) $)) (-15 -3190 ((-1122) $))))
-((-1337 (((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)) (-1145)) 28) (((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|))) 24)) (-3321 (((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1163) (-834 |#2|) (-834 |#2|) (-112)) 17)))
-(((-218 |#1| |#2|) (-10 -7 (-15 -1337 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)))) (-15 -1337 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)) (-1145))) (-15 -3321 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1163) (-834 |#2|) (-834 |#2|) (-112)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-29 |#1|))) (T -218))
-((-3321 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1163)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-4 *3 (-13 (-1185) (-949) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-834 *3)))) (-1337 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079 (-834 *3))) (-5 *5 (-1145)) (-4 *3 (-13 (-1185) (-949) (-29 *6))) (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *6 *3)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-834 *3))) (-4 *3 (-13 (-1185) (-949) (-29 *5))) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *5 *3)))))
-(-10 -7 (-15 -1337 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)))) (-15 -1337 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1079 (-834 |#2|)) (-1145))) (-15 -3321 ((-3 (|:| |f1| (-834 |#2|)) (|:| |f2| (-635 (-834 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1163) (-834 |#2|) (-834 |#2|) (-112))))
-((-1337 (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))) (-1145)) 46) (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|))))) 43) (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))) (-1145)) 47) (((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|)))) 20)))
-(((-219 |#1|) (-10 -7 (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))))) (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))) (-1145))) (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))))) (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))) (-1145)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (T -219))
-((-1337 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079 (-834 (-406 (-942 *6))))) (-5 *5 (-1145)) (-5 *3 (-406 (-942 *6))) (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-834 (-406 (-942 *5))))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))) (-1337 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1079 (-834 (-315 *6)))) (-5 *5 (-1145)) (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1079 (-834 (-315 *5)))) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))))
-(-10 -7 (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))))) (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-315 |#1|))) (-1145))) (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))))) (-15 -1337 ((-3 (|:| |f1| (-834 (-315 |#1|))) (|:| |f2| (-635 (-834 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-942 |#1|)) (-1079 (-834 (-406 (-942 |#1|)))) (-1145))))
-((-3866 (((-2 (|:| -3936 (-1159 |#1|)) (|:| |deg| (-911))) (-1159 |#1|)) 21)) (-2040 (((-635 (-315 |#2|)) (-315 |#2|) (-911)) 42)))
-(((-220 |#1| |#2|) (-10 -7 (-15 -3866 ((-2 (|:| -3936 (-1159 |#1|)) (|:| |deg| (-911))) (-1159 |#1|))) (-15 -2040 ((-635 (-315 |#2|)) (-315 |#2|) (-911)))) (-1039) (-13 (-550) (-841))) (T -220))
-((-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *6 (-13 (-550) (-841))) (-5 *2 (-635 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1039)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-2 (|:| -3936 (-1159 *4)) (|:| |deg| (-911)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1159 *4)) (-4 *5 (-13 (-550) (-841))))))
-(-10 -7 (-15 -3866 ((-2 (|:| -3936 (-1159 |#1|)) (|:| |deg| (-911))) (-1159 |#1|))) (-15 -2040 ((-635 (-315 |#2|)) (-315 |#2|) (-911))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1410 ((|#1| $) NIL)) (-1999 ((|#1| $) 25)) (-3651 (((-112) $ (-762)) NIL)) (-3457 (($) NIL T CONST)) (-2696 (($ $) NIL)) (-2240 (($ $) 31)) (-3106 ((|#1| |#1| $) NIL)) (-1627 ((|#1| $) NIL)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2958 (((-762) $) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1498 ((|#1| $) NIL)) (-3652 ((|#1| |#1| $) 28)) (-3378 ((|#1| |#1| $) 30)) (-2650 (($ |#1| $) NIL)) (-2361 (((-762) $) 27)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2923 ((|#1| $) NIL)) (-3026 ((|#1| $) 26)) (-1440 ((|#1| $) 24)) (-2533 ((|#1| $) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2354 ((|#1| |#1| $) NIL)) (-3711 (((-112) $) 9)) (-2876 (($) NIL)) (-4137 ((|#1| $) NIL)) (-3732 (($) NIL) (($ (-635 |#1|)) 16)) (-3752 (((-762) $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-3323 ((|#1| $) 13)) (-2472 (($ (-635 |#1|)) NIL)) (-2022 ((|#1| $) NIL)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -3732 ($ (-635 |#1|))))) (-1087)) (T -221))
-((-3732 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-221 *3)))))
-(-13 (-253 |#1|) (-10 -8 (-15 -3732 ($ (-635 |#1|)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2110 (($ (-315 |#1|)) 23)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2534 (((-112) $) NIL)) (-3302 (((-3 (-315 |#1|) "failed") $) NIL)) (-3226 (((-315 |#1|) $) NIL)) (-3905 (($ $) 31)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-3397 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-3881 (((-315 |#1|) $) NIL)) (-3329 (($ $) 30)) (-2510 (((-1145) $) NIL)) (-2691 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-2461 (($ (-762)) NIL)) (-1496 (($ $) 32)) (-4263 (((-558) $) NIL)) (-3940 (((-853) $) 57) (($ (-558)) NIL) (($ (-315 |#1|)) NIL)) (-3143 (((-315 |#1|) $ $) NIL)) (-2417 (((-762)) NIL)) (-2207 (($) 25 T CONST)) (-2220 (($) 50 T CONST)) (-1708 (((-112) $ $) 28)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 19)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 24) (($ (-315 |#1|) $) 18)))
-(((-222 |#1| |#2|) (-13 (-612 (-315 |#1|)) (-1028 (-315 |#1|)) (-10 -8 (-15 -3881 ((-315 |#1|) $)) (-15 -3329 ($ $)) (-15 -3905 ($ $)) (-15 -3143 ((-315 |#1|) $ $)) (-15 -2461 ($ (-762))) (-15 -2691 ((-112) $)) (-15 -2534 ((-112) $)) (-15 -4263 ((-558) $)) (-15 -3397 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -2110 ($ (-315 |#1|))) (-15 -1496 ($ $)))) (-13 (-1039) (-841)) (-635 (-1163))) (T -222))
-((-3881 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841))) (-14 *3 (-635 (-1163))))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841))) (-14 *3 (-635 (-1163))))) (-3143 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163))))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1039) (-841))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163))))) (-2110 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1039) (-841))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163))))) (-1496 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841))) (-14 *3 (-635 (-1163))))))
-(-13 (-612 (-315 |#1|)) (-1028 (-315 |#1|)) (-10 -8 (-15 -3881 ((-315 |#1|) $)) (-15 -3329 ($ $)) (-15 -3905 ($ $)) (-15 -3143 ((-315 |#1|) $ $)) (-15 -2461 ($ (-762))) (-15 -2691 ((-112) $)) (-15 -2534 ((-112) $)) (-15 -4263 ((-558) $)) (-15 -3397 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -2110 ($ (-315 |#1|))) (-15 -1496 ($ $))))
-((-1880 (((-112) (-1145)) 22)) (-3090 (((-3 (-834 |#2|) "failed") (-604 |#2|) |#2| (-834 |#2|) (-834 |#2|) (-112)) 32)) (-1535 (((-3 (-112) "failed") (-1159 |#2|) (-834 |#2|) (-834 |#2|) (-112)) 73) (((-3 (-112) "failed") (-942 |#1|) (-1163) (-834 |#2|) (-834 |#2|) (-112)) 74)))
-(((-223 |#1| |#2|) (-10 -7 (-15 -1880 ((-112) (-1145))) (-15 -3090 ((-3 (-834 |#2|) "failed") (-604 |#2|) |#2| (-834 |#2|) (-834 |#2|) (-112))) (-15 -1535 ((-3 (-112) "failed") (-942 |#1|) (-1163) (-834 |#2|) (-834 |#2|) (-112))) (-15 -1535 ((-3 (-112) "failed") (-1159 |#2|) (-834 |#2|) (-834 |#2|) (-112)))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-29 |#1|))) (T -223))
-((-1535 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1159 *6)) (-5 *4 (-834 *6)) (-4 *6 (-13 (-1185) (-29 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-223 *5 *6)))) (-1535 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-942 *6)) (-5 *4 (-1163)) (-5 *5 (-834 *7)) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *7 (-13 (-1185) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-3090 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-834 *4)) (-5 *3 (-604 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1185) (-29 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-223 *6 *4)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1185) (-29 *4))))))
-(-10 -7 (-15 -1880 ((-112) (-1145))) (-15 -3090 ((-3 (-834 |#2|) "failed") (-604 |#2|) |#2| (-834 |#2|) (-834 |#2|) (-112))) (-15 -1535 ((-3 (-112) "failed") (-942 |#1|) (-1163) (-834 |#2|) (-834 |#2|) (-112))) (-15 -1535 ((-3 (-112) "failed") (-1159 |#2|) (-834 |#2|) (-834 |#2|) (-112))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 87)) (-1669 (((-558) $) 98)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-4057 (($ $) NIL)) (-2277 (($ $) 75)) (-2131 (($ $) 63)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-3948 (($ $) 54)) (-1599 (((-112) $ $) NIL)) (-2254 (($ $) 73)) (-2109 (($ $) 61)) (-1334 (((-558) $) 115)) (-2298 (($ $) 78)) (-2158 (($ $) 65)) (-3457 (($) NIL T CONST)) (-2676 (($ $) NIL)) (-3302 (((-3 (-558) "failed") $) 114) (((-3 (-406 (-558)) "failed") $) 111)) (-3226 (((-558) $) 112) (((-406 (-558)) $) 109)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) 91)) (-1396 (((-406 (-558)) $ (-762)) 107) (((-406 (-558)) $ (-762) (-762)) 106)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2659 (((-911)) 27) (((-911) (-911)) NIL (|has| $ (-6 -4374)))) (-4053 (((-112) $) NIL)) (-3348 (($) 37)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL)) (-2532 (((-558) $) 33)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL)) (-1423 (($ $) NIL)) (-2032 (((-112) $) 86)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) 51) (($) 32 (-12 (-2143 (|has| $ (-6 -4366))) (-2143 (|has| $ (-6 -4374)))))) (-2281 (($ $ $) 50) (($) 31 (-12 (-2143 (|has| $ (-6 -4366))) (-2143 (|has| $ (-6 -4374)))))) (-3815 (((-558) $) 25)) (-2656 (($ $) 28)) (-2927 (($ $) 55)) (-4342 (($ $) 60)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-4246 (((-911) (-558)) NIL (|has| $ (-6 -4374)))) (-1688 (((-1107) $) 89)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL)) (-4259 (($ $) NIL)) (-4114 (($ (-558) (-558)) NIL) (($ (-558) (-558) (-911)) 99)) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1857 (((-558) $) 26)) (-2873 (($) 36)) (-3944 (($ $) 59)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3035 (((-911)) NIL) (((-911) (-911)) NIL (|has| $ (-6 -4374)))) (-3780 (($ $ (-762)) NIL) (($ $) 92)) (-1298 (((-911) (-558)) NIL (|has| $ (-6 -4374)))) (-2312 (($ $) 76)) (-2170 (($ $) 66)) (-2289 (($ $) 77)) (-2146 (($ $) 64)) (-2265 (($ $) 74)) (-2120 (($ $) 62)) (-3441 (((-378) $) 103) (((-224) $) 100) (((-882 (-378)) $) NIL) (((-534) $) 43)) (-3940 (((-853) $) 40) (($ (-558)) 58) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-558)) 58) (($ (-406 (-558))) NIL)) (-2417 (((-762)) NIL)) (-2912 (($ $) NIL)) (-1657 (((-911)) 30) (((-911) (-911)) NIL (|has| $ (-6 -4374)))) (-2636 (((-911)) 23)) (-4175 (($ $) 81)) (-2209 (($ $) 69) (($ $ $) 108)) (-2671 (((-112) $ $) NIL)) (-2325 (($ $) 79)) (-2184 (($ $) 67)) (-4197 (($ $) 84)) (-2233 (($ $) 72)) (-2038 (($ $) 82)) (-2244 (($ $) 70)) (-4185 (($ $) 83)) (-2221 (($ $) 71)) (-4164 (($ $) 80)) (-2195 (($ $) 68)) (-4241 (($ $) 116)) (-2207 (($) 34 T CONST)) (-2220 (($) 35 T CONST)) (-2555 (((-1145) $) 17) (((-1145) $ (-112)) 19) (((-1251) (-813) $) 20) (((-1251) (-813) $ (-112)) 21)) (-3765 (($ $) 95)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-3087 (($ $ $) 97)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 52)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 44)) (-1805 (($ $ $) 85) (($ $ (-558)) 53)) (-1796 (($ $) 45) (($ $ $) 47)) (-1785 (($ $ $) 46)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 56) (($ $ (-406 (-558))) 127) (($ $ $) 57)) (* (($ (-911) $) 29) (($ (-762) $) NIL) (($ (-558) $) 49) (($ $ $) 48) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-224) (-13 (-403) (-232) (-819) (-1185) (-606 (-534)) (-10 -8 (-15 -1805 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2873 ($)) (-15 -2656 ($ $)) (-15 -2927 ($ $)) (-15 -2209 ($ $ $)) (-15 -3765 ($ $)) (-15 -3087 ($ $ $)) (-15 -1396 ((-406 (-558)) $ (-762))) (-15 -1396 ((-406 (-558)) $ (-762) (-762)))))) (T -224))
-((** (*1 *1 *1 *1) (-5 *1 (-224))) (-1805 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-224)))) (-2873 (*1 *1) (-5 *1 (-224))) (-2656 (*1 *1 *1) (-5 *1 (-224))) (-2927 (*1 *1 *1) (-5 *1 (-224))) (-2209 (*1 *1 *1 *1) (-5 *1 (-224))) (-3765 (*1 *1 *1) (-5 *1 (-224))) (-3087 (*1 *1 *1 *1) (-5 *1 (-224))) (-1396 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224)))) (-1396 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224)))))
-(-13 (-403) (-232) (-819) (-1185) (-606 (-534)) (-10 -8 (-15 -1805 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2873 ($)) (-15 -2656 ($ $)) (-15 -2927 ($ $)) (-15 -2209 ($ $ $)) (-15 -3765 ($ $)) (-15 -3087 ($ $ $)) (-15 -1396 ((-406 (-558)) $ (-762))) (-15 -1396 ((-406 (-558)) $ (-762) (-762)))))
-((-3748 (((-168 (-224)) (-762) (-168 (-224))) 11) (((-224) (-762) (-224)) 12)) (-2865 (((-168 (-224)) (-168 (-224))) 13) (((-224) (-224)) 14)) (-4014 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 19) (((-224) (-224) (-224)) 22)) (-2802 (((-168 (-224)) (-168 (-224))) 25) (((-224) (-224)) 24)) (-3185 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 43) (((-224) (-224) (-224)) 35)) (-1493 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 48) (((-224) (-224) (-224)) 45)) (-1817 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 15) (((-224) (-224) (-224)) 16)) (-3750 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 17) (((-224) (-224) (-224)) 18)) (-2343 (((-168 (-224)) (-168 (-224))) 60) (((-224) (-224)) 59)) (-2734 (((-224) (-224)) 54) (((-168 (-224)) (-168 (-224))) 58)) (-3765 (((-168 (-224)) (-168 (-224))) 8) (((-224) (-224)) 9)) (-3087 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 30) (((-224) (-224) (-224)) 26)))
-(((-225) (-10 -7 (-15 -3765 ((-224) (-224))) (-15 -3765 ((-168 (-224)) (-168 (-224)))) (-15 -3087 ((-224) (-224) (-224))) (-15 -3087 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2865 ((-224) (-224))) (-15 -2865 ((-168 (-224)) (-168 (-224)))) (-15 -2802 ((-224) (-224))) (-15 -2802 ((-168 (-224)) (-168 (-224)))) (-15 -3748 ((-224) (-762) (-224))) (-15 -3748 ((-168 (-224)) (-762) (-168 (-224)))) (-15 -1817 ((-224) (-224) (-224))) (-15 -1817 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3185 ((-224) (-224) (-224))) (-15 -3185 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3750 ((-224) (-224) (-224))) (-15 -3750 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1493 ((-224) (-224) (-224))) (-15 -1493 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2734 ((-168 (-224)) (-168 (-224)))) (-15 -2734 ((-224) (-224))) (-15 -2343 ((-224) (-224))) (-15 -2343 ((-168 (-224)) (-168 (-224)))) (-15 -4014 ((-224) (-224) (-224))) (-15 -4014 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))) (T -225))
-((-4014 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-4014 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1493 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1493 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3185 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3185 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1817 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1817 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3748 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-224))) (-5 *3 (-762)) (-5 *1 (-225)))) (-3748 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-762)) (-5 *1 (-225)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2865 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2865 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3087 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3087 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))))
-(-10 -7 (-15 -3765 ((-224) (-224))) (-15 -3765 ((-168 (-224)) (-168 (-224)))) (-15 -3087 ((-224) (-224) (-224))) (-15 -3087 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2865 ((-224) (-224))) (-15 -2865 ((-168 (-224)) (-168 (-224)))) (-15 -2802 ((-224) (-224))) (-15 -2802 ((-168 (-224)) (-168 (-224)))) (-15 -3748 ((-224) (-762) (-224))) (-15 -3748 ((-168 (-224)) (-762) (-168 (-224)))) (-15 -1817 ((-224) (-224) (-224))) (-15 -1817 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3185 ((-224) (-224) (-224))) (-15 -3185 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3750 ((-224) (-224) (-224))) (-15 -3750 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1493 ((-224) (-224) (-224))) (-15 -1493 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2734 ((-168 (-224)) (-168 (-224)))) (-15 -2734 ((-224) (-224))) (-15 -2343 ((-224) (-224))) (-15 -2343 ((-168 (-224)) (-168 (-224)))) (-15 -4014 ((-224) (-224) (-224))) (-15 -4014 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4237 (($ (-762) (-762)) NIL)) (-2565 (($ $ $) NIL)) (-3295 (($ (-1246 |#1|)) NIL) (($ $) NIL)) (-4360 (($ |#1| |#1| |#1|) 32)) (-2086 (((-112) $) NIL)) (-2037 (($ $ (-558) (-558)) NIL)) (-4126 (($ $ (-558) (-558)) NIL)) (-3311 (($ $ (-558) (-558) (-558) (-558)) NIL)) (-3230 (($ $) NIL)) (-1693 (((-112) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-1683 (($ $ (-558) (-558) $) NIL)) (-4077 ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) NIL)) (-3425 (($ $ (-558) (-1246 |#1|)) NIL)) (-3456 (($ $ (-558) (-1246 |#1|)) NIL)) (-2780 (($ |#1| |#1| |#1|) 31)) (-1866 (($ (-762) |#1|) NIL)) (-3457 (($) NIL T CONST)) (-3125 (($ $) NIL (|has| |#1| (-306)))) (-2500 (((-1246 |#1|) $ (-558)) NIL)) (-4252 (($ |#1|) 30)) (-4081 (($ |#1|) 29)) (-4104 (($ |#1|) 28)) (-1489 (((-762) $) NIL (|has| |#1| (-550)))) (-3683 ((|#1| $ (-558) (-558) |#1|) NIL)) (-3620 ((|#1| $ (-558) (-558)) NIL)) (-2917 (((-635 |#1|) $) NIL)) (-2556 (((-762) $) NIL (|has| |#1| (-550)))) (-3693 (((-635 (-1246 |#1|)) $) NIL (|has| |#1| (-550)))) (-1430 (((-762) $) NIL)) (-1395 (($ (-762) (-762) |#1|) NIL)) (-1444 (((-762) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2591 ((|#1| $) NIL (|has| |#1| (-6 (-4385 "*"))))) (-3942 (((-558) $) NIL)) (-1478 (((-558) $) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4153 (((-558) $) NIL)) (-3508 (((-558) $) NIL)) (-2144 (($ (-635 (-635 |#1|))) 11)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3922 (((-635 (-635 |#1|)) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-3191 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3379 (($) 12)) (-2709 (($ $ $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) NIL)) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558))) NIL)) (-2049 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-1312 (((-112) $) NIL)) (-3843 ((|#1| $) NIL (|has| |#1| (-6 (-4385 "*"))))) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3962 (((-1246 |#1|) $ (-558)) NIL)) (-3940 (($ (-1246 |#1|)) NIL) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3551 (((-112) $) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $ $) NIL) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-558) $) NIL) (((-1246 |#1|) $ (-1246 |#1|)) 15) (((-1246 |#1|) (-1246 |#1|) $) NIL) (((-933 |#1|) $ (-933 |#1|)) 20)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-226 |#1|) (-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 * ((-933 |#1|) $ (-933 |#1|))) (-15 -3379 ($)) (-15 -4104 ($ |#1|)) (-15 -4081 ($ |#1|)) (-15 -4252 ($ |#1|)) (-15 -2780 ($ |#1| |#1| |#1|)) (-15 -4360 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1185))) (T -226))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185))) (-5 *1 (-226 *3)))) (-3379 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-4104 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-4081 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-4252 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-2780 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))) (-4360 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
-(-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 * ((-933 |#1|) $ (-933 |#1|))) (-15 -3379 ($)) (-15 -4104 ($ |#1|)) (-15 -4081 ($ |#1|)) (-15 -4252 ($ |#1|)) (-15 -2780 ($ |#1| |#1| |#1|)) (-15 -4360 ($ |#1| |#1| |#1|))))
-((-2256 (($ (-1 (-112) |#2|) $) 15)) (-2375 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-1966 (($) NIL) (($ (-635 |#2|)) 11)) (-1708 (((-112) $ $) 22)))
-(((-227 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -1966 (|#1| (-635 |#2|))) (-15 -1966 (|#1|)) (-15 -1708 ((-112) |#1| |#1|))) (-228 |#2|) (-1087)) (T -227))
-NIL
-(-10 -8 (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -1966 (|#1| (-635 |#2|))) (-15 -1966 (|#1|)) (-15 -1708 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-2256 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-3188 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ |#1| $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1966 (($) 49) (($ (-635 |#1|)) 48)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 50)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-228 |#1|) (-139) (-1087)) (T -228))
+((-2455 ((|#2| |#2|) 28)) (-3134 (((-112) |#2|) 19)) (-1673 (((-315 |#1|) |#2|) 12)) (-1684 (((-315 |#1|) |#2|) 14)) (-2347 ((|#2| |#2| (-1166)) 68) ((|#2| |#2|) 69)) (-3698 (((-168 (-315 |#1|)) |#2|) 10)) (-4010 ((|#2| |#2| (-1166)) 65) ((|#2| |#2|) 59)))
+(((-187 |#1| |#2|) (-10 -7 (-15 -2347 (|#2| |#2|)) (-15 -2347 (|#2| |#2| (-1166))) (-15 -4010 (|#2| |#2|)) (-15 -4010 (|#2| |#2| (-1166))) (-15 -1673 ((-315 |#1|) |#2|)) (-15 -1684 ((-315 |#1|) |#2|)) (-15 -3134 ((-112) |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -3698 ((-168 (-315 |#1|)) |#2|))) (-13 (-553) (-844) (-1031 (-561))) (-13 (-27) (-1190) (-429 (-168 |#1|)))) (T -187))
+((-3698 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3)))))) (-3134 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-1673 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-4010 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-4010 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3)))))) (-2347 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4)))))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3)))))))
+(-10 -7 (-15 -2347 (|#2| |#2|)) (-15 -2347 (|#2| |#2| (-1166))) (-15 -4010 (|#2| |#2|)) (-15 -4010 (|#2| |#2| (-1166))) (-15 -1673 ((-315 |#1|) |#2|)) (-15 -1684 ((-315 |#1|) |#2|)) (-15 -3134 ((-112) |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -3698 ((-168 (-315 |#1|)) |#2|)))
+((-1613 (((-1253 (-682 (-945 |#1|))) (-1253 (-682 |#1|))) 24)) (-4022 (((-1253 (-682 (-406 (-945 |#1|)))) (-1253 (-682 |#1|))) 33)))
+(((-188 |#1|) (-10 -7 (-15 -1613 ((-1253 (-682 (-945 |#1|))) (-1253 (-682 |#1|)))) (-15 -4022 ((-1253 (-682 (-406 (-945 |#1|)))) (-1253 (-682 |#1|))))) (-171)) (T -188))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1253 (-682 (-406 (-945 *4))))) (-5 *1 (-188 *4)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1253 (-682 (-945 *4)))) (-5 *1 (-188 *4)))))
+(-10 -7 (-15 -1613 ((-1253 (-682 (-945 |#1|))) (-1253 (-682 |#1|)))) (-15 -4022 ((-1253 (-682 (-406 (-945 |#1|)))) (-1253 (-682 |#1|)))))
+((-3805 (((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561)))) 66)) (-1809 (((-1168 (-406 (-561))) (-638 (-561)) (-638 (-561))) 75)) (-3397 (((-1168 (-406 (-561))) (-561)) 40)) (-1564 (((-1168 (-406 (-561))) (-561)) 52)) (-1444 (((-406 (-561)) (-1168 (-406 (-561)))) 62)) (-2244 (((-1168 (-406 (-561))) (-561)) 32)) (-3050 (((-1168 (-406 (-561))) (-561)) 48)) (-3952 (((-1168 (-406 (-561))) (-561)) 46)) (-2322 (((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561)))) 60)) (-1897 (((-1168 (-406 (-561))) (-561)) 25)) (-3074 (((-406 (-561)) (-1168 (-406 (-561))) (-1168 (-406 (-561)))) 64)) (-3311 (((-1168 (-406 (-561))) (-561)) 30)) (-1821 (((-1168 (-406 (-561))) (-638 (-561))) 72)))
+(((-189) (-10 -7 (-15 -1897 ((-1168 (-406 (-561))) (-561))) (-15 -3397 ((-1168 (-406 (-561))) (-561))) (-15 -2244 ((-1168 (-406 (-561))) (-561))) (-15 -3311 ((-1168 (-406 (-561))) (-561))) (-15 -3952 ((-1168 (-406 (-561))) (-561))) (-15 -3050 ((-1168 (-406 (-561))) (-561))) (-15 -1564 ((-1168 (-406 (-561))) (-561))) (-15 -3074 ((-406 (-561)) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -2322 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -1444 ((-406 (-561)) (-1168 (-406 (-561))))) (-15 -3805 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -1821 ((-1168 (-406 (-561))) (-638 (-561)))) (-15 -1809 ((-1168 (-406 (-561))) (-638 (-561)) (-638 (-561)))))) (T -189))
+((-1809 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-3805 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561))) (-5 *1 (-189)))) (-2322 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561))) (-5 *1 (-189)))) (-1564 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3952 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3311 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-2244 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))) (-1897 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
+(-10 -7 (-15 -1897 ((-1168 (-406 (-561))) (-561))) (-15 -3397 ((-1168 (-406 (-561))) (-561))) (-15 -2244 ((-1168 (-406 (-561))) (-561))) (-15 -3311 ((-1168 (-406 (-561))) (-561))) (-15 -3952 ((-1168 (-406 (-561))) (-561))) (-15 -3050 ((-1168 (-406 (-561))) (-561))) (-15 -1564 ((-1168 (-406 (-561))) (-561))) (-15 -3074 ((-406 (-561)) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -2322 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -1444 ((-406 (-561)) (-1168 (-406 (-561))))) (-15 -3805 ((-1168 (-406 (-561))) (-1168 (-406 (-561))) (-1168 (-406 (-561))))) (-15 -1821 ((-1168 (-406 (-561))) (-638 (-561)))) (-15 -1809 ((-1168 (-406 (-561))) (-638 (-561)) (-638 (-561)))))
+((-3207 (((-417 (-1162 (-561))) (-561)) 28)) (-2956 (((-638 (-1162 (-561))) (-561)) 23)) (-2526 (((-1162 (-561)) (-561)) 21)))
+(((-190) (-10 -7 (-15 -2956 ((-638 (-1162 (-561))) (-561))) (-15 -2526 ((-1162 (-561)) (-561))) (-15 -3207 ((-417 (-1162 (-561))) (-561))))) (T -190))
+((-3207 (*1 *2 *3) (-12 (-5 *2 (-417 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))) (-2526 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-190)) (-5 *3 (-561)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-638 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))))
+(-10 -7 (-15 -2956 ((-638 (-1162 (-561))) (-561))) (-15 -2526 ((-1162 (-561)) (-561))) (-15 -3207 ((-417 (-1162 (-561))) (-561))))
+((-2555 (((-1146 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 103)) (-1789 (((-638 (-1148)) (-1146 (-224))) NIL)) (-3100 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 79)) (-1457 (((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224)))) NIL)) (-4126 (((-638 (-1148)) (-638 (-224))) NIL)) (-2338 (((-224) (-1084 (-837 (-224)))) 24)) (-4137 (((-224) (-1084 (-837 (-224)))) 25)) (-2781 (((-378) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 96)) (-3202 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-2108 (((-1148) (-224)) NIL)) (-2177 (((-1148) (-638 (-1148))) 20)) (-3520 (((-1028) (-1166) (-1166) (-1028)) 13)))
+(((-191) (-10 -7 (-15 -3100 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3202 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2338 ((-224) (-1084 (-837 (-224))))) (-15 -4137 ((-224) (-1084 (-837 (-224))))) (-15 -2781 ((-378) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1457 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -2555 ((-1146 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2108 ((-1148) (-224))) (-15 -4126 ((-638 (-1148)) (-638 (-224)))) (-15 -1789 ((-638 (-1148)) (-1146 (-224)))) (-15 -2177 ((-1148) (-638 (-1148)))) (-15 -3520 ((-1028) (-1166) (-1166) (-1028))))) (T -191))
+((-3520 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191)))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-191)))) (-1457 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166)) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-191)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-191)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191)))))
+(-10 -7 (-15 -3100 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3202 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2338 ((-224) (-1084 (-837 (-224))))) (-15 -4137 ((-224) (-1084 (-837 (-224))))) (-15 -2781 ((-378) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1457 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -2555 ((-1146 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2108 ((-1148) (-224))) (-15 -4126 ((-638 (-1148)) (-638 (-224)))) (-15 -1789 ((-638 (-1148)) (-1146 (-224)))) (-15 -2177 ((-1148) (-638 (-1148)))) (-15 -3520 ((-1028) (-1166) (-1166) (-1028))))
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 55) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-192) (-781)) (T -192))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 60) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-193) (-781)) (T -193))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 69) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-194) (-781)) (T -194))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 56) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-195) (-781)) (T -195))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 67) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-196) (-781)) (T -196))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 73) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-197) (-781)) (T -197))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 80) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-198) (-781)) (T -198))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 70) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-199) (-781)) (T -199))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 65)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-200) (-781)) (T -200))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 63)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-201) (-781)) (T -201))
+NIL
+(-781)
+((-4011 (((-112) $ $) NIL)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 90) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-202) (-781)) (T -202))
+NIL
+(-781)
+((-1884 (((-3 (-2 (|:| -2375 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-3663 (((-561) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-2181 (((-3 (-638 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73)))
+(((-203) (-10 -7 (-15 -1884 ((-3 (-2 (|:| -2375 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2181 ((-3 (-638 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3663 ((-561) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203))
+((-3663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-561)) (-5 *1 (-203)))) (-2181 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-203)))) (-1884 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2375 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
+(-10 -7 (-15 -1884 ((-3 (-2 (|:| -2375 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2181 ((-3 (-638 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3663 ((-561) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-2554 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-3812 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-4164 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-682 (-315 (-224)))) 87)) (-4331 (((-378) (-682 (-315 (-224)))) 111)) (-4026 (((-682 (-315 (-224))) (-1253 (-315 (-224))) (-638 (-1166))) 108)) (-4065 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-3592 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-1444 (((-682 (-315 (-224))) (-682 (-315 (-224))) (-638 (-1166)) (-1253 (-315 (-224)))) 100)) (-3038 (((-378) (-378) (-638 (-378))) 105) (((-378) (-378) (-378)) 103)) (-3755 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36)))
+(((-204) (-10 -7 (-15 -3038 ((-378) (-378) (-378))) (-15 -3038 ((-378) (-378) (-638 (-378)))) (-15 -4331 ((-378) (-682 (-315 (-224))))) (-15 -4026 ((-682 (-315 (-224))) (-1253 (-315 (-224))) (-638 (-1166)))) (-15 -1444 ((-682 (-315 (-224))) (-682 (-315 (-224))) (-638 (-1166)) (-1253 (-315 (-224))))) (-15 -4164 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-682 (-315 (-224))))) (-15 -3812 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2554 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3592 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3755 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4065 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204))
+((-4065 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-682 (-315 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-1444 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-682 (-315 (-224)))) (-5 *3 (-638 (-1166))) (-5 *4 (-1253 (-315 (-224)))) (-5 *1 (-204)))) (-4026 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *4 (-638 (-1166))) (-5 *2 (-682 (-315 (-224)))) (-5 *1 (-204)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-682 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3038 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3038 (*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204)))))
+(-10 -7 (-15 -3038 ((-378) (-378) (-378))) (-15 -3038 ((-378) (-378) (-638 (-378)))) (-15 -4331 ((-378) (-682 (-315 (-224))))) (-15 -4026 ((-682 (-315 (-224))) (-1253 (-315 (-224))) (-638 (-1166)))) (-15 -1444 ((-682 (-315 (-224))) (-682 (-315 (-224))) (-638 (-1166)) (-1253 (-315 (-224))))) (-15 -4164 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-682 (-315 (-224))))) (-15 -3812 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2554 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3592 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3755 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4065 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-4011 (((-112) $ $) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3210 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-1733 (((-112) $ $) NIL)))
+(((-205) (-794)) (T -205))
+NIL
+(-794)
+((-4011 (((-112) $ $) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3210 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-1733 (((-112) $ $) NIL)))
+(((-206) (-794)) (T -206))
+NIL
+(-794)
+((-4011 (((-112) $ $) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3210 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-1733 (((-112) $ $) NIL)))
+(((-207) (-794)) (T -207))
+NIL
+(-794)
+((-4011 (((-112) $ $) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3210 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-1733 (((-112) $ $) NIL)))
+(((-208) (-794)) (T -208))
+NIL
+(-794)
+((-2813 (((-638 (-1166)) (-1166) (-765)) 23)) (-2141 (((-315 (-224)) (-315 (-224))) 31)) (-4341 (((-112) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 73)) (-2785 (((-112) (-224) (-224) (-638 (-315 (-224)))) 44)))
+(((-209) (-10 -7 (-15 -2813 ((-638 (-1166)) (-1166) (-765))) (-15 -2141 ((-315 (-224)) (-315 (-224)))) (-15 -2785 ((-112) (-224) (-224) (-638 (-315 (-224))))) (-15 -4341 ((-112) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))) (T -209))
+((-4341 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-2785 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-638 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-2141 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-638 (-1166))) (-5 *1 (-209)) (-5 *3 (-1166)))))
+(-10 -7 (-15 -2813 ((-638 (-1166)) (-1166) (-765))) (-15 -2141 ((-315 (-224)) (-315 (-224)))) (-15 -2785 ((-112) (-224) (-224) (-638 (-315 (-224))))) (-15 -4341 ((-112) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))
+((-4011 (((-112) $ $) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 26)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-2904 (((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 57)) (-1733 (((-112) $ $) NIL)))
+(((-210) (-888)) (T -210))
+NIL
+(-888)
+((-4011 (((-112) $ $) NIL)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 21)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-2904 (((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-211) (-888)) (T -211))
+NIL
+(-888)
+((-4011 (((-112) $ $) NIL)) (-4354 ((|#2| $ (-765) |#2|) 11)) (-4344 ((|#2| $ (-765)) 10)) (-1470 (($) 8)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 18)) (-1733 (((-112) $ $) 13)))
+(((-212 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -1470 ($)) (-15 -4344 (|#2| $ (-765))) (-15 -4354 (|#2| $ (-765) |#2|)))) (-914) (-1090)) (T -212))
+((-1470 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1090)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-1090)) (-5 *1 (-212 *4 *2)) (-14 *4 (-914)))) (-4354 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-914)) (-4 *2 (-1090)))))
+(-13 (-1090) (-10 -8 (-15 -1470 ($)) (-15 -4344 (|#2| $ (-765))) (-15 -4354 (|#2| $ (-765) |#2|))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3148 (((-1258) $) 36) (((-1258) $ (-914) (-914)) 38)) (-2277 (($ $ (-982)) 19) (((-244 (-1148)) $ (-1166)) 15)) (-1491 (((-1258) $) 34)) (-4022 (((-856) $) 31) (($ (-638 |#1|)) 8)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $ $) 27)) (-1813 (($ $ $) 22)))
+(((-213 |#1|) (-13 (-1090) (-611 (-638 |#1|)) (-10 -8 (-15 -2277 ($ $ (-982))) (-15 -2277 ((-244 (-1148)) $ (-1166))) (-15 -1813 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $)) (-15 -3148 ((-1258) $ (-914) (-914))))) (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $))))) (T -213))
+((-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-982)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $))))))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ *3)) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $))))))) (-1813 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $))))))) (-1824 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $))))))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 (*2 $)) (-15 -3148 (*2 $))))))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 (*2 $)) (-15 -3148 (*2 $))))))) (-3148 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1258)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 (*2 $)) (-15 -3148 (*2 $))))))))
+(-13 (-1090) (-611 (-638 |#1|)) (-10 -8 (-15 -2277 ($ $ (-982))) (-15 -2277 ((-244 (-1148)) $ (-1166))) (-15 -1813 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $)) (-15 -3148 ((-1258) $ (-914) (-914)))))
+((-2395 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2395 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214))
+((-2395 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1229 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6)))))
+(-10 -7 (-15 -2395 (|#2| |#4| (-1 |#2| |#2|))))
+((-4015 ((|#2| |#2| (-765) |#2|) 42)) (-2687 ((|#2| |#2| (-765) |#2|) 38)) (-3219 (((-638 |#2|) (-638 (-2 (|:| |deg| (-765)) (|:| -2255 |#2|)))) 56)) (-2691 (((-638 (-2 (|:| |deg| (-765)) (|:| -2255 |#2|))) |#2|) 52)) (-2862 (((-112) |#2|) 49)) (-2494 (((-417 |#2|) |#2|) 76)) (-1657 (((-417 |#2|) |#2|) 75)) (-2655 ((|#2| |#2| (-765) |#2|) 36)) (-2829 (((-2 (|:| |cont| |#1|) (|:| -4282 (-638 (-2 (|:| |irr| |#2|) (|:| -2449 (-561)))))) |#2| (-112)) 68)))
+(((-215 |#1| |#2|) (-10 -7 (-15 -1657 ((-417 |#2|) |#2|)) (-15 -2494 ((-417 |#2|) |#2|)) (-15 -2829 ((-2 (|:| |cont| |#1|) (|:| -4282 (-638 (-2 (|:| |irr| |#2|) (|:| -2449 (-561)))))) |#2| (-112))) (-15 -2691 ((-638 (-2 (|:| |deg| (-765)) (|:| -2255 |#2|))) |#2|)) (-15 -3219 ((-638 |#2|) (-638 (-2 (|:| |deg| (-765)) (|:| -2255 |#2|))))) (-15 -2655 (|#2| |#2| (-765) |#2|)) (-15 -2687 (|#2| |#2| (-765) |#2|)) (-15 -4015 (|#2| |#2| (-765) |#2|)) (-15 -2862 ((-112) |#2|))) (-348) (-1229 |#1|)) (T -215))
+((-2862 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-4015 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-2687 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-2655 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |deg| (-765)) (|:| -2255 *5)))) (-4 *5 (-1229 *4)) (-4 *4 (-348)) (-5 *2 (-638 *5)) (-5 *1 (-215 *4 *5)))) (-2691 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -2255 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1229 *5)))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -1657 ((-417 |#2|) |#2|)) (-15 -2494 ((-417 |#2|) |#2|)) (-15 -2829 ((-2 (|:| |cont| |#1|) (|:| -4282 (-638 (-2 (|:| |irr| |#2|) (|:| -2449 (-561)))))) |#2| (-112))) (-15 -2691 ((-638 (-2 (|:| |deg| (-765)) (|:| -2255 |#2|))) |#2|)) (-15 -3219 ((-638 |#2|) (-638 (-2 (|:| |deg| (-765)) (|:| -2255 |#2|))))) (-15 -2655 (|#2| |#2| (-765) |#2|)) (-15 -2687 (|#2| |#2| (-765) |#2|)) (-15 -4015 (|#2| |#2| (-765) |#2|)) (-15 -2862 ((-112) |#2|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 (((-561) $) NIL (|has| (-561) (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| (-561) (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-561) (-1031 (-561))))) (-3938 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-561) (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| (-561) (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 (((-561) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-2110 (((-112) $) NIL (|has| (-561) (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-561) (-844)))) (-4120 (($ (-1 (-561) (-561)) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-561) (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) NIL)) (-1388 (((-561) $) NIL (|has| (-561) (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-3569 (((-765) $) NIL)) (-2277 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-2861 (($ $) NIL)) (-4045 (((-561) $) NIL)) (-2466 (($ (-406 (-561))) 9)) (-4174 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 8) (($ (-561)) NIL) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL) (((-997 10) $) 10)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-4259 (((-765)) NIL)) (-2432 (((-561) $) NIL (|has| (-561) (-543)))) (-3168 (((-112) $ $) NIL)) (-3749 (($ $) NIL (|has| (-561) (-814)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1782 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1833 (($ $ $) NIL) (($ (-561) (-561)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL)))
+(((-216) (-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 10)) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -2466 ($ (-406 (-561))))))) (T -216))
+((-3841 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216)))) (-2466 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216)))))
+(-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 10)) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -2466 ($ (-406 (-561))))))
+((-4011 (((-112) $ $) NIL)) (-2807 (((-1108) $) 13)) (-1764 (((-1148) $) NIL)) (-3574 (((-481) $) 10)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 25) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-1125) $) 15)) (-1733 (((-112) $ $) NIL)))
+(((-217) (-13 (-1073) (-10 -8 (-15 -3574 ((-481) $)) (-15 -2807 ((-1108) $)) (-15 -3279 ((-1125) $))))) (T -217))
+((-3574 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-217)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217)))))
+(-13 (-1073) (-10 -8 (-15 -3574 ((-481) $)) (-15 -2807 ((-1108) $)) (-15 -3279 ((-1125) $))))
+((-1842 (((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)) (-1148)) 28) (((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|))) 24)) (-2154 (((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1166) (-837 |#2|) (-837 |#2|) (-112)) 17)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -1842 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)))) (-15 -1842 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)) (-1148))) (-15 -2154 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1166) (-837 |#2|) (-837 |#2|) (-112)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-29 |#1|))) (T -218))
+((-2154 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1166)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-4 *3 (-13 (-1190) (-952) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-837 *3)))) (-1842 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-837 *3))) (-5 *5 (-1148)) (-4 *3 (-13 (-1190) (-952) (-29 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *6 *3)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-837 *3))) (-4 *3 (-13 (-1190) (-952) (-29 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *5 *3)))))
+(-10 -7 (-15 -1842 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)))) (-15 -1842 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-837 |#2|)) (-1148))) (-15 -2154 ((-3 (|:| |f1| (-837 |#2|)) (|:| |f2| (-638 (-837 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1166) (-837 |#2|) (-837 |#2|) (-112))))
+((-1842 (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))) (-1148)) 46) (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|))))) 43) (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))) (-1148)) 47) (((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|)))) 20)))
+(((-219 |#1|) (-10 -7 (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))))) (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))) (-1148))) (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))))) (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))) (-1148)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (T -219))
+((-1842 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-837 (-406 (-945 *6))))) (-5 *5 (-1148)) (-5 *3 (-406 (-945 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-837 (-406 (-945 *5))))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))) (-1842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1082 (-837 (-315 *6)))) (-5 *5 (-1148)) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1082 (-837 (-315 *5)))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))))
+(-10 -7 (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))))) (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-315 |#1|))) (-1148))) (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))))) (-15 -1842 ((-3 (|:| |f1| (-837 (-315 |#1|))) (|:| |f2| (-638 (-837 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-945 |#1|)) (-1082 (-837 (-406 (-945 |#1|)))) (-1148))))
+((-3185 (((-2 (|:| -4158 (-1162 |#1|)) (|:| |deg| (-914))) (-1162 |#1|)) 21)) (-3529 (((-638 (-315 |#2|)) (-315 |#2|) (-914)) 42)))
+(((-220 |#1| |#2|) (-10 -7 (-15 -3185 ((-2 (|:| -4158 (-1162 |#1|)) (|:| |deg| (-914))) (-1162 |#1|))) (-15 -3529 ((-638 (-315 |#2|)) (-315 |#2|) (-914)))) (-1042) (-13 (-553) (-844))) (T -220))
+((-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *6 (-13 (-553) (-844))) (-5 *2 (-638 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1042)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-2 (|:| -4158 (-1162 *4)) (|:| |deg| (-914)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1162 *4)) (-4 *5 (-13 (-553) (-844))))))
+(-10 -7 (-15 -3185 ((-2 (|:| -4158 (-1162 |#1|)) (|:| |deg| (-914))) (-1162 |#1|))) (-15 -3529 ((-638 (-315 |#2|)) (-315 |#2|) (-914))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3400 ((|#1| $) NIL)) (-2735 ((|#1| $) 25)) (-1630 (((-112) $ (-765)) NIL)) (-1965 (($) NIL T CONST)) (-3830 (($ $) NIL)) (-4075 (($ $) 31)) (-3760 ((|#1| |#1| $) NIL)) (-3297 ((|#1| $) NIL)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-3617 (((-765) $) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3211 ((|#1| $) NIL)) (-4209 ((|#1| |#1| $) 28)) (-1697 ((|#1| |#1| $) 30)) (-3671 (($ |#1| $) NIL)) (-3061 (((-765) $) 27)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2196 ((|#1| $) NIL)) (-2166 ((|#1| $) 26)) (-4111 ((|#1| $) 24)) (-3522 ((|#1| $) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3991 ((|#1| |#1| $) NIL)) (-1928 (((-112) $) 9)) (-3170 (($) NIL)) (-3252 ((|#1| $) NIL)) (-2480 (($) NIL) (($ (-638 |#1|)) 16)) (-1404 (((-765) $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3018 ((|#1| $) 13)) (-3025 (($ (-638 |#1|)) NIL)) (-2016 ((|#1| $) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -2480 ($ (-638 |#1|))))) (-1090)) (T -221))
+((-2480 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-221 *3)))))
+(-13 (-253 |#1|) (-10 -8 (-15 -2480 ($ (-638 |#1|)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1528 (($ (-315 |#1|)) 23)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3295 (((-112) $) NIL)) (-4017 (((-3 (-315 |#1|) "failed") $) NIL)) (-3938 (((-315 |#1|) $) NIL)) (-1619 (($ $) 31)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-4120 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-1590 (((-315 |#1|) $) NIL)) (-3651 (($ $) 30)) (-1764 (((-1148) $) NIL)) (-3852 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-3158 (($ (-765)) NIL)) (-1960 (($ $) 32)) (-2894 (((-561) $) NIL)) (-4022 (((-856) $) 57) (($ (-561)) NIL) (($ (-315 |#1|)) NIL)) (-2634 (((-315 |#1|) $ $) NIL)) (-4259 (((-765)) NIL)) (-2211 (($) 25 T CONST)) (-2222 (($) 50 T CONST)) (-1733 (((-112) $ $) 28)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 19)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 24) (($ (-315 |#1|) $) 18)))
+(((-222 |#1| |#2|) (-13 (-615 (-315 |#1|)) (-1031 (-315 |#1|)) (-10 -8 (-15 -1590 ((-315 |#1|) $)) (-15 -3651 ($ $)) (-15 -1619 ($ $)) (-15 -2634 ((-315 |#1|) $ $)) (-15 -3158 ($ (-765))) (-15 -3852 ((-112) $)) (-15 -3295 ((-112) $)) (-15 -2894 ((-561) $)) (-15 -4120 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -1528 ($ (-315 |#1|))) (-15 -1960 ($ $)))) (-13 (-1042) (-844)) (-638 (-1166))) (T -222))
+((-1590 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-3651 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-638 (-1166))))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-638 (-1166))))) (-2634 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166))))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166))))) (-1528 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166))))) (-1960 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-638 (-1166))))))
+(-13 (-615 (-315 |#1|)) (-1031 (-315 |#1|)) (-10 -8 (-15 -1590 ((-315 |#1|) $)) (-15 -3651 ($ $)) (-15 -1619 ($ $)) (-15 -2634 ((-315 |#1|) $ $)) (-15 -3158 ($ (-765))) (-15 -3852 ((-112) $)) (-15 -3295 ((-112) $)) (-15 -2894 ((-561) $)) (-15 -4120 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -1528 ($ (-315 |#1|))) (-15 -1960 ($ $))))
+((-3209 (((-112) (-1148)) 22)) (-1567 (((-3 (-837 |#2|) "failed") (-607 |#2|) |#2| (-837 |#2|) (-837 |#2|) (-112)) 32)) (-1505 (((-3 (-112) "failed") (-1162 |#2|) (-837 |#2|) (-837 |#2|) (-112)) 73) (((-3 (-112) "failed") (-945 |#1|) (-1166) (-837 |#2|) (-837 |#2|) (-112)) 74)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -3209 ((-112) (-1148))) (-15 -1567 ((-3 (-837 |#2|) "failed") (-607 |#2|) |#2| (-837 |#2|) (-837 |#2|) (-112))) (-15 -1505 ((-3 (-112) "failed") (-945 |#1|) (-1166) (-837 |#2|) (-837 |#2|) (-112))) (-15 -1505 ((-3 (-112) "failed") (-1162 |#2|) (-837 |#2|) (-837 |#2|) (-112)))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-29 |#1|))) (T -223))
+((-1505 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1162 *6)) (-5 *4 (-837 *6)) (-4 *6 (-13 (-1190) (-29 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-223 *5 *6)))) (-1505 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-945 *6)) (-5 *4 (-1166)) (-5 *5 (-837 *7)) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-1567 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-837 *4)) (-5 *3 (-607 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1190) (-29 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-223 *6 *4)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4))))))
+(-10 -7 (-15 -3209 ((-112) (-1148))) (-15 -1567 ((-3 (-837 |#2|) "failed") (-607 |#2|) |#2| (-837 |#2|) (-837 |#2|) (-112))) (-15 -1505 ((-3 (-112) "failed") (-945 |#1|) (-1166) (-837 |#2|) (-837 |#2|) (-112))) (-15 -1505 ((-3 (-112) "failed") (-1162 |#2|) (-837 |#2|) (-837 |#2|) (-112))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 87)) (-2949 (((-561) $) 98)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3411 (($ $) NIL)) (-2978 (($ $) 75)) (-4064 (($ $) 63)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1665 (($ $) 54)) (-1671 (((-112) $ $) NIL)) (-4172 (($ $) 73)) (-4041 (($ $) 61)) (-2666 (((-561) $) 115)) (-3009 (($ $) 78)) (-4085 (($ $) 65)) (-1965 (($) NIL T CONST)) (-2210 (($ $) NIL)) (-4017 (((-3 (-561) "failed") $) 114) (((-3 (-406 (-561)) "failed") $) 111)) (-3938 (((-561) $) 112) (((-406 (-561)) $) 109)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) 91)) (-3656 (((-406 (-561)) $ (-765)) 107) (((-406 (-561)) $ (-765) (-765)) 106)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3322 (((-914)) 27) (((-914) (-914)) NIL (|has| $ (-6 -4381)))) (-3201 (((-112) $) NIL)) (-4067 (($) 37)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL)) (-4163 (((-561) $) 33)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL)) (-1672 (($ $) NIL)) (-2110 (((-112) $) 86)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) 51) (($) 32 (-12 (-2159 (|has| $ (-6 -4373))) (-2159 (|has| $ (-6 -4381)))))) (-2986 (($ $ $) 50) (($) 31 (-12 (-2159 (|has| $ (-6 -4373))) (-2159 (|has| $ (-6 -4381)))))) (-3923 (((-561) $) 25)) (-2280 (($ $) 28)) (-2975 (($ $) 55)) (-4348 (($ $) 60)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3114 (((-914) (-561)) NIL (|has| $ (-6 -4381)))) (-1714 (((-1110) $) 89)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL)) (-1388 (($ $) NIL)) (-4205 (($ (-561) (-561)) NIL) (($ (-561) (-561) (-914)) 99)) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-4196 (((-561) $) 26)) (-2795 (($) 36)) (-3440 (($ $) 59)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1368 (((-914)) NIL) (((-914) (-914)) NIL (|has| $ (-6 -4381)))) (-3238 (($ $ (-765)) NIL) (($ $) 92)) (-3794 (((-914) (-561)) NIL (|has| $ (-6 -4381)))) (-3021 (($ $) 76)) (-4095 (($ $) 66)) (-2995 (($ $) 77)) (-4073 (($ $) 64)) (-2968 (($ $) 74)) (-4054 (($ $) 62)) (-4174 (((-378) $) 103) (((-224) $) 100) (((-885 (-378)) $) NIL) (((-534) $) 43)) (-4022 (((-856) $) 40) (($ (-561)) 58) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-561)) 58) (($ (-406 (-561))) NIL)) (-4259 (((-765)) NIL)) (-2432 (($ $) NIL)) (-2342 (((-914)) 30) (((-914) (-914)) NIL (|has| $ (-6 -4381)))) (-2684 (((-914)) 23)) (-3055 (($ $) 81)) (-4132 (($ $) 69) (($ $ $) 108)) (-3168 (((-112) $ $) NIL)) (-3031 (($ $) 79)) (-4105 (($ $) 67)) (-3081 (($ $) 84)) (-4149 (($ $) 72)) (-2125 (($ $) 82)) (-4160 (($ $) 70)) (-3066 (($ $) 83)) (-4142 (($ $) 71)) (-3043 (($ $) 80)) (-4117 (($ $) 68)) (-3749 (($ $) 116)) (-2211 (($) 34 T CONST)) (-2222 (($) 35 T CONST)) (-3677 (((-1148) $) 17) (((-1148) $ (-112)) 19) (((-1258) (-816) $) 20) (((-1258) (-816) $ (-112)) 21)) (-3758 (($ $) 95)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-3882 (($ $ $) 97)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 52)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 44)) (-1833 (($ $ $) 85) (($ $ (-561)) 53)) (-1824 (($ $) 45) (($ $ $) 47)) (-1813 (($ $ $) 46)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 56) (($ $ (-406 (-561))) 127) (($ $ $) 57)) (* (($ (-914) $) 29) (($ (-765) $) NIL) (($ (-561) $) 49) (($ $ $) 48) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-224) (-13 (-403) (-232) (-822) (-1190) (-609 (-534)) (-10 -8 (-15 -1833 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -2795 ($)) (-15 -2280 ($ $)) (-15 -2975 ($ $)) (-15 -4132 ($ $ $)) (-15 -3758 ($ $)) (-15 -3882 ($ $ $)) (-15 -3656 ((-406 (-561)) $ (-765))) (-15 -3656 ((-406 (-561)) $ (-765) (-765)))))) (T -224))
+((** (*1 *1 *1 *1) (-5 *1 (-224))) (-1833 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-224)))) (-2795 (*1 *1) (-5 *1 (-224))) (-2280 (*1 *1 *1) (-5 *1 (-224))) (-2975 (*1 *1 *1) (-5 *1 (-224))) (-4132 (*1 *1 *1 *1) (-5 *1 (-224))) (-3758 (*1 *1 *1) (-5 *1 (-224))) (-3882 (*1 *1 *1 *1) (-5 *1 (-224))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224)))) (-3656 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224)))))
+(-13 (-403) (-232) (-822) (-1190) (-609 (-534)) (-10 -8 (-15 -1833 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -2795 ($)) (-15 -2280 ($ $)) (-15 -2975 ($ $)) (-15 -4132 ($ $ $)) (-15 -3758 ($ $)) (-15 -3882 ($ $ $)) (-15 -3656 ((-406 (-561)) $ (-765))) (-15 -3656 ((-406 (-561)) $ (-765) (-765)))))
+((-3196 (((-168 (-224)) (-765) (-168 (-224))) 11) (((-224) (-765) (-224)) 12)) (-3824 (((-168 (-224)) (-168 (-224))) 13) (((-224) (-224)) 14)) (-3467 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 19) (((-224) (-224) (-224)) 22)) (-2054 (((-168 (-224)) (-168 (-224))) 25) (((-224) (-224)) 24)) (-2974 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 43) (((-224) (-224) (-224)) 35)) (-3717 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 48) (((-224) (-224) (-224)) 45)) (-3005 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 15) (((-224) (-224) (-224)) 16)) (-1436 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 17) (((-224) (-224) (-224)) 18)) (-2096 (((-168 (-224)) (-168 (-224))) 60) (((-224) (-224)) 59)) (-1887 (((-224) (-224)) 54) (((-168 (-224)) (-168 (-224))) 58)) (-3758 (((-168 (-224)) (-168 (-224))) 8) (((-224) (-224)) 9)) (-3882 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 30) (((-224) (-224) (-224)) 26)))
+(((-225) (-10 -7 (-15 -3758 ((-224) (-224))) (-15 -3758 ((-168 (-224)) (-168 (-224)))) (-15 -3882 ((-224) (-224) (-224))) (-15 -3882 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3824 ((-224) (-224))) (-15 -3824 ((-168 (-224)) (-168 (-224)))) (-15 -2054 ((-224) (-224))) (-15 -2054 ((-168 (-224)) (-168 (-224)))) (-15 -3196 ((-224) (-765) (-224))) (-15 -3196 ((-168 (-224)) (-765) (-168 (-224)))) (-15 -3005 ((-224) (-224) (-224))) (-15 -3005 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2974 ((-224) (-224) (-224))) (-15 -2974 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1436 ((-224) (-224) (-224))) (-15 -1436 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3717 ((-224) (-224) (-224))) (-15 -3717 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1887 ((-168 (-224)) (-168 (-224)))) (-15 -1887 ((-224) (-224))) (-15 -2096 ((-224) (-224))) (-15 -2096 ((-168 (-224)) (-168 (-224)))) (-15 -3467 ((-224) (-224) (-224))) (-15 -3467 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))) (T -225))
+((-3467 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3467 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2096 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2096 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3717 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3717 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1436 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1436 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2974 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2974 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3005 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3005 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-224))) (-5 *3 (-765)) (-5 *1 (-225)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3824 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3824 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3882 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3882 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))))
+(-10 -7 (-15 -3758 ((-224) (-224))) (-15 -3758 ((-168 (-224)) (-168 (-224)))) (-15 -3882 ((-224) (-224) (-224))) (-15 -3882 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3824 ((-224) (-224))) (-15 -3824 ((-168 (-224)) (-168 (-224)))) (-15 -2054 ((-224) (-224))) (-15 -2054 ((-168 (-224)) (-168 (-224)))) (-15 -3196 ((-224) (-765) (-224))) (-15 -3196 ((-168 (-224)) (-765) (-168 (-224)))) (-15 -3005 ((-224) (-224) (-224))) (-15 -3005 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2974 ((-224) (-224) (-224))) (-15 -2974 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1436 ((-224) (-224) (-224))) (-15 -1436 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3717 ((-224) (-224) (-224))) (-15 -3717 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1887 ((-168 (-224)) (-168 (-224)))) (-15 -1887 ((-224) (-224))) (-15 -2096 ((-224) (-224))) (-15 -2096 ((-168 (-224)) (-168 (-224)))) (-15 -3467 ((-224) (-224) (-224))) (-15 -3467 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2888 (($ (-765) (-765)) NIL)) (-1548 (($ $ $) NIL)) (-1820 (($ (-1253 |#1|)) NIL) (($ $) NIL)) (-3807 (($ |#1| |#1| |#1|) 32)) (-1810 (((-112) $) NIL)) (-1679 (($ $ (-561) (-561)) NIL)) (-3925 (($ $ (-561) (-561)) NIL)) (-2839 (($ $ (-561) (-561) (-561) (-561)) NIL)) (-1961 (($ $) NIL)) (-2487 (((-112) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-4153 (($ $ (-561) (-561) $) NIL)) (-4167 ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) NIL)) (-2550 (($ $ (-561) (-1253 |#1|)) NIL)) (-2971 (($ $ (-561) (-1253 |#1|)) NIL)) (-3917 (($ |#1| |#1| |#1|) 31)) (-3539 (($ (-765) |#1|) NIL)) (-1965 (($) NIL T CONST)) (-1298 (($ $) NIL (|has| |#1| (-306)))) (-3845 (((-1253 |#1|) $ (-561)) NIL)) (-2176 (($ |#1|) 30)) (-3266 (($ |#1|) 29)) (-3628 (($ |#1|) 28)) (-1569 (((-765) $) NIL (|has| |#1| (-553)))) (-2073 ((|#1| $ (-561) (-561) |#1|) NIL)) (-4344 ((|#1| $ (-561) (-561)) NIL)) (-3571 (((-638 |#1|) $) NIL)) (-3370 (((-765) $) NIL (|has| |#1| (-553)))) (-2542 (((-638 (-1253 |#1|)) $) NIL (|has| |#1| (-553)))) (-1513 (((-765) $) NIL)) (-1470 (($ (-765) (-765) |#1|) NIL)) (-1526 (((-765) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-2093 ((|#1| $) NIL (|has| |#1| (-6 (-4392 "*"))))) (-3514 (((-561) $) NIL)) (-2804 (((-561) $) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3089 (((-561) $) NIL)) (-1709 (((-561) $) NIL)) (-2855 (($ (-638 (-638 |#1|))) 11)) (-2065 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-638 (-638 |#1|)) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-4222 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3452 (($) 12)) (-2488 (($ $ $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) NIL)) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561))) NIL)) (-2450 (($ (-638 |#1|)) NIL) (($ (-638 $)) NIL)) (-2182 (((-112) $) NIL)) (-2622 ((|#1| $) NIL (|has| |#1| (-6 (-4392 "*"))))) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-2745 (((-1253 |#1|) $ (-561)) NIL)) (-4022 (($ (-1253 |#1|)) NIL) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-4247 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-561) $) NIL) (((-1253 |#1|) $ (-1253 |#1|)) 15) (((-1253 |#1|) (-1253 |#1|) $) NIL) (((-936 |#1|) $ (-936 |#1|)) 20)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-226 |#1|) (-13 (-680 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -3452 ($)) (-15 -3628 ($ |#1|)) (-15 -3266 ($ |#1|)) (-15 -2176 ($ |#1|)) (-15 -3917 ($ |#1| |#1| |#1|)) (-15 -3807 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1190))) (T -226))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190))) (-5 *1 (-226 *3)))) (-3452 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-3628 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-3266 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-2176 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-3917 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-3807 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(-13 (-680 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -3452 ($)) (-15 -3628 ($ |#1|)) (-15 -3266 ($ |#1|)) (-15 -2176 ($ |#1|)) (-15 -3917 ($ |#1| |#1| |#1|)) (-15 -3807 ($ |#1| |#1| |#1|))))
+((-3388 (($ (-1 (-112) |#2|) $) 15)) (-3999 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-3579 (($) NIL) (($ (-638 |#2|)) 11)) (-1733 (((-112) $ $) 22)))
+(((-227 |#1| |#2|) (-10 -8 (-15 -3388 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3999 (|#1| |#2| |#1|)) (-15 -3579 (|#1| (-638 |#2|))) (-15 -3579 (|#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-228 |#2|) (-1090)) (T -227))
+NIL
+(-10 -8 (-15 -3388 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3999 (|#1| |#2| |#1|)) (-15 -3579 (|#1| (-638 |#2|))) (-15 -3579 (|#1|)) (-15 -1733 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-3388 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-1472 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ |#1| $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-3579 (($) 49) (($ (-638 |#1|)) 48)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 50)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-228 |#1|) (-139) (-1090)) (T -228))
NIL
(-13 (-234 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3780 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) 11) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) 19) (($ $ (-762)) NIL) (($ $) 16)) (-3042 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-762)) 14) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)))
-(((-229 |#1| |#2|) (-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3042 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3042 (|#1| |#1| (-1163))) (-15 -3042 (|#1| |#1| (-635 (-1163)))) (-15 -3042 (|#1| |#1| (-1163) (-762))) (-15 -3042 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3042 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1039)) (T -229))
-NIL
-(-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3042 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3042 (|#1| |#1| (-1163))) (-15 -3042 (|#1| |#1| (-635 (-1163)))) (-15 -3042 (|#1| |#1| (-1163) (-762))) (-15 -3042 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3042 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3780 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-762)) 51) (($ $ (-635 (-1163)) (-635 (-762))) 44 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 43 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 42 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 41 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-762)) 49) (($ $ (-635 (-1163)) (-635 (-762))) 48 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 47 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 46 (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 45 (|has| |#1| (-890 (-1163)))) (($ $ (-762)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-230 |#1|) (-139) (-1039)) (T -230))
-((-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039)))) (-3780 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4)) (-4 *4 (-1039)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4)) (-4 *4 (-1039)))))
-(-13 (-1039) (-10 -8 (-15 -3780 ($ $ (-1 |t#1| |t#1|))) (-15 -3780 ($ $ (-1 |t#1| |t#1|) (-762))) (-15 -3042 ($ $ (-1 |t#1| |t#1|))) (-15 -3042 ($ $ (-1 |t#1| |t#1|) (-762))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-232) |has| |#1| (-232)) ((-638 $) . T) ((-717) . T) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3780 (($ $) NIL) (($ $ (-762)) 10)) (-3042 (($ $) 8) (($ $ (-762)) 12)))
-(((-231 |#1|) (-10 -8 (-15 -3042 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3042 (|#1| |#1|)) (-15 -3780 (|#1| |#1|))) (-232)) (T -231))
-NIL
-(-10 -8 (-15 -3042 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3042 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3780 (($ $) 38) (($ $ (-762)) 36)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $) 37) (($ $ (-762)) 35)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-3238 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) 11) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) 19) (($ $ (-765)) NIL) (($ $) 16)) (-3122 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-765)) 14) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)))
+(((-229 |#1| |#2|) (-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3122 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3122 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3122 (|#1| |#1| (-1166))) (-15 -3122 (|#1| |#1| (-638 (-1166)))) (-15 -3122 (|#1| |#1| (-1166) (-765))) (-15 -3122 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3122 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3122 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1042)) (T -229))
+NIL
+(-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3122 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3122 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3122 (|#1| |#1| (-1166))) (-15 -3122 (|#1| |#1| (-638 (-1166)))) (-15 -3122 (|#1| |#1| (-1166) (-765))) (-15 -3122 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3122 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3122 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3238 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-765)) 51) (($ $ (-638 (-1166)) (-638 (-765))) 44 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 42 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-765)) 49) (($ $ (-638 (-1166)) (-638 (-765))) 48 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 46 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-230 |#1|) (-139) (-1042)) (T -230))
+((-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-3238 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-3122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))))
+(-13 (-1042) (-10 -8 (-15 -3238 ($ $ (-1 |t#1| |t#1|))) (-15 -3238 ($ $ (-1 |t#1| |t#1|) (-765))) (-15 -3122 ($ $ (-1 |t#1| |t#1|))) (-15 -3122 ($ $ (-1 |t#1| |t#1|) (-765))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-232) |has| |#1| (-232)) ((-641 $) . T) ((-720) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-3238 (($ $) NIL) (($ $ (-765)) 10)) (-3122 (($ $) 8) (($ $ (-765)) 12)))
+(((-231 |#1|) (-10 -8 (-15 -3122 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3122 (|#1| |#1|)) (-15 -3238 (|#1| |#1|))) (-232)) (T -231))
+NIL
+(-10 -8 (-15 -3122 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3122 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3238 (($ $) 38) (($ $ (-765)) 36)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $) 37) (($ $ (-765)) 35)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-232) (-139)) (T -232))
-((-3780 (*1 *1 *1) (-4 *1 (-232))) (-3042 (*1 *1 *1) (-4 *1 (-232))) (-3780 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762)))) (-3042 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762)))))
-(-13 (-1039) (-10 -8 (-15 -3780 ($ $)) (-15 -3042 ($ $)) (-15 -3780 ($ $ (-762))) (-15 -3042 ($ $ (-762)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-1966 (($) 12) (($ (-635 |#2|)) NIL)) (-4098 (($ $) 14)) (-3952 (($ (-635 |#2|)) 10)) (-3940 (((-853) $) 21)))
-(((-233 |#1| |#2|) (-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -1966 (|#1| (-635 |#2|))) (-15 -1966 (|#1|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -4098 (|#1| |#1|))) (-234 |#2|) (-1087)) (T -233))
-NIL
-(-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -1966 (|#1| (-635 |#2|))) (-15 -1966 (|#1|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -4098 (|#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-2256 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-3188 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ |#1| $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1966 (($) 49) (($ (-635 |#1|)) 48)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 50)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-234 |#1|) (-139) (-1087)) (T -234))
-((-1966 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1087)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-234 *3)))) (-2375 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-234 *2)) (-4 *2 (-1087)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-234 *3)) (-4 *3 (-1087)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-234 *3)) (-4 *3 (-1087)))))
-(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -1966 ($)) (-15 -1966 ($ (-635 |t#1|))) (IF (|has| $ (-6 -4383)) (PROGN (-15 -2375 ($ |t#1| $)) (-15 -2375 ($ (-1 (-112) |t#1|) $)) (-15 -2256 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-1432 (((-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762))))) (-293 (-942 (-558)))) 27)))
-(((-235) (-10 -7 (-15 -1432 ((-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762))))) (-293 (-942 (-558))))))) (T -235))
-((-1432 (*1 *2 *3) (-12 (-5 *3 (-293 (-942 (-558)))) (-5 *2 (-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762)))))) (-5 *1 (-235)))))
-(-10 -7 (-15 -1432 ((-2 (|:| |varOrder| (-635 (-1163))) (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed")) (|:| |hom| (-635 (-1246 (-762))))) (-293 (-942 (-558))))))
-((-2507 (((-762)) 51)) (-1918 (((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) 49) (((-679 |#3|) (-679 $)) 41) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-2887 (((-133)) 57)) (-3780 (($ $ (-1 |#3| |#3|) (-762)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-3940 (((-1246 |#3|) $) NIL) (($ |#3|) NIL) (((-853) $) NIL) (($ (-558)) 12) (($ (-406 (-558))) NIL)) (-2417 (((-762)) 15)) (-1805 (($ $ |#3|) 54)))
-(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)) (-15 -2417 ((-762))) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -1918 ((-679 |#3|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -2507 ((-762))) (-15 -1805 (|#1| |#1| |#3|)) (-15 -2887 ((-133))) (-15 -3940 ((-1246 |#3|) |#1|))) (-237 |#2| |#3|) (-762) (-1200)) (T -236))
-((-2887 (*1 *2) (-12 (-14 *4 (-762)) (-4 *5 (-1200)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-2507 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-2417 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))))
-(-10 -8 (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)) (-15 -2417 ((-762))) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -1918 ((-679 |#3|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -2507 ((-762))) (-15 -1805 (|#1| |#1| |#3|)) (-15 -2887 ((-133))) (-15 -3940 ((-1246 |#3|) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#2| (-1087)))) (-3124 (((-112) $) 72 (|has| |#2| (-130)))) (-1441 (($ (-911)) 125 (|has| |#2| (-1039)))) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-2707 (($ $ $) 121 (|has| |#2| (-784)))) (-1868 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3651 (((-112) $ (-762)) 8)) (-2507 (((-762)) 107 (|has| |#2| (-367)))) (-1334 (((-558) $) 119 (|has| |#2| (-839)))) (-4077 ((|#2| $ (-558) |#2|) 52 (|has| $ (-6 -4384)))) (-3457 (($) 7 T CONST)) (-3302 (((-3 (-558) "failed") $) 67 (-2157 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) 64 (-2157 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1087)))) (-3226 (((-558) $) 66 (-2157 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) 63 (-2157 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) 62 (|has| |#2| (-1087)))) (-1918 (((-679 (-558)) (-679 $)) 106 (-2157 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 105 (-2157 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 104 (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) 103 (|has| |#2| (-1039)))) (-3248 (((-3 $ "failed") $) 79 (|has| |#2| (-717)))) (-3692 (($) 110 (|has| |#2| (-367)))) (-3683 ((|#2| $ (-558) |#2|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#2| $ (-558)) 51)) (-4053 (((-112) $) 117 (|has| |#2| (-839)))) (-2917 (((-635 |#2|) $) 30 (|has| $ (-6 -4383)))) (-3999 (((-112) $) 81 (|has| |#2| (-717)))) (-2032 (((-112) $) 118 (|has| |#2| (-839)))) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-2142 (($ $ $) 116 (-3994 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-3486 (((-635 |#2|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-2281 (($ $ $) 115 (-3994 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-3674 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2|) $) 35)) (-1486 (((-911) $) 109 (|has| |#2| (-367)))) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#2| (-1087)))) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-2349 (($ (-911)) 108 (|has| |#2| (-367)))) (-1688 (((-1107) $) 21 (|has| |#2| (-1087)))) (-3156 ((|#2| $) 42 (|has| (-558) (-841)))) (-2830 (($ $ |#2|) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#2| $ (-558) |#2|) 50) ((|#2| $ (-558)) 49)) (-2823 ((|#2| $ $) 124 (|has| |#2| (-1039)))) (-3982 (($ (-1246 |#2|)) 126)) (-2887 (((-133)) 123 (|has| |#2| (-362)))) (-3780 (($ $) 98 (-2157 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) 96 (-2157 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) 94 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) 93 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) 92 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) 91 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) 84 (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1039)))) (-1698 (((-762) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4383))) (((-762) |#2| $) 28 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-1246 |#2|) $) 127) (($ (-558)) 68 (-3994 (-2157 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) 65 (-2157 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) 60 (|has| |#2| (-1087))) (((-853) $) 18 (|has| |#2| (-605 (-853))))) (-2417 (((-762)) 102 (|has| |#2| (-1039)))) (-2831 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4383)))) (-4241 (($ $) 120 (|has| |#2| (-839)))) (-2207 (($) 71 (|has| |#2| (-130)) CONST)) (-2220 (($) 82 (|has| |#2| (-717)) CONST)) (-3042 (($ $) 97 (-2157 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) 95 (-2157 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) 90 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) 89 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) 88 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) 87 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) 86 (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1039)))) (-1757 (((-112) $ $) 113 (-3994 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1737 (((-112) $ $) 112 (-3994 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1708 (((-112) $ $) 20 (|has| |#2| (-1087)))) (-1749 (((-112) $ $) 114 (-3994 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1728 (((-112) $ $) 111 (-3994 (|has| |#2| (-839)) (|has| |#2| (-784))))) (-1805 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-1796 (($ $ $) 100 (|has| |#2| (-1039))) (($ $) 99 (|has| |#2| (-1039)))) (-1785 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-762)) 80 (|has| |#2| (-717))) (($ $ (-911)) 77 (|has| |#2| (-717)))) (* (($ (-558) $) 101 (|has| |#2| (-1039))) (($ $ $) 78 (|has| |#2| (-717))) (($ $ |#2|) 76 (|has| |#2| (-717))) (($ |#2| $) 75 (|has| |#2| (-717))) (($ (-762) $) 73 (|has| |#2| (-130))) (($ (-911) $) 70 (|has| |#2| (-25)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-237 |#1| |#2|) (-139) (-762) (-1200)) (T -237))
-((-3982 (*1 *1 *2) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1200)) (-4 *1 (-237 *3 *4)))) (-1441 (*1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1039)) (-4 *4 (-1200)))) (-2823 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))))
-(-13 (-596 (-558) |t#2|) (-605 (-1246 |t#2|)) (-10 -8 (-6 -4383) (-15 -3982 ($ (-1246 |t#2|))) (IF (|has| |t#2| (-1087)) (-6 (-410 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1039)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -1441 ($ (-911))) (-15 -2823 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-717)) (PROGN (-6 (-717)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4380)) (-6 -4380) |%noBranch|) (IF (|has| |t#2| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |t#2| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1253 |t#2|)) |%noBranch|)))
-(((-21) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -3994 (|has| |#2| (-1087)) (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-717)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3994 (|has| |#2| (-1039)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-608 #0=(-406 (-558))) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))) ((-608 (-558)) -3994 (|has| |#2| (-1039)) (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-608 |#2|) -3994 (|has| |#2| (-1087)) (|has| |#2| (-171))) ((-605 (-853)) -3994 (|has| |#2| (-1087)) (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-717)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-605 (-853))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-605 (-1246 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1039)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1039))) ((-285 #1=(-558) |#2|) . T) ((-287 #1# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1039)) ((-410 |#2|) |has| |#2| (-1087)) ((-487 |#2|) . T) ((-596 #1# |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-638 |#2|) -3994 (|has| |#2| (-1039)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-638 $) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-631 (-558)) -12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039))) ((-631 |#2|) |has| |#2| (-1039)) ((-708 |#2|) -3994 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-717) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-717)) (|has| |#2| (-171))) ((-782) |has| |#2| (-839)) ((-783) -3994 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-784) |has| |#2| (-784)) ((-785) -3994 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-786) -3994 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-839) |has| |#2| (-839)) ((-841) -3994 (|has| |#2| (-839)) (|has| |#2| (-784))) ((-890 (-1163)) -12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039))) ((-1028 #0#) -12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087))) ((-1028 (-558)) -12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) ((-1028 |#2|) |has| |#2| (-1087)) ((-1045 |#2|) -3994 (|has| |#2| (-1039)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1045 $) |has| |#2| (-171)) ((-1039) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-1046) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-171))) ((-1099) -3994 (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-717)) (|has| |#2| (-171))) ((-1087) -3994 (|has| |#2| (-1087)) (|has| |#2| (-1039)) (|has| |#2| (-839)) (|has| |#2| (-784)) (|has| |#2| (-717)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1200) . T) ((-1253 |#2|) |has| |#2| (-362)))
-((-3484 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-3866 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-3397 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18)))
-(((-238 |#1| |#2| |#3|) (-10 -7 (-15 -3484 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3866 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3397 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-762) (-1200) (-1200)) (T -238))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-5 *2 (-239 *5 *7)) (-5 *1 (-238 *5 *6 *7)))) (-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762)) (-4 *6 (-1200)) (-4 *2 (-1200)) (-5 *1 (-238 *5 *6 *2)))) (-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-762)) (-4 *7 (-1200)) (-4 *5 (-1200)) (-5 *2 (-239 *6 *5)) (-5 *1 (-238 *6 *7 *5)))))
-(-10 -7 (-15 -3484 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3866 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3397 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|))))
-((-3929 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-3124 (((-112) $) NIL (|has| |#2| (-130)))) (-1441 (($ (-911)) 56 (|has| |#2| (-1039)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2707 (($ $ $) 60 (|has| |#2| (-784)))) (-1868 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3651 (((-112) $ (-762)) 17)) (-2507 (((-762)) NIL (|has| |#2| (-367)))) (-1334 (((-558) $) NIL (|has| |#2| (-839)))) (-4077 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1087)))) (-3226 (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) 27 (|has| |#2| (-1087)))) (-1918 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1039)))) (-3248 (((-3 $ "failed") $) 53 (|has| |#2| (-717)))) (-3692 (($) NIL (|has| |#2| (-367)))) (-3683 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ (-558)) 51)) (-4053 (((-112) $) NIL (|has| |#2| (-839)))) (-2917 (((-635 |#2|) $) 15 (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL (|has| |#2| (-717)))) (-2032 (((-112) $) NIL (|has| |#2| (-839)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 20 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-3486 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 (((-558) $) 50 (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2|) $) 41)) (-1486 (((-911) $) NIL (|has| |#2| (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#2| (-1087)))) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-2349 (($ (-911)) NIL (|has| |#2| (-367)))) (-1688 (((-1107) $) NIL (|has| |#2| (-1087)))) (-3156 ((|#2| $) NIL (|has| (-558) (-841)))) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) 21)) (-2823 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-3982 (($ (-1246 |#2|)) 18)) (-2887 (((-133)) NIL (|has| |#2| (-362)))) (-3780 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1698 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-1246 |#2|) $) 10) (($ (-558)) NIL (-3994 (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) 13 (|has| |#2| (-1087))) (((-853) $) NIL (|has| |#2| (-605 (-853))))) (-2417 (((-762)) NIL (|has| |#2| (-1039)))) (-2831 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4241 (($ $) NIL (|has| |#2| (-839)))) (-2207 (($) 35 (|has| |#2| (-130)) CONST)) (-2220 (($) 38 (|has| |#2| (-717)) CONST)) (-3042 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1757 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1737 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1708 (((-112) $ $) 26 (|has| |#2| (-1087)))) (-1749 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1728 (((-112) $ $) 58 (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1785 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-762)) NIL (|has| |#2| (-717))) (($ $ (-911)) NIL (|has| |#2| (-717)))) (* (($ (-558) $) NIL (|has| |#2| (-1039))) (($ $ $) 44 (|has| |#2| (-717))) (($ $ |#2|) 42 (|has| |#2| (-717))) (($ |#2| $) 43 (|has| |#2| (-717))) (($ (-762) $) NIL (|has| |#2| (-130))) (($ (-911) $) NIL (|has| |#2| (-25)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-239 |#1| |#2|) (-237 |#1| |#2|) (-762) (-1200)) (T -239))
+((-3238 (*1 *1 *1) (-4 *1 (-232))) (-3122 (*1 *1 *1) (-4 *1 (-232))) (-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))) (-3122 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))))
+(-13 (-1042) (-10 -8 (-15 -3238 ($ $)) (-15 -3122 ($ $)) (-15 -3238 ($ $ (-765))) (-15 -3122 ($ $ (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-3579 (($) 12) (($ (-638 |#2|)) NIL)) (-4187 (($ $) 14)) (-4031 (($ (-638 |#2|)) 10)) (-4022 (((-856) $) 21)))
+(((-233 |#1| |#2|) (-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -3579 (|#1| (-638 |#2|))) (-15 -3579 (|#1|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -4187 (|#1| |#1|))) (-234 |#2|) (-1090)) (T -233))
+NIL
+(-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -3579 (|#1| (-638 |#2|))) (-15 -3579 (|#1|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -4187 (|#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-3388 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-1472 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ |#1| $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-3579 (($) 49) (($ (-638 |#1|)) 48)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 50)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-234 |#1|) (-139) (-1090)) (T -234))
+((-3579 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1090)))) (-3579 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-234 *3)))) (-3999 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-234 *2)) (-4 *2 (-1090)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-234 *3)) (-4 *3 (-1090)))) (-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-234 *3)) (-4 *3 (-1090)))))
+(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -3579 ($)) (-15 -3579 ($ (-638 |t#1|))) (IF (|has| $ (-6 -4390)) (PROGN (-15 -3999 ($ |t#1| $)) (-15 -3999 ($ (-1 (-112) |t#1|) $)) (-15 -3388 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-3558 (((-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1253 (-765))) "failed")) (|:| |hom| (-638 (-1253 (-765))))) (-293 (-945 (-561)))) 27)))
+(((-235) (-10 -7 (-15 -3558 ((-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1253 (-765))) "failed")) (|:| |hom| (-638 (-1253 (-765))))) (-293 (-945 (-561))))))) (T -235))
+((-3558 (*1 *2 *3) (-12 (-5 *3 (-293 (-945 (-561)))) (-5 *2 (-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1253 (-765))) "failed")) (|:| |hom| (-638 (-1253 (-765)))))) (-5 *1 (-235)))))
+(-10 -7 (-15 -3558 ((-2 (|:| |varOrder| (-638 (-1166))) (|:| |inhom| (-3 (-638 (-1253 (-765))) "failed")) (|:| |hom| (-638 (-1253 (-765))))) (-293 (-945 (-561))))))
+((-1393 (((-765)) 51)) (-3602 (((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) 49) (((-682 |#3|) (-682 $)) 41) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3084 (((-133)) 57)) (-3238 (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-4022 (((-1253 |#3|) $) NIL) (($ |#3|) NIL) (((-856) $) NIL) (($ (-561)) 12) (($ (-406 (-561))) NIL)) (-4259 (((-765)) 15)) (-1833 (($ $ |#3|) 54)))
+(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)) (-15 -4259 ((-765))) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -4022 (|#1| |#3|)) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3602 ((-682 |#3|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -1393 ((-765))) (-15 -1833 (|#1| |#1| |#3|)) (-15 -3084 ((-133))) (-15 -4022 ((-1253 |#3|) |#1|))) (-237 |#2| |#3|) (-765) (-1205)) (T -236))
+((-3084 (*1 *2) (-12 (-14 *4 (-765)) (-4 *5 (-1205)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-1393 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-4259 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))))
+(-10 -8 (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)) (-15 -4259 ((-765))) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -4022 (|#1| |#3|)) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3602 ((-682 |#3|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -1393 ((-765))) (-15 -1833 (|#1| |#1| |#3|)) (-15 -3084 ((-133))) (-15 -4022 ((-1253 |#3|) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#2| (-1090)))) (-2800 (((-112) $) 72 (|has| |#2| (-130)))) (-2923 (($ (-914)) 125 (|has| |#2| (-1042)))) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-2090 (($ $ $) 121 (|has| |#2| (-787)))) (-2249 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1630 (((-112) $ (-765)) 8)) (-1393 (((-765)) 107 (|has| |#2| (-367)))) (-2666 (((-561) $) 119 (|has| |#2| (-842)))) (-4167 ((|#2| $ (-561) |#2|) 52 (|has| $ (-6 -4391)))) (-1965 (($) 7 T CONST)) (-4017 (((-3 (-561) "failed") $) 67 (-2170 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) 64 (-2170 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1090)))) (-3938 (((-561) $) 66 (-2170 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) 63 (-2170 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) 62 (|has| |#2| (-1090)))) (-3602 (((-682 (-561)) (-682 $)) 106 (-2170 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 105 (-2170 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 104 (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) 103 (|has| |#2| (-1042)))) (-3466 (((-3 $ "failed") $) 79 (|has| |#2| (-720)))) (-1332 (($) 110 (|has| |#2| (-367)))) (-2073 ((|#2| $ (-561) |#2|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#2| $ (-561)) 51)) (-3201 (((-112) $) 117 (|has| |#2| (-842)))) (-3571 (((-638 |#2|) $) 30 (|has| $ (-6 -4390)))) (-3113 (((-112) $) 81 (|has| |#2| (-720)))) (-2110 (((-112) $) 118 (|has| |#2| (-842)))) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3443 (($ $ $) 116 (-4007 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1305 (((-638 |#2|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2986 (($ $ $) 115 (-4007 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2065 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2|) $) 35)) (-3198 (((-914) $) 109 (|has| |#2| (-367)))) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#2| (-1090)))) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-2413 (($ (-914)) 108 (|has| |#2| (-367)))) (-1714 (((-1110) $) 21 (|has| |#2| (-1090)))) (-1433 ((|#2| $) 42 (|has| (-561) (-844)))) (-1799 (($ $ |#2|) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#2| $ (-561) |#2|) 50) ((|#2| $ (-561)) 49)) (-1327 ((|#2| $ $) 124 (|has| |#2| (-1042)))) (-1690 (($ (-1253 |#2|)) 126)) (-3084 (((-133)) 123 (|has| |#2| (-362)))) (-3238 (($ $) 98 (-2170 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 96 (-2170 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 94 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) 93 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 92 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) 91 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 84 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1042)))) (-1724 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4390))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-1253 |#2|) $) 127) (($ (-561)) 68 (-4007 (-2170 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) 65 (-2170 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) 60 (|has| |#2| (-1090))) (((-856) $) 18 (|has| |#2| (-608 (-856))))) (-4259 (((-765)) 102 (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4390)))) (-3749 (($ $) 120 (|has| |#2| (-842)))) (-2211 (($) 71 (|has| |#2| (-130)) CONST)) (-2222 (($) 82 (|has| |#2| (-720)) CONST)) (-3122 (($ $) 97 (-2170 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 95 (-2170 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 90 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) 89 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 88 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) 87 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 86 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1042)))) (-1782 (((-112) $ $) 113 (-4007 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1762 (((-112) $ $) 112 (-4007 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1733 (((-112) $ $) 20 (|has| |#2| (-1090)))) (-1773 (((-112) $ $) 114 (-4007 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1754 (((-112) $ $) 111 (-4007 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-1833 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-1824 (($ $ $) 100 (|has| |#2| (-1042))) (($ $) 99 (|has| |#2| (-1042)))) (-1813 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-765)) 80 (|has| |#2| (-720))) (($ $ (-914)) 77 (|has| |#2| (-720)))) (* (($ (-561) $) 101 (|has| |#2| (-1042))) (($ $ $) 78 (|has| |#2| (-720))) (($ $ |#2|) 76 (|has| |#2| (-720))) (($ |#2| $) 75 (|has| |#2| (-720))) (($ (-765) $) 73 (|has| |#2| (-130))) (($ (-914) $) 70 (|has| |#2| (-25)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-237 |#1| |#2|) (-139) (-765) (-1205)) (T -237))
+((-1690 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1205)) (-4 *1 (-237 *3 *4)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042)) (-4 *4 (-1205)))) (-1327 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))))
+(-13 (-599 (-561) |t#2|) (-608 (-1253 |t#2|)) (-10 -8 (-6 -4390) (-15 -1690 ($ (-1253 |t#2|))) (IF (|has| |t#2| (-1090)) (-6 (-410 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1042)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -2923 ($ (-914))) (-15 -1327 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-720)) (PROGN (-6 (-720)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4387)) (-6 -4387) |%noBranch|) (IF (|has| |t#2| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1260 |t#2|)) |%noBranch|)))
+(((-21) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -4007 (|has| |#2| (-1090)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4007 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-611 #0=(-406 (-561))) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))) ((-611 (-561)) -4007 (|has| |#2| (-1042)) (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-611 |#2|) -4007 (|has| |#2| (-1090)) (|has| |#2| (-171))) ((-608 (-856)) -4007 (|has| |#2| (-1090)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-608 (-856))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-608 (-1253 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1042)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1042))) ((-285 #1=(-561) |#2|) . T) ((-287 #1# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1042)) ((-410 |#2|) |has| |#2| (-1090)) ((-487 |#2|) . T) ((-599 #1# |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-641 |#2|) -4007 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-641 $) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-634 (-561)) -12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042))) ((-634 |#2|) |has| |#2| (-1042)) ((-711 |#2|) -4007 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-720) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-785) |has| |#2| (-842)) ((-786) -4007 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-787) |has| |#2| (-787)) ((-788) -4007 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-789) -4007 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-842) |has| |#2| (-842)) ((-844) -4007 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-893 (-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))) ((-1031 #0#) -12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090))) ((-1031 (-561)) -12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) ((-1031 |#2|) |has| |#2| (-1090)) ((-1048 |#2|) -4007 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1048 $) |has| |#2| (-171)) ((-1042) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1049) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1102) -4007 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-1090) -4007 (|has| |#2| (-1090)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1205) . T) ((-1260 |#2|) |has| |#2| (-362)))
+((-3130 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-3185 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-4120 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18)))
+(((-238 |#1| |#2| |#3|) (-10 -7 (-15 -3130 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3185 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4120 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-765) (-1205) (-1205)) (T -238))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-5 *2 (-239 *5 *7)) (-5 *1 (-238 *5 *6 *7)))) (-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1205)) (-4 *2 (-1205)) (-5 *1 (-238 *5 *6 *2)))) (-3130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-765)) (-4 *7 (-1205)) (-4 *5 (-1205)) (-5 *2 (-239 *6 *5)) (-5 *1 (-238 *6 *7 *5)))))
+(-10 -7 (-15 -3130 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -3185 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4120 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|))))
+((-4011 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-2800 (((-112) $) NIL (|has| |#2| (-130)))) (-2923 (($ (-914)) 56 (|has| |#2| (-1042)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-2090 (($ $ $) 60 (|has| |#2| (-787)))) (-2249 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1630 (((-112) $ (-765)) 17)) (-1393 (((-765)) NIL (|has| |#2| (-367)))) (-2666 (((-561) $) NIL (|has| |#2| (-842)))) (-4167 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1090)))) (-3938 (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) 27 (|has| |#2| (-1090)))) (-3602 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3466 (((-3 $ "failed") $) 53 (|has| |#2| (-720)))) (-1332 (($) NIL (|has| |#2| (-367)))) (-2073 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ (-561)) 51)) (-3201 (((-112) $) NIL (|has| |#2| (-842)))) (-3571 (((-638 |#2|) $) 15 (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL (|has| |#2| (-720)))) (-2110 (((-112) $) NIL (|has| |#2| (-842)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 20 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1305 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 (((-561) $) 50 (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2|) $) 41)) (-3198 (((-914) $) NIL (|has| |#2| (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#2| (-1090)))) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-2413 (($ (-914)) NIL (|has| |#2| (-367)))) (-1714 (((-1110) $) NIL (|has| |#2| (-1090)))) (-1433 ((|#2| $) NIL (|has| (-561) (-844)))) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) 21)) (-1327 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1690 (($ (-1253 |#2|)) 18)) (-3084 (((-133)) NIL (|has| |#2| (-362)))) (-3238 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1724 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-1253 |#2|) $) 10) (($ (-561)) NIL (-4007 (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) 13 (|has| |#2| (-1090))) (((-856) $) NIL (|has| |#2| (-608 (-856))))) (-4259 (((-765)) NIL (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-3749 (($ $) NIL (|has| |#2| (-842)))) (-2211 (($) 35 (|has| |#2| (-130)) CONST)) (-2222 (($) 38 (|has| |#2| (-720)) CONST)) (-3122 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1782 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1762 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1733 (((-112) $ $) 26 (|has| |#2| (-1090)))) (-1773 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1754 (((-112) $ $) 58 (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-1813 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-914)) NIL (|has| |#2| (-720)))) (* (($ (-561) $) NIL (|has| |#2| (-1042))) (($ $ $) 44 (|has| |#2| (-720))) (($ $ |#2|) 42 (|has| |#2| (-720))) (($ |#2| $) 43 (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-914) $) NIL (|has| |#2| (-25)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-239 |#1| |#2|) (-237 |#1| |#2|) (-765) (-1205)) (T -239))
NIL
(-237 |#1| |#2|)
-((-3453 (((-558) (-635 (-1145))) 24) (((-558) (-1145)) 19)) (-1829 (((-1251) (-635 (-1145))) 29) (((-1251) (-1145)) 28)) (-2197 (((-1145)) 14)) (-3518 (((-1145) (-558) (-1145)) 16)) (-2814 (((-635 (-1145)) (-635 (-1145)) (-558) (-1145)) 25) (((-1145) (-1145) (-558) (-1145)) 23)) (-3875 (((-635 (-1145)) (-635 (-1145))) 13) (((-635 (-1145)) (-1145)) 11)))
-(((-240) (-10 -7 (-15 -3875 ((-635 (-1145)) (-1145))) (-15 -3875 ((-635 (-1145)) (-635 (-1145)))) (-15 -2197 ((-1145))) (-15 -3518 ((-1145) (-558) (-1145))) (-15 -2814 ((-1145) (-1145) (-558) (-1145))) (-15 -2814 ((-635 (-1145)) (-635 (-1145)) (-558) (-1145))) (-15 -1829 ((-1251) (-1145))) (-15 -1829 ((-1251) (-635 (-1145)))) (-15 -3453 ((-558) (-1145))) (-15 -3453 ((-558) (-635 (-1145)))))) (T -240))
-((-3453 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-558)) (-5 *1 (-240)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-240)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1251)) (-5 *1 (-240)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-240)))) (-2814 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 (-1145))) (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *1 (-240)))) (-2814 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240)))) (-3518 (*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240)))) (-2197 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-240)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240)))) (-3875 (*1 *2 *3) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240)) (-5 *3 (-1145)))))
-(-10 -7 (-15 -3875 ((-635 (-1145)) (-1145))) (-15 -3875 ((-635 (-1145)) (-635 (-1145)))) (-15 -2197 ((-1145))) (-15 -3518 ((-1145) (-558) (-1145))) (-15 -2814 ((-1145) (-1145) (-558) (-1145))) (-15 -2814 ((-635 (-1145)) (-635 (-1145)) (-558) (-1145))) (-15 -1829 ((-1251) (-1145))) (-15 -1829 ((-1251) (-635 (-1145)))) (-15 -3453 ((-558) (-1145))) (-15 -3453 ((-558) (-635 (-1145)))))
-((** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 16)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ (-406 (-558)) $) 23) (($ $ (-406 (-558))) NIL)))
-(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-242)) (T -241))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 40)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 44)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 41)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ (-406 (-558)) $) 43) (($ $ (-406 (-558))) 42)))
+((-1614 (((-561) (-638 (-1148))) 24) (((-561) (-1148)) 19)) (-2547 (((-1258) (-638 (-1148))) 29) (((-1258) (-1148)) 28)) (-3624 (((-1148)) 14)) (-4098 (((-1148) (-561) (-1148)) 16)) (-2262 (((-638 (-1148)) (-638 (-1148)) (-561) (-1148)) 25) (((-1148) (-1148) (-561) (-1148)) 23)) (-3958 (((-638 (-1148)) (-638 (-1148))) 13) (((-638 (-1148)) (-1148)) 11)))
+(((-240) (-10 -7 (-15 -3958 ((-638 (-1148)) (-1148))) (-15 -3958 ((-638 (-1148)) (-638 (-1148)))) (-15 -3624 ((-1148))) (-15 -4098 ((-1148) (-561) (-1148))) (-15 -2262 ((-1148) (-1148) (-561) (-1148))) (-15 -2262 ((-638 (-1148)) (-638 (-1148)) (-561) (-1148))) (-15 -2547 ((-1258) (-1148))) (-15 -2547 ((-1258) (-638 (-1148)))) (-15 -1614 ((-561) (-1148))) (-15 -1614 ((-561) (-638 (-1148)))))) (T -240))
+((-1614 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-561)) (-5 *1 (-240)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-240)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1258)) (-5 *1 (-240)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-240)))) (-2262 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-638 (-1148))) (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *1 (-240)))) (-2262 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240)))) (-4098 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240)))) (-3624 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240)))) (-3958 (*1 *2 *3) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148)))))
+(-10 -7 (-15 -3958 ((-638 (-1148)) (-1148))) (-15 -3958 ((-638 (-1148)) (-638 (-1148)))) (-15 -3624 ((-1148))) (-15 -4098 ((-1148) (-561) (-1148))) (-15 -2262 ((-1148) (-1148) (-561) (-1148))) (-15 -2262 ((-638 (-1148)) (-638 (-1148)) (-561) (-1148))) (-15 -2547 ((-1258) (-1148))) (-15 -2547 ((-1258) (-638 (-1148)))) (-15 -1614 ((-561) (-1148))) (-15 -1614 ((-561) (-638 (-1148)))))
+((** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 16)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ (-406 (-561)) $) 23) (($ $ (-406 (-561))) NIL)))
+(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-242)) (T -241))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 40)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 44)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 41)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ (-406 (-561)) $) 43) (($ $ (-406 (-561))) 42)))
(((-242) (-139)) (T -242))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-558)))) (-3823 (*1 *1 *1) (-4 *1 (-242))))
-(-13 (-289) (-38 (-406 (-558))) (-10 -8 (-15 ** ($ $ (-558))) (-15 -3823 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-289) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-717) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-2427 (($ $) 57)) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-2832 (($ $ $) 53 (|has| $ (-6 -4384)))) (-3718 (($ $ $) 52 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-3457 (($) 7 T CONST)) (-2745 (($ $) 56)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-3532 (($ $) 55)) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1514 ((|#1| $) 59)) (-3734 (($ $) 58)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47)) (-1904 (((-558) $ $) 44)) (-1609 (((-112) $) 46)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-1651 (($ $ $) 54 (|has| $ (-6 -4384)))) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-243 |#1|) (-139) (-1200)) (T -243))
-((-1514 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-3734 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-2427 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-2745 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-3532 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-1651 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-2832 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))) (-3718 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
-(-13 (-1000 |t#1|) (-10 -8 (-15 -1514 (|t#1| $)) (-15 -3734 ($ $)) (-15 -2427 ($ $)) (-15 -2745 ($ $)) (-15 -3532 ($ $)) (IF (|has| $ (-6 -4384)) (PROGN (-15 -1651 ($ $ $)) (-15 -2832 ($ $ $)) (-15 -3718 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) NIL)) (-1611 ((|#1| $) NIL)) (-2427 (($ $) NIL)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) $) NIL (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3041 (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3648 (($ $) 10 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-1649 (($ $ $) NIL (|has| $ (-6 -4384)))) (-2851 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4384))) (($ $ "rest" $) NIL (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) |#1|) $) NIL)) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1601 ((|#1| $) NIL)) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3168 (($ $) NIL) (($ $ (-762)) NIL)) (-1958 (($ $) NIL (|has| |#1| (-1087)))) (-3188 (($ $) 7 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4151 (((-112) $) NIL)) (-4145 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087))) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) NIL)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1395 (($ (-762) |#1|) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-4150 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3391 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2411 (($ |#1|) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1514 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-2650 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1363 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-1890 (((-112) $) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) NIL) ((|#1| $ (-558) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-762) $ "count") 16)) (-1904 (((-558) $ $) NIL)) (-3738 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-3976 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-3726 (($ (-635 |#1|)) 22)) (-1609 (((-112) $) NIL)) (-3070 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4384)))) (-2398 (((-762) $) NIL)) (-4009 (($ $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-1651 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2683 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-3940 (($ (-635 |#1|)) 17) (((-635 |#1|) $) 18) (((-853) $) 21 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) 14 (|has| $ (-6 -4383)))))
-(((-244 |#1|) (-13 (-656 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -3726 ($ (-635 |#1|))) (-15 -2276 ($ $ "unique")) (-15 -2276 ($ $ "sort")) (-15 -2276 ((-762) $ "count")))) (-841)) (T -244))
-((-3726 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-244 *3)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-841)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-841)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-762)) (-5 *1 (-244 *4)) (-4 *4 (-841)))))
-(-13 (-656 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -3726 ($ (-635 |#1|))) (-15 -2276 ($ $ "unique")) (-15 -2276 ($ $ "sort")) (-15 -2276 ((-762) $ "count"))))
-((-3865 (((-3 (-762) "failed") |#1| |#1| (-762)) 26)))
-(((-245 |#1|) (-10 -7 (-15 -3865 ((-3 (-762) "failed") |#1| |#1| (-762)))) (-13 (-717) (-367) (-10 -7 (-15 ** (|#1| |#1| (-558)))))) (T -245))
-((-3865 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-762)) (-4 *3 (-13 (-717) (-367) (-10 -7 (-15 ** (*3 *3 (-558)))))) (-5 *1 (-245 *3)))))
-(-10 -7 (-15 -3865 ((-3 (-762) "failed") |#1| |#1| (-762))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-855 |#1|)) $) NIL)) (-3907 (((-1159 $) $ (-855 |#1|)) NIL) (((-1159 |#2|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-3244 (($ $) NIL (|has| |#2| (-550)))) (-4326 (((-112) $) NIL (|has| |#2| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-855 |#1|))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2018 (($ $) NIL (|has| |#2| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-3226 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-2862 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3146 (($ $ (-635 (-558))) NIL)) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#2| (-899)))) (-2704 (($ $ |#2| (-239 (-1596 |#1|) (-762)) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4068 (($ (-1159 |#2|) (-855 |#1|)) NIL) (($ (-1159 $) (-855 |#1|)) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#2| (-239 (-1596 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-855 |#1|)) NIL)) (-3672 (((-239 (-1596 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-2142 (($ $ $) NIL (|has| |#2| (-841)))) (-2281 (($ $ $) NIL (|has| |#2| (-841)))) (-2776 (($ (-1 (-239 (-1596 |#1|) (-762)) (-239 (-1596 |#1|) (-762))) $) NIL)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-2135 (((-3 (-855 |#1|) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#2| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2510 (((-1145) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1857 (-762))) "failed") $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#2| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#2| (-899)))) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) NIL) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) NIL) (($ $ (-855 |#1|) $) NIL) (($ $ (-635 (-855 |#1|)) (-635 $)) NIL)) (-3789 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3780 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4263 (((-239 (-1596 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-3012 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-855 |#1|)) NIL) (($ (-406 (-558))) NIL (-3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-239 (-1596 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1757 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-246 |#1| |#2|) (-13 (-939 |#2| (-239 (-1596 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3146 ($ $ (-635 (-558)))))) (-635 (-1163)) (-1039)) (T -246))
-((-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-246 *3 *4)) (-14 *3 (-635 (-1163))) (-4 *4 (-1039)))))
-(-13 (-939 |#2| (-239 (-1596 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3146 ($ $ (-635 (-558))))))
-((-3929 (((-112) $ $) NIL)) (-1621 (((-1251) $) 17)) (-3177 (((-182) $) 11)) (-3374 (($ (-182)) 12)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1759 (((-248) $) 7)) (-3940 (((-853) $) 9)) (-1708 (((-112) $ $) 15)))
-(((-247) (-13 (-1087) (-10 -8 (-15 -1759 ((-248) $)) (-15 -3177 ((-182) $)) (-15 -3374 ($ (-182))) (-15 -1621 ((-1251) $))))) (T -247))
-((-1759 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-247)))))
-(-13 (-1087) (-10 -8 (-15 -1759 ((-248) $)) (-15 -3177 ((-182) $)) (-15 -3374 ($ (-182))) (-15 -1621 ((-1251) $))))
-((-3929 (((-112) $ $) NIL)) (-3179 (((-504) $) NIL)) (-2510 (((-1145) $) NIL)) (-2300 (((-185) $) NIL)) (-1688 (((-1107) $) NIL)) (-4038 (((-635 (-112)) $) NIL)) (-3940 (((-853) $) NIL) (((-186) $) 6)) (-1405 (((-55) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-248) (-13 (-184) (-605 (-186)))) (T -248))
-NIL
-(-13 (-184) (-605 (-186)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1441 (($ (-911)) NIL (|has| |#4| (-1039)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2707 (($ $ $) NIL (|has| |#4| (-784)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2507 (((-762)) NIL (|has| |#4| (-367)))) (-1334 (((-558) $) NIL (|has| |#4| (-839)))) (-4077 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1087))) (((-3 (-558) "failed") $) NIL (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))) (-3226 ((|#4| $) NIL (|has| |#4| (-1087))) (((-558) $) NIL (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))) (-1918 (((-2 (|:| -3702 (-679 |#4|)) (|:| |vec| (-1246 |#4|))) (-679 $) (-1246 $)) NIL (|has| |#4| (-1039))) (((-679 |#4|) (-679 $)) NIL (|has| |#4| (-1039))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))))) (-3248 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (-3692 (($) NIL (|has| |#4| (-367)))) (-3683 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#4| $ (-558)) NIL)) (-4053 (((-112) $) NIL (|has| |#4| (-839)))) (-2917 (((-635 |#4|) $) NIL (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL (-3994 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (-2032 (((-112) $) NIL (|has| |#4| (-839)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (-3994 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-3486 (((-635 |#4|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (-3994 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-3674 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) NIL)) (-1486 (((-911) $) NIL (|has| |#4| (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-2349 (($ (-911)) NIL (|has| |#4| (-367)))) (-1688 (((-1107) $) NIL)) (-3156 ((|#4| $) NIL (|has| (-558) (-841)))) (-2830 (($ $ |#4|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-4318 (((-635 |#4|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#4| $ (-558) |#4|) NIL) ((|#4| $ (-558)) 12)) (-2823 ((|#4| $ $) NIL (|has| |#4| (-1039)))) (-3982 (($ (-1246 |#4|)) NIL)) (-2887 (((-133)) NIL (|has| |#4| (-362)))) (-3780 (($ $ (-1 |#4| |#4|) (-762)) NIL (|has| |#4| (-1039))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))))) (-1698 (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383))) (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-1246 |#4|) $) NIL) (((-853) $) NIL) (($ |#4|) NIL (|has| |#4| (-1087))) (($ (-558)) NIL (-3994 (-12 (|has| |#4| (-1028 (-558))) (|has| |#4| (-1087))) (|has| |#4| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#4| (-1028 (-406 (-558)))) (|has| |#4| (-1087))))) (-2417 (((-762)) NIL (|has| |#4| (-1039)))) (-2831 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-4241 (($ $) NIL (|has| |#4| (-839)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL (-3994 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) CONST)) (-3042 (($ $ (-1 |#4| |#4|) (-762)) NIL (|has| |#4| (-1039))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))))) (-1757 (((-112) $ $) NIL (-3994 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1737 (((-112) $ $) NIL (-3994 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-3994 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1728 (((-112) $ $) NIL (-3994 (|has| |#4| (-784)) (|has| |#4| (-839))))) (-1805 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-1796 (($ $ $) NIL) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL (-3994 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039))))) (($ $ (-911)) NIL (-3994 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (* (($ |#2| $) 14) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-717))) (($ |#4| $) NIL (|has| |#4| (-717))) (($ $ $) NIL (-3994 (-12 (|has| |#4| (-232)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-631 (-558))) (|has| |#4| (-1039))) (|has| |#4| (-717)) (-12 (|has| |#4| (-890 (-1163))) (|has| |#4| (-1039)))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-638 |#2|) (-638 |#3|)) (-911) (-1039) (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-638 |#2|)) (T -249))
-NIL
-(-13 (-237 |#1| |#4|) (-638 |#2|) (-638 |#3|))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1441 (($ (-911)) NIL (|has| |#3| (-1039)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2707 (($ $ $) NIL (|has| |#3| (-784)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2507 (((-762)) NIL (|has| |#3| (-367)))) (-1334 (((-558) $) NIL (|has| |#3| (-839)))) (-4077 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1087))) (((-3 (-558) "failed") $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))) (-3226 ((|#3| $) NIL (|has| |#3| (-1087))) (((-558) $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))) (-1918 (((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) NIL (|has| |#3| (-1039))) (((-679 |#3|) (-679 $)) NIL (|has| |#3| (-1039))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))))) (-3248 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (-3692 (($) NIL (|has| |#3| (-367)))) (-3683 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#3| $ (-558)) NIL)) (-4053 (((-112) $) NIL (|has| |#3| (-839)))) (-2917 (((-635 |#3|) $) NIL (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL (-3994 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (-2032 (((-112) $) NIL (|has| |#3| (-839)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-3486 (((-635 |#3|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-3674 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#3| |#3|) $) NIL)) (-1486 (((-911) $) NIL (|has| |#3| (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-2349 (($ (-911)) NIL (|has| |#3| (-367)))) (-1688 (((-1107) $) NIL)) (-3156 ((|#3| $) NIL (|has| (-558) (-841)))) (-2830 (($ $ |#3|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087))))) (-4318 (((-635 |#3|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#3| $ (-558) |#3|) NIL) ((|#3| $ (-558)) 11)) (-2823 ((|#3| $ $) NIL (|has| |#3| (-1039)))) (-3982 (($ (-1246 |#3|)) NIL)) (-2887 (((-133)) NIL (|has| |#3| (-362)))) (-3780 (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))))) (-1698 (((-762) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383))) (((-762) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-1246 |#3|) $) NIL) (((-853) $) NIL) (($ |#3|) NIL (|has| |#3| (-1087))) (($ (-558)) NIL (-3994 (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087))))) (-2417 (((-762)) NIL (|has| |#3| (-1039)))) (-2831 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383)))) (-4241 (($ $) NIL (|has| |#3| (-839)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL (-3994 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) CONST)) (-3042 (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))))) (-1757 (((-112) $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1737 (((-112) $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1728 (((-112) $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1805 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1796 (($ $ $) NIL) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL (-3994 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039))))) (($ $ (-911)) NIL (-3994 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (* (($ |#2| $) 13) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-717))) (($ |#3| $) NIL (|has| |#3| (-717))) (($ $ $) NIL (-3994 (-12 (|has| |#3| (-232)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039))) (|has| |#3| (-717)) (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-250 |#1| |#2| |#3|) (-13 (-237 |#1| |#3|) (-638 |#2|)) (-762) (-1039) (-638 |#2|)) (T -250))
-NIL
-(-13 (-237 |#1| |#3|) (-638 |#2|))
-((-3880 (((-635 (-762)) $) 47) (((-635 (-762)) $ |#3|) 50)) (-4173 (((-762) $) 49) (((-762) $ |#3|) 52)) (-1507 (($ $) 65)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2532 (((-762) $ |#3|) 39) (((-762) $) 36)) (-3102 (((-1 $ (-762)) |#3|) 15) (((-1 $ (-762)) $) 77)) (-3630 ((|#4| $) 58)) (-3448 (((-112) $) 56)) (-4116 (($ $) 64)) (-1369 (($ $ (-635 (-293 $))) 97) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-635 |#3|) (-635 |#2|)) 84)) (-3780 (($ $ |#4|) NIL) (($ $ (-635 |#4|)) NIL) (($ $ |#4| (-762)) NIL) (($ $ (-635 |#4|) (-635 (-762))) NIL) (($ $) NIL) (($ $ (-762)) NIL) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3481 (((-635 |#3|) $) 75)) (-4263 ((|#5| $) NIL) (((-762) $ |#4|) NIL) (((-635 (-762)) $ (-635 |#4|)) NIL) (((-762) $ |#3|) 44)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-558))) NIL) (($ $) NIL)))
-(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -1369 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#3| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#3| |#1|)) (-15 -3102 ((-1 |#1| (-762)) |#1|)) (-15 -1507 (|#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -3630 (|#4| |#1|)) (-15 -3448 ((-112) |#1|)) (-15 -4173 ((-762) |#1| |#3|)) (-15 -3880 ((-635 (-762)) |#1| |#3|)) (-15 -4173 ((-762) |#1|)) (-15 -3880 ((-635 (-762)) |#1|)) (-15 -4263 ((-762) |#1| |#3|)) (-15 -2532 ((-762) |#1|)) (-15 -2532 ((-762) |#1| |#3|)) (-15 -3481 ((-635 |#3|) |#1|)) (-15 -3102 ((-1 |#1| (-762)) |#3|)) (-15 -3940 (|#1| |#3|)) (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -4263 ((-635 (-762)) |#1| (-635 |#4|))) (-15 -4263 ((-762) |#1| |#4|)) (-15 -3940 (|#1| |#4|)) (-15 -3302 ((-3 |#4| "failed") |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#4| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#4| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4263 (|#5| |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3780 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -3780 (|#1| |#1| |#4| (-762))) (-15 -3780 (|#1| |#1| (-635 |#4|))) (-15 -3780 (|#1| |#1| |#4|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1039) (-841) (-265 |#3|) (-784)) (T -251))
-NIL
-(-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -1369 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#3| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#3| |#1|)) (-15 -3102 ((-1 |#1| (-762)) |#1|)) (-15 -1507 (|#1| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -3630 (|#4| |#1|)) (-15 -3448 ((-112) |#1|)) (-15 -4173 ((-762) |#1| |#3|)) (-15 -3880 ((-635 (-762)) |#1| |#3|)) (-15 -4173 ((-762) |#1|)) (-15 -3880 ((-635 (-762)) |#1|)) (-15 -4263 ((-762) |#1| |#3|)) (-15 -2532 ((-762) |#1|)) (-15 -2532 ((-762) |#1| |#3|)) (-15 -3481 ((-635 |#3|) |#1|)) (-15 -3102 ((-1 |#1| (-762)) |#3|)) (-15 -3940 (|#1| |#3|)) (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -4263 ((-635 (-762)) |#1| (-635 |#4|))) (-15 -4263 ((-762) |#1| |#4|)) (-15 -3940 (|#1| |#4|)) (-15 -3302 ((-3 |#4| "failed") |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#4| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#4| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4263 (|#5| |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3780 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -3780 (|#1| |#1| |#4| (-762))) (-15 -3780 (|#1| |#1| (-635 |#4|))) (-15 -3780 (|#1| |#1| |#4|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3880 (((-635 (-762)) $) 214) (((-635 (-762)) $ |#2|) 212)) (-4173 (((-762) $) 213) (((-762) $ |#2|) 211)) (-4078 (((-635 |#3|) $) 110)) (-3907 (((-1159 $) $ |#3|) 125) (((-1159 |#1|) $) 124)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-3244 (($ $) 88 (|has| |#1| (-550)))) (-4326 (((-112) $) 90 (|has| |#1| (-550)))) (-2909 (((-762) $) 112) (((-762) $ (-635 |#3|)) 111)) (-1868 (((-3 $ "failed") $ $) 19)) (-2418 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-2018 (($ $) 98 (|has| |#1| (-450)))) (-4110 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-1507 (($ $) 207)) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3226 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) ((|#3| $) 137) ((|#2| $) 222)) (-2862 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-3905 (($ $) 154)) (-1918 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-3248 (((-3 $ "failed") $) 33)) (-3199 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3894 (((-635 $) $) 109)) (-2992 (((-112) $) 96 (|has| |#1| (-899)))) (-2704 (($ $ |#1| |#4| $) 172)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| |#3| (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| |#3| (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2532 (((-762) $ |#2|) 217) (((-762) $) 216)) (-3999 (((-112) $) 31)) (-2987 (((-762) $) 169)) (-4068 (($ (-1159 |#1|) |#3|) 117) (($ (-1159 $) |#3|) 116)) (-4033 (((-635 $) $) 126)) (-3594 (((-112) $) 152)) (-4056 (($ |#1| |#4|) 153) (($ $ |#3| (-762)) 119) (($ $ (-635 |#3|) (-635 (-762))) 118)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |#3|) 120)) (-3672 ((|#4| $) 170) (((-762) $ |#3|) 122) (((-635 (-762)) $ (-635 |#3|)) 121)) (-2142 (($ $ $) 79 (|has| |#1| (-841)))) (-2281 (($ $ $) 78 (|has| |#1| (-841)))) (-2776 (($ (-1 |#4| |#4|) $) 171)) (-3397 (($ (-1 |#1| |#1|) $) 151)) (-3102 (((-1 $ (-762)) |#2|) 219) (((-1 $ (-762)) $) 206 (|has| |#1| (-232)))) (-2135 (((-3 |#3| "failed") $) 123)) (-3867 (($ $) 149)) (-3881 ((|#1| $) 148)) (-3630 ((|#3| $) 209)) (-1500 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-2510 (((-1145) $) 9)) (-3448 (((-112) $) 210)) (-2819 (((-3 (-635 $) "failed") $) 114)) (-4195 (((-3 (-635 $) "failed") $) 115)) (-3637 (((-3 (-2 (|:| |var| |#3|) (|:| -1857 (-762))) "failed") $) 113)) (-4116 (($ $) 208)) (-1688 (((-1107) $) 10)) (-3837 (((-112) $) 166)) (-3853 ((|#1| $) 167)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-1544 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-3939 (((-417 $) $) 99 (|has| |#1| (-899)))) (-2861 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) 202 (|has| |#1| (-232)))) (-3789 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3780 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-762)) 40) (($ $ (-635 |#3|) (-635 (-762))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-762)) 236 (|has| |#1| (-232))) (($ $ (-1163)) 234 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 233 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 232 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 231 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3481 (((-635 |#2|) $) 218)) (-4263 ((|#4| $) 150) (((-762) $ |#3|) 130) (((-635 (-762)) $ (-635 |#3|)) 129) (((-762) $ |#2|) 215)) (-3441 (((-882 (-378)) $) 82 (-12 (|has| |#3| (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| |#3| (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| |#3| (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2157 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-558))) 72 (-3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558)))))) (($ $) 85 (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) 168)) (-3143 ((|#1| $ |#4|) 155) (($ $ |#3| (-762)) 128) (($ $ (-635 |#3|) (-635 (-762))) 127)) (-1487 (((-3 $ "failed") $) 73 (-3994 (-2157 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) 28)) (-1664 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-2671 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-762)) 36) (($ $ (-635 |#3|) (-635 (-762))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-762)) 235 (|has| |#1| (-232))) (($ $ (-1163)) 230 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 229 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 228 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 227 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1757 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1805 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-252 |#1| |#2| |#3| |#4|) (-139) (-1039) (-841) (-265 |t#2|) (-784)) (T -252))
-((-3102 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *4 *3 *5 *6)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 *4)))) (-2532 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762)))) (-4263 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 (-762))))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762)))) (-3880 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-635 (-762))))) (-4173 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-112)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-784)) (-4 *2 (-265 *4)))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841)) (-4 *4 (-265 *3)) (-4 *5 (-784)))) (-1507 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841)) (-4 *4 (-265 *3)) (-4 *5 (-784)))) (-3102 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *3 *4 *5 *6)))))
-(-13 (-939 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1028 |t#2|) (-10 -8 (-15 -3102 ((-1 $ (-762)) |t#2|)) (-15 -3481 ((-635 |t#2|) $)) (-15 -2532 ((-762) $ |t#2|)) (-15 -2532 ((-762) $)) (-15 -4263 ((-762) $ |t#2|)) (-15 -3880 ((-635 (-762)) $)) (-15 -4173 ((-762) $)) (-15 -3880 ((-635 (-762)) $ |t#2|)) (-15 -4173 ((-762) $ |t#2|)) (-15 -3448 ((-112) $)) (-15 -3630 (|t#3| $)) (-15 -4116 ($ $)) (-15 -1507 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-512 |t#2| |t#1|)) (-6 (-512 |t#2| $)) (-6 (-308 $)) (-15 -3102 ((-1 $ (-762)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 |#2|) . T) ((-608 |#3|) . T) ((-608 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3994 (|has| |#1| (-899)) (|has| |#1| (-450))) ((-512 |#2| |#1|) |has| |#1| (-232)) ((-512 |#2| $) |has| |#1| (-232)) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-550) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-890 |#3|) . T) ((-876 (-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) ((-939 |#1| |#4| |#3|) . T) ((-899) |has| |#1| (-899)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1028 |#2|) . T) ((-1028 |#3|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) |has| |#1| (-899)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-1410 ((|#1| $) 54)) (-1999 ((|#1| $) 44)) (-3651 (((-112) $ (-762)) 8)) (-3457 (($) 7 T CONST)) (-2696 (($ $) 60)) (-2240 (($ $) 48)) (-3106 ((|#1| |#1| $) 46)) (-1627 ((|#1| $) 45)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2958 (((-762) $) 61)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-3652 ((|#1| |#1| $) 52)) (-3378 ((|#1| |#1| $) 51)) (-2650 (($ |#1| $) 40)) (-2361 (((-762) $) 55)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2923 ((|#1| $) 62)) (-3026 ((|#1| $) 50)) (-1440 ((|#1| $) 49)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2354 ((|#1| |#1| $) 58)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-4137 ((|#1| $) 59)) (-3732 (($) 57) (($ (-635 |#1|)) 56)) (-3752 (((-762) $) 43)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-3323 ((|#1| $) 53)) (-2472 (($ (-635 |#1|)) 42)) (-2022 ((|#1| $) 63)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-253 |#1|) (-139) (-1200)) (T -253))
-((-3732 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-253 *3)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-3652 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-3378 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-1440 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))) (-2240 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(-13 (-1108 |t#1|) (-985 |t#1|) (-10 -8 (-15 -3732 ($)) (-15 -3732 ($ (-635 |t#1|))) (-15 -2361 ((-762) $)) (-15 -1410 (|t#1| $)) (-15 -3323 (|t#1| $)) (-15 -3652 (|t#1| |t#1| $)) (-15 -3378 (|t#1| |t#1| $)) (-15 -3026 (|t#1| $)) (-15 -1440 (|t#1| $)) (-15 -2240 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-985 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1108 |#1|) . T) ((-1200) . T))
-((-1818 (((-1 (-933 (-224)) (-224) (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-3434 (((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378))) 160) (((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 158) (((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 163) (((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 159) (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 150) (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 149) (((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378))) 129) (((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262))) 127) (((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378))) 128) (((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262))) 125)) (-3399 (((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378))) 162) (((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 161) (((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 165) (((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 164) (((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378))) 152) (((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262))) 151) (((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378))) 135) (((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262))) 134) (((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378))) 133) (((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262))) 132) (((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378))) 100) (((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262))) 99) (((-1247) (-1 (-224) (-224)) (-1081 (-378))) 96) (((-1247) (-1 (-224) (-224)) (-1081 (-378)) (-635 (-262))) 95)))
-(((-254) (-10 -7 (-15 -3399 ((-1247) (-1 (-224) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) (-1 (-224) (-224)) (-1081 (-378)))) (-15 -3399 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -3399 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -3399 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3399 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -1818 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -254))
-((-1818 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *2 (-1247)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *2 (-1247)) (-5 *1 (-254)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254)))))
-(-10 -7 (-15 -3399 ((-1247) (-1 (-224) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) (-1 (-224) (-224)) (-1081 (-378)))) (-15 -3399 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) (-867 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -3399 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-869 (-1 (-224) (-224))) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224)) (-1081 (-378)))) (-15 -3399 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-378)) (-1081 (-378)))) (-15 -3399 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -3434 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-872 (-1 (-224) (-224) (-224))) (-1081 (-378)) (-1081 (-378)))) (-15 -1818 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
-((-3399 (((-1247) (-293 |#2|) (-1163) (-1163) (-635 (-262))) 96)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -3399 ((-1247) (-293 |#2|) (-1163) (-1163) (-635 (-262))))) (-13 (-550) (-841) (-1028 (-558))) (-429 |#1|)) (T -255))
-((-3399 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-1163)) (-5 *5 (-635 (-262))) (-4 *7 (-429 *6)) (-4 *6 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-1247)) (-5 *1 (-255 *6 *7)))))
-(-10 -7 (-15 -3399 ((-1247) (-293 |#2|) (-1163) (-1163) (-635 (-262)))))
-((-2750 (((-558) (-558)) 50)) (-3821 (((-558) (-558)) 51)) (-2895 (((-224) (-224)) 52)) (-1573 (((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224))) 49)) (-2557 (((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)) (-112)) 47)))
-(((-256) (-10 -7 (-15 -2557 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)) (-112))) (-15 -1573 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -2750 ((-558) (-558))) (-15 -3821 ((-558) (-558))) (-15 -2895 ((-224) (-224))))) (T -256))
-((-2895 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))) (-1573 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224))) (-5 *2 (-1248)) (-5 *1 (-256)))) (-2557 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224))) (-5 *5 (-112)) (-5 *2 (-1248)) (-5 *1 (-256)))))
-(-10 -7 (-15 -2557 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)) (-112))) (-15 -1573 ((-1248) (-1 (-168 (-224)) (-168 (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -2750 ((-558) (-558))) (-15 -3821 ((-558) (-558))) (-15 -2895 ((-224) (-224))))
-((-3940 (((-1079 (-378)) (-1079 (-315 |#1|))) 16)))
-(((-257 |#1|) (-10 -7 (-15 -3940 ((-1079 (-378)) (-1079 (-315 |#1|))))) (-13 (-841) (-550) (-606 (-378)))) (T -257))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-1079 (-315 *4))) (-4 *4 (-13 (-841) (-550) (-606 (-378)))) (-5 *2 (-1079 (-378))) (-5 *1 (-257 *4)))))
-(-10 -7 (-15 -3940 ((-1079 (-378)) (-1079 (-315 |#1|)))))
-((-3434 (((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378))) 71) (((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 70) (((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378))) 61) (((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 60) (((-1120 (-224)) (-869 |#1|) (-1079 (-378))) 52) (((-1120 (-224)) (-869 |#1|) (-1079 (-378)) (-635 (-262))) 51)) (-3399 (((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378))) 74) (((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 73) (((-1248) |#1| (-1079 (-378)) (-1079 (-378))) 64) (((-1248) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262))) 63) (((-1248) (-869 |#1|) (-1079 (-378))) 56) (((-1248) (-869 |#1|) (-1079 (-378)) (-635 (-262))) 55) (((-1247) (-867 |#1|) (-1079 (-378))) 43) (((-1247) (-867 |#1|) (-1079 (-378)) (-635 (-262))) 42) (((-1247) |#1| (-1079 (-378))) 35) (((-1247) |#1| (-1079 (-378)) (-635 (-262))) 34)))
-(((-258 |#1|) (-10 -7 (-15 -3399 ((-1247) |#1| (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) |#1| (-1079 (-378)))) (-15 -3399 ((-1247) (-867 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) (-867 |#1|) (-1079 (-378)))) (-15 -3399 ((-1248) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-869 |#1|) (-1079 (-378)))) (-15 -3434 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)))) (-15 -3399 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -3434 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -3399 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)))) (-15 -3434 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378))))) (-13 (-606 (-534)) (-1087))) (T -258))
-((-3434 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *5)))) (-3434 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *6)))) (-3399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *5)))) (-3399 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *6)))) (-3434 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-3434 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-3399 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1248)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-3399 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *5)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *6)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *5)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248)) (-5 *1 (-258 *6)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1079 (-378))) (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247)) (-5 *1 (-258 *5)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247)) (-5 *1 (-258 *6)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1247)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087))))))
-(-10 -7 (-15 -3399 ((-1247) |#1| (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) |#1| (-1079 (-378)))) (-15 -3399 ((-1247) (-867 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1247) (-867 |#1|) (-1079 (-378)))) (-15 -3399 ((-1248) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-869 |#1|) (-1079 (-378)))) (-15 -3434 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-869 |#1|) (-1079 (-378)))) (-15 -3399 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -3434 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) |#1| (-1079 (-378)) (-1079 (-378)))) (-15 -3399 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3399 ((-1248) (-872 |#1|) (-1079 (-378)) (-1079 (-378)))) (-15 -3434 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)) (-635 (-262)))) (-15 -3434 ((-1120 (-224)) (-872 |#1|) (-1079 (-378)) (-1079 (-378)))))
-((-3399 (((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-262))) 23) (((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224))) 24) (((-1247) (-635 (-933 (-224))) (-635 (-262))) 16) (((-1247) (-635 (-933 (-224)))) 17) (((-1247) (-635 (-224)) (-635 (-224)) (-635 (-262))) 20) (((-1247) (-635 (-224)) (-635 (-224))) 21)))
-(((-259) (-10 -7 (-15 -3399 ((-1247) (-635 (-224)) (-635 (-224)))) (-15 -3399 ((-1247) (-635 (-224)) (-635 (-224)) (-635 (-262)))) (-15 -3399 ((-1247) (-635 (-933 (-224))))) (-15 -3399 ((-1247) (-635 (-933 (-224))) (-635 (-262)))) (-15 -3399 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -3399 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-262)))))) (T -259))
-((-3399 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-259)))) (-3399 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1248)) (-5 *1 (-259)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-259)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *2 (-1247)) (-5 *1 (-259)))) (-3399 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-259)))) (-3399 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1247)) (-5 *1 (-259)))))
-(-10 -7 (-15 -3399 ((-1247) (-635 (-224)) (-635 (-224)))) (-15 -3399 ((-1247) (-635 (-224)) (-635 (-224)) (-635 (-262)))) (-15 -3399 ((-1247) (-635 (-933 (-224))))) (-15 -3399 ((-1247) (-635 (-933 (-224))) (-635 (-262)))) (-15 -3399 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -3399 ((-1248) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-262)))))
-((-2606 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-1860 (((-911) (-635 (-262)) (-911)) 53)) (-2020 (((-911) (-635 (-262)) (-911)) 52)) (-3344 (((-635 (-378)) (-635 (-262)) (-635 (-378))) 69)) (-2279 (((-378) (-635 (-262)) (-378)) 58)) (-3585 (((-911) (-635 (-262)) (-911)) 54)) (-1590 (((-112) (-635 (-262)) (-112)) 28)) (-3473 (((-1145) (-635 (-262)) (-1145)) 20)) (-2866 (((-1145) (-635 (-262)) (-1145)) 27)) (-1506 (((-1120 (-224)) (-635 (-262))) 47)) (-2165 (((-635 (-1081 (-378))) (-635 (-262)) (-635 (-1081 (-378)))) 41)) (-2094 (((-864) (-635 (-262)) (-864)) 33)) (-3947 (((-864) (-635 (-262)) (-864)) 34)) (-4276 (((-1 (-933 (-224)) (-933 (-224))) (-635 (-262)) (-1 (-933 (-224)) (-933 (-224)))) 64)) (-3138 (((-112) (-635 (-262)) (-112)) 16)) (-2124 (((-112) (-635 (-262)) (-112)) 15)))
-(((-260) (-10 -7 (-15 -2124 ((-112) (-635 (-262)) (-112))) (-15 -3138 ((-112) (-635 (-262)) (-112))) (-15 -2606 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3473 ((-1145) (-635 (-262)) (-1145))) (-15 -2866 ((-1145) (-635 (-262)) (-1145))) (-15 -1590 ((-112) (-635 (-262)) (-112))) (-15 -2094 ((-864) (-635 (-262)) (-864))) (-15 -3947 ((-864) (-635 (-262)) (-864))) (-15 -2165 ((-635 (-1081 (-378))) (-635 (-262)) (-635 (-1081 (-378))))) (-15 -2020 ((-911) (-635 (-262)) (-911))) (-15 -1860 ((-911) (-635 (-262)) (-911))) (-15 -1506 ((-1120 (-224)) (-635 (-262)))) (-15 -3585 ((-911) (-635 (-262)) (-911))) (-15 -2279 ((-378) (-635 (-262)) (-378))) (-15 -4276 ((-1 (-933 (-224)) (-933 (-224))) (-635 (-262)) (-1 (-933 (-224)) (-933 (-224))))) (-15 -3344 ((-635 (-378)) (-635 (-262)) (-635 (-378)))))) (T -260))
-((-3344 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-378))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-4276 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-2279 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-3585 (*1 *2 *3 *2) (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-260)))) (-1860 (*1 *2 *3 *2) (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-2020 (*1 *2 *3 *2) (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-2165 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-3947 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-2094 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-1590 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-2866 (*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-3473 (*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-2606 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-3138 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))) (-2124 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
-(-10 -7 (-15 -2124 ((-112) (-635 (-262)) (-112))) (-15 -3138 ((-112) (-635 (-262)) (-112))) (-15 -2606 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3473 ((-1145) (-635 (-262)) (-1145))) (-15 -2866 ((-1145) (-635 (-262)) (-1145))) (-15 -1590 ((-112) (-635 (-262)) (-112))) (-15 -2094 ((-864) (-635 (-262)) (-864))) (-15 -3947 ((-864) (-635 (-262)) (-864))) (-15 -2165 ((-635 (-1081 (-378))) (-635 (-262)) (-635 (-1081 (-378))))) (-15 -2020 ((-911) (-635 (-262)) (-911))) (-15 -1860 ((-911) (-635 (-262)) (-911))) (-15 -1506 ((-1120 (-224)) (-635 (-262)))) (-15 -3585 ((-911) (-635 (-262)) (-911))) (-15 -2279 ((-378) (-635 (-262)) (-378))) (-15 -4276 ((-1 (-933 (-224)) (-933 (-224))) (-635 (-262)) (-1 (-933 (-224)) (-933 (-224))))) (-15 -3344 ((-635 (-378)) (-635 (-262)) (-635 (-378)))))
-((-1774 (((-3 |#1| "failed") (-635 (-262)) (-1163)) 17)))
-(((-261 |#1|) (-10 -7 (-15 -1774 ((-3 |#1| "failed") (-635 (-262)) (-1163)))) (-1200)) (T -261))
-((-1774 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *1 (-261 *2)) (-4 *2 (-1200)))))
-(-10 -7 (-15 -1774 ((-3 |#1| "failed") (-635 (-262)) (-1163))))
-((-3929 (((-112) $ $) NIL)) (-2606 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-1860 (($ (-911)) 76)) (-2020 (($ (-911)) 75)) (-3466 (($ (-635 (-378))) 82)) (-2279 (($ (-378)) 58)) (-3585 (($ (-911)) 77)) (-1590 (($ (-112)) 23)) (-3473 (($ (-1145)) 18)) (-2866 (($ (-1145)) 19)) (-1506 (($ (-1120 (-224))) 71)) (-2165 (($ (-635 (-1081 (-378)))) 67)) (-2103 (($ (-635 (-1081 (-378)))) 59) (($ (-635 (-1081 (-406 (-558))))) 66)) (-2294 (($ (-378)) 29) (($ (-864)) 33)) (-2891 (((-112) (-635 $) (-1163)) 91)) (-1774 (((-3 (-52) "failed") (-635 $) (-1163)) 93)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3135 (($ (-378)) 34) (($ (-864)) 35)) (-2979 (($ (-1 (-933 (-224)) (-933 (-224)))) 57)) (-4276 (($ (-1 (-933 (-224)) (-933 (-224)))) 78)) (-1987 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-3940 (((-853) $) 87)) (-3169 (($ (-112)) 24) (($ (-635 (-1081 (-378)))) 52)) (-2124 (($ (-112)) 25)) (-1708 (((-112) $ $) 89)))
-(((-262) (-13 (-1087) (-10 -8 (-15 -2124 ($ (-112))) (-15 -3169 ($ (-112))) (-15 -2606 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3473 ($ (-1145))) (-15 -2866 ($ (-1145))) (-15 -1590 ($ (-112))) (-15 -3169 ($ (-635 (-1081 (-378))))) (-15 -2979 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -2294 ($ (-378))) (-15 -2294 ($ (-864))) (-15 -3135 ($ (-378))) (-15 -3135 ($ (-864))) (-15 -1987 ($ (-1 (-224) (-224)))) (-15 -1987 ($ (-1 (-224) (-224) (-224)))) (-15 -1987 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -2279 ($ (-378))) (-15 -2103 ($ (-635 (-1081 (-378))))) (-15 -2103 ($ (-635 (-1081 (-406 (-558)))))) (-15 -2165 ($ (-635 (-1081 (-378))))) (-15 -1506 ($ (-1120 (-224)))) (-15 -2020 ($ (-911))) (-15 -1860 ($ (-911))) (-15 -3585 ($ (-911))) (-15 -4276 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -3466 ($ (-635 (-378)))) (-15 -1774 ((-3 (-52) "failed") (-635 $) (-1163))) (-15 -2891 ((-112) (-635 $) (-1163)))))) (T -262))
-((-2124 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-262)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))) (-2979 (*1 *1 *2) (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262)))) (-2294 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-2294 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262)))) (-3135 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-3135 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262)))) (-1987 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))) (-1987 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) (-1987 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-406 (-558))))) (-5 *1 (-262)))) (-2165 (*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-262)))) (-2020 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))) (-1860 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))) (-4276 (*1 *1 *2) (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262)))) (-3466 (*1 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-262)))) (-1774 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-52)) (-5 *1 (-262)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-112)) (-5 *1 (-262)))))
-(-13 (-1087) (-10 -8 (-15 -2124 ($ (-112))) (-15 -3169 ($ (-112))) (-15 -2606 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3473 ($ (-1145))) (-15 -2866 ($ (-1145))) (-15 -1590 ($ (-112))) (-15 -3169 ($ (-635 (-1081 (-378))))) (-15 -2979 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -2294 ($ (-378))) (-15 -2294 ($ (-864))) (-15 -3135 ($ (-378))) (-15 -3135 ($ (-864))) (-15 -1987 ($ (-1 (-224) (-224)))) (-15 -1987 ($ (-1 (-224) (-224) (-224)))) (-15 -1987 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -2279 ($ (-378))) (-15 -2103 ($ (-635 (-1081 (-378))))) (-15 -2103 ($ (-635 (-1081 (-406 (-558)))))) (-15 -2165 ($ (-635 (-1081 (-378))))) (-15 -1506 ($ (-1120 (-224)))) (-15 -2020 ($ (-911))) (-15 -1860 ($ (-911))) (-15 -3585 ($ (-911))) (-15 -4276 ($ (-1 (-933 (-224)) (-933 (-224))))) (-15 -3466 ($ (-635 (-378)))) (-15 -1774 ((-3 (-52) "failed") (-635 $) (-1163))) (-15 -2891 ((-112) (-635 $) (-1163)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3880 (((-635 (-762)) $) NIL) (((-635 (-762)) $ |#2|) NIL)) (-4173 (((-762) $) NIL) (((-762) $ |#2|) NIL)) (-4078 (((-635 |#3|) $) NIL)) (-3907 (((-1159 $) $ |#3|) NIL) (((-1159 |#1|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 |#3|)) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1507 (($ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1112 |#1| |#2|) "failed") $) 21)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1112 |#1| |#2|) $) NIL)) (-2862 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-529 |#3|) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))))) (-2532 (((-762) $ |#2|) NIL) (((-762) $) 10)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4068 (($ (-1159 |#1|) |#3|) NIL) (($ (-1159 $) |#3|) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-529 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |#3|) NIL)) (-3672 (((-529 |#3|) $) NIL) (((-762) $ |#3|) NIL) (((-635 (-762)) $ (-635 |#3|)) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-529 |#3|) (-529 |#3|)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3102 (((-1 $ (-762)) |#2|) NIL) (((-1 $ (-762)) $) NIL (|has| |#1| (-232)))) (-2135 (((-3 |#3| "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-3630 ((|#3| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-3448 (((-112) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| |#3|) (|:| -1857 (-762))) "failed") $) NIL)) (-4116 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-635 |#3|) (-635 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-3789 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-3780 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3481 (((-635 |#2|) $) NIL)) (-4263 (((-529 |#3|) $) NIL) (((-762) $ |#3|) NIL) (((-635 (-762)) $ (-635 |#3|)) NIL) (((-762) $ |#2|) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))))) (-3012 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1112 |#1| |#2|)) 30) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-529 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-762)) NIL) (($ $ (-635 |#3|) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-263 |#1| |#2| |#3|) (-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1028 (-1112 |#1| |#2|))) (-1039) (-841) (-265 |#2|)) (T -263))
-NIL
-(-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1028 (-1112 |#1| |#2|)))
-((-4173 (((-762) $) 30)) (-3302 (((-3 |#2| "failed") $) 17)) (-3226 ((|#2| $) 27)) (-3780 (($ $) 12) (($ $ (-762)) 15)) (-3940 (((-853) $) 26) (($ |#2|) 10)) (-1708 (((-112) $ $) 20)) (-1728 (((-112) $ $) 29)))
-(((-264 |#1| |#2|) (-10 -8 (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -4173 ((-762) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|))) (-265 |#2|) (-841)) (T -264))
-NIL
-(-10 -8 (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -4173 ((-762) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-4173 (((-762) $) 22)) (-2317 ((|#1| $) 23)) (-3302 (((-3 |#1| "failed") $) 27)) (-3226 ((|#1| $) 28)) (-2532 (((-762) $) 24)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-3102 (($ |#1| (-762)) 25)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3780 (($ $) 21) (($ $ (-762)) 20)) (-3940 (((-853) $) 11) (($ |#1|) 26)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)))
-(((-265 |#1|) (-139) (-841)) (T -265))
-((-3940 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-3102 (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762)))) (-3780 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-265 *3)) (-4 *3 (-841)))))
-(-13 (-841) (-1028 |t#1|) (-10 -8 (-15 -3102 ($ |t#1| (-762))) (-15 -2532 ((-762) $)) (-15 -2317 (|t#1| $)) (-15 -4173 ((-762) $)) (-15 -3780 ($ $)) (-15 -3780 ($ $ (-762))) (-15 -3940 ($ |t#1|))))
-(((-102) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-841) . T) ((-1028 |#1|) . T) ((-1087) . T))
-((-4078 (((-635 (-1163)) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 41)) (-2096 (((-635 (-1163)) (-315 (-224)) (-762)) 80)) (-2106 (((-3 (-315 (-224)) "failed") (-315 (-224))) 51)) (-1336 (((-315 (-224)) (-315 (-224))) 67)) (-3857 (((-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 26)) (-4102 (((-112) (-635 (-315 (-224)))) 84)) (-3465 (((-112) (-315 (-224))) 24)) (-3494 (((-635 (-1145)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))))) 105)) (-4154 (((-635 (-315 (-224))) (-635 (-315 (-224)))) 87)) (-2373 (((-635 (-315 (-224))) (-635 (-315 (-224)))) 86)) (-2597 (((-679 (-224)) (-635 (-315 (-224))) (-762)) 94)) (-3612 (((-112) (-315 (-224))) 20) (((-112) (-635 (-315 (-224)))) 85)) (-2391 (((-635 (-224)) (-635 (-834 (-224))) (-224)) 14)) (-3149 (((-378) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 100)) (-1960 (((-1025) (-1163) (-1025)) 34)))
-(((-266) (-10 -7 (-15 -2391 ((-635 (-224)) (-635 (-834 (-224))) (-224))) (-15 -3857 ((-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -2106 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1336 ((-315 (-224)) (-315 (-224)))) (-15 -4102 ((-112) (-635 (-315 (-224))))) (-15 -3612 ((-112) (-635 (-315 (-224))))) (-15 -3612 ((-112) (-315 (-224)))) (-15 -2597 ((-679 (-224)) (-635 (-315 (-224))) (-762))) (-15 -2373 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -4154 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -3465 ((-112) (-315 (-224)))) (-15 -4078 ((-635 (-1163)) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -2096 ((-635 (-1163)) (-315 (-224)) (-762))) (-15 -1960 ((-1025) (-1163) (-1025))) (-15 -3149 ((-378) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -3494 ((-635 (-1145)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))))))) (T -266))
-((-3494 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))))) (-5 *2 (-635 (-1145))) (-5 *1 (-266)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) (-5 *2 (-378)) (-5 *1 (-266)))) (-1960 (*1 *2 *3 *2) (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-266)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-762)) (-5 *2 (-635 (-1163))) (-5 *1 (-266)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) (-5 *2 (-635 (-1163))) (-5 *1 (-266)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))) (-2597 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *4 (-762)) (-5 *2 (-679 (-224))) (-5 *1 (-266)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-2106 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-3857 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *1 (-266)))) (-2391 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-834 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4)) (-5 *1 (-266)))))
-(-10 -7 (-15 -2391 ((-635 (-224)) (-635 (-834 (-224))) (-224))) (-15 -3857 ((-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -2106 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1336 ((-315 (-224)) (-315 (-224)))) (-15 -4102 ((-112) (-635 (-315 (-224))))) (-15 -3612 ((-112) (-635 (-315 (-224))))) (-15 -3612 ((-112) (-315 (-224)))) (-15 -2597 ((-679 (-224)) (-635 (-315 (-224))) (-762))) (-15 -2373 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -4154 ((-635 (-315 (-224))) (-635 (-315 (-224))))) (-15 -3465 ((-112) (-315 (-224)))) (-15 -4078 ((-635 (-1163)) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -2096 ((-635 (-1163)) (-315 (-224)) (-762))) (-15 -1960 ((-1025) (-1163) (-1025))) (-15 -3149 ((-378) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -3494 ((-635 (-1145)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))))))
-((-3929 (((-112) $ $) NIL)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 44)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 26) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-267) (-830)) (T -267))
-NIL
-(-830)
-((-3929 (((-112) $ $) NIL)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 58) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 54)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 34) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 36)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-268) (-830)) (T -268))
-NIL
-(-830)
-((-3929 (((-112) $ $) NIL)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 76) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 73)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 44) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 55)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-269) (-830)) (T -269))
-NIL
-(-830)
-((-3929 (((-112) $ $) NIL)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 50)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 31) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-270) (-830)) (T -270))
-NIL
-(-830)
-((-3929 (((-112) $ $) NIL)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 50)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 28) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-271) (-830)) (T -271))
-NIL
-(-830)
-((-3929 (((-112) $ $) NIL)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 73)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 28) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-272) (-830)) (T -272))
-NIL
-(-830)
-((-3929 (((-112) $ $) NIL)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 77)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 25) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-273) (-830)) (T -273))
-NIL
-(-830)
-((-3929 (((-112) $ $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-4166 (((-635 (-558)) $) 18)) (-4263 (((-762) $) 16)) (-3940 (((-853) $) 22) (($ (-635 (-558))) 14)) (-3213 (($ (-762)) 19)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 9)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 10)))
-(((-274) (-13 (-841) (-10 -8 (-15 -3940 ($ (-635 (-558)))) (-15 -4263 ((-762) $)) (-15 -4166 ((-635 (-558)) $)) (-15 -3213 ($ (-762)))))) (T -274))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-274)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-274)))))
-(-13 (-841) (-10 -8 (-15 -3940 ($ (-635 (-558)))) (-15 -4263 ((-762) $)) (-15 -4166 ((-635 (-558)) $)) (-15 -3213 ($ (-762)))))
-((-2277 ((|#2| |#2|) 77)) (-2131 ((|#2| |#2|) 65)) (-3313 (((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-2254 ((|#2| |#2|) 75)) (-2109 ((|#2| |#2|) 63)) (-2298 ((|#2| |#2|) 79)) (-2158 ((|#2| |#2|) 67)) (-3348 ((|#2|) 46)) (-2154 (((-114) (-114)) 95)) (-4342 ((|#2| |#2|) 61)) (-3103 (((-112) |#2|) 134)) (-2688 ((|#2| |#2|) 181)) (-2496 ((|#2| |#2|) 157)) (-1765 ((|#2|) 59)) (-3405 ((|#2|) 58)) (-1302 ((|#2| |#2|) 177)) (-3256 ((|#2| |#2|) 153)) (-3162 ((|#2| |#2|) 185)) (-3293 ((|#2| |#2|) 161)) (-1632 ((|#2| |#2|) 149)) (-3406 ((|#2| |#2|) 151)) (-1851 ((|#2| |#2|) 187)) (-3677 ((|#2| |#2|) 163)) (-4054 ((|#2| |#2|) 183)) (-3794 ((|#2| |#2|) 159)) (-4267 ((|#2| |#2|) 179)) (-3887 ((|#2| |#2|) 155)) (-2813 ((|#2| |#2|) 193)) (-1991 ((|#2| |#2|) 169)) (-2387 ((|#2| |#2|) 189)) (-2044 ((|#2| |#2|) 165)) (-4000 ((|#2| |#2|) 197)) (-1348 ((|#2| |#2|) 173)) (-4199 ((|#2| |#2|) 199)) (-3485 ((|#2| |#2|) 175)) (-2236 ((|#2| |#2|) 195)) (-3109 ((|#2| |#2|) 171)) (-2867 ((|#2| |#2|) 191)) (-2737 ((|#2| |#2|) 167)) (-3944 ((|#2| |#2|) 62)) (-2312 ((|#2| |#2|) 80)) (-2170 ((|#2| |#2|) 68)) (-2289 ((|#2| |#2|) 78)) (-2146 ((|#2| |#2|) 66)) (-2265 ((|#2| |#2|) 76)) (-2120 ((|#2| |#2|) 64)) (-2480 (((-112) (-114)) 93)) (-4175 ((|#2| |#2|) 83)) (-2209 ((|#2| |#2|) 71)) (-2325 ((|#2| |#2|) 81)) (-2184 ((|#2| |#2|) 69)) (-4197 ((|#2| |#2|) 85)) (-2233 ((|#2| |#2|) 73)) (-2038 ((|#2| |#2|) 86)) (-2244 ((|#2| |#2|) 74)) (-4185 ((|#2| |#2|) 84)) (-2221 ((|#2| |#2|) 72)) (-4164 ((|#2| |#2|) 82)) (-2195 ((|#2| |#2|) 70)))
-(((-275 |#1| |#2|) (-10 -7 (-15 -3944 (|#2| |#2|)) (-15 -4342 (|#2| |#2|)) (-15 -2109 (|#2| |#2|)) (-15 -2120 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -2146 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -2195 (|#2| |#2|)) (-15 -2209 (|#2| |#2|)) (-15 -2221 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2298 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4197 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -3348 (|#2|)) (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -3405 (|#2|)) (-15 -1765 (|#2|)) (-15 -3406 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -3256 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -2496 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3293 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (-15 -2044 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -1991 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -4267 (|#2| |#2|)) (-15 -2688 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -3162 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -3313 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3103 ((-112) |#2|))) (-13 (-841) (-550)) (-13 (-429 |#1|) (-992))) (T -275))
-((-3103 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-429 *4) (-992))))) (-3313 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-429 *4) (-992))) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-275 *4 *2)))) (-4199 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2813 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2387 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3162 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2688 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4267 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1302 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1991 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2044 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3293 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2496 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3256 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3406 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-1765 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-841) (-550))))) (-3405 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-841) (-550))))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-429 *3) (-992))))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-992))))) (-3348 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-841) (-550))))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4197 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2277 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2221 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2146 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-2109 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-4342 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-992))))))
-(-10 -7 (-15 -3944 (|#2| |#2|)) (-15 -4342 (|#2| |#2|)) (-15 -2109 (|#2| |#2|)) (-15 -2120 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -2146 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -2195 (|#2| |#2|)) (-15 -2209 (|#2| |#2|)) (-15 -2221 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -2277 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2298 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4197 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -3348 (|#2|)) (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -3405 (|#2|)) (-15 -1765 (|#2|)) (-15 -3406 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -3256 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -2496 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3293 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (-15 -2044 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -1991 (|#2| |#2|)) (-15 -3109 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -4267 (|#2| |#2|)) (-15 -2688 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -3162 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -3313 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3103 ((-112) |#2|)))
-((-4036 (((-3 |#2| "failed") (-635 (-604 |#2|)) |#2| (-1163)) 135)) (-2179 ((|#2| (-406 (-558)) |#2|) 51)) (-4203 ((|#2| |#2| (-604 |#2|)) 128)) (-3296 (((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-604 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1163)) 127)) (-3730 ((|#2| |#2| (-1163)) 20) ((|#2| |#2|) 23)) (-2033 ((|#2| |#2| (-1163)) 141) ((|#2| |#2|) 139)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-1163))) (-15 -3296 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-604 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1163))) (-15 -3730 (|#2| |#2|)) (-15 -3730 (|#2| |#2| (-1163))) (-15 -4036 ((-3 |#2| "failed") (-635 (-604 |#2|)) |#2| (-1163))) (-15 -4203 (|#2| |#2| (-604 |#2|))) (-15 -2179 (|#2| (-406 (-558)) |#2|))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -276))
-((-2179 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-4203 (*1 *2 *2 *3) (-12 (-5 *3 (-604 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)))) (-4036 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-1163)) (-4 *2 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *5 *2)))) (-3730 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-3730 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-635 (-604 *3))) (|:| |vals| (-635 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-2033 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
-(-10 -7 (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-1163))) (-15 -3296 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-604 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1163))) (-15 -3730 (|#2| |#2|)) (-15 -3730 (|#2| |#2| (-1163))) (-15 -4036 ((-3 |#2| "failed") (-635 (-604 |#2|)) |#2| (-1163))) (-15 -4203 (|#2| |#2| (-604 |#2|))) (-15 -2179 (|#2| (-406 (-558)) |#2|)))
-((-3707 (((-3 |#3| "failed") |#3|) 110)) (-2277 ((|#3| |#3|) 131)) (-2002 (((-3 |#3| "failed") |#3|) 82)) (-2131 ((|#3| |#3|) 121)) (-4035 (((-3 |#3| "failed") |#3|) 58)) (-2254 ((|#3| |#3|) 129)) (-2955 (((-3 |#3| "failed") |#3|) 46)) (-2109 ((|#3| |#3|) 119)) (-4027 (((-3 |#3| "failed") |#3|) 112)) (-2298 ((|#3| |#3|) 133)) (-3292 (((-3 |#3| "failed") |#3|) 84)) (-2158 ((|#3| |#3|) 123)) (-2255 (((-3 |#3| "failed") |#3| (-762)) 36)) (-3131 (((-3 |#3| "failed") |#3|) 74)) (-4342 ((|#3| |#3|) 118)) (-4124 (((-3 |#3| "failed") |#3|) 44)) (-3944 ((|#3| |#3|) 117)) (-1935 (((-3 |#3| "failed") |#3|) 113)) (-2312 ((|#3| |#3|) 134)) (-1701 (((-3 |#3| "failed") |#3|) 85)) (-2170 ((|#3| |#3|) 124)) (-3717 (((-3 |#3| "failed") |#3|) 111)) (-2289 ((|#3| |#3|) 132)) (-4163 (((-3 |#3| "failed") |#3|) 83)) (-2146 ((|#3| |#3|) 122)) (-2342 (((-3 |#3| "failed") |#3|) 60)) (-2265 ((|#3| |#3|) 130)) (-2646 (((-3 |#3| "failed") |#3|) 48)) (-2120 ((|#3| |#3|) 120)) (-2716 (((-3 |#3| "failed") |#3|) 66)) (-4175 ((|#3| |#3|) 137)) (-3790 (((-3 |#3| "failed") |#3|) 104)) (-2209 ((|#3| |#3|) 142)) (-4130 (((-3 |#3| "failed") |#3|) 62)) (-2325 ((|#3| |#3|) 135)) (-1993 (((-3 |#3| "failed") |#3|) 50)) (-2184 ((|#3| |#3|) 125)) (-3559 (((-3 |#3| "failed") |#3|) 70)) (-4197 ((|#3| |#3|) 139)) (-1808 (((-3 |#3| "failed") |#3|) 54)) (-2233 ((|#3| |#3|) 127)) (-3141 (((-3 |#3| "failed") |#3|) 72)) (-2038 ((|#3| |#3|) 140)) (-1330 (((-3 |#3| "failed") |#3|) 56)) (-2244 ((|#3| |#3|) 128)) (-3795 (((-3 |#3| "failed") |#3|) 68)) (-4185 ((|#3| |#3|) 138)) (-1449 (((-3 |#3| "failed") |#3|) 107)) (-2221 ((|#3| |#3|) 143)) (-1588 (((-3 |#3| "failed") |#3|) 64)) (-4164 ((|#3| |#3|) 136)) (-3475 (((-3 |#3| "failed") |#3|) 52)) (-2195 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-558))) 40 (|has| |#1| (-362)))))
-(((-277 |#1| |#2| |#3|) (-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -4342 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2221 (|#3| |#3|)) (-15 -2233 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2265 (|#3| |#3|)) (-15 -2277 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2298 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -4164 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4185 (|#3| |#3|)) (-15 -4197 (|#3| |#3|)) (-15 -2038 (|#3| |#3|)))) (-38 (-406 (-558))) (-1237 |#1|) (-1208 |#1| |#2|)) (T -277))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1237 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1208 *4 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4342 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2109 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2146 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2221 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2277 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-4197 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4)))))
-(-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -4342 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2221 (|#3| |#3|)) (-15 -2233 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2265 (|#3| |#3|)) (-15 -2277 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2298 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -4164 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4185 (|#3| |#3|)) (-15 -4197 (|#3| |#3|)) (-15 -2038 (|#3| |#3|))))
-((-3707 (((-3 |#3| "failed") |#3|) 66)) (-2277 ((|#3| |#3|) 129)) (-2002 (((-3 |#3| "failed") |#3|) 50)) (-2131 ((|#3| |#3|) 117)) (-4035 (((-3 |#3| "failed") |#3|) 62)) (-2254 ((|#3| |#3|) 127)) (-2955 (((-3 |#3| "failed") |#3|) 46)) (-2109 ((|#3| |#3|) 115)) (-4027 (((-3 |#3| "failed") |#3|) 70)) (-2298 ((|#3| |#3|) 131)) (-3292 (((-3 |#3| "failed") |#3|) 54)) (-2158 ((|#3| |#3|) 119)) (-2255 (((-3 |#3| "failed") |#3| (-762)) 35)) (-3131 (((-3 |#3| "failed") |#3|) 44)) (-4342 ((|#3| |#3|) 104)) (-4124 (((-3 |#3| "failed") |#3|) 42)) (-3944 ((|#3| |#3|) 114)) (-1935 (((-3 |#3| "failed") |#3|) 72)) (-2312 ((|#3| |#3|) 132)) (-1701 (((-3 |#3| "failed") |#3|) 56)) (-2170 ((|#3| |#3|) 120)) (-3717 (((-3 |#3| "failed") |#3|) 68)) (-2289 ((|#3| |#3|) 130)) (-4163 (((-3 |#3| "failed") |#3|) 52)) (-2146 ((|#3| |#3|) 118)) (-2342 (((-3 |#3| "failed") |#3|) 64)) (-2265 ((|#3| |#3|) 128)) (-2646 (((-3 |#3| "failed") |#3|) 48)) (-2120 ((|#3| |#3|) 116)) (-2716 (((-3 |#3| "failed") |#3|) 74)) (-4175 ((|#3| |#3|) 135)) (-3790 (((-3 |#3| "failed") |#3|) 58)) (-2209 ((|#3| |#3|) 123)) (-4130 (((-3 |#3| "failed") |#3|) 105)) (-2325 ((|#3| |#3|) 133)) (-1993 (((-3 |#3| "failed") |#3|) 94)) (-2184 ((|#3| |#3|) 121)) (-3559 (((-3 |#3| "failed") |#3|) 109)) (-4197 ((|#3| |#3|) 137)) (-1808 (((-3 |#3| "failed") |#3|) 101)) (-2233 ((|#3| |#3|) 125)) (-3141 (((-3 |#3| "failed") |#3|) 110)) (-2038 ((|#3| |#3|) 138)) (-1330 (((-3 |#3| "failed") |#3|) 103)) (-2244 ((|#3| |#3|) 126)) (-3795 (((-3 |#3| "failed") |#3|) 76)) (-4185 ((|#3| |#3|) 136)) (-1449 (((-3 |#3| "failed") |#3|) 60)) (-2221 ((|#3| |#3|) 124)) (-1588 (((-3 |#3| "failed") |#3|) 106)) (-4164 ((|#3| |#3|) 134)) (-3475 (((-3 |#3| "failed") |#3|) 97)) (-2195 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-558))) 40 (|has| |#1| (-362)))))
-(((-278 |#1| |#2| |#3| |#4|) (-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -4342 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2221 (|#3| |#3|)) (-15 -2233 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2265 (|#3| |#3|)) (-15 -2277 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2298 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -4164 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4185 (|#3| |#3|)) (-15 -4197 (|#3| |#3|)) (-15 -2038 (|#3| |#3|)))) (-38 (-406 (-558))) (-1206 |#1|) (-1229 |#1| |#2|) (-973 |#2|)) (T -278))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1206 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1229 *4 *5)) (-4 *6 (-973 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4342 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2109 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2146 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2221 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2277 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-4197 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4)))))
-(-13 (-973 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-558)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -4342 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2131 (|#3| |#3|)) (-15 -2146 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2221 (|#3| |#3|)) (-15 -2233 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2265 (|#3| |#3|)) (-15 -2277 (|#3| |#3|)) (-15 -2289 (|#3| |#3|)) (-15 -2298 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -4164 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4185 (|#3| |#3|)) (-15 -4197 (|#3| |#3|)) (-15 -2038 (|#3| |#3|))))
-((-2266 (((-112) $) 18)) (-3640 (((-182) $) 7)) (-2490 (((-3 (-1163) "failed") $) 14)) (-3535 (((-3 (-635 $) "failed") $) NIL)) (-2890 (((-3 (-1163) "failed") $) 20)) (-3673 (((-3 (-1091) "failed") $) 17)) (-3000 (((-112) $) 15)) (-3940 (((-853) $) NIL)) (-3306 (((-112) $) 9)))
-(((-279) (-13 (-605 (-853)) (-10 -8 (-15 -3640 ((-182) $)) (-15 -3000 ((-112) $)) (-15 -3673 ((-3 (-1091) "failed") $)) (-15 -2266 ((-112) $)) (-15 -2890 ((-3 (-1163) "failed") $)) (-15 -3306 ((-112) $)) (-15 -2490 ((-3 (-1163) "failed") $)) (-15 -3535 ((-3 (-635 $) "failed") $))))) (T -279))
-((-3640 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-3673 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-279)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2890 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2490 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279)))) (-3535 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3640 ((-182) $)) (-15 -3000 ((-112) $)) (-15 -3673 ((-3 (-1091) "failed") $)) (-15 -2266 ((-112) $)) (-15 -2890 ((-3 (-1163) "failed") $)) (-15 -3306 ((-112) $)) (-15 -2490 ((-3 (-1163) "failed") $)) (-15 -3535 ((-3 (-635 $) "failed") $))))
-((-2072 (($ (-1 (-112) |#2|) $) 24)) (-3188 (($ $) 36)) (-2375 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1488 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-4150 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1363 (($ |#2| $ (-558)) 20) (($ $ $ (-558)) 22)) (-3976 (($ $ (-558)) 11) (($ $ (-1213 (-558))) 14)) (-1651 (($ $ |#2|) 30) (($ $ $) NIL)) (-2683 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-635 $)) NIL)))
-(((-280 |#1| |#2|) (-10 -8 (-15 -4150 (|#1| |#1| |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -4150 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -1651 (|#1| |#1| |#2|)) (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -3976 (|#1| |#1| (-1213 (-558)))) (-15 -3976 (|#1| |#1| (-558))) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2072 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1488 (|#1| |#2| |#1|)) (-15 -3188 (|#1| |#1|))) (-281 |#2|) (-1200)) (T -280))
-NIL
-(-10 -8 (-15 -4150 (|#1| |#1| |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -4150 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -1651 (|#1| |#1| |#2|)) (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -3976 (|#1| |#1| (-1213 (-558)))) (-15 -3976 (|#1| |#1| (-558))) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -1488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2072 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1488 (|#1| |#2| |#1|)) (-15 -3188 (|#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) |#1|) $) 85)) (-2072 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-1958 (($ $) 83 (|has| |#1| (-1087)))) (-3188 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1087)))) (-1488 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 51)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-4150 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-2650 (($ |#1| $ (-558)) 88) (($ $ $ (-558)) 87)) (-1363 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 42 (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2830 (($ $ |#1|) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-3738 (($ $ (-558)) 91) (($ $ (-1213 (-558))) 90)) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 70)) (-1651 (($ $ |#1|) 93) (($ $ $) 92)) (-2683 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-281 |#1|) (-139) (-1200)) (T -281))
-((-1651 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)))) (-1651 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)))) (-3738 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-3738 (*1 *1 *1 *2) (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-2650 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-281 *2)) (-4 *2 (-1200)))) (-2650 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-4150 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))) (-2375 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))) (-1958 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087)))) (-4150 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))))
-(-13 (-641 |t#1|) (-10 -8 (-6 -4384) (-15 -1651 ($ $ |t#1|)) (-15 -1651 ($ $ $)) (-15 -3738 ($ $ (-558))) (-15 -3738 ($ $ (-1213 (-558)))) (-15 -2375 ($ (-1 (-112) |t#1|) $)) (-15 -2650 ($ |t#1| $ (-558))) (-15 -2650 ($ $ $ (-558))) (-15 -4150 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2256 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -2375 ($ |t#1| $)) (-15 -1958 ($ $))) |%noBranch|) (IF (|has| |t#1| (-841)) (-15 -4150 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-561)))) (-1540 (*1 *1 *1) (-4 *1 (-242))))
+(-13 (-289) (-38 (-406 (-561))) (-10 -8 (-15 ** ($ $ (-561))) (-15 -1540 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-289) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-720) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-3129 (($ $) 57)) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-2332 (($ $ $) 53 (|has| $ (-6 -4391)))) (-1360 (($ $ $) 52 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-1965 (($) 7 T CONST)) (-2790 (($ $) 56)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-4312 (($ $) 55)) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1520 ((|#1| $) 59)) (-3574 (($ $) 58)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47)) (-2004 (((-561) $ $) 44)) (-3849 (((-112) $) 46)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4173 (($ $ $) 54 (|has| $ (-6 -4391)))) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-243 |#1|) (-139) (-1205)) (T -243))
+((-1520 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-3574 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-2790 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-4312 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-4173 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-2332 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))) (-1360 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
+(-13 (-1003 |t#1|) (-10 -8 (-15 -1520 (|t#1| $)) (-15 -3574 ($ $)) (-15 -3129 ($ $)) (-15 -2790 ($ $)) (-15 -4312 ($ $)) (IF (|has| $ (-6 -4391)) (PROGN (-15 -4173 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -1360 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) NIL)) (-2295 ((|#1| $) NIL)) (-3129 (($ $) NIL)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3702 (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-1289 (($ $) 10 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4391)))) (-1726 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4391))) (($ $ "rest" $) NIL (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-2285 ((|#1| $) NIL)) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1445 (($ $) NIL) (($ $ (-765)) NIL)) (-3776 (($ $) NIL (|has| |#1| (-1090)))) (-1472 (($ $) 7 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-3032 (((-112) $) NIL)) (-4235 (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090))) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) NIL)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1470 (($ (-765) |#1|) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-3092 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1407 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3708 (($ |#1|) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1520 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-3671 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3312 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-2667 (((-112) $) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1220 (-561))) NIL) ((|#1| $ (-561)) NIL) ((|#1| $ (-561) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-765) $ "count") 16)) (-2004 (((-561) $ $) NIL)) (-2114 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-2849 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-1370 (($ (-638 |#1|)) 22)) (-3849 (((-112) $) NIL)) (-3222 (($ $) NIL)) (-4364 (($ $) NIL (|has| $ (-6 -4391)))) (-1624 (((-765) $) NIL)) (-2883 (($ $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-4173 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2725 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-638 $)) NIL) (($ $ |#1|) NIL)) (-4022 (($ (-638 |#1|)) 17) (((-638 |#1|) $) 18) (((-856) $) 21 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) 14 (|has| $ (-6 -4390)))))
+(((-244 |#1|) (-13 (-659 |#1|) (-488 (-638 |#1|)) (-10 -8 (-15 -1370 ($ (-638 |#1|))) (-15 -2277 ($ $ "unique")) (-15 -2277 ($ $ "sort")) (-15 -2277 ((-765) $ "count")))) (-844)) (T -244))
+((-1370 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844)))))
+(-13 (-659 |#1|) (-488 (-638 |#1|)) (-10 -8 (-15 -1370 ($ (-638 |#1|))) (-15 -2277 ($ $ "unique")) (-15 -2277 ($ $ "sort")) (-15 -2277 ((-765) $ "count"))))
+((-1670 (((-3 (-765) "failed") |#1| |#1| (-765)) 26)))
+(((-245 |#1|) (-10 -7 (-15 -1670 ((-3 (-765) "failed") |#1| |#1| (-765)))) (-13 (-720) (-367) (-10 -7 (-15 ** (|#1| |#1| (-561)))))) (T -245))
+((-1670 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-765)) (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-561)))))) (-5 *1 (-245 *3)))))
+(-10 -7 (-15 -1670 ((-3 (-765) "failed") |#1| |#1| (-765))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-858 |#1|)) $) NIL)) (-1620 (((-1162 $) $ (-858 |#1|)) NIL) (((-1162 |#2|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-2851 (($ $) NIL (|has| |#2| (-553)))) (-3359 (((-112) $) NIL (|has| |#2| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1591 (($ $) NIL (|has| |#2| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3938 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-3051 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3405 (($ $ (-638 (-561))) NIL)) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#2| (-902)))) (-2103 (($ $ |#2| (-239 (-3498 |#1|) (-765)) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1401 (($ (-1162 |#2|) (-858 |#1|)) NIL) (($ (-1162 $) (-858 |#1|)) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#2| (-239 (-3498 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-858 |#1|)) NIL)) (-2393 (((-239 (-3498 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-3443 (($ $ $) NIL (|has| |#2| (-844)))) (-2986 (($ $ $) NIL (|has| |#2| (-844)))) (-3524 (($ (-1 (-239 (-3498 |#1|) (-765)) (-239 (-3498 |#1|) (-765))) $) NIL)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-1358 (((-3 (-858 |#1|) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#2| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1764 (((-1148) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4196 (-765))) "failed") $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#2| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-638 (-858 |#1|)) (-638 $)) NIL)) (-2553 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3238 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2894 (((-239 (-3498 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-3609 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-561))) NIL (-4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-239 (-3498 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1782 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-246 |#1| |#2|) (-13 (-942 |#2| (-239 (-3498 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -3405 ($ $ (-638 (-561)))))) (-638 (-1166)) (-1042)) (T -246))
+((-3405 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-246 *3 *4)) (-14 *3 (-638 (-1166))) (-4 *4 (-1042)))))
+(-13 (-942 |#2| (-239 (-3498 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -3405 ($ $ (-638 (-561))))))
+((-4011 (((-112) $ $) NIL)) (-1696 (((-1258) $) 17)) (-2441 (((-182) $) 11)) (-1990 (($ (-182)) 12)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1849 (((-248) $) 7)) (-4022 (((-856) $) 9)) (-1733 (((-112) $ $) 15)))
+(((-247) (-13 (-1090) (-10 -8 (-15 -1849 ((-248) $)) (-15 -2441 ((-182) $)) (-15 -1990 ($ (-182))) (-15 -1696 ((-1258) $))))) (T -247))
+((-1849 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-1990 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-247)))))
+(-13 (-1090) (-10 -8 (-15 -1849 ((-248) $)) (-15 -2441 ((-182) $)) (-15 -1990 ($ (-182))) (-15 -1696 ((-1258) $))))
+((-4011 (((-112) $ $) NIL)) (-3269 (((-504) $) NIL)) (-1764 (((-1148) $) NIL)) (-2364 (((-185) $) NIL)) (-1714 (((-1110) $) NIL)) (-2910 (((-638 (-112)) $) NIL)) (-4022 (((-856) $) NIL) (((-186) $) 6)) (-4013 (((-55) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-248) (-13 (-184) (-608 (-186)))) (T -248))
+NIL
+(-13 (-184) (-608 (-186)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2923 (($ (-914)) NIL (|has| |#4| (-1042)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-2090 (($ $ $) NIL (|has| |#4| (-787)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1393 (((-765)) NIL (|has| |#4| (-367)))) (-2666 (((-561) $) NIL (|has| |#4| (-842)))) (-4167 ((|#4| $ (-561) |#4|) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1090))) (((-3 (-561) "failed") $) NIL (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))) (-3938 ((|#4| $) NIL (|has| |#4| (-1090))) (((-561) $) NIL (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))) (-3602 (((-2 (|:| -3327 (-682 |#4|)) (|:| |vec| (-1253 |#4|))) (-682 $) (-1253 $)) NIL (|has| |#4| (-1042))) (((-682 |#4|) (-682 $)) NIL (|has| |#4| (-1042))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))))) (-3466 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-1332 (($) NIL (|has| |#4| (-367)))) (-2073 ((|#4| $ (-561) |#4|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#4| $ (-561)) NIL)) (-3201 (((-112) $) NIL (|has| |#4| (-842)))) (-3571 (((-638 |#4|) $) NIL (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL (-4007 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-2110 (((-112) $) NIL (|has| |#4| (-842)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (-4007 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1305 (((-638 |#4|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (-4007 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2065 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) NIL)) (-3198 (((-914) $) NIL (|has| |#4| (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-2413 (($ (-914)) NIL (|has| |#4| (-367)))) (-1714 (((-1110) $) NIL)) (-1433 ((|#4| $) NIL (|has| (-561) (-844)))) (-1799 (($ $ |#4|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-2658 (((-638 |#4|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#4| $ (-561) |#4|) NIL) ((|#4| $ (-561)) 12)) (-1327 ((|#4| $ $) NIL (|has| |#4| (-1042)))) (-1690 (($ (-1253 |#4|)) NIL)) (-3084 (((-133)) NIL (|has| |#4| (-362)))) (-3238 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-1724 (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390))) (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-1253 |#4|) $) NIL) (((-856) $) NIL) (($ |#4|) NIL (|has| |#4| (-1090))) (($ (-561)) NIL (-4007 (-12 (|has| |#4| (-1031 (-561))) (|has| |#4| (-1090))) (|has| |#4| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#4| (-1031 (-406 (-561)))) (|has| |#4| (-1090))))) (-4259 (((-765)) NIL (|has| |#4| (-1042)))) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-3749 (($ $) NIL (|has| |#4| (-842)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL (-4007 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) CONST)) (-3122 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-1782 (((-112) $ $) NIL (-4007 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1762 (((-112) $ $) NIL (-4007 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (-4007 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1754 (((-112) $ $) NIL (-4007 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-1833 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-1824 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-4007 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042))))) (($ $ (-914)) NIL (-4007 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (* (($ |#2| $) 14) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-720))) (($ |#4| $) NIL (|has| |#4| (-720))) (($ $ $) NIL (-4007 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-561))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-641 |#2|) (-641 |#3|)) (-914) (-1042) (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-641 |#2|)) (T -249))
+NIL
+(-13 (-237 |#1| |#4|) (-641 |#2|) (-641 |#3|))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2923 (($ (-914)) NIL (|has| |#3| (-1042)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-2090 (($ $ $) NIL (|has| |#3| (-787)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1393 (((-765)) NIL (|has| |#3| (-367)))) (-2666 (((-561) $) NIL (|has| |#3| (-842)))) (-4167 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1090))) (((-3 (-561) "failed") $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))) (-3938 ((|#3| $) NIL (|has| |#3| (-1090))) (((-561) $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))) (-3602 (((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))))) (-3466 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-1332 (($) NIL (|has| |#3| (-367)))) (-2073 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#3| $ (-561)) NIL)) (-3201 (((-112) $) NIL (|has| |#3| (-842)))) (-3571 (((-638 |#3|) $) NIL (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL (-4007 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-2110 (((-112) $) NIL (|has| |#3| (-842)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1305 (((-638 |#3|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2065 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#3| |#3|) $) NIL)) (-3198 (((-914) $) NIL (|has| |#3| (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-2413 (($ (-914)) NIL (|has| |#3| (-367)))) (-1714 (((-1110) $) NIL)) (-1433 ((|#3| $) NIL (|has| (-561) (-844)))) (-1799 (($ $ |#3|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 |#3|) (-638 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090))))) (-2658 (((-638 |#3|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#3| $ (-561) |#3|) NIL) ((|#3| $ (-561)) 11)) (-1327 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1690 (($ (-1253 |#3|)) NIL)) (-3084 (((-133)) NIL (|has| |#3| (-362)))) (-3238 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-1724 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-1253 |#3|) $) NIL) (((-856) $) NIL) (($ |#3|) NIL (|has| |#3| (-1090))) (($ (-561)) NIL (-4007 (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090))))) (-4259 (((-765)) NIL (|has| |#3| (-1042)))) (-3715 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390)))) (-3749 (($ $) NIL (|has| |#3| (-842)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL (-4007 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) CONST)) (-3122 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-1782 (((-112) $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1762 (((-112) $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1754 (((-112) $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1833 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1824 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-4007 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))) (($ $ (-914)) NIL (-4007 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (* (($ |#2| $) 13) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ $ $) NIL (-4007 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-250 |#1| |#2| |#3|) (-13 (-237 |#1| |#3|) (-641 |#2|)) (-765) (-1042) (-641 |#2|)) (T -250))
+NIL
+(-13 (-237 |#1| |#3|) (-641 |#2|))
+((-3874 (((-638 (-765)) $) 47) (((-638 (-765)) $ |#3|) 50)) (-3643 (((-765) $) 49) (((-765) $ |#3|) 52)) (-3414 (($ $) 65)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-4163 (((-765) $ |#3|) 39) (((-765) $) 36)) (-3904 (((-1 $ (-765)) |#3|) 15) (((-1 $ (-765)) $) 77)) (-3726 ((|#4| $) 58)) (-2205 (((-112) $) 56)) (-3591 (($ $) 64)) (-1444 (($ $ (-638 (-293 $))) 97) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-638 |#4|) (-638 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-638 |#4|) (-638 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-638 |#3|) (-638 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-638 |#3|) (-638 |#2|)) 84)) (-3238 (($ $ |#4|) NIL) (($ $ (-638 |#4|)) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-638 |#4|) (-638 (-765))) NIL) (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2884 (((-638 |#3|) $) 75)) (-2894 ((|#5| $) NIL) (((-765) $ |#4|) NIL) (((-638 (-765)) $ (-638 |#4|)) NIL) (((-765) $ |#3|) 44)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-561))) NIL) (($ $) NIL)))
+(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4022 (|#1| |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -1444 (|#1| |#1| (-638 |#3|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#3| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#3|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#3| |#1|)) (-15 -3904 ((-1 |#1| (-765)) |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3726 (|#4| |#1|)) (-15 -2205 ((-112) |#1|)) (-15 -3643 ((-765) |#1| |#3|)) (-15 -3874 ((-638 (-765)) |#1| |#3|)) (-15 -3643 ((-765) |#1|)) (-15 -3874 ((-638 (-765)) |#1|)) (-15 -2894 ((-765) |#1| |#3|)) (-15 -4163 ((-765) |#1|)) (-15 -4163 ((-765) |#1| |#3|)) (-15 -2884 ((-638 |#3|) |#1|)) (-15 -3904 ((-1 |#1| (-765)) |#3|)) (-15 -4022 (|#1| |#3|)) (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -2894 ((-638 (-765)) |#1| (-638 |#4|))) (-15 -2894 ((-765) |#1| |#4|)) (-15 -4022 (|#1| |#4|)) (-15 -4017 ((-3 |#4| "failed") |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#4| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#4| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2894 (|#5| |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -3238 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -3238 (|#1| |#1| |#4| (-765))) (-15 -3238 (|#1| |#1| (-638 |#4|))) (-15 -3238 (|#1| |#1| |#4|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1042) (-844) (-265 |#3|) (-787)) (T -251))
+NIL
+(-10 -8 (-15 -4022 (|#1| |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -1444 (|#1| |#1| (-638 |#3|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#3| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#3|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#3| |#1|)) (-15 -3904 ((-1 |#1| (-765)) |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3726 (|#4| |#1|)) (-15 -2205 ((-112) |#1|)) (-15 -3643 ((-765) |#1| |#3|)) (-15 -3874 ((-638 (-765)) |#1| |#3|)) (-15 -3643 ((-765) |#1|)) (-15 -3874 ((-638 (-765)) |#1|)) (-15 -2894 ((-765) |#1| |#3|)) (-15 -4163 ((-765) |#1|)) (-15 -4163 ((-765) |#1| |#3|)) (-15 -2884 ((-638 |#3|) |#1|)) (-15 -3904 ((-1 |#1| (-765)) |#3|)) (-15 -4022 (|#1| |#3|)) (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -2894 ((-638 (-765)) |#1| (-638 |#4|))) (-15 -2894 ((-765) |#1| |#4|)) (-15 -4022 (|#1| |#4|)) (-15 -4017 ((-3 |#4| "failed") |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#4| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#4| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2894 (|#5| |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -3238 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -3238 (|#1| |#1| |#4| (-765))) (-15 -3238 (|#1| |#1| (-638 |#4|))) (-15 -3238 (|#1| |#1| |#4|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-3874 (((-638 (-765)) $) 214) (((-638 (-765)) $ |#2|) 212)) (-3643 (((-765) $) 213) (((-765) $ |#2|) 211)) (-1412 (((-638 |#3|) $) 110)) (-1620 (((-1162 $) $ |#3|) 125) (((-1162 |#1|) $) 124)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-2851 (($ $) 88 (|has| |#1| (-553)))) (-3359 (((-112) $) 90 (|has| |#1| (-553)))) (-2710 (((-765) $) 112) (((-765) $ (-638 |#3|)) 111)) (-2249 (((-3 $ "failed") $ $) 19)) (-4046 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-1591 (($ $) 98 (|has| |#1| (-450)))) (-3422 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-3414 (($ $) 207)) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3938 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) ((|#3| $) 137) ((|#2| $) 222)) (-3051 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1619 (($ $) 154)) (-3602 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3466 (((-3 $ "failed") $) 33)) (-2401 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-1602 (((-638 $) $) 109)) (-2737 (((-112) $) 96 (|has| |#1| (-902)))) (-2103 (($ $ |#1| |#4| $) 172)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| |#3| (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| |#3| (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4163 (((-765) $ |#2|) 217) (((-765) $) 216)) (-3113 (((-112) $) 31)) (-2067 (((-765) $) 169)) (-1401 (($ (-1162 |#1|) |#3|) 117) (($ (-1162 $) |#3|) 116)) (-3371 (((-638 $) $) 126)) (-2092 (((-112) $) 152)) (-1387 (($ |#1| |#4|) 153) (($ $ |#3| (-765)) 119) (($ $ (-638 |#3|) (-638 (-765))) 118)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |#3|) 120)) (-2393 ((|#4| $) 170) (((-765) $ |#3|) 122) (((-638 (-765)) $ (-638 |#3|)) 121)) (-3443 (($ $ $) 79 (|has| |#1| (-844)))) (-2986 (($ $ $) 78 (|has| |#1| (-844)))) (-3524 (($ (-1 |#4| |#4|) $) 171)) (-4120 (($ (-1 |#1| |#1|) $) 151)) (-3904 (((-1 $ (-765)) |#2|) 219) (((-1 $ (-765)) $) 206 (|has| |#1| (-232)))) (-1358 (((-3 |#3| "failed") $) 123)) (-1578 (($ $) 149)) (-1590 ((|#1| $) 148)) (-3726 ((|#3| $) 209)) (-1582 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-1764 (((-1148) $) 9)) (-2205 (((-112) $) 210)) (-3638 (((-3 (-638 $) "failed") $) 114)) (-1664 (((-3 (-638 $) "failed") $) 115)) (-3431 (((-3 (-2 (|:| |var| |#3|) (|:| -4196 (-765))) "failed") $) 113)) (-3591 (($ $) 208)) (-1714 (((-1110) $) 10)) (-1551 (((-112) $) 166)) (-1561 ((|#1| $) 167)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1623 (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1657 (((-417 $) $) 99 (|has| |#1| (-902)))) (-1756 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-638 |#3|) (-638 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-638 |#3|) (-638 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 |#1|)) 202 (|has| |#1| (-232)))) (-2553 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3238 (($ $ |#3|) 42) (($ $ (-638 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-638 |#3|) (-638 (-765))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-765)) 236 (|has| |#1| (-232))) (($ $ (-1166)) 234 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 233 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 232 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 231 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2884 (((-638 |#2|) $) 218)) (-2894 ((|#4| $) 150) (((-765) $ |#3|) 130) (((-638 (-765)) $ (-638 |#3|)) 129) (((-765) $ |#2|) 215)) (-4174 (((-885 (-378)) $) 82 (-12 (|has| |#3| (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| |#3| (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| |#3| (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 104 (-2170 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-561))) 72 (-4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561)))))) (($ $) 85 (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) 168)) (-2634 ((|#1| $ |#4|) 155) (($ $ |#3| (-765)) 128) (($ $ (-638 |#3|) (-638 (-765))) 127)) (-1760 (((-3 $ "failed") $) 73 (-4007 (-2170 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) 28)) (-1711 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3168 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ |#3|) 38) (($ $ (-638 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-638 |#3|) (-638 (-765))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-765)) 235 (|has| |#1| (-232))) (($ $ (-1166)) 230 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 229 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 228 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 227 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1782 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1833 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-252 |#1| |#2| |#3| |#4|) (-139) (-1042) (-844) (-265 |t#2|) (-787)) (T -252))
+((-3904 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 *4)))) (-4163 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-2894 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 (-765))))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-3874 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-638 (-765))))) (-3643 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-787)) (-4 *2 (-265 *4)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-3904 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6)))))
+(-13 (-942 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1031 |t#2|) (-10 -8 (-15 -3904 ((-1 $ (-765)) |t#2|)) (-15 -2884 ((-638 |t#2|) $)) (-15 -4163 ((-765) $ |t#2|)) (-15 -4163 ((-765) $)) (-15 -2894 ((-765) $ |t#2|)) (-15 -3874 ((-638 (-765)) $)) (-15 -3643 ((-765) $)) (-15 -3874 ((-638 (-765)) $ |t#2|)) (-15 -3643 ((-765) $ |t#2|)) (-15 -2205 ((-112) $)) (-15 -3726 (|t#3| $)) (-15 -3591 ($ $)) (-15 -3414 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-512 |t#2| |t#1|)) (-6 (-512 |t#2| $)) (-6 (-308 $)) (-15 -3904 ((-1 $ (-765)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 |#2|) . T) ((-611 |#3|) . T) ((-611 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4007 (|has| |#1| (-902)) (|has| |#1| (-450))) ((-512 |#2| |#1|) |has| |#1| (-232)) ((-512 |#2| $) |has| |#1| (-232)) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-553) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-893 |#3|) . T) ((-879 (-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) ((-942 |#1| |#4| |#3|) . T) ((-902) |has| |#1| (-902)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1031 |#2|) . T) ((-1031 |#3|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) |has| |#1| (-902)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-3400 ((|#1| $) 54)) (-2735 ((|#1| $) 44)) (-1630 (((-112) $ (-765)) 8)) (-1965 (($) 7 T CONST)) (-3830 (($ $) 60)) (-4075 (($ $) 48)) (-3760 ((|#1| |#1| $) 46)) (-3297 ((|#1| $) 45)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-3617 (((-765) $) 61)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-4209 ((|#1| |#1| $) 52)) (-1697 ((|#1| |#1| $) 51)) (-3671 (($ |#1| $) 40)) (-3061 (((-765) $) 55)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2196 ((|#1| $) 62)) (-2166 ((|#1| $) 50)) (-4111 ((|#1| $) 49)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3991 ((|#1| |#1| $) 58)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-3252 ((|#1| $) 59)) (-2480 (($) 57) (($ (-638 |#1|)) 56)) (-1404 (((-765) $) 43)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3018 ((|#1| $) 53)) (-3025 (($ (-638 |#1|)) 42)) (-2016 ((|#1| $) 63)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-253 |#1|) (-139) (-1205)) (T -253))
+((-2480 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-2480 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-253 *3)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-4209 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-1697 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))) (-4075 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
+(-13 (-1111 |t#1|) (-988 |t#1|) (-10 -8 (-15 -2480 ($)) (-15 -2480 ($ (-638 |t#1|))) (-15 -3061 ((-765) $)) (-15 -3400 (|t#1| $)) (-15 -3018 (|t#1| $)) (-15 -4209 (|t#1| |t#1| $)) (-15 -1697 (|t#1| |t#1| $)) (-15 -2166 (|t#1| $)) (-15 -4111 (|t#1| $)) (-15 -4075 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-988 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1111 |#1|) . T) ((-1205) . T))
+((-2704 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-4166 (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378))) 160) (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 158) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 163) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 159) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 150) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 149) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378))) 129) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262))) 127) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378))) 128) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262))) 125)) (-4123 (((-1255) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378))) 162) (((-1255) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 161) (((-1255) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 165) (((-1255) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 164) (((-1255) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378))) 152) (((-1255) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262))) 151) (((-1255) (-1 (-936 (-224)) (-224)) (-1084 (-378))) 135) (((-1255) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262))) 134) (((-1255) (-872 (-1 (-224) (-224))) (-1084 (-378))) 133) (((-1255) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262))) 132) (((-1254) (-870 (-1 (-224) (-224))) (-1084 (-378))) 100) (((-1254) (-870 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262))) 99) (((-1254) (-1 (-224) (-224)) (-1084 (-378))) 96) (((-1254) (-1 (-224) (-224)) (-1084 (-378)) (-638 (-262))) 95)))
+(((-254) (-10 -7 (-15 -4123 ((-1254) (-1 (-224) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) (-1 (-224) (-224)) (-1084 (-378)))) (-15 -4123 ((-1254) (-870 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) (-870 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4123 ((-1255) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4123 ((-1255) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4123 ((-1255) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -2704 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -254))
+((-2704 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *2 (-1254)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *2 (-1254)) (-5 *1 (-254)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-254)))))
+(-10 -7 (-15 -4123 ((-1254) (-1 (-224) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) (-1 (-224) (-224)) (-1084 (-378)))) (-15 -4123 ((-1254) (-870 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) (-870 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4123 ((-1255) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1084 (-378)))) (-15 -4123 ((-1255) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-378)) (-1084 (-378)))) (-15 -4123 ((-1255) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -4166 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1084 (-378)) (-1084 (-378)))) (-15 -2704 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
+((-4123 (((-1254) (-293 |#2|) (-1166) (-1166) (-638 (-262))) 96)))
+(((-255 |#1| |#2|) (-10 -7 (-15 -4123 ((-1254) (-293 |#2|) (-1166) (-1166) (-638 (-262))))) (-13 (-553) (-844) (-1031 (-561))) (-429 |#1|)) (T -255))
+((-4123 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-1166)) (-5 *5 (-638 (-262))) (-4 *7 (-429 *6)) (-4 *6 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-1254)) (-5 *1 (-255 *6 *7)))))
+(-10 -7 (-15 -4123 ((-1254) (-293 |#2|) (-1166) (-1166) (-638 (-262)))))
+((-2496 (((-561) (-561)) 50)) (-3190 (((-561) (-561)) 51)) (-2373 (((-224) (-224)) 52)) (-3179 (((-1255) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224))) 49)) (-1772 (((-1255) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)) (-112)) 47)))
+(((-256) (-10 -7 (-15 -1772 ((-1255) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)) (-112))) (-15 -3179 ((-1255) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -2496 ((-561) (-561))) (-15 -3190 ((-561) (-561))) (-15 -2373 ((-224) (-224))))) (T -256))
+((-2373 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))) (-3179 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224))) (-5 *2 (-1255)) (-5 *1 (-256)))) (-1772 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224))) (-5 *5 (-112)) (-5 *2 (-1255)) (-5 *1 (-256)))))
+(-10 -7 (-15 -1772 ((-1255) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)) (-112))) (-15 -3179 ((-1255) (-1 (-168 (-224)) (-168 (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -2496 ((-561) (-561))) (-15 -3190 ((-561) (-561))) (-15 -2373 ((-224) (-224))))
+((-4022 (((-1082 (-378)) (-1082 (-315 |#1|))) 16)))
+(((-257 |#1|) (-10 -7 (-15 -4022 ((-1082 (-378)) (-1082 (-315 |#1|))))) (-13 (-844) (-553) (-609 (-378)))) (T -257))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-1082 (-315 *4))) (-4 *4 (-13 (-844) (-553) (-609 (-378)))) (-5 *2 (-1082 (-378))) (-5 *1 (-257 *4)))))
+(-10 -7 (-15 -4022 ((-1082 (-378)) (-1082 (-315 |#1|)))))
+((-4166 (((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378))) 71) (((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 70) (((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378))) 61) (((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 60) (((-1123 (-224)) (-872 |#1|) (-1082 (-378))) 52) (((-1123 (-224)) (-872 |#1|) (-1082 (-378)) (-638 (-262))) 51)) (-4123 (((-1255) (-875 |#1|) (-1082 (-378)) (-1082 (-378))) 74) (((-1255) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 73) (((-1255) |#1| (-1082 (-378)) (-1082 (-378))) 64) (((-1255) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262))) 63) (((-1255) (-872 |#1|) (-1082 (-378))) 56) (((-1255) (-872 |#1|) (-1082 (-378)) (-638 (-262))) 55) (((-1254) (-870 |#1|) (-1082 (-378))) 43) (((-1254) (-870 |#1|) (-1082 (-378)) (-638 (-262))) 42) (((-1254) |#1| (-1082 (-378))) 35) (((-1254) |#1| (-1082 (-378)) (-638 (-262))) 34)))
+(((-258 |#1|) (-10 -7 (-15 -4123 ((-1254) |#1| (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) |#1| (-1082 (-378)))) (-15 -4123 ((-1254) (-870 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) (-870 |#1|) (-1082 (-378)))) (-15 -4123 ((-1255) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-872 |#1|) (-1082 (-378)))) (-15 -4166 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)))) (-15 -4123 ((-1255) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4166 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4123 ((-1255) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-875 |#1|) (-1082 (-378)) (-1082 (-378)))) (-15 -4166 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378))))) (-13 (-609 (-534)) (-1090))) (T -258))
+((-4166 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *5)))) (-4166 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *6)))) (-4123 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255)) (-5 *1 (-258 *5)))) (-4123 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255)) (-5 *1 (-258 *6)))) (-4166 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4166 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4123 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1255)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4123 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *5)))) (-4166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *6)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255)) (-5 *1 (-258 *5)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255)) (-5 *1 (-258 *6)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-378))) (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1254)) (-5 *1 (-258 *5)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1254)) (-5 *1 (-258 *6)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1254)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090))))))
+(-10 -7 (-15 -4123 ((-1254) |#1| (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) |#1| (-1082 (-378)))) (-15 -4123 ((-1254) (-870 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1254) (-870 |#1|) (-1082 (-378)))) (-15 -4123 ((-1255) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-872 |#1|) (-1082 (-378)))) (-15 -4166 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-872 |#1|) (-1082 (-378)))) (-15 -4123 ((-1255) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4166 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) |#1| (-1082 (-378)) (-1082 (-378)))) (-15 -4123 ((-1255) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4123 ((-1255) (-875 |#1|) (-1082 (-378)) (-1082 (-378)))) (-15 -4166 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)) (-638 (-262)))) (-15 -4166 ((-1123 (-224)) (-875 |#1|) (-1082 (-378)) (-1082 (-378)))))
+((-4123 (((-1255) (-638 (-224)) (-638 (-224)) (-638 (-224)) (-638 (-262))) 23) (((-1255) (-638 (-224)) (-638 (-224)) (-638 (-224))) 24) (((-1254) (-638 (-936 (-224))) (-638 (-262))) 16) (((-1254) (-638 (-936 (-224)))) 17) (((-1254) (-638 (-224)) (-638 (-224)) (-638 (-262))) 20) (((-1254) (-638 (-224)) (-638 (-224))) 21)))
+(((-259) (-10 -7 (-15 -4123 ((-1254) (-638 (-224)) (-638 (-224)))) (-15 -4123 ((-1254) (-638 (-224)) (-638 (-224)) (-638 (-262)))) (-15 -4123 ((-1254) (-638 (-936 (-224))))) (-15 -4123 ((-1254) (-638 (-936 (-224))) (-638 (-262)))) (-15 -4123 ((-1255) (-638 (-224)) (-638 (-224)) (-638 (-224)))) (-15 -4123 ((-1255) (-638 (-224)) (-638 (-224)) (-638 (-224)) (-638 (-262)))))) (T -259))
+((-4123 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-259)))) (-4123 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1255)) (-5 *1 (-259)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-259)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *2 (-1254)) (-5 *1 (-259)))) (-4123 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-259)))) (-4123 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1254)) (-5 *1 (-259)))))
+(-10 -7 (-15 -4123 ((-1254) (-638 (-224)) (-638 (-224)))) (-15 -4123 ((-1254) (-638 (-224)) (-638 (-224)) (-638 (-262)))) (-15 -4123 ((-1254) (-638 (-936 (-224))))) (-15 -4123 ((-1254) (-638 (-936 (-224))) (-638 (-262)))) (-15 -4123 ((-1255) (-638 (-224)) (-638 (-224)) (-638 (-224)))) (-15 -4123 ((-1255) (-638 (-224)) (-638 (-224)) (-638 (-224)) (-638 (-262)))))
+((-2953 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-638 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-3653 (((-914) (-638 (-262)) (-914)) 53)) (-1661 (((-914) (-638 (-262)) (-914)) 52)) (-3437 (((-638 (-378)) (-638 (-262)) (-638 (-378))) 69)) (-1994 (((-378) (-638 (-262)) (-378)) 58)) (-1549 (((-914) (-638 (-262)) (-914)) 54)) (-3133 (((-112) (-638 (-262)) (-112)) 28)) (-3562 (((-1148) (-638 (-262)) (-1148)) 20)) (-2298 (((-1148) (-638 (-262)) (-1148)) 27)) (-2835 (((-1123 (-224)) (-638 (-262))) 47)) (-3454 (((-638 (-1084 (-378))) (-638 (-262)) (-638 (-1084 (-378)))) 41)) (-2708 (((-867) (-638 (-262)) (-867)) 33)) (-4106 (((-867) (-638 (-262)) (-867)) 34)) (-2006 (((-1 (-936 (-224)) (-936 (-224))) (-638 (-262)) (-1 (-936 (-224)) (-936 (-224)))) 64)) (-3622 (((-112) (-638 (-262)) (-112)) 16)) (-1787 (((-112) (-638 (-262)) (-112)) 15)))
+(((-260) (-10 -7 (-15 -1787 ((-112) (-638 (-262)) (-112))) (-15 -3622 ((-112) (-638 (-262)) (-112))) (-15 -2953 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-638 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3562 ((-1148) (-638 (-262)) (-1148))) (-15 -2298 ((-1148) (-638 (-262)) (-1148))) (-15 -3133 ((-112) (-638 (-262)) (-112))) (-15 -2708 ((-867) (-638 (-262)) (-867))) (-15 -4106 ((-867) (-638 (-262)) (-867))) (-15 -3454 ((-638 (-1084 (-378))) (-638 (-262)) (-638 (-1084 (-378))))) (-15 -1661 ((-914) (-638 (-262)) (-914))) (-15 -3653 ((-914) (-638 (-262)) (-914))) (-15 -2835 ((-1123 (-224)) (-638 (-262)))) (-15 -1549 ((-914) (-638 (-262)) (-914))) (-15 -1994 ((-378) (-638 (-262)) (-378))) (-15 -2006 ((-1 (-936 (-224)) (-936 (-224))) (-638 (-262)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -3437 ((-638 (-378)) (-638 (-262)) (-638 (-378)))))) (T -260))
+((-3437 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-378))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2006 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1994 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1549 (*1 *2 *3 *2) (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-260)))) (-3653 (*1 *2 *3 *2) (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1661 (*1 *2 *3 *2) (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3454 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-4106 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2708 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3133 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2298 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3562 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-2953 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-3622 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))) (-1787 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
+(-10 -7 (-15 -1787 ((-112) (-638 (-262)) (-112))) (-15 -3622 ((-112) (-638 (-262)) (-112))) (-15 -2953 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-638 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3562 ((-1148) (-638 (-262)) (-1148))) (-15 -2298 ((-1148) (-638 (-262)) (-1148))) (-15 -3133 ((-112) (-638 (-262)) (-112))) (-15 -2708 ((-867) (-638 (-262)) (-867))) (-15 -4106 ((-867) (-638 (-262)) (-867))) (-15 -3454 ((-638 (-1084 (-378))) (-638 (-262)) (-638 (-1084 (-378))))) (-15 -1661 ((-914) (-638 (-262)) (-914))) (-15 -3653 ((-914) (-638 (-262)) (-914))) (-15 -2835 ((-1123 (-224)) (-638 (-262)))) (-15 -1549 ((-914) (-638 (-262)) (-914))) (-15 -1994 ((-378) (-638 (-262)) (-378))) (-15 -2006 ((-1 (-936 (-224)) (-936 (-224))) (-638 (-262)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -3437 ((-638 (-378)) (-638 (-262)) (-638 (-378)))))
+((-1862 (((-3 |#1| "failed") (-638 (-262)) (-1166)) 17)))
+(((-261 |#1|) (-10 -7 (-15 -1862 ((-3 |#1| "failed") (-638 (-262)) (-1166)))) (-1205)) (T -261))
+((-1862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *1 (-261 *2)) (-4 *2 (-1205)))))
+(-10 -7 (-15 -1862 ((-3 |#1| "failed") (-638 (-262)) (-1166))))
+((-4011 (((-112) $ $) NIL)) (-2953 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-3653 (($ (-914)) 76)) (-1661 (($ (-914)) 75)) (-3027 (($ (-638 (-378))) 82)) (-1994 (($ (-378)) 58)) (-1549 (($ (-914)) 77)) (-3133 (($ (-112)) 23)) (-3562 (($ (-1148)) 18)) (-2298 (($ (-1148)) 19)) (-2835 (($ (-1123 (-224))) 71)) (-3454 (($ (-638 (-1084 (-378)))) 67)) (-2290 (($ (-638 (-1084 (-378)))) 59) (($ (-638 (-1084 (-406 (-561))))) 66)) (-3087 (($ (-378)) 29) (($ (-867)) 33)) (-1587 (((-112) (-638 $) (-1166)) 91)) (-1862 (((-3 (-52) "failed") (-638 $) (-1166)) 93)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3635 (($ (-378)) 34) (($ (-867)) 35)) (-3969 (($ (-1 (-936 (-224)) (-936 (-224)))) 57)) (-2006 (($ (-1 (-936 (-224)) (-936 (-224)))) 78)) (-3646 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-4022 (((-856) $) 87)) (-1568 (($ (-112)) 24) (($ (-638 (-1084 (-378)))) 52)) (-1787 (($ (-112)) 25)) (-1733 (((-112) $ $) 89)))
+(((-262) (-13 (-1090) (-10 -8 (-15 -1787 ($ (-112))) (-15 -1568 ($ (-112))) (-15 -2953 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3562 ($ (-1148))) (-15 -2298 ($ (-1148))) (-15 -3133 ($ (-112))) (-15 -1568 ($ (-638 (-1084 (-378))))) (-15 -3969 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -3087 ($ (-378))) (-15 -3087 ($ (-867))) (-15 -3635 ($ (-378))) (-15 -3635 ($ (-867))) (-15 -3646 ($ (-1 (-224) (-224)))) (-15 -3646 ($ (-1 (-224) (-224) (-224)))) (-15 -3646 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1994 ($ (-378))) (-15 -2290 ($ (-638 (-1084 (-378))))) (-15 -2290 ($ (-638 (-1084 (-406 (-561)))))) (-15 -3454 ($ (-638 (-1084 (-378))))) (-15 -2835 ($ (-1123 (-224)))) (-15 -1661 ($ (-914))) (-15 -3653 ($ (-914))) (-15 -1549 ($ (-914))) (-15 -2006 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -3027 ($ (-638 (-378)))) (-15 -1862 ((-3 (-52) "failed") (-638 $) (-1166))) (-15 -1587 ((-112) (-638 $) (-1166)))))) (T -262))
+((-1787 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-262)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262)))) (-2298 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262)))) (-3087 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-3087 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262)))) (-3635 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-3635 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) (-1994 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-2290 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))) (-2290 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-406 (-561))))) (-5 *1 (-262)))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-262)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))) (-3653 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))) (-1549 (*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-262)))) (-1862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-52)) (-5 *1 (-262)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-112)) (-5 *1 (-262)))))
+(-13 (-1090) (-10 -8 (-15 -1787 ($ (-112))) (-15 -1568 ($ (-112))) (-15 -2953 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3562 ($ (-1148))) (-15 -2298 ($ (-1148))) (-15 -3133 ($ (-112))) (-15 -1568 ($ (-638 (-1084 (-378))))) (-15 -3969 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -3087 ($ (-378))) (-15 -3087 ($ (-867))) (-15 -3635 ($ (-378))) (-15 -3635 ($ (-867))) (-15 -3646 ($ (-1 (-224) (-224)))) (-15 -3646 ($ (-1 (-224) (-224) (-224)))) (-15 -3646 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1994 ($ (-378))) (-15 -2290 ($ (-638 (-1084 (-378))))) (-15 -2290 ($ (-638 (-1084 (-406 (-561)))))) (-15 -3454 ($ (-638 (-1084 (-378))))) (-15 -2835 ($ (-1123 (-224)))) (-15 -1661 ($ (-914))) (-15 -3653 ($ (-914))) (-15 -1549 ($ (-914))) (-15 -2006 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -3027 ($ (-638 (-378)))) (-15 -1862 ((-3 (-52) "failed") (-638 $) (-1166))) (-15 -1587 ((-112) (-638 $) (-1166)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3874 (((-638 (-765)) $) NIL) (((-638 (-765)) $ |#2|) NIL)) (-3643 (((-765) $) NIL) (((-765) $ |#2|) NIL)) (-1412 (((-638 |#3|) $) NIL)) (-1620 (((-1162 $) $ |#3|) NIL) (((-1162 |#1|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 |#3|)) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3414 (($ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1115 |#1| |#2|) "failed") $) 21)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1115 |#1| |#2|) $) NIL)) (-3051 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-529 |#3|) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))))) (-4163 (((-765) $ |#2|) NIL) (((-765) $) 10)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1401 (($ (-1162 |#1|) |#3|) NIL) (($ (-1162 $) |#3|) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |#3|) NIL)) (-2393 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-638 (-765)) $ (-638 |#3|)) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-529 |#3|) (-529 |#3|)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3904 (((-1 $ (-765)) |#2|) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-1358 (((-3 |#3| "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-3726 ((|#3| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-2205 (((-112) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| |#3|) (|:| -4196 (-765))) "failed") $) NIL)) (-3591 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-638 |#3|) (-638 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-638 |#3|) (-638 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-638 |#2|) (-638 |#1|)) NIL (|has| |#1| (-232)))) (-2553 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-3238 (($ $ |#3|) NIL) (($ $ (-638 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2884 (((-638 |#2|) $) NIL)) (-2894 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-638 (-765)) $ (-638 |#3|)) NIL) (((-765) $ |#2|) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))))) (-3609 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1115 |#1| |#2|)) 30) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ |#3|) NIL) (($ $ (-638 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-638 |#3|) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-263 |#1| |#2| |#3|) (-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1031 (-1115 |#1| |#2|))) (-1042) (-844) (-265 |#2|)) (T -263))
+NIL
+(-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1031 (-1115 |#1| |#2|)))
+((-3643 (((-765) $) 30)) (-4017 (((-3 |#2| "failed") $) 17)) (-3938 ((|#2| $) 27)) (-3238 (($ $) 12) (($ $ (-765)) 15)) (-4022 (((-856) $) 26) (($ |#2|) 10)) (-1733 (((-112) $ $) 20)) (-1754 (((-112) $ $) 29)))
+(((-264 |#1| |#2|) (-10 -8 (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -3643 ((-765) |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-265 |#2|) (-844)) (T -264))
+NIL
+(-10 -8 (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -3643 ((-765) |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-3643 (((-765) $) 22)) (-2389 ((|#1| $) 23)) (-4017 (((-3 |#1| "failed") $) 27)) (-3938 ((|#1| $) 28)) (-4163 (((-765) $) 24)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-3904 (($ |#1| (-765)) 25)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3238 (($ $) 21) (($ $ (-765)) 20)) (-4022 (((-856) $) 11) (($ |#1|) 26)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)))
+(((-265 |#1|) (-139) (-844)) (T -265))
+((-4022 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-3904 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-265 *3)) (-4 *3 (-844)))))
+(-13 (-844) (-1031 |t#1|) (-10 -8 (-15 -3904 ($ |t#1| (-765))) (-15 -4163 ((-765) $)) (-15 -2389 (|t#1| $)) (-15 -3643 ((-765) $)) (-15 -3238 ($ $)) (-15 -3238 ($ $ (-765))) (-15 -4022 ($ |t#1|))))
+(((-102) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-844) . T) ((-1031 |#1|) . T) ((-1090) . T))
+((-1412 (((-638 (-1166)) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 41)) (-2813 (((-638 (-1166)) (-315 (-224)) (-765)) 80)) (-3523 (((-3 (-315 (-224)) "failed") (-315 (-224))) 51)) (-3166 (((-315 (-224)) (-315 (-224))) 67)) (-2020 (((-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 26)) (-1939 (((-112) (-638 (-315 (-224)))) 84)) (-2266 (((-112) (-315 (-224))) 24)) (-3262 (((-638 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))))) 105)) (-2705 (((-638 (-315 (-224))) (-638 (-315 (-224)))) 87)) (-2474 (((-638 (-315 (-224))) (-638 (-315 (-224)))) 86)) (-3988 (((-682 (-224)) (-638 (-315 (-224))) (-765)) 94)) (-2769 (((-112) (-315 (-224))) 20) (((-112) (-638 (-315 (-224)))) 85)) (-2822 (((-638 (-224)) (-638 (-837 (-224))) (-224)) 14)) (-2028 (((-378) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 100)) (-3274 (((-1028) (-1166) (-1028)) 34)))
+(((-266) (-10 -7 (-15 -2822 ((-638 (-224)) (-638 (-837 (-224))) (-224))) (-15 -2020 ((-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -3523 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -3166 ((-315 (-224)) (-315 (-224)))) (-15 -1939 ((-112) (-638 (-315 (-224))))) (-15 -2769 ((-112) (-638 (-315 (-224))))) (-15 -2769 ((-112) (-315 (-224)))) (-15 -3988 ((-682 (-224)) (-638 (-315 (-224))) (-765))) (-15 -2474 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -2705 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -2266 ((-112) (-315 (-224)))) (-15 -1412 ((-638 (-1166)) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -2813 ((-638 (-1166)) (-315 (-224)) (-765))) (-15 -3274 ((-1028) (-1166) (-1028))) (-15 -2028 ((-378) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -3262 ((-638 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))))))) (T -266))
+((-3262 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))))) (-5 *2 (-638 (-1148))) (-5 *1 (-266)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) (-5 *2 (-378)) (-5 *1 (-266)))) (-3274 (*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-765)) (-5 *2 (-638 (-1166))) (-5 *1 (-266)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) (-5 *2 (-638 (-1166))) (-5 *1 (-266)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-266)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-3523 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *1 (-266)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-837 (-224)))) (-5 *4 (-224)) (-5 *2 (-638 *4)) (-5 *1 (-266)))))
+(-10 -7 (-15 -2822 ((-638 (-224)) (-638 (-837 (-224))) (-224))) (-15 -2020 ((-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -3523 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -3166 ((-315 (-224)) (-315 (-224)))) (-15 -1939 ((-112) (-638 (-315 (-224))))) (-15 -2769 ((-112) (-638 (-315 (-224))))) (-15 -2769 ((-112) (-315 (-224)))) (-15 -3988 ((-682 (-224)) (-638 (-315 (-224))) (-765))) (-15 -2474 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -2705 ((-638 (-315 (-224))) (-638 (-315 (-224))))) (-15 -2266 ((-112) (-315 (-224)))) (-15 -1412 ((-638 (-1166)) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -2813 ((-638 (-1166)) (-315 (-224)) (-765))) (-15 -3274 ((-1028) (-1166) (-1028))) (-15 -2028 ((-378) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -3262 ((-638 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))))))
+((-4011 (((-112) $ $) NIL)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 44)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 26) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-267) (-833)) (T -267))
+NIL
+(-833)
+((-4011 (((-112) $ $) NIL)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 58) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 54)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 34) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 36)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-268) (-833)) (T -268))
+NIL
+(-833)
+((-4011 (((-112) $ $) NIL)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 76) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 73)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 44) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 55)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-269) (-833)) (T -269))
+NIL
+(-833)
+((-4011 (((-112) $ $) NIL)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 50)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 31) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-270) (-833)) (T -270))
+NIL
+(-833)
+((-4011 (((-112) $ $) NIL)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 50)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 28) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-271) (-833)) (T -271))
+NIL
+(-833)
+((-4011 (((-112) $ $) NIL)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 73)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 28) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-272) (-833)) (T -272))
+NIL
+(-833)
+((-4011 (((-112) $ $) NIL)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 77)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 25) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-273) (-833)) (T -273))
+NIL
+(-833)
+((-4011 (((-112) $ $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3935 (((-638 (-561)) $) 18)) (-2894 (((-765) $) 16)) (-4022 (((-856) $) 22) (($ (-638 (-561))) 14)) (-2193 (($ (-765)) 19)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 9)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 10)))
+(((-274) (-13 (-844) (-10 -8 (-15 -4022 ($ (-638 (-561)))) (-15 -2894 ((-765) $)) (-15 -3935 ((-638 (-561)) $)) (-15 -2193 ($ (-765)))))) (T -274))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274)))) (-2193 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274)))))
+(-13 (-844) (-10 -8 (-15 -4022 ($ (-638 (-561)))) (-15 -2894 ((-765) $)) (-15 -3935 ((-638 (-561)) $)) (-15 -2193 ($ (-765)))))
+((-2978 ((|#2| |#2|) 77)) (-4064 ((|#2| |#2|) 65)) (-2453 (((-3 |#2| "failed") |#2| (-638 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-4172 ((|#2| |#2|) 75)) (-4041 ((|#2| |#2|) 63)) (-3009 ((|#2| |#2|) 79)) (-4085 ((|#2| |#2|) 67)) (-4067 ((|#2|) 46)) (-3479 (((-114) (-114)) 95)) (-4348 ((|#2| |#2|) 61)) (-3563 (((-112) |#2|) 134)) (-2889 ((|#2| |#2|) 181)) (-2702 ((|#2| |#2|) 157)) (-2576 ((|#2|) 59)) (-4077 ((|#2|) 58)) (-3604 ((|#2| |#2|) 177)) (-2728 ((|#2| |#2|) 153)) (-3101 ((|#2| |#2|) 185)) (-3232 ((|#2| |#2|) 161)) (-3835 ((|#2| |#2|) 149)) (-2098 ((|#2| |#2|) 151)) (-3887 ((|#2| |#2|) 187)) (-3146 ((|#2| |#2|) 163)) (-4112 ((|#2| |#2|) 183)) (-3501 ((|#2| |#2|) 159)) (-3764 ((|#2| |#2|) 179)) (-3820 ((|#2| |#2|) 155)) (-2215 ((|#2| |#2|) 193)) (-4049 ((|#2| |#2|) 169)) (-1644 ((|#2| |#2|) 189)) (-2711 ((|#2| |#2|) 165)) (-2713 ((|#2| |#2|) 197)) (-3433 ((|#2| |#2|) 173)) (-3898 ((|#2| |#2|) 199)) (-1705 ((|#2| |#2|) 175)) (-3445 ((|#2| |#2|) 195)) (-3039 ((|#2| |#2|) 171)) (-4081 ((|#2| |#2|) 191)) (-1639 ((|#2| |#2|) 167)) (-3440 ((|#2| |#2|) 62)) (-3021 ((|#2| |#2|) 80)) (-4095 ((|#2| |#2|) 68)) (-2995 ((|#2| |#2|) 78)) (-4073 ((|#2| |#2|) 66)) (-2968 ((|#2| |#2|) 76)) (-4054 ((|#2| |#2|) 64)) (-2665 (((-112) (-114)) 93)) (-3055 ((|#2| |#2|) 83)) (-4132 ((|#2| |#2|) 71)) (-3031 ((|#2| |#2|) 81)) (-4105 ((|#2| |#2|) 69)) (-3081 ((|#2| |#2|) 85)) (-4149 ((|#2| |#2|) 73)) (-2125 ((|#2| |#2|) 86)) (-4160 ((|#2| |#2|) 74)) (-3066 ((|#2| |#2|) 84)) (-4142 ((|#2| |#2|) 72)) (-3043 ((|#2| |#2|) 82)) (-4117 ((|#2| |#2|) 70)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -3440 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -4142 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4172 (|#2| |#2|)) (-15 -2968 (|#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -3031 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -4067 (|#2|)) (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -4077 (|#2|)) (-15 -2576 (|#2|)) (-15 -2098 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -2728 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -2702 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3232 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3433 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3764 (|#2| |#2|)) (-15 -2889 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -3101 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -2215 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2713 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -2453 ((-3 |#2| "failed") |#2| (-638 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3563 ((-112) |#2|))) (-13 (-844) (-553)) (-13 (-429 |#1|) (-995))) (T -275))
+((-3563 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-429 *4) (-995))))) (-2453 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-638 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-429 *4) (-995))) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-275 *4 *2)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2713 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2215 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3101 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2889 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3764 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3433 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2711 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3232 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2702 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2728 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2576 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-553))))) (-4077 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-553))))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-429 *3) (-995))))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-995))))) (-4067 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-553))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3031 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-2968 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4142 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-4348 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-995))))))
+(-10 -7 (-15 -3440 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4117 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -4142 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4172 (|#2| |#2|)) (-15 -2968 (|#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -3031 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -4067 (|#2|)) (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -4077 (|#2|)) (-15 -2576 (|#2|)) (-15 -2098 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -2728 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -2702 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3232 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -3433 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3764 (|#2| |#2|)) (-15 -2889 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -3101 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -2215 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2713 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -2453 ((-3 |#2| "failed") |#2| (-638 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3563 ((-112) |#2|)))
+((-4154 (((-3 |#2| "failed") (-638 (-607 |#2|)) |#2| (-1166)) 135)) (-3779 ((|#2| (-406 (-561)) |#2|) 51)) (-1350 ((|#2| |#2| (-607 |#2|)) 128)) (-4254 (((-2 (|:| |func| |#2|) (|:| |kers| (-638 (-607 |#2|))) (|:| |vals| (-638 |#2|))) |#2| (-1166)) 127)) (-2958 ((|#2| |#2| (-1166)) 20) ((|#2| |#2|) 23)) (-2528 ((|#2| |#2| (-1166)) 141) ((|#2| |#2|) 139)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -2528 (|#2| |#2|)) (-15 -2528 (|#2| |#2| (-1166))) (-15 -4254 ((-2 (|:| |func| |#2|) (|:| |kers| (-638 (-607 |#2|))) (|:| |vals| (-638 |#2|))) |#2| (-1166))) (-15 -2958 (|#2| |#2|)) (-15 -2958 (|#2| |#2| (-1166))) (-15 -4154 ((-3 |#2| "failed") (-638 (-607 |#2|)) |#2| (-1166))) (-15 -1350 (|#2| |#2| (-607 |#2|))) (-15 -3779 (|#2| (-406 (-561)) |#2|))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -276))
+((-3779 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-1350 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)))) (-4154 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-1166)) (-4 *2 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *5 *2)))) (-2958 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-4254 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-638 (-607 *3))) (|:| |vals| (-638 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-2528 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-2528 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
+(-10 -7 (-15 -2528 (|#2| |#2|)) (-15 -2528 (|#2| |#2| (-1166))) (-15 -4254 ((-2 (|:| |func| |#2|) (|:| |kers| (-638 (-607 |#2|))) (|:| |vals| (-638 |#2|))) |#2| (-1166))) (-15 -2958 (|#2| |#2|)) (-15 -2958 (|#2| |#2| (-1166))) (-15 -4154 ((-3 |#2| "failed") (-638 (-607 |#2|)) |#2| (-1166))) (-15 -1350 (|#2| |#2| (-607 |#2|))) (-15 -3779 (|#2| (-406 (-561)) |#2|)))
+((-2734 (((-3 |#3| "failed") |#3|) 110)) (-2978 ((|#3| |#3|) 131)) (-3785 (((-3 |#3| "failed") |#3|) 82)) (-4064 ((|#3| |#3|) 121)) (-2442 (((-3 |#3| "failed") |#3|) 58)) (-4172 ((|#3| |#3|) 129)) (-3323 (((-3 |#3| "failed") |#3|) 46)) (-4041 ((|#3| |#3|) 119)) (-3208 (((-3 |#3| "failed") |#3|) 112)) (-3009 ((|#3| |#3|) 133)) (-3694 (((-3 |#3| "failed") |#3|) 84)) (-4085 ((|#3| |#3|) 123)) (-3759 (((-3 |#3| "failed") |#3| (-765)) 36)) (-4210 (((-3 |#3| "failed") |#3|) 74)) (-4348 ((|#3| |#3|) 118)) (-1846 (((-3 |#3| "failed") |#3|) 44)) (-3440 ((|#3| |#3|) 117)) (-2963 (((-3 |#3| "failed") |#3|) 113)) (-3021 ((|#3| |#3|) 134)) (-2977 (((-3 |#3| "failed") |#3|) 85)) (-4095 ((|#3| |#3|) 124)) (-1906 (((-3 |#3| "failed") |#3|) 111)) (-2995 ((|#3| |#3|) 132)) (-2818 (((-3 |#3| "failed") |#3|) 83)) (-4073 ((|#3| |#3|) 122)) (-3548 (((-3 |#3| "failed") |#3|) 60)) (-2968 ((|#3| |#3|) 130)) (-1481 (((-3 |#3| "failed") |#3|) 48)) (-4054 ((|#3| |#3|) 120)) (-2076 (((-3 |#3| "failed") |#3|) 66)) (-3055 ((|#3| |#3|) 137)) (-2876 (((-3 |#3| "failed") |#3|) 104)) (-4132 ((|#3| |#3|) 142)) (-1315 (((-3 |#3| "failed") |#3|) 62)) (-3031 ((|#3| |#3|) 135)) (-1747 (((-3 |#3| "failed") |#3|) 50)) (-4105 ((|#3| |#3|) 125)) (-2942 (((-3 |#3| "failed") |#3|) 70)) (-3081 ((|#3| |#3|) 139)) (-2232 (((-3 |#3| "failed") |#3|) 54)) (-4149 ((|#3| |#3|) 127)) (-1995 (((-3 |#3| "failed") |#3|) 72)) (-2125 ((|#3| |#3|) 140)) (-1908 (((-3 |#3| "failed") |#3|) 56)) (-4160 ((|#3| |#3|) 128)) (-2163 (((-3 |#3| "failed") |#3|) 68)) (-3066 ((|#3| |#3|) 138)) (-3147 (((-3 |#3| "failed") |#3|) 107)) (-4142 ((|#3| |#3|) 143)) (-2036 (((-3 |#3| "failed") |#3|) 64)) (-3043 ((|#3| |#3|) 136)) (-2840 (((-3 |#3| "failed") |#3|) 52)) (-4117 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-561))) 40 (|has| |#1| (-362)))))
+(((-277 |#1| |#2| |#3|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3440 (|#3| |#3|)) (-15 -4348 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4105 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -4142 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -2968 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3031 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -2125 (|#3| |#3|)))) (-38 (-406 (-561))) (-1244 |#1|) (-1215 |#1| |#2|)) (T -277))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1244 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1215 *4 *5)))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4348 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4142 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-2968 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-3031 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4)))))
+(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3440 (|#3| |#3|)) (-15 -4348 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4105 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -4142 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -2968 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3031 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -2125 (|#3| |#3|))))
+((-2734 (((-3 |#3| "failed") |#3|) 66)) (-2978 ((|#3| |#3|) 129)) (-3785 (((-3 |#3| "failed") |#3|) 50)) (-4064 ((|#3| |#3|) 117)) (-2442 (((-3 |#3| "failed") |#3|) 62)) (-4172 ((|#3| |#3|) 127)) (-3323 (((-3 |#3| "failed") |#3|) 46)) (-4041 ((|#3| |#3|) 115)) (-3208 (((-3 |#3| "failed") |#3|) 70)) (-3009 ((|#3| |#3|) 131)) (-3694 (((-3 |#3| "failed") |#3|) 54)) (-4085 ((|#3| |#3|) 119)) (-3759 (((-3 |#3| "failed") |#3| (-765)) 35)) (-4210 (((-3 |#3| "failed") |#3|) 44)) (-4348 ((|#3| |#3|) 104)) (-1846 (((-3 |#3| "failed") |#3|) 42)) (-3440 ((|#3| |#3|) 114)) (-2963 (((-3 |#3| "failed") |#3|) 72)) (-3021 ((|#3| |#3|) 132)) (-2977 (((-3 |#3| "failed") |#3|) 56)) (-4095 ((|#3| |#3|) 120)) (-1906 (((-3 |#3| "failed") |#3|) 68)) (-2995 ((|#3| |#3|) 130)) (-2818 (((-3 |#3| "failed") |#3|) 52)) (-4073 ((|#3| |#3|) 118)) (-3548 (((-3 |#3| "failed") |#3|) 64)) (-2968 ((|#3| |#3|) 128)) (-1481 (((-3 |#3| "failed") |#3|) 48)) (-4054 ((|#3| |#3|) 116)) (-2076 (((-3 |#3| "failed") |#3|) 74)) (-3055 ((|#3| |#3|) 135)) (-2876 (((-3 |#3| "failed") |#3|) 58)) (-4132 ((|#3| |#3|) 123)) (-1315 (((-3 |#3| "failed") |#3|) 105)) (-3031 ((|#3| |#3|) 133)) (-1747 (((-3 |#3| "failed") |#3|) 94)) (-4105 ((|#3| |#3|) 121)) (-2942 (((-3 |#3| "failed") |#3|) 109)) (-3081 ((|#3| |#3|) 137)) (-2232 (((-3 |#3| "failed") |#3|) 101)) (-4149 ((|#3| |#3|) 125)) (-1995 (((-3 |#3| "failed") |#3|) 110)) (-2125 ((|#3| |#3|) 138)) (-1908 (((-3 |#3| "failed") |#3|) 103)) (-4160 ((|#3| |#3|) 126)) (-2163 (((-3 |#3| "failed") |#3|) 76)) (-3066 ((|#3| |#3|) 136)) (-3147 (((-3 |#3| "failed") |#3|) 60)) (-4142 ((|#3| |#3|) 124)) (-2036 (((-3 |#3| "failed") |#3|) 106)) (-3043 ((|#3| |#3|) 134)) (-2840 (((-3 |#3| "failed") |#3|) 97)) (-4117 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-561))) 40 (|has| |#1| (-362)))))
+(((-278 |#1| |#2| |#3| |#4|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3440 (|#3| |#3|)) (-15 -4348 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4105 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -4142 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -2968 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3031 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -2125 (|#3| |#3|)))) (-38 (-406 (-561))) (-1213 |#1|) (-1236 |#1| |#2|) (-976 |#2|)) (T -278))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1213 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1236 *4 *5)) (-4 *6 (-976 *5)))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4348 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4142 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-2968 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-3031 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4)))))
+(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-561)))) |%noBranch|) (-15 -3440 (|#3| |#3|)) (-15 -4348 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4054 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4085 (|#3| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4105 (|#3| |#3|)) (-15 -4117 (|#3| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -4142 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4160 (|#3| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -2968 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2995 (|#3| |#3|)) (-15 -3009 (|#3| |#3|)) (-15 -3021 (|#3| |#3|)) (-15 -3031 (|#3| |#3|)) (-15 -3043 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3081 (|#3| |#3|)) (-15 -2125 (|#3| |#3|))))
+((-3707 (((-112) $) 18)) (-3674 (((-182) $) 7)) (-1483 (((-3 (-1166) "failed") $) 14)) (-2251 (((-3 (-638 $) "failed") $) NIL)) (-3850 (((-3 (-1166) "failed") $) 20)) (-2099 (((-3 (-1094) "failed") $) 17)) (-3330 (((-112) $) 15)) (-4022 (((-856) $) NIL)) (-2431 (((-112) $) 9)))
+(((-279) (-13 (-608 (-856)) (-10 -8 (-15 -3674 ((-182) $)) (-15 -3330 ((-112) $)) (-15 -2099 ((-3 (-1094) "failed") $)) (-15 -3707 ((-112) $)) (-15 -3850 ((-3 (-1166) "failed") $)) (-15 -2431 ((-112) $)) (-15 -1483 ((-3 (-1166) "failed") $)) (-15 -2251 ((-3 (-638 $) "failed") $))))) (T -279))
+((-3674 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2099 (*1 *2 *1) (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-279)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-3850 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-1483 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-2251 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-279))) (-5 *1 (-279)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3674 ((-182) $)) (-15 -3330 ((-112) $)) (-15 -2099 ((-3 (-1094) "failed") $)) (-15 -3707 ((-112) $)) (-15 -3850 ((-3 (-1166) "failed") $)) (-15 -2431 ((-112) $)) (-15 -1483 ((-3 (-1166) "failed") $)) (-15 -2251 ((-3 (-638 $) "failed") $))))
+((-3556 (($ (-1 (-112) |#2|) $) 24)) (-1472 (($ $) 36)) (-3999 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1489 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3092 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3312 (($ |#2| $ (-561)) 20) (($ $ $ (-561)) 22)) (-2849 (($ $ (-561)) 11) (($ $ (-1220 (-561))) 14)) (-4173 (($ $ |#2|) 30) (($ $ $) NIL)) (-2725 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-638 $)) NIL)))
+(((-280 |#1| |#2|) (-10 -8 (-15 -3092 (|#1| |#1| |#1|)) (-15 -3999 (|#1| |#2| |#1|)) (-15 -3092 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4173 (|#1| |#1| |#1|)) (-15 -4173 (|#1| |#1| |#2|)) (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -2849 (|#1| |#1| (-1220 (-561)))) (-15 -2849 (|#1| |#1| (-561))) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2725 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1489 (|#1| |#2| |#1|)) (-15 -1472 (|#1| |#1|))) (-281 |#2|) (-1205)) (T -280))
+NIL
+(-10 -8 (-15 -3092 (|#1| |#1| |#1|)) (-15 -3999 (|#1| |#2| |#1|)) (-15 -3092 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4173 (|#1| |#1| |#1|)) (-15 -4173 (|#1| |#1| |#2|)) (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -2849 (|#1| |#1| (-1220 (-561)))) (-15 -2849 (|#1| |#1| (-561))) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2725 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1489 (|#1| |#2| |#1|)) (-15 -1472 (|#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 58 (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) |#1|) $) 85)) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-3776 (($ $) 83 (|has| |#1| (-1090)))) (-1472 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1090)))) (-1489 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 51)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3092 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3671 (($ |#1| $ (-561)) 88) (($ $ $ (-561)) 87)) (-3312 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 42 (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1799 (($ $ |#1|) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1220 (-561))) 63)) (-2114 (($ $ (-561)) 91) (($ $ (-1220 (-561))) 90)) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 70)) (-4173 (($ $ |#1|) 93) (($ $ $) 92)) (-2725 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-281 |#1|) (-139) (-1205)) (T -281))
+((-4173 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)))) (-4173 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-561))) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-3671 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-281 *2)) (-4 *2 (-1205)))) (-3671 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-3092 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))) (-3999 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090)))) (-3092 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))))
+(-13 (-644 |t#1|) (-10 -8 (-6 -4391) (-15 -4173 ($ $ |t#1|)) (-15 -4173 ($ $ $)) (-15 -2114 ($ $ (-561))) (-15 -2114 ($ $ (-1220 (-561)))) (-15 -3999 ($ (-1 (-112) |t#1|) $)) (-15 -3671 ($ |t#1| $ (-561))) (-15 -3671 ($ $ $ (-561))) (-15 -3092 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3388 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3999 ($ |t#1| $)) (-15 -3776 ($ $))) |%noBranch|) (IF (|has| |t#1| (-844)) (-15 -3092 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
((** (($ $ $) 10)))
(((-282 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-283)) (T -282))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-4342 (($ $) 6)) (-3944 (($ $) 7)) (** (($ $ $) 8)))
+((-4348 (($ $) 6)) (-3440 (($ $) 7)) (** (($ $ $) 8)))
(((-283) (-139)) (T -283))
-((** (*1 *1 *1 *1) (-4 *1 (-283))) (-3944 (*1 *1 *1) (-4 *1 (-283))) (-4342 (*1 *1 *1) (-4 *1 (-283))))
-(-13 (-10 -8 (-15 -4342 ($ $)) (-15 -3944 ($ $)) (-15 ** ($ $ $))))
-((-1316 (((-635 (-1143 |#1|)) (-1143 |#1|) |#1|) 35)) (-1656 ((|#2| |#2| |#1|) 38)) (-2068 ((|#2| |#2| |#1|) 40)) (-1723 ((|#2| |#2| |#1|) 39)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -1656 (|#2| |#2| |#1|)) (-15 -1723 (|#2| |#2| |#1|)) (-15 -2068 (|#2| |#2| |#1|)) (-15 -1316 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|))) (-362) (-1237 |#1|)) (T -284))
-((-1316 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-1237 *4)))) (-2068 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))) (-1723 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))) (-1656 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
-(-10 -7 (-15 -1656 (|#2| |#2| |#1|)) (-15 -1723 (|#2| |#2| |#1|)) (-15 -2068 (|#2| |#2| |#1|)) (-15 -1316 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|)))
-((-2276 ((|#2| $ |#1|) 6)))
-(((-285 |#1| |#2|) (-139) (-1087) (-1200)) (T -285))
-((-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))))
-(-13 (-10 -8 (-15 -2276 (|t#2| $ |t#1|))))
-((-3683 ((|#3| $ |#2| |#3|) 12)) (-3620 ((|#3| $ |#2|) 10)))
-(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -3683 (|#3| |#1| |#2| |#3|)) (-15 -3620 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1087) (-1200)) (T -286))
-NIL
-(-10 -8 (-15 -3683 (|#3| |#1| |#2| |#3|)) (-15 -3620 (|#3| |#1| |#2|)))
-((-4077 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4384)))) (-3683 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) 11)) (-2276 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-287 |#1| |#2|) (-139) (-1087) (-1200)) (T -287))
-((-2276 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-3620 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-4077 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-3683 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))))
-(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -2276 (|t#2| $ |t#1| |t#2|)) (-15 -3620 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4384)) (PROGN (-15 -4077 (|t#2| $ |t#1| |t#2|)) (-15 -3683 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-283))) (-3440 (*1 *1 *1) (-4 *1 (-283))) (-4348 (*1 *1 *1) (-4 *1 (-283))))
+(-13 (-10 -8 (-15 -4348 ($ $)) (-15 -3440 ($ $)) (-15 ** ($ $ $))))
+((-3557 (((-638 (-1146 |#1|)) (-1146 |#1|) |#1|) 35)) (-3840 ((|#2| |#2| |#1|) 38)) (-2390 ((|#2| |#2| |#1|) 40)) (-3073 ((|#2| |#2| |#1|) 39)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -3840 (|#2| |#2| |#1|)) (-15 -3073 (|#2| |#2| |#1|)) (-15 -2390 (|#2| |#2| |#1|)) (-15 -3557 ((-638 (-1146 |#1|)) (-1146 |#1|) |#1|))) (-362) (-1244 |#1|)) (T -284))
+((-3557 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-638 (-1146 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1146 *4)) (-4 *5 (-1244 *4)))) (-2390 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1244 *3)))) (-3073 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1244 *3)))) (-3840 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1244 *3)))))
+(-10 -7 (-15 -3840 (|#2| |#2| |#1|)) (-15 -3073 (|#2| |#2| |#1|)) (-15 -2390 (|#2| |#2| |#1|)) (-15 -3557 ((-638 (-1146 |#1|)) (-1146 |#1|) |#1|)))
+((-2277 ((|#2| $ |#1|) 6)))
+(((-285 |#1| |#2|) (-139) (-1090) (-1205)) (T -285))
+((-2277 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))))
+(-13 (-10 -8 (-15 -2277 (|t#2| $ |t#1|))))
+((-2073 ((|#3| $ |#2| |#3|) 12)) (-4344 ((|#3| $ |#2|) 10)))
+(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -2073 (|#3| |#1| |#2| |#3|)) (-15 -4344 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1090) (-1205)) (T -286))
+NIL
+(-10 -8 (-15 -2073 (|#3| |#1| |#2| |#3|)) (-15 -4344 (|#3| |#1| |#2|)))
+((-4167 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4391)))) (-2073 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) 11)) (-2277 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-287 |#1| |#2|) (-139) (-1090) (-1205)) (T -287))
+((-2277 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-4167 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-2073 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))))
+(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -2277 (|t#2| $ |t#1| |t#2|)) (-15 -4344 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4391)) (PROGN (-15 -4167 (|t#2| $ |t#1| |t#2|)) (-15 -2073 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-285 |#1| |#2|) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 34)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 39)) (-3244 (($ $) 37)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) 32)) (-3866 (($ |#2| |#3|) 19)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3142 ((|#3| $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 20)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2489 (((-3 $ "failed") $ $) NIL)) (-1562 (((-762) $) 33)) (-2276 ((|#2| $ |#2|) 41)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 24)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2417 (((-762)) NIL)) (-2671 (((-112) $ $) NIL)) (-2207 (($) 28 T CONST)) (-2220 (($) 35 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 36)))
-(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -3142 (|#3| $)) (-15 -3940 (|#2| $)) (-15 -3866 ($ |#2| |#3|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3248 ((-3 $ "failed") $)) (-15 -3823 ($ $)) (-15 -2276 (|#2| $ |#2|)))) (-171) (-1222 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288))
-((-3248 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3142 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1222 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3866 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1222 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3823 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2276 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1222 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-306) (-10 -8 (-15 -3142 (|#3| $)) (-15 -3940 (|#2| $)) (-15 -3866 ($ |#2| |#3|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3248 ((-3 $ "failed") $)) (-15 -3823 ($ $)) (-15 -2276 (|#2| $ |#2|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 34)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 39)) (-2851 (($ $) 37)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) 32)) (-3185 (($ |#2| |#3|) 19)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2912 ((|#3| $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 20)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2777 (((-3 $ "failed") $ $) NIL)) (-3569 (((-765) $) 33)) (-2277 ((|#2| $ |#2|) 41)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 24)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4259 (((-765)) NIL)) (-3168 (((-112) $ $) NIL)) (-2211 (($) 28 T CONST)) (-2222 (($) 35 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 36)))
+(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -2912 (|#3| $)) (-15 -4022 (|#2| $)) (-15 -3185 ($ |#2| |#3|)) (-15 -2777 ((-3 $ "failed") $ $)) (-15 -3466 ((-3 $ "failed") $)) (-15 -1540 ($ $)) (-15 -2277 (|#2| $ |#2|)))) (-171) (-1229 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288))
+((-3466 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2912 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1229 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4022 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3185 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1229 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2777 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1540 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2277 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1229 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-306) (-10 -8 (-15 -2912 (|#3| $)) (-15 -4022 (|#2| $)) (-15 -3185 ($ |#2| |#3|)) (-15 -2777 ((-3 $ "failed") $ $)) (-15 -3466 ((-3 $ "failed") $)) (-15 -1540 ($ $)) (-15 -2277 (|#2| $ |#2|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-289) (-139)) (T -289))
NIL
-(-13 (-1039) (-111 $ $) (-10 -7 (-6 -4376)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-4088 (($ (-1163) (-1163) (-1091) $) 17)) (-1856 (($ (-1163) (-635 (-955)) $) 22)) (-3257 (((-635 (-1072)) $) 10)) (-1329 (((-3 (-1091) "failed") (-1163) (-1163) $) 16)) (-1980 (((-3 (-635 (-955)) "failed") (-1163) $) 21)) (-2876 (($) 7)) (-3689 (($) 23)) (-3940 (((-853) $) 27)) (-3769 (($) 24)))
-(((-290) (-13 (-605 (-853)) (-10 -8 (-15 -2876 ($)) (-15 -3257 ((-635 (-1072)) $)) (-15 -1329 ((-3 (-1091) "failed") (-1163) (-1163) $)) (-15 -4088 ($ (-1163) (-1163) (-1091) $)) (-15 -1980 ((-3 (-635 (-955)) "failed") (-1163) $)) (-15 -1856 ($ (-1163) (-635 (-955)) $)) (-15 -3689 ($)) (-15 -3769 ($))))) (T -290))
-((-2876 (*1 *1) (-5 *1 (-290))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-635 (-1072))) (-5 *1 (-290)))) (-1329 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-290)))) (-4088 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-290)))) (-1980 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-635 (-955))) (-5 *1 (-290)))) (-1856 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-290)))) (-3689 (*1 *1) (-5 *1 (-290))) (-3769 (*1 *1) (-5 *1 (-290))))
-(-13 (-605 (-853)) (-10 -8 (-15 -2876 ($)) (-15 -3257 ((-635 (-1072)) $)) (-15 -1329 ((-3 (-1091) "failed") (-1163) (-1163) $)) (-15 -4088 ($ (-1163) (-1163) (-1091) $)) (-15 -1980 ((-3 (-635 (-955)) "failed") (-1163) $)) (-15 -1856 ($ (-1163) (-635 (-955)) $)) (-15 -3689 ($)) (-15 -3769 ($))))
-((-2586 (((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|)))) 85)) (-1545 (((-635 (-679 (-406 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|)))))) (-679 (-406 (-942 |#1|)))) 80) (((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))) (-762) (-762)) 38)) (-3753 (((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|)))) 82)) (-1927 (((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|)))) 62)) (-2504 (((-635 (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (-679 (-406 (-942 |#1|)))) 61)) (-1969 (((-942 |#1|) (-679 (-406 (-942 |#1|)))) 50) (((-942 |#1|) (-679 (-406 (-942 |#1|))) (-1163)) 51)))
-(((-291 |#1|) (-10 -7 (-15 -1969 ((-942 |#1|) (-679 (-406 (-942 |#1|))) (-1163))) (-15 -1969 ((-942 |#1|) (-679 (-406 (-942 |#1|))))) (-15 -2504 ((-635 (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (-679 (-406 (-942 |#1|))))) (-15 -1927 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))))) (-15 -1545 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))) (-762) (-762))) (-15 -1545 ((-635 (-679 (-406 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|)))))) (-679 (-406 (-942 |#1|))))) (-15 -2586 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|))))) (-15 -3753 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|)))))) (-450)) (T -291))
-((-3753 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))) (-2586 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 *4)))) (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))) (-1545 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-942 *6)) (-1152 (-1163) (-942 *6)))) (-5 *5 (-762)) (-4 *6 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-679 (-406 (-942 *6)))))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5)))) (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-4 *4 (-450)) (-5 *2 (-635 (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4))))) (-5 *1 (-291 *4)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-5 *2 (-942 *4)) (-5 *1 (-291 *4)) (-4 *4 (-450)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-942 *5)))) (-5 *4 (-1163)) (-5 *2 (-942 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450)))))
-(-10 -7 (-15 -1969 ((-942 |#1|) (-679 (-406 (-942 |#1|))) (-1163))) (-15 -1969 ((-942 |#1|) (-679 (-406 (-942 |#1|))))) (-15 -2504 ((-635 (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (-679 (-406 (-942 |#1|))))) (-15 -1927 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))))) (-15 -1545 ((-635 (-679 (-406 (-942 |#1|)))) (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|))) (-679 (-406 (-942 |#1|))) (-762) (-762))) (-15 -1545 ((-635 (-679 (-406 (-942 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|)))))) (-679 (-406 (-942 |#1|))))) (-15 -2586 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |geneigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|))))) (-15 -3753 ((-635 (-2 (|:| |eigval| (-3 (-406 (-942 |#1|)) (-1152 (-1163) (-942 |#1|)))) (|:| |eigmult| (-762)) (|:| |eigvec| (-635 (-679 (-406 (-942 |#1|))))))) (-679 (-406 (-942 |#1|))))))
-((-3397 (((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)) 14)))
-(((-292 |#1| |#2|) (-10 -7 (-15 -3397 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) (-1200) (-1200)) (T -292))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6)))))
-(-10 -7 (-15 -3397 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3124 (((-112) $) NIL (|has| |#1| (-21)))) (-1639 (($ $) 12)) (-1868 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2564 (($ $ $) 94 (|has| |#1| (-301)))) (-3457 (($) NIL (-3994 (|has| |#1| (-21)) (|has| |#1| (-717))) CONST)) (-1378 (($ $) 50 (|has| |#1| (-21)))) (-2605 (((-3 $ "failed") $) 61 (|has| |#1| (-717)))) (-2385 ((|#1| $) 11)) (-3248 (((-3 $ "failed") $) 59 (|has| |#1| (-717)))) (-3999 (((-112) $) NIL (|has| |#1| (-717)))) (-3397 (($ (-1 |#1| |#1|) $) 14)) (-2372 ((|#1| $) 10)) (-1360 (($ $) 49 (|has| |#1| (-21)))) (-2023 (((-3 $ "failed") $) 60 (|has| |#1| (-717)))) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-3823 (($ $) 63 (-3994 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2054 (((-635 $) $) 84 (|has| |#1| (-550)))) (-1369 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-1163) |#1|) 17 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 21 (|has| |#1| (-512 (-1163) |#1|)))) (-2980 (($ |#1| |#1|) 9)) (-2887 (((-133)) 89 (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) 86 (|has| |#1| (-890 (-1163))))) (-3068 (($ $ $) NIL (|has| |#1| (-471)))) (-3072 (($ $ $) NIL (|has| |#1| (-471)))) (-3940 (($ (-558)) NIL (|has| |#1| (-1039))) (((-112) $) 36 (|has| |#1| (-1087))) (((-853) $) 35 (|has| |#1| (-1087)))) (-2417 (((-762)) 66 (|has| |#1| (-1039)))) (-2207 (($) 46 (|has| |#1| (-21)) CONST)) (-2220 (($) 56 (|has| |#1| (-717)) CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163))))) (-1708 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1087)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-3994 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-1796 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1785 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-558)) NIL (|has| |#1| (-471))) (($ $ (-762)) NIL (|has| |#1| (-717))) (($ $ (-911)) NIL (|has| |#1| (-1099)))) (* (($ $ |#1|) 54 (|has| |#1| (-1099))) (($ |#1| $) 53 (|has| |#1| (-1099))) (($ $ $) 52 (|has| |#1| (-1099))) (($ (-558) $) 69 (|has| |#1| (-21))) (($ (-762) $) NIL (|has| |#1| (-21))) (($ (-911) $) NIL (|has| |#1| (-25)))))
-(((-293 |#1|) (-13 (-1200) (-10 -8 (-15 -1708 ($ |#1| |#1|)) (-15 -2980 ($ |#1| |#1|)) (-15 -1639 ($ $)) (-15 -2372 (|#1| $)) (-15 -2385 (|#1| $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1163) |#1|)) (-6 (-512 (-1163) |#1|)) |%noBranch|) (IF (|has| |#1| (-1087)) (PROGN (-6 (-1087)) (-6 (-605 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1369 ($ $ $)) (-15 -1369 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1785 ($ |#1| $)) (-15 -1785 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1360 ($ $)) (-15 -1378 ($ $)) (-15 -1796 ($ |#1| $)) (-15 -1796 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-717)) (PROGN (-6 (-717)) (-15 -2023 ((-3 $ "failed") $)) (-15 -2605 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -2023 ((-3 $ "failed") $)) (-15 -2605 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -2054 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1253 |#1|)) (-15 -1805 ($ $ $)) (-15 -3823 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -2564 ($ $ $)) |%noBranch|))) (-1200)) (T -293))
-((-1708 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-2980 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-1639 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-2372 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-2385 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-293 *3)))) (-1369 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)) (-5 *1 (-293 *2)))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1087)) (-4 *3 (-1200)) (-5 *1 (-293 *3)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200)))) (-1360 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-1378 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-1796 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-1796 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))) (-2023 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))) (-2605 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-635 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-550)) (-4 *3 (-1200)))) (-2564 (*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1200)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200)))) (-1805 (*1 *1 *1 *1) (-3994 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200))))) (-3823 (*1 *1 *1) (-3994 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200))))))
-(-13 (-1200) (-10 -8 (-15 -1708 ($ |#1| |#1|)) (-15 -2980 ($ |#1| |#1|)) (-15 -1639 ($ $)) (-15 -2372 (|#1| $)) (-15 -2385 (|#1| $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1163) |#1|)) (-6 (-512 (-1163) |#1|)) |%noBranch|) (IF (|has| |#1| (-1087)) (PROGN (-6 (-1087)) (-6 (-605 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1369 ($ $ $)) (-15 -1369 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1785 ($ |#1| $)) (-15 -1785 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1360 ($ $)) (-15 -1378 ($ $)) (-15 -1796 ($ |#1| $)) (-15 -1796 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-717)) (PROGN (-6 (-717)) (-15 -2023 ((-3 $ "failed") $)) (-15 -2605 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -2023 ((-3 $ "failed") $)) (-15 -2605 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -2054 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1253 |#1|)) (-15 -1805 ($ $ $)) (-15 -3823 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -2564 ($ $ $)) |%noBranch|)))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3552 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#2| $ |#1| |#2|) NIL)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) NIL)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) NIL)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) NIL)) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 ((|#1| $) NIL (|has| |#1| (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 ((|#1| $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1934 (((-635 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3051 (((-635 |#1|) $) NIL)) (-2740 (((-112) |#1| $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#2| $) NIL (|has| |#1| (-841)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-294 |#1| |#2|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383))) (-1087) (-1087)) (T -294))
-NIL
-(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383)))
-((-3851 (((-311) (-1145) (-635 (-1145))) 16) (((-311) (-1145) (-1145)) 15) (((-311) (-635 (-1145))) 14) (((-311) (-1145)) 12)))
-(((-295) (-10 -7 (-15 -3851 ((-311) (-1145))) (-15 -3851 ((-311) (-635 (-1145)))) (-15 -3851 ((-311) (-1145) (-1145))) (-15 -3851 ((-311) (-1145) (-635 (-1145)))))) (T -295))
-((-3851 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1145))) (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3851 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-311)) (-5 *1 (-295)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295)))))
-(-10 -7 (-15 -3851 ((-311) (-1145))) (-15 -3851 ((-311) (-635 (-1145)))) (-15 -3851 ((-311) (-1145) (-1145))) (-15 -3851 ((-311) (-1145) (-635 (-1145)))))
-((-3397 ((|#2| (-1 |#2| |#1|) (-1145) (-604 |#1|)) 18)))
-(((-296 |#1| |#2|) (-10 -7 (-15 -3397 (|#2| (-1 |#2| |#1|) (-1145) (-604 |#1|)))) (-301) (-1200)) (T -296))
-((-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1145)) (-5 *5 (-604 *6)) (-4 *6 (-301)) (-4 *2 (-1200)) (-5 *1 (-296 *6 *2)))))
-(-10 -7 (-15 -3397 (|#2| (-1 |#2| |#1|) (-1145) (-604 |#1|))))
-((-3397 ((|#2| (-1 |#2| |#1|) (-604 |#1|)) 17)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -3397 (|#2| (-1 |#2| |#1|) (-604 |#1|)))) (-301) (-301)) (T -297))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-604 *5)) (-4 *5 (-301)) (-4 *2 (-301)) (-5 *1 (-297 *5 *2)))))
-(-10 -7 (-15 -3397 (|#2| (-1 |#2| |#1|) (-604 |#1|))))
-((-3622 (((-112) (-224)) 10)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -3622 ((-112) (-224)))) (-224) (-224)) (T -298))
-((-3622 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -3622 ((-112) (-224))))
-((-2598 (((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224)))) 92)) (-3766 (((-1143 (-224)) (-1246 (-315 (-224))) (-635 (-1163)) (-1081 (-834 (-224)))) 106) (((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224)))) 61)) (-2701 (((-635 (-1145)) (-1143 (-224))) NIL)) (-4105 (((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224)))) 58)) (-2838 (((-635 (-224)) (-942 (-406 (-558))) (-1163) (-1081 (-834 (-224)))) 49)) (-1643 (((-635 (-1145)) (-635 (-224))) NIL)) (-3155 (((-224) (-1081 (-834 (-224)))) 25)) (-2479 (((-224) (-1081 (-834 (-224)))) 26)) (-2853 (((-112) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-3793 (((-1145) (-224)) NIL)))
-(((-299) (-10 -7 (-15 -3155 ((-224) (-1081 (-834 (-224))))) (-15 -2479 ((-224) (-1081 (-834 (-224))))) (-15 -2853 ((-112) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4105 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -2598 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -3766 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -3766 ((-1143 (-224)) (-1246 (-315 (-224))) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -2838 ((-635 (-224)) (-942 (-406 (-558))) (-1163) (-1081 (-834 (-224))))) (-15 -3793 ((-1145) (-224))) (-15 -1643 ((-635 (-1145)) (-635 (-224)))) (-15 -2701 ((-635 (-1145)) (-1143 (-224)))))) (T -299))
-((-2701 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-299)))) (-2838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *4 (-1163)) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163))) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163))) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))) (-2598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163))) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))) (-4105 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163)) (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-299)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))))
-(-10 -7 (-15 -3155 ((-224) (-1081 (-834 (-224))))) (-15 -2479 ((-224) (-1081 (-834 (-224))))) (-15 -2853 ((-112) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4105 ((-635 (-224)) (-315 (-224)) (-1163) (-1081 (-834 (-224))))) (-15 -2598 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -3766 ((-1143 (-224)) (-315 (-224)) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -3766 ((-1143 (-224)) (-1246 (-315 (-224))) (-635 (-1163)) (-1081 (-834 (-224))))) (-15 -2838 ((-635 (-224)) (-942 (-406 (-558))) (-1163) (-1081 (-834 (-224))))) (-15 -3793 ((-1145) (-224))) (-15 -1643 ((-635 (-1145)) (-635 (-224)))) (-15 -2701 ((-635 (-1145)) (-1143 (-224)))))
-((-3798 (((-635 (-604 $)) $) 30)) (-2564 (($ $ (-293 $)) 80) (($ $ (-635 (-293 $))) 122) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-3302 (((-3 (-604 $) "failed") $) 112)) (-3226 (((-604 $) $) 111)) (-2058 (($ $) 19) (($ (-635 $)) 55)) (-2380 (((-635 (-114)) $) 38)) (-2154 (((-114) (-114)) 90)) (-1495 (((-112) $) 130)) (-3397 (($ (-1 $ $) (-604 $)) 88)) (-2025 (((-3 (-604 $) "failed") $) 92)) (-3390 (($ (-114) $) 60) (($ (-114) (-635 $)) 99)) (-3557 (((-112) $ (-114)) 116) (((-112) $ (-1163)) 115)) (-2361 (((-762) $) 46)) (-1711 (((-112) $ $) 58) (((-112) $ (-1163)) 50)) (-4254 (((-112) $) 128)) (-1369 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) 120) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 83) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) 68) (($ $ (-1163) (-1 $ $)) 74) (($ $ (-635 (-114)) (-635 (-1 $ $))) 82) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 84) (($ $ (-114) (-1 $ (-635 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2276 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-635 $)) 108)) (-3604 (($ $) 52) (($ $ $) 118)) (-2638 (($ $) 17) (($ (-635 $)) 54)) (-2480 (((-112) (-114)) 22)))
-(((-300 |#1|) (-10 -8 (-15 -1495 ((-112) |#1|)) (-15 -4254 ((-112) |#1|)) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -1711 ((-112) |#1| (-1163))) (-15 -1711 ((-112) |#1| |#1|)) (-15 -3397 (|#1| (-1 |#1| |#1|) (-604 |#1|))) (-15 -3390 (|#1| (-114) (-635 |#1|))) (-15 -3390 (|#1| (-114) |#1|)) (-15 -3557 ((-112) |#1| (-1163))) (-15 -3557 ((-112) |#1| (-114))) (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -2380 ((-635 (-114)) |#1|)) (-15 -3798 ((-635 (-604 |#1|)) |#1|)) (-15 -2025 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -2361 ((-762) |#1|)) (-15 -3604 (|#1| |#1| |#1|)) (-15 -3604 (|#1| |#1|)) (-15 -2058 (|#1| (-635 |#1|))) (-15 -2058 (|#1| |#1|)) (-15 -2638 (|#1| (-635 |#1|))) (-15 -2638 (|#1| |#1|)) (-15 -2564 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2564 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2564 (|#1| |#1| (-293 |#1|))) (-15 -2276 (|#1| (-114) (-635 |#1|))) (-15 -2276 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -1369 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3302 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -3226 ((-604 |#1|) |#1|))) (-301)) (T -300))
-((-2154 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301)))))
-(-10 -8 (-15 -1495 ((-112) |#1|)) (-15 -4254 ((-112) |#1|)) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -1711 ((-112) |#1| (-1163))) (-15 -1711 ((-112) |#1| |#1|)) (-15 -3397 (|#1| (-1 |#1| |#1|) (-604 |#1|))) (-15 -3390 (|#1| (-114) (-635 |#1|))) (-15 -3390 (|#1| (-114) |#1|)) (-15 -3557 ((-112) |#1| (-1163))) (-15 -3557 ((-112) |#1| (-114))) (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -2380 ((-635 (-114)) |#1|)) (-15 -3798 ((-635 (-604 |#1|)) |#1|)) (-15 -2025 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -2361 ((-762) |#1|)) (-15 -3604 (|#1| |#1| |#1|)) (-15 -3604 (|#1| |#1|)) (-15 -2058 (|#1| (-635 |#1|))) (-15 -2058 (|#1| |#1|)) (-15 -2638 (|#1| (-635 |#1|))) (-15 -2638 (|#1| |#1|)) (-15 -2564 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2564 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2564 (|#1| |#1| (-293 |#1|))) (-15 -2276 (|#1| (-114) (-635 |#1|))) (-15 -2276 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -1369 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3302 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -3226 ((-604 |#1|) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3798 (((-635 (-604 $)) $) 44)) (-2564 (($ $ (-293 $)) 56) (($ $ (-635 (-293 $))) 55) (($ $ (-635 (-604 $)) (-635 $)) 54)) (-3302 (((-3 (-604 $) "failed") $) 69)) (-3226 (((-604 $) $) 70)) (-2058 (($ $) 51) (($ (-635 $)) 50)) (-2380 (((-635 (-114)) $) 43)) (-2154 (((-114) (-114)) 42)) (-1495 (((-112) $) 22 (|has| $ (-1028 (-558))))) (-2550 (((-1159 $) (-604 $)) 25 (|has| $ (-1039)))) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-3397 (($ (-1 $ $) (-604 $)) 36)) (-2025 (((-3 (-604 $) "failed") $) 46)) (-2510 (((-1145) $) 9)) (-3892 (((-635 (-604 $)) $) 45)) (-3390 (($ (-114) $) 38) (($ (-114) (-635 $)) 37)) (-3557 (((-112) $ (-114)) 40) (((-112) $ (-1163)) 39)) (-2361 (((-762) $) 47)) (-1688 (((-1107) $) 10)) (-1711 (((-112) $ $) 35) (((-112) $ (-1163)) 34)) (-4254 (((-112) $) 23 (|has| $ (-1028 (-558))))) (-1369 (($ $ (-604 $) $) 67) (($ $ (-635 (-604 $)) (-635 $)) 66) (($ $ (-635 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1163) (-1 $ (-635 $))) 31) (($ $ (-1163) (-1 $ $)) 30) (($ $ (-635 (-114)) (-635 (-1 $ $))) 29) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-114) (-1 $ (-635 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2276 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-635 $)) 57)) (-3604 (($ $) 49) (($ $ $) 48)) (-2297 (($ $) 24 (|has| $ (-1039)))) (-3940 (((-853) $) 11) (($ (-604 $)) 68)) (-2638 (($ $) 53) (($ (-635 $)) 52)) (-2480 (((-112) (-114)) 41)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)))
+(-13 (-1042) (-111 $ $) (-10 -7 (-6 -4383)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-1839 (($ (-1166) (-1166) (-1094) $) 17)) (-2333 (($ (-1166) (-638 (-958)) $) 22)) (-1423 (((-638 (-1075)) $) 10)) (-3983 (((-3 (-1094) "failed") (-1166) (-1166) $) 16)) (-3582 (((-3 (-638 (-958)) "failed") (-1166) $) 21)) (-3170 (($) 7)) (-1372 (($) 23)) (-4022 (((-856) $) 27)) (-4050 (($) 24)))
+(((-290) (-13 (-608 (-856)) (-10 -8 (-15 -3170 ($)) (-15 -1423 ((-638 (-1075)) $)) (-15 -3983 ((-3 (-1094) "failed") (-1166) (-1166) $)) (-15 -1839 ($ (-1166) (-1166) (-1094) $)) (-15 -3582 ((-3 (-638 (-958)) "failed") (-1166) $)) (-15 -2333 ($ (-1166) (-638 (-958)) $)) (-15 -1372 ($)) (-15 -4050 ($))))) (T -290))
+((-3170 (*1 *1) (-5 *1 (-290))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-638 (-1075))) (-5 *1 (-290)))) (-3983 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-290)))) (-1839 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-290)))) (-3582 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-638 (-958))) (-5 *1 (-290)))) (-2333 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-290)))) (-1372 (*1 *1) (-5 *1 (-290))) (-4050 (*1 *1) (-5 *1 (-290))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3170 ($)) (-15 -1423 ((-638 (-1075)) $)) (-15 -3983 ((-3 (-1094) "failed") (-1166) (-1166) $)) (-15 -1839 ($ (-1166) (-1166) (-1094) $)) (-15 -3582 ((-3 (-638 (-958)) "failed") (-1166) $)) (-15 -2333 ($ (-1166) (-638 (-958)) $)) (-15 -1372 ($)) (-15 -4050 ($))))
+((-4351 (((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|)))) 85)) (-3366 (((-638 (-682 (-406 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|)))))) (-682 (-406 (-945 |#1|)))) 80) (((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))) (-765) (-765)) 38)) (-3140 (((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|)))) 82)) (-4353 (((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|)))) 62)) (-2175 (((-638 (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (-682 (-406 (-945 |#1|)))) 61)) (-2485 (((-945 |#1|) (-682 (-406 (-945 |#1|)))) 50) (((-945 |#1|) (-682 (-406 (-945 |#1|))) (-1166)) 51)))
+(((-291 |#1|) (-10 -7 (-15 -2485 ((-945 |#1|) (-682 (-406 (-945 |#1|))) (-1166))) (-15 -2485 ((-945 |#1|) (-682 (-406 (-945 |#1|))))) (-15 -2175 ((-638 (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (-682 (-406 (-945 |#1|))))) (-15 -4353 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))))) (-15 -3366 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))) (-765) (-765))) (-15 -3366 ((-638 (-682 (-406 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|)))))) (-682 (-406 (-945 |#1|))))) (-15 -4351 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|))))) (-15 -3140 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|)))))) (-450)) (T -291))
+((-3140 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-638 (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-638 (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))) (-3366 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 *4)))) (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))) (-3366 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-945 *6)) (-1155 (-1166) (-945 *6)))) (-5 *5 (-765)) (-4 *6 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-682 (-406 (-945 *6)))))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5)))) (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-4 *4 (-450)) (-5 *2 (-638 (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4))))) (-5 *1 (-291 *4)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-5 *2 (-945 *4)) (-5 *1 (-291 *4)) (-4 *4 (-450)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-945 *5)))) (-5 *4 (-1166)) (-5 *2 (-945 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450)))))
+(-10 -7 (-15 -2485 ((-945 |#1|) (-682 (-406 (-945 |#1|))) (-1166))) (-15 -2485 ((-945 |#1|) (-682 (-406 (-945 |#1|))))) (-15 -2175 ((-638 (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (-682 (-406 (-945 |#1|))))) (-15 -4353 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))))) (-15 -3366 ((-638 (-682 (-406 (-945 |#1|)))) (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|))) (-682 (-406 (-945 |#1|))) (-765) (-765))) (-15 -3366 ((-638 (-682 (-406 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|)))))) (-682 (-406 (-945 |#1|))))) (-15 -4351 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |geneigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|))))) (-15 -3140 ((-638 (-2 (|:| |eigval| (-3 (-406 (-945 |#1|)) (-1155 (-1166) (-945 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-638 (-682 (-406 (-945 |#1|))))))) (-682 (-406 (-945 |#1|))))))
+((-4120 (((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)) 14)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -4120 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) (-1205) (-1205)) (T -292))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6)))))
+(-10 -7 (-15 -4120 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2800 (((-112) $) NIL (|has| |#1| (-21)))) (-4330 (($ $) 12)) (-2249 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2612 (($ $ $) 94 (|has| |#1| (-301)))) (-1965 (($) NIL (-4007 (|has| |#1| (-21)) (|has| |#1| (-720))) CONST)) (-2724 (($ $) 50 (|has| |#1| (-21)))) (-2134 (((-3 $ "failed") $) 61 (|has| |#1| (-720)))) (-4306 ((|#1| $) 11)) (-3466 (((-3 $ "failed") $) 59 (|has| |#1| (-720)))) (-3113 (((-112) $) NIL (|has| |#1| (-720)))) (-4120 (($ (-1 |#1| |#1|) $) 14)) (-4293 ((|#1| $) 10)) (-1894 (($ $) 49 (|has| |#1| (-21)))) (-3652 (((-3 $ "failed") $) 60 (|has| |#1| (-720)))) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1540 (($ $) 63 (-4007 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2304 (((-638 $) $) 84 (|has| |#1| (-553)))) (-1444 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 21 (|has| |#1| (-512 (-1166) |#1|)))) (-3675 (($ |#1| |#1|) 9)) (-3084 (((-133)) 89 (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 86 (|has| |#1| (-893 (-1166))))) (-2260 (($ $ $) NIL (|has| |#1| (-471)))) (-3800 (($ $ $) NIL (|has| |#1| (-471)))) (-4022 (($ (-561)) NIL (|has| |#1| (-1042))) (((-112) $) 36 (|has| |#1| (-1090))) (((-856) $) 35 (|has| |#1| (-1090)))) (-4259 (((-765)) 66 (|has| |#1| (-1042)))) (-2211 (($) 46 (|has| |#1| (-21)) CONST)) (-2222 (($) 56 (|has| |#1| (-720)) CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166))))) (-1733 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1090)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-4007 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-1824 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1813 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-561)) NIL (|has| |#1| (-471))) (($ $ (-765)) NIL (|has| |#1| (-720))) (($ $ (-914)) NIL (|has| |#1| (-1102)))) (* (($ $ |#1|) 54 (|has| |#1| (-1102))) (($ |#1| $) 53 (|has| |#1| (-1102))) (($ $ $) 52 (|has| |#1| (-1102))) (($ (-561) $) 69 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-914) $) NIL (|has| |#1| (-25)))))
+(((-293 |#1|) (-13 (-1205) (-10 -8 (-15 -1733 ($ |#1| |#1|)) (-15 -3675 ($ |#1| |#1|)) (-15 -4330 ($ $)) (-15 -4293 (|#1| $)) (-15 -4306 (|#1| $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1444 ($ $ $)) (-15 -1444 ($ $ (-638 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1813 ($ |#1| $)) (-15 -1813 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1894 ($ $)) (-15 -2724 ($ $)) (-15 -1824 ($ |#1| $)) (-15 -1824 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -3652 ((-3 $ "failed") $)) (-15 -2134 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -3652 ((-3 $ "failed") $)) (-15 -2134 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -2304 ((-638 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1260 |#1|)) (-15 -1833 ($ $ $)) (-15 -1540 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -2612 ($ $ $)) |%noBranch|))) (-1205)) (T -293))
+((-1733 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-3675 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-4330 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-4293 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-4306 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-293 *3)))) (-1444 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)) (-5 *1 (-293 *2)))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1090)) (-4 *3 (-1205)) (-5 *1 (-293 *3)))) (-1813 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205)))) (-1813 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205)))) (-1894 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-2724 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-1824 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-1824 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))) (-3652 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))) (-2134 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-638 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-553)) (-4 *3 (-1205)))) (-2612 (*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1205)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205)))) (-1833 (*1 *1 *1 *1) (-4007 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205))))) (-1540 (*1 *1 *1) (-4007 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205))))))
+(-13 (-1205) (-10 -8 (-15 -1733 ($ |#1| |#1|)) (-15 -3675 ($ |#1| |#1|)) (-15 -4330 ($ $)) (-15 -4293 (|#1| $)) (-15 -4306 (|#1| $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1444 ($ $ $)) (-15 -1444 ($ $ (-638 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1813 ($ |#1| $)) (-15 -1813 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1894 ($ $)) (-15 -2724 ($ $)) (-15 -1824 ($ |#1| $)) (-15 -1824 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -3652 ((-3 $ "failed") $)) (-15 -2134 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -3652 ((-3 $ "failed") $)) (-15 -2134 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -2304 ((-638 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1260 |#1|)) (-15 -1833 ($ $ $)) (-15 -1540 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -2612 ($ $ $)) |%noBranch|)))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3024 (((-1258) $ |#1| |#1|) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#2| $ |#1| |#2|) NIL)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) NIL)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) NIL)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) NIL)) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 ((|#1| $) NIL (|has| |#1| (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 ((|#1| $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2017 (((-638 |#1|) $) NIL)) (-2857 (((-112) |#1| $) NIL)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2451 (((-638 |#1|) $) NIL)) (-1390 (((-112) |#1| $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#2| $) NIL (|has| |#1| (-844)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-294 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390))) (-1090) (-1090)) (T -294))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390)))
+((-3941 (((-311) (-1148) (-638 (-1148))) 16) (((-311) (-1148) (-1148)) 15) (((-311) (-638 (-1148))) 14) (((-311) (-1148)) 12)))
+(((-295) (-10 -7 (-15 -3941 ((-311) (-1148))) (-15 -3941 ((-311) (-638 (-1148)))) (-15 -3941 ((-311) (-1148) (-1148))) (-15 -3941 ((-311) (-1148) (-638 (-1148)))))) (T -295))
+((-3941 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1148))) (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3941 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-311)) (-5 *1 (-295)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295)))))
+(-10 -7 (-15 -3941 ((-311) (-1148))) (-15 -3941 ((-311) (-638 (-1148)))) (-15 -3941 ((-311) (-1148) (-1148))) (-15 -3941 ((-311) (-1148) (-638 (-1148)))))
+((-4120 ((|#2| (-1 |#2| |#1|) (-1148) (-607 |#1|)) 18)))
+(((-296 |#1| |#2|) (-10 -7 (-15 -4120 (|#2| (-1 |#2| |#1|) (-1148) (-607 |#1|)))) (-301) (-1205)) (T -296))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-607 *6)) (-4 *6 (-301)) (-4 *2 (-1205)) (-5 *1 (-296 *6 *2)))))
+(-10 -7 (-15 -4120 (|#2| (-1 |#2| |#1|) (-1148) (-607 |#1|))))
+((-4120 ((|#2| (-1 |#2| |#1|) (-607 |#1|)) 17)))
+(((-297 |#1| |#2|) (-10 -7 (-15 -4120 (|#2| (-1 |#2| |#1|) (-607 |#1|)))) (-301) (-301)) (T -297))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-607 *5)) (-4 *5 (-301)) (-4 *2 (-301)) (-5 *1 (-297 *5 *2)))))
+(-10 -7 (-15 -4120 (|#2| (-1 |#2| |#1|) (-607 |#1|))))
+((-3517 (((-112) (-224)) 10)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -3517 ((-112) (-224)))) (-224) (-224)) (T -298))
+((-3517 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -3517 ((-112) (-224))))
+((-3803 (((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224)))) 92)) (-2555 (((-1146 (-224)) (-1253 (-315 (-224))) (-638 (-1166)) (-1084 (-837 (-224)))) 106) (((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224)))) 61)) (-1789 (((-638 (-1148)) (-1146 (-224))) NIL)) (-1457 (((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224)))) 58)) (-2552 (((-638 (-224)) (-945 (-406 (-561))) (-1166) (-1084 (-837 (-224)))) 49)) (-4126 (((-638 (-1148)) (-638 (-224))) NIL)) (-2338 (((-224) (-1084 (-837 (-224)))) 25)) (-4137 (((-224) (-1084 (-837 (-224)))) 26)) (-4082 (((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-2108 (((-1148) (-224)) NIL)))
+(((-299) (-10 -7 (-15 -2338 ((-224) (-1084 (-837 (-224))))) (-15 -4137 ((-224) (-1084 (-837 (-224))))) (-15 -4082 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1457 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -3803 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2555 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2555 ((-1146 (-224)) (-1253 (-315 (-224))) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2552 ((-638 (-224)) (-945 (-406 (-561))) (-1166) (-1084 (-837 (-224))))) (-15 -2108 ((-1148) (-224))) (-15 -4126 ((-638 (-1148)) (-638 (-224)))) (-15 -1789 ((-638 (-1148)) (-1146 (-224)))))) (T -299))
+((-1789 (*1 *2 *3) (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-299)))) (-2552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *4 (-1166)) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))) (-2555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *4 (-638 (-1166))) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))) (-2555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166))) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))) (-3803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166))) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))) (-1457 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166)) (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-299)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))))
+(-10 -7 (-15 -2338 ((-224) (-1084 (-837 (-224))))) (-15 -4137 ((-224) (-1084 (-837 (-224))))) (-15 -4082 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1457 ((-638 (-224)) (-315 (-224)) (-1166) (-1084 (-837 (-224))))) (-15 -3803 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2555 ((-1146 (-224)) (-315 (-224)) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2555 ((-1146 (-224)) (-1253 (-315 (-224))) (-638 (-1166)) (-1084 (-837 (-224))))) (-15 -2552 ((-638 (-224)) (-945 (-406 (-561))) (-1166) (-1084 (-837 (-224))))) (-15 -2108 ((-1148) (-224))) (-15 -4126 ((-638 (-1148)) (-638 (-224)))) (-15 -1789 ((-638 (-1148)) (-1146 (-224)))))
+((-1510 (((-638 (-607 $)) $) 30)) (-2612 (($ $ (-293 $)) 80) (($ $ (-638 (-293 $))) 122) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-4017 (((-3 (-607 $) "failed") $) 112)) (-3938 (((-607 $) $) 111)) (-1890 (($ $) 19) (($ (-638 $)) 55)) (-1719 (((-638 (-114)) $) 38)) (-3479 (((-114) (-114)) 90)) (-3402 (((-112) $) 130)) (-4120 (($ (-1 $ $) (-607 $)) 88)) (-2012 (((-3 (-607 $) "failed") $) 92)) (-4109 (($ (-114) $) 60) (($ (-114) (-638 $)) 99)) (-2561 (((-112) $ (-114)) 116) (((-112) $ (-1166)) 115)) (-3061 (((-765) $) 46)) (-1297 (((-112) $ $) 58) (((-112) $ (-1166)) 50)) (-2736 (((-112) $) 128)) (-1444 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) 120) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 83) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) 68) (($ $ (-1166) (-1 $ $)) 74) (($ $ (-638 (-114)) (-638 (-1 $ $))) 82) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 84) (($ $ (-114) (-1 $ (-638 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2277 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-638 $)) 108)) (-1584 (($ $) 52) (($ $ $) 118)) (-3300 (($ $) 17) (($ (-638 $)) 54)) (-2665 (((-112) (-114)) 22)))
+(((-300 |#1|) (-10 -8 (-15 -3402 ((-112) |#1|)) (-15 -2736 ((-112) |#1|)) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -1297 ((-112) |#1| (-1166))) (-15 -1297 ((-112) |#1| |#1|)) (-15 -4120 (|#1| (-1 |#1| |#1|) (-607 |#1|))) (-15 -4109 (|#1| (-114) (-638 |#1|))) (-15 -4109 (|#1| (-114) |#1|)) (-15 -2561 ((-112) |#1| (-1166))) (-15 -2561 ((-112) |#1| (-114))) (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -1719 ((-638 (-114)) |#1|)) (-15 -1510 ((-638 (-607 |#1|)) |#1|)) (-15 -2012 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3061 ((-765) |#1|)) (-15 -1584 (|#1| |#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1890 (|#1| (-638 |#1|))) (-15 -1890 (|#1| |#1|)) (-15 -3300 (|#1| (-638 |#1|))) (-15 -3300 (|#1| |#1|)) (-15 -2612 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -2612 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2612 (|#1| |#1| (-293 |#1|))) (-15 -2277 (|#1| (-114) (-638 |#1|))) (-15 -2277 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1444 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4017 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3938 ((-607 |#1|) |#1|))) (-301)) (T -300))
+((-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301)))))
+(-10 -8 (-15 -3402 ((-112) |#1|)) (-15 -2736 ((-112) |#1|)) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -1297 ((-112) |#1| (-1166))) (-15 -1297 ((-112) |#1| |#1|)) (-15 -4120 (|#1| (-1 |#1| |#1|) (-607 |#1|))) (-15 -4109 (|#1| (-114) (-638 |#1|))) (-15 -4109 (|#1| (-114) |#1|)) (-15 -2561 ((-112) |#1| (-1166))) (-15 -2561 ((-112) |#1| (-114))) (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -1719 ((-638 (-114)) |#1|)) (-15 -1510 ((-638 (-607 |#1|)) |#1|)) (-15 -2012 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3061 ((-765) |#1|)) (-15 -1584 (|#1| |#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1890 (|#1| (-638 |#1|))) (-15 -1890 (|#1| |#1|)) (-15 -3300 (|#1| (-638 |#1|))) (-15 -3300 (|#1| |#1|)) (-15 -2612 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -2612 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2612 (|#1| |#1| (-293 |#1|))) (-15 -2277 (|#1| (-114) (-638 |#1|))) (-15 -2277 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1444 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4017 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3938 ((-607 |#1|) |#1|)))
+((-4011 (((-112) $ $) 7)) (-1510 (((-638 (-607 $)) $) 44)) (-2612 (($ $ (-293 $)) 56) (($ $ (-638 (-293 $))) 55) (($ $ (-638 (-607 $)) (-638 $)) 54)) (-4017 (((-3 (-607 $) "failed") $) 69)) (-3938 (((-607 $) $) 70)) (-1890 (($ $) 51) (($ (-638 $)) 50)) (-1719 (((-638 (-114)) $) 43)) (-3479 (((-114) (-114)) 42)) (-3402 (((-112) $) 22 (|has| $ (-1031 (-561))))) (-3217 (((-1162 $) (-607 $)) 25 (|has| $ (-1042)))) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-4120 (($ (-1 $ $) (-607 $)) 36)) (-2012 (((-3 (-607 $) "failed") $) 46)) (-1764 (((-1148) $) 9)) (-1600 (((-638 (-607 $)) $) 45)) (-4109 (($ (-114) $) 38) (($ (-114) (-638 $)) 37)) (-2561 (((-112) $ (-114)) 40) (((-112) $ (-1166)) 39)) (-3061 (((-765) $) 47)) (-1714 (((-1110) $) 10)) (-1297 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-2736 (((-112) $) 23 (|has| $ (-1031 (-561))))) (-1444 (($ $ (-607 $) $) 67) (($ $ (-638 (-607 $)) (-638 $)) 66) (($ $ (-638 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-638 $) (-638 $)) 62) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 33) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 32) (($ $ (-1166) (-1 $ (-638 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-638 (-114)) (-638 (-1 $ $))) 29) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 28) (($ $ (-114) (-1 $ (-638 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2277 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-638 $)) 57)) (-1584 (($ $) 49) (($ $ $) 48)) (-3660 (($ $) 24 (|has| $ (-1042)))) (-4022 (((-856) $) 11) (($ (-607 $)) 68)) (-3300 (($ $) 53) (($ (-638 $)) 52)) (-2665 (((-112) (-114)) 41)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)))
(((-301) (-139)) (T -301))
-((-2276 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2276 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2276 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2276 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2276 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301)))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *1))) (-4 *1 (-301)))) (-2564 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-604 *1))) (-5 *3 (-635 *1)) (-4 *1 (-301)))) (-2638 (*1 *1 *1) (-4 *1 (-301))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301)))) (-2058 (*1 *1 *1) (-4 *1 (-301))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301)))) (-3604 (*1 *1 *1) (-4 *1 (-301))) (-3604 (*1 *1 *1 *1) (-4 *1 (-301))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-762)))) (-2025 (*1 *2 *1) (|partial| -12 (-5 *2 (-604 *1)) (-4 *1 (-301)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-635 (-114))))) (-2154 (*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2480 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3557 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3557 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112)))) (-3390 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-3390 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301)))) (-3397 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-604 *1)) (-4 *1 (-301)))) (-1711 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))) (-1711 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-301)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-301)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-604 *1)) (-4 *1 (-1039)) (-4 *1 (-301)) (-5 *2 (-1159 *1)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-1039)) (-4 *1 (-301)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112)))))
-(-13 (-841) (-1028 (-604 $)) (-512 (-604 $) $) (-308 $) (-10 -8 (-15 -2276 ($ (-114) $)) (-15 -2276 ($ (-114) $ $)) (-15 -2276 ($ (-114) $ $ $)) (-15 -2276 ($ (-114) $ $ $ $)) (-15 -2276 ($ (-114) (-635 $))) (-15 -2564 ($ $ (-293 $))) (-15 -2564 ($ $ (-635 (-293 $)))) (-15 -2564 ($ $ (-635 (-604 $)) (-635 $))) (-15 -2638 ($ $)) (-15 -2638 ($ (-635 $))) (-15 -2058 ($ $)) (-15 -2058 ($ (-635 $))) (-15 -3604 ($ $)) (-15 -3604 ($ $ $)) (-15 -2361 ((-762) $)) (-15 -2025 ((-3 (-604 $) "failed") $)) (-15 -3892 ((-635 (-604 $)) $)) (-15 -3798 ((-635 (-604 $)) $)) (-15 -2380 ((-635 (-114)) $)) (-15 -2154 ((-114) (-114))) (-15 -2480 ((-112) (-114))) (-15 -3557 ((-112) $ (-114))) (-15 -3557 ((-112) $ (-1163))) (-15 -3390 ($ (-114) $)) (-15 -3390 ($ (-114) (-635 $))) (-15 -3397 ($ (-1 $ $) (-604 $))) (-15 -1711 ((-112) $ $)) (-15 -1711 ((-112) $ (-1163))) (-15 -1369 ($ $ (-635 (-1163)) (-635 (-1 $ $)))) (-15 -1369 ($ $ (-635 (-1163)) (-635 (-1 $ (-635 $))))) (-15 -1369 ($ $ (-1163) (-1 $ (-635 $)))) (-15 -1369 ($ $ (-1163) (-1 $ $))) (-15 -1369 ($ $ (-635 (-114)) (-635 (-1 $ $)))) (-15 -1369 ($ $ (-635 (-114)) (-635 (-1 $ (-635 $))))) (-15 -1369 ($ $ (-114) (-1 $ (-635 $)))) (-15 -1369 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1039)) (PROGN (-15 -2550 ((-1159 $) (-604 $))) (-15 -2297 ($ $))) |%noBranch|) (IF (|has| $ (-1028 (-558))) (PROGN (-15 -4254 ((-112) $)) (-15 -1495 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-608 #0=(-604 $)) . T) ((-605 (-853)) . T) ((-308 $) . T) ((-512 (-604 $) $) . T) ((-512 $ $) . T) ((-841) . T) ((-1028 #0#) . T) ((-1087) . T))
-((-2809 (((-635 |#1|) (-635 |#1|)) 10)))
-(((-302 |#1|) (-10 -7 (-15 -2809 ((-635 |#1|) (-635 |#1|)))) (-839)) (T -302))
-((-2809 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-839)) (-5 *1 (-302 *3)))))
-(-10 -7 (-15 -2809 ((-635 |#1|) (-635 |#1|))))
-((-3397 (((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|)) 17)))
-(((-303 |#1| |#2|) (-10 -7 (-15 -3397 ((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|)))) (-1039) (-1039)) (T -303))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-679 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-679 *6)) (-5 *1 (-303 *5 *6)))))
-(-10 -7 (-15 -3397 ((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|))))
-((-2267 (((-1246 (-315 (-378))) (-1246 (-315 (-224)))) 105)) (-2238 (((-1081 (-834 (-224))) (-1081 (-834 (-378)))) 40)) (-2701 (((-635 (-1145)) (-1143 (-224))) 87)) (-1809 (((-315 (-378)) (-942 (-224))) 50)) (-3523 (((-224) (-942 (-224))) 46)) (-2456 (((-1145) (-378)) 169)) (-2877 (((-834 (-224)) (-834 (-378))) 34)) (-4253 (((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1246 (-315 (-224)))) 143)) (-2849 (((-1025) (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) 181) (((-1025) (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) 179)) (-3702 (((-679 (-224)) (-635 (-224)) (-762)) 14)) (-1626 (((-1246 (-689)) (-635 (-224))) 94)) (-1643 (((-635 (-1145)) (-635 (-224))) 75)) (-2305 (((-3 (-315 (-224)) "failed") (-315 (-224))) 120)) (-3622 (((-112) (-224) (-1081 (-834 (-224)))) 109)) (-4177 (((-1025) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) 198)) (-3155 (((-224) (-1081 (-834 (-224)))) 107)) (-2479 (((-224) (-1081 (-834 (-224)))) 108)) (-4355 (((-224) (-406 (-558))) 27)) (-2187 (((-1145) (-378)) 73)) (-3319 (((-224) (-378)) 17)) (-3149 (((-378) (-1246 (-315 (-224)))) 154)) (-3255 (((-315 (-224)) (-315 (-378))) 23)) (-2956 (((-406 (-558)) (-315 (-224))) 53)) (-1433 (((-315 (-406 (-558))) (-315 (-224))) 69)) (-2833 (((-315 (-378)) (-315 (-224))) 98)) (-1425 (((-224) (-315 (-224))) 54)) (-4142 (((-635 (-224)) (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) 64)) (-1553 (((-1081 (-834 (-224))) (-1081 (-834 (-224)))) 61)) (-3793 (((-1145) (-224)) 72)) (-2415 (((-689) (-224)) 90)) (-2487 (((-406 (-558)) (-224)) 55)) (-4206 (((-315 (-378)) (-224)) 49)) (-3441 (((-635 (-1081 (-834 (-224)))) (-635 (-1081 (-834 (-378))))) 43)) (-2683 (((-1025) (-635 (-1025))) 165) (((-1025) (-1025) (-1025)) 162)) (-2660 (((-1025) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-304) (-10 -7 (-15 -3319 ((-224) (-378))) (-15 -3255 ((-315 (-224)) (-315 (-378)))) (-15 -2877 ((-834 (-224)) (-834 (-378)))) (-15 -2238 ((-1081 (-834 (-224))) (-1081 (-834 (-378))))) (-15 -3441 ((-635 (-1081 (-834 (-224)))) (-635 (-1081 (-834 (-378)))))) (-15 -2487 ((-406 (-558)) (-224))) (-15 -2956 ((-406 (-558)) (-315 (-224)))) (-15 -1425 ((-224) (-315 (-224)))) (-15 -2305 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -3149 ((-378) (-1246 (-315 (-224))))) (-15 -4253 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1246 (-315 (-224))))) (-15 -1433 ((-315 (-406 (-558))) (-315 (-224)))) (-15 -1553 ((-1081 (-834 (-224))) (-1081 (-834 (-224))))) (-15 -4142 ((-635 (-224)) (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))) (-15 -2415 ((-689) (-224))) (-15 -1626 ((-1246 (-689)) (-635 (-224)))) (-15 -2833 ((-315 (-378)) (-315 (-224)))) (-15 -2267 ((-1246 (-315 (-378))) (-1246 (-315 (-224))))) (-15 -3622 ((-112) (-224) (-1081 (-834 (-224))))) (-15 -3793 ((-1145) (-224))) (-15 -2187 ((-1145) (-378))) (-15 -1643 ((-635 (-1145)) (-635 (-224)))) (-15 -2701 ((-635 (-1145)) (-1143 (-224)))) (-15 -3155 ((-224) (-1081 (-834 (-224))))) (-15 -2479 ((-224) (-1081 (-834 (-224))))) (-15 -2683 ((-1025) (-1025) (-1025))) (-15 -2683 ((-1025) (-635 (-1025)))) (-15 -2456 ((-1145) (-378))) (-15 -2849 ((-1025) (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))))) (-15 -2849 ((-1025) (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))) (-15 -2660 ((-1025) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4177 ((-1025) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -1809 ((-315 (-378)) (-942 (-224)))) (-15 -3523 ((-224) (-942 (-224)))) (-15 -4206 ((-315 (-378)) (-224))) (-15 -4355 ((-224) (-406 (-558)))) (-15 -3702 ((-679 (-224)) (-635 (-224)) (-762))))) (T -304))
-((-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-762)) (-5 *2 (-679 (-224))) (-5 *1 (-304)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-406 (-558))) (-5 *2 (-224)) (-5 *1 (-304)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-942 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-942 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-635 (-1025))) (-5 *2 (-1025)) (-5 *1 (-304)))) (-2683 (*1 *2 *2 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-304)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-304)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1081 (-834 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-304)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-1246 (-315 (-378)))) (-5 *1 (-304)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1246 (-689))) (-5 *1 (-304)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-689)) (-5 *1 (-304)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-5 *2 (-635 (-224))) (-5 *1 (-304)))) (-1553 (*1 *2 *2) (-12 (-5 *2 (-1081 (-834 (-224)))) (-5 *1 (-304)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-558)))) (-5 *1 (-304)))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558)))) (-5 *1 (-304)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))) (-2305 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-558))) (-5 *1 (-304)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-558))) (-5 *1 (-304)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-635 (-1081 (-834 (-378))))) (-5 *2 (-635 (-1081 (-834 (-224))))) (-5 *1 (-304)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1081 (-834 (-378)))) (-5 *2 (-1081 (-834 (-224)))) (-5 *1 (-304)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-834 (-378))) (-5 *2 (-834 (-224))) (-5 *1 (-304)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-3319 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
-(-10 -7 (-15 -3319 ((-224) (-378))) (-15 -3255 ((-315 (-224)) (-315 (-378)))) (-15 -2877 ((-834 (-224)) (-834 (-378)))) (-15 -2238 ((-1081 (-834 (-224))) (-1081 (-834 (-378))))) (-15 -3441 ((-635 (-1081 (-834 (-224)))) (-635 (-1081 (-834 (-378)))))) (-15 -2487 ((-406 (-558)) (-224))) (-15 -2956 ((-406 (-558)) (-315 (-224)))) (-15 -1425 ((-224) (-315 (-224)))) (-15 -2305 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -3149 ((-378) (-1246 (-315 (-224))))) (-15 -4253 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1246 (-315 (-224))))) (-15 -1433 ((-315 (-406 (-558))) (-315 (-224)))) (-15 -1553 ((-1081 (-834 (-224))) (-1081 (-834 (-224))))) (-15 -4142 ((-635 (-224)) (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))) (-15 -2415 ((-689) (-224))) (-15 -1626 ((-1246 (-689)) (-635 (-224)))) (-15 -2833 ((-315 (-378)) (-315 (-224)))) (-15 -2267 ((-1246 (-315 (-378))) (-1246 (-315 (-224))))) (-15 -3622 ((-112) (-224) (-1081 (-834 (-224))))) (-15 -3793 ((-1145) (-224))) (-15 -2187 ((-1145) (-378))) (-15 -1643 ((-635 (-1145)) (-635 (-224)))) (-15 -2701 ((-635 (-1145)) (-1143 (-224)))) (-15 -3155 ((-224) (-1081 (-834 (-224))))) (-15 -2479 ((-224) (-1081 (-834 (-224))))) (-15 -2683 ((-1025) (-1025) (-1025))) (-15 -2683 ((-1025) (-635 (-1025)))) (-15 -2456 ((-1145) (-378))) (-15 -2849 ((-1025) (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))))) (-15 -2849 ((-1025) (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))) (-15 -2660 ((-1025) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4177 ((-1025) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -1809 ((-315 (-378)) (-942 (-224)))) (-15 -3523 ((-224) (-942 (-224)))) (-15 -4206 ((-315 (-378)) (-224))) (-15 -4355 ((-224) (-406 (-558)))) (-15 -3702 ((-679 (-224)) (-635 (-224)) (-762))))
-((-1599 (((-112) $ $) 11)) (-1709 (($ $ $) 15)) (-2881 (($ $ $) 14)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 43)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 52)) (-1544 (($ $ $) 20) (($ (-635 $)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2861 (((-3 $ "failed") $ $) 17)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 45)))
-(((-305 |#1|) (-10 -8 (-15 -2732 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3304 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3304 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2461 |#1|)) |#1| |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|)) (-15 -1599 ((-112) |#1| |#1|)) (-15 -3831 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3238 ((-2 (|:| -3455 (-635 |#1|)) (|:| -2461 |#1|)) (-635 |#1|))) (-15 -1544 (|#1| (-635 |#1|))) (-15 -1544 (|#1| |#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305))
-NIL
-(-10 -8 (-15 -2732 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3304 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3304 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2461 |#1|)) |#1| |#1|)) (-15 -1709 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|)) (-15 -1599 ((-112) |#1| |#1|)) (-15 -3831 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3238 ((-2 (|:| -3455 (-635 |#1|)) (|:| -2461 |#1|)) (-635 |#1|))) (-15 -1544 (|#1| (-635 |#1|))) (-15 -1544 (|#1| |#1| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-1599 (((-112) $ $) 60)) (-3457 (($) 17 T CONST)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-3999 (((-112) $) 31)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-2277 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2277 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2277 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2277 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2277 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *1))) (-4 *1 (-301)))) (-2612 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-607 *1))) (-5 *3 (-638 *1)) (-4 *1 (-301)))) (-3300 (*1 *1 *1) (-4 *1 (-301))) (-3300 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301)))) (-1890 (*1 *1 *1) (-4 *1 (-301))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301)))) (-1584 (*1 *1 *1) (-4 *1 (-301))) (-1584 (*1 *1 *1 *1) (-4 *1 (-301))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-765)))) (-2012 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-301)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-638 (-114))))) (-3479 (*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2665 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2561 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2561 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-4109 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-4109 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-607 *1)) (-4 *1 (-301)))) (-1297 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))) (-1297 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-301)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-301)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1042)) (-4 *1 (-301)) (-5 *2 (-1162 *1)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-301)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112)))))
+(-13 (-844) (-1031 (-607 $)) (-512 (-607 $) $) (-308 $) (-10 -8 (-15 -2277 ($ (-114) $)) (-15 -2277 ($ (-114) $ $)) (-15 -2277 ($ (-114) $ $ $)) (-15 -2277 ($ (-114) $ $ $ $)) (-15 -2277 ($ (-114) (-638 $))) (-15 -2612 ($ $ (-293 $))) (-15 -2612 ($ $ (-638 (-293 $)))) (-15 -2612 ($ $ (-638 (-607 $)) (-638 $))) (-15 -3300 ($ $)) (-15 -3300 ($ (-638 $))) (-15 -1890 ($ $)) (-15 -1890 ($ (-638 $))) (-15 -1584 ($ $)) (-15 -1584 ($ $ $)) (-15 -3061 ((-765) $)) (-15 -2012 ((-3 (-607 $) "failed") $)) (-15 -1600 ((-638 (-607 $)) $)) (-15 -1510 ((-638 (-607 $)) $)) (-15 -1719 ((-638 (-114)) $)) (-15 -3479 ((-114) (-114))) (-15 -2665 ((-112) (-114))) (-15 -2561 ((-112) $ (-114))) (-15 -2561 ((-112) $ (-1166))) (-15 -4109 ($ (-114) $)) (-15 -4109 ($ (-114) (-638 $))) (-15 -4120 ($ (-1 $ $) (-607 $))) (-15 -1297 ((-112) $ $)) (-15 -1297 ((-112) $ (-1166))) (-15 -1444 ($ $ (-638 (-1166)) (-638 (-1 $ $)))) (-15 -1444 ($ $ (-638 (-1166)) (-638 (-1 $ (-638 $))))) (-15 -1444 ($ $ (-1166) (-1 $ (-638 $)))) (-15 -1444 ($ $ (-1166) (-1 $ $))) (-15 -1444 ($ $ (-638 (-114)) (-638 (-1 $ $)))) (-15 -1444 ($ $ (-638 (-114)) (-638 (-1 $ (-638 $))))) (-15 -1444 ($ $ (-114) (-1 $ (-638 $)))) (-15 -1444 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1042)) (PROGN (-15 -3217 ((-1162 $) (-607 $))) (-15 -3660 ($ $))) |%noBranch|) (IF (|has| $ (-1031 (-561))) (PROGN (-15 -2736 ((-112) $)) (-15 -3402 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-611 #0=(-607 $)) . T) ((-608 (-856)) . T) ((-308 $) . T) ((-512 (-607 $) $) . T) ((-512 $ $) . T) ((-844) . T) ((-1031 #0#) . T) ((-1090) . T))
+((-3880 (((-638 |#1|) (-638 |#1|)) 10)))
+(((-302 |#1|) (-10 -7 (-15 -3880 ((-638 |#1|) (-638 |#1|)))) (-842)) (T -302))
+((-3880 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-842)) (-5 *1 (-302 *3)))))
+(-10 -7 (-15 -3880 ((-638 |#1|) (-638 |#1|))))
+((-4120 (((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)) 17)))
+(((-303 |#1| |#2|) (-10 -7 (-15 -4120 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)))) (-1042) (-1042)) (T -303))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-682 *6)) (-5 *1 (-303 *5 *6)))))
+(-10 -7 (-15 -4120 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|))))
+((-3391 (((-1253 (-315 (-378))) (-1253 (-315 (-224)))) 105)) (-3936 (((-1084 (-837 (-224))) (-1084 (-837 (-378)))) 40)) (-1789 (((-638 (-1148)) (-1146 (-224))) 87)) (-3697 (((-315 (-378)) (-945 (-224))) 50)) (-4224 (((-224) (-945 (-224))) 46)) (-2801 (((-1148) (-378)) 169)) (-2614 (((-837 (-224)) (-837 (-378))) 34)) (-3017 (((-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))) (-1253 (-315 (-224)))) 143)) (-2469 (((-1028) (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) 181) (((-1028) (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) 179)) (-3327 (((-682 (-224)) (-638 (-224)) (-765)) 14)) (-3551 (((-1253 (-692)) (-638 (-224))) 94)) (-4126 (((-638 (-1148)) (-638 (-224))) 75)) (-3003 (((-3 (-315 (-224)) "failed") (-315 (-224))) 120)) (-3517 (((-112) (-224) (-1084 (-837 (-224)))) 109)) (-1458 (((-1028) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) 198)) (-2338 (((-224) (-1084 (-837 (-224)))) 107)) (-4137 (((-224) (-1084 (-837 (-224)))) 108)) (-2820 (((-224) (-406 (-561))) 27)) (-3404 (((-1148) (-378)) 73)) (-3885 (((-224) (-378)) 17)) (-2028 (((-378) (-1253 (-315 (-224)))) 154)) (-3181 (((-315 (-224)) (-315 (-378))) 23)) (-1722 (((-406 (-561)) (-315 (-224))) 53)) (-2511 (((-315 (-406 (-561))) (-315 (-224))) 69)) (-1752 (((-315 (-378)) (-315 (-224))) 98)) (-2238 (((-224) (-315 (-224))) 54)) (-2671 (((-638 (-224)) (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) 64)) (-2824 (((-1084 (-837 (-224))) (-1084 (-837 (-224)))) 61)) (-2108 (((-1148) (-224)) 72)) (-4218 (((-692) (-224)) 90)) (-4016 (((-406 (-561)) (-224)) 55)) (-1389 (((-315 (-378)) (-224)) 49)) (-4174 (((-638 (-1084 (-837 (-224)))) (-638 (-1084 (-837 (-378))))) 43)) (-2725 (((-1028) (-638 (-1028))) 165) (((-1028) (-1028) (-1028)) 162)) (-2587 (((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-304) (-10 -7 (-15 -3885 ((-224) (-378))) (-15 -3181 ((-315 (-224)) (-315 (-378)))) (-15 -2614 ((-837 (-224)) (-837 (-378)))) (-15 -3936 ((-1084 (-837 (-224))) (-1084 (-837 (-378))))) (-15 -4174 ((-638 (-1084 (-837 (-224)))) (-638 (-1084 (-837 (-378)))))) (-15 -4016 ((-406 (-561)) (-224))) (-15 -1722 ((-406 (-561)) (-315 (-224)))) (-15 -2238 ((-224) (-315 (-224)))) (-15 -3003 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -2028 ((-378) (-1253 (-315 (-224))))) (-15 -3017 ((-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))) (-1253 (-315 (-224))))) (-15 -2511 ((-315 (-406 (-561))) (-315 (-224)))) (-15 -2824 ((-1084 (-837 (-224))) (-1084 (-837 (-224))))) (-15 -2671 ((-638 (-224)) (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))) (-15 -4218 ((-692) (-224))) (-15 -3551 ((-1253 (-692)) (-638 (-224)))) (-15 -1752 ((-315 (-378)) (-315 (-224)))) (-15 -3391 ((-1253 (-315 (-378))) (-1253 (-315 (-224))))) (-15 -3517 ((-112) (-224) (-1084 (-837 (-224))))) (-15 -2108 ((-1148) (-224))) (-15 -3404 ((-1148) (-378))) (-15 -4126 ((-638 (-1148)) (-638 (-224)))) (-15 -1789 ((-638 (-1148)) (-1146 (-224)))) (-15 -2338 ((-224) (-1084 (-837 (-224))))) (-15 -4137 ((-224) (-1084 (-837 (-224))))) (-15 -2725 ((-1028) (-1028) (-1028))) (-15 -2725 ((-1028) (-638 (-1028)))) (-15 -2801 ((-1148) (-378))) (-15 -2469 ((-1028) (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))))) (-15 -2469 ((-1028) (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))) (-15 -2587 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1458 ((-1028) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3697 ((-315 (-378)) (-945 (-224)))) (-15 -4224 ((-224) (-945 (-224)))) (-15 -1389 ((-315 (-378)) (-224))) (-15 -2820 ((-224) (-406 (-561)))) (-15 -3327 ((-682 (-224)) (-638 (-224)) (-765))))) (T -304))
+((-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-304)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-406 (-561))) (-5 *2 (-224)) (-5 *1 (-304)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-945 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-945 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-638 (-1028))) (-5 *2 (-1028)) (-5 *1 (-304)))) (-2725 (*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-304)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-304)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-837 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-304)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *2 (-1253 (-315 (-378)))) (-5 *1 (-304)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1253 (-692))) (-5 *1 (-304)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-304)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-5 *2 (-638 (-224))) (-5 *1 (-304)))) (-2824 (*1 *2 *2) (-12 (-5 *2 (-1084 (-837 (-224)))) (-5 *1 (-304)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-561)))) (-5 *1 (-304)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *2 (-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561)))) (-5 *1 (-304)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))) (-3003 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-561))) (-5 *1 (-304)))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-561))) (-5 *1 (-304)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-638 (-1084 (-837 (-378))))) (-5 *2 (-638 (-1084 (-837 (-224))))) (-5 *1 (-304)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1084 (-837 (-378)))) (-5 *2 (-1084 (-837 (-224)))) (-5 *1 (-304)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-837 (-378))) (-5 *2 (-837 (-224))) (-5 *1 (-304)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
+(-10 -7 (-15 -3885 ((-224) (-378))) (-15 -3181 ((-315 (-224)) (-315 (-378)))) (-15 -2614 ((-837 (-224)) (-837 (-378)))) (-15 -3936 ((-1084 (-837 (-224))) (-1084 (-837 (-378))))) (-15 -4174 ((-638 (-1084 (-837 (-224)))) (-638 (-1084 (-837 (-378)))))) (-15 -4016 ((-406 (-561)) (-224))) (-15 -1722 ((-406 (-561)) (-315 (-224)))) (-15 -2238 ((-224) (-315 (-224)))) (-15 -3003 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -2028 ((-378) (-1253 (-315 (-224))))) (-15 -3017 ((-2 (|:| |additions| (-561)) (|:| |multiplications| (-561)) (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))) (-1253 (-315 (-224))))) (-15 -2511 ((-315 (-406 (-561))) (-315 (-224)))) (-15 -2824 ((-1084 (-837 (-224))) (-1084 (-837 (-224))))) (-15 -2671 ((-638 (-224)) (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))) (-15 -4218 ((-692) (-224))) (-15 -3551 ((-1253 (-692)) (-638 (-224)))) (-15 -1752 ((-315 (-378)) (-315 (-224)))) (-15 -3391 ((-1253 (-315 (-378))) (-1253 (-315 (-224))))) (-15 -3517 ((-112) (-224) (-1084 (-837 (-224))))) (-15 -2108 ((-1148) (-224))) (-15 -3404 ((-1148) (-378))) (-15 -4126 ((-638 (-1148)) (-638 (-224)))) (-15 -1789 ((-638 (-1148)) (-1146 (-224)))) (-15 -2338 ((-224) (-1084 (-837 (-224))))) (-15 -4137 ((-224) (-1084 (-837 (-224))))) (-15 -2725 ((-1028) (-1028) (-1028))) (-15 -2725 ((-1028) (-638 (-1028)))) (-15 -2801 ((-1148) (-378))) (-15 -2469 ((-1028) (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))))) (-15 -2469 ((-1028) (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))) (-15 -2587 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1458 ((-1028) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3697 ((-315 (-378)) (-945 (-224)))) (-15 -4224 ((-224) (-945 (-224)))) (-15 -1389 ((-315 (-378)) (-224))) (-15 -2820 ((-224) (-406 (-561)))) (-15 -3327 ((-682 (-224)) (-638 (-224)) (-765))))
+((-1671 (((-112) $ $) 11)) (-1793 (($ $ $) 15)) (-1774 (($ $ $) 14)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 43)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 52)) (-1623 (($ $ $) 20) (($ (-638 $)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-1756 (((-3 $ "failed") $ $) 17)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 45)))
+(((-305 |#1|) (-10 -8 (-15 -2563 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -4252 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4252 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3158 |#1|)) |#1| |#1|)) (-15 -1793 (|#1| |#1| |#1|)) (-15 -1774 (|#1| |#1| |#1|)) (-15 -1671 ((-112) |#1| |#1|)) (-15 -2118 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -2371 ((-2 (|:| -4188 (-638 |#1|)) (|:| -3158 |#1|)) (-638 |#1|))) (-15 -1623 (|#1| (-638 |#1|))) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305))
+NIL
+(-10 -8 (-15 -2563 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -4252 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4252 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3158 |#1|)) |#1| |#1|)) (-15 -1793 (|#1| |#1| |#1|)) (-15 -1774 (|#1| |#1| |#1|)) (-15 -1671 ((-112) |#1| |#1|)) (-15 -2118 ((-3 (-638 |#1|) "failed") (-638 |#1|) |#1|)) (-15 -2371 ((-2 (|:| -4188 (-638 |#1|)) (|:| -3158 |#1|)) (-638 |#1|))) (-15 -1623 (|#1| (-638 |#1|))) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1671 (((-112) $ $) 60)) (-1965 (($) 17 T CONST)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-3113 (((-112) $) 31)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-306) (-139)) (T -306))
-((-1599 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-762)))) (-3902 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-306)))) (-2881 (*1 *1 *1 *1) (-4 *1 (-306))) (-1709 (*1 *1 *1 *1) (-4 *1 (-306))) (-3304 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2461 *1))) (-4 *1 (-306)))) (-3304 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-2732 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306)))))
-(-13 (-910) (-10 -8 (-15 -1599 ((-112) $ $)) (-15 -1562 ((-762) $)) (-15 -3902 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -2881 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -3304 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $)) (-15 -3304 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2732 ((-3 (-635 $) "failed") (-635 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-1369 (($ $ (-635 |#2|) (-635 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-293 |#2|)) 11) (($ $ (-635 (-293 |#2|))) NIL)))
-(((-307 |#1| |#2|) (-10 -8 (-15 -1369 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -1369 (|#1| |#1| (-293 |#2|))) (-15 -1369 (|#1| |#1| |#2| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#2|)))) (-308 |#2|) (-1087)) (T -307))
-NIL
-(-10 -8 (-15 -1369 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -1369 (|#1| |#1| (-293 |#2|))) (-15 -1369 (|#1| |#1| |#2| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#2|))))
-((-1369 (($ $ (-635 |#1|) (-635 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-293 |#1|)) 11) (($ $ (-635 (-293 |#1|))) 10)))
-(((-308 |#1|) (-139) (-1087)) (T -308))
-((-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1087)))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1087)))))
-(-13 (-512 |t#1| |t#1|) (-10 -8 (-15 -1369 ($ $ (-293 |t#1|))) (-15 -1369 ($ $ (-635 (-293 |t#1|))))))
+((-1671 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765)))) (-1971 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-306)))) (-1774 (*1 *1 *1 *1) (-4 *1 (-306))) (-1793 (*1 *1 *1 *1) (-4 *1 (-306))) (-4252 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3158 *1))) (-4 *1 (-306)))) (-4252 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-2563 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-306)))))
+(-13 (-913) (-10 -8 (-15 -1671 ((-112) $ $)) (-15 -3569 ((-765) $)) (-15 -1971 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -1774 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -4252 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $)) (-15 -4252 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2563 ((-3 (-638 $) "failed") (-638 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-1444 (($ $ (-638 |#2|) (-638 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-293 |#2|)) 11) (($ $ (-638 (-293 |#2|))) NIL)))
+(((-307 |#1| |#2|) (-10 -8 (-15 -1444 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1444 (|#1| |#1| (-293 |#2|))) (-15 -1444 (|#1| |#1| |#2| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#2|)))) (-308 |#2|) (-1090)) (T -307))
+NIL
+(-10 -8 (-15 -1444 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1444 (|#1| |#1| (-293 |#2|))) (-15 -1444 (|#1| |#1| |#2| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#2|))))
+((-1444 (($ $ (-638 |#1|) (-638 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-293 |#1|)) 11) (($ $ (-638 (-293 |#1|))) 10)))
+(((-308 |#1|) (-139) (-1090)) (T -308))
+((-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1090)))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1090)))))
+(-13 (-512 |t#1| |t#1|) (-10 -8 (-15 -1444 ($ $ (-293 |t#1|))) (-15 -1444 ($ $ (-638 (-293 |t#1|))))))
(((-512 |#1| |#1|) . T))
-((-1369 ((|#1| (-1 |#1| (-558)) (-1165 (-406 (-558)))) 25)))
-(((-309 |#1|) (-10 -7 (-15 -1369 (|#1| (-1 |#1| (-558)) (-1165 (-406 (-558)))))) (-38 (-406 (-558)))) (T -309))
-((-1369 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1165 (-406 (-558)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-558)))))))
-(-10 -7 (-15 -1369 (|#1| (-1 |#1| (-558)) (-1165 (-406 (-558))))))
-((-3929 (((-112) $ $) NIL)) (-3832 (((-558) $) 12)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1660 (((-1122) $) 9)) (-3940 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-310) (-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3832 ((-558) $))))) (T -310))
-((-1660 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-310)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-310)))))
-(-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3832 ((-558) $))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 7)) (-1708 (((-112) $ $) 9)))
-(((-311) (-1087)) (T -311))
-NIL
-(-1087)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 62)) (-1669 (((-1232 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-1232 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-3 (-1231 |#2| |#3| |#4|) "failed") $) 25)) (-3226 (((-1232 |#1| |#2| |#3| |#4|) $) NIL) (((-1163) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-558) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-558)))) (((-1231 |#2| |#3| |#4|) $) NIL)) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-1232 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1246 (-1232 |#1| |#2| |#3| |#4|)))) (-679 $) (-1246 $)) NIL) (((-679 (-1232 |#1| |#2| |#3| |#4|)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 (((-1232 |#1| |#2| |#3| |#4|) $) 21)) (-2521 (((-3 $ "failed") $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1138)))) (-2032 (((-112) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-2281 (($ $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-3397 (($ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) $) NIL)) (-1391 (((-3 (-834 |#2|) "failed") $) 78)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-306)))) (-4259 (((-1232 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 (-1232 |#1| |#2| |#3| |#4|)) (-635 (-1232 |#1| |#2| |#3| |#4|))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-293 (-1232 |#1| |#2| |#3| |#4|))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-293 (-1232 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-308 (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-1163)) (-635 (-1232 |#1| |#2| |#3| |#4|))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-512 (-1163) (-1232 |#1| |#2| |#3| |#4|)))) (($ $ (-1163) (-1232 |#1| |#2| |#3| |#4|)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-512 (-1163) (-1232 |#1| |#2| |#3| |#4|))))) (-1562 (((-762) $) NIL)) (-2276 (($ $ (-1232 |#1| |#2| |#3| |#4|)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-285 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1163)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) (-762)) NIL) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|))) NIL)) (-4218 (($ $) NIL)) (-3327 (((-1232 |#1| |#2| |#3| |#4|) $) 17)) (-3441 (((-882 (-558)) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-606 (-534)))) (((-378) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1012))) (((-224) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1012)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-1232 |#1| |#2| |#3| |#4|) (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-1232 |#1| |#2| |#3| |#4|)) 29) (($ (-1163)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-1028 (-1163)))) (($ (-1231 |#2| |#3| |#4|)) 36)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-1232 |#1| |#2| |#3| |#4|) (-899))) (|has| (-1232 |#1| |#2| |#3| |#4|) (-144))))) (-2417 (((-762)) NIL)) (-2912 (((-1232 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-543)))) (-2671 (((-112) $ $) NIL)) (-4241 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-811)))) (-2207 (($) 41 T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1163)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-890 (-1163)))) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) (-762)) NIL) (($ $ (-1 (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|))) NIL)) (-1757 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-1232 |#1| |#2| |#3| |#4|) (-841)))) (-1805 (($ $ $) 34) (($ (-1232 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|)) 31)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-1232 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1232 |#1| |#2| |#3| |#4|)) NIL)))
-(((-312 |#1| |#2| |#3| |#4|) (-13 (-982 (-1232 |#1| |#2| |#3| |#4|)) (-1028 (-1231 |#2| |#3| |#4|)) (-10 -8 (-15 -1391 ((-3 (-834 |#2|) "failed") $)) (-15 -3940 ($ (-1231 |#2| |#3| |#4|))))) (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)) (-13 (-27) (-1185) (-429 |#1|)) (-1163) |#2|) (T -312))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1231 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4) (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *1 (-312 *3 *4 *5 *6)))) (-1391 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *2 (-834 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4))))
-(-13 (-982 (-1232 |#1| |#2| |#3| |#4|)) (-1028 (-1231 |#2| |#3| |#4|)) (-10 -8 (-15 -1391 ((-3 (-834 |#2|) "failed") $)) (-15 -3940 ($ (-1231 |#2| |#3| |#4|)))))
-((-3397 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13)))
-(((-313 |#1| |#2|) (-10 -7 (-15 -3397 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-841) (-841)) (T -313))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-841)) (-4 *6 (-841)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6)))))
-(-10 -7 (-15 -3397 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|))))
-((-3776 (((-52) |#2| (-293 |#2|) (-762)) 33) (((-52) |#2| (-293 |#2|)) 24) (((-52) |#2| (-762)) 28) (((-52) |#2|) 25) (((-52) (-1163)) 21)) (-2095 (((-52) |#2| (-293 |#2|) (-406 (-558))) 51) (((-52) |#2| (-293 |#2|)) 48) (((-52) |#2| (-406 (-558))) 50) (((-52) |#2|) 49) (((-52) (-1163)) 47)) (-3801 (((-52) |#2| (-293 |#2|) (-406 (-558))) 46) (((-52) |#2| (-293 |#2|)) 43) (((-52) |#2| (-406 (-558))) 45) (((-52) |#2|) 44) (((-52) (-1163)) 42)) (-3788 (((-52) |#2| (-293 |#2|) (-558)) 39) (((-52) |#2| (-293 |#2|)) 35) (((-52) |#2| (-558)) 38) (((-52) |#2|) 36) (((-52) (-1163)) 34)))
-(((-314 |#1| |#2|) (-10 -7 (-15 -3776 ((-52) (-1163))) (-15 -3776 ((-52) |#2|)) (-15 -3776 ((-52) |#2| (-762))) (-15 -3776 ((-52) |#2| (-293 |#2|))) (-15 -3776 ((-52) |#2| (-293 |#2|) (-762))) (-15 -3788 ((-52) (-1163))) (-15 -3788 ((-52) |#2|)) (-15 -3788 ((-52) |#2| (-558))) (-15 -3788 ((-52) |#2| (-293 |#2|))) (-15 -3788 ((-52) |#2| (-293 |#2|) (-558))) (-15 -3801 ((-52) (-1163))) (-15 -3801 ((-52) |#2|)) (-15 -3801 ((-52) |#2| (-406 (-558)))) (-15 -3801 ((-52) |#2| (-293 |#2|))) (-15 -3801 ((-52) |#2| (-293 |#2|) (-406 (-558)))) (-15 -2095 ((-52) (-1163))) (-15 -2095 ((-52) |#2|)) (-15 -2095 ((-52) |#2| (-406 (-558)))) (-15 -2095 ((-52) |#2| (-293 |#2|))) (-15 -2095 ((-52) |#2| (-293 |#2|) (-406 (-558))))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -314))
-((-2095 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-2095 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-2095 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-558))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-2095 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-558))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 *5) (-631 *5))) (-5 *5 (-558)) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-13 (-450) (-841) (-1028 *4) (-631 *4))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-762)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-3776 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1185) (-429 *4))))))
-(-10 -7 (-15 -3776 ((-52) (-1163))) (-15 -3776 ((-52) |#2|)) (-15 -3776 ((-52) |#2| (-762))) (-15 -3776 ((-52) |#2| (-293 |#2|))) (-15 -3776 ((-52) |#2| (-293 |#2|) (-762))) (-15 -3788 ((-52) (-1163))) (-15 -3788 ((-52) |#2|)) (-15 -3788 ((-52) |#2| (-558))) (-15 -3788 ((-52) |#2| (-293 |#2|))) (-15 -3788 ((-52) |#2| (-293 |#2|) (-558))) (-15 -3801 ((-52) (-1163))) (-15 -3801 ((-52) |#2|)) (-15 -3801 ((-52) |#2| (-406 (-558)))) (-15 -3801 ((-52) |#2| (-293 |#2|))) (-15 -3801 ((-52) |#2| (-293 |#2|) (-406 (-558)))) (-15 -2095 ((-52) (-1163))) (-15 -2095 ((-52) |#2|)) (-15 -2095 ((-52) |#2| (-406 (-558)))) (-15 -2095 ((-52) |#2| (-293 |#2|))) (-15 -2095 ((-52) |#2| (-293 |#2|) (-406 (-558)))))
-((-3929 (((-112) $ $) NIL)) (-2598 (((-635 $) $ (-1163)) NIL (|has| |#1| (-550))) (((-635 $) $) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $) (-1163)) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $)) NIL (|has| |#1| (-550))) (((-635 $) (-942 $)) NIL (|has| |#1| (-550)))) (-3368 (($ $ (-1163)) NIL (|has| |#1| (-550))) (($ $) NIL (|has| |#1| (-550))) (($ (-1159 $) (-1163)) NIL (|has| |#1| (-550))) (($ (-1159 $)) NIL (|has| |#1| (-550))) (($ (-942 $)) NIL (|has| |#1| (-550)))) (-3124 (((-112) $) 27 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-4078 (((-635 (-1163)) $) 349)) (-3907 (((-406 (-1159 $)) $ (-604 $)) NIL (|has| |#1| (-550)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-3798 (((-635 (-604 $)) $) NIL)) (-2277 (($ $) 159 (|has| |#1| (-550)))) (-2131 (($ $) 135 (|has| |#1| (-550)))) (-1755 (($ $ (-1079 $)) 220 (|has| |#1| (-550))) (($ $ (-1163)) 216 (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) NIL (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-2564 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) 366) (($ $ (-635 (-604 $)) (-635 $)) 410)) (-2418 (((-417 (-1159 $)) (-1159 $)) 294 (-12 (|has| |#1| (-450)) (|has| |#1| (-550))))) (-2018 (($ $) NIL (|has| |#1| (-550)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-550)))) (-3948 (($ $) NIL (|has| |#1| (-550)))) (-1599 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2254 (($ $) 155 (|has| |#1| (-550)))) (-2109 (($ $) 131 (|has| |#1| (-550)))) (-2983 (($ $ (-558)) 69 (|has| |#1| (-550)))) (-2298 (($ $) 163 (|has| |#1| (-550)))) (-2158 (($ $) 139 (|has| |#1| (-550)))) (-3457 (($) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))) CONST)) (-1571 (((-635 $) $ (-1163)) NIL (|has| |#1| (-550))) (((-635 $) $) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $) (-1163)) NIL (|has| |#1| (-550))) (((-635 $) (-1159 $)) NIL (|has| |#1| (-550))) (((-635 $) (-942 $)) NIL (|has| |#1| (-550)))) (-2363 (($ $ (-1163)) NIL (|has| |#1| (-550))) (($ $) NIL (|has| |#1| (-550))) (($ (-1159 $) (-1163)) 122 (|has| |#1| (-550))) (($ (-1159 $)) NIL (|has| |#1| (-550))) (($ (-942 $)) NIL (|has| |#1| (-550)))) (-3302 (((-3 (-604 $) "failed") $) 17) (((-3 (-1163) "failed") $) NIL) (((-3 |#1| "failed") $) 419) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-942 |#1|)) "failed") $) NIL (|has| |#1| (-550))) (((-3 (-942 |#1|) "failed") $) NIL (|has| |#1| (-1039))) (((-3 (-406 (-558)) "failed") $) 46 (-3994 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-3226 (((-604 $) $) 11) (((-1163) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-942 |#1|)) $) NIL (|has| |#1| (-550))) (((-942 |#1|) $) NIL (|has| |#1| (-1039))) (((-406 (-558)) $) 305 (-3994 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-1709 (($ $ $) NIL (|has| |#1| (-550)))) (-1918 (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 115 (|has| |#1| (-1039))) (((-679 |#1|) (-679 $)) 105 (|has| |#1| (-1039))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (-3866 (($ $) 87 (|has| |#1| (-550)))) (-3248 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))))) (-2881 (($ $ $) NIL (|has| |#1| (-550)))) (-1362 (($ $ (-1079 $)) 224 (|has| |#1| (-550))) (($ $ (-1163)) 222 (|has| |#1| (-550)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-550)))) (-2992 (((-112) $) NIL (|has| |#1| (-550)))) (-3748 (($ $ $) 190 (|has| |#1| (-550)))) (-3348 (($) 125 (|has| |#1| (-550)))) (-3322 (($ $ $) 210 (|has| |#1| (-550)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 372 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 379 (|has| |#1| (-876 (-378))))) (-2058 (($ $) NIL) (($ (-635 $)) NIL)) (-2380 (((-635 (-114)) $) NIL)) (-2154 (((-114) (-114)) 265)) (-3999 (((-112) $) 25 (-3994 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))))) (-1495 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-2772 (($ $) 68 (|has| |#1| (-1039)))) (-3316 (((-1112 |#1| (-604 $)) $) 82 (|has| |#1| (-1039)))) (-1721 (((-112) $) 61 (|has| |#1| (-550)))) (-2136 (($ $ (-558)) NIL (|has| |#1| (-550)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-550)))) (-2550 (((-1159 $) (-604 $)) 266 (|has| $ (-1039)))) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 $ $) (-604 $)) 406)) (-2025 (((-3 (-604 $) "failed") $) NIL)) (-4342 (($ $) 129 (|has| |#1| (-550)))) (-2515 (($ $) 235 (|has| |#1| (-550)))) (-1500 (($ (-635 $)) NIL (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-2510 (((-1145) $) NIL)) (-3892 (((-635 (-604 $)) $) 49)) (-3390 (($ (-114) $) NIL) (($ (-114) (-635 $)) 411)) (-2819 (((-3 (-635 $) "failed") $) NIL (|has| |#1| (-1099)))) (-3633 (((-3 (-2 (|:| |val| $) (|:| -1857 (-558))) "failed") $) NIL (|has| |#1| (-1039)))) (-4195 (((-3 (-635 $) "failed") $) 414 (|has| |#1| (-25)))) (-2320 (((-3 (-2 (|:| -3455 (-558)) (|:| |var| (-604 $))) "failed") $) 418 (|has| |#1| (-25)))) (-3637 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $) NIL (|has| |#1| (-1099))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-114)) NIL (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-1163)) NIL (|has| |#1| (-1039)))) (-3557 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) 53)) (-3823 (($ $) NIL (-3994 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-3082 (($ $ (-1163)) 239 (|has| |#1| (-550))) (($ $ (-1079 $)) 241 (|has| |#1| (-550)))) (-2361 (((-762) $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) 43)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 287 (|has| |#1| (-550)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-1711 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-2092 (($ $ (-1163)) 214 (|has| |#1| (-550))) (($ $) 212 (|has| |#1| (-550)))) (-3608 (($ $) 206 (|has| |#1| (-550)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 292 (-12 (|has| |#1| (-450)) (|has| |#1| (-550))))) (-3939 (((-417 $) $) NIL (|has| |#1| (-550)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-550))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-550)))) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-550)))) (-3944 (($ $) 127 (|has| |#1| (-550)))) (-4254 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-1369 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) 405) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) 359) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1163)) NIL (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-606 (-534)))) (($ $) NIL (|has| |#1| (-606 (-534)))) (($ $ (-114) $ (-1163)) 347 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-114)) (-635 $) (-1163)) 346 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) NIL (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ (-635 $))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ $)) NIL (|has| |#1| (-1039)))) (-1562 (((-762) $) NIL (|has| |#1| (-550)))) (-2067 (($ $) 227 (|has| |#1| (-550)))) (-2276 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-3604 (($ $) NIL) (($ $ $) NIL)) (-2097 (($ $) 237 (|has| |#1| (-550)))) (-2802 (($ $) 188 (|has| |#1| (-550)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-1039))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-1039))) (($ $ (-1163)) NIL (|has| |#1| (-1039)))) (-4218 (($ $) 70 (|has| |#1| (-550)))) (-3327 (((-1112 |#1| (-604 $)) $) 84 (|has| |#1| (-550)))) (-2297 (($ $) 303 (|has| $ (-1039)))) (-2312 (($ $) 165 (|has| |#1| (-550)))) (-2170 (($ $) 141 (|has| |#1| (-550)))) (-2289 (($ $) 161 (|has| |#1| (-550)))) (-2146 (($ $) 137 (|has| |#1| (-550)))) (-2265 (($ $) 157 (|has| |#1| (-550)))) (-2120 (($ $) 133 (|has| |#1| (-550)))) (-3441 (((-882 (-558)) $) NIL (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#1| (-606 (-882 (-378))))) (($ (-417 $)) NIL (|has| |#1| (-550))) (((-534) $) 344 (|has| |#1| (-606 (-534))))) (-3068 (($ $ $) NIL (|has| |#1| (-471)))) (-3072 (($ $ $) NIL (|has| |#1| (-471)))) (-3940 (((-853) $) 404) (($ (-604 $)) 395) (($ (-1163)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-550))) (($ (-48)) 298 (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) (($ (-1112 |#1| (-604 $))) 86 (|has| |#1| (-1039))) (($ (-406 |#1|)) NIL (|has| |#1| (-550))) (($ (-942 (-406 |#1|))) NIL (|has| |#1| (-550))) (($ (-406 (-942 (-406 |#1|)))) NIL (|has| |#1| (-550))) (($ (-406 (-942 |#1|))) NIL (|has| |#1| (-550))) (($ (-942 |#1|)) NIL (|has| |#1| (-1039))) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-550)) (|has| |#1| (-1028 (-406 (-558)))))) (($ (-558)) 34 (-3994 (|has| |#1| (-1028 (-558))) (|has| |#1| (-1039))))) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL (|has| |#1| (-1039)))) (-2638 (($ $) NIL) (($ (-635 $)) NIL)) (-3207 (($ $ $) 208 (|has| |#1| (-550)))) (-3185 (($ $ $) 194 (|has| |#1| (-550)))) (-1493 (($ $ $) 198 (|has| |#1| (-550)))) (-1817 (($ $ $) 192 (|has| |#1| (-550)))) (-3750 (($ $ $) 196 (|has| |#1| (-550)))) (-2480 (((-112) (-114)) 9)) (-4175 (($ $) 171 (|has| |#1| (-550)))) (-2209 (($ $) 147 (|has| |#1| (-550)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) 167 (|has| |#1| (-550)))) (-2184 (($ $) 143 (|has| |#1| (-550)))) (-4197 (($ $) 175 (|has| |#1| (-550)))) (-2233 (($ $) 151 (|has| |#1| (-550)))) (-4238 (($ (-1163) $) NIL) (($ (-1163) $ $) NIL) (($ (-1163) $ $ $) NIL) (($ (-1163) $ $ $ $) NIL) (($ (-1163) (-635 $)) NIL)) (-2343 (($ $) 202 (|has| |#1| (-550)))) (-2734 (($ $) 200 (|has| |#1| (-550)))) (-2038 (($ $) 177 (|has| |#1| (-550)))) (-2244 (($ $) 153 (|has| |#1| (-550)))) (-4185 (($ $) 173 (|has| |#1| (-550)))) (-2221 (($ $) 149 (|has| |#1| (-550)))) (-4164 (($ $) 169 (|has| |#1| (-550)))) (-2195 (($ $) 145 (|has| |#1| (-550)))) (-4241 (($ $) 180 (|has| |#1| (-550)))) (-2207 (($) 20 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) CONST)) (-3898 (($ $) 231 (|has| |#1| (-550)))) (-2220 (($) 22 (-3994 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))) CONST)) (-3765 (($ $) 182 (|has| |#1| (-550))) (($ $ $) 184 (|has| |#1| (-550)))) (-3315 (($ $) 229 (|has| |#1| (-550)))) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-1039))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-1039))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-1039))) (($ $ (-1163)) NIL (|has| |#1| (-1039)))) (-3675 (($ $) 233 (|has| |#1| (-550)))) (-3087 (($ $ $) 186 (|has| |#1| (-550)))) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 79)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 78)) (-1805 (($ (-1112 |#1| (-604 $)) (-1112 |#1| (-604 $))) 96 (|has| |#1| (-550))) (($ $ $) 42 (-3994 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-1796 (($ $ $) 40 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (($ $) 29 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (-1785 (($ $ $) 38 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))) (** (($ $ $) 63 (|has| |#1| (-550))) (($ $ (-406 (-558))) 300 (|has| |#1| (-550))) (($ $ (-558)) 74 (-3994 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-762)) 71 (-3994 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099)))) (($ $ (-911)) 76 (-3994 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099))))) (* (($ (-406 (-558)) $) NIL (|has| |#1| (-550))) (($ $ (-406 (-558))) NIL (|has| |#1| (-550))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-3994 (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) (|has| |#1| (-1099)))) (($ (-558) $) 32 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (($ (-762) $) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))))) (($ (-911) $) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))))))
-(((-315 |#1|) (-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-550)) (PROGN (-6 (-29 |#1|)) (-6 (-1185)) (-6 (-159)) (-6 (-621)) (-6 (-1126)) (-15 -3866 ($ $)) (-15 -1721 ((-112) $)) (-15 -2983 ($ $ (-558))) (IF (|has| |#1| (-450)) (PROGN (-15 -2796 ((-417 (-1159 $)) (-1159 $))) (-15 -2418 ((-417 (-1159 $)) (-1159 $)))) |%noBranch|) (IF (|has| |#1| (-1028 (-558))) (-6 (-1028 (-48))) |%noBranch|)) |%noBranch|))) (-841)) (T -315))
-((-3866 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-550)) (-4 *2 (-841)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))) (-2983 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1)) (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841)))) (-2418 (*1 *2 *3) (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1)) (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841)))))
-(-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-550)) (PROGN (-6 (-29 |#1|)) (-6 (-1185)) (-6 (-159)) (-6 (-621)) (-6 (-1126)) (-15 -3866 ($ $)) (-15 -1721 ((-112) $)) (-15 -2983 ($ $ (-558))) (IF (|has| |#1| (-450)) (PROGN (-15 -2796 ((-417 (-1159 $)) (-1159 $))) (-15 -2418 ((-417 (-1159 $)) (-1159 $)))) |%noBranch|) (IF (|has| |#1| (-1028 (-558))) (-6 (-1028 (-48))) |%noBranch|)) |%noBranch|)))
-((-3534 (((-52) |#2| (-114) (-293 |#2|) (-635 |#2|)) 88) (((-52) |#2| (-114) (-293 |#2|) (-293 |#2|)) 84) (((-52) |#2| (-114) (-293 |#2|) |#2|) 86) (((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|) 87) (((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|))) 80) (((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 |#2|)) 82) (((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 |#2|)) 83) (((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|))) 81) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|)) 89) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|)) 85)))
-(((-316 |#1| |#2|) (-10 -7 (-15 -3534 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -3534 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -3534 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3534 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3534 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3534 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3534 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -3534 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -3534 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -3534 ((-52) |#2| (-114) (-293 |#2|) (-635 |#2|)))) (-13 (-841) (-550) (-606 (-534))) (-429 |#1|)) (T -316))
-((-3534 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-635 *3)) (-4 *3 (-429 *7)) (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))) (-3534 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-3534 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-3534 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *5)))) (-3534 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-114))) (-5 *6 (-635 (-293 *8))) (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-3534 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-3534 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 (-293 *8))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *8)) (-5 *6 (-635 *8)) (-4 *8 (-429 *7)) (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-3534 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-3534 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-635 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-3534 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) (-4 *5 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *6)))))
-(-10 -7 (-15 -3534 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -3534 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -3534 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3534 ((-52) (-635 (-293 |#2|)) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3534 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 |#2|))) (-15 -3534 ((-52) (-635 |#2|) (-635 (-114)) (-293 |#2|) (-635 (-293 |#2|)))) (-15 -3534 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -3534 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -3534 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -3534 ((-52) |#2| (-114) (-293 |#2|) (-635 |#2|))))
-((-1554 (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558) (-1145)) 45) (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558)) 46) (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558) (-1145)) 42) (((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558)) 43)) (-1314 (((-1 (-224) (-224)) (-224)) 44)))
-(((-317) (-10 -7 (-15 -1314 ((-1 (-224) (-224)) (-224))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558) (-1145))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558) (-1145))))) (T -317))
-((-1554 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558)) (-5 *8 (-1145)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-1554 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-1554 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *7 (-1145)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-1554 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *2 (-1195 (-916))) (-5 *1 (-317)))) (-1314 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
-(-10 -7 (-15 -1314 ((-1 (-224) (-224)) (-224))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-1 (-224) (-224)) (-558) (-1145))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558))) (-15 -1554 ((-1195 (-916)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-224) (-558) (-1145))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 25)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3414 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 20)) (-2277 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-2298 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) 31)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) 16)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-406 (-558))) NIL) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4342 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1337 (($ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185)))))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-406 (-558))) NIL)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1565 (((-406 (-558)) $) 17)) (-4248 (($ (-1231 |#1| |#2| |#3|)) 11)) (-1857 (((-1231 |#1| |#2| |#3|) $) 12)) (-3944 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4263 (((-406 (-558)) $) NIL)) (-2312 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 10)) (-3940 (((-853) $) 37) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3143 ((|#1| $ (-406 (-558))) 29)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) NIL)) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 27)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 32)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-318 |#1| |#2| |#3|) (-13 (-1227 |#1|) (-783) (-10 -8 (-15 -4248 ($ (-1231 |#1| |#2| |#3|))) (-15 -1857 ((-1231 |#1| |#2| |#3|) $)) (-15 -1565 ((-406 (-558)) $)))) (-13 (-362) (-841)) (-1163) |#1|) (T -318))
-((-4248 (*1 *1 *2) (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-1231 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3))))
-(-13 (-1227 |#1|) (-783) (-10 -8 (-15 -4248 ($ (-1231 |#1| |#2| |#3|))) (-15 -1857 ((-1231 |#1| |#2| |#3|) $)) (-15 -1565 ((-406 (-558)) $))))
-((-2136 (((-2 (|:| -1857 (-762)) (|:| -3455 |#1|) (|:| |radicand| (-635 |#1|))) (-417 |#1|) (-762)) 24)) (-4342 (((-635 (-2 (|:| -3455 (-762)) (|:| |logand| |#1|))) (-417 |#1|)) 28)))
-(((-319 |#1|) (-10 -7 (-15 -2136 ((-2 (|:| -1857 (-762)) (|:| -3455 |#1|) (|:| |radicand| (-635 |#1|))) (-417 |#1|) (-762))) (-15 -4342 ((-635 (-2 (|:| -3455 (-762)) (|:| |logand| |#1|))) (-417 |#1|)))) (-550)) (T -319))
-((-4342 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-550)) (-5 *2 (-635 (-2 (|:| -3455 (-762)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-550)) (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *5) (|:| |radicand| (-635 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-762)))))
-(-10 -7 (-15 -2136 ((-2 (|:| -1857 (-762)) (|:| -3455 |#1|) (|:| |radicand| (-635 |#1|))) (-417 |#1|) (-762))) (-15 -4342 ((-635 (-2 (|:| -3455 (-762)) (|:| |logand| |#1|))) (-417 |#1|))))
-((-4078 (((-635 |#2|) (-1159 |#4|)) 43)) (-3500 ((|#3| (-558)) 46)) (-2797 (((-1159 |#4|) (-1159 |#3|)) 30)) (-2655 (((-1159 |#4|) (-1159 |#4|) (-558)) 55)) (-2358 (((-1159 |#3|) (-1159 |#4|)) 21)) (-4263 (((-635 (-762)) (-1159 |#4|) (-635 |#2|)) 40)) (-4299 (((-1159 |#3|) (-1159 |#4|) (-635 |#2|) (-635 |#3|)) 35)))
-(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4299 ((-1159 |#3|) (-1159 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4263 ((-635 (-762)) (-1159 |#4|) (-635 |#2|))) (-15 -4078 ((-635 |#2|) (-1159 |#4|))) (-15 -2358 ((-1159 |#3|) (-1159 |#4|))) (-15 -2797 ((-1159 |#4|) (-1159 |#3|))) (-15 -2655 ((-1159 |#4|) (-1159 |#4|) (-558))) (-15 -3500 (|#3| (-558)))) (-784) (-841) (-1039) (-939 |#3| |#1| |#2|)) (T -320))
-((-3500 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1039)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-939 *2 *4 *5)))) (-2655 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *7)) (-5 *3 (-558)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *1 (-320 *4 *5 *6 *7)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1159 *6)) (-4 *6 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-1159 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-1159 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-635 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *8)) (-5 *4 (-635 *6)) (-4 *6 (-841)) (-4 *8 (-939 *7 *5 *6)) (-4 *5 (-784)) (-4 *7 (-1039)) (-5 *2 (-635 (-762))) (-5 *1 (-320 *5 *6 *7 *8)))) (-4299 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8)) (-4 *7 (-841)) (-4 *8 (-1039)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-5 *2 (-1159 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4299 ((-1159 |#3|) (-1159 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4263 ((-635 (-762)) (-1159 |#4|) (-635 |#2|))) (-15 -4078 ((-635 |#2|) (-1159 |#4|))) (-15 -2358 ((-1159 |#3|) (-1159 |#4|))) (-15 -2797 ((-1159 |#4|) (-1159 |#3|))) (-15 -2655 ((-1159 |#4|) (-1159 |#4|) (-558))) (-15 -3500 (|#3| (-558))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 14)) (-3414 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-558)))) $) 18)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2507 (((-762) $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3572 ((|#1| $ (-558)) NIL)) (-3513 (((-558) $ (-558)) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 (-558) (-558)) $) 10)) (-2510 (((-1145) $) NIL)) (-1740 (($ $ $) NIL (|has| (-558) (-783)))) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL) (($ |#1|) NIL)) (-3143 (((-558) |#1| $) NIL)) (-2207 (($) 15 T CONST)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) 21 (|has| |#1| (-841)))) (-1796 (($ $) 11) (($ $ $) 20)) (-1785 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL) (($ (-558) |#1|) 19)))
-(((-321 |#1|) (-13 (-21) (-708 (-558)) (-322 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-1087)) (T -321))
-NIL
-(-13 (-21) (-708 (-558)) (-322 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3414 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 27)) (-1868 (((-3 $ "failed") $ $) 19)) (-2507 (((-762) $) 28)) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 32)) (-3226 ((|#1| $) 33)) (-3572 ((|#1| $ (-558)) 25)) (-3513 ((|#2| $ (-558)) 26)) (-3838 (($ (-1 |#1| |#1|) $) 22)) (-1996 (($ (-1 |#2| |#2|) $) 23)) (-2510 (((-1145) $) 9)) (-1740 (($ $ $) 21 (|has| |#2| (-783)))) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ |#1|) 31)) (-3143 ((|#2| |#1| $) 24)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1785 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ |#2| |#1|) 29)))
-(((-322 |#1| |#2|) (-139) (-1087) (-130)) (T -322))
-((-1785 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130)))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)) (-5 *2 (-762)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)) (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 *4)))))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1087)) (-4 *2 (-130)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1087)))) (-3143 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130)))) (-1740 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130)) (-4 *3 (-783)))))
-(-13 (-130) (-1028 |t#1|) (-10 -8 (-15 -1785 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2507 ((-762) $)) (-15 -3414 ((-635 (-2 (|:| |gen| |t#1|) (|:| -3944 |t#2|))) $)) (-15 -3513 (|t#2| $ (-558))) (-15 -3572 (|t#1| $ (-558))) (-15 -3143 (|t#2| |t#1| $)) (-15 -1996 ($ (-1 |t#2| |t#2|) $)) (-15 -3838 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-783)) (-15 -1740 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-1028 |#1|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3414 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-762)))) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2507 (((-762) $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3572 ((|#1| $ (-558)) NIL)) (-3513 (((-762) $ (-558)) NIL)) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 (-762) (-762)) $) NIL)) (-2510 (((-1145) $) NIL)) (-1740 (($ $ $) NIL (|has| (-762) (-783)))) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL) (($ |#1|) NIL)) (-3143 (((-762) |#1| $) NIL)) (-2207 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1785 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-762) |#1|) NIL)))
-(((-323 |#1|) (-322 |#1| (-762)) (-1087)) (T -323))
-NIL
-(-322 |#1| (-762))
-((-3199 (($ $) 52)) (-2704 (($ $ |#2| |#3| $) 14)) (-2776 (($ (-1 |#3| |#3|) $) 33)) (-3837 (((-112) $) 24)) (-3853 ((|#2| $) 26)) (-2861 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-3012 ((|#2| $) 48)) (-3712 (((-635 |#2|) $) 36)) (-1664 (($ $ $ (-762)) 20)) (-1805 (($ $ |#2|) 40)))
-(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -3199 (|#1| |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1664 (|#1| |#1| |#1| (-762))) (-15 -2704 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3712 ((-635 |#2|) |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -3837 ((-112) |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1805 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1039) (-783)) (T -324))
-NIL
-(-10 -8 (-15 -3199 (|#1| |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1664 (|#1| |#1| |#1| (-762))) (-15 -2704 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3712 ((-635 |#2|) |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -3837 ((-112) |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1805 (|#1| |#1| |#2|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 91 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 89 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 86)) (-3226 (((-558) $) 90 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 88 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 87)) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3199 (($ $) 75 (|has| |#1| (-450)))) (-2704 (($ $ |#1| |#2| $) 79)) (-3999 (((-112) $) 31)) (-2987 (((-762) $) 82)) (-3594 (((-112) $) 65)) (-4056 (($ |#1| |#2|) 64)) (-3672 ((|#2| $) 81)) (-2776 (($ (-1 |#2| |#2|) $) 80)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3837 (((-112) $) 85)) (-3853 ((|#1| $) 84)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-550)))) (-4263 ((|#2| $) 67)) (-3012 ((|#1| $) 76 (|has| |#1| (-450)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50) (($ (-406 (-558))) 60 (-3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))))) (-3712 (((-635 |#1|) $) 83)) (-3143 ((|#1| $ |#2|) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-1664 (($ $ $ (-762)) 78 (|has| |#1| (-171)))) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-325 |#1| |#2|) (-139) (-1039) (-783)) (T -325))
-((-3837 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-112)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-635 *3)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-762)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-2776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)))) (-2704 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))) (-1664 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-4 *3 (-171)))) (-2861 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *2 (-550)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)) (-4 *2 (-450)))) (-3199 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *2 (-450)))))
-(-13 (-47 |t#1| |t#2|) (-410 |t#1|) (-10 -8 (-15 -3837 ((-112) $)) (-15 -3853 (|t#1| $)) (-15 -3712 ((-635 |t#1|) $)) (-15 -2987 ((-762) $)) (-15 -3672 (|t#2| $)) (-15 -2776 ($ (-1 |t#2| |t#2|) $)) (-15 -2704 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -1664 ($ $ $ (-762))) |%noBranch|) (IF (|has| |t#1| (-550)) (-15 -2861 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3012 (|t#1| $)) (-15 -3199 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-289) |has| |#1| (-550)) ((-410 |#1|) . T) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-1784 (((-112) (-112)) NIL)) (-4077 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) |#1|) $) NIL)) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-1958 (($ $) NIL (|has| |#1| (-1087)))) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-3436 (($ $ (-558)) NIL)) (-3959 (((-762) $) NIL)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-4150 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2650 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2492 (($ (-635 |#1|)) NIL)) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-3738 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-1651 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2492 ($ (-635 |#1|))) (-15 -3959 ((-762) $)) (-15 -3436 ($ $ (-558))) (-15 -1784 ((-112) (-112))))) (-1200)) (T -326))
-((-2492 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-326 *3)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-326 *3)) (-4 *3 (-1200)))) (-3436 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-1200)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1200)))))
-(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2492 ($ (-635 |#1|))) (-15 -3959 ((-762) $)) (-15 -3436 ($ $ (-558))) (-15 -1784 ((-112) (-112)))))
-((-1606 (((-112) $) 42)) (-4091 (((-762)) 22)) (-1719 ((|#2| $) 46) (($ $ (-911)) 100)) (-2507 (((-762)) 101)) (-3431 (($ (-1246 |#2|)) 20)) (-3235 (((-112) $) 114)) (-1423 ((|#2| $) 48) (($ $ (-911)) 98)) (-1715 (((-1159 |#2|) $) NIL) (((-1159 $) $ (-911)) 94)) (-1937 (((-1159 |#2|) $) 82)) (-3811 (((-1159 |#2|) $) 79) (((-3 (-1159 |#2|) "failed") $ $) 76)) (-3635 (($ $ (-1159 |#2|)) 53)) (-3670 (((-824 (-911))) 28) (((-911)) 43)) (-2887 (((-133)) 25)) (-4263 (((-824 (-911)) $) 30) (((-911) $) 116)) (-3703 (($) 107)) (-2979 (((-1246 |#2|) $) NIL) (((-679 |#2|) (-1246 $)) 39)) (-1487 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4062 (((-112) $) 41)))
-(((-327 |#1| |#2|) (-10 -8 (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -2507 ((-762))) (-15 -1487 (|#1| |#1|)) (-15 -3811 ((-3 (-1159 |#2|) "failed") |#1| |#1|)) (-15 -3811 ((-1159 |#2|) |#1|)) (-15 -1937 ((-1159 |#2|) |#1|)) (-15 -3635 (|#1| |#1| (-1159 |#2|))) (-15 -3235 ((-112) |#1|)) (-15 -3703 (|#1|)) (-15 -1719 (|#1| |#1| (-911))) (-15 -1423 (|#1| |#1| (-911))) (-15 -1715 ((-1159 |#1|) |#1| (-911))) (-15 -1719 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -4263 ((-911) |#1|)) (-15 -3670 ((-911))) (-15 -1715 ((-1159 |#2|) |#1|)) (-15 -3431 (|#1| (-1246 |#2|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -4091 ((-762))) (-15 -3670 ((-824 (-911)))) (-15 -4263 ((-824 (-911)) |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -4062 ((-112) |#1|)) (-15 -2887 ((-133)))) (-328 |#2|) (-362)) (T -327))
-((-2887 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-3670 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-824 (-911))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4091 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-3670 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-911)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-2507 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))))
-(-10 -8 (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -2507 ((-762))) (-15 -1487 (|#1| |#1|)) (-15 -3811 ((-3 (-1159 |#2|) "failed") |#1| |#1|)) (-15 -3811 ((-1159 |#2|) |#1|)) (-15 -1937 ((-1159 |#2|) |#1|)) (-15 -3635 (|#1| |#1| (-1159 |#2|))) (-15 -3235 ((-112) |#1|)) (-15 -3703 (|#1|)) (-15 -1719 (|#1| |#1| (-911))) (-15 -1423 (|#1| |#1| (-911))) (-15 -1715 ((-1159 |#1|) |#1| (-911))) (-15 -1719 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -4263 ((-911) |#1|)) (-15 -3670 ((-911))) (-15 -1715 ((-1159 |#2|) |#1|)) (-15 -3431 (|#1| (-1246 |#2|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -4091 ((-762))) (-15 -3670 ((-824 (-911)))) (-15 -4263 ((-824 (-911)) |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -4062 ((-112) |#1|)) (-15 -2887 ((-133))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1606 (((-112) $) 95)) (-4091 (((-762)) 91)) (-1719 ((|#1| $) 141) (($ $ (-911)) 138 (|has| |#1| (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) 123 (|has| |#1| (-367)))) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-1599 (((-112) $ $) 60)) (-2507 (((-762)) 113 (|has| |#1| (-367)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 102)) (-3226 ((|#1| $) 103)) (-3431 (($ (-1246 |#1|)) 147)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-3692 (($) 110 (|has| |#1| (-367)))) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-3567 (($) 125 (|has| |#1| (-367)))) (-3617 (((-112) $) 126 (|has| |#1| (-367)))) (-4362 (($ $ (-762)) 88 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) 72)) (-2532 (((-911) $) 128 (|has| |#1| (-367))) (((-824 (-911)) $) 85 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) 31)) (-2942 (($) 136 (|has| |#1| (-367)))) (-3235 (((-112) $) 135 (|has| |#1| (-367)))) (-1423 ((|#1| $) 142) (($ $ (-911)) 139 (|has| |#1| (-367)))) (-2521 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1715 (((-1159 |#1|) $) 146) (((-1159 $) $ (-911)) 140 (|has| |#1| (-367)))) (-1486 (((-911) $) 111 (|has| |#1| (-367)))) (-1937 (((-1159 |#1|) $) 132 (|has| |#1| (-367)))) (-3811 (((-1159 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-3635 (($ $ (-1159 |#1|)) 133 (|has| |#1| (-367)))) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-1823 (($) 115 (|has| |#1| (-367)) CONST)) (-2349 (($ (-911)) 112 (|has| |#1| (-367)))) (-3743 (((-112) $) 94)) (-1688 (((-1107) $) 10)) (-2461 (($) 134 (|has| |#1| (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 122 (|has| |#1| (-367)))) (-3939 (((-417 $) $) 75)) (-3670 (((-824 (-911))) 92) (((-911)) 144)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-2551 (((-762) $) 127 (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) 86 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) 100)) (-3780 (($ $) 119 (|has| |#1| (-367))) (($ $ (-762)) 117 (|has| |#1| (-367)))) (-4263 (((-824 (-911)) $) 93) (((-911) $) 143)) (-2297 (((-1159 |#1|)) 145)) (-2933 (($) 124 (|has| |#1| (-367)))) (-3703 (($) 137 (|has| |#1| (-367)))) (-2979 (((-1246 |#1|) $) 149) (((-679 |#1|) (-1246 $)) 148)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 121 (|has| |#1| (-367)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ |#1|) 101)) (-1487 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) 28)) (-2743 (((-1246 $)) 151) (((-1246 $) (-911)) 150)) (-2671 (((-112) $ $) 40)) (-4062 (((-112) $) 96)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3607 (($ $) 90 (|has| |#1| (-367))) (($ $ (-762)) 89 (|has| |#1| (-367)))) (-3042 (($ $) 118 (|has| |#1| (-367))) (($ $ (-762)) 116 (|has| |#1| (-367)))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 66) (($ $ |#1|) 99)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+((-1444 ((|#1| (-1 |#1| (-561)) (-1168 (-406 (-561)))) 25)))
+(((-309 |#1|) (-10 -7 (-15 -1444 (|#1| (-1 |#1| (-561)) (-1168 (-406 (-561)))))) (-38 (-406 (-561)))) (T -309))
+((-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-561))) (-5 *4 (-1168 (-406 (-561)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-561)))))))
+(-10 -7 (-15 -1444 (|#1| (-1 |#1| (-561)) (-1168 (-406 (-561))))))
+((-4011 (((-112) $ $) NIL)) (-3346 (((-561) $) 12)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1739 (((-1125) $) 9)) (-4022 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-310) (-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -3346 ((-561) $))))) (T -310))
+((-1739 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-310)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-310)))))
+(-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -3346 ((-561) $))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 7)) (-1733 (((-112) $ $) 9)))
+(((-311) (-1090)) (T -311))
+NIL
+(-1090)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 62)) (-2949 (((-1239 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-1239 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-3 (-1238 |#2| |#3| |#4|) "failed") $) 25)) (-3938 (((-1239 |#1| |#2| |#3| |#4|) $) NIL) (((-1166) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-561) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1031 (-561)))) (((-1238 |#2| |#3| |#4|) $) NIL)) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-1239 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1253 (-1239 |#1| |#2| |#3| |#4|)))) (-682 $) (-1253 $)) NIL) (((-682 (-1239 |#1| |#2| |#3| |#4|)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 (((-1239 |#1| |#2| |#3| |#4|) $) 21)) (-1663 (((-3 $ "failed") $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1141)))) (-2110 (((-112) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-844)))) (-2986 (($ $ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-844)))) (-4120 (($ (-1 (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|)) $) NIL)) (-1788 (((-3 (-837 |#2|) "failed") $) 78)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-306)))) (-1388 (((-1239 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 (-1239 |#1| |#2| |#3| |#4|)) (-638 (-1239 |#1| |#2| |#3| |#4|))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-308 (-1239 |#1| |#2| |#3| |#4|)))) (($ $ (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-308 (-1239 |#1| |#2| |#3| |#4|)))) (($ $ (-293 (-1239 |#1| |#2| |#3| |#4|))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-308 (-1239 |#1| |#2| |#3| |#4|)))) (($ $ (-638 (-293 (-1239 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-308 (-1239 |#1| |#2| |#3| |#4|)))) (($ $ (-638 (-1166)) (-638 (-1239 |#1| |#2| |#3| |#4|))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1239 |#1| |#2| |#3| |#4|)))) (($ $ (-1166) (-1239 |#1| |#2| |#3| |#4|)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1239 |#1| |#2| |#3| |#4|))))) (-3569 (((-765) $) NIL)) (-2277 (($ $ (-1239 |#1| |#2| |#3| |#4|)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-285 (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|))) NIL)) (-2861 (($ $) NIL)) (-4045 (((-1239 |#1| |#2| |#3| |#4|) $) 17)) (-4174 (((-885 (-561)) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-609 (-534)))) (((-378) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1015))) (((-224) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1015)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1239 |#1| |#2| |#3| |#4|) (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-1239 |#1| |#2| |#3| |#4|)) 29) (($ (-1166)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (($ (-1238 |#2| |#3| |#4|)) 36)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-1239 |#1| |#2| |#3| |#4|) (-902))) (|has| (-1239 |#1| |#2| |#3| |#4|) (-144))))) (-4259 (((-765)) NIL)) (-2432 (((-1239 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-543)))) (-3168 (((-112) $ $) NIL)) (-3749 (($ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-814)))) (-2211 (($) 41 T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|))) NIL)) (-1782 (((-112) $ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-1239 |#1| |#2| |#3| |#4|) (-844)))) (-1833 (($ $ $) 34) (($ (-1239 |#1| |#2| |#3| |#4|) (-1239 |#1| |#2| |#3| |#4|)) 31)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-1239 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1239 |#1| |#2| |#3| |#4|)) NIL)))
+(((-312 |#1| |#2| |#3| |#4|) (-13 (-985 (-1239 |#1| |#2| |#3| |#4|)) (-1031 (-1238 |#2| |#3| |#4|)) (-10 -8 (-15 -1788 ((-3 (-837 |#2|) "failed") $)) (-15 -4022 ($ (-1238 |#2| |#3| |#4|))))) (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)) (-13 (-27) (-1190) (-429 |#1|)) (-1166) |#2|) (T -312))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1238 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4) (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *1 (-312 *3 *4 *5 *6)))) (-1788 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *2 (-837 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4))))
+(-13 (-985 (-1239 |#1| |#2| |#3| |#4|)) (-1031 (-1238 |#2| |#3| |#4|)) (-10 -8 (-15 -1788 ((-3 (-837 |#2|) "failed") $)) (-15 -4022 ($ (-1238 |#2| |#3| |#4|)))))
+((-4120 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13)))
+(((-313 |#1| |#2|) (-10 -7 (-15 -4120 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-844) (-844)) (T -313))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6)))))
+(-10 -7 (-15 -4120 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|))))
+((-1482 (((-52) |#2| (-293 |#2|) (-765)) 33) (((-52) |#2| (-293 |#2|)) 24) (((-52) |#2| (-765)) 28) (((-52) |#2|) 25) (((-52) (-1166)) 21)) (-3406 (((-52) |#2| (-293 |#2|) (-406 (-561))) 51) (((-52) |#2| (-293 |#2|)) 48) (((-52) |#2| (-406 (-561))) 50) (((-52) |#2|) 49) (((-52) (-1166)) 47)) (-1515 (((-52) |#2| (-293 |#2|) (-406 (-561))) 46) (((-52) |#2| (-293 |#2|)) 43) (((-52) |#2| (-406 (-561))) 45) (((-52) |#2|) 44) (((-52) (-1166)) 42)) (-1499 (((-52) |#2| (-293 |#2|) (-561)) 39) (((-52) |#2| (-293 |#2|)) 35) (((-52) |#2| (-561)) 38) (((-52) |#2|) 36) (((-52) (-1166)) 34)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -1482 ((-52) (-1166))) (-15 -1482 ((-52) |#2|)) (-15 -1482 ((-52) |#2| (-765))) (-15 -1482 ((-52) |#2| (-293 |#2|))) (-15 -1482 ((-52) |#2| (-293 |#2|) (-765))) (-15 -1499 ((-52) (-1166))) (-15 -1499 ((-52) |#2|)) (-15 -1499 ((-52) |#2| (-561))) (-15 -1499 ((-52) |#2| (-293 |#2|))) (-15 -1499 ((-52) |#2| (-293 |#2|) (-561))) (-15 -1515 ((-52) (-1166))) (-15 -1515 ((-52) |#2|)) (-15 -1515 ((-52) |#2| (-406 (-561)))) (-15 -1515 ((-52) |#2| (-293 |#2|))) (-15 -1515 ((-52) |#2| (-293 |#2|) (-406 (-561)))) (-15 -3406 ((-52) (-1166))) (-15 -3406 ((-52) |#2|)) (-15 -3406 ((-52) |#2| (-406 (-561)))) (-15 -3406 ((-52) |#2| (-293 |#2|))) (-15 -3406 ((-52) |#2| (-293 |#2|) (-406 (-561))))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -314))
+((-3406 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-561))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))) (-1515 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-561))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1515 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-561)) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1499 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))) (-1482 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-765)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-1482 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-429 *4))))))
+(-10 -7 (-15 -1482 ((-52) (-1166))) (-15 -1482 ((-52) |#2|)) (-15 -1482 ((-52) |#2| (-765))) (-15 -1482 ((-52) |#2| (-293 |#2|))) (-15 -1482 ((-52) |#2| (-293 |#2|) (-765))) (-15 -1499 ((-52) (-1166))) (-15 -1499 ((-52) |#2|)) (-15 -1499 ((-52) |#2| (-561))) (-15 -1499 ((-52) |#2| (-293 |#2|))) (-15 -1499 ((-52) |#2| (-293 |#2|) (-561))) (-15 -1515 ((-52) (-1166))) (-15 -1515 ((-52) |#2|)) (-15 -1515 ((-52) |#2| (-406 (-561)))) (-15 -1515 ((-52) |#2| (-293 |#2|))) (-15 -1515 ((-52) |#2| (-293 |#2|) (-406 (-561)))) (-15 -3406 ((-52) (-1166))) (-15 -3406 ((-52) |#2|)) (-15 -3406 ((-52) |#2| (-406 (-561)))) (-15 -3406 ((-52) |#2| (-293 |#2|))) (-15 -3406 ((-52) |#2| (-293 |#2|) (-406 (-561)))))
+((-4011 (((-112) $ $) NIL)) (-3803 (((-638 $) $ (-1166)) NIL (|has| |#1| (-553))) (((-638 $) $) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $) (-1166)) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $)) NIL (|has| |#1| (-553))) (((-638 $) (-945 $)) NIL (|has| |#1| (-553)))) (-2964 (($ $ (-1166)) NIL (|has| |#1| (-553))) (($ $) NIL (|has| |#1| (-553))) (($ (-1162 $) (-1166)) NIL (|has| |#1| (-553))) (($ (-1162 $)) NIL (|has| |#1| (-553))) (($ (-945 $)) NIL (|has| |#1| (-553)))) (-2800 (((-112) $) 27 (-4007 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-1412 (((-638 (-1166)) $) 349)) (-1620 (((-406 (-1162 $)) $ (-607 $)) NIL (|has| |#1| (-553)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-1510 (((-638 (-607 $)) $) NIL)) (-2978 (($ $) 159 (|has| |#1| (-553)))) (-4064 (($ $) 135 (|has| |#1| (-553)))) (-4328 (($ $ (-1082 $)) 220 (|has| |#1| (-553))) (($ $ (-1166)) 216 (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) NIL (-4007 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-2612 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) 366) (($ $ (-638 (-607 $)) (-638 $)) 410)) (-4046 (((-417 (-1162 $)) (-1162 $)) 294 (-12 (|has| |#1| (-450)) (|has| |#1| (-553))))) (-1591 (($ $) NIL (|has| |#1| (-553)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-553)))) (-1665 (($ $) NIL (|has| |#1| (-553)))) (-1671 (((-112) $ $) NIL (|has| |#1| (-553)))) (-4172 (($ $) 155 (|has| |#1| (-553)))) (-4041 (($ $) 131 (|has| |#1| (-553)))) (-3630 (($ $ (-561)) 69 (|has| |#1| (-553)))) (-3009 (($ $) 163 (|has| |#1| (-553)))) (-4085 (($ $) 139 (|has| |#1| (-553)))) (-1965 (($) NIL (-4007 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-2137 (((-638 $) $ (-1166)) NIL (|has| |#1| (-553))) (((-638 $) $) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $) (-1166)) NIL (|has| |#1| (-553))) (((-638 $) (-1162 $)) NIL (|has| |#1| (-553))) (((-638 $) (-945 $)) NIL (|has| |#1| (-553)))) (-3559 (($ $ (-1166)) NIL (|has| |#1| (-553))) (($ $) NIL (|has| |#1| (-553))) (($ (-1162 $) (-1166)) 122 (|has| |#1| (-553))) (($ (-1162 $)) NIL (|has| |#1| (-553))) (($ (-945 $)) NIL (|has| |#1| (-553)))) (-4017 (((-3 (-607 $) "failed") $) 17) (((-3 (-1166) "failed") $) NIL) (((-3 |#1| "failed") $) 419) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-945 |#1|)) "failed") $) NIL (|has| |#1| (-553))) (((-3 (-945 |#1|) "failed") $) NIL (|has| |#1| (-1042))) (((-3 (-406 (-561)) "failed") $) 46 (-4007 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-3938 (((-607 $) $) 11) (((-1166) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-945 |#1|)) $) NIL (|has| |#1| (-553))) (((-945 |#1|) $) NIL (|has| |#1| (-1042))) (((-406 (-561)) $) 305 (-4007 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-1793 (($ $ $) NIL (|has| |#1| (-553)))) (-3602 (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 115 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 105 (|has| |#1| (-1042))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (-3185 (($ $) 87 (|has| |#1| (-553)))) (-3466 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-1774 (($ $ $) NIL (|has| |#1| (-553)))) (-3615 (($ $ (-1082 $)) 224 (|has| |#1| (-553))) (($ $ (-1166)) 222 (|has| |#1| (-553)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-553)))) (-2737 (((-112) $) NIL (|has| |#1| (-553)))) (-3196 (($ $ $) 190 (|has| |#1| (-553)))) (-4067 (($) 125 (|has| |#1| (-553)))) (-2227 (($ $ $) 210 (|has| |#1| (-553)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 372 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 379 (|has| |#1| (-879 (-378))))) (-1890 (($ $) NIL) (($ (-638 $)) NIL)) (-1719 (((-638 (-114)) $) NIL)) (-3479 (((-114) (-114)) 265)) (-3113 (((-112) $) 25 (-4007 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-3402 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-3458 (($ $) 68 (|has| |#1| (-1042)))) (-4030 (((-1115 |#1| (-607 $)) $) 82 (|has| |#1| (-1042)))) (-2444 (((-112) $) 61 (|has| |#1| (-553)))) (-2556 (($ $ (-561)) NIL (|has| |#1| (-553)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-553)))) (-3217 (((-1162 $) (-607 $)) 266 (|has| $ (-1042)))) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 $ $) (-607 $)) 406)) (-2012 (((-3 (-607 $) "failed") $) NIL)) (-4348 (($ $) 129 (|has| |#1| (-553)))) (-1972 (($ $) 235 (|has| |#1| (-553)))) (-1582 (($ (-638 $)) NIL (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-1764 (((-1148) $) NIL)) (-1600 (((-638 (-607 $)) $) 49)) (-4109 (($ (-114) $) NIL) (($ (-114) (-638 $)) 411)) (-3638 (((-3 (-638 $) "failed") $) NIL (|has| |#1| (-1102)))) (-3772 (((-3 (-2 (|:| |val| $) (|:| -4196 (-561))) "failed") $) NIL (|has| |#1| (-1042)))) (-1664 (((-3 (-638 $) "failed") $) 414 (|has| |#1| (-25)))) (-4336 (((-3 (-2 (|:| -4188 (-561)) (|:| |var| (-607 $))) "failed") $) 418 (|has| |#1| (-25)))) (-3431 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $) NIL (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-114)) NIL (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-1166)) NIL (|has| |#1| (-1042)))) (-2561 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) 53)) (-1540 (($ $) NIL (-4007 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-3041 (($ $ (-1166)) 239 (|has| |#1| (-553))) (($ $ (-1082 $)) 241 (|has| |#1| (-553)))) (-3061 (((-765) $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) 43)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 287 (|has| |#1| (-553)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-1297 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-2335 (($ $ (-1166)) 214 (|has| |#1| (-553))) (($ $) 212 (|has| |#1| (-553)))) (-2101 (($ $) 206 (|has| |#1| (-553)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 292 (-12 (|has| |#1| (-450)) (|has| |#1| (-553))))) (-1657 (((-417 $) $) NIL (|has| |#1| (-553)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-553))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-553)))) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-553)))) (-3440 (($ $) 127 (|has| |#1| (-553)))) (-2736 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1444 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) 405) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) 359) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1166)) NIL (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-609 (-534)))) (($ $) NIL (|has| |#1| (-609 (-534)))) (($ $ (-114) $ (-1166)) 347 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-114)) (-638 $) (-1166)) 346 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) NIL (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-638 $))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) NIL (|has| |#1| (-1042)))) (-3569 (((-765) $) NIL (|has| |#1| (-553)))) (-3992 (($ $) 227 (|has| |#1| (-553)))) (-2277 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-1584 (($ $) NIL) (($ $ $) NIL)) (-4025 (($ $) 237 (|has| |#1| (-553)))) (-2054 (($ $) 188 (|has| |#1| (-553)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-2861 (($ $) 70 (|has| |#1| (-553)))) (-4045 (((-1115 |#1| (-607 $)) $) 84 (|has| |#1| (-553)))) (-3660 (($ $) 303 (|has| $ (-1042)))) (-3021 (($ $) 165 (|has| |#1| (-553)))) (-4095 (($ $) 141 (|has| |#1| (-553)))) (-2995 (($ $) 161 (|has| |#1| (-553)))) (-4073 (($ $) 137 (|has| |#1| (-553)))) (-2968 (($ $) 157 (|has| |#1| (-553)))) (-4054 (($ $) 133 (|has| |#1| (-553)))) (-4174 (((-885 (-561)) $) NIL (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#1| (-609 (-885 (-378))))) (($ (-417 $)) NIL (|has| |#1| (-553))) (((-534) $) 344 (|has| |#1| (-609 (-534))))) (-2260 (($ $ $) NIL (|has| |#1| (-471)))) (-3800 (($ $ $) NIL (|has| |#1| (-471)))) (-4022 (((-856) $) 404) (($ (-607 $)) 395) (($ (-1166)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-553))) (($ (-48)) 298 (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) (($ (-1115 |#1| (-607 $))) 86 (|has| |#1| (-1042))) (($ (-406 |#1|)) NIL (|has| |#1| (-553))) (($ (-945 (-406 |#1|))) NIL (|has| |#1| (-553))) (($ (-406 (-945 (-406 |#1|)))) NIL (|has| |#1| (-553))) (($ (-406 (-945 |#1|))) NIL (|has| |#1| (-553))) (($ (-945 |#1|)) NIL (|has| |#1| (-1042))) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-553)) (|has| |#1| (-1031 (-406 (-561)))))) (($ (-561)) 34 (-4007 (|has| |#1| (-1031 (-561))) (|has| |#1| (-1042))))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL (|has| |#1| (-1042)))) (-3300 (($ $) NIL) (($ (-638 $)) NIL)) (-3599 (($ $ $) 208 (|has| |#1| (-553)))) (-2974 (($ $ $) 194 (|has| |#1| (-553)))) (-3717 (($ $ $) 198 (|has| |#1| (-553)))) (-3005 (($ $ $) 192 (|has| |#1| (-553)))) (-1436 (($ $ $) 196 (|has| |#1| (-553)))) (-2665 (((-112) (-114)) 9)) (-3055 (($ $) 171 (|has| |#1| (-553)))) (-4132 (($ $) 147 (|has| |#1| (-553)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) 167 (|has| |#1| (-553)))) (-4105 (($ $) 143 (|has| |#1| (-553)))) (-3081 (($ $) 175 (|has| |#1| (-553)))) (-4149 (($ $) 151 (|has| |#1| (-553)))) (-3117 (($ (-1166) $) NIL) (($ (-1166) $ $) NIL) (($ (-1166) $ $ $) NIL) (($ (-1166) $ $ $ $) NIL) (($ (-1166) (-638 $)) NIL)) (-2096 (($ $) 202 (|has| |#1| (-553)))) (-1887 (($ $) 200 (|has| |#1| (-553)))) (-2125 (($ $) 177 (|has| |#1| (-553)))) (-4160 (($ $) 153 (|has| |#1| (-553)))) (-3066 (($ $) 173 (|has| |#1| (-553)))) (-4142 (($ $) 149 (|has| |#1| (-553)))) (-3043 (($ $) 169 (|has| |#1| (-553)))) (-4117 (($ $) 145 (|has| |#1| (-553)))) (-3749 (($ $) 180 (|has| |#1| (-553)))) (-2211 (($) 20 (-4007 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) CONST)) (-1534 (($ $) 231 (|has| |#1| (-553)))) (-2222 (($) 22 (-4007 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-3758 (($ $) 182 (|has| |#1| (-553))) (($ $ $) 184 (|has| |#1| (-553)))) (-3639 (($ $) 229 (|has| |#1| (-553)))) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-3753 (($ $) 233 (|has| |#1| (-553)))) (-3882 (($ $ $) 186 (|has| |#1| (-553)))) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 79)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 78)) (-1833 (($ (-1115 |#1| (-607 $)) (-1115 |#1| (-607 $))) 96 (|has| |#1| (-553))) (($ $ $) 42 (-4007 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-1824 (($ $ $) 40 (-4007 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (($ $) 29 (-4007 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (-1813 (($ $ $) 38 (-4007 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))) (** (($ $ $) 63 (|has| |#1| (-553))) (($ $ (-406 (-561))) 300 (|has| |#1| (-553))) (($ $ (-561)) 74 (-4007 (|has| |#1| (-471)) (|has| |#1| (-553)))) (($ $ (-765)) 71 (-4007 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ $ (-914)) 76 (-4007 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (* (($ (-406 (-561)) $) NIL (|has| |#1| (-553))) (($ $ (-406 (-561))) NIL (|has| |#1| (-553))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-4007 (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ (-561) $) 32 (-4007 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (($ (-765) $) NIL (-4007 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))))) (($ (-914) $) NIL (-4007 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))))))
+(((-315 |#1|) (-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-553)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-624)) (-6 (-1129)) (-15 -3185 ($ $)) (-15 -2444 ((-112) $)) (-15 -3630 ($ $ (-561))) (IF (|has| |#1| (-450)) (PROGN (-15 -3449 ((-417 (-1162 $)) (-1162 $))) (-15 -4046 ((-417 (-1162 $)) (-1162 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-561))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|))) (-844)) (T -315))
+((-3185 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-553)) (-4 *2 (-844)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))) (-3449 (*1 *2 *3) (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1)) (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844)))) (-4046 (*1 *2 *3) (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1)) (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844)))))
+(-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-553)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-624)) (-6 (-1129)) (-15 -3185 ($ $)) (-15 -2444 ((-112) $)) (-15 -3630 ($ $ (-561))) (IF (|has| |#1| (-450)) (PROGN (-15 -3449 ((-417 (-1162 $)) (-1162 $))) (-15 -4046 ((-417 (-1162 $)) (-1162 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-561))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|)))
+((-2497 (((-52) |#2| (-114) (-293 |#2|) (-638 |#2|)) 88) (((-52) |#2| (-114) (-293 |#2|) (-293 |#2|)) 84) (((-52) |#2| (-114) (-293 |#2|) |#2|) 86) (((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|) 87) (((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|))) 80) (((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 |#2|)) 82) (((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 |#2|)) 83) (((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|))) 81) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|)) 89) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|)) 85)))
+(((-316 |#1| |#2|) (-10 -7 (-15 -2497 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -2497 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -2497 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -2497 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -2497 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -2497 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -2497 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -2497 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -2497 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -2497 ((-52) |#2| (-114) (-293 |#2|) (-638 |#2|)))) (-13 (-844) (-553) (-609 (-534))) (-429 |#1|)) (T -316))
+((-2497 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-638 *3)) (-4 *3 (-429 *7)) (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))) (-2497 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2497 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2497 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *5)))) (-2497 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-114))) (-5 *6 (-638 (-293 *8))) (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-2497 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-2497 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-638 (-293 *8))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *8)) (-5 *6 (-638 *8)) (-4 *8 (-429 *7)) (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-2497 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-2497 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-638 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-2497 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) (-4 *5 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *6)))))
+(-10 -7 (-15 -2497 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -2497 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -2497 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -2497 ((-52) (-638 (-293 |#2|)) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -2497 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 |#2|))) (-15 -2497 ((-52) (-638 |#2|) (-638 (-114)) (-293 |#2|) (-638 (-293 |#2|)))) (-15 -2497 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -2497 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -2497 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -2497 ((-52) |#2| (-114) (-293 |#2|) (-638 |#2|))))
+((-1293 (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561) (-1148)) 45) (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561)) 46) (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561) (-1148)) 42) (((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561)) 43)) (-3275 (((-1 (-224) (-224)) (-224)) 44)))
+(((-317) (-10 -7 (-15 -3275 ((-1 (-224) (-224)) (-224))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561) (-1148))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561) (-1148))))) (T -317))
+((-1293 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561)) (-5 *8 (-1148)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-1293 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-1293 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *7 (-1148)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-1293 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *2 (-1200 (-919))) (-5 *1 (-317)))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
+(-10 -7 (-15 -3275 ((-1 (-224) (-224)) (-224))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-1 (-224) (-224)) (-561) (-1148))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561))) (-15 -1293 ((-1200 (-919)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-224) (-561) (-1148))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 25)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-2457 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 20)) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3009 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) 31)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) 16)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-406 (-561))) NIL) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-1842 (($ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190)))))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-406 (-561))) NIL)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1464 (((-406 (-561)) $) 17)) (-2527 (($ (-1238 |#1| |#2| |#3|)) 11)) (-4196 (((-1238 |#1| |#2| |#3|) $) 12)) (-3440 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-2894 (((-406 (-561)) $) NIL)) (-3021 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 10)) (-4022 (((-856) $) 37) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-2634 ((|#1| $ (-406 (-561))) 29)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) NIL)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 27)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 32)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-318 |#1| |#2| |#3|) (-13 (-1234 |#1|) (-786) (-10 -8 (-15 -2527 ($ (-1238 |#1| |#2| |#3|))) (-15 -4196 ((-1238 |#1| |#2| |#3|) $)) (-15 -1464 ((-406 (-561)) $)))) (-13 (-362) (-844)) (-1166) |#1|) (T -318))
+((-2527 (*1 *1 *2) (-12 (-5 *2 (-1238 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-1238 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))))
+(-13 (-1234 |#1|) (-786) (-10 -8 (-15 -2527 ($ (-1238 |#1| |#2| |#3|))) (-15 -4196 ((-1238 |#1| |#2| |#3|) $)) (-15 -1464 ((-406 (-561)) $))))
+((-2556 (((-2 (|:| -4196 (-765)) (|:| -4188 |#1|) (|:| |radicand| (-638 |#1|))) (-417 |#1|) (-765)) 24)) (-4348 (((-638 (-2 (|:| -4188 (-765)) (|:| |logand| |#1|))) (-417 |#1|)) 28)))
+(((-319 |#1|) (-10 -7 (-15 -2556 ((-2 (|:| -4196 (-765)) (|:| -4188 |#1|) (|:| |radicand| (-638 |#1|))) (-417 |#1|) (-765))) (-15 -4348 ((-638 (-2 (|:| -4188 (-765)) (|:| |logand| |#1|))) (-417 |#1|)))) (-553)) (T -319))
+((-4348 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-553)) (-5 *2 (-638 (-2 (|:| -4188 (-765)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-553)) (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *5) (|:| |radicand| (-638 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-765)))))
+(-10 -7 (-15 -2556 ((-2 (|:| -4196 (-765)) (|:| -4188 |#1|) (|:| |radicand| (-638 |#1|))) (-417 |#1|) (-765))) (-15 -4348 ((-638 (-2 (|:| -4188 (-765)) (|:| |logand| |#1|))) (-417 |#1|))))
+((-1412 (((-638 |#2|) (-1162 |#4|)) 43)) (-1973 ((|#3| (-561)) 46)) (-2122 (((-1162 |#4|) (-1162 |#3|)) 30)) (-4292 (((-1162 |#4|) (-1162 |#4|) (-561)) 55)) (-2620 (((-1162 |#3|) (-1162 |#4|)) 21)) (-2894 (((-638 (-765)) (-1162 |#4|) (-638 |#2|)) 40)) (-4310 (((-1162 |#3|) (-1162 |#4|) (-638 |#2|) (-638 |#3|)) 35)))
+(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4310 ((-1162 |#3|) (-1162 |#4|) (-638 |#2|) (-638 |#3|))) (-15 -2894 ((-638 (-765)) (-1162 |#4|) (-638 |#2|))) (-15 -1412 ((-638 |#2|) (-1162 |#4|))) (-15 -2620 ((-1162 |#3|) (-1162 |#4|))) (-15 -2122 ((-1162 |#4|) (-1162 |#3|))) (-15 -4292 ((-1162 |#4|) (-1162 |#4|) (-561))) (-15 -1973 (|#3| (-561)))) (-787) (-844) (-1042) (-942 |#3| |#1| |#2|)) (T -320))
+((-1973 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-942 *2 *4 *5)))) (-4292 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 *7)) (-5 *3 (-561)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *1 (-320 *4 *5 *6 *7)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1162 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1162 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-1162 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-638 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *8)) (-5 *4 (-638 *6)) (-4 *6 (-844)) (-4 *8 (-942 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042)) (-5 *2 (-638 (-765))) (-5 *1 (-320 *5 *6 *7 *8)))) (-4310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-1162 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
+(-10 -7 (-15 -4310 ((-1162 |#3|) (-1162 |#4|) (-638 |#2|) (-638 |#3|))) (-15 -2894 ((-638 (-765)) (-1162 |#4|) (-638 |#2|))) (-15 -1412 ((-638 |#2|) (-1162 |#4|))) (-15 -2620 ((-1162 |#3|) (-1162 |#4|))) (-15 -2122 ((-1162 |#4|) (-1162 |#3|))) (-15 -4292 ((-1162 |#4|) (-1162 |#4|) (-561))) (-15 -1973 (|#3| (-561))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 14)) (-2457 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-561)))) $) 18)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1393 (((-765) $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-2740 ((|#1| $ (-561)) NIL)) (-3762 (((-561) $ (-561)) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2272 (($ (-1 |#1| |#1|) $) NIL)) (-4024 (($ (-1 (-561) (-561)) $) 10)) (-1764 (((-1148) $) NIL)) (-2376 (($ $ $) NIL (|has| (-561) (-786)))) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL) (($ |#1|) NIL)) (-2634 (((-561) |#1| $) NIL)) (-2211 (($) 15 T CONST)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) 21 (|has| |#1| (-844)))) (-1824 (($ $) 11) (($ $ $) 20)) (-1813 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL) (($ (-561) |#1|) 19)))
+(((-321 |#1|) (-13 (-21) (-711 (-561)) (-322 |#1| (-561)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1090)) (T -321))
+NIL
+(-13 (-21) (-711 (-561)) (-322 |#1| (-561)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2457 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|))) $) 27)) (-2249 (((-3 $ "failed") $ $) 19)) (-1393 (((-765) $) 28)) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 32)) (-3938 ((|#1| $) 33)) (-2740 ((|#1| $ (-561)) 25)) (-3762 ((|#2| $ (-561)) 26)) (-2272 (($ (-1 |#1| |#1|) $) 22)) (-4024 (($ (-1 |#2| |#2|) $) 23)) (-1764 (((-1148) $) 9)) (-2376 (($ $ $) 21 (|has| |#2| (-786)))) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ |#1|) 31)) (-2634 ((|#2| |#1| $) 24)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1813 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ |#2| |#1|) 29)))
+(((-322 |#1| |#2|) (-139) (-1090) (-130)) (T -322))
+((-1813 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130)))) (-1393 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)) (-5 *2 (-765)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)) (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 *4)))))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1090)) (-4 *2 (-130)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1090)))) (-2634 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130)))) (-4024 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130)))) (-2376 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130)) (-4 *3 (-786)))))
+(-13 (-130) (-1031 |t#1|) (-10 -8 (-15 -1813 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1393 ((-765) $)) (-15 -2457 ((-638 (-2 (|:| |gen| |t#1|) (|:| -3440 |t#2|))) $)) (-15 -3762 (|t#2| $ (-561))) (-15 -2740 (|t#1| $ (-561))) (-15 -2634 (|t#2| |t#1| $)) (-15 -4024 ($ (-1 |t#2| |t#2|) $)) (-15 -2272 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-786)) (-15 -2376 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-1031 |#1|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2457 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-765)))) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1393 (((-765) $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-2740 ((|#1| $ (-561)) NIL)) (-3762 (((-765) $ (-561)) NIL)) (-2272 (($ (-1 |#1| |#1|) $) NIL)) (-4024 (($ (-1 (-765) (-765)) $) NIL)) (-1764 (((-1148) $) NIL)) (-2376 (($ $ $) NIL (|has| (-765) (-786)))) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL) (($ |#1|) NIL)) (-2634 (((-765) |#1| $) NIL)) (-2211 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-765) |#1|) NIL)))
+(((-323 |#1|) (-322 |#1| (-765)) (-1090)) (T -323))
+NIL
+(-322 |#1| (-765))
+((-2401 (($ $) 52)) (-2103 (($ $ |#2| |#3| $) 14)) (-3524 (($ (-1 |#3| |#3|) $) 33)) (-1551 (((-112) $) 24)) (-1561 ((|#2| $) 26)) (-1756 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-3609 ((|#2| $) 48)) (-2742 (((-638 |#2|) $) 36)) (-1711 (($ $ $ (-765)) 20)) (-1833 (($ $ |#2|) 40)))
+(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -2401 (|#1| |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1711 (|#1| |#1| |#1| (-765))) (-15 -2103 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3524 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2742 ((-638 |#2|) |#1|)) (-15 -1561 (|#2| |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1833 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1042) (-786)) (T -324))
+NIL
+(-10 -8 (-15 -2401 (|#1| |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1711 (|#1| |#1| |#1| (-765))) (-15 -2103 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3524 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2742 ((-638 |#2|) |#1|)) (-15 -1561 (|#2| |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1833 (|#1| |#1| |#2|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 91 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 89 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 86)) (-3938 (((-561) $) 90 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 88 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 87)) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-2401 (($ $) 75 (|has| |#1| (-450)))) (-2103 (($ $ |#1| |#2| $) 79)) (-3113 (((-112) $) 31)) (-2067 (((-765) $) 82)) (-2092 (((-112) $) 65)) (-1387 (($ |#1| |#2|) 64)) (-2393 ((|#2| $) 81)) (-3524 (($ (-1 |#2| |#2|) $) 80)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1551 (((-112) $) 85)) (-1561 ((|#1| $) 84)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-553)))) (-2894 ((|#2| $) 67)) (-3609 ((|#1| $) 76 (|has| |#1| (-450)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50) (($ (-406 (-561))) 60 (-4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))))) (-2742 (((-638 |#1|) $) 83)) (-2634 ((|#1| $ |#2|) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-1711 (($ $ $ (-765)) 78 (|has| |#1| (-171)))) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-325 |#1| |#2|) (-139) (-1042) (-786)) (T -325))
+((-1551 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-1561 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-638 *3)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-765)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-3524 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-2103 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-1711 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *3 (-171)))) (-1756 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-553)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-2401 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-450)))))
+(-13 (-47 |t#1| |t#2|) (-410 |t#1|) (-10 -8 (-15 -1551 ((-112) $)) (-15 -1561 (|t#1| $)) (-15 -2742 ((-638 |t#1|) $)) (-15 -2067 ((-765) $)) (-15 -2393 (|t#2| $)) (-15 -3524 ($ (-1 |t#2| |t#2|) $)) (-15 -2103 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -1711 ($ $ $ (-765))) |%noBranch|) (IF (|has| |t#1| (-553)) (-15 -1756 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3609 (|t#1| $)) (-15 -2401 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-289) |has| |#1| (-553)) ((-410 |#1|) . T) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-2361 (((-112) (-112)) NIL)) (-4167 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-3776 (($ $) NIL (|has| |#1| (-1090)))) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-2786 (($ $ (-561)) NIL)) (-2418 (((-765) $) NIL)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-3092 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3671 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3774 (($ (-638 |#1|)) NIL)) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-2114 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-4173 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -3774 ($ (-638 |#1|))) (-15 -2418 ((-765) $)) (-15 -2786 ($ $ (-561))) (-15 -2361 ((-112) (-112))))) (-1205)) (T -326))
+((-3774 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-326 *3)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1205)))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-326 *3)) (-4 *3 (-1205)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1205)))))
+(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -3774 ($ (-638 |#1|))) (-15 -2418 ((-765) $)) (-15 -2786 ($ $ (-561))) (-15 -2361 ((-112) (-112)))))
+((-3356 (((-112) $) 42)) (-2368 (((-765)) 22)) (-1744 ((|#2| $) 46) (($ $ (-914)) 100)) (-1393 (((-765)) 101)) (-2257 (($ (-1253 |#2|)) 20)) (-3584 (((-112) $) 114)) (-1672 ((|#2| $) 48) (($ $ (-914)) 98)) (-2692 (((-1162 |#2|) $) NIL) (((-1162 $) $ (-914)) 94)) (-2300 (((-1162 |#2|) $) 82)) (-2409 (((-1162 |#2|) $) 79) (((-3 (-1162 |#2|) "failed") $ $) 76)) (-3152 (($ $ (-1162 |#2|)) 53)) (-4150 (((-827 (-914))) 28) (((-914)) 43)) (-3084 (((-133)) 25)) (-2894 (((-827 (-914)) $) 30) (((-914) $) 116)) (-2111 (($) 107)) (-3969 (((-1253 |#2|) $) NIL) (((-682 |#2|) (-1253 $)) 39)) (-1760 (($ $) NIL) (((-3 $ "failed") $) 85)) (-1751 (((-112) $) 41)))
+(((-327 |#1| |#2|) (-10 -8 (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -1393 ((-765))) (-15 -1760 (|#1| |#1|)) (-15 -2409 ((-3 (-1162 |#2|) "failed") |#1| |#1|)) (-15 -2409 ((-1162 |#2|) |#1|)) (-15 -2300 ((-1162 |#2|) |#1|)) (-15 -3152 (|#1| |#1| (-1162 |#2|))) (-15 -3584 ((-112) |#1|)) (-15 -2111 (|#1|)) (-15 -1744 (|#1| |#1| (-914))) (-15 -1672 (|#1| |#1| (-914))) (-15 -2692 ((-1162 |#1|) |#1| (-914))) (-15 -1744 (|#2| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -2894 ((-914) |#1|)) (-15 -4150 ((-914))) (-15 -2692 ((-1162 |#2|) |#1|)) (-15 -2257 (|#1| (-1253 |#2|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -2368 ((-765))) (-15 -4150 ((-827 (-914)))) (-15 -2894 ((-827 (-914)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1751 ((-112) |#1|)) (-15 -3084 ((-133)))) (-328 |#2|) (-362)) (T -327))
+((-3084 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4150 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-827 (-914))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-2368 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4150 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-914)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-1393 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))))
+(-10 -8 (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -1393 ((-765))) (-15 -1760 (|#1| |#1|)) (-15 -2409 ((-3 (-1162 |#2|) "failed") |#1| |#1|)) (-15 -2409 ((-1162 |#2|) |#1|)) (-15 -2300 ((-1162 |#2|) |#1|)) (-15 -3152 (|#1| |#1| (-1162 |#2|))) (-15 -3584 ((-112) |#1|)) (-15 -2111 (|#1|)) (-15 -1744 (|#1| |#1| (-914))) (-15 -1672 (|#1| |#1| (-914))) (-15 -2692 ((-1162 |#1|) |#1| (-914))) (-15 -1744 (|#2| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -2894 ((-914) |#1|)) (-15 -4150 ((-914))) (-15 -2692 ((-1162 |#2|) |#1|)) (-15 -2257 (|#1| (-1253 |#2|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -2368 ((-765))) (-15 -4150 ((-827 (-914)))) (-15 -2894 ((-827 (-914)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1751 ((-112) |#1|)) (-15 -3084 ((-133))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-3356 (((-112) $) 95)) (-2368 (((-765)) 91)) (-1744 ((|#1| $) 141) (($ $ (-914)) 138 (|has| |#1| (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) 123 (|has| |#1| (-367)))) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1671 (((-112) $ $) 60)) (-1393 (((-765)) 113 (|has| |#1| (-367)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 102)) (-3938 ((|#1| $) 103)) (-2257 (($ (-1253 |#1|)) 147)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1332 (($) 110 (|has| |#1| (-367)))) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2022 (($) 125 (|has| |#1| (-367)))) (-1803 (((-112) $) 126 (|has| |#1| (-367)))) (-1575 (($ $ (-765)) 88 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) 72)) (-4163 (((-914) $) 128 (|has| |#1| (-367))) (((-827 (-914)) $) 85 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) 31)) (-2052 (($) 136 (|has| |#1| (-367)))) (-3584 (((-112) $) 135 (|has| |#1| (-367)))) (-1672 ((|#1| $) 142) (($ $ (-914)) 139 (|has| |#1| (-367)))) (-1663 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-2692 (((-1162 |#1|) $) 146) (((-1162 $) $ (-914)) 140 (|has| |#1| (-367)))) (-3198 (((-914) $) 111 (|has| |#1| (-367)))) (-2300 (((-1162 |#1|) $) 132 (|has| |#1| (-367)))) (-2409 (((-1162 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-3152 (($ $ (-1162 |#1|)) 133 (|has| |#1| (-367)))) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-3721 (($) 115 (|has| |#1| (-367)) CONST)) (-2413 (($ (-914)) 112 (|has| |#1| (-367)))) (-1792 (((-112) $) 94)) (-1714 (((-1110) $) 10)) (-3158 (($) 134 (|has| |#1| (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 122 (|has| |#1| (-367)))) (-1657 (((-417 $) $) 75)) (-4150 (((-827 (-914))) 92) (((-914)) 144)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-1913 (((-765) $) 127 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 86 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) 100)) (-3238 (($ $) 119 (|has| |#1| (-367))) (($ $ (-765)) 117 (|has| |#1| (-367)))) (-2894 (((-827 (-914)) $) 93) (((-914) $) 143)) (-3660 (((-1162 |#1|)) 145)) (-1796 (($) 124 (|has| |#1| (-367)))) (-2111 (($) 137 (|has| |#1| (-367)))) (-3969 (((-1253 |#1|) $) 149) (((-682 |#1|) (-1253 $)) 148)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 121 (|has| |#1| (-367)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ |#1|) 101)) (-1760 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) 28)) (-3711 (((-1253 $)) 151) (((-1253 $) (-914)) 150)) (-3168 (((-112) $ $) 40)) (-1751 (((-112) $) 96)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-4285 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-3122 (($ $) 118 (|has| |#1| (-367))) (($ $ (-765)) 116 (|has| |#1| (-367)))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 66) (($ $ |#1|) 99)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
(((-328 |#1|) (-139) (-362)) (T -328))
-((-2743 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1246 *1)) (-4 *1 (-328 *3)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-911)) (-4 *4 (-362)) (-5 *2 (-1246 *1)) (-4 *1 (-328 *4)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1246 *3)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-679 *4)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3)))) (-2297 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3)))) (-3670 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1715 (*1 *2 *1 *3) (-12 (-5 *3 (-911)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1159 *1)) (-4 *1 (-328 *4)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1719 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-3703 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2942 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-2461 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-3635 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1159 *3)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1159 *3)))) (-3811 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1159 *3)))))
-(-13 (-1265 |t#1|) (-1028 |t#1|) (-10 -8 (-15 -2743 ((-1246 $))) (-15 -2743 ((-1246 $) (-911))) (-15 -2979 ((-1246 |t#1|) $)) (-15 -2979 ((-679 |t#1|) (-1246 $))) (-15 -3431 ($ (-1246 |t#1|))) (-15 -1715 ((-1159 |t#1|) $)) (-15 -2297 ((-1159 |t#1|))) (-15 -3670 ((-911))) (-15 -4263 ((-911) $)) (-15 -1423 (|t#1| $)) (-15 -1719 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-348)) (-15 -1715 ((-1159 $) $ (-911))) (-15 -1423 ($ $ (-911))) (-15 -1719 ($ $ (-911))) (-15 -3703 ($)) (-15 -2942 ($)) (-15 -3235 ((-112) $)) (-15 -2461 ($)) (-15 -3635 ($ $ (-1159 |t#1|))) (-15 -1937 ((-1159 |t#1|) $)) (-15 -3811 ((-1159 |t#1|) $)) (-15 -3811 ((-3 (-1159 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3994 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1265 |#1|) . T) ((-362) . T) ((-401) -3994 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-348) |has| |#1| (-367)) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 |#1|) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-367)) ((-1204) . T) ((-1253 |#1|) . T))
-((-3929 (((-112) $ $) NIL)) (-2468 (($ (-1162) $) 87)) (-1365 (($) 76)) (-3023 (((-1107) (-1107)) 9)) (-3166 (($) 77)) (-4353 (($) 89) (($ (-315 (-689))) 97) (($ (-315 (-691))) 93) (($ (-315 (-684))) 101) (($ (-315 (-378))) 108) (($ (-315 (-558))) 104) (($ (-315 (-168 (-378)))) 112)) (-1376 (($ (-1162) $) 88)) (-4235 (($ (-635 (-853))) 78)) (-3407 (((-1251) $) 74)) (-3706 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2340 (($ (-1107)) 50)) (-2811 (((-1091) $) 24)) (-2695 (($ (-1079 (-942 (-558))) $) 84) (($ (-1079 (-942 (-558))) (-942 (-558)) $) 85)) (-2858 (($ (-1107)) 86)) (-2871 (($ (-1162) $) 114) (($ (-1162) $ $) 115)) (-2377 (($ (-1163) (-635 (-1163))) 75)) (-3773 (($ (-1145)) 81) (($ (-635 (-1145))) 79)) (-3940 (((-853) $) 117)) (-3393 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3711 (-112)) (|:| -2426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -2103 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -3190 $))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -3190 $))) (|:| |commonBranch| (-2 (|:| -3179 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853)))) $) 43)) (-2568 (($ (-1145)) 186)) (-1954 (($ (-635 $)) 113)) (-4196 (($ (-1163) (-1145)) 119) (($ (-1163) (-315 (-691))) 159) (($ (-1163) (-315 (-689))) 160) (($ (-1163) (-315 (-684))) 161) (($ (-1163) (-679 (-691))) 122) (($ (-1163) (-679 (-689))) 125) (($ (-1163) (-679 (-684))) 128) (($ (-1163) (-1246 (-691))) 131) (($ (-1163) (-1246 (-689))) 134) (($ (-1163) (-1246 (-684))) 137) (($ (-1163) (-679 (-315 (-691)))) 140) (($ (-1163) (-679 (-315 (-689)))) 143) (($ (-1163) (-679 (-315 (-684)))) 146) (($ (-1163) (-1246 (-315 (-691)))) 149) (($ (-1163) (-1246 (-315 (-689)))) 152) (($ (-1163) (-1246 (-315 (-684)))) 155) (($ (-1163) (-635 (-942 (-558))) (-315 (-691))) 156) (($ (-1163) (-635 (-942 (-558))) (-315 (-689))) 157) (($ (-1163) (-635 (-942 (-558))) (-315 (-684))) 158) (($ (-1163) (-315 (-558))) 183) (($ (-1163) (-315 (-378))) 184) (($ (-1163) (-315 (-168 (-378)))) 185) (($ (-1163) (-679 (-315 (-558)))) 164) (($ (-1163) (-679 (-315 (-378)))) 167) (($ (-1163) (-679 (-315 (-168 (-378))))) 170) (($ (-1163) (-1246 (-315 (-558)))) 173) (($ (-1163) (-1246 (-315 (-378)))) 176) (($ (-1163) (-1246 (-315 (-168 (-378))))) 179) (($ (-1163) (-635 (-942 (-558))) (-315 (-558))) 180) (($ (-1163) (-635 (-942 (-558))) (-315 (-378))) 181) (($ (-1163) (-635 (-942 (-558))) (-315 (-168 (-378)))) 182)) (-1708 (((-112) $ $) NIL)))
-(((-329) (-13 (-1087) (-10 -8 (-15 -2695 ($ (-1079 (-942 (-558))) $)) (-15 -2695 ($ (-1079 (-942 (-558))) (-942 (-558)) $)) (-15 -2468 ($ (-1162) $)) (-15 -1376 ($ (-1162) $)) (-15 -2340 ($ (-1107))) (-15 -2858 ($ (-1107))) (-15 -3773 ($ (-1145))) (-15 -3773 ($ (-635 (-1145)))) (-15 -2568 ($ (-1145))) (-15 -4353 ($)) (-15 -4353 ($ (-315 (-689)))) (-15 -4353 ($ (-315 (-691)))) (-15 -4353 ($ (-315 (-684)))) (-15 -4353 ($ (-315 (-378)))) (-15 -4353 ($ (-315 (-558)))) (-15 -4353 ($ (-315 (-168 (-378))))) (-15 -2871 ($ (-1162) $)) (-15 -2871 ($ (-1162) $ $)) (-15 -4196 ($ (-1163) (-1145))) (-15 -4196 ($ (-1163) (-315 (-691)))) (-15 -4196 ($ (-1163) (-315 (-689)))) (-15 -4196 ($ (-1163) (-315 (-684)))) (-15 -4196 ($ (-1163) (-679 (-691)))) (-15 -4196 ($ (-1163) (-679 (-689)))) (-15 -4196 ($ (-1163) (-679 (-684)))) (-15 -4196 ($ (-1163) (-1246 (-691)))) (-15 -4196 ($ (-1163) (-1246 (-689)))) (-15 -4196 ($ (-1163) (-1246 (-684)))) (-15 -4196 ($ (-1163) (-679 (-315 (-691))))) (-15 -4196 ($ (-1163) (-679 (-315 (-689))))) (-15 -4196 ($ (-1163) (-679 (-315 (-684))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-691))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-689))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-684))))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-691)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-689)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-684)))) (-15 -4196 ($ (-1163) (-315 (-558)))) (-15 -4196 ($ (-1163) (-315 (-378)))) (-15 -4196 ($ (-1163) (-315 (-168 (-378))))) (-15 -4196 ($ (-1163) (-679 (-315 (-558))))) (-15 -4196 ($ (-1163) (-679 (-315 (-378))))) (-15 -4196 ($ (-1163) (-679 (-315 (-168 (-378)))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-558))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-378))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-168 (-378)))))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-558)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-378)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-168 (-378))))) (-15 -1954 ($ (-635 $))) (-15 -1365 ($)) (-15 -3166 ($)) (-15 -4235 ($ (-635 (-853)))) (-15 -2377 ($ (-1163) (-635 (-1163)))) (-15 -3706 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3393 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3711 (-112)) (|:| -2426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -2103 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -3190 $))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -3190 $))) (|:| |commonBranch| (-2 (|:| -3179 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853)))) $)) (-15 -3407 ((-1251) $)) (-15 -2811 ((-1091) $)) (-15 -3023 ((-1107) (-1107)))))) (T -329))
-((-2695 (*1 *1 *2 *1) (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *1 (-329)))) (-2695 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *3 (-942 (-558))) (-5 *1 (-329)))) (-2468 (*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-1376 (*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-2340 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))) (-3773 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))) (-3773 (*1 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-329)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))) (-4353 (*1 *1) (-5 *1 (-329))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-315 (-689))) (-5 *1 (-329)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-315 (-691))) (-5 *1 (-329)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-315 (-684))) (-5 *1 (-329)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-329)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2871 (*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-2871 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-691))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-689))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-684))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-691))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-689))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-684))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-691))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-689))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-684))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-691)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-689)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-684)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-691)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-689)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-684)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-691))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-689))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-684))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-558))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-558)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-378)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-558)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-378)))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-558))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-378))) (-5 *1 (-329)))) (-4196 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-1954 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329)))) (-1365 (*1 *1) (-5 *1 (-329))) (-3166 (*1 *1) (-5 *1 (-329))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-329)))) (-2377 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-329)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -3711 (-112)) (|:| -2426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |blockBranch| (-635 (-329))) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -2103 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -3190 (-329)))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -3190 (-329)))) (|:| |commonBranch| (-2 (|:| -3179 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853))))) (-5 *1 (-329)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-329)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-329)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
-(-13 (-1087) (-10 -8 (-15 -2695 ($ (-1079 (-942 (-558))) $)) (-15 -2695 ($ (-1079 (-942 (-558))) (-942 (-558)) $)) (-15 -2468 ($ (-1162) $)) (-15 -1376 ($ (-1162) $)) (-15 -2340 ($ (-1107))) (-15 -2858 ($ (-1107))) (-15 -3773 ($ (-1145))) (-15 -3773 ($ (-635 (-1145)))) (-15 -2568 ($ (-1145))) (-15 -4353 ($)) (-15 -4353 ($ (-315 (-689)))) (-15 -4353 ($ (-315 (-691)))) (-15 -4353 ($ (-315 (-684)))) (-15 -4353 ($ (-315 (-378)))) (-15 -4353 ($ (-315 (-558)))) (-15 -4353 ($ (-315 (-168 (-378))))) (-15 -2871 ($ (-1162) $)) (-15 -2871 ($ (-1162) $ $)) (-15 -4196 ($ (-1163) (-1145))) (-15 -4196 ($ (-1163) (-315 (-691)))) (-15 -4196 ($ (-1163) (-315 (-689)))) (-15 -4196 ($ (-1163) (-315 (-684)))) (-15 -4196 ($ (-1163) (-679 (-691)))) (-15 -4196 ($ (-1163) (-679 (-689)))) (-15 -4196 ($ (-1163) (-679 (-684)))) (-15 -4196 ($ (-1163) (-1246 (-691)))) (-15 -4196 ($ (-1163) (-1246 (-689)))) (-15 -4196 ($ (-1163) (-1246 (-684)))) (-15 -4196 ($ (-1163) (-679 (-315 (-691))))) (-15 -4196 ($ (-1163) (-679 (-315 (-689))))) (-15 -4196 ($ (-1163) (-679 (-315 (-684))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-691))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-689))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-684))))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-691)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-689)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-684)))) (-15 -4196 ($ (-1163) (-315 (-558)))) (-15 -4196 ($ (-1163) (-315 (-378)))) (-15 -4196 ($ (-1163) (-315 (-168 (-378))))) (-15 -4196 ($ (-1163) (-679 (-315 (-558))))) (-15 -4196 ($ (-1163) (-679 (-315 (-378))))) (-15 -4196 ($ (-1163) (-679 (-315 (-168 (-378)))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-558))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-378))))) (-15 -4196 ($ (-1163) (-1246 (-315 (-168 (-378)))))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-558)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-378)))) (-15 -4196 ($ (-1163) (-635 (-942 (-558))) (-315 (-168 (-378))))) (-15 -1954 ($ (-635 $))) (-15 -1365 ($)) (-15 -3166 ($)) (-15 -4235 ($ (-635 (-853)))) (-15 -2377 ($ (-1163) (-635 (-1163)))) (-15 -3706 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3393 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1163)) (|:| |arrayIndex| (-635 (-942 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1163)) (|:| |rand| (-853)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1162)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3711 (-112)) (|:| -2426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145)) (|:| |forBranch| (-2 (|:| -2103 (-1079 (-942 (-558)))) (|:| |span| (-942 (-558))) (|:| -3190 $))) (|:| |labelBranch| (-1107)) (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -3190 $))) (|:| |commonBranch| (-2 (|:| -3179 (-1163)) (|:| |contents| (-635 (-1163))))) (|:| |printBranch| (-635 (-853)))) $)) (-15 -3407 ((-1251) $)) (-15 -2811 ((-1091) $)) (-15 -3023 ((-1107) (-1107)))))
-((-3929 (((-112) $ $) NIL)) (-2383 (((-112) $) 11)) (-2109 (($ |#1|) 8)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2120 (($ |#1|) 9)) (-3940 (((-853) $) 17)) (-2362 ((|#1| $) 12)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 19)))
-(((-330 |#1|) (-13 (-841) (-10 -8 (-15 -2109 ($ |#1|)) (-15 -2120 ($ |#1|)) (-15 -2383 ((-112) $)) (-15 -2362 (|#1| $)))) (-841)) (T -330))
-((-2109 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841)))) (-2120 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-841)))) (-2362 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841)))))
-(-13 (-841) (-10 -8 (-15 -2109 ($ |#1|)) (-15 -2120 ($ |#1|)) (-15 -2383 ((-112) $)) (-15 -2362 (|#1| $))))
-((-1746 (((-329) (-1163) (-942 (-558))) 23)) (-2428 (((-329) (-1163) (-942 (-558))) 27)) (-3104 (((-329) (-1163) (-1079 (-942 (-558))) (-1079 (-942 (-558)))) 26) (((-329) (-1163) (-942 (-558)) (-942 (-558))) 24)) (-2204 (((-329) (-1163) (-942 (-558))) 31)))
-(((-331) (-10 -7 (-15 -1746 ((-329) (-1163) (-942 (-558)))) (-15 -3104 ((-329) (-1163) (-942 (-558)) (-942 (-558)))) (-15 -3104 ((-329) (-1163) (-1079 (-942 (-558))) (-1079 (-942 (-558))))) (-15 -2428 ((-329) (-1163) (-942 (-558)))) (-15 -2204 ((-329) (-1163) (-942 (-558)))))) (T -331))
-((-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))) (-3104 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-1079 (-942 (-558)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-3104 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329)) (-5 *1 (-331)))))
-(-10 -7 (-15 -1746 ((-329) (-1163) (-942 (-558)))) (-15 -3104 ((-329) (-1163) (-942 (-558)) (-942 (-558)))) (-15 -3104 ((-329) (-1163) (-1079 (-942 (-558))) (-1079 (-942 (-558))))) (-15 -2428 ((-329) (-1163) (-942 (-558)))) (-15 -2204 ((-329) (-1163) (-942 (-558)))))
-((-3397 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33)))
-(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3397 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1222 |#5|) (-1222 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -332))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1222 *9)) (-4 *11 (-1222 (-406 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11)))))
-(-10 -7 (-15 -3397 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|))))
-((-2125 (((-112) $) 14)))
-(((-333 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2125 ((-112) |#1|))) (-334 |#2| |#3| |#4| |#5|) (-362) (-1222 |#2|) (-1222 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -333))
-NIL
-(-10 -8 (-15 -2125 ((-112) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3866 (($ $) 26)) (-2125 (((-112) $) 25)) (-2510 (((-1145) $) 9)) (-1776 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-1688 (((-1107) $) 10)) (-2461 (((-3 |#4| "failed") $) 24)) (-3034 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-558)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3353 (((-2 (|:| -1349 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20)))
-(((-334 |#1| |#2| |#3| |#4|) (-139) (-362) (-1222 |t#1|) (-1222 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -334))
-((-1776 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-334 *3 *4 *5 *6)))) (-3034 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-3034 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))) (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-3034 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-362)) (-4 *4 (-1222 *2)) (-4 *5 (-1222 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -1349 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-3866 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-2461 (*1 *2 *1) (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-3034 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1776 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -3034 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -3034 ($ |t#4|)) (-15 -3034 ($ |t#1| |t#1|)) (-15 -3034 ($ |t#1| |t#1| (-558))) (-15 -3353 ((-2 (|:| -1349 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3866 ($ $)) (-15 -2125 ((-112) $)) (-15 -2461 ((-3 |t#4| "failed") $)) (-15 -3034 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3866 (($ $) 33)) (-2125 (((-112) $) NIL)) (-2510 (((-1145) $) NIL)) (-1580 (((-1246 |#4|) $) 125)) (-1776 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-1688 (((-1107) $) NIL)) (-2461 (((-3 |#4| "failed") $) 36)) (-4168 (((-1246 |#4|) $) 118)) (-3034 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-558)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3353 (((-2 (|:| -1349 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3940 (((-853) $) 17)) (-2207 (($) 14 T CONST)) (-1708 (((-112) $ $) 20)) (-1796 (($ $) 27) (($ $ $) NIL)) (-1785 (($ $ $) 25)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 23)))
-(((-335 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4168 ((-1246 |#4|) $)) (-15 -1580 ((-1246 |#4|) $)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -335))
-((-4168 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-1580 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))))
-(-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4168 ((-1246 |#4|) $)) (-15 -1580 ((-1246 |#4|) $))))
-((-1369 (($ $ (-1163) |#2|) NIL) (($ $ (-635 (-1163)) (-635 |#2|)) 20) (($ $ (-635 (-293 |#2|))) 15) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-2276 (($ $ |#2|) 11)))
-(((-336 |#1| |#2|) (-10 -8 (-15 -2276 (|#1| |#1| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#2| |#2|)) (-15 -1369 (|#1| |#1| (-293 |#2|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 |#2|))) (-15 -1369 (|#1| |#1| (-1163) |#2|))) (-337 |#2|) (-1087)) (T -336))
-NIL
-(-10 -8 (-15 -2276 (|#1| |#1| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#2| |#2|)) (-15 -1369 (|#1| |#1| (-293 |#2|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 |#2|))) (-15 -1369 (|#1| |#1| (-1163) |#2|)))
-((-3397 (($ (-1 |#1| |#1|) $) 6)) (-1369 (($ $ (-1163) |#1|) 17 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 16 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-635 (-293 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-635 |#1|) (-635 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-2276 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|)))))
-(((-337 |#1|) (-139) (-1087)) (T -337))
-((-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1087)))))
-(-13 (-10 -8 (-15 -3397 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512 (-1163) |t#1|)) (-6 (-512 (-1163) |t#1|)) |%noBranch|)))
-(((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1163)) $) NIL)) (-2541 (((-112)) 90) (((-112) (-112)) 91)) (-3798 (((-635 (-604 $)) $) NIL)) (-2277 (($ $) NIL)) (-2131 (($ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2564 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-3948 (($ $) NIL)) (-2254 (($ $) NIL)) (-2109 (($ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-604 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-315 |#3|)) 70) (((-3 $ "failed") (-1163)) 96) (((-3 $ "failed") (-315 (-558))) 58 (|has| |#3| (-1028 (-558)))) (((-3 $ "failed") (-406 (-942 (-558)))) 64 (|has| |#3| (-1028 (-558)))) (((-3 $ "failed") (-942 (-558))) 59 (|has| |#3| (-1028 (-558)))) (((-3 $ "failed") (-315 (-378))) 88 (|has| |#3| (-1028 (-378)))) (((-3 $ "failed") (-406 (-942 (-378)))) 82 (|has| |#3| (-1028 (-378)))) (((-3 $ "failed") (-942 (-378))) 77 (|has| |#3| (-1028 (-378))))) (-3226 (((-604 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 71) (($ (-1163)) 97) (($ (-315 (-558))) 60 (|has| |#3| (-1028 (-558)))) (($ (-406 (-942 (-558)))) 65 (|has| |#3| (-1028 (-558)))) (($ (-942 (-558))) 61 (|has| |#3| (-1028 (-558)))) (($ (-315 (-378))) 89 (|has| |#3| (-1028 (-378)))) (($ (-406 (-942 (-378)))) 83 (|has| |#3| (-1028 (-378)))) (($ (-942 (-378))) 79 (|has| |#3| (-1028 (-378))))) (-3248 (((-3 $ "failed") $) NIL)) (-3348 (($) 10)) (-2058 (($ $) NIL) (($ (-635 $)) NIL)) (-2380 (((-635 (-114)) $) NIL)) (-2154 (((-114) (-114)) NIL)) (-3999 (((-112) $) NIL)) (-1495 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-2550 (((-1159 $) (-604 $)) NIL (|has| $ (-1039)))) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 $ $) (-604 $)) NIL)) (-2025 (((-3 (-604 $) "failed") $) NIL)) (-2927 (($ $) 93)) (-4342 (($ $) NIL)) (-2510 (((-1145) $) NIL)) (-3892 (((-635 (-604 $)) $) NIL)) (-3390 (($ (-114) $) 92) (($ (-114) (-635 $)) NIL)) (-3557 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) NIL)) (-2361 (((-762) $) NIL)) (-1688 (((-1107) $) NIL)) (-1711 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-3944 (($ $) NIL)) (-4254 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-1369 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2276 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-3604 (($ $) NIL) (($ $ $) NIL)) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL)) (-2297 (($ $) NIL (|has| $ (-1039)))) (-2265 (($ $) NIL)) (-2120 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-604 $)) NIL) (($ |#3|) NIL) (($ (-558)) NIL) (((-315 |#3|) $) 95)) (-2417 (((-762)) NIL)) (-2638 (($ $) NIL) (($ (-635 $)) NIL)) (-2480 (((-112) (-114)) NIL)) (-2209 (($ $) NIL)) (-2184 (($ $) NIL)) (-2195 (($ $) NIL)) (-4241 (($ $) NIL)) (-2207 (($) 94 T CONST)) (-2220 (($) 24 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1796 (($ $ $) NIL) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
-(((-338 |#1| |#2| |#3|) (-13 (-301) (-38 |#3|) (-1028 |#3|) (-890 (-1163)) (-10 -8 (-15 -3226 ($ (-315 |#3|))) (-15 -3302 ((-3 $ "failed") (-315 |#3|))) (-15 -3226 ($ (-1163))) (-15 -3302 ((-3 $ "failed") (-1163))) (-15 -3940 ((-315 |#3|) $)) (IF (|has| |#3| (-1028 (-558))) (PROGN (-15 -3226 ($ (-315 (-558)))) (-15 -3302 ((-3 $ "failed") (-315 (-558)))) (-15 -3226 ($ (-406 (-942 (-558))))) (-15 -3302 ((-3 $ "failed") (-406 (-942 (-558))))) (-15 -3226 ($ (-942 (-558)))) (-15 -3302 ((-3 $ "failed") (-942 (-558))))) |%noBranch|) (IF (|has| |#3| (-1028 (-378))) (PROGN (-15 -3226 ($ (-315 (-378)))) (-15 -3302 ((-3 $ "failed") (-315 (-378)))) (-15 -3226 ($ (-406 (-942 (-378))))) (-15 -3302 ((-3 $ "failed") (-406 (-942 (-378))))) (-15 -3226 ($ (-942 (-378)))) (-15 -3302 ((-3 $ "failed") (-942 (-378))))) |%noBranch|) (-15 -4241 ($ $)) (-15 -3948 ($ $)) (-15 -3944 ($ $)) (-15 -4342 ($ $)) (-15 -2927 ($ $)) (-15 -2109 ($ $)) (-15 -2120 ($ $)) (-15 -2131 ($ $)) (-15 -2184 ($ $)) (-15 -2195 ($ $)) (-15 -2209 ($ $)) (-15 -2254 ($ $)) (-15 -2265 ($ $)) (-15 -2277 ($ $)) (-15 -3348 ($)) (-15 -4078 ((-635 (-1163)) $)) (-15 -2541 ((-112))) (-15 -2541 ((-112) (-112))))) (-635 (-1163)) (-635 (-1163)) (-386)) (T -338))
-((-3226 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-3948 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-3944 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-4342 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2927 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2131 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2184 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2195 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2209 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2254 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-3348 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163))) (-14 *3 (-635 (-1163))) (-4 *4 (-386)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-2541 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386)))))
-(-13 (-301) (-38 |#3|) (-1028 |#3|) (-890 (-1163)) (-10 -8 (-15 -3226 ($ (-315 |#3|))) (-15 -3302 ((-3 $ "failed") (-315 |#3|))) (-15 -3226 ($ (-1163))) (-15 -3302 ((-3 $ "failed") (-1163))) (-15 -3940 ((-315 |#3|) $)) (IF (|has| |#3| (-1028 (-558))) (PROGN (-15 -3226 ($ (-315 (-558)))) (-15 -3302 ((-3 $ "failed") (-315 (-558)))) (-15 -3226 ($ (-406 (-942 (-558))))) (-15 -3302 ((-3 $ "failed") (-406 (-942 (-558))))) (-15 -3226 ($ (-942 (-558)))) (-15 -3302 ((-3 $ "failed") (-942 (-558))))) |%noBranch|) (IF (|has| |#3| (-1028 (-378))) (PROGN (-15 -3226 ($ (-315 (-378)))) (-15 -3302 ((-3 $ "failed") (-315 (-378)))) (-15 -3226 ($ (-406 (-942 (-378))))) (-15 -3302 ((-3 $ "failed") (-406 (-942 (-378))))) (-15 -3226 ($ (-942 (-378)))) (-15 -3302 ((-3 $ "failed") (-942 (-378))))) |%noBranch|) (-15 -4241 ($ $)) (-15 -3948 ($ $)) (-15 -3944 ($ $)) (-15 -4342 ($ $)) (-15 -2927 ($ $)) (-15 -2109 ($ $)) (-15 -2120 ($ $)) (-15 -2131 ($ $)) (-15 -2184 ($ $)) (-15 -2195 ($ $)) (-15 -2209 ($ $)) (-15 -2254 ($ $)) (-15 -2265 ($ $)) (-15 -2277 ($ $)) (-15 -3348 ($)) (-15 -4078 ((-635 (-1163)) $)) (-15 -2541 ((-112))) (-15 -2541 ((-112) (-112)))))
-((-3397 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-339 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3397 (|#8| (-1 |#5| |#1|) |#4|))) (-1204) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1204) (-1222 |#5|) (-1222 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -339))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1204)) (-4 *8 (-1204)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *9 (-1222 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1222 (-406 *9))))))
-(-10 -7 (-15 -3397 (|#8| (-1 |#5| |#1|) |#4|)))
-((-3435 (((-2 (|:| |num| (-1246 |#3|)) (|:| |den| |#3|)) $) 38)) (-3431 (($ (-1246 (-406 |#3|)) (-1246 $)) NIL) (($ (-1246 (-406 |#3|))) NIL) (($ (-1246 |#3|) |#3|) 160)) (-2191 (((-1246 $) (-1246 $)) 144)) (-2352 (((-635 (-635 |#2|))) 118)) (-2922 (((-112) |#2| |#2|) 73)) (-3199 (($ $) 138)) (-3236 (((-762)) 31)) (-2481 (((-1246 $) (-1246 $)) 197)) (-3515 (((-635 (-942 |#2|)) (-1163)) 110)) (-3775 (((-112) $) 157)) (-2960 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-2404 (((-3 |#3| "failed")) 50)) (-1995 (((-762)) 169)) (-2276 ((|#2| $ |#2| |#2|) 131)) (-3754 (((-3 |#3| "failed")) 68)) (-3780 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-762)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-3744 (((-1246 $) (-1246 $)) 150)) (-1338 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3276 (((-112)) 33)))
-(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2352 ((-635 (-635 |#2|)))) (-15 -3515 ((-635 (-942 |#2|)) (-1163))) (-15 -1338 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2404 ((-3 |#3| "failed"))) (-15 -3754 ((-3 |#3| "failed"))) (-15 -2276 (|#2| |#1| |#2| |#2|)) (-15 -3199 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2960 ((-112) |#1| |#3|)) (-15 -2960 ((-112) |#1| |#2|)) (-15 -3431 (|#1| (-1246 |#3|) |#3|)) (-15 -3435 ((-2 (|:| |num| (-1246 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2191 ((-1246 |#1|) (-1246 |#1|))) (-15 -2481 ((-1246 |#1|) (-1246 |#1|))) (-15 -3744 ((-1246 |#1|) (-1246 |#1|))) (-15 -2960 ((-112) |#1|)) (-15 -3775 ((-112) |#1|)) (-15 -2922 ((-112) |#2| |#2|)) (-15 -3276 ((-112))) (-15 -1995 ((-762))) (-15 -3236 ((-762))) (-15 -3780 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -3780 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-762))) (-15 -3431 (|#1| (-1246 (-406 |#3|)))) (-15 -3431 (|#1| (-1246 (-406 |#3|)) (-1246 |#1|)))) (-341 |#2| |#3| |#4|) (-1204) (-1222 |#2|) (-1222 (-406 |#3|))) (T -340))
-((-3236 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1995 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-3276 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-2922 (*1 *2 *3 *3) (-12 (-4 *3 (-1204)) (-4 *5 (-1222 *3)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-3754 (*1 *2) (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-2404 (*1 *2) (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *5 (-1204)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-5 *2 (-635 (-942 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-2352 (*1 *2) (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))))
-(-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -2352 ((-635 (-635 |#2|)))) (-15 -3515 ((-635 (-942 |#2|)) (-1163))) (-15 -1338 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2404 ((-3 |#3| "failed"))) (-15 -3754 ((-3 |#3| "failed"))) (-15 -2276 (|#2| |#1| |#2| |#2|)) (-15 -3199 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2960 ((-112) |#1| |#3|)) (-15 -2960 ((-112) |#1| |#2|)) (-15 -3431 (|#1| (-1246 |#3|) |#3|)) (-15 -3435 ((-2 (|:| |num| (-1246 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2191 ((-1246 |#1|) (-1246 |#1|))) (-15 -2481 ((-1246 |#1|) (-1246 |#1|))) (-15 -3744 ((-1246 |#1|) (-1246 |#1|))) (-15 -2960 ((-112) |#1|)) (-15 -3775 ((-112) |#1|)) (-15 -2922 ((-112) |#2| |#2|)) (-15 -3276 ((-112))) (-15 -1995 ((-762))) (-15 -3236 ((-762))) (-15 -3780 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -3780 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-762))) (-15 -3431 (|#1| (-1246 (-406 |#3|)))) (-15 -3431 (|#1| (-1246 (-406 |#3|)) (-1246 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3435 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 195)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-3244 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-4326 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-3409 (((-679 (-406 |#2|)) (-1246 $)) 47) (((-679 (-406 |#2|))) 62)) (-1719 (((-406 |#2|) $) 53)) (-3067 (((-1173 (-911) (-762)) (-558)) 146 (|has| (-406 |#2|) (-348)))) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-4110 (((-417 $) $) 114 (|has| (-406 |#2|) (-362)))) (-1599 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-2507 (((-762)) 87 (|has| (-406 |#2|) (-367)))) (-4348 (((-112)) 212)) (-3740 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 169 (|has| (-406 |#2|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 167 (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-3 (-406 |#2|) "failed") $) 164)) (-3226 (((-558) $) 168 (|has| (-406 |#2|) (-1028 (-558)))) (((-406 (-558)) $) 166 (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-406 |#2|) $) 165)) (-3431 (($ (-1246 (-406 |#2|)) (-1246 $)) 49) (($ (-1246 (-406 |#2|))) 65) (($ (-1246 |#2|) |#2|) 194)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-348)))) (-1709 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-3533 (((-679 (-406 |#2|)) $ (-1246 $)) 54) (((-679 (-406 |#2|)) $) 60)) (-1918 (((-679 (-558)) (-679 $)) 163 (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 162 (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-406 |#2|))) (|:| |vec| (-1246 (-406 |#2|)))) (-679 $) (-1246 $)) 161) (((-679 (-406 |#2|)) (-679 $)) 160)) (-2191 (((-1246 $) (-1246 $)) 200)) (-3866 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-3248 (((-3 $ "failed") $) 33)) (-2352 (((-635 (-635 |#1|))) 181 (|has| |#1| (-367)))) (-2922 (((-112) |#1| |#1|) 216)) (-1489 (((-911)) 55)) (-3692 (($) 90 (|has| (-406 |#2|) (-367)))) (-3649 (((-112)) 209)) (-3429 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-2881 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 102 (|has| (-406 |#2|) (-362)))) (-3199 (($ $) 187)) (-3567 (($) 148 (|has| (-406 |#2|) (-348)))) (-3617 (((-112) $) 149 (|has| (-406 |#2|) (-348)))) (-4362 (($ $ (-762)) 140 (|has| (-406 |#2|) (-348))) (($ $) 139 (|has| (-406 |#2|) (-348)))) (-2992 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-2532 (((-911) $) 151 (|has| (-406 |#2|) (-348))) (((-824 (-911)) $) 137 (|has| (-406 |#2|) (-348)))) (-3999 (((-112) $) 31)) (-3236 (((-762)) 219)) (-2481 (((-1246 $) (-1246 $)) 201)) (-1423 (((-406 |#2|) $) 52)) (-3515 (((-635 (-942 |#1|)) (-1163)) 182 (|has| |#1| (-362)))) (-2521 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 111 (|has| (-406 |#2|) (-362)))) (-1715 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-1486 (((-911) $) 89 (|has| (-406 |#2|) (-367)))) (-3850 ((|#3| $) 155)) (-1500 (($ (-635 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-2510 (((-1145) $) 9)) (-3375 (((-679 (-406 |#2|))) 196)) (-2693 (((-679 (-406 |#2|))) 198)) (-3823 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-2333 (($ (-1246 |#2|) |#2|) 192)) (-1959 (((-679 (-406 |#2|))) 197)) (-2216 (((-679 (-406 |#2|))) 199)) (-3493 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-3037 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 193)) (-3625 (((-1246 $)) 205)) (-2999 (((-1246 $)) 206)) (-3775 (((-112) $) 204)) (-2960 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-1823 (($) 142 (|has| (-406 |#2|) (-348)) CONST)) (-2349 (($ (-911)) 88 (|has| (-406 |#2|) (-367)))) (-2404 (((-3 |#2| "failed")) 184)) (-1688 (((-1107) $) 10)) (-1995 (((-762)) 218)) (-2461 (($) 159)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 101 (|has| (-406 |#2|) (-362)))) (-1544 (($ (-635 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 145 (|has| (-406 |#2|) (-348)))) (-3939 (((-417 $) $) 112 (|has| (-406 |#2|) (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-2861 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| (-406 |#2|) (-362)))) (-1562 (((-762) $) 105 (|has| (-406 |#2|) (-362)))) (-2276 ((|#1| $ |#1| |#1|) 186)) (-3754 (((-3 |#2| "failed")) 185)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-3789 (((-406 |#2|) (-1246 $)) 48) (((-406 |#2|)) 61)) (-2551 (((-762) $) 150 (|has| (-406 |#2|) (-348))) (((-3 (-762) "failed") $ $) 138 (|has| (-406 |#2|) (-348)))) (-3780 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-635 (-1163)) (-635 (-762))) 129 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163) (-762)) 130 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1163))) 131 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163)) 132 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-762)) 134 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2157 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 136 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2157 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2355 (((-679 (-406 |#2|)) (-1246 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-2297 ((|#3|) 158)) (-2933 (($) 147 (|has| (-406 |#2|) (-348)))) (-2979 (((-1246 (-406 |#2|)) $ (-1246 $)) 51) (((-679 (-406 |#2|)) (-1246 $) (-1246 $)) 50) (((-1246 (-406 |#2|)) $) 67) (((-679 (-406 |#2|)) (-1246 $)) 66)) (-3441 (((-1246 (-406 |#2|)) $) 64) (($ (-1246 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 144 (|has| (-406 |#2|) (-348)))) (-3744 (((-1246 $) (-1246 $)) 202)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-558))) 86 (-3994 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1028 (-406 (-558)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-1487 (($ $) 143 (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-1969 ((|#3| $) 46)) (-2417 (((-762)) 28)) (-4296 (((-112)) 215)) (-4059 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-2743 (((-1246 $)) 68)) (-2671 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-1338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-3276 (((-112)) 217)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1163)) (-635 (-762))) 125 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163) (-762)) 126 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1163))) 127 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-1163)) 128 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) (-2157 (|has| (-406 |#2|) (-890 (-1163))) (|has| (-406 |#2|) (-362))))) (($ $ (-762)) 133 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2157 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 135 (-3994 (-2157 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2157 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-558)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-558))) 118 (|has| (-406 |#2|) (-362)))))
-(((-341 |#1| |#2| |#3|) (-139) (-1204) (-1222 |t#1|) (-1222 (-406 |t#2|))) (T -341))
-((-3236 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762)))) (-1995 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762)))) (-3276 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-2922 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-4296 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-4059 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-4059 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-4348 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3740 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3740 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-3649 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3429 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3429 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-2999 (*1 *2) (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)))) (-3625 (*1 *2) (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-2191 (*1 *2 *2) (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-2216 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-2693 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-1959 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-3375 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3))))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))) (-2333 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3))))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-2 (|:| |num| (-679 *5)) (|:| |den| *5))))) (-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))) (-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))) (-3199 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))))) (-2276 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3))))) (-3754 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204)) (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))) (-2404 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204)) (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))) (-1338 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1204)) (-4 *6 (-1222 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-635 (-942 *4))))) (-2352 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3))))))
-(-13 (-715 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3236 ((-762))) (-15 -1995 ((-762))) (-15 -3276 ((-112))) (-15 -2922 ((-112) |t#1| |t#1|)) (-15 -4296 ((-112))) (-15 -4059 ((-112) |t#1|)) (-15 -4059 ((-112) |t#2|)) (-15 -4348 ((-112))) (-15 -3740 ((-112) |t#1|)) (-15 -3740 ((-112) |t#2|)) (-15 -3649 ((-112))) (-15 -3429 ((-112) |t#1|)) (-15 -3429 ((-112) |t#2|)) (-15 -2999 ((-1246 $))) (-15 -3625 ((-1246 $))) (-15 -3775 ((-112) $)) (-15 -2960 ((-112) $)) (-15 -3744 ((-1246 $) (-1246 $))) (-15 -2481 ((-1246 $) (-1246 $))) (-15 -2191 ((-1246 $) (-1246 $))) (-15 -2216 ((-679 (-406 |t#2|)))) (-15 -2693 ((-679 (-406 |t#2|)))) (-15 -1959 ((-679 (-406 |t#2|)))) (-15 -3375 ((-679 (-406 |t#2|)))) (-15 -3435 ((-2 (|:| |num| (-1246 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3431 ($ (-1246 |t#2|) |t#2|)) (-15 -3037 ((-2 (|:| |num| (-1246 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2333 ($ (-1246 |t#2|) |t#2|)) (-15 -3493 ((-2 (|:| |num| (-679 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2960 ((-112) $ |t#1|)) (-15 -2960 ((-112) $ |t#2|)) (-15 -3780 ($ $ (-1 |t#2| |t#2|))) (-15 -3199 ($ $)) (-15 -2276 (|t#1| $ |t#1| |t#1|)) (-15 -3754 ((-3 |t#2| "failed"))) (-15 -2404 ((-3 |t#2| "failed"))) (-15 -1338 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -3515 ((-635 (-942 |t#1|)) (-1163))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -2352 ((-635 (-635 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-38 #1=(-406 |#2|)) . T) ((-38 $) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #0# #0#) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-608 #0#) -3994 (|has| (-406 |#2|) (-1028 (-406 (-558)))) (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-608 #1#) . T) ((-608 (-558)) . T) ((-608 $) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-605 (-853)) . T) ((-171) . T) ((-606 |#3|) . T) ((-230 #1#) |has| (-406 |#2|) (-362)) ((-232) -3994 (|has| (-406 |#2|) (-348)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-289) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-306) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-362) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-348)) ((-367) -3994 (|has| (-406 |#2|) (-367)) (|has| (-406 |#2|) (-348))) ((-348) |has| (-406 |#2|) (-348)) ((-369 #1# |#3|) . T) ((-408 #1# |#3|) . T) ((-376 #1#) . T) ((-410 #1#) . T) ((-450) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-550) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-638 #0#) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-638 #1#) . T) ((-638 $) . T) ((-631 #1#) . T) ((-631 (-558)) |has| (-406 |#2|) (-631 (-558))) ((-708 #0#) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-708 #1#) . T) ((-708 $) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-715 #1# |#3|) . T) ((-717) . T) ((-890 (-1163)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163)))) ((-910) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1028 (-406 (-558))) |has| (-406 |#2|) (-1028 (-406 (-558)))) ((-1028 #1#) . T) ((-1028 (-558)) |has| (-406 |#2|) (-1028 (-558))) ((-1045 #0#) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1045 #1#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| (-406 |#2|) (-348)) ((-1204) -3994 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-900 |#1|) (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| (-900 |#1|) (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-900 |#1|) "failed") $) NIL)) (-3226 (((-900 |#1|) $) NIL)) (-3431 (($ (-1246 (-900 |#1|))) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-900 |#1|) (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-900 |#1|) (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL (|has| (-900 |#1|) (-367)))) (-3617 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367)))) (($ $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| (-900 |#1|) (-367))) (((-824 (-911)) $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| (-900 |#1|) (-367)))) (-3235 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-1423 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| (-900 |#1|) (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 (-900 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-1486 (((-911) $) NIL (|has| (-900 |#1|) (-367)))) (-1937 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367)))) (-3811 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-1159 (-900 |#1|)) "failed") $ $) NIL (|has| (-900 |#1|) (-367)))) (-3635 (($ $ (-1159 (-900 |#1|))) NIL (|has| (-900 |#1|) (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-900 |#1|) (-367)) CONST)) (-2349 (($ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-1750 (((-948 (-1107))) NIL)) (-2461 (($) NIL (|has| (-900 |#1|) (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| (-900 |#1|) (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 (-900 |#1|))) NIL)) (-2933 (($) NIL (|has| (-900 |#1|) (-367)))) (-3703 (($) NIL (|has| (-900 |#1|) (-367)))) (-2979 (((-1246 (-900 |#1|)) $) NIL) (((-679 (-900 |#1|)) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-900 |#1|) (-367)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-900 |#1|)) NIL)) (-1487 (($ $) NIL (|has| (-900 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-3042 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL) (($ $ (-900 |#1|)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-900 |#1|)) NIL) (($ (-900 |#1|) $) NIL)))
-(((-342 |#1| |#2|) (-13 (-328 (-900 |#1|)) (-10 -7 (-15 -1750 ((-948 (-1107)))))) (-911) (-911)) (T -342))
-((-1750 (*1 *2) (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-342 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))))
-(-13 (-328 (-900 |#1|)) (-10 -7 (-15 -1750 ((-948 (-1107))))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 43)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) 40 (|has| |#1| (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 114)) (-3226 ((|#1| $) 85)) (-3431 (($ (-1246 |#1|)) 103)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) 97 (|has| |#1| (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) 128 (|has| |#1| (-367)))) (-3617 (((-112) $) 47 (|has| |#1| (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) 44 (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) 130 (|has| |#1| (-367)))) (-3235 (((-112) $) NIL (|has| |#1| (-367)))) (-1423 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 |#1|) $) 89) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-1486 (((-911) $) 138 (|has| |#1| (-367)))) (-1937 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3811 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3635 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 145)) (-1823 (($) NIL (|has| |#1| (-367)) CONST)) (-2349 (($ (-911)) 70 (|has| |#1| (-367)))) (-3743 (((-112) $) 117)) (-1688 (((-1107) $) NIL)) (-1750 (((-948 (-1107))) 41)) (-2461 (($) 126 (|has| |#1| (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 92 (|has| |#1| (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) 66) (((-911)) 67)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) 129 (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) 124 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 |#1|)) 95)) (-2933 (($) 127 (|has| |#1| (-367)))) (-3703 (($) 135 (|has| |#1| (-367)))) (-2979 (((-1246 |#1|) $) 58) (((-679 |#1|) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3940 (((-853) $) 141) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 74)) (-1487 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) 137)) (-2743 (((-1246 $)) 116) (((-1246 $) (-911)) 72)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) 48 T CONST)) (-2220 (($) 45 T CONST)) (-3607 (($ $) 80 (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-3042 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1708 (((-112) $ $) 46)) (-1805 (($ $ $) 143) (($ $ |#1|) 144)) (-1796 (($ $) 125) (($ $ $) NIL)) (-1785 (($ $ $) 60)) (** (($ $ (-911)) 147) (($ $ (-762)) 148) (($ $ (-558)) 146)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 76) (($ $ $) 75) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
-(((-343 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1750 ((-948 (-1107)))))) (-348) (-1159 |#1|)) (T -343))
-((-1750 (*1 *2) (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) (-14 *4 (-1159 *3)))))
-(-13 (-328 |#1|) (-10 -7 (-15 -1750 ((-948 (-1107))))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3431 (($ (-1246 |#1|)) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| |#1| (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL (|has| |#1| (-367)))) (-3617 (((-112) $) NIL (|has| |#1| (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| |#1| (-367)))) (-3235 (((-112) $) NIL (|has| |#1| (-367)))) (-1423 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 |#1|) $) NIL) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-1486 (((-911) $) NIL (|has| |#1| (-367)))) (-1937 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3811 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3635 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| |#1| (-367)) CONST)) (-2349 (($ (-911)) NIL (|has| |#1| (-367)))) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-1750 (((-948 (-1107))) NIL)) (-2461 (($) NIL (|has| |#1| (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| |#1| (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 |#1|)) NIL)) (-2933 (($) NIL (|has| |#1| (-367)))) (-3703 (($) NIL (|has| |#1| (-367)))) (-2979 (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) NIL)) (-1487 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-3042 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1750 ((-948 (-1107)))))) (-348) (-911)) (T -344))
-((-1750 (*1 *2) (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))))
-(-13 (-328 |#1|) (-10 -7 (-15 -1750 ((-948 (-1107))))))
-((-1998 (((-762) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107)))))) 42)) (-2313 (((-948 (-1107)) (-1159 |#1|)) 85)) (-1820 (((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) (-1159 |#1|)) 78)) (-1885 (((-679 |#1|) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107)))))) 86)) (-1286 (((-3 (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) "failed") (-911)) 13)) (-1662 (((-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107)))))) (-911)) 18)))
-(((-345 |#1|) (-10 -7 (-15 -2313 ((-948 (-1107)) (-1159 |#1|))) (-15 -1820 ((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) (-1159 |#1|))) (-15 -1885 ((-679 |#1|) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -1998 ((-762) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -1286 ((-3 (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) "failed") (-911))) (-15 -1662 ((-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107)))))) (-911)))) (-348)) (T -345))
-((-1662 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-3 (-1159 *4) (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107))))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-1286 (*1 *2 *3) (|partial| -12 (-5 *3 (-911)) (-5 *2 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107)))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107)))))) (-4 *4 (-348)) (-5 *2 (-762)) (-5 *1 (-345 *4)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107)))))) (-4 *4 (-348)) (-5 *2 (-679 *4)) (-5 *1 (-345 *4)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107)))))) (-5 *1 (-345 *4)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-948 (-1107))) (-5 *1 (-345 *4)))))
-(-10 -7 (-15 -2313 ((-948 (-1107)) (-1159 |#1|))) (-15 -1820 ((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) (-1159 |#1|))) (-15 -1885 ((-679 |#1|) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -1998 ((-762) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -1286 ((-3 (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) "failed") (-911))) (-15 -1662 ((-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107)))))) (-911))))
-((-3940 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -3940 (|#3| |#1|)) (-15 -3940 (|#1| |#3|))) (-328 |#2|) (-348) (-328 |#2|)) (T -346))
-((-3940 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) (-4 *3 (-328 *4)))) (-3940 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) (-4 *3 (-328 *4)))))
-(-10 -7 (-15 -3940 (|#3| |#1|)) (-15 -3940 (|#1| |#3|)))
-((-3617 (((-112) $) 50)) (-2532 (((-824 (-911)) $) 21) (((-911) $) 51)) (-2521 (((-3 $ "failed") $) 16)) (-1823 (($) 9)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 92)) (-2551 (((-3 (-762) "failed") $ $) 70) (((-762) $) 59)) (-3780 (($ $ (-762)) NIL) (($ $) 8)) (-2933 (($) 43)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 34)) (-1487 (((-3 $ "failed") $) 38) (($ $) 37)))
-(((-347 |#1|) (-10 -8 (-15 -2532 ((-911) |#1|)) (-15 -2551 ((-762) |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2933 (|#1|)) (-15 -4277 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -1487 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -2551 ((-3 (-762) "failed") |#1| |#1|)) (-15 -2532 ((-824 (-911)) |#1|)) (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)))) (-348)) (T -347))
-NIL
-(-10 -8 (-15 -2532 ((-911) |#1|)) (-15 -2551 ((-762) |#1|)) (-15 -3617 ((-112) |#1|)) (-15 -2933 (|#1|)) (-15 -4277 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -1487 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -2551 ((-3 (-762) "failed") |#1| |#1|)) (-15 -2532 ((-824 (-911)) |#1|)) (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-3067 (((-1173 (-911) (-762)) (-558)) 94)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-1599 (((-112) $ $) 60)) (-2507 (((-762)) 104)) (-3457 (($) 17 T CONST)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-3692 (($) 107)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-3567 (($) 92)) (-3617 (((-112) $) 91)) (-4362 (($ $) 80) (($ $ (-762)) 79)) (-2992 (((-112) $) 72)) (-2532 (((-824 (-911)) $) 82) (((-911) $) 89)) (-3999 (((-112) $) 31)) (-2521 (((-3 $ "failed") $) 103)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1486 (((-911) $) 106)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-1823 (($) 102 T CONST)) (-2349 (($ (-911)) 105)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 95)) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-2551 (((-3 (-762) "failed") $ $) 81) (((-762) $) 90)) (-3780 (($ $ (-762)) 100) (($ $) 98)) (-2933 (($) 93)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 96)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-1487 (((-3 $ "failed") $) 83) (($ $) 97)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-762)) 101) (($ $) 99)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 66)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+((-3711 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *3)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-914)) (-4 *4 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *4)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1253 *3)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3)))) (-3660 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3)))) (-4150 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-914)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1162 *1)) (-4 *1 (-328 *4)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-2111 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2052 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-3158 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-3152 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1162 *3)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1162 *3)))) (-2409 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1162 *3)))))
+(-13 (-1272 |t#1|) (-1031 |t#1|) (-10 -8 (-15 -3711 ((-1253 $))) (-15 -3711 ((-1253 $) (-914))) (-15 -3969 ((-1253 |t#1|) $)) (-15 -3969 ((-682 |t#1|) (-1253 $))) (-15 -2257 ($ (-1253 |t#1|))) (-15 -2692 ((-1162 |t#1|) $)) (-15 -3660 ((-1162 |t#1|))) (-15 -4150 ((-914))) (-15 -2894 ((-914) $)) (-15 -1672 (|t#1| $)) (-15 -1744 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-348)) (-15 -2692 ((-1162 $) $ (-914))) (-15 -1672 ($ $ (-914))) (-15 -1744 ($ $ (-914))) (-15 -2111 ($)) (-15 -2052 ($)) (-15 -3584 ((-112) $)) (-15 -3158 ($)) (-15 -3152 ($ $ (-1162 |t#1|))) (-15 -2300 ((-1162 |t#1|) $)) (-15 -2409 ((-1162 |t#1|) $)) (-15 -2409 ((-3 (-1162 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4007 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1272 |#1|) . T) ((-362) . T) ((-401) -4007 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-348) |has| |#1| (-367)) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-367)) ((-1209) . T) ((-1260 |#1|) . T))
+((-4011 (((-112) $ $) NIL)) (-4035 (($ (-1165) $) 87)) (-3304 (($) 76)) (-4248 (((-1110) (-1110)) 9)) (-2644 (($) 77)) (-4102 (($) 89) (($ (-315 (-692))) 97) (($ (-315 (-694))) 93) (($ (-315 (-687))) 101) (($ (-315 (-378))) 108) (($ (-315 (-561))) 104) (($ (-315 (-168 (-378)))) 112)) (-1424 (($ (-1165) $) 88)) (-2899 (($ (-638 (-856))) 78)) (-3475 (((-1258) $) 74)) (-1506 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2349 (($ (-1110)) 50)) (-2155 (((-1094) $) 24)) (-2922 (($ (-1082 (-945 (-561))) $) 84) (($ (-1082 (-945 (-561))) (-945 (-561)) $) 85)) (-4074 (($ (-1110)) 86)) (-2926 (($ (-1165) $) 114) (($ (-1165) $ $) 115)) (-3075 (($ (-1166) (-638 (-1166))) 75)) (-2677 (($ (-1148)) 81) (($ (-638 (-1148))) 79)) (-4022 (((-856) $) 117)) (-3481 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1928 (-112)) (|:| -2484 (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |blockBranch| (-638 $)) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2290 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3279 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3279 $))) (|:| |commonBranch| (-2 (|:| -3269 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856)))) $) 43)) (-1396 (($ (-1148)) 186)) (-2932 (($ (-638 $)) 113)) (-4236 (($ (-1166) (-1148)) 119) (($ (-1166) (-315 (-694))) 159) (($ (-1166) (-315 (-692))) 160) (($ (-1166) (-315 (-687))) 161) (($ (-1166) (-682 (-694))) 122) (($ (-1166) (-682 (-692))) 125) (($ (-1166) (-682 (-687))) 128) (($ (-1166) (-1253 (-694))) 131) (($ (-1166) (-1253 (-692))) 134) (($ (-1166) (-1253 (-687))) 137) (($ (-1166) (-682 (-315 (-694)))) 140) (($ (-1166) (-682 (-315 (-692)))) 143) (($ (-1166) (-682 (-315 (-687)))) 146) (($ (-1166) (-1253 (-315 (-694)))) 149) (($ (-1166) (-1253 (-315 (-692)))) 152) (($ (-1166) (-1253 (-315 (-687)))) 155) (($ (-1166) (-638 (-945 (-561))) (-315 (-694))) 156) (($ (-1166) (-638 (-945 (-561))) (-315 (-692))) 157) (($ (-1166) (-638 (-945 (-561))) (-315 (-687))) 158) (($ (-1166) (-315 (-561))) 183) (($ (-1166) (-315 (-378))) 184) (($ (-1166) (-315 (-168 (-378)))) 185) (($ (-1166) (-682 (-315 (-561)))) 164) (($ (-1166) (-682 (-315 (-378)))) 167) (($ (-1166) (-682 (-315 (-168 (-378))))) 170) (($ (-1166) (-1253 (-315 (-561)))) 173) (($ (-1166) (-1253 (-315 (-378)))) 176) (($ (-1166) (-1253 (-315 (-168 (-378))))) 179) (($ (-1166) (-638 (-945 (-561))) (-315 (-561))) 180) (($ (-1166) (-638 (-945 (-561))) (-315 (-378))) 181) (($ (-1166) (-638 (-945 (-561))) (-315 (-168 (-378)))) 182)) (-1733 (((-112) $ $) NIL)))
+(((-329) (-13 (-1090) (-10 -8 (-15 -2922 ($ (-1082 (-945 (-561))) $)) (-15 -2922 ($ (-1082 (-945 (-561))) (-945 (-561)) $)) (-15 -4035 ($ (-1165) $)) (-15 -1424 ($ (-1165) $)) (-15 -2349 ($ (-1110))) (-15 -4074 ($ (-1110))) (-15 -2677 ($ (-1148))) (-15 -2677 ($ (-638 (-1148)))) (-15 -1396 ($ (-1148))) (-15 -4102 ($)) (-15 -4102 ($ (-315 (-692)))) (-15 -4102 ($ (-315 (-694)))) (-15 -4102 ($ (-315 (-687)))) (-15 -4102 ($ (-315 (-378)))) (-15 -4102 ($ (-315 (-561)))) (-15 -4102 ($ (-315 (-168 (-378))))) (-15 -2926 ($ (-1165) $)) (-15 -2926 ($ (-1165) $ $)) (-15 -4236 ($ (-1166) (-1148))) (-15 -4236 ($ (-1166) (-315 (-694)))) (-15 -4236 ($ (-1166) (-315 (-692)))) (-15 -4236 ($ (-1166) (-315 (-687)))) (-15 -4236 ($ (-1166) (-682 (-694)))) (-15 -4236 ($ (-1166) (-682 (-692)))) (-15 -4236 ($ (-1166) (-682 (-687)))) (-15 -4236 ($ (-1166) (-1253 (-694)))) (-15 -4236 ($ (-1166) (-1253 (-692)))) (-15 -4236 ($ (-1166) (-1253 (-687)))) (-15 -4236 ($ (-1166) (-682 (-315 (-694))))) (-15 -4236 ($ (-1166) (-682 (-315 (-692))))) (-15 -4236 ($ (-1166) (-682 (-315 (-687))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-694))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-692))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-687))))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-694)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-692)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-687)))) (-15 -4236 ($ (-1166) (-315 (-561)))) (-15 -4236 ($ (-1166) (-315 (-378)))) (-15 -4236 ($ (-1166) (-315 (-168 (-378))))) (-15 -4236 ($ (-1166) (-682 (-315 (-561))))) (-15 -4236 ($ (-1166) (-682 (-315 (-378))))) (-15 -4236 ($ (-1166) (-682 (-315 (-168 (-378)))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-561))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-378))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-168 (-378)))))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-561)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-378)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-168 (-378))))) (-15 -2932 ($ (-638 $))) (-15 -3304 ($)) (-15 -2644 ($)) (-15 -2899 ($ (-638 (-856)))) (-15 -3075 ($ (-1166) (-638 (-1166)))) (-15 -1506 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3481 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1928 (-112)) (|:| -2484 (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |blockBranch| (-638 $)) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2290 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3279 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3279 $))) (|:| |commonBranch| (-2 (|:| -3269 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856)))) $)) (-15 -3475 ((-1258) $)) (-15 -2155 ((-1094) $)) (-15 -4248 ((-1110) (-1110)))))) (T -329))
+((-2922 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *1 (-329)))) (-2922 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *3 (-945 (-561))) (-5 *1 (-329)))) (-4035 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1424 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-4074 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-329)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-4102 (*1 *1) (-5 *1 (-329))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-315 (-692))) (-5 *1 (-329)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-315 (-694))) (-5 *1 (-329)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-315 (-687))) (-5 *1 (-329)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-329)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2926 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-2926 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-694))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-692))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-687))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-694))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-692))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-687))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-694)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-692)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-687)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-694)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-692)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-687)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-694))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-692))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-687))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-561))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-561)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-378)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-561)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-378)))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-561))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-378))) (-5 *1 (-329)))) (-4236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-5 *1 (-329)))) (-3304 (*1 *1) (-5 *1 (-329))) (-2644 (*1 *1) (-5 *1 (-329))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-329)))) (-3075 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -1928 (-112)) (|:| -2484 (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |blockBranch| (-638 (-329))) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2290 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3279 (-329)))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3279 (-329)))) (|:| |commonBranch| (-2 (|:| -3269 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856))))) (-5 *1 (-329)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-329)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-329)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(-13 (-1090) (-10 -8 (-15 -2922 ($ (-1082 (-945 (-561))) $)) (-15 -2922 ($ (-1082 (-945 (-561))) (-945 (-561)) $)) (-15 -4035 ($ (-1165) $)) (-15 -1424 ($ (-1165) $)) (-15 -2349 ($ (-1110))) (-15 -4074 ($ (-1110))) (-15 -2677 ($ (-1148))) (-15 -2677 ($ (-638 (-1148)))) (-15 -1396 ($ (-1148))) (-15 -4102 ($)) (-15 -4102 ($ (-315 (-692)))) (-15 -4102 ($ (-315 (-694)))) (-15 -4102 ($ (-315 (-687)))) (-15 -4102 ($ (-315 (-378)))) (-15 -4102 ($ (-315 (-561)))) (-15 -4102 ($ (-315 (-168 (-378))))) (-15 -2926 ($ (-1165) $)) (-15 -2926 ($ (-1165) $ $)) (-15 -4236 ($ (-1166) (-1148))) (-15 -4236 ($ (-1166) (-315 (-694)))) (-15 -4236 ($ (-1166) (-315 (-692)))) (-15 -4236 ($ (-1166) (-315 (-687)))) (-15 -4236 ($ (-1166) (-682 (-694)))) (-15 -4236 ($ (-1166) (-682 (-692)))) (-15 -4236 ($ (-1166) (-682 (-687)))) (-15 -4236 ($ (-1166) (-1253 (-694)))) (-15 -4236 ($ (-1166) (-1253 (-692)))) (-15 -4236 ($ (-1166) (-1253 (-687)))) (-15 -4236 ($ (-1166) (-682 (-315 (-694))))) (-15 -4236 ($ (-1166) (-682 (-315 (-692))))) (-15 -4236 ($ (-1166) (-682 (-315 (-687))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-694))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-692))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-687))))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-694)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-692)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-687)))) (-15 -4236 ($ (-1166) (-315 (-561)))) (-15 -4236 ($ (-1166) (-315 (-378)))) (-15 -4236 ($ (-1166) (-315 (-168 (-378))))) (-15 -4236 ($ (-1166) (-682 (-315 (-561))))) (-15 -4236 ($ (-1166) (-682 (-315 (-378))))) (-15 -4236 ($ (-1166) (-682 (-315 (-168 (-378)))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-561))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-378))))) (-15 -4236 ($ (-1166) (-1253 (-315 (-168 (-378)))))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-561)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-378)))) (-15 -4236 ($ (-1166) (-638 (-945 (-561))) (-315 (-168 (-378))))) (-15 -2932 ($ (-638 $))) (-15 -3304 ($)) (-15 -2644 ($)) (-15 -2899 ($ (-638 (-856)))) (-15 -3075 ($ (-1166) (-638 (-1166)))) (-15 -1506 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3481 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-638 (-945 (-561)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-856)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1928 (-112)) (|:| -2484 (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856)))))) (|:| |blockBranch| (-638 $)) (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -2290 (-1082 (-945 (-561)))) (|:| |span| (-945 (-561))) (|:| -3279 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3279 $))) (|:| |commonBranch| (-2 (|:| -3269 (-1166)) (|:| |contents| (-638 (-1166))))) (|:| |printBranch| (-638 (-856)))) $)) (-15 -3475 ((-1258) $)) (-15 -2155 ((-1094) $)) (-15 -4248 ((-1110) (-1110)))))
+((-4011 (((-112) $ $) NIL)) (-3095 (((-112) $) 11)) (-4041 (($ |#1|) 8)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4054 (($ |#1|) 9)) (-4022 (((-856) $) 17)) (-1872 ((|#1| $) 12)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 19)))
+(((-330 |#1|) (-13 (-844) (-10 -8 (-15 -4041 ($ |#1|)) (-15 -4054 ($ |#1|)) (-15 -3095 ((-112) $)) (-15 -1872 (|#1| $)))) (-844)) (T -330))
+((-4041 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-4054 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844)))) (-1872 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))))
+(-13 (-844) (-10 -8 (-15 -4041 ($ |#1|)) (-15 -4054 ($ |#1|)) (-15 -3095 ((-112) $)) (-15 -1872 (|#1| $))))
+((-1479 (((-329) (-1166) (-945 (-561))) 23)) (-1822 (((-329) (-1166) (-945 (-561))) 27)) (-3348 (((-329) (-1166) (-1082 (-945 (-561))) (-1082 (-945 (-561)))) 26) (((-329) (-1166) (-945 (-561)) (-945 (-561))) 24)) (-2762 (((-329) (-1166) (-945 (-561))) 31)))
+(((-331) (-10 -7 (-15 -1479 ((-329) (-1166) (-945 (-561)))) (-15 -3348 ((-329) (-1166) (-945 (-561)) (-945 (-561)))) (-15 -3348 ((-329) (-1166) (-1082 (-945 (-561))) (-1082 (-945 (-561))))) (-15 -1822 ((-329) (-1166) (-945 (-561)))) (-15 -2762 ((-329) (-1166) (-945 (-561)))))) (T -331))
+((-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))) (-3348 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-945 (-561)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-3348 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1479 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329)) (-5 *1 (-331)))))
+(-10 -7 (-15 -1479 ((-329) (-1166) (-945 (-561)))) (-15 -3348 ((-329) (-1166) (-945 (-561)) (-945 (-561)))) (-15 -3348 ((-329) (-1166) (-1082 (-945 (-561))) (-1082 (-945 (-561))))) (-15 -1822 ((-329) (-1166) (-945 (-561)))) (-15 -2762 ((-329) (-1166) (-945 (-561)))))
+((-4120 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33)))
+(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4120 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1229 |#5|) (-1229 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -332))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1229 *9)) (-4 *11 (-1229 (-406 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11)))))
+(-10 -7 (-15 -4120 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|))))
+((-3487 (((-112) $) 14)))
+(((-333 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3487 ((-112) |#1|))) (-334 |#2| |#3| |#4| |#5|) (-362) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -333))
+NIL
+(-10 -8 (-15 -3487 ((-112) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3185 (($ $) 26)) (-3487 (((-112) $) 25)) (-1764 (((-1148) $) 9)) (-1359 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-1714 (((-1110) $) 10)) (-3158 (((-3 |#4| "failed") $) 24)) (-1895 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-561)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2091 (((-2 (|:| -1429 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20)))
+(((-334 |#1| |#2| |#3| |#4|) (-139) (-362) (-1229 |t#1|) (-1229 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -334))
+((-1359 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-334 *3 *4 *5 *6)))) (-1895 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-1895 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))) (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-1895 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-561)) (-4 *2 (-362)) (-4 *4 (-1229 *2)) (-4 *5 (-1229 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -1429 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-3158 (*1 *2 *1) (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-1895 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -1359 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -1895 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -1895 ($ |t#4|)) (-15 -1895 ($ |t#1| |t#1|)) (-15 -1895 ($ |t#1| |t#1| (-561))) (-15 -2091 ((-2 (|:| -1429 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3185 ($ $)) (-15 -3487 ((-112) $)) (-15 -3158 ((-3 |t#4| "failed") $)) (-15 -1895 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3185 (($ $) 33)) (-3487 (((-112) $) NIL)) (-1764 (((-1148) $) NIL)) (-3403 (((-1253 |#4|) $) 125)) (-1359 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-1714 (((-1110) $) NIL)) (-3158 (((-3 |#4| "failed") $) 36)) (-3280 (((-1253 |#4|) $) 118)) (-1895 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-561)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2091 (((-2 (|:| -1429 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4022 (((-856) $) 17)) (-2211 (($) 14 T CONST)) (-1733 (((-112) $ $) 20)) (-1824 (($ $) 27) (($ $ $) NIL)) (-1813 (($ $ $) 25)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 23)))
+(((-335 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3280 ((-1253 |#4|) $)) (-15 -3403 ((-1253 |#4|) $)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -335))
+((-3280 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-3403 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))))
+(-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3280 ((-1253 |#4|) $)) (-15 -3403 ((-1253 |#4|) $))))
+((-1444 (($ $ (-1166) |#2|) NIL) (($ $ (-638 (-1166)) (-638 |#2|)) 20) (($ $ (-638 (-293 |#2|))) 15) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-638 |#2|) (-638 |#2|)) NIL)) (-2277 (($ $ |#2|) 11)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -2277 (|#1| |#1| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#2| |#2|)) (-15 -1444 (|#1| |#1| (-293 |#2|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 |#2|))) (-15 -1444 (|#1| |#1| (-1166) |#2|))) (-337 |#2|) (-1090)) (T -336))
+NIL
+(-10 -8 (-15 -2277 (|#1| |#1| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#2| |#2|)) (-15 -1444 (|#1| |#1| (-293 |#2|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 |#2|))) (-15 -1444 (|#1| |#1| (-1166) |#2|)))
+((-4120 (($ (-1 |#1| |#1|) $) 6)) (-1444 (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 16 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-638 (-293 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-638 |#1|) (-638 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-2277 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|)))))
+(((-337 |#1|) (-139) (-1090)) (T -337))
+((-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1090)))))
+(-13 (-10 -8 (-15 -4120 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512 (-1166) |t#1|)) (-6 (-512 (-1166) |t#1|)) |%noBranch|)))
+(((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1166)) $) NIL)) (-2235 (((-112)) 90) (((-112) (-112)) 91)) (-1510 (((-638 (-607 $)) $) NIL)) (-2978 (($ $) NIL)) (-4064 (($ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2612 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-1665 (($ $) NIL)) (-4172 (($ $) NIL)) (-4041 (($ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-607 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-315 |#3|)) 70) (((-3 $ "failed") (-1166)) 96) (((-3 $ "failed") (-315 (-561))) 58 (|has| |#3| (-1031 (-561)))) (((-3 $ "failed") (-406 (-945 (-561)))) 64 (|has| |#3| (-1031 (-561)))) (((-3 $ "failed") (-945 (-561))) 59 (|has| |#3| (-1031 (-561)))) (((-3 $ "failed") (-315 (-378))) 88 (|has| |#3| (-1031 (-378)))) (((-3 $ "failed") (-406 (-945 (-378)))) 82 (|has| |#3| (-1031 (-378)))) (((-3 $ "failed") (-945 (-378))) 77 (|has| |#3| (-1031 (-378))))) (-3938 (((-607 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 71) (($ (-1166)) 97) (($ (-315 (-561))) 60 (|has| |#3| (-1031 (-561)))) (($ (-406 (-945 (-561)))) 65 (|has| |#3| (-1031 (-561)))) (($ (-945 (-561))) 61 (|has| |#3| (-1031 (-561)))) (($ (-315 (-378))) 89 (|has| |#3| (-1031 (-378)))) (($ (-406 (-945 (-378)))) 83 (|has| |#3| (-1031 (-378)))) (($ (-945 (-378))) 79 (|has| |#3| (-1031 (-378))))) (-3466 (((-3 $ "failed") $) NIL)) (-4067 (($) 10)) (-1890 (($ $) NIL) (($ (-638 $)) NIL)) (-1719 (((-638 (-114)) $) NIL)) (-3479 (((-114) (-114)) NIL)) (-3113 (((-112) $) NIL)) (-3402 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-3217 (((-1162 $) (-607 $)) NIL (|has| $ (-1042)))) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 $ $) (-607 $)) NIL)) (-2012 (((-3 (-607 $) "failed") $) NIL)) (-2975 (($ $) 93)) (-4348 (($ $) NIL)) (-1764 (((-1148) $) NIL)) (-1600 (((-638 (-607 $)) $) NIL)) (-4109 (($ (-114) $) 92) (($ (-114) (-638 $)) NIL)) (-2561 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) NIL)) (-3061 (((-765) $) NIL)) (-1714 (((-1110) $) NIL)) (-1297 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-3440 (($ $) NIL)) (-2736 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1444 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2277 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-1584 (($ $) NIL) (($ $ $) NIL)) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL)) (-3660 (($ $) NIL (|has| $ (-1042)))) (-2968 (($ $) NIL)) (-4054 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-607 $)) NIL) (($ |#3|) NIL) (($ (-561)) NIL) (((-315 |#3|) $) 95)) (-4259 (((-765)) NIL)) (-3300 (($ $) NIL) (($ (-638 $)) NIL)) (-2665 (((-112) (-114)) NIL)) (-4132 (($ $) NIL)) (-4105 (($ $) NIL)) (-4117 (($ $) NIL)) (-3749 (($ $) NIL)) (-2211 (($) 94 T CONST)) (-2222 (($) 24 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1824 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
+(((-338 |#1| |#2| |#3|) (-13 (-301) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3938 ($ (-315 |#3|))) (-15 -4017 ((-3 $ "failed") (-315 |#3|))) (-15 -3938 ($ (-1166))) (-15 -4017 ((-3 $ "failed") (-1166))) (-15 -4022 ((-315 |#3|) $)) (IF (|has| |#3| (-1031 (-561))) (PROGN (-15 -3938 ($ (-315 (-561)))) (-15 -4017 ((-3 $ "failed") (-315 (-561)))) (-15 -3938 ($ (-406 (-945 (-561))))) (-15 -4017 ((-3 $ "failed") (-406 (-945 (-561))))) (-15 -3938 ($ (-945 (-561)))) (-15 -4017 ((-3 $ "failed") (-945 (-561))))) |%noBranch|) (IF (|has| |#3| (-1031 (-378))) (PROGN (-15 -3938 ($ (-315 (-378)))) (-15 -4017 ((-3 $ "failed") (-315 (-378)))) (-15 -3938 ($ (-406 (-945 (-378))))) (-15 -4017 ((-3 $ "failed") (-406 (-945 (-378))))) (-15 -3938 ($ (-945 (-378)))) (-15 -4017 ((-3 $ "failed") (-945 (-378))))) |%noBranch|) (-15 -3749 ($ $)) (-15 -1665 ($ $)) (-15 -3440 ($ $)) (-15 -4348 ($ $)) (-15 -2975 ($ $)) (-15 -4041 ($ $)) (-15 -4054 ($ $)) (-15 -4064 ($ $)) (-15 -4105 ($ $)) (-15 -4117 ($ $)) (-15 -4132 ($ $)) (-15 -4172 ($ $)) (-15 -2968 ($ $)) (-15 -2978 ($ $)) (-15 -4067 ($)) (-15 -1412 ((-638 (-1166)) $)) (-15 -2235 ((-112))) (-15 -2235 ((-112) (-112))))) (-638 (-1166)) (-638 (-1166)) (-386)) (T -338))
+((-3938 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 *2)) (-14 *4 (-638 *2)) (-4 *5 (-386)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 *2)) (-14 *4 (-638 *2)) (-4 *5 (-386)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-3749 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-1665 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-3440 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4348 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-2975 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4041 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4054 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4064 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4105 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4132 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4172 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-2968 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-4067 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166))) (-14 *3 (-638 (-1166))) (-4 *4 (-386)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-2235 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386)))))
+(-13 (-301) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3938 ($ (-315 |#3|))) (-15 -4017 ((-3 $ "failed") (-315 |#3|))) (-15 -3938 ($ (-1166))) (-15 -4017 ((-3 $ "failed") (-1166))) (-15 -4022 ((-315 |#3|) $)) (IF (|has| |#3| (-1031 (-561))) (PROGN (-15 -3938 ($ (-315 (-561)))) (-15 -4017 ((-3 $ "failed") (-315 (-561)))) (-15 -3938 ($ (-406 (-945 (-561))))) (-15 -4017 ((-3 $ "failed") (-406 (-945 (-561))))) (-15 -3938 ($ (-945 (-561)))) (-15 -4017 ((-3 $ "failed") (-945 (-561))))) |%noBranch|) (IF (|has| |#3| (-1031 (-378))) (PROGN (-15 -3938 ($ (-315 (-378)))) (-15 -4017 ((-3 $ "failed") (-315 (-378)))) (-15 -3938 ($ (-406 (-945 (-378))))) (-15 -4017 ((-3 $ "failed") (-406 (-945 (-378))))) (-15 -3938 ($ (-945 (-378)))) (-15 -4017 ((-3 $ "failed") (-945 (-378))))) |%noBranch|) (-15 -3749 ($ $)) (-15 -1665 ($ $)) (-15 -3440 ($ $)) (-15 -4348 ($ $)) (-15 -2975 ($ $)) (-15 -4041 ($ $)) (-15 -4054 ($ $)) (-15 -4064 ($ $)) (-15 -4105 ($ $)) (-15 -4117 ($ $)) (-15 -4132 ($ $)) (-15 -4172 ($ $)) (-15 -2968 ($ $)) (-15 -2978 ($ $)) (-15 -4067 ($)) (-15 -1412 ((-638 (-1166)) $)) (-15 -2235 ((-112))) (-15 -2235 ((-112) (-112)))))
+((-4120 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-339 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4120 (|#8| (-1 |#5| |#1|) |#4|))) (-1209) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1209) (-1229 |#5|) (-1229 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -339))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *9 (-1229 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1229 (-406 *9))))))
+(-10 -7 (-15 -4120 (|#8| (-1 |#5| |#1|) |#4|)))
+((-3142 (((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) $) 38)) (-2257 (($ (-1253 (-406 |#3|)) (-1253 $)) NIL) (($ (-1253 (-406 |#3|))) NIL) (($ (-1253 |#3|) |#3|) 160)) (-4194 (((-1253 $) (-1253 $)) 144)) (-3727 (((-638 (-638 |#2|))) 118)) (-4295 (((-112) |#2| |#2|) 73)) (-2401 (($ $) 138)) (-3668 (((-765)) 31)) (-4329 (((-1253 $) (-1253 $)) 197)) (-3052 (((-638 (-945 |#2|)) (-1166)) 110)) (-2396 (((-112) $) 157)) (-1656 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-3669 (((-3 |#3| "failed")) 50)) (-4199 (((-765)) 169)) (-2277 ((|#2| $ |#2| |#2|) 131)) (-1867 (((-3 |#3| "failed")) 68)) (-3238 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-765)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-1299 (((-1253 $) (-1253 $)) 150)) (-3947 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3270 (((-112)) 33)))
+(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3727 ((-638 (-638 |#2|)))) (-15 -3052 ((-638 (-945 |#2|)) (-1166))) (-15 -3947 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3669 ((-3 |#3| "failed"))) (-15 -1867 ((-3 |#3| "failed"))) (-15 -2277 (|#2| |#1| |#2| |#2|)) (-15 -2401 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1656 ((-112) |#1| |#3|)) (-15 -1656 ((-112) |#1| |#2|)) (-15 -2257 (|#1| (-1253 |#3|) |#3|)) (-15 -3142 ((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4194 ((-1253 |#1|) (-1253 |#1|))) (-15 -4329 ((-1253 |#1|) (-1253 |#1|))) (-15 -1299 ((-1253 |#1|) (-1253 |#1|))) (-15 -1656 ((-112) |#1|)) (-15 -2396 ((-112) |#1|)) (-15 -4295 ((-112) |#2| |#2|)) (-15 -3270 ((-112))) (-15 -4199 ((-765))) (-15 -3668 ((-765))) (-15 -3238 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -3238 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -2257 (|#1| (-1253 (-406 |#3|)))) (-15 -2257 (|#1| (-1253 (-406 |#3|)) (-1253 |#1|)))) (-341 |#2| |#3| |#4|) (-1209) (-1229 |#2|) (-1229 (-406 |#3|))) (T -340))
+((-3668 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-4199 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-3270 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-4295 (*1 *2 *3 *3) (-12 (-4 *3 (-1209)) (-4 *5 (-1229 *3)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-1867 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-3669 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-638 (-945 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-3727 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-638 (-638 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))))
+(-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3727 ((-638 (-638 |#2|)))) (-15 -3052 ((-638 (-945 |#2|)) (-1166))) (-15 -3947 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3669 ((-3 |#3| "failed"))) (-15 -1867 ((-3 |#3| "failed"))) (-15 -2277 (|#2| |#1| |#2| |#2|)) (-15 -2401 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1656 ((-112) |#1| |#3|)) (-15 -1656 ((-112) |#1| |#2|)) (-15 -2257 (|#1| (-1253 |#3|) |#3|)) (-15 -3142 ((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4194 ((-1253 |#1|) (-1253 |#1|))) (-15 -4329 ((-1253 |#1|) (-1253 |#1|))) (-15 -1299 ((-1253 |#1|) (-1253 |#1|))) (-15 -1656 ((-112) |#1|)) (-15 -2396 ((-112) |#1|)) (-15 -4295 ((-112) |#2| |#2|)) (-15 -3270 ((-112))) (-15 -4199 ((-765))) (-15 -3668 ((-765))) (-15 -3238 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -3238 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -2257 (|#1| (-1253 (-406 |#3|)))) (-15 -2257 (|#1| (-1253 (-406 |#3|)) (-1253 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-3142 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 195)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-2851 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-3359 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-2695 (((-682 (-406 |#2|)) (-1253 $)) 47) (((-682 (-406 |#2|))) 62)) (-1744 (((-406 |#2|) $) 53)) (-4207 (((-1178 (-914) (-765)) (-561)) 146 (|has| (-406 |#2|) (-348)))) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-3422 (((-417 $) $) 114 (|has| (-406 |#2|) (-362)))) (-1671 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-1393 (((-765)) 87 (|has| (-406 |#2|) (-367)))) (-2156 (((-112)) 212)) (-2428 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 169 (|has| (-406 |#2|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 167 (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-3 (-406 |#2|) "failed") $) 164)) (-3938 (((-561) $) 168 (|has| (-406 |#2|) (-1031 (-561)))) (((-406 (-561)) $) 166 (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-406 |#2|) $) 165)) (-2257 (($ (-1253 (-406 |#2|)) (-1253 $)) 49) (($ (-1253 (-406 |#2|))) 65) (($ (-1253 |#2|) |#2|) 194)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-348)))) (-1793 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-4145 (((-682 (-406 |#2|)) $ (-1253 $)) 54) (((-682 (-406 |#2|)) $) 60)) (-3602 (((-682 (-561)) (-682 $)) 163 (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 162 (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) 161) (((-682 (-406 |#2|)) (-682 $)) 160)) (-4194 (((-1253 $) (-1253 $)) 200)) (-3185 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-3466 (((-3 $ "failed") $) 33)) (-3727 (((-638 (-638 |#1|))) 181 (|has| |#1| (-367)))) (-4295 (((-112) |#1| |#1|) 216)) (-1569 (((-914)) 55)) (-1332 (($) 90 (|has| (-406 |#2|) (-367)))) (-3189 (((-112)) 209)) (-2788 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1774 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 102 (|has| (-406 |#2|) (-362)))) (-2401 (($ $) 187)) (-2022 (($) 148 (|has| (-406 |#2|) (-348)))) (-1803 (((-112) $) 149 (|has| (-406 |#2|) (-348)))) (-1575 (($ $ (-765)) 140 (|has| (-406 |#2|) (-348))) (($ $) 139 (|has| (-406 |#2|) (-348)))) (-2737 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-4163 (((-914) $) 151 (|has| (-406 |#2|) (-348))) (((-827 (-914)) $) 137 (|has| (-406 |#2|) (-348)))) (-3113 (((-112) $) 31)) (-3668 (((-765)) 219)) (-4329 (((-1253 $) (-1253 $)) 201)) (-1672 (((-406 |#2|) $) 52)) (-3052 (((-638 (-945 |#1|)) (-1166)) 182 (|has| |#1| (-362)))) (-1663 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 111 (|has| (-406 |#2|) (-362)))) (-2692 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-3198 (((-914) $) 89 (|has| (-406 |#2|) (-367)))) (-3174 ((|#3| $) 155)) (-1582 (($ (-638 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-1764 (((-1148) $) 9)) (-2269 (((-682 (-406 |#2|))) 196)) (-2650 (((-682 (-406 |#2|))) 198)) (-1540 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-2962 (($ (-1253 |#2|) |#2|) 192)) (-3598 (((-682 (-406 |#2|))) 197)) (-2124 (((-682 (-406 |#2|))) 199)) (-3339 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-2682 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 193)) (-1391 (((-1253 $)) 205)) (-1625 (((-1253 $)) 206)) (-2396 (((-112) $) 204)) (-1656 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3721 (($) 142 (|has| (-406 |#2|) (-348)) CONST)) (-2413 (($ (-914)) 88 (|has| (-406 |#2|) (-367)))) (-3669 (((-3 |#2| "failed")) 184)) (-1714 (((-1110) $) 10)) (-4199 (((-765)) 218)) (-3158 (($) 159)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 101 (|has| (-406 |#2|) (-362)))) (-1623 (($ (-638 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 145 (|has| (-406 |#2|) (-348)))) (-1657 (((-417 $) $) 112 (|has| (-406 |#2|) (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-1756 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 103 (|has| (-406 |#2|) (-362)))) (-3569 (((-765) $) 105 (|has| (-406 |#2|) (-362)))) (-2277 ((|#1| $ |#1| |#1|) 186)) (-1867 (((-3 |#2| "failed")) 185)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-2553 (((-406 |#2|) (-1253 $)) 48) (((-406 |#2|)) 61)) (-1913 (((-765) $) 150 (|has| (-406 |#2|) (-348))) (((-3 (-765) "failed") $ $) 138 (|has| (-406 |#2|) (-348)))) (-3238 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-638 (-1166)) (-638 (-765))) 129 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 130 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-638 (-1166))) 131 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 132 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 134 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2170 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 136 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2170 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2656 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-3660 ((|#3|) 158)) (-1796 (($) 147 (|has| (-406 |#2|) (-348)))) (-3969 (((-1253 (-406 |#2|)) $ (-1253 $)) 51) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) 50) (((-1253 (-406 |#2|)) $) 67) (((-682 (-406 |#2|)) (-1253 $)) 66)) (-4174 (((-1253 (-406 |#2|)) $) 64) (($ (-1253 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 144 (|has| (-406 |#2|) (-348)))) (-1299 (((-1253 $) (-1253 $)) 202)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-561))) 86 (-4007 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-561)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-1760 (($ $) 143 (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-2485 ((|#3| $) 46)) (-4259 (((-765)) 28)) (-3200 (((-112)) 215)) (-1811 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3711 (((-1253 $)) 68)) (-3168 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-3947 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-3270 (((-112)) 217)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-638 (-1166)) (-638 (-765))) 125 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 126 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-638 (-1166))) 127 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 128 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-2170 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 133 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2170 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 135 (-4007 (-2170 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2170 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-561)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-561))) 118 (|has| (-406 |#2|) (-362)))))
+(((-341 |#1| |#2| |#3|) (-139) (-1209) (-1229 |t#1|) (-1229 (-406 |t#2|))) (T -341))
+((-3668 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))) (-4199 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))) (-3270 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-4295 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-3200 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1811 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1811 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-2156 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-2428 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-2428 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-3189 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-2788 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-2788 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-1625 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))) (-1391 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1299 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-4329 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-2124 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-2650 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-3598 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-2269 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))) (-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5))))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-2401 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))))) (-2277 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))))) (-1867 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))) (-3669 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1209)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-638 (-945 *4))))) (-3727 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-638 (-638 *3))))))
+(-13 (-718 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3668 ((-765))) (-15 -4199 ((-765))) (-15 -3270 ((-112))) (-15 -4295 ((-112) |t#1| |t#1|)) (-15 -3200 ((-112))) (-15 -1811 ((-112) |t#1|)) (-15 -1811 ((-112) |t#2|)) (-15 -2156 ((-112))) (-15 -2428 ((-112) |t#1|)) (-15 -2428 ((-112) |t#2|)) (-15 -3189 ((-112))) (-15 -2788 ((-112) |t#1|)) (-15 -2788 ((-112) |t#2|)) (-15 -1625 ((-1253 $))) (-15 -1391 ((-1253 $))) (-15 -2396 ((-112) $)) (-15 -1656 ((-112) $)) (-15 -1299 ((-1253 $) (-1253 $))) (-15 -4329 ((-1253 $) (-1253 $))) (-15 -4194 ((-1253 $) (-1253 $))) (-15 -2124 ((-682 (-406 |t#2|)))) (-15 -2650 ((-682 (-406 |t#2|)))) (-15 -3598 ((-682 (-406 |t#2|)))) (-15 -2269 ((-682 (-406 |t#2|)))) (-15 -3142 ((-2 (|:| |num| (-1253 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2257 ($ (-1253 |t#2|) |t#2|)) (-15 -2682 ((-2 (|:| |num| (-1253 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2962 ($ (-1253 |t#2|) |t#2|)) (-15 -3339 ((-2 (|:| |num| (-682 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1656 ((-112) $ |t#1|)) (-15 -1656 ((-112) $ |t#2|)) (-15 -3238 ($ $ (-1 |t#2| |t#2|))) (-15 -2401 ($ $)) (-15 -2277 (|t#1| $ |t#1| |t#1|)) (-15 -1867 ((-3 |t#2| "failed"))) (-15 -3669 ((-3 |t#2| "failed"))) (-15 -3947 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -3052 ((-638 (-945 |t#1|)) (-1166))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -3727 ((-638 (-638 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-38 #1=(-406 |#2|)) . T) ((-38 $) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #0# #0#) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-611 #0#) -4007 (|has| (-406 |#2|) (-1031 (-406 (-561)))) (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-611 #1#) . T) ((-611 (-561)) . T) ((-611 $) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-608 (-856)) . T) ((-171) . T) ((-609 |#3|) . T) ((-230 #1#) |has| (-406 |#2|) (-362)) ((-232) -4007 (|has| (-406 |#2|) (-348)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-289) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-306) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-362) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-348)) ((-367) -4007 (|has| (-406 |#2|) (-367)) (|has| (-406 |#2|) (-348))) ((-348) |has| (-406 |#2|) (-348)) ((-369 #1# |#3|) . T) ((-408 #1# |#3|) . T) ((-376 #1#) . T) ((-410 #1#) . T) ((-450) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-553) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-641 #0#) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-641 #1#) . T) ((-641 $) . T) ((-634 #1#) . T) ((-634 (-561)) |has| (-406 |#2|) (-634 (-561))) ((-711 #0#) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-711 #1#) . T) ((-711 $) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-718 #1# |#3|) . T) ((-720) . T) ((-893 (-1166)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) ((-913) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1031 (-406 (-561))) |has| (-406 |#2|) (-1031 (-406 (-561)))) ((-1031 #1#) . T) ((-1031 (-561)) |has| (-406 |#2|) (-1031 (-561))) ((-1048 #0#) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| (-406 |#2|) (-348)) ((-1209) -4007 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-903 |#1|) (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| (-903 |#1|) (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-903 |#1|) "failed") $) NIL)) (-3938 (((-903 |#1|) $) NIL)) (-2257 (($ (-1253 (-903 |#1|))) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-903 |#1|) (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-903 |#1|) (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL (|has| (-903 |#1|) (-367)))) (-1803 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367)))) (($ $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| (-903 |#1|) (-367))) (((-827 (-914)) $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| (-903 |#1|) (-367)))) (-3584 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-1672 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| (-903 |#1|) (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 (-903 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-3198 (((-914) $) NIL (|has| (-903 |#1|) (-367)))) (-2300 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367)))) (-2409 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-1162 (-903 |#1|)) "failed") $ $) NIL (|has| (-903 |#1|) (-367)))) (-3152 (($ $ (-1162 (-903 |#1|))) NIL (|has| (-903 |#1|) (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-903 |#1|) (-367)) CONST)) (-2413 (($ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-2751 (((-951 (-1110))) NIL)) (-3158 (($) NIL (|has| (-903 |#1|) (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| (-903 |#1|) (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 (-903 |#1|))) NIL)) (-1796 (($) NIL (|has| (-903 |#1|) (-367)))) (-2111 (($) NIL (|has| (-903 |#1|) (-367)))) (-3969 (((-1253 (-903 |#1|)) $) NIL) (((-682 (-903 |#1|)) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-903 |#1|) (-367)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-903 |#1|)) NIL)) (-1760 (($ $) NIL (|has| (-903 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL) (((-1253 $) (-914)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3122 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL) (($ $ (-903 |#1|)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-903 |#1|)) NIL) (($ (-903 |#1|) $) NIL)))
+(((-342 |#1| |#2|) (-13 (-328 (-903 |#1|)) (-10 -7 (-15 -2751 ((-951 (-1110)))))) (-914) (-914)) (T -342))
+((-2751 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-342 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))))
+(-13 (-328 (-903 |#1|)) (-10 -7 (-15 -2751 ((-951 (-1110))))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 43)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) 40 (|has| |#1| (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 114)) (-3938 ((|#1| $) 85)) (-2257 (($ (-1253 |#1|)) 103)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) 97 (|has| |#1| (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) 128 (|has| |#1| (-367)))) (-1803 (((-112) $) 47 (|has| |#1| (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) 44 (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) 130 (|has| |#1| (-367)))) (-3584 (((-112) $) NIL (|has| |#1| (-367)))) (-1672 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 |#1|) $) 89) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-3198 (((-914) $) 138 (|has| |#1| (-367)))) (-2300 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-2409 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 145)) (-3721 (($) NIL (|has| |#1| (-367)) CONST)) (-2413 (($ (-914)) 70 (|has| |#1| (-367)))) (-1792 (((-112) $) 117)) (-1714 (((-1110) $) NIL)) (-2751 (((-951 (-1110))) 41)) (-3158 (($) 126 (|has| |#1| (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 92 (|has| |#1| (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) 66) (((-914)) 67)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) 129 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 124 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 |#1|)) 95)) (-1796 (($) 127 (|has| |#1| (-367)))) (-2111 (($) 135 (|has| |#1| (-367)))) (-3969 (((-1253 |#1|) $) 58) (((-682 |#1|) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4022 (((-856) $) 141) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 74)) (-1760 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) 137)) (-3711 (((-1253 $)) 116) (((-1253 $) (-914)) 72)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) 48 T CONST)) (-2222 (($) 45 T CONST)) (-4285 (($ $) 80 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3122 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) 46)) (-1833 (($ $ $) 143) (($ $ |#1|) 144)) (-1824 (($ $) 125) (($ $ $) NIL)) (-1813 (($ $ $) 60)) (** (($ $ (-914)) 147) (($ $ (-765)) 148) (($ $ (-561)) 146)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 76) (($ $ $) 75) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
+(((-343 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -2751 ((-951 (-1110)))))) (-348) (-1162 |#1|)) (T -343))
+((-2751 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) (-14 *4 (-1162 *3)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -2751 ((-951 (-1110))))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-2257 (($ (-1253 |#1|)) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| |#1| (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL (|has| |#1| (-367)))) (-1803 (((-112) $) NIL (|has| |#1| (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| |#1| (-367)))) (-3584 (((-112) $) NIL (|has| |#1| (-367)))) (-1672 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 |#1|) $) NIL) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-3198 (((-914) $) NIL (|has| |#1| (-367)))) (-2300 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-2409 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| |#1| (-367)) CONST)) (-2413 (($ (-914)) NIL (|has| |#1| (-367)))) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-2751 (((-951 (-1110))) NIL)) (-3158 (($) NIL (|has| |#1| (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| |#1| (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 |#1|)) NIL)) (-1796 (($) NIL (|has| |#1| (-367)))) (-2111 (($) NIL (|has| |#1| (-367)))) (-3969 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) NIL)) (-1760 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL) (((-1253 $) (-914)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3122 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -2751 ((-951 (-1110)))))) (-348) (-914)) (T -344))
+((-2751 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -2751 ((-951 (-1110))))))
+((-3780 (((-765) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110)))))) 42)) (-3056 (((-951 (-1110)) (-1162 |#1|)) 85)) (-3876 (((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) (-1162 |#1|)) 78)) (-3412 (((-682 |#1|) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110)))))) 86)) (-2642 (((-3 (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) "failed") (-914)) 13)) (-1860 (((-3 (-1162 |#1|) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110)))))) (-914)) 18)))
+(((-345 |#1|) (-10 -7 (-15 -3056 ((-951 (-1110)) (-1162 |#1|))) (-15 -3876 ((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) (-1162 |#1|))) (-15 -3412 ((-682 |#1|) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -3780 ((-765) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -2642 ((-3 (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) "failed") (-914))) (-15 -1860 ((-3 (-1162 |#1|) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110)))))) (-914)))) (-348)) (T -345))
+((-1860 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-3 (-1162 *4) (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110))))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-2642 (*1 *2 *3) (|partial| -12 (-5 *3 (-914)) (-5 *2 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110)))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110)))))) (-4 *4 (-348)) (-5 *2 (-765)) (-5 *1 (-345 *4)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110)))))) (-4 *4 (-348)) (-5 *2 (-682 *4)) (-5 *1 (-345 *4)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110)))))) (-5 *1 (-345 *4)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-951 (-1110))) (-5 *1 (-345 *4)))))
+(-10 -7 (-15 -3056 ((-951 (-1110)) (-1162 |#1|))) (-15 -3876 ((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) (-1162 |#1|))) (-15 -3412 ((-682 |#1|) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -3780 ((-765) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -2642 ((-3 (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) "failed") (-914))) (-15 -1860 ((-3 (-1162 |#1|) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110)))))) (-914))))
+((-4022 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -4022 (|#3| |#1|)) (-15 -4022 (|#1| |#3|))) (-328 |#2|) (-348) (-328 |#2|)) (T -346))
+((-4022 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) (-4 *3 (-328 *4)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) (-4 *3 (-328 *4)))))
+(-10 -7 (-15 -4022 (|#3| |#1|)) (-15 -4022 (|#1| |#3|)))
+((-1803 (((-112) $) 50)) (-4163 (((-827 (-914)) $) 21) (((-914) $) 51)) (-1663 (((-3 $ "failed") $) 16)) (-3721 (($) 9)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 92)) (-1913 (((-3 (-765) "failed") $ $) 70) (((-765) $) 59)) (-3238 (($ $ (-765)) NIL) (($ $) 8)) (-1796 (($) 43)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 34)) (-1760 (((-3 $ "failed") $) 38) (($ $) 37)))
+(((-347 |#1|) (-10 -8 (-15 -4163 ((-914) |#1|)) (-15 -1913 ((-765) |#1|)) (-15 -1803 ((-112) |#1|)) (-15 -1796 (|#1|)) (-15 -3552 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -1760 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -1913 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4163 ((-827 (-914)) |#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|)))) (-348)) (T -347))
+NIL
+(-10 -8 (-15 -4163 ((-914) |#1|)) (-15 -1913 ((-765) |#1|)) (-15 -1803 ((-112) |#1|)) (-15 -1796 (|#1|)) (-15 -3552 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -1760 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -1913 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4163 ((-827 (-914)) |#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-4207 (((-1178 (-914) (-765)) (-561)) 94)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1671 (((-112) $ $) 60)) (-1393 (((-765)) 104)) (-1965 (($) 17 T CONST)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1332 (($) 107)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2022 (($) 92)) (-1803 (((-112) $) 91)) (-1575 (($ $) 80) (($ $ (-765)) 79)) (-2737 (((-112) $) 72)) (-4163 (((-827 (-914)) $) 82) (((-914) $) 89)) (-3113 (((-112) $) 31)) (-1663 (((-3 $ "failed") $) 103)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-3198 (((-914) $) 106)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-3721 (($) 102 T CONST)) (-2413 (($ (-914)) 105)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 95)) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-1913 (((-3 (-765) "failed") $ $) 81) (((-765) $) 90)) (-3238 (($ $ (-765)) 100) (($ $) 98)) (-1796 (($) 93)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 96)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-1760 (((-3 $ "failed") $) 83) (($ $) 97)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-765)) 101) (($ $) 99)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 66)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
(((-348) (-139)) (T -348))
-((-1487 (*1 *1 *1) (-4 *1 (-348))) (-4277 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-348)) (-5 *2 (-1246 *1)))) (-3476 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))))) (-3067 (*1 *2 *3) (-12 (-4 *1 (-348)) (-5 *3 (-558)) (-5 *2 (-1173 (-911) (-762))))) (-2933 (*1 *1) (-4 *1 (-348))) (-3567 (*1 *1) (-4 *1 (-348))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-762)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-911)))) (-2937 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-401) (-367) (-1138) (-232) (-10 -8 (-15 -1487 ($ $)) (-15 -4277 ((-3 (-1246 $) "failed") (-679 $))) (-15 -3476 ((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558)))))) (-15 -3067 ((-1173 (-911) (-762)) (-558))) (-15 -2933 ($)) (-15 -3567 ($)) (-15 -3617 ((-112) $)) (-15 -2551 ((-762) $)) (-15 -2532 ((-911) $)) (-15 -2937 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) . T) ((-1204) . T))
-((-2767 (((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|) 53)) (-2999 (((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))) 51)))
-(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -2999 ((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))) (-15 -2767 ((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))) (-1222 |#1|) (-408 |#1| |#2|)) (T -349))
-((-2767 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *2 (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2999 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *2 (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(-10 -7 (-15 -2999 ((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))) (-15 -2767 ((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-900 |#1|) (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1998 (((-762)) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| (-900 |#1|) (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-900 |#1|) "failed") $) NIL)) (-3226 (((-900 |#1|) $) NIL)) (-3431 (($ (-1246 (-900 |#1|))) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-900 |#1|) (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-900 |#1|) (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL (|has| (-900 |#1|) (-367)))) (-3617 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367)))) (($ $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| (-900 |#1|) (-367))) (((-824 (-911)) $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| (-900 |#1|) (-367)))) (-3235 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-1423 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| (-900 |#1|) (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 (-900 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-1486 (((-911) $) NIL (|has| (-900 |#1|) (-367)))) (-1937 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367)))) (-3811 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-1159 (-900 |#1|)) "failed") $ $) NIL (|has| (-900 |#1|) (-367)))) (-3635 (($ $ (-1159 (-900 |#1|))) NIL (|has| (-900 |#1|) (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-900 |#1|) (-367)) CONST)) (-2349 (($ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-3483 (((-1246 (-635 (-2 (|:| -2426 (-900 |#1|)) (|:| -2349 (-1107)))))) NIL)) (-4167 (((-679 (-900 |#1|))) NIL)) (-2461 (($) NIL (|has| (-900 |#1|) (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| (-900 |#1|) (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 (-900 |#1|))) NIL)) (-2933 (($) NIL (|has| (-900 |#1|) (-367)))) (-3703 (($) NIL (|has| (-900 |#1|) (-367)))) (-2979 (((-1246 (-900 |#1|)) $) NIL) (((-679 (-900 |#1|)) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-900 |#1|) (-367)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-900 |#1|)) NIL)) (-1487 (($ $) NIL (|has| (-900 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-3042 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL) (($ $ (-900 |#1|)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-900 |#1|)) NIL) (($ (-900 |#1|) $) NIL)))
-(((-350 |#1| |#2|) (-13 (-328 (-900 |#1|)) (-10 -7 (-15 -3483 ((-1246 (-635 (-2 (|:| -2426 (-900 |#1|)) (|:| -2349 (-1107))))))) (-15 -4167 ((-679 (-900 |#1|)))) (-15 -1998 ((-762))))) (-911) (-911)) (T -350))
-((-3483 (*1 *2) (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2426 (-900 *3)) (|:| -2349 (-1107)))))) (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-4167 (*1 *2) (-12 (-5 *2 (-679 (-900 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-1998 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))))
-(-13 (-328 (-900 |#1|)) (-10 -7 (-15 -3483 ((-1246 (-635 (-2 (|:| -2426 (-900 |#1|)) (|:| -2349 (-1107))))))) (-15 -4167 ((-679 (-900 |#1|)))) (-15 -1998 ((-762)))))
-((-3929 (((-112) $ $) 61)) (-3124 (((-112) $) 74)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 ((|#1| $) 92) (($ $ (-911)) 90 (|has| |#1| (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) 148 (|has| |#1| (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1998 (((-762)) 89)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) 162 (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 112)) (-3226 ((|#1| $) 91)) (-3431 (($ (-1246 |#1|)) 58)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) 158 (|has| |#1| (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) 149 (|has| |#1| (-367)))) (-3617 (((-112) $) NIL (|has| |#1| (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) 98 (|has| |#1| (-367)))) (-3235 (((-112) $) 175 (|has| |#1| (-367)))) (-1423 ((|#1| $) 94) (($ $ (-911)) 93 (|has| |#1| (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 |#1|) $) 189) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-1486 (((-911) $) 134 (|has| |#1| (-367)))) (-1937 (((-1159 |#1|) $) 73 (|has| |#1| (-367)))) (-3811 (((-1159 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-3635 (($ $ (-1159 |#1|)) 69 (|has| |#1| (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 192)) (-1823 (($) NIL (|has| |#1| (-367)) CONST)) (-2349 (($ (-911)) 137 (|has| |#1| (-367)))) (-3743 (((-112) $) 108)) (-1688 (((-1107) $) NIL)) (-3483 (((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107)))))) 83)) (-4167 (((-679 |#1|)) 87)) (-2461 (($) 96 (|has| |#1| (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 150 (|has| |#1| (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) 151)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) 62)) (-2297 (((-1159 |#1|)) 152)) (-2933 (($) 133 (|has| |#1| (-367)))) (-3703 (($) NIL (|has| |#1| (-367)))) (-2979 (((-1246 |#1|) $) 106) (((-679 |#1|) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3940 (((-853) $) 124) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 57)) (-1487 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) 156)) (-2743 (((-1246 $)) 172) (((-1246 $) (-911)) 101)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) 117 T CONST)) (-2220 (($) 33 T CONST)) (-3607 (($ $) 107 (|has| |#1| (-367))) (($ $ (-762)) 99 (|has| |#1| (-367)))) (-3042 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1708 (((-112) $ $) 183)) (-1805 (($ $ $) 104) (($ $ |#1|) 105)) (-1796 (($ $) 177) (($ $ $) 181)) (-1785 (($ $ $) 179)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 138)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 186) (($ $ $) 142) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-351 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3483 ((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -4167 ((-679 |#1|))) (-15 -1998 ((-762))))) (-348) (-3 (-1159 |#1|) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (T -351))
-((-3483 (*1 *2) (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107)))))) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) *2)))) (-4167 (*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107))))))))) (-1998 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107))))))))))
-(-13 (-328 |#1|) (-10 -7 (-15 -3483 ((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -4167 ((-679 |#1|))) (-15 -1998 ((-762)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1998 (((-762)) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3431 (($ (-1246 |#1|)) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| |#1| (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL (|has| |#1| (-367)))) (-3617 (((-112) $) NIL (|has| |#1| (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| |#1| (-367)))) (-3235 (((-112) $) NIL (|has| |#1| (-367)))) (-1423 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 |#1|) $) NIL) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-1486 (((-911) $) NIL (|has| |#1| (-367)))) (-1937 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3811 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3635 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| |#1| (-367)) CONST)) (-2349 (($ (-911)) NIL (|has| |#1| (-367)))) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-3483 (((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107)))))) NIL)) (-4167 (((-679 |#1|)) NIL)) (-2461 (($) NIL (|has| |#1| (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| |#1| (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 |#1|)) NIL)) (-2933 (($) NIL (|has| |#1| (-367)))) (-3703 (($) NIL (|has| |#1| (-367)))) (-2979 (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) NIL)) (-1487 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-3042 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3483 ((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -4167 ((-679 |#1|))) (-15 -1998 ((-762))))) (-348) (-911)) (T -352))
-((-3483 (*1 *2) (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))) (-4167 (*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))) (-1998 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))))
-(-13 (-328 |#1|) (-10 -7 (-15 -3483 ((-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))))) (-15 -4167 ((-679 |#1|))) (-15 -1998 ((-762)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-900 |#1|) (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| (-900 |#1|) (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-900 |#1|) "failed") $) NIL)) (-3226 (((-900 |#1|) $) NIL)) (-3431 (($ (-1246 (-900 |#1|))) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-900 |#1|) (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-900 |#1|) (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL (|has| (-900 |#1|) (-367)))) (-3617 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367)))) (($ $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| (-900 |#1|) (-367))) (((-824 (-911)) $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| (-900 |#1|) (-367)))) (-3235 (((-112) $) NIL (|has| (-900 |#1|) (-367)))) (-1423 (((-900 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| (-900 |#1|) (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 (-900 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-1486 (((-911) $) NIL (|has| (-900 |#1|) (-367)))) (-1937 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367)))) (-3811 (((-1159 (-900 |#1|)) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-1159 (-900 |#1|)) "failed") $ $) NIL (|has| (-900 |#1|) (-367)))) (-3635 (($ $ (-1159 (-900 |#1|))) NIL (|has| (-900 |#1|) (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-900 |#1|) (-367)) CONST)) (-2349 (($ (-911)) NIL (|has| (-900 |#1|) (-367)))) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-2461 (($) NIL (|has| (-900 |#1|) (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| (-900 |#1|) (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| (-900 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 (-900 |#1|))) NIL)) (-2933 (($) NIL (|has| (-900 |#1|) (-367)))) (-3703 (($) NIL (|has| (-900 |#1|) (-367)))) (-2979 (((-1246 (-900 |#1|)) $) NIL) (((-679 (-900 |#1|)) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-900 |#1|) (-367)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-900 |#1|)) NIL)) (-1487 (($ $) NIL (|has| (-900 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| (-900 |#1|) (-144)) (|has| (-900 |#1|) (-367))))) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-3042 (($ $) NIL (|has| (-900 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-900 |#1|) (-367)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL) (($ $ (-900 |#1|)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-900 |#1|)) NIL) (($ (-900 |#1|) $) NIL)))
-(((-353 |#1| |#2|) (-328 (-900 |#1|)) (-911) (-911)) (T -353))
-NIL
-(-328 (-900 |#1|))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) 120 (|has| |#1| (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) 139 (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 93)) (-3226 ((|#1| $) 90)) (-3431 (($ (-1246 |#1|)) 85)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) 82 (|has| |#1| (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) 42 (|has| |#1| (-367)))) (-3617 (((-112) $) NIL (|has| |#1| (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) 121 (|has| |#1| (-367)))) (-3235 (((-112) $) 74 (|has| |#1| (-367)))) (-1423 ((|#1| $) 39) (($ $ (-911)) 43 (|has| |#1| (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 |#1|) $) 65) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-1486 (((-911) $) 97 (|has| |#1| (-367)))) (-1937 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3811 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3635 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| |#1| (-367)) CONST)) (-2349 (($ (-911)) 95 (|has| |#1| (-367)))) (-3743 (((-112) $) 141)) (-1688 (((-1107) $) NIL)) (-2461 (($) 36 (|has| |#1| (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 115 (|has| |#1| (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) 138)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) 59)) (-2297 (((-1159 |#1|)) 88)) (-2933 (($) 126 (|has| |#1| (-367)))) (-3703 (($) NIL (|has| |#1| (-367)))) (-2979 (((-1246 |#1|) $) 53) (((-679 |#1|) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3940 (((-853) $) 137) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 87)) (-1487 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) 143)) (-2743 (((-1246 $)) 109) (((-1246 $) (-911)) 49)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) 111 T CONST)) (-2220 (($) 32 T CONST)) (-3607 (($ $) 68 (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-3042 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1708 (((-112) $ $) 107)) (-1805 (($ $ $) 99) (($ $ |#1|) 100)) (-1796 (($ $) 80) (($ $ $) 105)) (-1785 (($ $ $) 103)) (** (($ $ (-911)) NIL) (($ $ (-762)) 44) (($ $ (-558)) 129)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 78) (($ $ $) 56) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-354 |#1| |#2|) (-328 |#1|) (-348) (-1159 |#1|)) (T -354))
+((-1760 (*1 *1 *1) (-4 *1 (-348))) (-3552 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-348)) (-5 *2 (-1253 *1)))) (-3082 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))))) (-4207 (*1 *2 *3) (-12 (-4 *1 (-348)) (-5 *3 (-561)) (-5 *2 (-1178 (-914) (-765))))) (-1796 (*1 *1) (-4 *1 (-348))) (-2022 (*1 *1) (-4 *1 (-348))) (-1803 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-765)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-914)))) (-1900 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-401) (-367) (-1141) (-232) (-10 -8 (-15 -1760 ($ $)) (-15 -3552 ((-3 (-1253 $) "failed") (-682 $))) (-15 -3082 ((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561)))))) (-15 -4207 ((-1178 (-914) (-765)) (-561))) (-15 -1796 ($)) (-15 -2022 ($)) (-15 -1803 ((-112) $)) (-15 -1913 ((-765) $)) (-15 -4163 ((-914) $)) (-15 -1900 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) . T) ((-1209) . T))
+((-2529 (((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|) 53)) (-1625 (((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 51)))
+(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -1625 ((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -2529 ((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))) (-1229 |#1|) (-408 |#1| |#2|)) (T -349))
+((-2529 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1625 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(-10 -7 (-15 -1625 ((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -2529 ((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-903 |#1|) (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3780 (((-765)) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| (-903 |#1|) (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-903 |#1|) "failed") $) NIL)) (-3938 (((-903 |#1|) $) NIL)) (-2257 (($ (-1253 (-903 |#1|))) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-903 |#1|) (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-903 |#1|) (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL (|has| (-903 |#1|) (-367)))) (-1803 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367)))) (($ $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| (-903 |#1|) (-367))) (((-827 (-914)) $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| (-903 |#1|) (-367)))) (-3584 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-1672 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| (-903 |#1|) (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 (-903 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-3198 (((-914) $) NIL (|has| (-903 |#1|) (-367)))) (-2300 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367)))) (-2409 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-1162 (-903 |#1|)) "failed") $ $) NIL (|has| (-903 |#1|) (-367)))) (-3152 (($ $ (-1162 (-903 |#1|))) NIL (|has| (-903 |#1|) (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-903 |#1|) (-367)) CONST)) (-2413 (($ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-3813 (((-1253 (-638 (-2 (|:| -2484 (-903 |#1|)) (|:| -2413 (-1110)))))) NIL)) (-3516 (((-682 (-903 |#1|))) NIL)) (-3158 (($) NIL (|has| (-903 |#1|) (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| (-903 |#1|) (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 (-903 |#1|))) NIL)) (-1796 (($) NIL (|has| (-903 |#1|) (-367)))) (-2111 (($) NIL (|has| (-903 |#1|) (-367)))) (-3969 (((-1253 (-903 |#1|)) $) NIL) (((-682 (-903 |#1|)) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-903 |#1|) (-367)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-903 |#1|)) NIL)) (-1760 (($ $) NIL (|has| (-903 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL) (((-1253 $) (-914)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3122 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL) (($ $ (-903 |#1|)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-903 |#1|)) NIL) (($ (-903 |#1|) $) NIL)))
+(((-350 |#1| |#2|) (-13 (-328 (-903 |#1|)) (-10 -7 (-15 -3813 ((-1253 (-638 (-2 (|:| -2484 (-903 |#1|)) (|:| -2413 (-1110))))))) (-15 -3516 ((-682 (-903 |#1|)))) (-15 -3780 ((-765))))) (-914) (-914)) (T -350))
+((-3813 (*1 *2) (-12 (-5 *2 (-1253 (-638 (-2 (|:| -2484 (-903 *3)) (|:| -2413 (-1110)))))) (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-3516 (*1 *2) (-12 (-5 *2 (-682 (-903 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-3780 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))))
+(-13 (-328 (-903 |#1|)) (-10 -7 (-15 -3813 ((-1253 (-638 (-2 (|:| -2484 (-903 |#1|)) (|:| -2413 (-1110))))))) (-15 -3516 ((-682 (-903 |#1|)))) (-15 -3780 ((-765)))))
+((-4011 (((-112) $ $) 61)) (-2800 (((-112) $) 74)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 ((|#1| $) 92) (($ $ (-914)) 90 (|has| |#1| (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) 148 (|has| |#1| (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3780 (((-765)) 89)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) 162 (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 112)) (-3938 ((|#1| $) 91)) (-2257 (($ (-1253 |#1|)) 58)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) 158 (|has| |#1| (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) 149 (|has| |#1| (-367)))) (-1803 (((-112) $) NIL (|has| |#1| (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) 98 (|has| |#1| (-367)))) (-3584 (((-112) $) 175 (|has| |#1| (-367)))) (-1672 ((|#1| $) 94) (($ $ (-914)) 93 (|has| |#1| (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 |#1|) $) 189) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-3198 (((-914) $) 134 (|has| |#1| (-367)))) (-2300 (((-1162 |#1|) $) 73 (|has| |#1| (-367)))) (-2409 (((-1162 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-3152 (($ $ (-1162 |#1|)) 69 (|has| |#1| (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 192)) (-3721 (($) NIL (|has| |#1| (-367)) CONST)) (-2413 (($ (-914)) 137 (|has| |#1| (-367)))) (-1792 (((-112) $) 108)) (-1714 (((-1110) $) NIL)) (-3813 (((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110)))))) 83)) (-3516 (((-682 |#1|)) 87)) (-3158 (($) 96 (|has| |#1| (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 150 (|has| |#1| (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) 151)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) 62)) (-3660 (((-1162 |#1|)) 152)) (-1796 (($) 133 (|has| |#1| (-367)))) (-2111 (($) NIL (|has| |#1| (-367)))) (-3969 (((-1253 |#1|) $) 106) (((-682 |#1|) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4022 (((-856) $) 124) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 57)) (-1760 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) 156)) (-3711 (((-1253 $)) 172) (((-1253 $) (-914)) 101)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) 117 T CONST)) (-2222 (($) 33 T CONST)) (-4285 (($ $) 107 (|has| |#1| (-367))) (($ $ (-765)) 99 (|has| |#1| (-367)))) (-3122 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) 183)) (-1833 (($ $ $) 104) (($ $ |#1|) 105)) (-1824 (($ $) 177) (($ $ $) 181)) (-1813 (($ $ $) 179)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 138)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 186) (($ $ $) 142) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-351 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3813 ((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -3516 ((-682 |#1|))) (-15 -3780 ((-765))))) (-348) (-3 (-1162 |#1|) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (T -351))
+((-3813 (*1 *2) (-12 (-5 *2 (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110)))))) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) *2)))) (-3516 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110))))))))) (-3780 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110))))))))))
+(-13 (-328 |#1|) (-10 -7 (-15 -3813 ((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -3516 ((-682 |#1|))) (-15 -3780 ((-765)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3780 (((-765)) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-2257 (($ (-1253 |#1|)) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| |#1| (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL (|has| |#1| (-367)))) (-1803 (((-112) $) NIL (|has| |#1| (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| |#1| (-367)))) (-3584 (((-112) $) NIL (|has| |#1| (-367)))) (-1672 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 |#1|) $) NIL) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-3198 (((-914) $) NIL (|has| |#1| (-367)))) (-2300 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-2409 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| |#1| (-367)) CONST)) (-2413 (($ (-914)) NIL (|has| |#1| (-367)))) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-3813 (((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110)))))) NIL)) (-3516 (((-682 |#1|)) NIL)) (-3158 (($) NIL (|has| |#1| (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| |#1| (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 |#1|)) NIL)) (-1796 (($) NIL (|has| |#1| (-367)))) (-2111 (($) NIL (|has| |#1| (-367)))) (-3969 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) NIL)) (-1760 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL) (((-1253 $) (-914)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3122 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3813 ((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -3516 ((-682 |#1|))) (-15 -3780 ((-765))))) (-348) (-914)) (T -352))
+((-3813 (*1 *2) (-12 (-5 *2 (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))) (-3516 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))) (-3780 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))))
+(-13 (-328 |#1|) (-10 -7 (-15 -3813 ((-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))))) (-15 -3516 ((-682 |#1|))) (-15 -3780 ((-765)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-903 |#1|) (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| (-903 |#1|) (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-903 |#1|) "failed") $) NIL)) (-3938 (((-903 |#1|) $) NIL)) (-2257 (($ (-1253 (-903 |#1|))) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-903 |#1|) (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-903 |#1|) (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL (|has| (-903 |#1|) (-367)))) (-1803 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367)))) (($ $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| (-903 |#1|) (-367))) (((-827 (-914)) $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| (-903 |#1|) (-367)))) (-3584 (((-112) $) NIL (|has| (-903 |#1|) (-367)))) (-1672 (((-903 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| (-903 |#1|) (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 (-903 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-3198 (((-914) $) NIL (|has| (-903 |#1|) (-367)))) (-2300 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367)))) (-2409 (((-1162 (-903 |#1|)) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-1162 (-903 |#1|)) "failed") $ $) NIL (|has| (-903 |#1|) (-367)))) (-3152 (($ $ (-1162 (-903 |#1|))) NIL (|has| (-903 |#1|) (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-903 |#1|) (-367)) CONST)) (-2413 (($ (-914)) NIL (|has| (-903 |#1|) (-367)))) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-3158 (($) NIL (|has| (-903 |#1|) (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| (-903 |#1|) (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| (-903 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 (-903 |#1|))) NIL)) (-1796 (($) NIL (|has| (-903 |#1|) (-367)))) (-2111 (($) NIL (|has| (-903 |#1|) (-367)))) (-3969 (((-1253 (-903 |#1|)) $) NIL) (((-682 (-903 |#1|)) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-903 |#1|) (-367)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-903 |#1|)) NIL)) (-1760 (($ $) NIL (|has| (-903 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| (-903 |#1|) (-144)) (|has| (-903 |#1|) (-367))))) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL) (((-1253 $) (-914)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-3122 (($ $) NIL (|has| (-903 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-903 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL) (($ $ (-903 |#1|)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-903 |#1|)) NIL) (($ (-903 |#1|) $) NIL)))
+(((-353 |#1| |#2|) (-328 (-903 |#1|)) (-914) (-914)) (T -353))
+NIL
+(-328 (-903 |#1|))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) 120 (|has| |#1| (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) 139 (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 93)) (-3938 ((|#1| $) 90)) (-2257 (($ (-1253 |#1|)) 85)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) 82 (|has| |#1| (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) 42 (|has| |#1| (-367)))) (-1803 (((-112) $) NIL (|has| |#1| (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) 121 (|has| |#1| (-367)))) (-3584 (((-112) $) 74 (|has| |#1| (-367)))) (-1672 ((|#1| $) 39) (($ $ (-914)) 43 (|has| |#1| (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 |#1|) $) 65) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-3198 (((-914) $) 97 (|has| |#1| (-367)))) (-2300 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-2409 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| |#1| (-367)) CONST)) (-2413 (($ (-914)) 95 (|has| |#1| (-367)))) (-1792 (((-112) $) 141)) (-1714 (((-1110) $) NIL)) (-3158 (($) 36 (|has| |#1| (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 115 (|has| |#1| (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) 138)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) 59)) (-3660 (((-1162 |#1|)) 88)) (-1796 (($) 126 (|has| |#1| (-367)))) (-2111 (($) NIL (|has| |#1| (-367)))) (-3969 (((-1253 |#1|) $) 53) (((-682 |#1|) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4022 (((-856) $) 137) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 87)) (-1760 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) 143)) (-3711 (((-1253 $)) 109) (((-1253 $) (-914)) 49)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) 111 T CONST)) (-2222 (($) 32 T CONST)) (-4285 (($ $) 68 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3122 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) 107)) (-1833 (($ $ $) 99) (($ $ |#1|) 100)) (-1824 (($ $) 80) (($ $ $) 105)) (-1813 (($ $ $) 103)) (** (($ $ (-914)) NIL) (($ $ (-765)) 44) (($ $ (-561)) 129)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 78) (($ $ $) 56) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-354 |#1| |#2|) (-328 |#1|) (-348) (-1162 |#1|)) (T -354))
NIL
(-328 |#1|)
-((-3574 ((|#1| (-1159 |#2|)) 52)))
-(((-355 |#1| |#2|) (-10 -7 (-15 -3574 (|#1| (-1159 |#2|)))) (-13 (-401) (-10 -7 (-15 -3940 (|#1| |#2|)) (-15 -1486 ((-911) |#1|)) (-15 -2743 ((-1246 |#1|) (-911))) (-15 -3607 (|#1| |#1|)))) (-348)) (T -355))
-((-3574 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-4 *2 (-13 (-401) (-10 -7 (-15 -3940 (*2 *4)) (-15 -1486 ((-911) *2)) (-15 -2743 ((-1246 *2) (-911))) (-15 -3607 (*2 *2))))) (-5 *1 (-355 *2 *4)))))
-(-10 -7 (-15 -3574 (|#1| (-1159 |#2|))))
-((-2250 (((-948 (-1159 |#1|)) (-1159 |#1|)) 36)) (-3692 (((-1159 |#1|) (-911) (-911)) 112) (((-1159 |#1|) (-911)) 111)) (-3617 (((-112) (-1159 |#1|)) 84)) (-4200 (((-911) (-911)) 71)) (-3820 (((-911) (-911)) 74)) (-4220 (((-911) (-911)) 69)) (-3235 (((-112) (-1159 |#1|)) 88)) (-3646 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 100)) (-3387 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 103)) (-3450 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 102)) (-3477 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 101)) (-2615 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 97)) (-2892 (((-1159 |#1|) (-1159 |#1|)) 62)) (-1907 (((-1159 |#1|) (-911)) 106)) (-1901 (((-1159 |#1|) (-911)) 109)) (-2842 (((-1159 |#1|) (-911)) 108)) (-3760 (((-1159 |#1|) (-911)) 107)) (-3205 (((-1159 |#1|) (-911)) 104)))
-(((-356 |#1|) (-10 -7 (-15 -3617 ((-112) (-1159 |#1|))) (-15 -3235 ((-112) (-1159 |#1|))) (-15 -4220 ((-911) (-911))) (-15 -4200 ((-911) (-911))) (-15 -3820 ((-911) (-911))) (-15 -3205 ((-1159 |#1|) (-911))) (-15 -1907 ((-1159 |#1|) (-911))) (-15 -3760 ((-1159 |#1|) (-911))) (-15 -2842 ((-1159 |#1|) (-911))) (-15 -1901 ((-1159 |#1|) (-911))) (-15 -2615 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3646 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3477 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3450 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3387 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3692 ((-1159 |#1|) (-911))) (-15 -3692 ((-1159 |#1|) (-911) (-911))) (-15 -2892 ((-1159 |#1|) (-1159 |#1|))) (-15 -2250 ((-948 (-1159 |#1|)) (-1159 |#1|)))) (-348)) (T -356))
-((-2250 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-948 (-1159 *4))) (-5 *1 (-356 *4)) (-5 *3 (-1159 *4)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3387 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3450 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3477 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3646 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2615 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-4220 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))))
-(-10 -7 (-15 -3617 ((-112) (-1159 |#1|))) (-15 -3235 ((-112) (-1159 |#1|))) (-15 -4220 ((-911) (-911))) (-15 -4200 ((-911) (-911))) (-15 -3820 ((-911) (-911))) (-15 -3205 ((-1159 |#1|) (-911))) (-15 -1907 ((-1159 |#1|) (-911))) (-15 -3760 ((-1159 |#1|) (-911))) (-15 -2842 ((-1159 |#1|) (-911))) (-15 -1901 ((-1159 |#1|) (-911))) (-15 -2615 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3646 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3477 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3450 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3387 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3692 ((-1159 |#1|) (-911))) (-15 -3692 ((-1159 |#1|) (-911) (-911))) (-15 -2892 ((-1159 |#1|) (-1159 |#1|))) (-15 -2250 ((-948 (-1159 |#1|)) (-1159 |#1|))))
-((-1671 (((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|) 33)))
-(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -1671 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|))) (-348) (-1222 |#1|) (-1222 |#2|)) (T -357))
-((-1671 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3)))))
-(-10 -7 (-15 -1671 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3431 (($ (-1246 |#1|)) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| |#1| (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL (|has| |#1| (-367)))) (-3617 (((-112) $) NIL (|has| |#1| (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| |#1| (-367))) (((-824 (-911)) $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| |#1| (-367)))) (-3235 (((-112) $) NIL (|has| |#1| (-367)))) (-1423 ((|#1| $) NIL) (($ $ (-911)) NIL (|has| |#1| (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 |#1|) $) NIL) (((-1159 $) $ (-911)) NIL (|has| |#1| (-367)))) (-1486 (((-911) $) NIL (|has| |#1| (-367)))) (-1937 (((-1159 |#1|) $) NIL (|has| |#1| (-367)))) (-3811 (((-1159 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1159 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3635 (($ $ (-1159 |#1|)) NIL (|has| |#1| (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| |#1| (-367)) CONST)) (-2349 (($ (-911)) NIL (|has| |#1| (-367)))) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-2461 (($) NIL (|has| |#1| (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| |#1| (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| |#1| (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 |#1|)) NIL)) (-2933 (($) NIL (|has| |#1| (-367)))) (-3703 (($) NIL (|has| |#1| (-367)))) (-2979 (((-1246 |#1|) $) NIL) (((-679 |#1|) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-367)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) NIL)) (-1487 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-3042 (($ $) NIL (|has| |#1| (-367))) (($ $ (-762)) NIL (|has| |#1| (-367)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-358 |#1| |#2|) (-328 |#1|) (-348) (-911)) (T -358))
+((-2812 ((|#1| (-1162 |#2|)) 52)))
+(((-355 |#1| |#2|) (-10 -7 (-15 -2812 (|#1| (-1162 |#2|)))) (-13 (-401) (-10 -7 (-15 -4022 (|#1| |#2|)) (-15 -3198 ((-914) |#1|)) (-15 -3711 ((-1253 |#1|) (-914))) (-15 -4285 (|#1| |#1|)))) (-348)) (T -355))
+((-2812 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-4 *2 (-13 (-401) (-10 -7 (-15 -4022 (*2 *4)) (-15 -3198 ((-914) *2)) (-15 -3711 ((-1253 *2) (-914))) (-15 -4285 (*2 *2))))) (-5 *1 (-355 *2 *4)))))
+(-10 -7 (-15 -2812 (|#1| (-1162 |#2|))))
+((-2902 (((-951 (-1162 |#1|)) (-1162 |#1|)) 36)) (-1332 (((-1162 |#1|) (-914) (-914)) 112) (((-1162 |#1|) (-914)) 111)) (-1803 (((-112) (-1162 |#1|)) 84)) (-3364 (((-914) (-914)) 71)) (-3561 (((-914) (-914)) 74)) (-4276 (((-914) (-914)) 69)) (-3584 (((-112) (-1162 |#1|)) 88)) (-3832 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 100)) (-1861 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 103)) (-3491 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 102)) (-1652 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 101)) (-3891 (((-3 (-1162 |#1|) "failed") (-1162 |#1|)) 97)) (-3485 (((-1162 |#1|) (-1162 |#1|)) 62)) (-2886 (((-1162 |#1|) (-914)) 106)) (-2729 (((-1162 |#1|) (-914)) 109)) (-3427 (((-1162 |#1|) (-914)) 108)) (-1376 (((-1162 |#1|) (-914)) 107)) (-2303 (((-1162 |#1|) (-914)) 104)))
+(((-356 |#1|) (-10 -7 (-15 -1803 ((-112) (-1162 |#1|))) (-15 -3584 ((-112) (-1162 |#1|))) (-15 -4276 ((-914) (-914))) (-15 -3364 ((-914) (-914))) (-15 -3561 ((-914) (-914))) (-15 -2303 ((-1162 |#1|) (-914))) (-15 -2886 ((-1162 |#1|) (-914))) (-15 -1376 ((-1162 |#1|) (-914))) (-15 -3427 ((-1162 |#1|) (-914))) (-15 -2729 ((-1162 |#1|) (-914))) (-15 -3891 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3832 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1652 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3491 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1861 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1332 ((-1162 |#1|) (-914))) (-15 -1332 ((-1162 |#1|) (-914) (-914))) (-15 -3485 ((-1162 |#1|) (-1162 |#1|))) (-15 -2902 ((-951 (-1162 |#1|)) (-1162 |#1|)))) (-348)) (T -356))
+((-2902 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-951 (-1162 *4))) (-5 *1 (-356 *4)) (-5 *3 (-1162 *4)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-1332 (*1 *2 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1861 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3491 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-1652 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3832 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3891 (*1 *2 *2) (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))))
+(-10 -7 (-15 -1803 ((-112) (-1162 |#1|))) (-15 -3584 ((-112) (-1162 |#1|))) (-15 -4276 ((-914) (-914))) (-15 -3364 ((-914) (-914))) (-15 -3561 ((-914) (-914))) (-15 -2303 ((-1162 |#1|) (-914))) (-15 -2886 ((-1162 |#1|) (-914))) (-15 -1376 ((-1162 |#1|) (-914))) (-15 -3427 ((-1162 |#1|) (-914))) (-15 -2729 ((-1162 |#1|) (-914))) (-15 -3891 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3832 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1652 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -3491 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1861 ((-3 (-1162 |#1|) "failed") (-1162 |#1|))) (-15 -1332 ((-1162 |#1|) (-914))) (-15 -1332 ((-1162 |#1|) (-914) (-914))) (-15 -3485 ((-1162 |#1|) (-1162 |#1|))) (-15 -2902 ((-951 (-1162 |#1|)) (-1162 |#1|))))
+((-3184 (((-3 (-638 |#3|) "failed") (-638 |#3|) |#3|) 33)))
+(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -3184 ((-3 (-638 |#3|) "failed") (-638 |#3|) |#3|))) (-348) (-1229 |#1|) (-1229 |#2|)) (T -357))
+((-3184 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3)))))
+(-10 -7 (-15 -3184 ((-3 (-638 |#3|) "failed") (-638 |#3|) |#3|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-2257 (($ (-1253 |#1|)) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| |#1| (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL (|has| |#1| (-367)))) (-1803 (((-112) $) NIL (|has| |#1| (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| |#1| (-367))) (((-827 (-914)) $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| |#1| (-367)))) (-3584 (((-112) $) NIL (|has| |#1| (-367)))) (-1672 ((|#1| $) NIL) (($ $ (-914)) NIL (|has| |#1| (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 |#1|) $) NIL) (((-1162 $) $ (-914)) NIL (|has| |#1| (-367)))) (-3198 (((-914) $) NIL (|has| |#1| (-367)))) (-2300 (((-1162 |#1|) $) NIL (|has| |#1| (-367)))) (-2409 (((-1162 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1162 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ (-1162 |#1|)) NIL (|has| |#1| (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| |#1| (-367)) CONST)) (-2413 (($ (-914)) NIL (|has| |#1| (-367)))) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-3158 (($) NIL (|has| |#1| (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| |#1| (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 |#1|)) NIL)) (-1796 (($) NIL (|has| |#1| (-367)))) (-2111 (($) NIL (|has| |#1| (-367)))) (-3969 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) NIL)) (-1760 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL) (((-1253 $) (-914)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3122 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-358 |#1| |#2|) (-328 |#1|) (-348) (-914)) (T -358))
NIL
(-328 |#1|)
-((-2964 (((-112) (-635 (-942 |#1|))) 33)) (-2205 (((-635 (-942 |#1|)) (-635 (-942 |#1|))) 45)) (-3298 (((-3 (-635 (-942 |#1|)) "failed") (-635 (-942 |#1|))) 40)))
-(((-359 |#1| |#2|) (-10 -7 (-15 -2964 ((-112) (-635 (-942 |#1|)))) (-15 -3298 ((-3 (-635 (-942 |#1|)) "failed") (-635 (-942 |#1|)))) (-15 -2205 ((-635 (-942 |#1|)) (-635 (-942 |#1|))))) (-450) (-635 (-1163))) (T -359))
-((-2205 (*1 *2 *2) (-12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1163))))) (-3298 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1163))))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1163))))))
-(-10 -7 (-15 -2964 ((-112) (-635 (-942 |#1|)))) (-15 -3298 ((-3 (-635 (-942 |#1|)) "failed") (-635 (-942 |#1|)))) (-15 -2205 ((-635 (-942 |#1|)) (-635 (-942 |#1|)))))
-((-3929 (((-112) $ $) NIL)) (-2507 (((-762) $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) 15)) (-3572 ((|#1| $ (-558)) NIL)) (-1946 (((-558) $ (-558)) NIL)) (-3838 (($ (-1 |#1| |#1|) $) 32)) (-3724 (($ (-1 (-558) (-558)) $) 24)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 26)) (-1688 (((-1107) $) NIL)) (-3381 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-558)))) $) 28)) (-3068 (($ $ $) NIL)) (-3072 (($ $ $) NIL)) (-3940 (((-853) $) 38) (($ |#1|) NIL)) (-2220 (($) 9 T CONST)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ |#1| (-558)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-360 |#1|) (-13 (-471) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -2507 ((-762) $)) (-15 -1946 ((-558) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3724 ($ (-1 (-558) (-558)) $)) (-15 -3838 ($ (-1 |#1| |#1|) $)) (-15 -3381 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-558)))) $)))) (-1087)) (T -360))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-360 *3)) (-4 *3 (-1087)))) (-1946 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-360 *3)) (-4 *3 (-1087)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-360 *3)) (-4 *3 (-1087)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-360 *3)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 (-558))))) (-5 *1 (-360 *3)) (-4 *3 (-1087)))))
-(-13 (-471) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -2507 ((-762) $)) (-15 -1946 ((-558) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3724 ($ (-1 (-558) (-558)) $)) (-15 -3838 ($ (-1 |#1| |#1|) $)) (-15 -3381 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-558)))) $))))
-((-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 13)) (-3244 (($ $) 14)) (-4110 (((-417 $) $) 29)) (-2992 (((-112) $) 25)) (-3823 (($ $) 18)) (-1544 (($ $ $) 22) (($ (-635 $)) NIL)) (-3939 (((-417 $) $) 30)) (-2861 (((-3 $ "failed") $ $) 21)) (-1562 (((-762) $) 24)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 34)) (-2671 (((-112) $ $) 15)) (-1805 (($ $ $) 32)))
-(((-361 |#1|) (-10 -8 (-15 -1805 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -3902 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -1562 ((-762) |#1|)) (-15 -1544 (|#1| (-635 |#1|))) (-15 -1544 (|#1| |#1| |#1|)) (-15 -2671 ((-112) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -2008 ((-2 (|:| -3466 |#1|) (|:| -4370 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361))
-NIL
-(-10 -8 (-15 -1805 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -3902 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -1562 ((-762) |#1|)) (-15 -1544 (|#1| (-635 |#1|))) (-15 -1544 (|#1| |#1| |#1|)) (-15 -2671 ((-112) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -2008 ((-2 (|:| -3466 |#1|) (|:| -4370 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-1599 (((-112) $ $) 60)) (-3457 (($) 17 T CONST)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-2992 (((-112) $) 72)) (-3999 (((-112) $) 31)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 66)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+((-1628 (((-112) (-638 (-945 |#1|))) 33)) (-4230 (((-638 (-945 |#1|)) (-638 (-945 |#1|))) 45)) (-4003 (((-3 (-638 (-945 |#1|)) "failed") (-638 (-945 |#1|))) 40)))
+(((-359 |#1| |#2|) (-10 -7 (-15 -1628 ((-112) (-638 (-945 |#1|)))) (-15 -4003 ((-3 (-638 (-945 |#1|)) "failed") (-638 (-945 |#1|)))) (-15 -4230 ((-638 (-945 |#1|)) (-638 (-945 |#1|))))) (-450) (-638 (-1166))) (T -359))
+((-4230 (*1 *2 *2) (-12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-638 (-1166))))) (-4003 (*1 *2 *2) (|partial| -12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-638 (-1166))))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-638 (-1166))))))
+(-10 -7 (-15 -1628 ((-112) (-638 (-945 |#1|)))) (-15 -4003 ((-3 (-638 (-945 |#1|)) "failed") (-638 (-945 |#1|)))) (-15 -4230 ((-638 (-945 |#1|)) (-638 (-945 |#1|)))))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765) $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) 15)) (-2740 ((|#1| $ (-561)) NIL)) (-2803 (((-561) $ (-561)) NIL)) (-2272 (($ (-1 |#1| |#1|) $) 32)) (-3637 (($ (-1 (-561) (-561)) $) 24)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 26)) (-1714 (((-1110) $) NIL)) (-4282 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-561)))) $) 28)) (-2260 (($ $ $) NIL)) (-3800 (($ $ $) NIL)) (-4022 (((-856) $) 38) (($ |#1|) NIL)) (-2222 (($) 9 T CONST)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ |#1| (-561)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-360 |#1|) (-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-561))) (-15 -1393 ((-765) $)) (-15 -2803 ((-561) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -3637 ($ (-1 (-561) (-561)) $)) (-15 -2272 ($ (-1 |#1| |#1|) $)) (-15 -4282 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-561)))) $)))) (-1090)) (T -360))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1090)))) (-2803 (*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-360 *3)) (-4 *3 (-1090)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090)))) (-3637 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-561) (-561))) (-5 *1 (-360 *3)) (-4 *3 (-1090)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-360 *3)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 (-561))))) (-5 *1 (-360 *3)) (-4 *3 (-1090)))))
+(-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-561))) (-15 -1393 ((-765) $)) (-15 -2803 ((-561) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -3637 ($ (-1 (-561) (-561)) $)) (-15 -2272 ($ (-1 |#1| |#1|) $)) (-15 -4282 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-561)))) $))))
+((-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 13)) (-2851 (($ $) 14)) (-3422 (((-417 $) $) 29)) (-2737 (((-112) $) 25)) (-1540 (($ $) 18)) (-1623 (($ $ $) 22) (($ (-638 $)) NIL)) (-1657 (((-417 $) $) 30)) (-1756 (((-3 $ "failed") $ $) 21)) (-3569 (((-765) $) 24)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 34)) (-3168 (((-112) $ $) 15)) (-1833 (($ $ $) 32)))
+(((-361 |#1|) (-10 -8 (-15 -1833 (|#1| |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2737 ((-112) |#1|)) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -1971 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -3569 ((-765) |#1|)) (-15 -1623 (|#1| (-638 |#1|))) (-15 -1623 (|#1| |#1| |#1|)) (-15 -3168 ((-112) |#1| |#1|)) (-15 -2851 (|#1| |#1|)) (-15 -1769 ((-2 (|:| -3027 |#1|) (|:| -4377 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361))
+NIL
+(-10 -8 (-15 -1833 (|#1| |#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2737 ((-112) |#1|)) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -1971 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -3569 ((-765) |#1|)) (-15 -1623 (|#1| (-638 |#1|))) (-15 -1623 (|#1| |#1| |#1|)) (-15 -3168 ((-112) |#1| |#1|)) (-15 -2851 (|#1| |#1|)) (-15 -1769 ((-2 (|:| -3027 |#1|) (|:| -4377 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1671 (((-112) $ $) 60)) (-1965 (($) 17 T CONST)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2737 (((-112) $) 72)) (-3113 (((-112) $) 31)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 66)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
(((-362) (-139)) (T -362))
-((-1805 (*1 *1 *1 *1) (-4 *1 (-362))))
-(-13 (-306) (-1204) (-242) (-10 -8 (-15 -1805 ($ $ $)) (-6 -4381) (-6 -4375)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
-((-3929 (((-112) $ $) 7)) (-2458 ((|#2| $ |#2|) 13)) (-1989 (($ $ (-1145)) 18)) (-1681 ((|#2| $) 14)) (-3229 (($ |#1|) 20) (($ |#1| (-1145)) 19)) (-3179 ((|#1| $) 16)) (-2510 (((-1145) $) 9)) (-4194 (((-1145) $) 15)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1388 (($ $) 17)) (-1708 (((-112) $ $) 6)))
-(((-363 |#1| |#2|) (-139) (-1087) (-1087)) (T -363))
-((-3229 (*1 *1 *2) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3229 (*1 *1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1087)) (-4 *4 (-1087)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-1388 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-1145)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-2458 (*1 *2 *1 *2) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
-(-13 (-1087) (-10 -8 (-15 -3229 ($ |t#1|)) (-15 -3229 ($ |t#1| (-1145))) (-15 -1989 ($ $ (-1145))) (-15 -1388 ($ $)) (-15 -3179 (|t#1| $)) (-15 -4194 ((-1145) $)) (-15 -1681 (|t#2| $)) (-15 -2458 (|t#2| $ |t#2|))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2458 ((|#1| $ |#1|) 30)) (-1989 (($ $ (-1145)) 22)) (-3098 (((-3 |#1| "failed") $) 29)) (-1681 ((|#1| $) 27)) (-3229 (($ (-387)) 21) (($ (-387) (-1145)) 20)) (-3179 (((-387) $) 24)) (-2510 (((-1145) $) NIL)) (-4194 (((-1145) $) 25)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19)) (-1388 (($ $) 23)) (-1708 (((-112) $ $) 18)))
-(((-364 |#1|) (-13 (-363 (-387) |#1|) (-10 -8 (-15 -3098 ((-3 |#1| "failed") $)))) (-1087)) (T -364))
-((-3098 (*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1087)))))
-(-13 (-363 (-387) |#1|) (-10 -8 (-15 -3098 ((-3 |#1| "failed") $))))
-((-1644 (((-1246 (-679 |#2|)) (-1246 $)) 61)) (-4157 (((-679 |#2|) (-1246 $)) 120)) (-3890 ((|#2| $) 32)) (-1398 (((-679 |#2|) $ (-1246 $)) 123)) (-2113 (((-3 $ "failed") $) 75)) (-3231 ((|#2| $) 35)) (-3324 (((-1159 |#2|) $) 83)) (-2392 ((|#2| (-1246 $)) 106)) (-1292 (((-1159 |#2|) $) 28)) (-2706 (((-112)) 100)) (-3431 (($ (-1246 |#2|) (-1246 $)) 113)) (-3248 (((-3 $ "failed") $) 79)) (-1889 (((-112)) 95)) (-1508 (((-112)) 90)) (-2728 (((-112)) 53)) (-2284 (((-679 |#2|) (-1246 $)) 118)) (-2818 ((|#2| $) 31)) (-4138 (((-679 |#2|) $ (-1246 $)) 122)) (-4300 (((-3 $ "failed") $) 73)) (-2815 ((|#2| $) 34)) (-1637 (((-1159 |#2|) $) 82)) (-2408 ((|#2| (-1246 $)) 104)) (-2889 (((-1159 |#2|) $) 26)) (-1475 (((-112)) 99)) (-4165 (((-112)) 92)) (-1323 (((-112)) 51)) (-1310 (((-112)) 87)) (-3145 (((-112)) 101)) (-2979 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) 111)) (-4211 (((-112)) 97)) (-3817 (((-635 (-1246 |#2|))) 86)) (-2667 (((-112)) 98)) (-2249 (((-112)) 96)) (-2835 (((-112)) 46)) (-2274 (((-112)) 102)))
-(((-365 |#1| |#2|) (-10 -8 (-15 -3324 ((-1159 |#2|) |#1|)) (-15 -1637 ((-1159 |#2|) |#1|)) (-15 -3817 ((-635 (-1246 |#2|)))) (-15 -2113 ((-3 |#1| "failed") |#1|)) (-15 -4300 ((-3 |#1| "failed") |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 -1508 ((-112))) (-15 -4165 ((-112))) (-15 -1889 ((-112))) (-15 -1323 ((-112))) (-15 -2728 ((-112))) (-15 -1310 ((-112))) (-15 -2274 ((-112))) (-15 -3145 ((-112))) (-15 -2706 ((-112))) (-15 -1475 ((-112))) (-15 -2835 ((-112))) (-15 -2667 ((-112))) (-15 -2249 ((-112))) (-15 -4211 ((-112))) (-15 -1292 ((-1159 |#2|) |#1|)) (-15 -2889 ((-1159 |#2|) |#1|)) (-15 -4157 ((-679 |#2|) (-1246 |#1|))) (-15 -2284 ((-679 |#2|) (-1246 |#1|))) (-15 -2392 (|#2| (-1246 |#1|))) (-15 -2408 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -3231 (|#2| |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -1398 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4138 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -1644 ((-1246 (-679 |#2|)) (-1246 |#1|)))) (-366 |#2|) (-171)) (T -365))
-((-4211 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2249 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2667 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2835 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1475 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2706 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3145 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2274 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1310 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2728 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1323 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4165 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1508 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3817 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1246 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))))
-(-10 -8 (-15 -3324 ((-1159 |#2|) |#1|)) (-15 -1637 ((-1159 |#2|) |#1|)) (-15 -3817 ((-635 (-1246 |#2|)))) (-15 -2113 ((-3 |#1| "failed") |#1|)) (-15 -4300 ((-3 |#1| "failed") |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 -1508 ((-112))) (-15 -4165 ((-112))) (-15 -1889 ((-112))) (-15 -1323 ((-112))) (-15 -2728 ((-112))) (-15 -1310 ((-112))) (-15 -2274 ((-112))) (-15 -3145 ((-112))) (-15 -2706 ((-112))) (-15 -1475 ((-112))) (-15 -2835 ((-112))) (-15 -2667 ((-112))) (-15 -2249 ((-112))) (-15 -4211 ((-112))) (-15 -1292 ((-1159 |#2|) |#1|)) (-15 -2889 ((-1159 |#2|) |#1|)) (-15 -4157 ((-679 |#2|) (-1246 |#1|))) (-15 -2284 ((-679 |#2|) (-1246 |#1|))) (-15 -2392 (|#2| (-1246 |#1|))) (-15 -2408 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -3231 (|#2| |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -1398 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4138 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -1644 ((-1246 (-679 |#2|)) (-1246 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3466 (((-3 $ "failed")) 37 (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) 19)) (-1644 (((-1246 (-679 |#1|)) (-1246 $)) 78)) (-3871 (((-1246 $)) 81)) (-3457 (($) 17 T CONST)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) 40 (|has| |#1| (-550)))) (-3262 (((-3 $ "failed")) 38 (|has| |#1| (-550)))) (-4157 (((-679 |#1|) (-1246 $)) 65)) (-3890 ((|#1| $) 74)) (-1398 (((-679 |#1|) $ (-1246 $)) 76)) (-2113 (((-3 $ "failed") $) 45 (|has| |#1| (-550)))) (-2943 (($ $ (-911)) 28)) (-3231 ((|#1| $) 72)) (-3324 (((-1159 |#1|) $) 42 (|has| |#1| (-550)))) (-2392 ((|#1| (-1246 $)) 67)) (-1292 (((-1159 |#1|) $) 63)) (-2706 (((-112)) 57)) (-3431 (($ (-1246 |#1|) (-1246 $)) 69)) (-3248 (((-3 $ "failed") $) 47 (|has| |#1| (-550)))) (-1489 (((-911)) 80)) (-1831 (((-112)) 54)) (-4337 (($ $ (-911)) 33)) (-1889 (((-112)) 50)) (-1508 (((-112)) 48)) (-2728 (((-112)) 52)) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) 41 (|has| |#1| (-550)))) (-2251 (((-3 $ "failed")) 39 (|has| |#1| (-550)))) (-2284 (((-679 |#1|) (-1246 $)) 66)) (-2818 ((|#1| $) 75)) (-4138 (((-679 |#1|) $ (-1246 $)) 77)) (-4300 (((-3 $ "failed") $) 46 (|has| |#1| (-550)))) (-1794 (($ $ (-911)) 29)) (-2815 ((|#1| $) 73)) (-1637 (((-1159 |#1|) $) 43 (|has| |#1| (-550)))) (-2408 ((|#1| (-1246 $)) 68)) (-2889 (((-1159 |#1|) $) 64)) (-1475 (((-112)) 58)) (-2510 (((-1145) $) 9)) (-4165 (((-112)) 49)) (-1323 (((-112)) 51)) (-1310 (((-112)) 53)) (-1688 (((-1107) $) 10)) (-3145 (((-112)) 56)) (-2979 (((-1246 |#1|) $ (-1246 $)) 71) (((-679 |#1|) (-1246 $) (-1246 $)) 70)) (-3175 (((-635 (-942 |#1|)) (-1246 $)) 79)) (-3072 (($ $ $) 25)) (-4211 (((-112)) 62)) (-3940 (((-853) $) 11)) (-3817 (((-635 (-1246 |#1|))) 44 (|has| |#1| (-550)))) (-2536 (($ $ $ $) 26)) (-2667 (((-112)) 60)) (-3467 (($ $ $) 24)) (-2249 (((-112)) 61)) (-2835 (((-112)) 59)) (-2274 (((-112)) 55)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-1833 (*1 *1 *1 *1) (-4 *1 (-362))))
+(-13 (-306) (-1209) (-242) (-10 -8 (-15 -1833 ($ $ $)) (-6 -4388) (-6 -4382)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
+((-4011 (((-112) $ $) 7)) (-3974 ((|#2| $ |#2|) 13)) (-2462 (($ $ (-1148)) 18)) (-2669 ((|#2| $) 14)) (-3333 (($ |#1|) 20) (($ |#1| (-1148)) 19)) (-3269 ((|#1| $) 16)) (-1764 (((-1148) $) 9)) (-3647 (((-1148) $) 15)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2836 (($ $) 17)) (-1733 (((-112) $ $) 6)))
+(((-363 |#1| |#2|) (-139) (-1090) (-1090)) (T -363))
+((-3333 (*1 *1 *2) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-3333 (*1 *1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1090)) (-4 *4 (-1090)))) (-2462 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-1148)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-3974 (*1 *2 *1 *2) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
+(-13 (-1090) (-10 -8 (-15 -3333 ($ |t#1|)) (-15 -3333 ($ |t#1| (-1148))) (-15 -2462 ($ $ (-1148))) (-15 -2836 ($ $)) (-15 -3269 (|t#1| $)) (-15 -3647 ((-1148) $)) (-15 -2669 (|t#2| $)) (-15 -3974 (|t#2| $ |t#2|))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-3974 ((|#1| $ |#1|) 30)) (-2462 (($ $ (-1148)) 22)) (-2909 (((-3 |#1| "failed") $) 29)) (-2669 ((|#1| $) 27)) (-3333 (($ (-387)) 21) (($ (-387) (-1148)) 20)) (-3269 (((-387) $) 24)) (-1764 (((-1148) $) NIL)) (-3647 (((-1148) $) 25)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19)) (-2836 (($ $) 23)) (-1733 (((-112) $ $) 18)))
+(((-364 |#1|) (-13 (-363 (-387) |#1|) (-10 -8 (-15 -2909 ((-3 |#1| "failed") $)))) (-1090)) (T -364))
+((-2909 (*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1090)))))
+(-13 (-363 (-387) |#1|) (-10 -8 (-15 -2909 ((-3 |#1| "failed") $))))
+((-2602 (((-1253 (-682 |#2|)) (-1253 $)) 61)) (-2483 (((-682 |#2|) (-1253 $)) 120)) (-2228 ((|#2| $) 32)) (-3689 (((-682 |#2|) $ (-1253 $)) 123)) (-3494 (((-3 $ "failed") $) 75)) (-3589 ((|#2| $) 35)) (-2392 (((-1162 |#2|) $) 83)) (-1381 ((|#2| (-1253 $)) 106)) (-1659 (((-1162 |#2|) $) 28)) (-2380 (((-112)) 100)) (-2257 (($ (-1253 |#2|) (-1253 $)) 113)) (-3466 (((-3 $ "failed") $) 79)) (-3104 (((-112)) 95)) (-2008 (((-112)) 90)) (-3138 (((-112)) 53)) (-2919 (((-682 |#2|) (-1253 $)) 118)) (-3618 ((|#2| $) 31)) (-1354 (((-682 |#2|) $ (-1253 $)) 122)) (-4063 (((-3 $ "failed") $) 73)) (-3847 ((|#2| $) 34)) (-2377 (((-1162 |#2|) $) 82)) (-2696 ((|#2| (-1253 $)) 104)) (-1539 (((-1162 |#2|) $) 26)) (-3139 (((-112)) 99)) (-4367 (((-112)) 92)) (-1446 (((-112)) 51)) (-3696 (((-112)) 87)) (-3701 (((-112)) 101)) (-3969 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) 111)) (-3053 (((-112)) 97)) (-1758 (((-638 (-1253 |#2|))) 86)) (-2216 (((-112)) 98)) (-2500 (((-112)) 96)) (-2887 (((-112)) 46)) (-4326 (((-112)) 102)))
+(((-365 |#1| |#2|) (-10 -8 (-15 -2392 ((-1162 |#2|) |#1|)) (-15 -2377 ((-1162 |#2|) |#1|)) (-15 -1758 ((-638 (-1253 |#2|)))) (-15 -3494 ((-3 |#1| "failed") |#1|)) (-15 -4063 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 -2008 ((-112))) (-15 -4367 ((-112))) (-15 -3104 ((-112))) (-15 -1446 ((-112))) (-15 -3138 ((-112))) (-15 -3696 ((-112))) (-15 -4326 ((-112))) (-15 -3701 ((-112))) (-15 -2380 ((-112))) (-15 -3139 ((-112))) (-15 -2887 ((-112))) (-15 -2216 ((-112))) (-15 -2500 ((-112))) (-15 -3053 ((-112))) (-15 -1659 ((-1162 |#2|) |#1|)) (-15 -1539 ((-1162 |#2|) |#1|)) (-15 -2483 ((-682 |#2|) (-1253 |#1|))) (-15 -2919 ((-682 |#2|) (-1253 |#1|))) (-15 -1381 (|#2| (-1253 |#1|))) (-15 -2696 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3589 (|#2| |#1|)) (-15 -3847 (|#2| |#1|)) (-15 -2228 (|#2| |#1|)) (-15 -3618 (|#2| |#1|)) (-15 -3689 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1354 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -2602 ((-1253 (-682 |#2|)) (-1253 |#1|)))) (-366 |#2|) (-171)) (T -365))
+((-3053 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2500 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2216 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2887 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3139 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2380 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3701 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4326 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3696 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3138 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1446 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3104 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4367 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2008 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1758 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-638 (-1253 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))))
+(-10 -8 (-15 -2392 ((-1162 |#2|) |#1|)) (-15 -2377 ((-1162 |#2|) |#1|)) (-15 -1758 ((-638 (-1253 |#2|)))) (-15 -3494 ((-3 |#1| "failed") |#1|)) (-15 -4063 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 -2008 ((-112))) (-15 -4367 ((-112))) (-15 -3104 ((-112))) (-15 -1446 ((-112))) (-15 -3138 ((-112))) (-15 -3696 ((-112))) (-15 -4326 ((-112))) (-15 -3701 ((-112))) (-15 -2380 ((-112))) (-15 -3139 ((-112))) (-15 -2887 ((-112))) (-15 -2216 ((-112))) (-15 -2500 ((-112))) (-15 -3053 ((-112))) (-15 -1659 ((-1162 |#2|) |#1|)) (-15 -1539 ((-1162 |#2|) |#1|)) (-15 -2483 ((-682 |#2|) (-1253 |#1|))) (-15 -2919 ((-682 |#2|) (-1253 |#1|))) (-15 -1381 (|#2| (-1253 |#1|))) (-15 -2696 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3589 (|#2| |#1|)) (-15 -3847 (|#2| |#1|)) (-15 -2228 (|#2| |#1|)) (-15 -3618 (|#2| |#1|)) (-15 -3689 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1354 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -2602 ((-1253 (-682 |#2|)) (-1253 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-3027 (((-3 $ "failed")) 37 (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) 19)) (-2602 (((-1253 (-682 |#1|)) (-1253 $)) 78)) (-1533 (((-1253 $)) 81)) (-1965 (($) 17 T CONST)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) 40 (|has| |#1| (-553)))) (-2104 (((-3 $ "failed")) 38 (|has| |#1| (-553)))) (-2483 (((-682 |#1|) (-1253 $)) 65)) (-2228 ((|#1| $) 74)) (-3689 (((-682 |#1|) $ (-1253 $)) 76)) (-3494 (((-3 $ "failed") $) 45 (|has| |#1| (-553)))) (-3928 (($ $ (-914)) 28)) (-3589 ((|#1| $) 72)) (-2392 (((-1162 |#1|) $) 42 (|has| |#1| (-553)))) (-1381 ((|#1| (-1253 $)) 67)) (-1659 (((-1162 |#1|) $) 63)) (-2380 (((-112)) 57)) (-2257 (($ (-1253 |#1|) (-1253 $)) 69)) (-3466 (((-3 $ "failed") $) 47 (|has| |#1| (-553)))) (-1569 (((-914)) 80)) (-1922 (((-112)) 54)) (-3203 (($ $ (-914)) 33)) (-3104 (((-112)) 50)) (-2008 (((-112)) 48)) (-3138 (((-112)) 52)) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) 41 (|has| |#1| (-553)))) (-2445 (((-3 $ "failed")) 39 (|has| |#1| (-553)))) (-2919 (((-682 |#1|) (-1253 $)) 66)) (-3618 ((|#1| $) 75)) (-1354 (((-682 |#1|) $ (-1253 $)) 77)) (-4063 (((-3 $ "failed") $) 46 (|has| |#1| (-553)))) (-3394 (($ $ (-914)) 29)) (-3847 ((|#1| $) 73)) (-2377 (((-1162 |#1|) $) 43 (|has| |#1| (-553)))) (-2696 ((|#1| (-1253 $)) 68)) (-1539 (((-1162 |#1|) $) 64)) (-3139 (((-112)) 58)) (-1764 (((-1148) $) 9)) (-4367 (((-112)) 49)) (-1446 (((-112)) 51)) (-3696 (((-112)) 53)) (-1714 (((-1110) $) 10)) (-3701 (((-112)) 56)) (-3969 (((-1253 |#1|) $ (-1253 $)) 71) (((-682 |#1|) (-1253 $) (-1253 $)) 70)) (-2508 (((-638 (-945 |#1|)) (-1253 $)) 79)) (-3800 (($ $ $) 25)) (-3053 (((-112)) 62)) (-4022 (((-856) $) 11)) (-1758 (((-638 (-1253 |#1|))) 44 (|has| |#1| (-553)))) (-3392 (($ $ $ $) 26)) (-2216 (((-112)) 60)) (-1761 (($ $ $) 24)) (-2500 (((-112)) 61)) (-2887 (((-112)) 59)) (-4326 (((-112)) 55)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-366 |#1|) (-139) (-171)) (T -366))
-((-3871 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-366 *3)))) (-1489 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-911)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-635 (-942 *4))))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1246 (-679 *4))))) (-4138 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-1398 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2979 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1246 *4)))) (-2979 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))) (-4211 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2249 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2667 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2835 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1475 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2706 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3145 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2274 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1310 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2728 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1323 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1889 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4165 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1508 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3248 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-4300 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-2113 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550)))) (-3817 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550)) (-5 *2 (-635 (-1246 *3))))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550)) (-5 *2 (-1159 *3)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550)) (-5 *2 (-1159 *3)))) (-3347 (*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2743 (-635 *1)))) (-4 *1 (-366 *3)))) (-1873 (*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2743 (-635 *1)))) (-4 *1 (-366 *3)))) (-2251 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))) (-3262 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))) (-3466 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))))
-(-13 (-735 |t#1|) (-10 -8 (-15 -3871 ((-1246 $))) (-15 -1489 ((-911))) (-15 -3175 ((-635 (-942 |t#1|)) (-1246 $))) (-15 -1644 ((-1246 (-679 |t#1|)) (-1246 $))) (-15 -4138 ((-679 |t#1|) $ (-1246 $))) (-15 -1398 ((-679 |t#1|) $ (-1246 $))) (-15 -2818 (|t#1| $)) (-15 -3890 (|t#1| $)) (-15 -2815 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -2979 ((-1246 |t#1|) $ (-1246 $))) (-15 -2979 ((-679 |t#1|) (-1246 $) (-1246 $))) (-15 -3431 ($ (-1246 |t#1|) (-1246 $))) (-15 -2408 (|t#1| (-1246 $))) (-15 -2392 (|t#1| (-1246 $))) (-15 -2284 ((-679 |t#1|) (-1246 $))) (-15 -4157 ((-679 |t#1|) (-1246 $))) (-15 -2889 ((-1159 |t#1|) $)) (-15 -1292 ((-1159 |t#1|) $)) (-15 -4211 ((-112))) (-15 -2249 ((-112))) (-15 -2667 ((-112))) (-15 -2835 ((-112))) (-15 -1475 ((-112))) (-15 -2706 ((-112))) (-15 -3145 ((-112))) (-15 -2274 ((-112))) (-15 -1831 ((-112))) (-15 -1310 ((-112))) (-15 -2728 ((-112))) (-15 -1323 ((-112))) (-15 -1889 ((-112))) (-15 -4165 ((-112))) (-15 -1508 ((-112))) (IF (|has| |t#1| (-550)) (PROGN (-15 -3248 ((-3 $ "failed") $)) (-15 -4300 ((-3 $ "failed") $)) (-15 -2113 ((-3 $ "failed") $)) (-15 -3817 ((-635 (-1246 |t#1|)))) (-15 -1637 ((-1159 |t#1|) $)) (-15 -3324 ((-1159 |t#1|) $)) (-15 -3347 ((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed"))) (-15 -1873 ((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed"))) (-15 -2251 ((-3 $ "failed"))) (-15 -3262 ((-3 $ "failed"))) (-15 -3466 ((-3 $ "failed"))) (-6 -4380)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-711) . T) ((-735 |#1|) . T) ((-752) . T) ((-1045 |#1|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-2507 (((-762)) 16)) (-3692 (($) 13)) (-1486 (((-911) $) 14)) (-2510 (((-1145) $) 9)) (-2349 (($ (-911)) 15)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)))
+((-1533 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-366 *3)))) (-1569 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-914)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-638 (-945 *4))))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))))) (-1354 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3969 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 *4)))) (-3969 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))) (-3053 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2500 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2216 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2887 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3139 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2380 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3701 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4326 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1922 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3696 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3138 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1446 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3104 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4367 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2008 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3466 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-4063 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-3494 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553)))) (-1758 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553)) (-5 *2 (-638 (-1253 *3))))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553)) (-5 *2 (-1162 *3)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553)) (-5 *2 (-1162 *3)))) (-2991 (*1 *2) (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3711 (-638 *1)))) (-4 *1 (-366 *3)))) (-1312 (*1 *2) (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3711 (-638 *1)))) (-4 *1 (-366 *3)))) (-2445 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))) (-2104 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))) (-3027 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))))
+(-13 (-738 |t#1|) (-10 -8 (-15 -1533 ((-1253 $))) (-15 -1569 ((-914))) (-15 -2508 ((-638 (-945 |t#1|)) (-1253 $))) (-15 -2602 ((-1253 (-682 |t#1|)) (-1253 $))) (-15 -1354 ((-682 |t#1|) $ (-1253 $))) (-15 -3689 ((-682 |t#1|) $ (-1253 $))) (-15 -3618 (|t#1| $)) (-15 -2228 (|t#1| $)) (-15 -3847 (|t#1| $)) (-15 -3589 (|t#1| $)) (-15 -3969 ((-1253 |t#1|) $ (-1253 $))) (-15 -3969 ((-682 |t#1|) (-1253 $) (-1253 $))) (-15 -2257 ($ (-1253 |t#1|) (-1253 $))) (-15 -2696 (|t#1| (-1253 $))) (-15 -1381 (|t#1| (-1253 $))) (-15 -2919 ((-682 |t#1|) (-1253 $))) (-15 -2483 ((-682 |t#1|) (-1253 $))) (-15 -1539 ((-1162 |t#1|) $)) (-15 -1659 ((-1162 |t#1|) $)) (-15 -3053 ((-112))) (-15 -2500 ((-112))) (-15 -2216 ((-112))) (-15 -2887 ((-112))) (-15 -3139 ((-112))) (-15 -2380 ((-112))) (-15 -3701 ((-112))) (-15 -4326 ((-112))) (-15 -1922 ((-112))) (-15 -3696 ((-112))) (-15 -3138 ((-112))) (-15 -1446 ((-112))) (-15 -3104 ((-112))) (-15 -4367 ((-112))) (-15 -2008 ((-112))) (IF (|has| |t#1| (-553)) (PROGN (-15 -3466 ((-3 $ "failed") $)) (-15 -4063 ((-3 $ "failed") $)) (-15 -3494 ((-3 $ "failed") $)) (-15 -1758 ((-638 (-1253 |t#1|)))) (-15 -2377 ((-1162 |t#1|) $)) (-15 -2392 ((-1162 |t#1|) $)) (-15 -2991 ((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed"))) (-15 -1312 ((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed"))) (-15 -2445 ((-3 $ "failed"))) (-15 -2104 ((-3 $ "failed"))) (-15 -3027 ((-3 $ "failed"))) (-6 -4387)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-1393 (((-765)) 16)) (-1332 (($) 13)) (-3198 (((-914) $) 14)) (-1764 (((-1148) $) 9)) (-2413 (($ (-914)) 15)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)))
(((-367) (-139)) (T -367))
-((-2507 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-762)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-367)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-911)))) (-3692 (*1 *1) (-4 *1 (-367))))
-(-13 (-1087) (-10 -8 (-15 -2507 ((-762))) (-15 -2349 ($ (-911))) (-15 -1486 ((-911) $)) (-15 -3692 ($))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3409 (((-679 |#2|) (-1246 $)) 40)) (-3431 (($ (-1246 |#2|) (-1246 $)) 34)) (-3533 (((-679 |#2|) $ (-1246 $)) 42)) (-3789 ((|#2| (-1246 $)) 13)) (-2979 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) 25)))
-(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -3409 ((-679 |#2|) (-1246 |#1|))) (-15 -3789 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -3533 ((-679 |#2|) |#1| (-1246 |#1|)))) (-369 |#2| |#3|) (-171) (-1222 |#2|)) (T -368))
-NIL
-(-10 -8 (-15 -3409 ((-679 |#2|) (-1246 |#1|))) (-15 -3789 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -3533 ((-679 |#2|) |#1| (-1246 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3409 (((-679 |#1|) (-1246 $)) 47)) (-1719 ((|#1| $) 53)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3431 (($ (-1246 |#1|) (-1246 $)) 49)) (-3533 (((-679 |#1|) $ (-1246 $)) 54)) (-3248 (((-3 $ "failed") $) 33)) (-1489 (((-911)) 55)) (-3999 (((-112) $) 31)) (-1423 ((|#1| $) 52)) (-1715 ((|#2| $) 45 (|has| |#1| (-362)))) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3789 ((|#1| (-1246 $)) 48)) (-2979 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38)) (-1487 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-1969 ((|#2| $) 46)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-369 |#1| |#2|) (-139) (-171) (-1222 |t#1|)) (T -369))
-((-1489 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-911)))) (-3533 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171)))) (-2979 (*1 *2 *1 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *4)))) (-2979 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1222 *4)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1222 *2)) (-4 *2 (-171)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1222 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -1489 ((-911))) (-15 -3533 ((-679 |t#1|) $ (-1246 $))) (-15 -1719 (|t#1| $)) (-15 -1423 (|t#1| $)) (-15 -2979 ((-1246 |t#1|) $ (-1246 $))) (-15 -2979 ((-679 |t#1|) (-1246 $) (-1246 $))) (-15 -3431 ($ (-1246 |t#1|) (-1246 $))) (-15 -3789 (|t#1| (-1246 $))) (-15 -3409 ((-679 |t#1|) (-1246 $))) (-15 -1969 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -1715 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3484 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3866 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3397 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3866 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3484 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1200) (-372 |#1|) (-1200) (-372 |#3|)) (T -370))
-((-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) (-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5)))))
-(-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3866 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3484 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2878 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3041 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3648 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-1911 (($ $) 25)) (-4145 (((-558) (-1 (-112) |#2|) $) NIL) (((-558) |#2| $) 11) (((-558) |#2| $ (-558)) NIL)) (-3391 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-371 |#1| |#2|) (-10 -8 (-15 -3041 (|#1| |#1|)) (-15 -3041 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2878 ((-112) |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -4145 ((-558) |#2| |#1| (-558))) (-15 -4145 ((-558) |#2| |#1|)) (-15 -4145 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -2878 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3648 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-372 |#2|) (-1200)) (T -371))
-NIL
-(-10 -8 (-15 -3041 (|#1| |#1|)) (-15 -3041 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2878 ((-112) |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -4145 ((-558) |#2| |#1| (-558))) (-15 -4145 ((-558) |#2| |#1|)) (-15 -4145 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -2878 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3648 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4384))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4384))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-2240 (($ $) 90 (|has| $ (-6 -4384)))) (-1911 (($ $) 100)) (-3188 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 51)) (-4145 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-2142 (($ $ $) 87 (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-2281 (($ $ $) 86 (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 42 (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2830 (($ $ |#1|) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2834 (($ $ $ (-558)) 91 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 70)) (-2683 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 82 (|has| |#1| (-841)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-372 |#1|) (-139) (-1200)) (T -372))
-((-3391 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-1911 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)))) (-3648 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-2878 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-4145 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200)) (-5 *2 (-558)))) (-4145 (*1 *2 *3 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-558)))) (-4145 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))) (-3648 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-841)) (-5 *2 (-112)))) (-2834 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4384)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-2240 (*1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-372 *2)) (-4 *2 (-1200)))) (-3041 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4384)) (-4 *1 (-372 *3)) (-4 *3 (-1200)))) (-3041 (*1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841)))))
-(-13 (-641 |t#1|) (-10 -8 (-6 -4383) (-15 -3391 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1911 ($ $)) (-15 -3648 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2878 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4145 ((-558) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -4145 ((-558) |t#1| $)) (-15 -4145 ((-558) |t#1| $ (-558)))) |%noBranch|) (IF (|has| |t#1| (-841)) (PROGN (-6 (-841)) (-15 -3391 ($ $ $)) (-15 -3648 ($ $)) (-15 -2878 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4384)) (PROGN (-15 -2834 ($ $ $ (-558))) (-15 -2240 ($ $)) (-15 -3041 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-841)) (-15 -3041 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2096 (((-635 |#1|) $) 32)) (-2368 (($ $ (-762)) 33)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2978 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 36)) (-3883 (($ $) 34)) (-3422 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 37)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-1369 (($ $ |#1| $) 31) (($ $ (-635 |#1|) (-635 $)) 30)) (-4263 (((-762) $) 38)) (-3952 (($ $ $) 29)) (-3940 (((-853) $) 11) (($ |#1|) 41) (((-1261 |#1| |#2|) $) 40) (((-1270 |#1| |#2|) $) 39)) (-3455 ((|#2| (-1270 |#1| |#2|) $) 42)) (-2207 (($) 18 T CONST)) (-1919 (($ (-662 |#1|)) 35)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-373 |#1| |#2|) (-139) (-841) (-171)) (T -373))
-((-3455 (*1 *2 *3 *1) (-12 (-5 *3 (-1270 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-841)) (-4 *2 (-171)))) (-3940 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-1261 *3 *4)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-1270 *3 *4)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-762)))) (-3422 (*1 *2 *2 *1) (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-2978 (*1 *2 *2 *1) (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-1919 (*1 *1 *2) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-3883 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171)))) (-2368 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *2 (-635 *3)))) (-1369 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-841)) (-4 *5 (-171)))))
-(-13 (-626 |t#2|) (-10 -8 (-15 -3455 (|t#2| (-1270 |t#1| |t#2|) $)) (-15 -3940 ($ |t#1|)) (-15 -3940 ((-1261 |t#1| |t#2|) $)) (-15 -3940 ((-1270 |t#1| |t#2|) $)) (-15 -4263 ((-762) $)) (-15 -3422 ((-1270 |t#1| |t#2|) (-1270 |t#1| |t#2|) $)) (-15 -2978 ((-1270 |t#1| |t#2|) (-1270 |t#1| |t#2|) $)) (-15 -1919 ($ (-662 |t#1|))) (-15 -3883 ($ $)) (-15 -2368 ($ $ (-762))) (-15 -2096 ((-635 |t#1|) $)) (-15 -1369 ($ $ |t#1| $)) (-15 -1369 ($ $ (-635 |t#1|) (-635 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#2|) . T) ((-626 |#2|) . T) ((-708 |#2|) . T) ((-1045 |#2|) . T) ((-1087) . T))
-((-1777 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-2137 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1361 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
-(((-374 |#1| |#2|) (-10 -7 (-15 -2137 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1361 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1777 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1200) (-13 (-372 |#1|) (-10 -7 (-6 -4384)))) (T -374))
-((-1777 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384)))))) (-1361 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384)))))) (-2137 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384)))))))
-(-10 -7 (-15 -2137 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1361 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1777 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-1918 (((-679 |#2|) (-679 $)) NIL) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 22) (((-679 (-558)) (-679 $)) 14)))
-(((-375 |#1| |#2|) (-10 -8 (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 |#2|) (-679 |#1|)))) (-376 |#2|) (-1039)) (T -375))
-NIL
-(-10 -8 (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 |#2|) (-679 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-1918 (((-679 |#1|) (-679 $)) 36) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 35) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 43 (|has| |#1| (-631 (-558)))) (((-679 (-558)) (-679 $)) 42 (|has| |#1| (-631 (-558))))) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-376 |#1|) (-139) (-1039)) (T -376))
-NIL
-(-13 (-631 |t#1|) (-10 -7 (IF (|has| |t#1| (-631 (-558))) (-6 (-631 (-558))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3997 (((-635 (-293 (-942 (-168 |#1|)))) (-293 (-406 (-942 (-168 (-558))))) |#1|) 51) (((-635 (-293 (-942 (-168 |#1|)))) (-406 (-942 (-168 (-558)))) |#1|) 50) (((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-293 (-406 (-942 (-168 (-558)))))) |#1|) 47) (((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-406 (-942 (-168 (-558))))) |#1|) 41)) (-2347 (((-635 (-635 (-168 |#1|))) (-635 (-406 (-942 (-168 (-558))))) (-635 (-1163)) |#1|) 30) (((-635 (-168 |#1|)) (-406 (-942 (-168 (-558)))) |#1|) 18)))
-(((-377 |#1|) (-10 -7 (-15 -3997 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -3997 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-293 (-406 (-942 (-168 (-558)))))) |#1|)) (-15 -3997 ((-635 (-293 (-942 (-168 |#1|)))) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -3997 ((-635 (-293 (-942 (-168 |#1|)))) (-293 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -2347 ((-635 (-168 |#1|)) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -2347 ((-635 (-635 (-168 |#1|))) (-635 (-406 (-942 (-168 (-558))))) (-635 (-1163)) |#1|))) (-13 (-362) (-839))) (T -377))
-((-2347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558)))))) (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 (-168 *5)))) (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-839))))) (-2347 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-168 (-558))))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 (-168 (-558)))))) (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-168 (-558))))) (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-293 (-406 (-942 (-168 (-558))))))) (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558)))))) (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839))))))
-(-10 -7 (-15 -3997 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -3997 ((-635 (-635 (-293 (-942 (-168 |#1|))))) (-635 (-293 (-406 (-942 (-168 (-558)))))) |#1|)) (-15 -3997 ((-635 (-293 (-942 (-168 |#1|)))) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -3997 ((-635 (-293 (-942 (-168 |#1|)))) (-293 (-406 (-942 (-168 (-558))))) |#1|)) (-15 -2347 ((-635 (-168 |#1|)) (-406 (-942 (-168 (-558)))) |#1|)) (-15 -2347 ((-635 (-635 (-168 |#1|))) (-635 (-406 (-942 (-168 (-558))))) (-635 (-1163)) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 33)) (-1669 (((-558) $) 55)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-4057 (($ $) 110)) (-2277 (($ $) 82)) (-2131 (($ $) 71)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-3948 (($ $) 44)) (-1599 (((-112) $ $) NIL)) (-2254 (($ $) 80)) (-2109 (($ $) 69)) (-1334 (((-558) $) 64)) (-3277 (($ $ (-558)) 62)) (-2298 (($ $) NIL)) (-2158 (($ $) NIL)) (-3457 (($) NIL T CONST)) (-2676 (($ $) 112)) (-3302 (((-3 (-558) "failed") $) 189) (((-3 (-406 (-558)) "failed") $) 185)) (-3226 (((-558) $) 187) (((-406 (-558)) $) 183)) (-1709 (($ $ $) NIL)) (-1354 (((-558) $ $) 102)) (-3248 (((-3 $ "failed") $) 114)) (-1396 (((-406 (-558)) $ (-762)) 190) (((-406 (-558)) $ (-762) (-762)) 182)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2659 (((-911)) 73) (((-911) (-911)) 98 (|has| $ (-6 -4374)))) (-4053 (((-112) $) 106)) (-3348 (($) 40)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL)) (-1815 (((-1251) (-762)) 152)) (-3164 (((-1251)) 157) (((-1251) (-762)) 158)) (-1760 (((-1251)) 159) (((-1251) (-762)) 160)) (-3852 (((-1251)) 155) (((-1251) (-762)) 156)) (-2532 (((-558) $) 58)) (-3999 (((-112) $) 104)) (-2136 (($ $ (-558)) NIL)) (-2033 (($ $) 48)) (-1423 (($ $) NIL)) (-2032 (((-112) $) 35)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL) (($) NIL (-12 (-2143 (|has| $ (-6 -4366))) (-2143 (|has| $ (-6 -4374)))))) (-2281 (($ $ $) NIL) (($) 99 (-12 (-2143 (|has| $ (-6 -4366))) (-2143 (|has| $ (-6 -4374)))))) (-3815 (((-558) $) 17)) (-2656 (($) 87) (($ $) 92)) (-2927 (($) 91) (($ $) 93)) (-4342 (($ $) 83)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 116)) (-4246 (((-911) (-558)) 43 (|has| $ (-6 -4374)))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) 53)) (-4259 (($ $) 109)) (-4114 (($ (-558) (-558)) 107) (($ (-558) (-558) (-911)) 108)) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1857 (((-558) $) 19)) (-2873 (($) 94)) (-3944 (($ $) 79)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3035 (((-911)) 100) (((-911) (-911)) 101 (|has| $ (-6 -4374)))) (-3780 (($ $ (-762)) NIL) (($ $) 115)) (-1298 (((-911) (-558)) 47 (|has| $ (-6 -4374)))) (-2312 (($ $) NIL)) (-2170 (($ $) NIL)) (-2289 (($ $) NIL)) (-2146 (($ $) NIL)) (-2265 (($ $) 81)) (-2120 (($ $) 70)) (-3441 (((-378) $) 175) (((-224) $) 177) (((-882 (-378)) $) NIL) (((-1145) $) 162) (((-534) $) 173) (($ (-224)) 181)) (-3940 (((-853) $) 164) (($ (-558)) 186) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-558)) 186) (($ (-406 (-558))) NIL) (((-224) $) 178)) (-2417 (((-762)) NIL)) (-2912 (($ $) 111)) (-1657 (((-911)) 54) (((-911) (-911)) 66 (|has| $ (-6 -4374)))) (-2636 (((-911)) 103)) (-4175 (($ $) 86)) (-2209 (($ $) 46) (($ $ $) 52)) (-2671 (((-112) $ $) NIL)) (-2325 (($ $) 84)) (-2184 (($ $) 37)) (-4197 (($ $) NIL)) (-2233 (($ $) NIL)) (-2038 (($ $) NIL)) (-2244 (($ $) NIL)) (-4185 (($ $) NIL)) (-2221 (($ $) NIL)) (-4164 (($ $) 85)) (-2195 (($ $) 49)) (-4241 (($ $) 51)) (-2207 (($) 34 T CONST)) (-2220 (($) 38 T CONST)) (-2555 (((-1145) $) 27) (((-1145) $ (-112)) 29) (((-1251) (-813) $) 30) (((-1251) (-813) $ (-112)) 31)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 39)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 42)) (-1805 (($ $ $) 45) (($ $ (-558)) 41)) (-1796 (($ $) 36) (($ $ $) 50)) (-1785 (($ $ $) 61)) (** (($ $ (-911)) 67) (($ $ (-762)) NIL) (($ $ (-558)) 88) (($ $ (-406 (-558))) 125) (($ $ $) 117)) (* (($ (-911) $) 65) (($ (-762) $) NIL) (($ (-558) $) 68) (($ $ $) 60) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-378) (-13 (-403) (-232) (-606 (-1145)) (-819) (-605 (-224)) (-1185) (-606 (-534)) (-610 (-224)) (-10 -8 (-15 -1805 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2033 ($ $)) (-15 -1354 ((-558) $ $)) (-15 -3277 ($ $ (-558))) (-15 -1396 ((-406 (-558)) $ (-762))) (-15 -1396 ((-406 (-558)) $ (-762) (-762))) (-15 -2656 ($)) (-15 -2927 ($)) (-15 -2873 ($)) (-15 -2209 ($ $ $)) (-15 -2656 ($ $)) (-15 -2927 ($ $)) (-15 -1760 ((-1251))) (-15 -1760 ((-1251) (-762))) (-15 -3852 ((-1251))) (-15 -3852 ((-1251) (-762))) (-15 -3164 ((-1251))) (-15 -3164 ((-1251) (-762))) (-15 -1815 ((-1251) (-762))) (-6 -4374) (-6 -4366)))) (T -378))
-((** (*1 *1 *1 *1) (-5 *1 (-378))) (-1805 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378)))) (-2033 (*1 *1 *1) (-5 *1 (-378))) (-1354 (*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-378)))) (-3277 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378)))) (-1396 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378)))) (-1396 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378)))) (-2656 (*1 *1) (-5 *1 (-378))) (-2927 (*1 *1) (-5 *1 (-378))) (-2873 (*1 *1) (-5 *1 (-378))) (-2209 (*1 *1 *1 *1) (-5 *1 (-378))) (-2656 (*1 *1 *1) (-5 *1 (-378))) (-2927 (*1 *1 *1) (-5 *1 (-378))) (-1760 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))) (-3852 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))) (-3164 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))))
-(-13 (-403) (-232) (-606 (-1145)) (-819) (-605 (-224)) (-1185) (-606 (-534)) (-610 (-224)) (-10 -8 (-15 -1805 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2033 ($ $)) (-15 -1354 ((-558) $ $)) (-15 -3277 ($ $ (-558))) (-15 -1396 ((-406 (-558)) $ (-762))) (-15 -1396 ((-406 (-558)) $ (-762) (-762))) (-15 -2656 ($)) (-15 -2927 ($)) (-15 -2873 ($)) (-15 -2209 ($ $ $)) (-15 -2656 ($ $)) (-15 -2927 ($ $)) (-15 -1760 ((-1251))) (-15 -1760 ((-1251) (-762))) (-15 -3852 ((-1251))) (-15 -3852 ((-1251) (-762))) (-15 -3164 ((-1251))) (-15 -3164 ((-1251) (-762))) (-15 -1815 ((-1251) (-762))) (-6 -4374) (-6 -4366)))
-((-2692 (((-635 (-293 (-942 |#1|))) (-293 (-406 (-942 (-558)))) |#1|) 46) (((-635 (-293 (-942 |#1|))) (-406 (-942 (-558))) |#1|) 45) (((-635 (-635 (-293 (-942 |#1|)))) (-635 (-293 (-406 (-942 (-558))))) |#1|) 42) (((-635 (-635 (-293 (-942 |#1|)))) (-635 (-406 (-942 (-558)))) |#1|) 36)) (-3577 (((-635 |#1|) (-406 (-942 (-558))) |#1|) 20) (((-635 (-635 |#1|)) (-635 (-406 (-942 (-558)))) (-635 (-1163)) |#1|) 30)))
-(((-379 |#1|) (-10 -7 (-15 -2692 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-406 (-942 (-558)))) |#1|)) (-15 -2692 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-293 (-406 (-942 (-558))))) |#1|)) (-15 -2692 ((-635 (-293 (-942 |#1|))) (-406 (-942 (-558))) |#1|)) (-15 -2692 ((-635 (-293 (-942 |#1|))) (-293 (-406 (-942 (-558)))) |#1|)) (-15 -3577 ((-635 (-635 |#1|)) (-635 (-406 (-942 (-558)))) (-635 (-1163)) |#1|)) (-15 -3577 ((-635 |#1|) (-406 (-942 (-558))) |#1|))) (-13 (-839) (-362))) (T -379))
-((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-3577 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-942 (-558))))) (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-839) (-362))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 (-558))))) (-5 *2 (-635 (-293 (-942 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 (-293 (-942 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-293 (-406 (-942 (-558)))))) (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 (-558))))) (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362))))))
-(-10 -7 (-15 -2692 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-406 (-942 (-558)))) |#1|)) (-15 -2692 ((-635 (-635 (-293 (-942 |#1|)))) (-635 (-293 (-406 (-942 (-558))))) |#1|)) (-15 -2692 ((-635 (-293 (-942 |#1|))) (-406 (-942 (-558))) |#1|)) (-15 -2692 ((-635 (-293 (-942 |#1|))) (-293 (-406 (-942 (-558)))) |#1|)) (-15 -3577 ((-635 (-635 |#1|)) (-635 (-406 (-942 (-558)))) (-635 (-1163)) |#1|)) (-15 -3577 ((-635 |#1|) (-406 (-942 (-558))) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) 26)) (-3226 ((|#2| $) 28)) (-3905 (($ $) NIL)) (-2987 (((-762) $) 10)) (-4033 (((-635 $) $) 20)) (-3594 (((-112) $) NIL)) (-2345 (($ |#2| |#1|) 18)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2286 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3867 ((|#2| $) 15)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 44) (($ |#2|) 27)) (-3712 (((-635 |#1|) $) 17)) (-3143 ((|#1| $ |#2|) 46)) (-2207 (($) 29 T CONST)) (-3243 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
-(((-380 |#1| |#2|) (-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1039) (-841)) (T -380))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841)))))
+((-1393 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-367)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-914)))) (-1332 (*1 *1) (-4 *1 (-367))))
+(-13 (-1090) (-10 -8 (-15 -1393 ((-765))) (-15 -2413 ($ (-914))) (-15 -3198 ((-914) $)) (-15 -1332 ($))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-2695 (((-682 |#2|) (-1253 $)) 40)) (-2257 (($ (-1253 |#2|) (-1253 $)) 34)) (-4145 (((-682 |#2|) $ (-1253 $)) 42)) (-2553 ((|#2| (-1253 $)) 13)) (-3969 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) 25)))
+(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -2695 ((-682 |#2|) (-1253 |#1|))) (-15 -2553 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -4145 ((-682 |#2|) |#1| (-1253 |#1|)))) (-369 |#2| |#3|) (-171) (-1229 |#2|)) (T -368))
+NIL
+(-10 -8 (-15 -2695 ((-682 |#2|) (-1253 |#1|))) (-15 -2553 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -4145 ((-682 |#2|) |#1| (-1253 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2695 (((-682 |#1|) (-1253 $)) 47)) (-1744 ((|#1| $) 53)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-2257 (($ (-1253 |#1|) (-1253 $)) 49)) (-4145 (((-682 |#1|) $ (-1253 $)) 54)) (-3466 (((-3 $ "failed") $) 33)) (-1569 (((-914)) 55)) (-3113 (((-112) $) 31)) (-1672 ((|#1| $) 52)) (-2692 ((|#2| $) 45 (|has| |#1| (-362)))) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2553 ((|#1| (-1253 $)) 48)) (-3969 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38)) (-1760 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2485 ((|#2| $) 46)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-369 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -369))
+((-1569 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-914)))) (-4145 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-3969 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *4)))) (-3969 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1229 *4)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1229 *2)) (-4 *2 (-171)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1229 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -1569 ((-914))) (-15 -4145 ((-682 |t#1|) $ (-1253 $))) (-15 -1744 (|t#1| $)) (-15 -1672 (|t#1| $)) (-15 -3969 ((-1253 |t#1|) $ (-1253 $))) (-15 -3969 ((-682 |t#1|) (-1253 $) (-1253 $))) (-15 -2257 ($ (-1253 |t#1|) (-1253 $))) (-15 -2553 (|t#1| (-1253 $))) (-15 -2695 ((-682 |t#1|) (-1253 $))) (-15 -2485 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -2692 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-3130 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3185 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4120 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3130 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1205) (-372 |#1|) (-1205) (-372 |#3|)) (T -370))
+((-3130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) (-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5)))))
+(-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3130 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-4268 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3702 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1289 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2638 (($ $) 25)) (-4235 (((-561) (-1 (-112) |#2|) $) NIL) (((-561) |#2| $) 11) (((-561) |#2| $ (-561)) NIL)) (-1407 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-371 |#1| |#2|) (-10 -8 (-15 -3702 (|#1| |#1|)) (-15 -3702 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4268 ((-112) |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -1407 (|#1| |#1| |#1|)) (-15 -4235 ((-561) |#2| |#1| (-561))) (-15 -4235 ((-561) |#2| |#1|)) (-15 -4235 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4268 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1289 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -1407 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-372 |#2|) (-1205)) (T -371))
+NIL
+(-10 -8 (-15 -3702 (|#1| |#1|)) (-15 -3702 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4268 ((-112) |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -1407 (|#1| |#1| |#1|)) (-15 -4235 ((-561) |#2| |#1| (-561))) (-15 -4235 ((-561) |#2| |#1|)) (-15 -4235 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4268 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1289 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -1407 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4391))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4391))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 58 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-4075 (($ $) 90 (|has| $ (-6 -4391)))) (-2638 (($ $) 100)) (-1472 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 51)) (-4235 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3443 (($ $ $) 87 (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2986 (($ $ $) 86 (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 42 (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1799 (($ $ |#1|) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1220 (-561))) 63)) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1365 (($ $ $ (-561)) 91 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 70)) (-2725 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1773 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 82 (|has| |#1| (-844)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-372 |#1|) (-139) (-1205)) (T -372))
+((-1407 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-2638 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)))) (-1289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-4268 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-4235 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205)) (-5 *2 (-561)))) (-4235 (*1 *2 *3 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-561)))) (-4235 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)))) (-1407 (*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))) (-1289 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-844)) (-5 *2 (-112)))) (-1365 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-561)) (|has| *1 (-6 -4391)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-4075 (*1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-372 *2)) (-4 *2 (-1205)))) (-3702 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4391)) (-4 *1 (-372 *3)) (-4 *3 (-1205)))) (-3702 (*1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844)))))
+(-13 (-644 |t#1|) (-10 -8 (-6 -4390) (-15 -1407 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2638 ($ $)) (-15 -1289 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4268 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4235 ((-561) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -4235 ((-561) |t#1| $)) (-15 -4235 ((-561) |t#1| $ (-561)))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-6 (-844)) (-15 -1407 ($ $ $)) (-15 -1289 ($ $)) (-15 -4268 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4391)) (PROGN (-15 -1365 ($ $ $ (-561))) (-15 -4075 ($ $)) (-15 -3702 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-844)) (-15 -3702 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2813 (((-638 |#1|) $) 32)) (-2733 (($ $ (-765)) 33)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1852 (((-1277 |#1| |#2|) (-1277 |#1| |#2|) $) 36)) (-2597 (($ $) 34)) (-3831 (((-1277 |#1| |#2|) (-1277 |#1| |#2|) $) 37)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1444 (($ $ |#1| $) 31) (($ $ (-638 |#1|) (-638 $)) 30)) (-2894 (((-765) $) 38)) (-4031 (($ $ $) 29)) (-4022 (((-856) $) 11) (($ |#1|) 41) (((-1268 |#1| |#2|) $) 40) (((-1277 |#1| |#2|) $) 39)) (-4188 ((|#2| (-1277 |#1| |#2|) $) 42)) (-2211 (($) 18 T CONST)) (-3268 (($ (-665 |#1|)) 35)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-373 |#1| |#2|) (-139) (-844) (-171)) (T -373))
+((-4188 (*1 *2 *3 *1) (-12 (-5 *3 (-1277 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844)) (-4 *2 (-171)))) (-4022 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1268 *3 *4)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1277 *3 *4)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-765)))) (-3831 (*1 *2 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-1852 (*1 *2 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-3268 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-2597 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-2733 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-638 *3)))) (-1444 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-844)) (-4 *5 (-171)))))
+(-13 (-629 |t#2|) (-10 -8 (-15 -4188 (|t#2| (-1277 |t#1| |t#2|) $)) (-15 -4022 ($ |t#1|)) (-15 -4022 ((-1268 |t#1| |t#2|) $)) (-15 -4022 ((-1277 |t#1| |t#2|) $)) (-15 -2894 ((-765) $)) (-15 -3831 ((-1277 |t#1| |t#2|) (-1277 |t#1| |t#2|) $)) (-15 -1852 ((-1277 |t#1| |t#2|) (-1277 |t#1| |t#2|) $)) (-15 -3268 ($ (-665 |t#1|))) (-15 -2597 ($ $)) (-15 -2733 ($ $ (-765))) (-15 -2813 ((-638 |t#1|) $)) (-15 -1444 ($ $ |t#1| $)) (-15 -1444 ($ $ (-638 |t#1|) (-638 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#2|) . T) ((-629 |#2|) . T) ((-711 |#2|) . T) ((-1048 |#2|) . T) ((-1090) . T))
+((-3465 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-3112 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3633 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
+(((-374 |#1| |#2|) (-10 -7 (-15 -3112 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3633 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3465 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1205) (-13 (-372 |#1|) (-10 -7 (-6 -4391)))) (T -374))
+((-3465 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391)))))) (-3633 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391)))))) (-3112 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391)))))))
+(-10 -7 (-15 -3112 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3633 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3465 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-3602 (((-682 |#2|) (-682 $)) NIL) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 22) (((-682 (-561)) (-682 $)) 14)))
+(((-375 |#1| |#2|) (-10 -8 (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 |#2|) (-682 |#1|)))) (-376 |#2|) (-1042)) (T -375))
+NIL
+(-10 -8 (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 |#2|) (-682 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3602 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 35) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 43 (|has| |#1| (-634 (-561)))) (((-682 (-561)) (-682 $)) 42 (|has| |#1| (-634 (-561))))) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-376 |#1|) (-139) (-1042)) (T -376))
+NIL
+(-13 (-634 |t#1|) (-10 -7 (IF (|has| |t#1| (-634 (-561))) (-6 (-634 (-561))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-2471 (((-638 (-293 (-945 (-168 |#1|)))) (-293 (-406 (-945 (-168 (-561))))) |#1|) 51) (((-638 (-293 (-945 (-168 |#1|)))) (-406 (-945 (-168 (-561)))) |#1|) 50) (((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-293 (-406 (-945 (-168 (-561)))))) |#1|) 47) (((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-406 (-945 (-168 (-561))))) |#1|) 41)) (-3682 (((-638 (-638 (-168 |#1|))) (-638 (-406 (-945 (-168 (-561))))) (-638 (-1166)) |#1|) 30) (((-638 (-168 |#1|)) (-406 (-945 (-168 (-561)))) |#1|) 18)))
+(((-377 |#1|) (-10 -7 (-15 -2471 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -2471 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-293 (-406 (-945 (-168 (-561)))))) |#1|)) (-15 -2471 ((-638 (-293 (-945 (-168 |#1|)))) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -2471 ((-638 (-293 (-945 (-168 |#1|)))) (-293 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -3682 ((-638 (-168 |#1|)) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -3682 ((-638 (-638 (-168 |#1|))) (-638 (-406 (-945 (-168 (-561))))) (-638 (-1166)) |#1|))) (-13 (-362) (-842))) (T -377))
+((-3682 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561)))))) (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 (-168 *5)))) (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-842))))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-168 (-561))))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 (-168 (-561)))))) (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-168 (-561))))) (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-293 (-406 (-945 (-168 (-561))))))) (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561)))))) (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2471 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -2471 ((-638 (-638 (-293 (-945 (-168 |#1|))))) (-638 (-293 (-406 (-945 (-168 (-561)))))) |#1|)) (-15 -2471 ((-638 (-293 (-945 (-168 |#1|)))) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -2471 ((-638 (-293 (-945 (-168 |#1|)))) (-293 (-406 (-945 (-168 (-561))))) |#1|)) (-15 -3682 ((-638 (-168 |#1|)) (-406 (-945 (-168 (-561)))) |#1|)) (-15 -3682 ((-638 (-638 (-168 |#1|))) (-638 (-406 (-945 (-168 (-561))))) (-638 (-1166)) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 33)) (-2949 (((-561) $) 55)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3411 (($ $) 110)) (-2978 (($ $) 82)) (-4064 (($ $) 71)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1665 (($ $) 44)) (-1671 (((-112) $ $) NIL)) (-4172 (($ $) 80)) (-4041 (($ $) 69)) (-2666 (((-561) $) 64)) (-3368 (($ $ (-561)) 62)) (-3009 (($ $) NIL)) (-4085 (($ $) NIL)) (-1965 (($) NIL T CONST)) (-2210 (($ $) 112)) (-4017 (((-3 (-561) "failed") $) 189) (((-3 (-406 (-561)) "failed") $) 185)) (-3938 (((-561) $) 187) (((-406 (-561)) $) 183)) (-1793 (($ $ $) NIL)) (-4185 (((-561) $ $) 102)) (-3466 (((-3 $ "failed") $) 114)) (-3656 (((-406 (-561)) $ (-765)) 190) (((-406 (-561)) $ (-765) (-765)) 182)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3322 (((-914)) 73) (((-914) (-914)) 98 (|has| $ (-6 -4381)))) (-3201 (((-112) $) 106)) (-4067 (($) 40)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL)) (-2482 (((-1258) (-765)) 152)) (-2029 (((-1258)) 157) (((-1258) (-765)) 158)) (-2187 (((-1258)) 159) (((-1258) (-765)) 160)) (-2336 (((-1258)) 155) (((-1258) (-765)) 156)) (-4163 (((-561) $) 58)) (-3113 (((-112) $) 104)) (-2556 (($ $ (-561)) NIL)) (-2528 (($ $) 48)) (-1672 (($ $) NIL)) (-2110 (((-112) $) 35)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL) (($) NIL (-12 (-2159 (|has| $ (-6 -4373))) (-2159 (|has| $ (-6 -4381)))))) (-2986 (($ $ $) NIL) (($) 99 (-12 (-2159 (|has| $ (-6 -4373))) (-2159 (|has| $ (-6 -4381)))))) (-3923 (((-561) $) 17)) (-2280 (($) 87) (($ $) 92)) (-2975 (($) 91) (($ $) 93)) (-4348 (($ $) 83)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 116)) (-3114 (((-914) (-561)) 43 (|has| $ (-6 -4381)))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) 53)) (-1388 (($ $) 109)) (-4205 (($ (-561) (-561)) 107) (($ (-561) (-561) (-914)) 108)) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-4196 (((-561) $) 19)) (-2795 (($) 94)) (-3440 (($ $) 79)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1368 (((-914)) 100) (((-914) (-914)) 101 (|has| $ (-6 -4381)))) (-3238 (($ $ (-765)) NIL) (($ $) 115)) (-3794 (((-914) (-561)) 47 (|has| $ (-6 -4381)))) (-3021 (($ $) NIL)) (-4095 (($ $) NIL)) (-2995 (($ $) NIL)) (-4073 (($ $) NIL)) (-2968 (($ $) 81)) (-4054 (($ $) 70)) (-4174 (((-378) $) 175) (((-224) $) 177) (((-885 (-378)) $) NIL) (((-1148) $) 162) (((-534) $) 173) (($ (-224)) 181)) (-4022 (((-856) $) 164) (($ (-561)) 186) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-561)) 186) (($ (-406 (-561))) NIL) (((-224) $) 178)) (-4259 (((-765)) NIL)) (-2432 (($ $) 111)) (-2342 (((-914)) 54) (((-914) (-914)) 66 (|has| $ (-6 -4381)))) (-2684 (((-914)) 103)) (-3055 (($ $) 86)) (-4132 (($ $) 46) (($ $ $) 52)) (-3168 (((-112) $ $) NIL)) (-3031 (($ $) 84)) (-4105 (($ $) 37)) (-3081 (($ $) NIL)) (-4149 (($ $) NIL)) (-2125 (($ $) NIL)) (-4160 (($ $) NIL)) (-3066 (($ $) NIL)) (-4142 (($ $) NIL)) (-3043 (($ $) 85)) (-4117 (($ $) 49)) (-3749 (($ $) 51)) (-2211 (($) 34 T CONST)) (-2222 (($) 38 T CONST)) (-3677 (((-1148) $) 27) (((-1148) $ (-112)) 29) (((-1258) (-816) $) 30) (((-1258) (-816) $ (-112)) 31)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 39)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 42)) (-1833 (($ $ $) 45) (($ $ (-561)) 41)) (-1824 (($ $) 36) (($ $ $) 50)) (-1813 (($ $ $) 61)) (** (($ $ (-914)) 67) (($ $ (-765)) NIL) (($ $ (-561)) 88) (($ $ (-406 (-561))) 125) (($ $ $) 117)) (* (($ (-914) $) 65) (($ (-765) $) NIL) (($ (-561) $) 68) (($ $ $) 60) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-378) (-13 (-403) (-232) (-609 (-1148)) (-822) (-608 (-224)) (-1190) (-609 (-534)) (-613 (-224)) (-10 -8 (-15 -1833 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -2528 ($ $)) (-15 -4185 ((-561) $ $)) (-15 -3368 ($ $ (-561))) (-15 -3656 ((-406 (-561)) $ (-765))) (-15 -3656 ((-406 (-561)) $ (-765) (-765))) (-15 -2280 ($)) (-15 -2975 ($)) (-15 -2795 ($)) (-15 -4132 ($ $ $)) (-15 -2280 ($ $)) (-15 -2975 ($ $)) (-15 -2187 ((-1258))) (-15 -2187 ((-1258) (-765))) (-15 -2336 ((-1258))) (-15 -2336 ((-1258) (-765))) (-15 -2029 ((-1258))) (-15 -2029 ((-1258) (-765))) (-15 -2482 ((-1258) (-765))) (-6 -4381) (-6 -4373)))) (T -378))
+((** (*1 *1 *1 *1) (-5 *1 (-378))) (-1833 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378)))) (-2528 (*1 *1 *1) (-5 *1 (-378))) (-4185 (*1 *2 *1 *1) (-12 (-5 *2 (-561)) (-5 *1 (-378)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378)))) (-3656 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378)))) (-2280 (*1 *1) (-5 *1 (-378))) (-2975 (*1 *1) (-5 *1 (-378))) (-2795 (*1 *1) (-5 *1 (-378))) (-4132 (*1 *1 *1 *1) (-5 *1 (-378))) (-2280 (*1 *1 *1) (-5 *1 (-378))) (-2975 (*1 *1 *1) (-5 *1 (-378))) (-2187 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-378)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378)))) (-2336 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-378)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378)))) (-2029 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-378)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378)))))
+(-13 (-403) (-232) (-609 (-1148)) (-822) (-608 (-224)) (-1190) (-609 (-534)) (-613 (-224)) (-10 -8 (-15 -1833 ($ $ (-561))) (-15 ** ($ $ $)) (-15 -2528 ($ $)) (-15 -4185 ((-561) $ $)) (-15 -3368 ($ $ (-561))) (-15 -3656 ((-406 (-561)) $ (-765))) (-15 -3656 ((-406 (-561)) $ (-765) (-765))) (-15 -2280 ($)) (-15 -2975 ($)) (-15 -2795 ($)) (-15 -4132 ($ $ $)) (-15 -2280 ($ $)) (-15 -2975 ($ $)) (-15 -2187 ((-1258))) (-15 -2187 ((-1258) (-765))) (-15 -2336 ((-1258))) (-15 -2336 ((-1258) (-765))) (-15 -2029 ((-1258))) (-15 -2029 ((-1258) (-765))) (-15 -2482 ((-1258) (-765))) (-6 -4381) (-6 -4373)))
+((-3867 (((-638 (-293 (-945 |#1|))) (-293 (-406 (-945 (-561)))) |#1|) 46) (((-638 (-293 (-945 |#1|))) (-406 (-945 (-561))) |#1|) 45) (((-638 (-638 (-293 (-945 |#1|)))) (-638 (-293 (-406 (-945 (-561))))) |#1|) 42) (((-638 (-638 (-293 (-945 |#1|)))) (-638 (-406 (-945 (-561)))) |#1|) 36)) (-4089 (((-638 |#1|) (-406 (-945 (-561))) |#1|) 20) (((-638 (-638 |#1|)) (-638 (-406 (-945 (-561)))) (-638 (-1166)) |#1|) 30)))
+(((-379 |#1|) (-10 -7 (-15 -3867 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-406 (-945 (-561)))) |#1|)) (-15 -3867 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-293 (-406 (-945 (-561))))) |#1|)) (-15 -3867 ((-638 (-293 (-945 |#1|))) (-406 (-945 (-561))) |#1|)) (-15 -3867 ((-638 (-293 (-945 |#1|))) (-293 (-406 (-945 (-561)))) |#1|)) (-15 -4089 ((-638 (-638 |#1|)) (-638 (-406 (-945 (-561)))) (-638 (-1166)) |#1|)) (-15 -4089 ((-638 |#1|) (-406 (-945 (-561))) |#1|))) (-13 (-842) (-362))) (T -379))
+((-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-406 (-945 (-561))))) (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-842) (-362))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 (-561))))) (-5 *2 (-638 (-293 (-945 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 (-293 (-945 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-293 (-406 (-945 (-561)))))) (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 (-561))))) (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))))
+(-10 -7 (-15 -3867 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-406 (-945 (-561)))) |#1|)) (-15 -3867 ((-638 (-638 (-293 (-945 |#1|)))) (-638 (-293 (-406 (-945 (-561))))) |#1|)) (-15 -3867 ((-638 (-293 (-945 |#1|))) (-406 (-945 (-561))) |#1|)) (-15 -3867 ((-638 (-293 (-945 |#1|))) (-293 (-406 (-945 (-561)))) |#1|)) (-15 -4089 ((-638 (-638 |#1|)) (-638 (-406 (-945 (-561)))) (-638 (-1166)) |#1|)) (-15 -4089 ((-638 |#1|) (-406 (-945 (-561))) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) 26)) (-3938 ((|#2| $) 28)) (-1619 (($ $) NIL)) (-2067 (((-765) $) 10)) (-3371 (((-638 $) $) 20)) (-2092 (((-112) $) NIL)) (-3044 (($ |#2| |#1|) 18)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4343 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1578 ((|#2| $) 15)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 44) (($ |#2|) 27)) (-2742 (((-638 |#1|) $) 17)) (-2634 ((|#1| $ |#2|) 46)) (-2211 (($) 29 T CONST)) (-3126 (((-638 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-380 |#1| |#2|) (-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1042) (-844)) (T -380))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)))))
(-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#2| "failed") $) 44)) (-3226 ((|#2| $) 45)) (-3905 (($ $) 30)) (-2987 (((-762) $) 34)) (-4033 (((-635 $) $) 35)) (-3594 (((-112) $) 38)) (-2345 (($ |#2| |#1|) 39)) (-3397 (($ (-1 |#1| |#1|) $) 40)) (-2286 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3867 ((|#2| $) 33)) (-3881 ((|#1| $) 32)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ |#2|) 43)) (-3712 (((-635 |#1|) $) 36)) (-3143 ((|#1| $ |#2|) 41)) (-2207 (($) 18 T CONST)) (-3243 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-381 |#1| |#2|) (-139) (-1039) (-1087)) (T -381))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087)))) (-3143 (*1 *2 *1 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039)))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)))) (-2345 (*1 *1 *2 *3) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-112)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 *3)))) (-4033 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 *1)) (-4 *1 (-381 *3 *4)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-762)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039)))) (-2286 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087)))))
-(-13 (-111 |t#1| |t#1|) (-1028 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3143 (|t#1| $ |t#2|)) (-15 -3397 ($ (-1 |t#1| |t#1|) $)) (-15 -2345 ($ |t#2| |t#1|)) (-15 -3594 ((-112) $)) (-15 -3243 ((-635 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3712 ((-635 |t#1|) $)) (-15 -4033 ((-635 $) $)) (-15 -2987 ((-762) $)) (-15 -3867 (|t#2| $)) (-15 -3881 (|t#1| $)) (-15 -2286 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3905 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-708 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) |has| |#1| (-171)) ((-1028 |#2|) . T) ((-1045 |#1|) . T) ((-1087) . T))
-((-3154 (((-1251) $) 7)) (-3940 (((-853) $) 8) (($ (-679 (-689))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 11)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#2| "failed") $) 44)) (-3938 ((|#2| $) 45)) (-1619 (($ $) 30)) (-2067 (((-765) $) 34)) (-3371 (((-638 $) $) 35)) (-2092 (((-112) $) 38)) (-3044 (($ |#2| |#1|) 39)) (-4120 (($ (-1 |#1| |#1|) $) 40)) (-4343 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1578 ((|#2| $) 33)) (-1590 ((|#1| $) 32)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ |#2|) 43)) (-2742 (((-638 |#1|) $) 36)) (-2634 ((|#1| $ |#2|) 41)) (-2211 (($) 18 T CONST)) (-3126 (((-638 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-381 |#1| |#2|) (-139) (-1042) (-1090)) (T -381))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042)))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)))) (-3044 (*1 *1 *2 *3) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-112)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 *1)) (-4 *1 (-381 *3 *4)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-765)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090)))))
+(-13 (-111 |t#1| |t#1|) (-1031 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2634 (|t#1| $ |t#2|)) (-15 -4120 ($ (-1 |t#1| |t#1|) $)) (-15 -3044 ($ |t#2| |t#1|)) (-15 -2092 ((-112) $)) (-15 -3126 ((-638 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2742 ((-638 |t#1|) $)) (-15 -3371 ((-638 $) $)) (-15 -2067 ((-765) $)) (-15 -1578 (|t#2| $)) (-15 -1590 (|t#1| $)) (-15 -4343 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1619 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-711 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) |has| |#1| (-171)) ((-1031 |#2|) . T) ((-1048 |#1|) . T) ((-1090) . T))
+((-2633 (((-1258) $) 7)) (-4022 (((-856) $) 8) (($ (-682 (-692))) 14) (($ (-638 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 11)))
(((-382) (-139)) (T -382))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-679 (-689))) (-4 *1 (-382)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) (-4 *1 (-382)))))
-(-13 (-394) (-10 -8 (-15 -3940 ($ (-679 (-689)))) (-15 -3940 ($ (-635 (-329)))) (-15 -3940 ($ (-329))) (-15 -3940 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))))))
-(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
-((-3302 (((-3 $ "failed") (-679 (-315 (-378)))) 21) (((-3 $ "failed") (-679 (-315 (-558)))) 19) (((-3 $ "failed") (-679 (-942 (-378)))) 17) (((-3 $ "failed") (-679 (-942 (-558)))) 15) (((-3 $ "failed") (-679 (-406 (-942 (-378))))) 13) (((-3 $ "failed") (-679 (-406 (-942 (-558))))) 11)) (-3226 (($ (-679 (-315 (-378)))) 22) (($ (-679 (-315 (-558)))) 20) (($ (-679 (-942 (-378)))) 18) (($ (-679 (-942 (-558)))) 16) (($ (-679 (-406 (-942 (-378))))) 14) (($ (-679 (-406 (-942 (-558))))) 12)) (-3154 (((-1251) $) 7)) (-3940 (((-853) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 23)))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-682 (-692))) (-4 *1 (-382)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-382)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) (-4 *1 (-382)))))
+(-13 (-394) (-10 -8 (-15 -4022 ($ (-682 (-692)))) (-15 -4022 ($ (-638 (-329)))) (-15 -4022 ($ (-329))) (-15 -4022 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))))))
+(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
+((-4017 (((-3 $ "failed") (-682 (-315 (-378)))) 21) (((-3 $ "failed") (-682 (-315 (-561)))) 19) (((-3 $ "failed") (-682 (-945 (-378)))) 17) (((-3 $ "failed") (-682 (-945 (-561)))) 15) (((-3 $ "failed") (-682 (-406 (-945 (-378))))) 13) (((-3 $ "failed") (-682 (-406 (-945 (-561))))) 11)) (-3938 (($ (-682 (-315 (-378)))) 22) (($ (-682 (-315 (-561)))) 20) (($ (-682 (-945 (-378)))) 18) (($ (-682 (-945 (-561)))) 16) (($ (-682 (-406 (-945 (-378))))) 14) (($ (-682 (-406 (-945 (-561))))) 12)) (-2633 (((-1258) $) 7)) (-4022 (((-856) $) 8) (($ (-638 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 23)))
(((-383) (-139)) (T -383))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-383)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) (-4 *1 (-383)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383)))))
-(-13 (-394) (-10 -8 (-15 -3940 ($ (-635 (-329)))) (-15 -3940 ($ (-329))) (-15 -3940 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))) (-15 -3226 ($ (-679 (-315 (-378))))) (-15 -3302 ((-3 $ "failed") (-679 (-315 (-378))))) (-15 -3226 ($ (-679 (-315 (-558))))) (-15 -3302 ((-3 $ "failed") (-679 (-315 (-558))))) (-15 -3226 ($ (-679 (-942 (-378))))) (-15 -3302 ((-3 $ "failed") (-679 (-942 (-378))))) (-15 -3226 ($ (-679 (-942 (-558))))) (-15 -3302 ((-3 $ "failed") (-679 (-942 (-558))))) (-15 -3226 ($ (-679 (-406 (-942 (-378)))))) (-15 -3302 ((-3 $ "failed") (-679 (-406 (-942 (-378)))))) (-15 -3226 ($ (-679 (-406 (-942 (-558)))))) (-15 -3302 ((-3 $ "failed") (-679 (-406 (-942 (-558))))))))
-(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-4056 (($ |#1| |#2|) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2218 ((|#2| $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 28)) (-2207 (($) 12 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-384 |#1| |#2|) (-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|))) (-1039) (-841)) (T -384))
-NIL
-(-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-708 |#1|)) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-2507 (((-762) $) 58)) (-3457 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $ $) 60)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-1892 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-3999 (((-112) $) 15)) (-3572 ((|#1| $ (-558)) NIL)) (-1946 (((-762) $ (-558)) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3838 (($ (-1 |#1| |#1|) $) 38)) (-3724 (($ (-1 (-762) (-762)) $) 35)) (-3422 (((-3 $ "failed") $ $) 49)) (-2510 (((-1145) $) NIL)) (-1612 (($ $ $) 26)) (-3263 (($ $ $) 24)) (-1688 (((-1107) $) NIL)) (-3381 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-762)))) $) 32)) (-3902 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-3940 (((-853) $) 22) (($ |#1|) NIL)) (-2220 (($) 9 T CONST)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) 41)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) 62 (|has| |#1| (-841)))) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ |#1| (-762)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-385 |#1|) (-13 (-717) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -3263 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -3422 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $ $)) (-15 -3902 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1892 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2507 ((-762) $)) (-15 -3381 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-762)))) $)) (-15 -1946 ((-762) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3724 ($ (-1 (-762) (-762)) $)) (-15 -3838 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-1087)) (T -385))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-3263 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-1612 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-3422 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-2978 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-3902 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-1892 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 (-762))))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-1946 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-385 *4)) (-4 *4 (-1087)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-385 *2)) (-4 *2 (-1087)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-762) (-762))) (-5 *1 (-385 *3)) (-4 *3 (-1087)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-385 *3)))))
-(-13 (-717) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -3263 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -3422 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $ $)) (-15 -3902 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1892 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2507 ((-762) $)) (-15 -3381 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-762)))) $)) (-15 -1946 ((-762) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3724 ($ (-1 (-762) (-762)) $)) (-15 -3838 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 48)) (-3226 (((-558) $) 49)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2142 (($ $ $) 55)) (-2281 (($ $ $) 54)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ $) 43)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-558)) 47)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1757 (((-112) $ $) 52)) (-1737 (((-112) $ $) 51)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 53)) (-1728 (((-112) $ $) 50)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-383)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) (-4 *1 (-383)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383)))))
+(-13 (-394) (-10 -8 (-15 -4022 ($ (-638 (-329)))) (-15 -4022 ($ (-329))) (-15 -4022 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))) (-15 -3938 ($ (-682 (-315 (-378))))) (-15 -4017 ((-3 $ "failed") (-682 (-315 (-378))))) (-15 -3938 ($ (-682 (-315 (-561))))) (-15 -4017 ((-3 $ "failed") (-682 (-315 (-561))))) (-15 -3938 ($ (-682 (-945 (-378))))) (-15 -4017 ((-3 $ "failed") (-682 (-945 (-378))))) (-15 -3938 ($ (-682 (-945 (-561))))) (-15 -4017 ((-3 $ "failed") (-682 (-945 (-561))))) (-15 -3938 ($ (-682 (-406 (-945 (-378)))))) (-15 -4017 ((-3 $ "failed") (-682 (-406 (-945 (-378)))))) (-15 -3938 ($ (-682 (-406 (-945 (-561)))))) (-15 -4017 ((-3 $ "failed") (-682 (-406 (-945 (-561))))))))
+(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-1387 (($ |#1| |#2|) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3332 ((|#2| $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 28)) (-2211 (($) 12 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-384 |#1| |#2|) (-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|))) (-1042) (-844)) (T -384))
+NIL
+(-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765) $) 58)) (-1965 (($) NIL T CONST)) (-1852 (((-3 $ "failed") $ $) 60)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-3002 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-3113 (((-112) $) 15)) (-2740 ((|#1| $ (-561)) NIL)) (-2803 (((-765) $ (-561)) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2272 (($ (-1 |#1| |#1|) $) 38)) (-3637 (($ (-1 (-765) (-765)) $) 35)) (-3831 (((-3 $ "failed") $ $) 49)) (-1764 (((-1148) $) NIL)) (-2343 (($ $ $) 26)) (-3685 (($ $ $) 24)) (-1714 (((-1110) $) NIL)) (-4282 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-765)))) $) 32)) (-1971 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-4022 (((-856) $) 22) (($ |#1|) NIL)) (-2222 (($) 9 T CONST)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) 41)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) 62 (|has| |#1| (-844)))) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-385 |#1|) (-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -3685 ($ $ $)) (-15 -2343 ($ $ $)) (-15 -3831 ((-3 $ "failed") $ $)) (-15 -1852 ((-3 $ "failed") $ $)) (-15 -1971 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3002 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1393 ((-765) $)) (-15 -4282 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-765)))) $)) (-15 -2803 ((-765) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -3637 ($ (-1 (-765) (-765)) $)) (-15 -2272 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1090)) (T -385))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-3685 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-2343 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-3831 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-1852 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-1971 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-3002 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 (-765))))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1090)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-385 *2)) (-4 *2 (-1090)))) (-3637 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1090)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-385 *3)))))
+(-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -3685 ($ $ $)) (-15 -2343 ($ $ $)) (-15 -3831 ((-3 $ "failed") $ $)) (-15 -1852 ((-3 $ "failed") $ $)) (-15 -1971 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3002 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1393 ((-765) $)) (-15 -4282 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-765)))) $)) (-15 -2803 ((-765) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -3637 ($ (-1 (-765) (-765)) $)) (-15 -2272 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 48)) (-3938 (((-561) $) 49)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-3443 (($ $ $) 55)) (-2986 (($ $ $) 54)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ $) 43)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-561)) 47)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1782 (((-112) $ $) 52)) (-1762 (((-112) $ $) 51)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 53)) (-1754 (((-112) $ $) 50)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-386) (-139)) (T -386))
NIL
-(-13 (-550) (-841) (-1028 (-558)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-841) . T) ((-1028 (-558)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-4044 (((-112) $) 20)) (-1804 (((-112) $) 19)) (-1395 (($ (-1145) (-1145) (-1145)) 21)) (-3179 (((-1145) $) 16)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2198 (($ (-1145) (-1145) (-1145)) 14)) (-2821 (((-1145) $) 17)) (-2222 (((-112) $) 18)) (-3132 (((-1145) $) 15)) (-3940 (((-853) $) 12) (($ (-1145)) 13) (((-1145) $) 9)) (-1708 (((-112) $ $) 7)))
+(-13 (-553) (-844) (-1031 (-561)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-1031 (-561)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-3822 (((-112) $) 20)) (-4175 (((-112) $) 19)) (-1470 (($ (-1148) (-1148) (-1148)) 21)) (-3269 (((-1148) $) 16)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2270 (($ (-1148) (-1148) (-1148)) 14)) (-2982 (((-1148) $) 17)) (-2869 (((-112) $) 18)) (-2610 (((-1148) $) 15)) (-4022 (((-856) $) 12) (($ (-1148)) 13) (((-1148) $) 9)) (-1733 (((-112) $ $) 7)))
(((-387) (-388)) (T -387))
NIL
(-388)
-((-3929 (((-112) $ $) 7)) (-4044 (((-112) $) 16)) (-1804 (((-112) $) 17)) (-1395 (($ (-1145) (-1145) (-1145)) 15)) (-3179 (((-1145) $) 20)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2198 (($ (-1145) (-1145) (-1145)) 22)) (-2821 (((-1145) $) 19)) (-2222 (((-112) $) 18)) (-3132 (((-1145) $) 21)) (-3940 (((-853) $) 11) (($ (-1145)) 24) (((-1145) $) 23)) (-1708 (((-112) $ $) 6)))
+((-4011 (((-112) $ $) 7)) (-3822 (((-112) $) 16)) (-4175 (((-112) $) 17)) (-1470 (($ (-1148) (-1148) (-1148)) 15)) (-3269 (((-1148) $) 20)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2270 (($ (-1148) (-1148) (-1148)) 22)) (-2982 (((-1148) $) 19)) (-2869 (((-112) $) 18)) (-2610 (((-1148) $) 21)) (-4022 (((-856) $) 11) (($ (-1148)) 24) (((-1148) $) 23)) (-1733 (((-112) $ $) 6)))
(((-388) (-139)) (T -388))
-((-2198 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1395 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388)))))
-(-13 (-1087) (-488 (-1145)) (-10 -8 (-15 -2198 ($ (-1145) (-1145) (-1145))) (-15 -3132 ((-1145) $)) (-15 -3179 ((-1145) $)) (-15 -2821 ((-1145) $)) (-15 -2222 ((-112) $)) (-15 -1804 ((-112) $)) (-15 -4044 ((-112) $)) (-15 -1395 ($ (-1145) (-1145) (-1145)))))
-(((-102) . T) ((-608 #0=(-1145)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3704 (((-853) $) 50)) (-3457 (($) NIL T CONST)) (-2943 (($ $ (-911)) NIL)) (-4337 (($ $ (-911)) NIL)) (-1794 (($ $ (-911)) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2461 (($ (-762)) 26)) (-2887 (((-762)) 17)) (-1756 (((-853) $) 52)) (-3072 (($ $ $) NIL)) (-3940 (((-853) $) NIL)) (-2536 (($ $ $ $) NIL)) (-3467 (($ $ $) NIL)) (-2207 (($) 20 T CONST)) (-1708 (((-112) $ $) 28)) (-1796 (($ $) 34) (($ $ $) 36)) (-1785 (($ $ $) 37)) (** (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-389 |#1| |#2| |#3|) (-13 (-735 |#3|) (-10 -8 (-15 -2887 ((-762))) (-15 -1756 ((-853) $)) (-15 -3704 ((-853) $)) (-15 -2461 ($ (-762))))) (-762) (-762) (-171)) (T -389))
-((-2887 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762)) (-14 *4 (-762)) (-4 *5 (-171)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762)) (-14 *4 (-762)) (-4 *5 (-171)))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))))
-(-13 (-735 |#3|) (-10 -8 (-15 -2887 ((-762))) (-15 -1756 ((-853) $)) (-15 -3704 ((-853) $)) (-15 -2461 ($ (-762)))))
-((-3223 (((-1145)) 10)) (-2253 (((-1134 (-1145))) 28)) (-2846 (((-1251) (-1145)) 25) (((-1251) (-387)) 24)) (-2856 (((-1251)) 26)) (-2774 (((-1134 (-1145))) 27)))
-(((-390) (-10 -7 (-15 -2774 ((-1134 (-1145)))) (-15 -2253 ((-1134 (-1145)))) (-15 -2856 ((-1251))) (-15 -2846 ((-1251) (-387))) (-15 -2846 ((-1251) (-1145))) (-15 -3223 ((-1145))))) (T -390))
-((-3223 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-390)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-390)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-390)))) (-2856 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-390)))) (-2253 (*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))) (-2774 (*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))))
-(-10 -7 (-15 -2774 ((-1134 (-1145)))) (-15 -2253 ((-1134 (-1145)))) (-15 -2856 ((-1251))) (-15 -2846 ((-1251) (-387))) (-15 -2846 ((-1251) (-1145))) (-15 -3223 ((-1145))))
-((-2532 (((-762) (-335 |#1| |#2| |#3| |#4|)) 16)))
-(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2532 ((-762) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391))
-((-2532 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-762)) (-5 *1 (-391 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2532 ((-762) (-335 |#1| |#2| |#3| |#4|))))
-((-3940 (((-393) |#1|) 11)))
-(((-392 |#1|) (-10 -7 (-15 -3940 ((-393) |#1|))) (-1087)) (T -392))
-((-3940 (*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1087)))))
-(-10 -7 (-15 -3940 ((-393) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-2189 (((-635 (-1145)) $ (-635 (-1145))) 38)) (-2508 (((-635 (-1145)) $ (-635 (-1145))) 39)) (-3784 (((-635 (-1145)) $ (-635 (-1145))) 40)) (-4133 (((-635 (-1145)) $) 35)) (-1395 (($) 23)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1374 (((-635 (-1145)) $) 36)) (-2951 (((-635 (-1145)) $) 37)) (-1490 (((-1251) $ (-558)) 33) (((-1251) $) 34)) (-3441 (($ (-853) (-558)) 30)) (-3940 (((-853) $) 42) (($ (-853)) 25)) (-1708 (((-112) $ $) NIL)))
-(((-393) (-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3441 ($ (-853) (-558))) (-15 -1490 ((-1251) $ (-558))) (-15 -1490 ((-1251) $)) (-15 -2951 ((-635 (-1145)) $)) (-15 -1374 ((-635 (-1145)) $)) (-15 -1395 ($)) (-15 -4133 ((-635 (-1145)) $)) (-15 -3784 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2508 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2189 ((-635 (-1145)) $ (-635 (-1145))))))) (T -393))
-((-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-393)))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-393)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-393)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-1395 (*1 *1) (-5 *1 (-393))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-3784 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-2508 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))) (-2189 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))))
-(-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3441 ($ (-853) (-558))) (-15 -1490 ((-1251) $ (-558))) (-15 -1490 ((-1251) $)) (-15 -2951 ((-635 (-1145)) $)) (-15 -1374 ((-635 (-1145)) $)) (-15 -1395 ($)) (-15 -4133 ((-635 (-1145)) $)) (-15 -3784 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2508 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2189 ((-635 (-1145)) $ (-635 (-1145))))))
-((-3154 (((-1251) $) 7)) (-3940 (((-853) $) 8)))
+((-2270 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1470 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))))
+(-13 (-1090) (-488 (-1148)) (-10 -8 (-15 -2270 ($ (-1148) (-1148) (-1148))) (-15 -2610 ((-1148) $)) (-15 -3269 ((-1148) $)) (-15 -2982 ((-1148) $)) (-15 -2869 ((-112) $)) (-15 -4175 ((-112) $)) (-15 -3822 ((-112) $)) (-15 -1470 ($ (-1148) (-1148) (-1148)))))
+(((-102) . T) ((-611 #0=(-1148)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3886 (((-856) $) 50)) (-1965 (($) NIL T CONST)) (-3928 (($ $ (-914)) NIL)) (-3203 (($ $ (-914)) NIL)) (-3394 (($ $ (-914)) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3158 (($ (-765)) 26)) (-3084 (((-765)) 17)) (-4108 (((-856) $) 52)) (-3800 (($ $ $) NIL)) (-4022 (((-856) $) NIL)) (-3392 (($ $ $ $) NIL)) (-1761 (($ $ $) NIL)) (-2211 (($) 20 T CONST)) (-1733 (((-112) $ $) 28)) (-1824 (($ $) 34) (($ $ $) 36)) (-1813 (($ $ $) 37)) (** (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-389 |#1| |#2| |#3|) (-13 (-738 |#3|) (-10 -8 (-15 -3084 ((-765))) (-15 -4108 ((-856) $)) (-15 -3886 ((-856) $)) (-15 -3158 ($ (-765))))) (-765) (-765) (-171)) (T -389))
+((-3084 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))))
+(-13 (-738 |#3|) (-10 -8 (-15 -3084 ((-765))) (-15 -4108 ((-856) $)) (-15 -3886 ((-856) $)) (-15 -3158 ($ (-765)))))
+((-1324 (((-1148)) 10)) (-2085 (((-1137 (-1148))) 28)) (-2301 (((-1258) (-1148)) 25) (((-1258) (-387)) 24)) (-2311 (((-1258)) 26)) (-1475 (((-1137 (-1148))) 27)))
+(((-390) (-10 -7 (-15 -1475 ((-1137 (-1148)))) (-15 -2085 ((-1137 (-1148)))) (-15 -2311 ((-1258))) (-15 -2301 ((-1258) (-387))) (-15 -2301 ((-1258) (-1148))) (-15 -1324 ((-1148))))) (T -390))
+((-1324 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-390)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1258)) (-5 *1 (-390)))) (-2311 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-390)))) (-2085 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))) (-1475 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
+(-10 -7 (-15 -1475 ((-1137 (-1148)))) (-15 -2085 ((-1137 (-1148)))) (-15 -2311 ((-1258))) (-15 -2301 ((-1258) (-387))) (-15 -2301 ((-1258) (-1148))) (-15 -1324 ((-1148))))
+((-4163 (((-765) (-335 |#1| |#2| |#3| |#4|)) 16)))
+(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4163 ((-765) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391))
+((-4163 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4163 ((-765) (-335 |#1| |#2| |#3| |#4|))))
+((-4022 (((-393) |#1|) 11)))
+(((-392 |#1|) (-10 -7 (-15 -4022 ((-393) |#1|))) (-1090)) (T -392))
+((-4022 (*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1090)))))
+(-10 -7 (-15 -4022 ((-393) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-1740 (((-638 (-1148)) $ (-638 (-1148))) 38)) (-2604 (((-638 (-1148)) $ (-638 (-1148))) 39)) (-2470 (((-638 (-1148)) $ (-638 (-1148))) 40)) (-4058 (((-638 (-1148)) $) 35)) (-1470 (($) 23)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1451 (((-638 (-1148)) $) 36)) (-1585 (((-638 (-1148)) $) 37)) (-1491 (((-1258) $ (-561)) 33) (((-1258) $) 34)) (-4174 (($ (-856) (-561)) 30)) (-4022 (((-856) $) 42) (($ (-856)) 25)) (-1733 (((-112) $ $) NIL)))
+(((-393) (-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4174 ($ (-856) (-561))) (-15 -1491 ((-1258) $ (-561))) (-15 -1491 ((-1258) $)) (-15 -1585 ((-638 (-1148)) $)) (-15 -1451 ((-638 (-1148)) $)) (-15 -1470 ($)) (-15 -4058 ((-638 (-1148)) $)) (-15 -2470 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -2604 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1740 ((-638 (-1148)) $ (-638 (-1148))))))) (T -393))
+((-4174 (*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-393)))) (-1491 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-393)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-393)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-1470 (*1 *1) (-5 *1 (-393))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-2470 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-2604 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))) (-1740 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))))
+(-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4174 ($ (-856) (-561))) (-15 -1491 ((-1258) $ (-561))) (-15 -1491 ((-1258) $)) (-15 -1585 ((-638 (-1148)) $)) (-15 -1451 ((-638 (-1148)) $)) (-15 -1470 ($)) (-15 -4058 ((-638 (-1148)) $)) (-15 -2470 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -2604 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1740 ((-638 (-1148)) $ (-638 (-1148))))))
+((-2633 (((-1258) $) 7)) (-4022 (((-856) $) 8)))
(((-394) (-139)) (T -394))
-((-3154 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1251)))))
-(-13 (-1200) (-605 (-853)) (-10 -8 (-15 -3154 ((-1251) $))))
-(((-605 (-853)) . T) ((-1200) . T))
-((-3302 (((-3 $ "failed") (-315 (-378))) 21) (((-3 $ "failed") (-315 (-558))) 19) (((-3 $ "failed") (-942 (-378))) 17) (((-3 $ "failed") (-942 (-558))) 15) (((-3 $ "failed") (-406 (-942 (-378)))) 13) (((-3 $ "failed") (-406 (-942 (-558)))) 11)) (-3226 (($ (-315 (-378))) 22) (($ (-315 (-558))) 20) (($ (-942 (-378))) 18) (($ (-942 (-558))) 16) (($ (-406 (-942 (-378)))) 14) (($ (-406 (-942 (-558)))) 12)) (-3154 (((-1251) $) 7)) (-3940 (((-853) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 23)))
+((-2633 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1258)))))
+(-13 (-1205) (-608 (-856)) (-10 -8 (-15 -2633 ((-1258) $))))
+(((-608 (-856)) . T) ((-1205) . T))
+((-4017 (((-3 $ "failed") (-315 (-378))) 21) (((-3 $ "failed") (-315 (-561))) 19) (((-3 $ "failed") (-945 (-378))) 17) (((-3 $ "failed") (-945 (-561))) 15) (((-3 $ "failed") (-406 (-945 (-378)))) 13) (((-3 $ "failed") (-406 (-945 (-561)))) 11)) (-3938 (($ (-315 (-378))) 22) (($ (-315 (-561))) 20) (($ (-945 (-378))) 18) (($ (-945 (-561))) 16) (($ (-406 (-945 (-378)))) 14) (($ (-406 (-945 (-561)))) 12)) (-2633 (((-1258) $) 7)) (-4022 (((-856) $) 8) (($ (-638 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 23)))
(((-395) (-139)) (T -395))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-395)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) (-4 *1 (-395)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-4 *1 (-395)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-558))) (-4 *1 (-395)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-4 *1 (-395)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-4 *1 (-395)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-395)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-558))) (-4 *1 (-395)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395)))))
-(-13 (-394) (-10 -8 (-15 -3940 ($ (-635 (-329)))) (-15 -3940 ($ (-329))) (-15 -3940 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))) (-15 -3226 ($ (-315 (-378)))) (-15 -3302 ((-3 $ "failed") (-315 (-378)))) (-15 -3226 ($ (-315 (-558)))) (-15 -3302 ((-3 $ "failed") (-315 (-558)))) (-15 -3226 ($ (-942 (-378)))) (-15 -3302 ((-3 $ "failed") (-942 (-378)))) (-15 -3226 ($ (-942 (-558)))) (-15 -3302 ((-3 $ "failed") (-942 (-558)))) (-15 -3226 ($ (-406 (-942 (-378))))) (-15 -3302 ((-3 $ "failed") (-406 (-942 (-378))))) (-15 -3226 ($ (-406 (-942 (-558))))) (-15 -3302 ((-3 $ "failed") (-406 (-942 (-558)))))))
-(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
-((-2035 (((-635 (-1145)) (-635 (-1145))) 9)) (-3154 (((-1251) (-387)) 27)) (-4055 (((-1091) (-1163) (-635 (-1163)) (-1166) (-635 (-1163))) 60) (((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)) (-1163)) 35) (((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163))) 34)))
-(((-396) (-10 -7 (-15 -4055 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)))) (-15 -4055 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)) (-1163))) (-15 -4055 ((-1091) (-1163) (-635 (-1163)) (-1166) (-635 (-1163)))) (-15 -3154 ((-1251) (-387))) (-15 -2035 ((-635 (-1145)) (-635 (-1145)))))) (T -396))
-((-2035 (*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-396)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-396)))) (-4055 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-635 (-1163))) (-5 *5 (-1166)) (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-396)))) (-4055 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163))))) (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-396)))) (-4055 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163))))) (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-396)))))
-(-10 -7 (-15 -4055 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)))) (-15 -4055 ((-1091) (-1163) (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163)))) (-635 (-635 (-3 (|:| |array| (-635 (-1163))) (|:| |scalar| (-1163))))) (-635 (-1163)) (-1163))) (-15 -4055 ((-1091) (-1163) (-635 (-1163)) (-1166) (-635 (-1163)))) (-15 -3154 ((-1251) (-387))) (-15 -2035 ((-635 (-1145)) (-635 (-1145)))))
-((-3154 (((-1251) $) 36)) (-3940 (((-853) $) 96) (($ (-329)) 98) (($ (-635 (-329))) 97) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 95) (($ (-315 (-691))) 52) (($ (-315 (-689))) 71) (($ (-315 (-684))) 84) (($ (-293 (-315 (-691)))) 66) (($ (-293 (-315 (-689)))) 79) (($ (-293 (-315 (-684)))) 92) (($ (-315 (-558))) 103) (($ (-315 (-378))) 116) (($ (-315 (-168 (-378)))) 129) (($ (-293 (-315 (-558)))) 111) (($ (-293 (-315 (-378)))) 124) (($ (-293 (-315 (-168 (-378))))) 137)))
-(((-397 |#1| |#2| |#3| |#4|) (-13 (-394) (-10 -8 (-15 -3940 ($ (-329))) (-15 -3940 ($ (-635 (-329)))) (-15 -3940 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))) (-15 -3940 ($ (-315 (-691)))) (-15 -3940 ($ (-315 (-689)))) (-15 -3940 ($ (-315 (-684)))) (-15 -3940 ($ (-293 (-315 (-691))))) (-15 -3940 ($ (-293 (-315 (-689))))) (-15 -3940 ($ (-293 (-315 (-684))))) (-15 -3940 ($ (-315 (-558)))) (-15 -3940 ($ (-315 (-378)))) (-15 -3940 ($ (-315 (-168 (-378))))) (-15 -3940 ($ (-293 (-315 (-558))))) (-15 -3940 ($ (-293 (-315 (-378))))) (-15 -3940 ($ (-293 (-315 (-168 (-378)))))))) (-1163) (-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-635 (-1163)) (-1167)) (T -397))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-315 (-691))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-315 (-689))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-315 (-684))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-691)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-689)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-684)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-558)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-14 *5 (-635 (-1163))) (-14 *6 (-1167)))))
-(-13 (-394) (-10 -8 (-15 -3940 ($ (-329))) (-15 -3940 ($ (-635 (-329)))) (-15 -3940 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))) (-15 -3940 ($ (-315 (-691)))) (-15 -3940 ($ (-315 (-689)))) (-15 -3940 ($ (-315 (-684)))) (-15 -3940 ($ (-293 (-315 (-691))))) (-15 -3940 ($ (-293 (-315 (-689))))) (-15 -3940 ($ (-293 (-315 (-684))))) (-15 -3940 ($ (-315 (-558)))) (-15 -3940 ($ (-315 (-378)))) (-15 -3940 ($ (-315 (-168 (-378))))) (-15 -3940 ($ (-293 (-315 (-558))))) (-15 -3940 ($ (-293 (-315 (-378))))) (-15 -3940 ($ (-293 (-315 (-168 (-378))))))))
-((-3929 (((-112) $ $) NIL)) (-4297 ((|#2| $) 36)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2723 (($ (-406 |#2|)) 85)) (-2477 (((-635 (-2 (|:| -1857 (-762)) (|:| -2814 |#2|) (|:| |num| |#2|))) $) 37)) (-3780 (($ $) 32) (($ $ (-762)) 34)) (-3441 (((-406 |#2|) $) 46)) (-3952 (($ (-635 (-2 (|:| -1857 (-762)) (|:| -2814 |#2|) (|:| |num| |#2|)))) 31)) (-3940 (((-853) $) 120)) (-3042 (($ $) 33) (($ $ (-762)) 35)) (-1708 (((-112) $ $) NIL)) (-1785 (($ |#2| $) 39)))
-(((-398 |#1| |#2|) (-13 (-1087) (-606 (-406 |#2|)) (-10 -8 (-15 -1785 ($ |#2| $)) (-15 -2723 ($ (-406 |#2|))) (-15 -4297 (|#2| $)) (-15 -2477 ((-635 (-2 (|:| -1857 (-762)) (|:| -2814 |#2|) (|:| |num| |#2|))) $)) (-15 -3952 ($ (-635 (-2 (|:| -1857 (-762)) (|:| -2814 |#2|) (|:| |num| |#2|))))) (-15 -3780 ($ $)) (-15 -3042 ($ $)) (-15 -3780 ($ $ (-762))) (-15 -3042 ($ $ (-762))))) (-13 (-362) (-146)) (-1222 |#1|)) (T -398))
-((-1785 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1222 *3)))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-4297 (*1 *2 *1) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-2477 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-635 (-2 (|:| -1857 (-762)) (|:| -2814 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -1857 (-762)) (|:| -2814 *4) (|:| |num| *4)))) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-3780 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1222 *2)))) (-3042 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1222 *2)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))))
-(-13 (-1087) (-606 (-406 |#2|)) (-10 -8 (-15 -1785 ($ |#2| $)) (-15 -2723 ($ (-406 |#2|))) (-15 -4297 (|#2| $)) (-15 -2477 ((-635 (-2 (|:| -1857 (-762)) (|:| -2814 |#2|) (|:| |num| |#2|))) $)) (-15 -3952 ($ (-635 (-2 (|:| -1857 (-762)) (|:| -2814 |#2|) (|:| |num| |#2|))))) (-15 -3780 ($ $)) (-15 -3042 ($ $)) (-15 -3780 ($ $ (-762))) (-15 -3042 ($ $ (-762)))))
-((-3929 (((-112) $ $) 9 (-3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 15 (|has| |#1| (-876 (-378)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 14 (|has| |#1| (-876 (-558))))) (-2510 (((-1145) $) 13 (-3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-1688 (((-1107) $) 12 (-3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-3940 (((-853) $) 11 (-3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))) (-1708 (((-112) $ $) 10 (-3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))))))
-(((-399 |#1|) (-139) (-1200)) (T -399))
-NIL
-(-13 (-1200) (-10 -7 (IF (|has| |t#1| (-876 (-558))) (-6 (-876 (-558))) |%noBranch|) (IF (|has| |t#1| (-876 (-378))) (-6 (-876 (-378))) |%noBranch|)))
-(((-102) -3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))) ((-605 (-853)) -3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-1087) -3994 (|has| |#1| (-876 (-558))) (|has| |#1| (-876 (-378)))) ((-1200) . T))
-((-4362 (($ $) 10) (($ $ (-762)) 11)))
-(((-400 |#1|) (-10 -8 (-15 -4362 (|#1| |#1| (-762))) (-15 -4362 (|#1| |#1|))) (-401)) (T -400))
-NIL
-(-10 -8 (-15 -4362 (|#1| |#1| (-762))) (-15 -4362 (|#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-1599 (((-112) $ $) 60)) (-3457 (($) 17 T CONST)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-4362 (($ $) 80) (($ $ (-762)) 79)) (-2992 (((-112) $) 72)) (-2532 (((-824 (-911)) $) 82)) (-3999 (((-112) $) 31)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-2551 (((-3 (-762) "failed") $ $) 81)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67)) (-1487 (((-3 $ "failed") $) 83)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 66)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-395)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) (-4 *1 (-395)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-4 *1 (-395)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-561))) (-4 *1 (-395)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-945 (-378))) (-4 *1 (-395)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-378))) (-4 *1 (-395)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-395)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-561))) (-4 *1 (-395)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395)))))
+(-13 (-394) (-10 -8 (-15 -4022 ($ (-638 (-329)))) (-15 -4022 ($ (-329))) (-15 -4022 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))) (-15 -3938 ($ (-315 (-378)))) (-15 -4017 ((-3 $ "failed") (-315 (-378)))) (-15 -3938 ($ (-315 (-561)))) (-15 -4017 ((-3 $ "failed") (-315 (-561)))) (-15 -3938 ($ (-945 (-378)))) (-15 -4017 ((-3 $ "failed") (-945 (-378)))) (-15 -3938 ($ (-945 (-561)))) (-15 -4017 ((-3 $ "failed") (-945 (-561)))) (-15 -3938 ($ (-406 (-945 (-378))))) (-15 -4017 ((-3 $ "failed") (-406 (-945 (-378))))) (-15 -3938 ($ (-406 (-945 (-561))))) (-15 -4017 ((-3 $ "failed") (-406 (-945 (-561)))))))
+(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
+((-2583 (((-638 (-1148)) (-638 (-1148))) 9)) (-2633 (((-1258) (-387)) 27)) (-3625 (((-1094) (-1166) (-638 (-1166)) (-1169) (-638 (-1166))) 60) (((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)) (-1166)) 35) (((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166))) 34)))
+(((-396) (-10 -7 (-15 -3625 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)))) (-15 -3625 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)) (-1166))) (-15 -3625 ((-1094) (-1166) (-638 (-1166)) (-1169) (-638 (-1166)))) (-15 -2633 ((-1258) (-387))) (-15 -2583 ((-638 (-1148)) (-638 (-1148)))))) (T -396))
+((-2583 (*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-396)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1258)) (-5 *1 (-396)))) (-3625 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-638 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-396)))) (-3625 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-396)))) (-3625 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-396)))))
+(-10 -7 (-15 -3625 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)))) (-15 -3625 ((-1094) (-1166) (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166)))) (-638 (-638 (-3 (|:| |array| (-638 (-1166))) (|:| |scalar| (-1166))))) (-638 (-1166)) (-1166))) (-15 -3625 ((-1094) (-1166) (-638 (-1166)) (-1169) (-638 (-1166)))) (-15 -2633 ((-1258) (-387))) (-15 -2583 ((-638 (-1148)) (-638 (-1148)))))
+((-2633 (((-1258) $) 36)) (-4022 (((-856) $) 96) (($ (-329)) 98) (($ (-638 (-329))) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 95) (($ (-315 (-694))) 52) (($ (-315 (-692))) 71) (($ (-315 (-687))) 84) (($ (-293 (-315 (-694)))) 66) (($ (-293 (-315 (-692)))) 79) (($ (-293 (-315 (-687)))) 92) (($ (-315 (-561))) 103) (($ (-315 (-378))) 116) (($ (-315 (-168 (-378)))) 129) (($ (-293 (-315 (-561)))) 111) (($ (-293 (-315 (-378)))) 124) (($ (-293 (-315 (-168 (-378))))) 137)))
+(((-397 |#1| |#2| |#3| |#4|) (-13 (-394) (-10 -8 (-15 -4022 ($ (-329))) (-15 -4022 ($ (-638 (-329)))) (-15 -4022 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))) (-15 -4022 ($ (-315 (-694)))) (-15 -4022 ($ (-315 (-692)))) (-15 -4022 ($ (-315 (-687)))) (-15 -4022 ($ (-293 (-315 (-694))))) (-15 -4022 ($ (-293 (-315 (-692))))) (-15 -4022 ($ (-293 (-315 (-687))))) (-15 -4022 ($ (-315 (-561)))) (-15 -4022 ($ (-315 (-378)))) (-15 -4022 ($ (-315 (-168 (-378))))) (-15 -4022 ($ (-293 (-315 (-561))))) (-15 -4022 ($ (-293 (-315 (-378))))) (-15 -4022 ($ (-293 (-315 (-168 (-378)))))))) (-1166) (-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-638 (-1166)) (-1170)) (T -397))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-315 (-694))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-315 (-692))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-315 (-687))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-694)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-692)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-687)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-561)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-14 *5 (-638 (-1166))) (-14 *6 (-1170)))))
+(-13 (-394) (-10 -8 (-15 -4022 ($ (-329))) (-15 -4022 ($ (-638 (-329)))) (-15 -4022 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))) (-15 -4022 ($ (-315 (-694)))) (-15 -4022 ($ (-315 (-692)))) (-15 -4022 ($ (-315 (-687)))) (-15 -4022 ($ (-293 (-315 (-694))))) (-15 -4022 ($ (-293 (-315 (-692))))) (-15 -4022 ($ (-293 (-315 (-687))))) (-15 -4022 ($ (-315 (-561)))) (-15 -4022 ($ (-315 (-378)))) (-15 -4022 ($ (-315 (-168 (-378))))) (-15 -4022 ($ (-293 (-315 (-561))))) (-15 -4022 ($ (-293 (-315 (-378))))) (-15 -4022 ($ (-293 (-315 (-168 (-378))))))))
+((-4011 (((-112) $ $) NIL)) (-2870 ((|#2| $) 36)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2063 (($ (-406 |#2|)) 85)) (-3116 (((-638 (-2 (|:| -4196 (-765)) (|:| -2262 |#2|) (|:| |num| |#2|))) $) 37)) (-3238 (($ $) 32) (($ $ (-765)) 34)) (-4174 (((-406 |#2|) $) 46)) (-4031 (($ (-638 (-2 (|:| -4196 (-765)) (|:| -2262 |#2|) (|:| |num| |#2|)))) 31)) (-4022 (((-856) $) 120)) (-3122 (($ $) 33) (($ $ (-765)) 35)) (-1733 (((-112) $ $) NIL)) (-1813 (($ |#2| $) 39)))
+(((-398 |#1| |#2|) (-13 (-1090) (-609 (-406 |#2|)) (-10 -8 (-15 -1813 ($ |#2| $)) (-15 -2063 ($ (-406 |#2|))) (-15 -2870 (|#2| $)) (-15 -3116 ((-638 (-2 (|:| -4196 (-765)) (|:| -2262 |#2|) (|:| |num| |#2|))) $)) (-15 -4031 ($ (-638 (-2 (|:| -4196 (-765)) (|:| -2262 |#2|) (|:| |num| |#2|))))) (-15 -3238 ($ $)) (-15 -3122 ($ $)) (-15 -3238 ($ $ (-765))) (-15 -3122 ($ $ (-765))))) (-13 (-362) (-146)) (-1229 |#1|)) (T -398))
+((-1813 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1229 *3)))) (-2063 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-2870 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-3116 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-638 (-2 (|:| -4196 (-765)) (|:| -2262 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -4196 (-765)) (|:| -2262 *4) (|:| |num| *4)))) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-3238 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) (-3122 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))))
+(-13 (-1090) (-609 (-406 |#2|)) (-10 -8 (-15 -1813 ($ |#2| $)) (-15 -2063 ($ (-406 |#2|))) (-15 -2870 (|#2| $)) (-15 -3116 ((-638 (-2 (|:| -4196 (-765)) (|:| -2262 |#2|) (|:| |num| |#2|))) $)) (-15 -4031 ($ (-638 (-2 (|:| -4196 (-765)) (|:| -2262 |#2|) (|:| |num| |#2|))))) (-15 -3238 ($ $)) (-15 -3122 ($ $)) (-15 -3238 ($ $ (-765))) (-15 -3122 ($ $ (-765)))))
+((-4011 (((-112) $ $) 9 (-4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 15 (|has| |#1| (-879 (-378)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 14 (|has| |#1| (-879 (-561))))) (-1764 (((-1148) $) 13 (-4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-1714 (((-1110) $) 12 (-4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-4022 (((-856) $) 11 (-4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))) (-1733 (((-112) $ $) 10 (-4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))))))
+(((-399 |#1|) (-139) (-1205)) (T -399))
+NIL
+(-13 (-1205) (-10 -7 (IF (|has| |t#1| (-879 (-561))) (-6 (-879 (-561))) |%noBranch|) (IF (|has| |t#1| (-879 (-378))) (-6 (-879 (-378))) |%noBranch|)))
+(((-102) -4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))) ((-608 (-856)) -4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-1090) -4007 (|has| |#1| (-879 (-561))) (|has| |#1| (-879 (-378)))) ((-1205) . T))
+((-1575 (($ $) 10) (($ $ (-765)) 11)))
+(((-400 |#1|) (-10 -8 (-15 -1575 (|#1| |#1| (-765))) (-15 -1575 (|#1| |#1|))) (-401)) (T -400))
+NIL
+(-10 -8 (-15 -1575 (|#1| |#1| (-765))) (-15 -1575 (|#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1671 (((-112) $ $) 60)) (-1965 (($) 17 T CONST)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-1575 (($ $) 80) (($ $ (-765)) 79)) (-2737 (((-112) $) 72)) (-4163 (((-827 (-914)) $) 82)) (-3113 (((-112) $) 31)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-1913 (((-3 (-765) "failed") $ $) 81)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67)) (-1760 (((-3 $ "failed") $) 83)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 66)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
(((-401) (-139)) (T -401))
-((-2532 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-824 (-911))))) (-2551 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-762)))) (-4362 (*1 *1 *1) (-4 *1 (-401))) (-4362 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-762)))))
-(-13 (-362) (-144) (-10 -8 (-15 -2532 ((-824 (-911)) $)) (-15 -2551 ((-3 (-762) "failed") $ $)) (-15 -4362 ($ $)) (-15 -4362 ($ $ (-762)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
-((-4114 (($ (-558) (-558)) 11) (($ (-558) (-558) (-911)) NIL)) (-3035 (((-911)) 16) (((-911) (-911)) NIL)))
-(((-402 |#1|) (-10 -8 (-15 -3035 ((-911) (-911))) (-15 -3035 ((-911))) (-15 -4114 (|#1| (-558) (-558) (-911))) (-15 -4114 (|#1| (-558) (-558)))) (-403)) (T -402))
-((-3035 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403)))))
-(-10 -8 (-15 -3035 ((-911) (-911))) (-15 -3035 ((-911))) (-15 -4114 (|#1| (-558) (-558) (-911))) (-15 -4114 (|#1| (-558) (-558))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1669 (((-558) $) 90)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-4057 (($ $) 88)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-3948 (($ $) 98)) (-1599 (((-112) $ $) 60)) (-1334 (((-558) $) 115)) (-3457 (($) 17 T CONST)) (-2676 (($ $) 87)) (-3302 (((-3 (-558) "failed") $) 103) (((-3 (-406 (-558)) "failed") $) 100)) (-3226 (((-558) $) 104) (((-406 (-558)) $) 101)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-2992 (((-112) $) 72)) (-2659 (((-911)) 131) (((-911) (-911)) 128 (|has| $ (-6 -4374)))) (-4053 (((-112) $) 113)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 94)) (-2532 (((-558) $) 137)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 97)) (-1423 (($ $) 93)) (-2032 (((-112) $) 114)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2142 (($ $ $) 112) (($) 125 (-12 (-2143 (|has| $ (-6 -4374))) (-2143 (|has| $ (-6 -4366)))))) (-2281 (($ $ $) 111) (($) 124 (-12 (-2143 (|has| $ (-6 -4374))) (-2143 (|has| $ (-6 -4366)))))) (-3815 (((-558) $) 134)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-4246 (((-911) (-558)) 127 (|has| $ (-6 -4374)))) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-1636 (($ $) 89)) (-4259 (($ $) 91)) (-4114 (($ (-558) (-558)) 139) (($ (-558) (-558) (-911)) 138)) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1857 (((-558) $) 135)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3035 (((-911)) 132) (((-911) (-911)) 129 (|has| $ (-6 -4374)))) (-1298 (((-911) (-558)) 126 (|has| $ (-6 -4374)))) (-3441 (((-378) $) 106) (((-224) $) 105) (((-882 (-378)) $) 95)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ (-558)) 102) (($ (-406 (-558))) 99)) (-2417 (((-762)) 28)) (-2912 (($ $) 92)) (-1657 (((-911)) 133) (((-911) (-911)) 130 (|has| $ (-6 -4374)))) (-2636 (((-911)) 136)) (-2671 (((-112) $ $) 40)) (-4241 (($ $) 116)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1757 (((-112) $ $) 109)) (-1737 (((-112) $ $) 108)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 110)) (-1728 (((-112) $ $) 107)) (-1805 (($ $ $) 66)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 96)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
+((-4163 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-827 (-914))))) (-1913 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765)))) (-1575 (*1 *1 *1) (-4 *1 (-401))) (-1575 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765)))))
+(-13 (-362) (-144) (-10 -8 (-15 -4163 ((-827 (-914)) $)) (-15 -1913 ((-3 (-765) "failed") $ $)) (-15 -1575 ($ $)) (-15 -1575 ($ $ (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
+((-4205 (($ (-561) (-561)) 11) (($ (-561) (-561) (-914)) NIL)) (-1368 (((-914)) 16) (((-914) (-914)) NIL)))
+(((-402 |#1|) (-10 -8 (-15 -1368 ((-914) (-914))) (-15 -1368 ((-914))) (-15 -4205 (|#1| (-561) (-561) (-914))) (-15 -4205 (|#1| (-561) (-561)))) (-403)) (T -402))
+((-1368 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-1368 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403)))))
+(-10 -8 (-15 -1368 ((-914) (-914))) (-15 -1368 ((-914))) (-15 -4205 (|#1| (-561) (-561) (-914))) (-15 -4205 (|#1| (-561) (-561))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2949 (((-561) $) 90)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-3411 (($ $) 88)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1665 (($ $) 98)) (-1671 (((-112) $ $) 60)) (-2666 (((-561) $) 115)) (-1965 (($) 17 T CONST)) (-2210 (($ $) 87)) (-4017 (((-3 (-561) "failed") $) 103) (((-3 (-406 (-561)) "failed") $) 100)) (-3938 (((-561) $) 104) (((-406 (-561)) $) 101)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2737 (((-112) $) 72)) (-3322 (((-914)) 131) (((-914) (-914)) 128 (|has| $ (-6 -4381)))) (-3201 (((-112) $) 113)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 94)) (-4163 (((-561) $) 137)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 97)) (-1672 (($ $) 93)) (-2110 (((-112) $) 114)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-3443 (($ $ $) 112) (($) 125 (-12 (-2159 (|has| $ (-6 -4381))) (-2159 (|has| $ (-6 -4373)))))) (-2986 (($ $ $) 111) (($) 124 (-12 (-2159 (|has| $ (-6 -4381))) (-2159 (|has| $ (-6 -4373)))))) (-3923 (((-561) $) 134)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-3114 (((-914) (-561)) 127 (|has| $ (-6 -4381)))) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-3841 (($ $) 89)) (-1388 (($ $) 91)) (-4205 (($ (-561) (-561)) 139) (($ (-561) (-561) (-914)) 138)) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-4196 (((-561) $) 135)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-1368 (((-914)) 132) (((-914) (-914)) 129 (|has| $ (-6 -4381)))) (-3794 (((-914) (-561)) 126 (|has| $ (-6 -4381)))) (-4174 (((-378) $) 106) (((-224) $) 105) (((-885 (-378)) $) 95)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ (-561)) 102) (($ (-406 (-561))) 99)) (-4259 (((-765)) 28)) (-2432 (($ $) 92)) (-2342 (((-914)) 133) (((-914) (-914)) 130 (|has| $ (-6 -4381)))) (-2684 (((-914)) 136)) (-3168 (((-112) $ $) 40)) (-3749 (($ $) 116)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1782 (((-112) $ $) 109)) (-1762 (((-112) $ $) 108)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 110)) (-1754 (((-112) $ $) 107)) (-1833 (($ $ $) 66)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 96)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
(((-403) (-139)) (T -403))
-((-4114 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-403)))) (-4114 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-4 *1 (-403)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558)))) (-2636 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558)))) (-1657 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-3035 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-2659 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4374)) (-4 *1 (-403)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4374)) (-4 *1 (-403)))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4374)) (-4 *1 (-403)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4374)) (-4 *1 (-403)) (-5 *2 (-911)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4374)) (-4 *1 (-403)) (-5 *2 (-911)))) (-2142 (*1 *1) (-12 (-4 *1 (-403)) (-2143 (|has| *1 (-6 -4374))) (-2143 (|has| *1 (-6 -4366))))) (-2281 (*1 *1) (-12 (-4 *1 (-403)) (-2143 (|has| *1 (-6 -4374))) (-2143 (|has| *1 (-6 -4366))))))
-(-13 (-1048) (-10 -8 (-6 -1422) (-15 -4114 ($ (-558) (-558))) (-15 -4114 ($ (-558) (-558) (-911))) (-15 -2532 ((-558) $)) (-15 -2636 ((-911))) (-15 -1857 ((-558) $)) (-15 -3815 ((-558) $)) (-15 -1657 ((-911))) (-15 -3035 ((-911))) (-15 -2659 ((-911))) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1657 ((-911) (-911))) (-15 -3035 ((-911) (-911))) (-15 -2659 ((-911) (-911))) (-15 -4246 ((-911) (-558))) (-15 -1298 ((-911) (-558)))) |%noBranch|) (IF (|has| $ (-6 -4366)) |%noBranch| (IF (|has| $ (-6 -4374)) |%noBranch| (PROGN (-15 -2142 ($)) (-15 -2281 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-224)) . T) ((-606 (-378)) . T) ((-606 (-882 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-876 (-378)) . T) ((-910) . T) ((-992) . T) ((-1012) . T) ((-1048) . T) ((-1028 (-406 (-558))) . T) ((-1028 (-558)) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
-((-3397 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20)))
-(((-404 |#1| |#2|) (-10 -7 (-15 -3397 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-550) (-550)) (T -404))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6)))))
-(-10 -7 (-15 -3397 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|))))
-((-3397 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13)))
-(((-405 |#1| |#2|) (-10 -7 (-15 -3397 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-550) (-550)) (T -405))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6)))))
-(-10 -7 (-15 -3397 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 13)) (-1669 ((|#1| $) 21 (|has| |#1| (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| |#1| (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 17) (((-3 (-1163) "failed") $) NIL (|has| |#1| (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) 70 (|has| |#1| (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558))))) (-3226 ((|#1| $) 15) (((-1163) $) NIL (|has| |#1| (-1028 (-1163)))) (((-406 (-558)) $) 67 (|has| |#1| (-1028 (-558)))) (((-558) $) NIL (|has| |#1| (-1028 (-558))))) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) 50)) (-3692 (($) NIL (|has| |#1| (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| |#1| (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| |#1| (-876 (-378))))) (-3999 (((-112) $) 64)) (-2772 (($ $) NIL)) (-3316 ((|#1| $) 71)) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-2032 (((-112) $) NIL (|has| |#1| (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| |#1| (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 97)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| |#1| (-306)))) (-4259 ((|#1| $) 28 (|has| |#1| (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) 135 (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 131 (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-1562 (((-762) $) NIL)) (-2276 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-4218 (($ $) NIL)) (-3327 ((|#1| $) 73)) (-3441 (((-882 (-558)) $) NIL (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#1| (-606 (-882 (-378))))) (((-534) $) NIL (|has| |#1| (-606 (-534)))) (((-378) $) NIL (|has| |#1| (-1012))) (((-224) $) NIL (|has| |#1| (-1012)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 10) (($ (-1163)) NIL (|has| |#1| (-1028 (-1163))))) (-1487 (((-3 $ "failed") $) 99 (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) 100)) (-2912 ((|#1| $) 26 (|has| |#1| (-543)))) (-2671 (((-112) $ $) NIL)) (-4241 (($ $) NIL (|has| |#1| (-811)))) (-2207 (($) 22 T CONST)) (-2220 (($) 8 T CONST)) (-2555 (((-1145) $) 43 (-12 (|has| |#1| (-543)) (|has| |#1| (-819)))) (((-1145) $ (-112)) 44 (-12 (|has| |#1| (-543)) (|has| |#1| (-819)))) (((-1251) (-813) $) 45 (-12 (|has| |#1| (-543)) (|has| |#1| (-819)))) (((-1251) (-813) $ (-112)) 46 (-12 (|has| |#1| (-543)) (|has| |#1| (-819))))) (-3042 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) 56)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) 24 (|has| |#1| (-841)))) (-1805 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1796 (($ $) 25) (($ $ $) 55)) (-1785 (($ $ $) 53)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 125)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 60) (($ $ $) 57) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-406 |#1|) (-13 (-982 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4370)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4381)) (-6 -4370) |%noBranch|) |%noBranch|) |%noBranch|))) (-550)) (T -406))
-NIL
-(-13 (-982 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4370)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4381)) (-6 -4370) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3409 (((-679 |#2|) (-1246 $)) NIL) (((-679 |#2|)) 18)) (-3431 (($ (-1246 |#2|) (-1246 $)) NIL) (($ (-1246 |#2|)) 24)) (-3533 (((-679 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) $) 38)) (-1715 ((|#3| $) 60)) (-3789 ((|#2| (-1246 $)) NIL) ((|#2|) 20)) (-2979 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $) 22) (((-679 |#2|) (-1246 $)) 36)) (-3441 (((-1246 |#2|) $) 11) (($ (-1246 |#2|)) 13)) (-1969 ((|#3| $) 52)))
-(((-407 |#1| |#2| |#3|) (-10 -8 (-15 -3533 ((-679 |#2|) |#1|)) (-15 -3789 (|#2|)) (-15 -3409 ((-679 |#2|))) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -3431 (|#1| (-1246 |#2|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -1715 (|#3| |#1|)) (-15 -1969 (|#3| |#1|)) (-15 -3409 ((-679 |#2|) (-1246 |#1|))) (-15 -3789 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -3533 ((-679 |#2|) |#1| (-1246 |#1|)))) (-408 |#2| |#3|) (-171) (-1222 |#2|)) (T -407))
-((-3409 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) (-3789 (*1 *2) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) (-4 *3 (-408 *2 *4)))))
-(-10 -8 (-15 -3533 ((-679 |#2|) |#1|)) (-15 -3789 (|#2|)) (-15 -3409 ((-679 |#2|))) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -3431 (|#1| (-1246 |#2|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -1715 (|#3| |#1|)) (-15 -1969 (|#3| |#1|)) (-15 -3409 ((-679 |#2|) (-1246 |#1|))) (-15 -3789 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -3533 ((-679 |#2|) |#1| (-1246 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3409 (((-679 |#1|) (-1246 $)) 47) (((-679 |#1|)) 62)) (-1719 ((|#1| $) 53)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3431 (($ (-1246 |#1|) (-1246 $)) 49) (($ (-1246 |#1|)) 65)) (-3533 (((-679 |#1|) $ (-1246 $)) 54) (((-679 |#1|) $) 60)) (-3248 (((-3 $ "failed") $) 33)) (-1489 (((-911)) 55)) (-3999 (((-112) $) 31)) (-1423 ((|#1| $) 52)) (-1715 ((|#2| $) 45 (|has| |#1| (-362)))) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3789 ((|#1| (-1246 $)) 48) ((|#1|) 61)) (-2979 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50) (((-1246 |#1|) $) 67) (((-679 |#1|) (-1246 $)) 66)) (-3441 (((-1246 |#1|) $) 64) (($ (-1246 |#1|)) 63)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38)) (-1487 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-1969 ((|#2| $) 46)) (-2417 (((-762)) 28)) (-2743 (((-1246 $)) 68)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-408 |#1| |#2|) (-139) (-171) (-1222 |t#1|)) (T -408))
-((-2743 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *1)) (-4 *1 (-408 *3 *4)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *3)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1222 *3)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *3)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1222 *3)))) (-3409 (*1 *2) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-679 *3)))) (-3789 (*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-679 *3)))))
-(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -2743 ((-1246 $))) (-15 -2979 ((-1246 |t#1|) $)) (-15 -2979 ((-679 |t#1|) (-1246 $))) (-15 -3431 ($ (-1246 |t#1|))) (-15 -3441 ((-1246 |t#1|) $)) (-15 -3441 ($ (-1246 |t#1|))) (-15 -3409 ((-679 |t#1|))) (-15 -3789 (|t#1|)) (-15 -3533 ((-679 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-369 |#1| |#2|) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) 27) (((-3 (-558) "failed") $) 19)) (-3226 ((|#2| $) NIL) (((-406 (-558)) $) 24) (((-558) $) 14)) (-3940 (($ |#2|) NIL) (($ (-406 (-558))) 22) (($ (-558)) 11)))
-(((-409 |#1| |#2|) (-10 -8 (-15 -3940 (|#1| (-558))) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|))) (-410 |#2|) (-1200)) (T -409))
-NIL
-(-10 -8 (-15 -3940 (|#1| (-558))) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|)))
-((-3302 (((-3 |#1| "failed") $) 9) (((-3 (-406 (-558)) "failed") $) 16 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 13 (|has| |#1| (-1028 (-558))))) (-3226 ((|#1| $) 8) (((-406 (-558)) $) 17 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 14 (|has| |#1| (-1028 (-558))))) (-3940 (($ |#1|) 6) (($ (-406 (-558))) 15 (|has| |#1| (-1028 (-406 (-558))))) (($ (-558)) 12 (|has| |#1| (-1028 (-558))))))
-(((-410 |#1|) (-139) (-1200)) (T -410))
-NIL
-(-13 (-1028 |t#1|) (-10 -7 (IF (|has| |t#1| (-1028 (-558))) (-6 (-1028 (-558))) |%noBranch|) (IF (|has| |t#1| (-1028 (-406 (-558)))) (-6 (-1028 (-406 (-558)))) |%noBranch|)))
-(((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 #1=(-558)) |has| |#1| (-1028 (-558))) ((-608 |#1|) . T) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 #1#) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T))
-((-3397 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33)))
-(((-411 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3397 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-982 |#1|) (-1222 |#2|) (-13 (-408 |#2| |#3|) (-1028 |#2|)) (-306) (-982 |#5|) (-1222 |#6|) (-13 (-408 |#6| |#7|) (-1028 |#6|))) (T -411))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-982 *5)) (-4 *7 (-1222 *6)) (-4 *8 (-13 (-408 *6 *7) (-1028 *6))) (-4 *9 (-306)) (-4 *10 (-982 *9)) (-4 *11 (-1222 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-408 *10 *11) (-1028 *10))))))
-(-10 -7 (-15 -3397 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|))))
-((-3929 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-1428 ((|#4| (-762) (-1246 |#4|)) 56)) (-3999 (((-112) $) NIL)) (-3316 (((-1246 |#4|) $) 17)) (-1423 ((|#2| $) 54)) (-1383 (($ $) 139)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 100)) (-1776 (($ (-1246 |#4|)) 99)) (-1688 (((-1107) $) NIL)) (-3327 ((|#1| $) 18)) (-3068 (($ $ $) NIL)) (-3072 (($ $ $) NIL)) (-3940 (((-853) $) 134)) (-2743 (((-1246 |#4|) $) 129)) (-2220 (($) 11 T CONST)) (-1708 (((-112) $ $) 40)) (-1805 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 122)) (* (($ $ $) 121)))
-(((-412 |#1| |#2| |#3| |#4|) (-13 (-471) (-10 -8 (-15 -1776 ($ (-1246 |#4|))) (-15 -2743 ((-1246 |#4|) $)) (-15 -1423 (|#2| $)) (-15 -3316 ((-1246 |#4|) $)) (-15 -3327 (|#1| $)) (-15 -1383 ($ $)) (-15 -1428 (|#4| (-762) (-1246 |#4|))))) (-306) (-982 |#1|) (-1222 |#2|) (-13 (-408 |#2| |#3|) (-1028 |#2|))) (T -412))
-((-1776 (*1 *1 *2) (-12 (-5 *2 (-1246 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4))) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-2743 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4))))) (-1423 (*1 *2 *1) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1028 *2))))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4))))) (-3327 (*1 *2 *1) (-12 (-4 *3 (-982 *2)) (-4 *4 (-1222 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3))))) (-1383 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-982 *2)) (-4 *4 (-1222 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3))))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-1246 *2)) (-4 *5 (-306)) (-4 *6 (-982 *5)) (-4 *2 (-13 (-408 *6 *7) (-1028 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1222 *6)))))
-(-13 (-471) (-10 -8 (-15 -1776 ($ (-1246 |#4|))) (-15 -2743 ((-1246 |#4|) $)) (-15 -1423 (|#2| $)) (-15 -3316 ((-1246 |#4|) $)) (-15 -3327 (|#1| $)) (-15 -1383 ($ $)) (-15 -1428 (|#4| (-762) (-1246 |#4|)))))
-((-3929 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-1423 ((|#2| $) 61)) (-3662 (($ (-1246 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1028 |#2|)))) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 34)) (-2743 (((-1246 |#4|) $) 26)) (-2220 (($) 23 T CONST)) (-1708 (((-112) $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ $ $) 72)))
-(((-413 |#1| |#2| |#3| |#4| |#5|) (-13 (-717) (-10 -8 (-15 -2743 ((-1246 |#4|) $)) (-15 -1423 (|#2| $)) (-15 -3662 ($ (-1246 |#4|))) (IF (|has| |#4| (-1028 |#2|)) (-15 -3662 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-982 |#1|) (-1222 |#2|) (-408 |#2| |#3|) (-1246 |#4|)) (T -413))
-((-2743 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-4 *6 (-408 *4 *5)) (-14 *7 *2))) (-1423 (*1 *2 *1) (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3)) (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) (-14 *6 (-1246 *5)))) (-3662 (*1 *1 *2) (-12 (-5 *2 (-1246 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3662 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1028 *4)) (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *6 (-408 *4 *5)) (-14 *7 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)))))
-(-13 (-717) (-10 -8 (-15 -2743 ((-1246 |#4|) $)) (-15 -1423 (|#2| $)) (-15 -3662 ($ (-1246 |#4|))) (IF (|has| |#4| (-1028 |#2|)) (-15 -3662 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3397 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#3| (-1 |#4| |#2|) |#1|))) (-416 |#2|) (-171) (-416 |#4|) (-171)) (T -414))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5)))))
-(-10 -7 (-15 -3397 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3466 (((-3 $ "failed")) 86)) (-1644 (((-1246 (-679 |#2|)) (-1246 $)) NIL) (((-1246 (-679 |#2|))) 91)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) 85)) (-3262 (((-3 $ "failed")) 84)) (-4157 (((-679 |#2|) (-1246 $)) NIL) (((-679 |#2|)) 102)) (-1398 (((-679 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) $) 110)) (-3889 (((-1159 (-942 |#2|))) 55)) (-2392 ((|#2| (-1246 $)) NIL) ((|#2|) 106)) (-3431 (($ (-1246 |#2|) (-1246 $)) NIL) (($ (-1246 |#2|)) 112)) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) 83)) (-2251 (((-3 $ "failed")) 75)) (-2284 (((-679 |#2|) (-1246 $)) NIL) (((-679 |#2|)) 100)) (-4138 (((-679 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) $) 108)) (-3900 (((-1159 (-942 |#2|))) 54)) (-2408 ((|#2| (-1246 $)) NIL) ((|#2|) 104)) (-2979 (((-1246 |#2|) $ (-1246 $)) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $) 111) (((-679 |#2|) (-1246 $)) 118)) (-3441 (((-1246 |#2|) $) 96) (($ (-1246 |#2|)) 98)) (-3175 (((-635 (-942 |#2|)) (-1246 $)) NIL) (((-635 (-942 |#2|))) 94)) (-2484 (($ (-679 |#2|) $) 90)))
-(((-415 |#1| |#2|) (-10 -8 (-15 -2484 (|#1| (-679 |#2|) |#1|)) (-15 -3889 ((-1159 (-942 |#2|)))) (-15 -3900 ((-1159 (-942 |#2|)))) (-15 -1398 ((-679 |#2|) |#1|)) (-15 -4138 ((-679 |#2|) |#1|)) (-15 -4157 ((-679 |#2|))) (-15 -2284 ((-679 |#2|))) (-15 -2392 (|#2|)) (-15 -2408 (|#2|)) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -3431 (|#1| (-1246 |#2|))) (-15 -3175 ((-635 (-942 |#2|)))) (-15 -1644 ((-1246 (-679 |#2|)))) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -3466 ((-3 |#1| "failed"))) (-15 -3262 ((-3 |#1| "failed"))) (-15 -2251 ((-3 |#1| "failed"))) (-15 -1873 ((-3 (-2 (|:| |particular| |#1|) (|:| -2743 (-635 |#1|))) "failed"))) (-15 -3347 ((-3 (-2 (|:| |particular| |#1|) (|:| -2743 (-635 |#1|))) "failed"))) (-15 -4157 ((-679 |#2|) (-1246 |#1|))) (-15 -2284 ((-679 |#2|) (-1246 |#1|))) (-15 -2392 (|#2| (-1246 |#1|))) (-15 -2408 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -1398 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4138 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -1644 ((-1246 (-679 |#2|)) (-1246 |#1|))) (-15 -3175 ((-635 (-942 |#2|)) (-1246 |#1|)))) (-416 |#2|) (-171)) (T -415))
-((-1644 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3175 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-942 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2408 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2392 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2284 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-4157 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3900 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3889 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))))
-(-10 -8 (-15 -2484 (|#1| (-679 |#2|) |#1|)) (-15 -3889 ((-1159 (-942 |#2|)))) (-15 -3900 ((-1159 (-942 |#2|)))) (-15 -1398 ((-679 |#2|) |#1|)) (-15 -4138 ((-679 |#2|) |#1|)) (-15 -4157 ((-679 |#2|))) (-15 -2284 ((-679 |#2|))) (-15 -2392 (|#2|)) (-15 -2408 (|#2|)) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -3431 (|#1| (-1246 |#2|))) (-15 -3175 ((-635 (-942 |#2|)))) (-15 -1644 ((-1246 (-679 |#2|)))) (-15 -2979 ((-679 |#2|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1|)) (-15 -3466 ((-3 |#1| "failed"))) (-15 -3262 ((-3 |#1| "failed"))) (-15 -2251 ((-3 |#1| "failed"))) (-15 -1873 ((-3 (-2 (|:| |particular| |#1|) (|:| -2743 (-635 |#1|))) "failed"))) (-15 -3347 ((-3 (-2 (|:| |particular| |#1|) (|:| -2743 (-635 |#1|))) "failed"))) (-15 -4157 ((-679 |#2|) (-1246 |#1|))) (-15 -2284 ((-679 |#2|) (-1246 |#1|))) (-15 -2392 (|#2| (-1246 |#1|))) (-15 -2408 (|#2| (-1246 |#1|))) (-15 -3431 (|#1| (-1246 |#2|) (-1246 |#1|))) (-15 -2979 ((-679 |#2|) (-1246 |#1|) (-1246 |#1|))) (-15 -2979 ((-1246 |#2|) |#1| (-1246 |#1|))) (-15 -1398 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -4138 ((-679 |#2|) |#1| (-1246 |#1|))) (-15 -1644 ((-1246 (-679 |#2|)) (-1246 |#1|))) (-15 -3175 ((-635 (-942 |#2|)) (-1246 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3466 (((-3 $ "failed")) 37 (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) 19)) (-1644 (((-1246 (-679 |#1|)) (-1246 $)) 78) (((-1246 (-679 |#1|))) 100)) (-3871 (((-1246 $)) 81)) (-3457 (($) 17 T CONST)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) 40 (|has| |#1| (-550)))) (-3262 (((-3 $ "failed")) 38 (|has| |#1| (-550)))) (-4157 (((-679 |#1|) (-1246 $)) 65) (((-679 |#1|)) 92)) (-3890 ((|#1| $) 74)) (-1398 (((-679 |#1|) $ (-1246 $)) 76) (((-679 |#1|) $) 90)) (-2113 (((-3 $ "failed") $) 45 (|has| |#1| (-550)))) (-3889 (((-1159 (-942 |#1|))) 88 (|has| |#1| (-362)))) (-2943 (($ $ (-911)) 28)) (-3231 ((|#1| $) 72)) (-3324 (((-1159 |#1|) $) 42 (|has| |#1| (-550)))) (-2392 ((|#1| (-1246 $)) 67) ((|#1|) 94)) (-1292 (((-1159 |#1|) $) 63)) (-2706 (((-112)) 57)) (-3431 (($ (-1246 |#1|) (-1246 $)) 69) (($ (-1246 |#1|)) 98)) (-3248 (((-3 $ "failed") $) 47 (|has| |#1| (-550)))) (-1489 (((-911)) 80)) (-1831 (((-112)) 54)) (-4337 (($ $ (-911)) 33)) (-1889 (((-112)) 50)) (-1508 (((-112)) 48)) (-2728 (((-112)) 52)) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) 41 (|has| |#1| (-550)))) (-2251 (((-3 $ "failed")) 39 (|has| |#1| (-550)))) (-2284 (((-679 |#1|) (-1246 $)) 66) (((-679 |#1|)) 93)) (-2818 ((|#1| $) 75)) (-4138 (((-679 |#1|) $ (-1246 $)) 77) (((-679 |#1|) $) 91)) (-4300 (((-3 $ "failed") $) 46 (|has| |#1| (-550)))) (-3900 (((-1159 (-942 |#1|))) 89 (|has| |#1| (-362)))) (-1794 (($ $ (-911)) 29)) (-2815 ((|#1| $) 73)) (-1637 (((-1159 |#1|) $) 43 (|has| |#1| (-550)))) (-2408 ((|#1| (-1246 $)) 68) ((|#1|) 95)) (-2889 (((-1159 |#1|) $) 64)) (-1475 (((-112)) 58)) (-2510 (((-1145) $) 9)) (-4165 (((-112)) 49)) (-1323 (((-112)) 51)) (-1310 (((-112)) 53)) (-1688 (((-1107) $) 10)) (-3145 (((-112)) 56)) (-2276 ((|#1| $ (-558)) 101)) (-2979 (((-1246 |#1|) $ (-1246 $)) 71) (((-679 |#1|) (-1246 $) (-1246 $)) 70) (((-1246 |#1|) $) 103) (((-679 |#1|) (-1246 $)) 102)) (-3441 (((-1246 |#1|) $) 97) (($ (-1246 |#1|)) 96)) (-3175 (((-635 (-942 |#1|)) (-1246 $)) 79) (((-635 (-942 |#1|))) 99)) (-3072 (($ $ $) 25)) (-4211 (((-112)) 62)) (-3940 (((-853) $) 11)) (-2743 (((-1246 $)) 104)) (-3817 (((-635 (-1246 |#1|))) 44 (|has| |#1| (-550)))) (-2536 (($ $ $ $) 26)) (-2667 (((-112)) 60)) (-2484 (($ (-679 |#1|) $) 87)) (-3467 (($ $ $) 24)) (-2249 (((-112)) 61)) (-2835 (((-112)) 59)) (-2274 (((-112)) 55)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4205 (*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-403)))) (-4205 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-4 *1 (-403)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561)))) (-2684 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561)))) (-2342 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-1368 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-3322 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4381)) (-4 *1 (-403)))) (-1368 (*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4381)) (-4 *1 (-403)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4381)) (-4 *1 (-403)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-561)) (|has| *1 (-6 -4381)) (-4 *1 (-403)) (-5 *2 (-914)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-561)) (|has| *1 (-6 -4381)) (-4 *1 (-403)) (-5 *2 (-914)))) (-3443 (*1 *1) (-12 (-4 *1 (-403)) (-2159 (|has| *1 (-6 -4381))) (-2159 (|has| *1 (-6 -4373))))) (-2986 (*1 *1) (-12 (-4 *1 (-403)) (-2159 (|has| *1 (-6 -4381))) (-2159 (|has| *1 (-6 -4373))))))
+(-13 (-1051) (-10 -8 (-6 -1417) (-15 -4205 ($ (-561) (-561))) (-15 -4205 ($ (-561) (-561) (-914))) (-15 -4163 ((-561) $)) (-15 -2684 ((-914))) (-15 -4196 ((-561) $)) (-15 -3923 ((-561) $)) (-15 -2342 ((-914))) (-15 -1368 ((-914))) (-15 -3322 ((-914))) (IF (|has| $ (-6 -4381)) (PROGN (-15 -2342 ((-914) (-914))) (-15 -1368 ((-914) (-914))) (-15 -3322 ((-914) (-914))) (-15 -3114 ((-914) (-561))) (-15 -3794 ((-914) (-561)))) |%noBranch|) (IF (|has| $ (-6 -4373)) |%noBranch| (IF (|has| $ (-6 -4381)) |%noBranch| (PROGN (-15 -3443 ($)) (-15 -2986 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-378)) . T) ((-609 (-885 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-879 (-378)) . T) ((-913) . T) ((-995) . T) ((-1015) . T) ((-1051) . T) ((-1031 (-406 (-561))) . T) ((-1031 (-561)) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
+((-4120 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20)))
+(((-404 |#1| |#2|) (-10 -7 (-15 -4120 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-553) (-553)) (T -404))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-553)) (-4 *6 (-553)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6)))))
+(-10 -7 (-15 -4120 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|))))
+((-4120 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13)))
+(((-405 |#1| |#2|) (-10 -7 (-15 -4120 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-553) (-553)) (T -405))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-553)) (-4 *6 (-553)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6)))))
+(-10 -7 (-15 -4120 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 13)) (-2949 ((|#1| $) 21 (|has| |#1| (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| |#1| (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 17) (((-3 (-1166) "failed") $) NIL (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) 70 (|has| |#1| (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561))))) (-3938 ((|#1| $) 15) (((-1166) $) NIL (|has| |#1| (-1031 (-1166)))) (((-406 (-561)) $) 67 (|has| |#1| (-1031 (-561)))) (((-561) $) NIL (|has| |#1| (-1031 (-561))))) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) 50)) (-1332 (($) NIL (|has| |#1| (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| |#1| (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| |#1| (-879 (-378))))) (-3113 (((-112) $) 64)) (-3458 (($ $) NIL)) (-4030 ((|#1| $) 71)) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-2110 (((-112) $) NIL (|has| |#1| (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| |#1| (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 97)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| |#1| (-306)))) (-1388 ((|#1| $) 28 (|has| |#1| (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) 135 (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 131 (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-3569 (((-765) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2861 (($ $) NIL)) (-4045 ((|#1| $) 73)) (-4174 (((-885 (-561)) $) NIL (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#1| (-609 (-885 (-378))))) (((-534) $) NIL (|has| |#1| (-609 (-534)))) (((-378) $) NIL (|has| |#1| (-1015))) (((-224) $) NIL (|has| |#1| (-1015)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 10) (($ (-1166)) NIL (|has| |#1| (-1031 (-1166))))) (-1760 (((-3 $ "failed") $) 99 (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) 100)) (-2432 ((|#1| $) 26 (|has| |#1| (-543)))) (-3168 (((-112) $ $) NIL)) (-3749 (($ $) NIL (|has| |#1| (-814)))) (-2211 (($) 22 T CONST)) (-2222 (($) 8 T CONST)) (-3677 (((-1148) $) 43 (-12 (|has| |#1| (-543)) (|has| |#1| (-822)))) (((-1148) $ (-112)) 44 (-12 (|has| |#1| (-543)) (|has| |#1| (-822)))) (((-1258) (-816) $) 45 (-12 (|has| |#1| (-543)) (|has| |#1| (-822)))) (((-1258) (-816) $ (-112)) 46 (-12 (|has| |#1| (-543)) (|has| |#1| (-822))))) (-3122 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) 56)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) 24 (|has| |#1| (-844)))) (-1833 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1824 (($ $) 25) (($ $ $) 55)) (-1813 (($ $ $) 53)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 125)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 60) (($ $ $) 57) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-406 |#1|) (-13 (-985 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4377)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4388)) (-6 -4377) |%noBranch|) |%noBranch|) |%noBranch|))) (-553)) (T -406))
+NIL
+(-13 (-985 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4377)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4388)) (-6 -4377) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-2695 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 18)) (-2257 (($ (-1253 |#2|) (-1253 $)) NIL) (($ (-1253 |#2|)) 24)) (-4145 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 38)) (-2692 ((|#3| $) 60)) (-2553 ((|#2| (-1253 $)) NIL) ((|#2|) 20)) (-3969 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 22) (((-682 |#2|) (-1253 $)) 36)) (-4174 (((-1253 |#2|) $) 11) (($ (-1253 |#2|)) 13)) (-2485 ((|#3| $) 52)))
+(((-407 |#1| |#2| |#3|) (-10 -8 (-15 -4145 ((-682 |#2|) |#1|)) (-15 -2553 (|#2|)) (-15 -2695 ((-682 |#2|))) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -2257 (|#1| (-1253 |#2|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -2692 (|#3| |#1|)) (-15 -2485 (|#3| |#1|)) (-15 -2695 ((-682 |#2|) (-1253 |#1|))) (-15 -2553 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -4145 ((-682 |#2|) |#1| (-1253 |#1|)))) (-408 |#2| |#3|) (-171) (-1229 |#2|)) (T -407))
+((-2695 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) (-2553 (*1 *2) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) (-4 *3 (-408 *2 *4)))))
+(-10 -8 (-15 -4145 ((-682 |#2|) |#1|)) (-15 -2553 (|#2|)) (-15 -2695 ((-682 |#2|))) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -2257 (|#1| (-1253 |#2|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -2692 (|#3| |#1|)) (-15 -2485 (|#3| |#1|)) (-15 -2695 ((-682 |#2|) (-1253 |#1|))) (-15 -2553 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -4145 ((-682 |#2|) |#1| (-1253 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2695 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-1744 ((|#1| $) 53)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-2257 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-4145 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-3466 (((-3 $ "failed") $) 33)) (-1569 (((-914)) 55)) (-3113 (((-112) $) 31)) (-1672 ((|#1| $) 52)) (-2692 ((|#2| $) 45 (|has| |#1| (-362)))) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2553 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-3969 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4174 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38)) (-1760 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2485 ((|#2| $) 46)) (-4259 (((-765)) 28)) (-3711 (((-1253 $)) 68)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-408 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -408))
+((-3711 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *1)) (-4 *1 (-408 *3 *4)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *3)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1229 *3)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *3)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1229 *3)))) (-2695 (*1 *2) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-682 *3)))) (-2553 (*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-682 *3)))))
+(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -3711 ((-1253 $))) (-15 -3969 ((-1253 |t#1|) $)) (-15 -3969 ((-682 |t#1|) (-1253 $))) (-15 -2257 ($ (-1253 |t#1|))) (-15 -4174 ((-1253 |t#1|) $)) (-15 -4174 ($ (-1253 |t#1|))) (-15 -2695 ((-682 |t#1|))) (-15 -2553 (|t#1|)) (-15 -4145 ((-682 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-369 |#1| |#2|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) 27) (((-3 (-561) "failed") $) 19)) (-3938 ((|#2| $) NIL) (((-406 (-561)) $) 24) (((-561) $) 14)) (-4022 (($ |#2|) NIL) (($ (-406 (-561))) 22) (($ (-561)) 11)))
+(((-409 |#1| |#2|) (-10 -8 (-15 -4022 (|#1| (-561))) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|))) (-410 |#2|) (-1205)) (T -409))
+NIL
+(-10 -8 (-15 -4022 (|#1| (-561))) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|)))
+((-4017 (((-3 |#1| "failed") $) 9) (((-3 (-406 (-561)) "failed") $) 16 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 13 (|has| |#1| (-1031 (-561))))) (-3938 ((|#1| $) 8) (((-406 (-561)) $) 17 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 14 (|has| |#1| (-1031 (-561))))) (-4022 (($ |#1|) 6) (($ (-406 (-561))) 15 (|has| |#1| (-1031 (-406 (-561))))) (($ (-561)) 12 (|has| |#1| (-1031 (-561))))))
+(((-410 |#1|) (-139) (-1205)) (T -410))
+NIL
+(-13 (-1031 |t#1|) (-10 -7 (IF (|has| |t#1| (-1031 (-561))) (-6 (-1031 (-561))) |%noBranch|) (IF (|has| |t#1| (-1031 (-406 (-561)))) (-6 (-1031 (-406 (-561)))) |%noBranch|)))
+(((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 #1=(-561)) |has| |#1| (-1031 (-561))) ((-611 |#1|) . T) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 #1#) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T))
+((-4120 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33)))
+(((-411 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4120 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-985 |#1|) (-1229 |#2|) (-13 (-408 |#2| |#3|) (-1031 |#2|)) (-306) (-985 |#5|) (-1229 |#6|) (-13 (-408 |#6| |#7|) (-1031 |#6|))) (T -411))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-985 *5)) (-4 *7 (-1229 *6)) (-4 *8 (-13 (-408 *6 *7) (-1031 *6))) (-4 *9 (-306)) (-4 *10 (-985 *9)) (-4 *11 (-1229 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-408 *10 *11) (-1031 *10))))))
+(-10 -7 (-15 -4120 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|))))
+((-4011 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-1662 ((|#4| (-765) (-1253 |#4|)) 56)) (-3113 (((-112) $) NIL)) (-4030 (((-1253 |#4|) $) 17)) (-1672 ((|#2| $) 54)) (-3506 (($ $) 139)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 100)) (-1359 (($ (-1253 |#4|)) 99)) (-1714 (((-1110) $) NIL)) (-4045 ((|#1| $) 18)) (-2260 (($ $ $) NIL)) (-3800 (($ $ $) NIL)) (-4022 (((-856) $) 134)) (-3711 (((-1253 |#4|) $) 129)) (-2222 (($) 11 T CONST)) (-1733 (((-112) $ $) 40)) (-1833 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 122)) (* (($ $ $) 121)))
+(((-412 |#1| |#2| |#3| |#4|) (-13 (-471) (-10 -8 (-15 -1359 ($ (-1253 |#4|))) (-15 -3711 ((-1253 |#4|) $)) (-15 -1672 (|#2| $)) (-15 -4030 ((-1253 |#4|) $)) (-15 -4045 (|#1| $)) (-15 -3506 ($ $)) (-15 -1662 (|#4| (-765) (-1253 |#4|))))) (-306) (-985 |#1|) (-1229 |#2|) (-13 (-408 |#2| |#3|) (-1031 |#2|))) (T -412))
+((-1359 (*1 *1 *2) (-12 (-5 *2 (-1253 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4))) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-3711 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4))))) (-1672 (*1 *2 *1) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-985 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1031 *2))))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4))))) (-4045 (*1 *2 *1) (-12 (-4 *3 (-985 *2)) (-4 *4 (-1229 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3))))) (-3506 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-985 *2)) (-4 *4 (-1229 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3))))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1253 *2)) (-4 *5 (-306)) (-4 *6 (-985 *5)) (-4 *2 (-13 (-408 *6 *7) (-1031 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1229 *6)))))
+(-13 (-471) (-10 -8 (-15 -1359 ($ (-1253 |#4|))) (-15 -3711 ((-1253 |#4|) $)) (-15 -1672 (|#2| $)) (-15 -4030 ((-1253 |#4|) $)) (-15 -4045 (|#1| $)) (-15 -3506 ($ $)) (-15 -1662 (|#4| (-765) (-1253 |#4|)))))
+((-4011 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-1672 ((|#2| $) 61)) (-1996 (($ (-1253 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1031 |#2|)))) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 34)) (-3711 (((-1253 |#4|) $) 26)) (-2222 (($) 23 T CONST)) (-1733 (((-112) $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ $ $) 72)))
+(((-413 |#1| |#2| |#3| |#4| |#5|) (-13 (-720) (-10 -8 (-15 -3711 ((-1253 |#4|) $)) (-15 -1672 (|#2| $)) (-15 -1996 ($ (-1253 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -1996 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-985 |#1|) (-1229 |#2|) (-408 |#2| |#3|) (-1253 |#4|)) (T -413))
+((-3711 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-4 *6 (-408 *4 *5)) (-14 *7 *2))) (-1672 (*1 *2 *1) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-985 *3)) (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) (-14 *6 (-1253 *5)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-1253 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-4 *6 (-408 *4 *5)) (-14 *7 (-1253 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)))))
+(-13 (-720) (-10 -8 (-15 -3711 ((-1253 |#4|) $)) (-15 -1672 (|#2| $)) (-15 -1996 ($ (-1253 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -1996 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-4120 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#3| (-1 |#4| |#2|) |#1|))) (-416 |#2|) (-171) (-416 |#4|) (-171)) (T -414))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5)))))
+(-10 -7 (-15 -4120 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3027 (((-3 $ "failed")) 86)) (-2602 (((-1253 (-682 |#2|)) (-1253 $)) NIL) (((-1253 (-682 |#2|))) 91)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) 85)) (-2104 (((-3 $ "failed")) 84)) (-2483 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 102)) (-3689 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 110)) (-3337 (((-1162 (-945 |#2|))) 55)) (-1381 ((|#2| (-1253 $)) NIL) ((|#2|) 106)) (-2257 (($ (-1253 |#2|) (-1253 $)) NIL) (($ (-1253 |#2|)) 112)) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) 83)) (-2445 (((-3 $ "failed")) 75)) (-2919 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 100)) (-1354 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 108)) (-2502 (((-1162 (-945 |#2|))) 54)) (-2696 ((|#2| (-1253 $)) NIL) ((|#2|) 104)) (-3969 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 111) (((-682 |#2|) (-1253 $)) 118)) (-4174 (((-1253 |#2|) $) 96) (($ (-1253 |#2|)) 98)) (-2508 (((-638 (-945 |#2|)) (-1253 $)) NIL) (((-638 (-945 |#2|))) 94)) (-1367 (($ (-682 |#2|) $) 90)))
+(((-415 |#1| |#2|) (-10 -8 (-15 -1367 (|#1| (-682 |#2|) |#1|)) (-15 -3337 ((-1162 (-945 |#2|)))) (-15 -2502 ((-1162 (-945 |#2|)))) (-15 -3689 ((-682 |#2|) |#1|)) (-15 -1354 ((-682 |#2|) |#1|)) (-15 -2483 ((-682 |#2|))) (-15 -2919 ((-682 |#2|))) (-15 -1381 (|#2|)) (-15 -2696 (|#2|)) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -2257 (|#1| (-1253 |#2|))) (-15 -2508 ((-638 (-945 |#2|)))) (-15 -2602 ((-1253 (-682 |#2|)))) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -3027 ((-3 |#1| "failed"))) (-15 -2104 ((-3 |#1| "failed"))) (-15 -2445 ((-3 |#1| "failed"))) (-15 -1312 ((-3 (-2 (|:| |particular| |#1|) (|:| -3711 (-638 |#1|))) "failed"))) (-15 -2991 ((-3 (-2 (|:| |particular| |#1|) (|:| -3711 (-638 |#1|))) "failed"))) (-15 -2483 ((-682 |#2|) (-1253 |#1|))) (-15 -2919 ((-682 |#2|) (-1253 |#1|))) (-15 -1381 (|#2| (-1253 |#1|))) (-15 -2696 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3689 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1354 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -2602 ((-1253 (-682 |#2|)) (-1253 |#1|))) (-15 -2508 ((-638 (-945 |#2|)) (-1253 |#1|)))) (-416 |#2|) (-171)) (T -415))
+((-2602 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2508 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-638 (-945 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2696 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-1381 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2919 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2483 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2502 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3337 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))))
+(-10 -8 (-15 -1367 (|#1| (-682 |#2|) |#1|)) (-15 -3337 ((-1162 (-945 |#2|)))) (-15 -2502 ((-1162 (-945 |#2|)))) (-15 -3689 ((-682 |#2|) |#1|)) (-15 -1354 ((-682 |#2|) |#1|)) (-15 -2483 ((-682 |#2|))) (-15 -2919 ((-682 |#2|))) (-15 -1381 (|#2|)) (-15 -2696 (|#2|)) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -2257 (|#1| (-1253 |#2|))) (-15 -2508 ((-638 (-945 |#2|)))) (-15 -2602 ((-1253 (-682 |#2|)))) (-15 -3969 ((-682 |#2|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1|)) (-15 -3027 ((-3 |#1| "failed"))) (-15 -2104 ((-3 |#1| "failed"))) (-15 -2445 ((-3 |#1| "failed"))) (-15 -1312 ((-3 (-2 (|:| |particular| |#1|) (|:| -3711 (-638 |#1|))) "failed"))) (-15 -2991 ((-3 (-2 (|:| |particular| |#1|) (|:| -3711 (-638 |#1|))) "failed"))) (-15 -2483 ((-682 |#2|) (-1253 |#1|))) (-15 -2919 ((-682 |#2|) (-1253 |#1|))) (-15 -1381 (|#2| (-1253 |#1|))) (-15 -2696 (|#2| (-1253 |#1|))) (-15 -2257 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3969 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3969 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3689 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1354 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -2602 ((-1253 (-682 |#2|)) (-1253 |#1|))) (-15 -2508 ((-638 (-945 |#2|)) (-1253 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-3027 (((-3 $ "failed")) 37 (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) 19)) (-2602 (((-1253 (-682 |#1|)) (-1253 $)) 78) (((-1253 (-682 |#1|))) 100)) (-1533 (((-1253 $)) 81)) (-1965 (($) 17 T CONST)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) 40 (|has| |#1| (-553)))) (-2104 (((-3 $ "failed")) 38 (|has| |#1| (-553)))) (-2483 (((-682 |#1|) (-1253 $)) 65) (((-682 |#1|)) 92)) (-2228 ((|#1| $) 74)) (-3689 (((-682 |#1|) $ (-1253 $)) 76) (((-682 |#1|) $) 90)) (-3494 (((-3 $ "failed") $) 45 (|has| |#1| (-553)))) (-3337 (((-1162 (-945 |#1|))) 88 (|has| |#1| (-362)))) (-3928 (($ $ (-914)) 28)) (-3589 ((|#1| $) 72)) (-2392 (((-1162 |#1|) $) 42 (|has| |#1| (-553)))) (-1381 ((|#1| (-1253 $)) 67) ((|#1|) 94)) (-1659 (((-1162 |#1|) $) 63)) (-2380 (((-112)) 57)) (-2257 (($ (-1253 |#1|) (-1253 $)) 69) (($ (-1253 |#1|)) 98)) (-3466 (((-3 $ "failed") $) 47 (|has| |#1| (-553)))) (-1569 (((-914)) 80)) (-1922 (((-112)) 54)) (-3203 (($ $ (-914)) 33)) (-3104 (((-112)) 50)) (-2008 (((-112)) 48)) (-3138 (((-112)) 52)) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) 41 (|has| |#1| (-553)))) (-2445 (((-3 $ "failed")) 39 (|has| |#1| (-553)))) (-2919 (((-682 |#1|) (-1253 $)) 66) (((-682 |#1|)) 93)) (-3618 ((|#1| $) 75)) (-1354 (((-682 |#1|) $ (-1253 $)) 77) (((-682 |#1|) $) 91)) (-4063 (((-3 $ "failed") $) 46 (|has| |#1| (-553)))) (-2502 (((-1162 (-945 |#1|))) 89 (|has| |#1| (-362)))) (-3394 (($ $ (-914)) 29)) (-3847 ((|#1| $) 73)) (-2377 (((-1162 |#1|) $) 43 (|has| |#1| (-553)))) (-2696 ((|#1| (-1253 $)) 68) ((|#1|) 95)) (-1539 (((-1162 |#1|) $) 64)) (-3139 (((-112)) 58)) (-1764 (((-1148) $) 9)) (-4367 (((-112)) 49)) (-1446 (((-112)) 51)) (-3696 (((-112)) 53)) (-1714 (((-1110) $) 10)) (-3701 (((-112)) 56)) (-2277 ((|#1| $ (-561)) 101)) (-3969 (((-1253 |#1|) $ (-1253 $)) 71) (((-682 |#1|) (-1253 $) (-1253 $)) 70) (((-1253 |#1|) $) 103) (((-682 |#1|) (-1253 $)) 102)) (-4174 (((-1253 |#1|) $) 97) (($ (-1253 |#1|)) 96)) (-2508 (((-638 (-945 |#1|)) (-1253 $)) 79) (((-638 (-945 |#1|))) 99)) (-3800 (($ $ $) 25)) (-3053 (((-112)) 62)) (-4022 (((-856) $) 11)) (-3711 (((-1253 $)) 104)) (-1758 (((-638 (-1253 |#1|))) 44 (|has| |#1| (-553)))) (-3392 (($ $ $ $) 26)) (-2216 (((-112)) 60)) (-1367 (($ (-682 |#1|) $) 87)) (-1761 (($ $ $) 24)) (-2500 (((-112)) 61)) (-2887 (((-112)) 59)) (-4326 (((-112)) 55)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-416 |#1|) (-139) (-171)) (T -416))
-((-2743 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-416 *3)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) (-5 *2 (-679 *4)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-1644 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 (-679 *3))))) (-3175 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-942 *3))))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-2408 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2392 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2284 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-4157 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))) (-3900 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1159 (-942 *3))))) (-3889 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1159 (-942 *3))))) (-2484 (*1 *1 *2 *1) (-12 (-5 *2 (-679 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171)))))
-(-13 (-366 |t#1|) (-10 -8 (-15 -2743 ((-1246 $))) (-15 -2979 ((-1246 |t#1|) $)) (-15 -2979 ((-679 |t#1|) (-1246 $))) (-15 -2276 (|t#1| $ (-558))) (-15 -1644 ((-1246 (-679 |t#1|)))) (-15 -3175 ((-635 (-942 |t#1|)))) (-15 -3431 ($ (-1246 |t#1|))) (-15 -3441 ((-1246 |t#1|) $)) (-15 -3441 ($ (-1246 |t#1|))) (-15 -2408 (|t#1|)) (-15 -2392 (|t#1|)) (-15 -2284 ((-679 |t#1|))) (-15 -4157 ((-679 |t#1|))) (-15 -4138 ((-679 |t#1|) $)) (-15 -1398 ((-679 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -3900 ((-1159 (-942 |t#1|)))) (-15 -3889 ((-1159 (-942 |t#1|))))) |%noBranch|) (-15 -2484 ($ (-679 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-366 |#1|) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-711) . T) ((-735 |#1|) . T) ((-752) . T) ((-1045 |#1|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 44)) (-4072 (($ $) 59)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 147)) (-3244 (($ $) NIL)) (-4326 (((-112) $) 38)) (-3466 ((|#1| $) 13)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#1| (-1204)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-1204)))) (-1821 (($ |#1| (-558)) 34)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 117)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 57)) (-3248 (((-3 $ "failed") $) 132)) (-3904 (((-3 (-406 (-558)) "failed") $) 65 (|has| |#1| (-543)))) (-2288 (((-112) $) 61 (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) 72 (|has| |#1| (-543)))) (-4336 (($ |#1| (-558)) 36)) (-2992 (((-112) $) 153 (|has| |#1| (-1204)))) (-3999 (((-112) $) 45)) (-1568 (((-762) $) 40)) (-3505 (((-3 "nil" "sqfr" "irred" "prime") $ (-558)) 138)) (-3572 ((|#1| $ (-558)) 137)) (-2962 (((-558) $ (-558)) 136)) (-1527 (($ |#1| (-558)) 33)) (-3397 (($ (-1 |#1| |#1|) $) 144)) (-2995 (($ |#1| (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558))))) 60)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-2127 (($ |#1| (-558)) 35)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 148 (|has| |#1| (-450)))) (-4174 (($ |#1| (-558) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-3381 (((-635 (-2 (|:| -3939 |#1|) (|:| -1857 (-558)))) $) 56)) (-1537 (((-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $) 12)) (-3939 (((-417 $) $) NIL (|has| |#1| (-1204)))) (-2861 (((-3 $ "failed") $ $) 139)) (-1857 (((-558) $) 133)) (-2040 ((|#1| $) 58)) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 87 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) $) NIL (|has| |#1| (-512 (-1163) $))) (($ $ (-635 (-1163)) (-635 $)) 88 (|has| |#1| (-512 (-1163) $))) (($ $ (-635 (-293 $))) 84 (|has| |#1| (-308 $))) (($ $ (-293 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-635 $) (-635 $)) NIL (|has| |#1| (-308 $)))) (-2276 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-3780 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-3441 (((-534) $) 30 (|has| |#1| (-606 (-534)))) (((-378) $) 94 (|has| |#1| (-1012))) (((-224) $) 97 (|has| |#1| (-1012)))) (-3940 (((-853) $) 115) (($ (-558)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558)))))) (-2417 (((-762)) 50)) (-2671 (((-112) $ $) NIL)) (-2207 (($) 42 T CONST)) (-2220 (($) 41 T CONST)) (-3042 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) 98)) (-1796 (($ $) 129) (($ $ $) NIL)) (-1785 (($ $ $) 141)) (** (($ $ (-911)) NIL) (($ $ (-762)) 104)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL)))
-(((-417 |#1|) (-13 (-550) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -2040 (|#1| $)) (-15 -1857 ((-558) $)) (-15 -2995 ($ |#1| (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -1537 ((-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -1527 ($ |#1| (-558))) (-15 -3381 ((-635 (-2 (|:| -3939 |#1|) (|:| -1857 (-558)))) $)) (-15 -2127 ($ |#1| (-558))) (-15 -2962 ((-558) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3505 ((-3 "nil" "sqfr" "irred" "prime") $ (-558))) (-15 -1568 ((-762) $)) (-15 -4336 ($ |#1| (-558))) (-15 -1821 ($ |#1| (-558))) (-15 -4174 ($ |#1| (-558) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3466 (|#1| $)) (-15 -4072 ($ $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-1204)) (-6 (-1204)) |%noBranch|) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1163) $)) (-6 (-512 (-1163) $)) |%noBranch|))) (-550)) (T -417))
-((-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-550)) (-5 *1 (-417 *3)))) (-2040 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-2995 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-558))))) (-4 *2 (-550)) (-5 *1 (-417 *2)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-1527 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -3939 *3) (|:| -1857 (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-2127 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-2962 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-3505 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *4)) (-4 *4 (-550)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-417 *3)) (-4 *3 (-550)))) (-4336 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-1821 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-4174 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-3466 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-4072 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550)))) (-3904 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550)))))
-(-13 (-550) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -2040 (|#1| $)) (-15 -1857 ((-558) $)) (-15 -2995 ($ |#1| (-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -1537 ((-635 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -1527 ($ |#1| (-558))) (-15 -3381 ((-635 (-2 (|:| -3939 |#1|) (|:| -1857 (-558)))) $)) (-15 -2127 ($ |#1| (-558))) (-15 -2962 ((-558) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3505 ((-3 "nil" "sqfr" "irred" "prime") $ (-558))) (-15 -1568 ((-762) $)) (-15 -4336 ($ |#1| (-558))) (-15 -1821 ($ |#1| (-558))) (-15 -4174 ($ |#1| (-558) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3466 (|#1| $)) (-15 -4072 ($ $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-1204)) (-6 (-1204)) |%noBranch|) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1163) $)) (-6 (-512 (-1163) $)) |%noBranch|)))
-((-3250 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 21)) (-4169 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 16)))
-(((-418 |#1|) (-10 -7 (-15 -3250 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4169 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-550)) (T -418))
-((-4169 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-550)) (-5 *1 (-418 *3)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-550)) (-5 *2 (-417 *4)) (-5 *1 (-418 *4)))))
-(-10 -7 (-15 -3250 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4169 ((-417 |#1|) (-417 |#1|) (-417 |#1|))))
-((-1305 ((|#2| |#2|) 165)) (-3796 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112)) 57)))
-(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112))) (-15 -1305 (|#2| |#2|))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|)) (-1163) |#2|) (T -419))
-((-1305 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1185) (-429 *3))) (-14 *4 (-1163)) (-14 *5 *2))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145)))))) (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-14 *6 (-1163)) (-14 *7 *3))))
-(-10 -7 (-15 -3796 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112))) (-15 -1305 (|#2| |#2|)))
-((-3397 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1039) (-841)) (-429 |#1|) (-13 (-1039) (-841)) (-429 |#3|)) (T -420))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1039) (-841))) (-4 *6 (-13 (-1039) (-841))) (-4 *2 (-429 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5)))))
-(-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1305 ((|#2| |#2|) 89)) (-3330 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145)) 48)) (-1321 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145)) 153)))
-(((-421 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3330 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -1321 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -1305 (|#2| |#2|))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|) (-10 -8 (-15 -3940 ($ |#3|)))) (-839) (-13 (-1224 |#2| |#3|) (-362) (-1185) (-10 -8 (-15 -3780 ($ $)) (-15 -1337 ($ $)))) (-973 |#4|) (-1163)) (T -421))
-((-1305 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *2 (-13 (-27) (-1185) (-429 *3) (-10 -8 (-15 -3940 ($ *4))))) (-4 *4 (-839)) (-4 *5 (-13 (-1224 *2 *4) (-362) (-1185) (-10 -8 (-15 -3780 ($ $)) (-15 -1337 ($ $))))) (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-973 *5)) (-14 *7 (-1163)))) (-1321 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3940 ($ *7))))) (-4 *7 (-839)) (-4 *8 (-13 (-1224 *3 *7) (-362) (-1185) (-10 -8 (-15 -3780 ($ $)) (-15 -1337 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8)) (-14 *10 (-1163)))) (-3330 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3940 ($ *7))))) (-4 *7 (-839)) (-4 *8 (-13 (-1224 *3 *7) (-362) (-1185) (-10 -8 (-15 -3780 ($ $)) (-15 -1337 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8)) (-14 *10 (-1163)))))
-(-10 -7 (-15 -3330 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -1321 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))) |#2| (-112) (-1145))) (-15 -1305 (|#2| |#2|)))
-((-3484 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3866 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3397 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3866 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3484 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1087) (-424 |#1|) (-1087) (-424 |#3|)) (T -422))
-((-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1087)) (-4 *5 (-1087)) (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) (-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1087)) (-4 *2 (-1087)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5)))))
-(-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3866 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3484 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3621 (($) 44)) (-2382 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1513 (($ $ $) 39)) (-3204 (((-112) $ $) 28)) (-2507 (((-762)) 47)) (-1607 (($ (-635 |#2|)) 20) (($) NIL)) (-3692 (($) 53)) (-2953 (((-112) $ $) 13)) (-2142 ((|#2| $) 61)) (-2281 ((|#2| $) 59)) (-1486 (((-911) $) 55)) (-3490 (($ $ $) 35)) (-2349 (($ (-911)) 50)) (-1780 (($ $ |#2|) NIL) (($ $ $) 38)) (-1698 (((-762) (-1 (-112) |#2|) $) NIL) (((-762) |#2| $) 26)) (-3952 (($ (-635 |#2|)) 24)) (-3733 (($ $) 46)) (-3940 (((-853) $) 33)) (-3071 (((-762) $) 21)) (-4008 (($ (-635 |#2|)) 19) (($) NIL)) (-1708 (((-112) $ $) 16)))
-(((-423 |#1| |#2|) (-10 -8 (-15 -2507 ((-762))) (-15 -2349 (|#1| (-911))) (-15 -1486 ((-911) |#1|)) (-15 -3692 (|#1|)) (-15 -2142 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -3621 (|#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3071 ((-762) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -2953 ((-112) |#1| |#1|)) (-15 -4008 (|#1|)) (-15 -4008 (|#1| (-635 |#2|))) (-15 -1607 (|#1|)) (-15 -1607 (|#1| (-635 |#2|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#2|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -3204 ((-112) |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#2| |#1|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -1698 ((-762) |#2| |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|))) (-424 |#2|) (-1087)) (T -423))
-((-2507 (*1 *2) (-12 (-4 *4 (-1087)) (-5 *2 (-762)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))))
-(-10 -8 (-15 -2507 ((-762))) (-15 -2349 (|#1| (-911))) (-15 -1486 ((-911) |#1|)) (-15 -3692 (|#1|)) (-15 -2142 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -3621 (|#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3071 ((-762) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -2953 ((-112) |#1| |#1|)) (-15 -4008 (|#1|)) (-15 -4008 (|#1| (-635 |#2|))) (-15 -1607 (|#1|)) (-15 -1607 (|#1| (-635 |#2|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#2|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -3204 ((-112) |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#2| |#1|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -1698 ((-762) |#2| |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)))
-((-3929 (((-112) $ $) 19)) (-3621 (($) 67 (|has| |#1| (-367)))) (-2382 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1513 (($ $ $) 78)) (-3204 (((-112) $ $) 79)) (-3651 (((-112) $ (-762)) 8)) (-2507 (((-762)) 61 (|has| |#1| (-367)))) (-1607 (($ (-635 |#1|)) 74) (($) 73)) (-2256 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-3188 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ |#1| $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4383)))) (-3692 (($) 64 (|has| |#1| (-367)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-2953 (((-112) $ $) 70)) (-4007 (((-112) $ (-762)) 9)) (-2142 ((|#1| $) 65 (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2281 ((|#1| $) 66 (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-1486 (((-911) $) 63 (|has| |#1| (-367)))) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22)) (-3490 (($ $ $) 75)) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40)) (-2349 (($ (-911)) 62 (|has| |#1| (-367)))) (-1688 (((-1107) $) 21)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1780 (($ $ |#1|) 77) (($ $ $) 76)) (-1966 (($) 49) (($ (-635 |#1|)) 48)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 50)) (-3733 (($ $) 68 (|has| |#1| (-367)))) (-3940 (((-853) $) 18)) (-3071 (((-762) $) 69)) (-4008 (($ (-635 |#1|)) 72) (($) 71)) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20)) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-424 |#1|) (-139) (-1087)) (T -424))
-((-3071 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1087)) (-5 *2 (-762)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-367)))) (-3621 (*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1087)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841)))))
-(-13 (-228 |t#1|) (-1085 |t#1|) (-10 -8 (-6 -4383) (-15 -3071 ((-762) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -3733 ($ $)) (-15 -3621 ($))) |%noBranch|) (IF (|has| |t#1| (-841)) (PROGN (-15 -2281 (|t#1| $)) (-15 -2142 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-367) |has| |#1| (-367)) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1085 |#1|) . T) ((-1087) . T) ((-1200) . T))
-((-2662 (((-579 |#2|) |#2| (-1163)) 35)) (-2795 (((-579 |#2|) |#2| (-1163)) 20)) (-3615 ((|#2| |#2| (-1163)) 25)))
-(((-425 |#1| |#2|) (-10 -7 (-15 -2795 ((-579 |#2|) |#2| (-1163))) (-15 -2662 ((-579 |#2|) |#2| (-1163))) (-15 -3615 (|#2| |#2| (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-29 |#1|))) (T -425))
-((-3615 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1185) (-29 *4))))) (-2662 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1185) (-29 *5))))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1185) (-29 *5))))))
-(-10 -7 (-15 -2795 ((-579 |#2|) |#2| (-1163))) (-15 -2662 ((-579 |#2|) |#2| (-1163))) (-15 -3615 (|#2| |#2| (-1163))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-3893 (($ |#2| |#1|) 35)) (-3352 (($ |#2| |#1|) 33)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-2417 (((-762)) NIL)) (-2207 (($) 10 T CONST)) (-2220 (($) 16 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 34)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-426 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4370)) (IF (|has| |#1| (-6 -4370)) (-6 -4370) |%noBranch|) |%noBranch|) (-15 -3940 ($ |#1|)) (-15 -3940 ($ (-330 |#2|))) (-15 -3893 ($ |#2| |#1|)) (-15 -3352 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-558)))) (-13 (-841) (-21))) (T -426))
-((-3940 (*1 *1 *2) (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-558))))) (-4 *3 (-13 (-841) (-21))))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-841) (-21))) (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-558))))))) (-3893 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558))))) (-4 *2 (-13 (-841) (-21))))) (-3352 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558))))) (-4 *2 (-13 (-841) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4370)) (IF (|has| |#1| (-6 -4370)) (-6 -4370) |%noBranch|) |%noBranch|) (-15 -3940 ($ |#1|)) (-15 -3940 ($ (-330 |#2|))) (-15 -3893 ($ |#2| |#1|)) (-15 -3352 ($ |#2| |#1|))))
-((-1337 (((-3 |#2| (-635 |#2|)) |#2| (-1163)) 108)))
-(((-427 |#1| |#2|) (-10 -7 (-15 -1337 ((-3 |#2| (-635 |#2|)) |#2| (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-29 |#1|))) (T -427))
-((-1337 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1185) (-949) (-29 *5))))))
-(-10 -7 (-15 -1337 ((-3 |#2| (-635 |#2|)) |#2| (-1163))))
-((-4078 (((-635 (-1163)) $) 72)) (-3907 (((-406 (-1159 $)) $ (-604 $)) 273)) (-2564 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) 237)) (-3302 (((-3 (-604 $) "failed") $) NIL) (((-3 (-1163) "failed") $) 75) (((-3 (-558) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-406 (-942 |#2|)) "failed") $) 324) (((-3 (-942 |#2|) "failed") $) 235) (((-3 (-406 (-558)) "failed") $) NIL)) (-3226 (((-604 $) $) NIL) (((-1163) $) 30) (((-558) $) NIL) ((|#2| $) 231) (((-406 (-942 |#2|)) $) 305) (((-942 |#2|) $) 232) (((-406 (-558)) $) NIL)) (-2154 (((-114) (-114)) 47)) (-2772 (($ $) 87)) (-2025 (((-3 (-604 $) "failed") $) 228)) (-3892 (((-635 (-604 $)) $) 229)) (-2819 (((-3 (-635 $) "failed") $) 247)) (-3633 (((-3 (-2 (|:| |val| $) (|:| -1857 (-558))) "failed") $) 254)) (-4195 (((-3 (-635 $) "failed") $) 245)) (-2320 (((-3 (-2 (|:| -3455 (-558)) (|:| |var| (-604 $))) "failed") $) 264)) (-3637 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $) 251) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-1163)) 219)) (-3837 (((-112) $) 19)) (-3853 ((|#2| $) 21)) (-1369 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) 236) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 96) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1163)) 57) (($ $ (-635 (-1163))) 240) (($ $) 241) (($ $ (-114) $ (-1163)) 60) (($ $ (-635 (-114)) (-635 $) (-1163)) 67) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) 107) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) 242) (($ $ (-1163) (-762) (-1 $ (-635 $))) 94) (($ $ (-1163) (-762) (-1 $ $)) 93)) (-2276 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) 106)) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) 238)) (-4218 (($ $) 284)) (-3441 (((-882 (-558)) $) 257) (((-882 (-378)) $) 261) (($ (-417 $)) 320) (((-534) $) NIL)) (-3940 (((-853) $) 239) (($ (-604 $)) 84) (($ (-1163)) 26) (($ |#2|) NIL) (($ (-1112 |#2| (-604 $))) NIL) (($ (-406 |#2|)) 289) (($ (-942 (-406 |#2|))) 329) (($ (-406 (-942 (-406 |#2|)))) 301) (($ (-406 (-942 |#2|))) 295) (($ $) NIL) (($ (-942 |#2|)) 185) (($ (-406 (-558))) 334) (($ (-558)) NIL)) (-2417 (((-762)) 79)) (-2480 (((-112) (-114)) 41)) (-4238 (($ (-1163) $) 33) (($ (-1163) $ $) 34) (($ (-1163) $ $ $) 35) (($ (-1163) $ $ $ $) 36) (($ (-1163) (-635 $)) 39)) (* (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
-(((-428 |#1| |#2|) (-10 -8 (-15 * (|#1| (-911) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3940 (|#1| (-558))) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3940 (|#1| (-942 |#2|))) (-15 -3302 ((-3 (-942 |#2|) "failed") |#1|)) (-15 -3226 ((-942 |#2|) |#1|)) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3940 (|#1| (-406 (-942 |#2|)))) (-15 -3302 ((-3 (-406 (-942 |#2|)) "failed") |#1|)) (-15 -3226 ((-406 (-942 |#2|)) |#1|)) (-15 -3907 ((-406 (-1159 |#1|)) |#1| (-604 |#1|))) (-15 -3940 (|#1| (-406 (-942 (-406 |#2|))))) (-15 -3940 (|#1| (-942 (-406 |#2|)))) (-15 -3940 (|#1| (-406 |#2|))) (-15 -4218 (|#1| |#1|)) (-15 -3441 (|#1| (-417 |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-762) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-762) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| |#1|)))) (-15 -3633 ((-3 (-2 (|:| |val| |#1|) (|:| -1857 (-558))) "failed") |#1|)) (-15 -3637 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1857 (-558))) "failed") |#1| (-1163))) (-15 -3637 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1857 (-558))) "failed") |#1| (-114))) (-15 -2772 (|#1| |#1|)) (-15 -3940 (|#1| (-1112 |#2| (-604 |#1|)))) (-15 -2320 ((-3 (-2 (|:| -3455 (-558)) (|:| |var| (-604 |#1|))) "failed") |#1|)) (-15 -4195 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3637 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1857 (-558))) "failed") |#1|)) (-15 -2819 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 |#1|) (-1163))) (-15 -1369 (|#1| |#1| (-114) |#1| (-1163))) (-15 -1369 (|#1| |#1|)) (-15 -1369 (|#1| |#1| (-635 (-1163)))) (-15 -1369 (|#1| |#1| (-1163))) (-15 -4238 (|#1| (-1163) (-635 |#1|))) (-15 -4238 (|#1| (-1163) |#1| |#1| |#1| |#1|)) (-15 -4238 (|#1| (-1163) |#1| |#1| |#1|)) (-15 -4238 (|#1| (-1163) |#1| |#1|)) (-15 -4238 (|#1| (-1163) |#1|)) (-15 -4078 ((-635 (-1163)) |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -3837 ((-112) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3940 (|#1| (-1163))) (-15 -3302 ((-3 (-1163) "failed") |#1|)) (-15 -3226 ((-1163) |#1|)) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -3892 ((-635 (-604 |#1|)) |#1|)) (-15 -2025 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -2564 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2564 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2564 (|#1| |#1| (-293 |#1|))) (-15 -2276 (|#1| (-114) (-635 |#1|))) (-15 -2276 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -1369 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3940 (|#1| (-604 |#1|))) (-15 -3302 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -3226 ((-604 |#1|) |#1|)) (-15 -3940 ((-853) |#1|))) (-429 |#2|) (-841)) (T -428))
-((-2154 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-841)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) (-2417 (*1 *2) (-12 (-4 *4 (-841)) (-5 *2 (-762)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))))
-(-10 -8 (-15 * (|#1| (-911) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3940 (|#1| (-558))) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3940 (|#1| (-942 |#2|))) (-15 -3302 ((-3 (-942 |#2|) "failed") |#1|)) (-15 -3226 ((-942 |#2|) |#1|)) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -3940 (|#1| (-406 (-942 |#2|)))) (-15 -3302 ((-3 (-406 (-942 |#2|)) "failed") |#1|)) (-15 -3226 ((-406 (-942 |#2|)) |#1|)) (-15 -3907 ((-406 (-1159 |#1|)) |#1| (-604 |#1|))) (-15 -3940 (|#1| (-406 (-942 (-406 |#2|))))) (-15 -3940 (|#1| (-942 (-406 |#2|)))) (-15 -3940 (|#1| (-406 |#2|))) (-15 -4218 (|#1| |#1|)) (-15 -3441 (|#1| (-417 |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-762) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-762) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-762)) (-635 (-1 |#1| |#1|)))) (-15 -3633 ((-3 (-2 (|:| |val| |#1|) (|:| -1857 (-558))) "failed") |#1|)) (-15 -3637 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1857 (-558))) "failed") |#1| (-1163))) (-15 -3637 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1857 (-558))) "failed") |#1| (-114))) (-15 -2772 (|#1| |#1|)) (-15 -3940 (|#1| (-1112 |#2| (-604 |#1|)))) (-15 -2320 ((-3 (-2 (|:| -3455 (-558)) (|:| |var| (-604 |#1|))) "failed") |#1|)) (-15 -4195 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3637 ((-3 (-2 (|:| |var| (-604 |#1|)) (|:| -1857 (-558))) "failed") |#1|)) (-15 -2819 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 |#1|) (-1163))) (-15 -1369 (|#1| |#1| (-114) |#1| (-1163))) (-15 -1369 (|#1| |#1|)) (-15 -1369 (|#1| |#1| (-635 (-1163)))) (-15 -1369 (|#1| |#1| (-1163))) (-15 -4238 (|#1| (-1163) (-635 |#1|))) (-15 -4238 (|#1| (-1163) |#1| |#1| |#1| |#1|)) (-15 -4238 (|#1| (-1163) |#1| |#1| |#1|)) (-15 -4238 (|#1| (-1163) |#1| |#1|)) (-15 -4238 (|#1| (-1163) |#1|)) (-15 -4078 ((-635 (-1163)) |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -3837 ((-112) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3940 (|#1| (-1163))) (-15 -3302 ((-3 (-1163) "failed") |#1|)) (-15 -3226 ((-1163) |#1|)) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-114) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-114)) (-635 (-1 |#1| |#1|)))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| |#1|))) (-15 -1369 (|#1| |#1| (-1163) (-1 |#1| (-635 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1369 (|#1| |#1| (-635 (-1163)) (-635 (-1 |#1| |#1|)))) (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -3892 ((-635 (-604 |#1|)) |#1|)) (-15 -2025 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -2564 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -2564 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -2564 (|#1| |#1| (-293 |#1|))) (-15 -2276 (|#1| (-114) (-635 |#1|))) (-15 -2276 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1| |#1|)) (-15 -2276 (|#1| (-114) |#1|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -1369 (|#1| |#1| (-635 (-604 |#1|)) (-635 |#1|))) (-15 -1369 (|#1| |#1| (-604 |#1|) |#1|)) (-15 -3940 (|#1| (-604 |#1|))) (-15 -3302 ((-3 (-604 |#1|) "failed") |#1|)) (-15 -3226 ((-604 |#1|) |#1|)) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 114 (|has| |#1| (-25)))) (-4078 (((-635 (-1163)) $) 201)) (-3907 (((-406 (-1159 $)) $ (-604 $)) 169 (|has| |#1| (-550)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 141 (|has| |#1| (-550)))) (-3244 (($ $) 142 (|has| |#1| (-550)))) (-4326 (((-112) $) 144 (|has| |#1| (-550)))) (-3798 (((-635 (-604 $)) $) 44)) (-1868 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-2564 (($ $ (-293 $)) 56) (($ $ (-635 (-293 $))) 55) (($ $ (-635 (-604 $)) (-635 $)) 54)) (-2018 (($ $) 161 (|has| |#1| (-550)))) (-4110 (((-417 $) $) 162 (|has| |#1| (-550)))) (-1599 (((-112) $ $) 152 (|has| |#1| (-550)))) (-3457 (($) 102 (-3994 (|has| |#1| (-1099)) (|has| |#1| (-25))) CONST)) (-3302 (((-3 (-604 $) "failed") $) 69) (((-3 (-1163) "failed") $) 214) (((-3 (-558) "failed") $) 208 (|has| |#1| (-1028 (-558)))) (((-3 |#1| "failed") $) 205) (((-3 (-406 (-942 |#1|)) "failed") $) 167 (|has| |#1| (-550))) (((-3 (-942 |#1|) "failed") $) 121 (|has| |#1| (-1039))) (((-3 (-406 (-558)) "failed") $) 96 (-3994 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-3226 (((-604 $) $) 70) (((-1163) $) 215) (((-558) $) 207 (|has| |#1| (-1028 (-558)))) ((|#1| $) 206) (((-406 (-942 |#1|)) $) 168 (|has| |#1| (-550))) (((-942 |#1|) $) 122 (|has| |#1| (-1039))) (((-406 (-558)) $) 97 (-3994 (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558))))))) (-1709 (($ $ $) 156 (|has| |#1| (-550)))) (-1918 (((-679 (-558)) (-679 $)) 135 (-2157 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 134 (-2157 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 133 (|has| |#1| (-1039))) (((-679 |#1|) (-679 $)) 132 (|has| |#1| (-1039)))) (-3248 (((-3 $ "failed") $) 104 (|has| |#1| (-1099)))) (-2881 (($ $ $) 155 (|has| |#1| (-550)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 150 (|has| |#1| (-550)))) (-2992 (((-112) $) 163 (|has| |#1| (-550)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 210 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 209 (|has| |#1| (-876 (-378))))) (-2058 (($ $) 51) (($ (-635 $)) 50)) (-2380 (((-635 (-114)) $) 43)) (-2154 (((-114) (-114)) 42)) (-3999 (((-112) $) 103 (|has| |#1| (-1099)))) (-1495 (((-112) $) 22 (|has| $ (-1028 (-558))))) (-2772 (($ $) 184 (|has| |#1| (-1039)))) (-3316 (((-1112 |#1| (-604 $)) $) 185 (|has| |#1| (-1039)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 159 (|has| |#1| (-550)))) (-2550 (((-1159 $) (-604 $)) 25 (|has| $ (-1039)))) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-3397 (($ (-1 $ $) (-604 $)) 36)) (-2025 (((-3 (-604 $) "failed") $) 46)) (-1500 (($ (-635 $)) 148 (|has| |#1| (-550))) (($ $ $) 147 (|has| |#1| (-550)))) (-2510 (((-1145) $) 9)) (-3892 (((-635 (-604 $)) $) 45)) (-3390 (($ (-114) $) 38) (($ (-114) (-635 $)) 37)) (-2819 (((-3 (-635 $) "failed") $) 190 (|has| |#1| (-1099)))) (-3633 (((-3 (-2 (|:| |val| $) (|:| -1857 (-558))) "failed") $) 181 (|has| |#1| (-1039)))) (-4195 (((-3 (-635 $) "failed") $) 188 (|has| |#1| (-25)))) (-2320 (((-3 (-2 (|:| -3455 (-558)) (|:| |var| (-604 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3637 (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $) 189 (|has| |#1| (-1099))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-114)) 183 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-1163)) 182 (|has| |#1| (-1039)))) (-3557 (((-112) $ (-114)) 40) (((-112) $ (-1163)) 39)) (-3823 (($ $) 106 (-3994 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-2361 (((-762) $) 47)) (-1688 (((-1107) $) 10)) (-3837 (((-112) $) 203)) (-3853 ((|#1| $) 202)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 149 (|has| |#1| (-550)))) (-1544 (($ (-635 $)) 146 (|has| |#1| (-550))) (($ $ $) 145 (|has| |#1| (-550)))) (-1711 (((-112) $ $) 35) (((-112) $ (-1163)) 34)) (-3939 (((-417 $) $) 160 (|has| |#1| (-550)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-550))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 157 (|has| |#1| (-550)))) (-2861 (((-3 $ "failed") $ $) 140 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 151 (|has| |#1| (-550)))) (-4254 (((-112) $) 23 (|has| $ (-1028 (-558))))) (-1369 (($ $ (-604 $) $) 67) (($ $ (-635 (-604 $)) (-635 $)) 66) (($ $ (-635 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1163)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1163) (-1 $ (-635 $))) 31) (($ $ (-1163) (-1 $ $)) 30) (($ $ (-635 (-114)) (-635 (-1 $ $))) 29) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-114) (-1 $ (-635 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1163)) 195 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163))) 194 (|has| |#1| (-606 (-534)))) (($ $) 193 (|has| |#1| (-606 (-534)))) (($ $ (-114) $ (-1163)) 192 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-114)) (-635 $) (-1163)) 191 (|has| |#1| (-606 (-534)))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $))) 180 (|has| |#1| (-1039))) (($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $)))) 179 (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ (-635 $))) 178 (|has| |#1| (-1039))) (($ $ (-1163) (-762) (-1 $ $)) 177 (|has| |#1| (-1039)))) (-1562 (((-762) $) 153 (|has| |#1| (-550)))) (-2276 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-635 $)) 57)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 154 (|has| |#1| (-550)))) (-3604 (($ $) 49) (($ $ $) 48)) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) 126 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 125 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 124 (|has| |#1| (-1039))) (($ $ (-1163)) 123 (|has| |#1| (-1039)))) (-4218 (($ $) 174 (|has| |#1| (-550)))) (-3327 (((-1112 |#1| (-604 $)) $) 175 (|has| |#1| (-550)))) (-2297 (($ $) 24 (|has| $ (-1039)))) (-3441 (((-882 (-558)) $) 212 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 211 (|has| |#1| (-606 (-882 (-378))))) (($ (-417 $)) 176 (|has| |#1| (-550))) (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3068 (($ $ $) 109 (|has| |#1| (-471)))) (-3072 (($ $ $) 110 (|has| |#1| (-471)))) (-3940 (((-853) $) 11) (($ (-604 $)) 68) (($ (-1163)) 213) (($ |#1|) 204) (($ (-1112 |#1| (-604 $))) 186 (|has| |#1| (-1039))) (($ (-406 |#1|)) 172 (|has| |#1| (-550))) (($ (-942 (-406 |#1|))) 171 (|has| |#1| (-550))) (($ (-406 (-942 (-406 |#1|)))) 170 (|has| |#1| (-550))) (($ (-406 (-942 |#1|))) 166 (|has| |#1| (-550))) (($ $) 139 (|has| |#1| (-550))) (($ (-942 |#1|)) 120 (|has| |#1| (-1039))) (($ (-406 (-558))) 95 (-3994 (|has| |#1| (-550)) (-12 (|has| |#1| (-1028 (-558))) (|has| |#1| (-550))) (|has| |#1| (-1028 (-406 (-558)))))) (($ (-558)) 94 (-3994 (|has| |#1| (-1039)) (|has| |#1| (-1028 (-558)))))) (-1487 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-2417 (((-762)) 131 (|has| |#1| (-1039)))) (-2638 (($ $) 53) (($ (-635 $)) 52)) (-2480 (((-112) (-114)) 41)) (-2671 (((-112) $ $) 143 (|has| |#1| (-550)))) (-4238 (($ (-1163) $) 200) (($ (-1163) $ $) 199) (($ (-1163) $ $ $) 198) (($ (-1163) $ $ $ $) 197) (($ (-1163) (-635 $)) 196)) (-2207 (($) 113 (|has| |#1| (-25)) CONST)) (-2220 (($) 101 (|has| |#1| (-1099)) CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) 130 (|has| |#1| (-1039))) (($ $ (-1163) (-762)) 129 (|has| |#1| (-1039))) (($ $ (-635 (-1163))) 128 (|has| |#1| (-1039))) (($ $ (-1163)) 127 (|has| |#1| (-1039)))) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-1805 (($ (-1112 |#1| (-604 $)) (-1112 |#1| (-604 $))) 173 (|has| |#1| (-550))) (($ $ $) 107 (-3994 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-1796 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1785 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-558)) 108 (-3994 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-762)) 105 (|has| |#1| (-1099))) (($ $ (-911)) 100 (|has| |#1| (-1099)))) (* (($ (-406 (-558)) $) 165 (|has| |#1| (-550))) (($ $ (-406 (-558))) 164 (|has| |#1| (-550))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-558) $) 119 (|has| |#1| (-21))) (($ (-762) $) 115 (|has| |#1| (-25))) (($ (-911) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1099)))))
-(((-429 |#1|) (-139) (-841)) (T -429))
-((-3837 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-112)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-635 (-1163))))) (-4238 (*1 *1 *2 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4238 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4238 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4238 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))) (-4238 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 *1)) (-4 *1 (-429 *4)) (-4 *4 (-841)))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-606 (-534))))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1163))) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-606 (-534))))) (-1369 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-606 (-534))))) (-1369 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1163)) (-4 *1 (-429 *4)) (-4 *4 (-841)) (-4 *4 (-606 (-534))))) (-1369 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 *1)) (-5 *4 (-1163)) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-606 (-534))))) (-2819 (*1 *2 *1) (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-429 *3)))) (-3637 (*1 *2 *1) (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841)) (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1857 (-558)))) (-4 *1 (-429 *3)))) (-4195 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-429 *3)))) (-2320 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -3455 (-558)) (|:| |var| (-604 *1)))) (-4 *1 (-429 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-1039)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1))) (-4 *1 (-429 *3)))) (-2772 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-1039)))) (-3637 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1039)) (-4 *4 (-841)) (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1857 (-558)))) (-4 *1 (-429 *4)))) (-3637 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-1039)) (-4 *4 (-841)) (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1857 (-558)))) (-4 *1 (-429 *4)))) (-3633 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-841)) (-5 *2 (-2 (|:| |val| *1) (|:| -1857 (-558)))) (-4 *1 (-429 *3)))) (-1369 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762))) (-5 *4 (-635 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-1369 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762))) (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-1369 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 (-635 *1))) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-1369 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 *1)) (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-550)) (-4 *3 (-841)))) (-3327 (*1 *2 *1) (-12 (-4 *3 (-550)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1))) (-4 *1 (-429 *3)))) (-4218 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-550)))) (-1805 (*1 *1 *2 *2) (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-942 (-406 *3))) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-406 *3)))) (-4 *3 (-550)) (-4 *3 (-841)) (-4 *1 (-429 *3)))) (-3907 (*1 *2 *1 *3) (-12 (-5 *3 (-604 *1)) (-4 *1 (-429 *4)) (-4 *4 (-841)) (-4 *4 (-550)) (-5 *2 (-406 (-1159 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-1099)))))
-(-13 (-301) (-1028 (-1163)) (-874 |t#1|) (-399 |t#1|) (-410 |t#1|) (-10 -8 (-15 -3837 ((-112) $)) (-15 -3853 (|t#1| $)) (-15 -4078 ((-635 (-1163)) $)) (-15 -4238 ($ (-1163) $)) (-15 -4238 ($ (-1163) $ $)) (-15 -4238 ($ (-1163) $ $ $)) (-15 -4238 ($ (-1163) $ $ $ $)) (-15 -4238 ($ (-1163) (-635 $))) (IF (|has| |t#1| (-606 (-534))) (PROGN (-6 (-606 (-534))) (-15 -1369 ($ $ (-1163))) (-15 -1369 ($ $ (-635 (-1163)))) (-15 -1369 ($ $)) (-15 -1369 ($ $ (-114) $ (-1163))) (-15 -1369 ($ $ (-635 (-114)) (-635 $) (-1163)))) |%noBranch|) (IF (|has| |t#1| (-1099)) (PROGN (-6 (-717)) (-15 ** ($ $ (-762))) (-15 -2819 ((-3 (-635 $) "failed") $)) (-15 -3637 ((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-471)) (-6 (-471)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4195 ((-3 (-635 $) "failed") $)) (-15 -2320 ((-3 (-2 (|:| -3455 (-558)) (|:| |var| (-604 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-1028 (-942 |t#1|))) (-6 (-890 (-1163))) (-6 (-376 |t#1|)) (-15 -3940 ($ (-1112 |t#1| (-604 $)))) (-15 -3316 ((-1112 |t#1| (-604 $)) $)) (-15 -2772 ($ $)) (-15 -3637 ((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-114))) (-15 -3637 ((-3 (-2 (|:| |var| (-604 $)) (|:| -1857 (-558))) "failed") $ (-1163))) (-15 -3633 ((-3 (-2 (|:| |val| $) (|:| -1857 (-558))) "failed") $)) (-15 -1369 ($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ $)))) (-15 -1369 ($ $ (-635 (-1163)) (-635 (-762)) (-635 (-1 $ (-635 $))))) (-15 -1369 ($ $ (-1163) (-762) (-1 $ (-635 $)))) (-15 -1369 ($ $ (-1163) (-762) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-362)) (-6 (-1028 (-406 (-942 |t#1|)))) (-15 -3441 ($ (-417 $))) (-15 -3327 ((-1112 |t#1| (-604 $)) $)) (-15 -4218 ($ $)) (-15 -1805 ($ (-1112 |t#1| (-604 $)) (-1112 |t#1| (-604 $)))) (-15 -3940 ($ (-406 |t#1|))) (-15 -3940 ($ (-942 (-406 |t#1|)))) (-15 -3940 ($ (-406 (-942 (-406 |t#1|))))) (-15 -3907 ((-406 (-1159 $)) $ (-604 $))) (IF (|has| |t#1| (-1028 (-558))) (-6 (-1028 (-406 (-558)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3994 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -3994 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3994 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-406 (-558))) |has| |#1| (-550)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-550)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-550)) ((-130) -3994 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-550))) ((-608 #1=(-406 (-942 |#1|))) |has| |#1| (-550)) ((-608 (-558)) -3994 (|has| |#1| (-1039)) (|has| |#1| (-1028 (-558))) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-608 #2=(-604 $)) . T) ((-608 #3=(-942 |#1|)) |has| |#1| (-1039)) ((-608 #4=(-1163)) . T) ((-608 |#1|) . T) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) |has| |#1| (-550)) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-242) |has| |#1| (-550)) ((-289) |has| |#1| (-550)) ((-306) |has| |#1| (-550)) ((-308 $) . T) ((-301) . T) ((-362) |has| |#1| (-550)) ((-376 |#1|) |has| |#1| (-1039)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) |has| |#1| (-550)) ((-471) |has| |#1| (-471)) ((-512 (-604 $) $) . T) ((-512 $ $) . T) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-550)) ((-638 |#1|) |has| |#1| (-171)) ((-638 $) -3994 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-631 (-558)) -12 (|has| |#1| (-631 (-558))) (|has| |#1| (-1039))) ((-631 |#1|) |has| |#1| (-1039)) ((-708 #0#) |has| |#1| (-550)) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) -3994 (|has| |#1| (-1099)) (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-841) . T) ((-890 (-1163)) |has| |#1| (-1039)) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-910) |has| |#1| (-550)) ((-1028 (-406 (-558))) -3994 (|has| |#1| (-1028 (-406 (-558)))) (-12 (|has| |#1| (-550)) (|has| |#1| (-1028 (-558))))) ((-1028 #1#) |has| |#1| (-550)) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #2#) . T) ((-1028 #3#) |has| |#1| (-1039)) ((-1028 #4#) . T) ((-1028 |#1|) . T) ((-1045 #0#) |has| |#1| (-550)) ((-1045 |#1|) |has| |#1| (-171)) ((-1045 $) |has| |#1| (-550)) ((-1039) -3994 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1046) -3994 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1099) -3994 (|has| |#1| (-1099)) (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1087) . T) ((-1200) . T) ((-1204) |has| |#1| (-550)))
-((-3748 ((|#2| |#2| |#2|) 33)) (-2154 (((-114) (-114)) 44)) (-3545 ((|#2| |#2|) 66)) (-2901 ((|#2| |#2|) 69)) (-2802 ((|#2| |#2|) 32)) (-3185 ((|#2| |#2| |#2|) 35)) (-1493 ((|#2| |#2| |#2|) 37)) (-1817 ((|#2| |#2| |#2|) 34)) (-3750 ((|#2| |#2| |#2|) 36)) (-2480 (((-112) (-114)) 42)) (-2343 ((|#2| |#2|) 39)) (-2734 ((|#2| |#2|) 38)) (-4241 ((|#2| |#2|) 27)) (-3765 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3087 ((|#2| |#2| |#2|) 31)))
-(((-430 |#1| |#2|) (-10 -7 (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -4241 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3765 (|#2| |#2| |#2|)) (-15 -3087 (|#2| |#2| |#2|)) (-15 -2802 (|#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -1817 (|#2| |#2| |#2|)) (-15 -3185 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2901 (|#2| |#2|)) (-15 -3545 (|#2| |#2|))) (-13 (-841) (-550)) (-429 |#1|)) (T -430))
-((-3545 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2901 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1493 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3185 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1817 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3087 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3765 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-4241 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *4)) (-4 *4 (-429 *3)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4)))))
-(-10 -7 (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -4241 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3765 (|#2| |#2| |#2|)) (-15 -3087 (|#2| |#2| |#2|)) (-15 -2802 (|#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -1817 (|#2| |#2| |#2|)) (-15 -3185 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2901 (|#2| |#2|)) (-15 -3545 (|#2| |#2|)))
-((-3567 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1159 |#2|)) (|:| |pol2| (-1159 |#2|)) (|:| |prim| (-1159 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1159 |#2|))) (|:| |prim| (-1159 |#2|))) (-635 |#2|)) 61)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -3567 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1159 |#2|))) (|:| |prim| (-1159 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -3567 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1159 |#2|)) (|:| |pol2| (-1159 |#2|)) (|:| |prim| (-1159 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-550) (-841) (-146)) (-429 |#1|)) (T -431))
-((-3567 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-550) (-841) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1159 *3)) (|:| |pol2| (-1159 *3)) (|:| |prim| (-1159 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-550) (-841) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1159 *5))) (|:| |prim| (-1159 *5)))) (-5 *1 (-431 *4 *5)))))
-(-10 -7 (-15 -3567 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1159 |#2|))) (|:| |prim| (-1159 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -3567 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1159 |#2|)) (|:| |pol2| (-1159 |#2|)) (|:| |prim| (-1159 |#2|))) |#2| |#2|)) |%noBranch|))
-((-1984 (((-1251)) 19)) (-1520 (((-1159 (-406 (-558))) |#2| (-604 |#2|)) 41) (((-406 (-558)) |#2|) 25)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -1520 ((-406 (-558)) |#2|)) (-15 -1520 ((-1159 (-406 (-558))) |#2| (-604 |#2|))) (-15 -1984 ((-1251)))) (-13 (-841) (-550) (-1028 (-558))) (-429 |#1|)) (T -432))
-((-1984 (*1 *2) (-12 (-4 *3 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-1251)) (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))) (-1520 (*1 *2 *3 *4) (-12 (-5 *4 (-604 *3)) (-4 *3 (-429 *5)) (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-432 *5 *3)))) (-1520 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-406 (-558))) (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4)))))
-(-10 -7 (-15 -1520 ((-406 (-558)) |#2|)) (-15 -1520 ((-1159 (-406 (-558))) |#2| (-604 |#2|))) (-15 -1984 ((-1251))))
-((-3695 (((-112) $) 28)) (-3079 (((-112) $) 30)) (-3840 (((-112) $) 31)) (-2122 (((-112) $) 34)) (-2710 (((-112) $) 29)) (-2527 (((-112) $) 33)) (-3940 (((-853) $) 18) (($ (-1145)) 27) (($ (-1163)) 23) (((-1163) $) 22) (((-1091) $) 21)) (-1878 (((-112) $) 32)) (-1708 (((-112) $ $) 15)))
-(((-433) (-13 (-605 (-853)) (-10 -8 (-15 -3940 ($ (-1145))) (-15 -3940 ($ (-1163))) (-15 -3940 ((-1163) $)) (-15 -3940 ((-1091) $)) (-15 -3695 ((-112) $)) (-15 -2710 ((-112) $)) (-15 -3840 ((-112) $)) (-15 -2527 ((-112) $)) (-15 -2122 ((-112) $)) (-15 -1878 ((-112) $)) (-15 -3079 ((-112) $)) (-15 -1708 ((-112) $ $))))) (T -433))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-433)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-433)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-433)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-433)))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1708 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3940 ($ (-1145))) (-15 -3940 ($ (-1163))) (-15 -3940 ((-1163) $)) (-15 -3940 ((-1091) $)) (-15 -3695 ((-112) $)) (-15 -2710 ((-112) $)) (-15 -3840 ((-112) $)) (-15 -2527 ((-112) $)) (-15 -2122 ((-112) $)) (-15 -1878 ((-112) $)) (-15 -3079 ((-112) $)) (-15 -1708 ((-112) $ $))))
-((-2019 (((-3 (-417 (-1159 (-406 (-558)))) "failed") |#3|) 70)) (-2654 (((-417 |#3|) |#3|) 34)) (-3491 (((-3 (-417 (-1159 (-48))) "failed") |#3|) 46 (|has| |#2| (-1028 (-48))))) (-1767 (((-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4198 (-112))) |#3|) 37)))
-(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -2654 ((-417 |#3|) |#3|)) (-15 -2019 ((-3 (-417 (-1159 (-406 (-558)))) "failed") |#3|)) (-15 -1767 ((-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4198 (-112))) |#3|)) (IF (|has| |#2| (-1028 (-48))) (-15 -3491 ((-3 (-417 (-1159 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-550) (-841) (-1028 (-558))) (-429 |#1|) (-1222 |#2|)) (T -434))
-((-3491 (*1 *2 *3) (|partial| -12 (-4 *5 (-1028 (-48))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1159 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-1767 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4198 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-2019 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1159 (-406 (-558))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-2654 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4)) (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
-(-10 -7 (-15 -2654 ((-417 |#3|) |#3|)) (-15 -2019 ((-3 (-417 (-1159 (-406 (-558)))) "failed") |#3|)) (-15 -1767 ((-3 (|:| |overq| (-1159 (-406 (-558)))) (|:| |overan| (-1159 (-48))) (|:| -4198 (-112))) |#3|)) (IF (|has| |#2| (-1028 (-48))) (-15 -3491 ((-3 (-417 (-1159 (-48))) "failed") |#3|)) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-2458 (((-1145) $ (-1145)) NIL)) (-1989 (($ $ (-1145)) NIL)) (-1681 (((-1145) $) NIL)) (-1771 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-3229 (($ (-387)) NIL) (($ (-387) (-1145)) NIL)) (-3179 (((-387) $) NIL)) (-2510 (((-1145) $) NIL)) (-4194 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1289 (((-1251) (-1145)) 9)) (-2217 (((-1251) (-1145)) 10)) (-2353 (((-1251)) 11)) (-3940 (((-853) $) NIL)) (-1388 (($ $) 34)) (-1708 (((-112) $ $) NIL)))
-(((-435) (-13 (-363 (-387) (-1145)) (-10 -7 (-15 -1771 ((-387) (-387) (-387))) (-15 -1771 ((-387) (-387))) (-15 -1289 ((-1251) (-1145))) (-15 -2217 ((-1251) (-1145))) (-15 -2353 ((-1251)))))) (T -435))
-((-1771 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))) (-2353 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-435)))))
-(-13 (-363 (-387) (-1145)) (-10 -7 (-15 -1771 ((-387) (-387) (-387))) (-15 -1771 ((-387) (-387))) (-15 -1289 ((-1251) (-1145))) (-15 -2217 ((-1251) (-1145))) (-15 -2353 ((-1251)))))
-((-3929 (((-112) $ $) NIL)) (-2932 (((-3 (|:| |fst| (-433)) (|:| -1894 "void")) $) 11)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1724 (($) 32)) (-2416 (($) 38)) (-2632 (($) 34)) (-3679 (($) 36)) (-2434 (($) 33)) (-4106 (($) 35)) (-3925 (($) 37)) (-1977 (((-112) $) 8)) (-3800 (((-635 (-942 (-558))) $) 19)) (-3952 (($ (-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-635 (-1163)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-635 (-942 (-558))) (-112)) 28)) (-3940 (((-853) $) 23) (($ (-433)) 29)) (-1708 (((-112) $ $) NIL)))
-(((-436) (-13 (-1087) (-10 -8 (-15 -3940 ($ (-433))) (-15 -2932 ((-3 (|:| |fst| (-433)) (|:| -1894 "void")) $)) (-15 -3800 ((-635 (-942 (-558))) $)) (-15 -1977 ((-112) $)) (-15 -3952 ($ (-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-635 (-1163)) (-112))) (-15 -3952 ($ (-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-635 (-942 (-558))) (-112))) (-15 -1724 ($)) (-15 -2434 ($)) (-15 -2632 ($)) (-15 -2416 ($)) (-15 -4106 ($)) (-15 -3679 ($)) (-15 -3925 ($))))) (T -436))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *1 (-436)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-635 (-942 (-558)))) (-5 *1 (-436)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3952 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *3 (-635 (-1163))) (-5 *4 (-112)) (-5 *1 (-436)))) (-3952 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-112)) (-5 *1 (-436)))) (-1724 (*1 *1) (-5 *1 (-436))) (-2434 (*1 *1) (-5 *1 (-436))) (-2632 (*1 *1) (-5 *1 (-436))) (-2416 (*1 *1) (-5 *1 (-436))) (-4106 (*1 *1) (-5 *1 (-436))) (-3679 (*1 *1) (-5 *1 (-436))) (-3925 (*1 *1) (-5 *1 (-436))))
-(-13 (-1087) (-10 -8 (-15 -3940 ($ (-433))) (-15 -2932 ((-3 (|:| |fst| (-433)) (|:| -1894 "void")) $)) (-15 -3800 ((-635 (-942 (-558))) $)) (-15 -1977 ((-112) $)) (-15 -3952 ($ (-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-635 (-1163)) (-112))) (-15 -3952 ($ (-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-635 (-942 (-558))) (-112))) (-15 -1724 ($)) (-15 -2434 ($)) (-15 -2632 ($)) (-15 -2416 ($)) (-15 -4106 ($)) (-15 -3679 ($)) (-15 -3925 ($))))
-((-3929 (((-112) $ $) NIL)) (-3179 (((-1163) $) 8)) (-2510 (((-1145) $) 16)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 13)))
-(((-437 |#1|) (-13 (-1087) (-10 -8 (-15 -3179 ((-1163) $)))) (-1163)) (T -437))
-((-3179 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-437 *3)) (-14 *3 *2))))
-(-13 (-1087) (-10 -8 (-15 -3179 ((-1163) $))))
-((-3154 (((-1251) $) 7)) (-3940 (((-853) $) 8) (($ (-1246 (-689))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 11)))
+((-3711 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-416 *3)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2602 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1253 (-682 *3))))) (-2508 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-638 (-945 *3))))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-2696 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-1381 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2919 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-2483 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-2502 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1162 (-945 *3))))) (-3337 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1162 (-945 *3))))) (-1367 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171)))))
+(-13 (-366 |t#1|) (-10 -8 (-15 -3711 ((-1253 $))) (-15 -3969 ((-1253 |t#1|) $)) (-15 -3969 ((-682 |t#1|) (-1253 $))) (-15 -2277 (|t#1| $ (-561))) (-15 -2602 ((-1253 (-682 |t#1|)))) (-15 -2508 ((-638 (-945 |t#1|)))) (-15 -2257 ($ (-1253 |t#1|))) (-15 -4174 ((-1253 |t#1|) $)) (-15 -4174 ($ (-1253 |t#1|))) (-15 -2696 (|t#1|)) (-15 -1381 (|t#1|)) (-15 -2919 ((-682 |t#1|))) (-15 -2483 ((-682 |t#1|))) (-15 -1354 ((-682 |t#1|) $)) (-15 -3689 ((-682 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2502 ((-1162 (-945 |t#1|)))) (-15 -3337 ((-1162 (-945 |t#1|))))) |%noBranch|) (-15 -1367 ($ (-682 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-366 |#1|) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 44)) (-3137 (($ $) 59)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 147)) (-2851 (($ $) NIL)) (-3359 (((-112) $) 38)) (-3027 ((|#1| $) 13)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-1209)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-1209)))) (-2359 (($ |#1| (-561)) 34)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 117)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 57)) (-3466 (((-3 $ "failed") $) 132)) (-2937 (((-3 (-406 (-561)) "failed") $) 65 (|has| |#1| (-543)))) (-3798 (((-112) $) 61 (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) 72 (|has| |#1| (-543)))) (-2844 (($ |#1| (-561)) 36)) (-2737 (((-112) $) 153 (|has| |#1| (-1209)))) (-3113 (((-112) $) 45)) (-3854 (((-765) $) 40)) (-3470 (((-3 "nil" "sqfr" "irred" "prime") $ (-561)) 138)) (-2740 ((|#1| $ (-561)) 137)) (-3469 (((-561) $ (-561)) 136)) (-3382 (($ |#1| (-561)) 33)) (-4120 (($ (-1 |#1| |#1|) $) 144)) (-2503 (($ |#1| (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561))))) 60)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-2293 (($ |#1| (-561)) 35)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) 148 (|has| |#1| (-450)))) (-3336 (($ |#1| (-561) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-4282 (((-638 (-2 (|:| -1657 |#1|) (|:| -4196 (-561)))) $) 56)) (-2089 (((-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))) $) 12)) (-1657 (((-417 $) $) NIL (|has| |#1| (-1209)))) (-1756 (((-3 $ "failed") $ $) 139)) (-4196 (((-561) $) 133)) (-3529 ((|#1| $) 58)) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 87 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) $) NIL (|has| |#1| (-512 (-1166) $))) (($ $ (-638 (-1166)) (-638 $)) 88 (|has| |#1| (-512 (-1166) $))) (($ $ (-638 (-293 $))) 84 (|has| |#1| (-308 $))) (($ $ (-293 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-638 $) (-638 $)) NIL (|has| |#1| (-308 $)))) (-2277 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-3238 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-4174 (((-534) $) 30 (|has| |#1| (-609 (-534)))) (((-378) $) 94 (|has| |#1| (-1015))) (((-224) $) 97 (|has| |#1| (-1015)))) (-4022 (((-856) $) 115) (($ (-561)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561)))))) (-4259 (((-765)) 50)) (-3168 (((-112) $ $) NIL)) (-2211 (($) 42 T CONST)) (-2222 (($) 41 T CONST)) (-3122 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1733 (((-112) $ $) 98)) (-1824 (($ $) 129) (($ $ $) NIL)) (-1813 (($ $ $) 141)) (** (($ $ (-914)) NIL) (($ $ (-765)) 104)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL)))
+(((-417 |#1|) (-13 (-553) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3529 (|#1| $)) (-15 -4196 ((-561) $)) (-15 -2503 ($ |#1| (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))))) (-15 -2089 ((-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))) $)) (-15 -3382 ($ |#1| (-561))) (-15 -4282 ((-638 (-2 (|:| -1657 |#1|) (|:| -4196 (-561)))) $)) (-15 -2293 ($ |#1| (-561))) (-15 -3469 ((-561) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -3470 ((-3 "nil" "sqfr" "irred" "prime") $ (-561))) (-15 -3854 ((-765) $)) (-15 -2844 ($ |#1| (-561))) (-15 -2359 ($ |#1| (-561))) (-15 -3336 ($ |#1| (-561) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3027 (|#1| $)) (-15 -3137 ($ $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|))) (-553)) (T -417))
+((-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-553)) (-5 *1 (-417 *3)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-2503 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-561))))) (-4 *2 (-553)) (-5 *1 (-417 *2)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-561))))) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-3382 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -1657 *3) (|:| -4196 (-561))))) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-3469 (*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-3470 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *4)) (-4 *4 (-553)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-417 *3)) (-4 *3 (-553)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-2359 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-3336 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-561)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-3027 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553)))) (-2937 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553)))))
+(-13 (-553) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3529 (|#1| $)) (-15 -4196 ((-561) $)) (-15 -2503 ($ |#1| (-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))))) (-15 -2089 ((-638 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-561)))) $)) (-15 -3382 ($ |#1| (-561))) (-15 -4282 ((-638 (-2 (|:| -1657 |#1|) (|:| -4196 (-561)))) $)) (-15 -2293 ($ |#1| (-561))) (-15 -3469 ((-561) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -3470 ((-3 "nil" "sqfr" "irred" "prime") $ (-561))) (-15 -3854 ((-765) $)) (-15 -2844 ($ |#1| (-561))) (-15 -2359 ($ |#1| (-561))) (-15 -3336 ($ |#1| (-561) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3027 (|#1| $)) (-15 -3137 ($ $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|)))
+((-1883 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 21)) (-1864 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 16)))
+(((-418 |#1|) (-10 -7 (-15 -1883 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -1864 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-553)) (T -418))
+((-1864 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-553)) (-5 *1 (-418 *3)))) (-1883 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-553)) (-5 *2 (-417 *4)) (-5 *1 (-418 *4)))))
+(-10 -7 (-15 -1883 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -1864 ((-417 |#1|) (-417 |#1|) (-417 |#1|))))
+((-2706 ((|#2| |#2|) 165)) (-1622 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112)) 57)))
+(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1622 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -2706 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|)) (-1166) |#2|) (T -419))
+((-2706 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-429 *3))) (-14 *4 (-1166)) (-14 *5 *2))) (-1622 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-14 *6 (-1166)) (-14 *7 *3))))
+(-10 -7 (-15 -1622 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -2706 (|#2| |#2|)))
+((-4120 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1042) (-844)) (-429 |#1|) (-13 (-1042) (-844)) (-429 |#3|)) (T -420))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1042) (-844))) (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-429 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5)))))
+(-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2706 ((|#2| |#2|) 89)) (-3482 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 48)) (-3218 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 153)))
+(((-421 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3482 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -3218 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -2706 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|) (-10 -8 (-15 -4022 ($ |#3|)))) (-842) (-13 (-1231 |#2| |#3|) (-362) (-1190) (-10 -8 (-15 -3238 ($ $)) (-15 -1842 ($ $)))) (-976 |#4|) (-1166)) (T -421))
+((-2706 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *2 (-13 (-27) (-1190) (-429 *3) (-10 -8 (-15 -4022 ($ *4))))) (-4 *4 (-842)) (-4 *5 (-13 (-1231 *2 *4) (-362) (-1190) (-10 -8 (-15 -3238 ($ $)) (-15 -1842 ($ $))))) (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166)))) (-3218 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4022 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1231 *3 *7) (-362) (-1190) (-10 -8 (-15 -3238 ($ $)) (-15 -1842 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166)))) (-3482 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4022 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1231 *3 *7) (-362) (-1190) (-10 -8 (-15 -3238 ($ $)) (-15 -1842 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166)))))
+(-10 -7 (-15 -3482 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -3218 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -2706 (|#2| |#2|)))
+((-3130 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3185 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4120 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3130 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1090) (-424 |#1|) (-1090) (-424 |#3|)) (T -422))
+((-3130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1090)) (-4 *5 (-1090)) (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) (-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1090)) (-4 *2 (-1090)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5)))))
+(-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3185 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3130 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-4080 (($) 44)) (-2443 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2613 (($ $ $) 39)) (-3903 (((-112) $ $) 28)) (-1393 (((-765)) 47)) (-1627 (($ (-638 |#2|)) 20) (($) NIL)) (-1332 (($) 53)) (-4198 (((-112) $ $) 13)) (-3443 ((|#2| $) 61)) (-2986 ((|#2| $) 59)) (-3198 (((-914) $) 55)) (-2579 (($ $ $) 35)) (-2413 (($ (-914)) 50)) (-4294 (($ $ |#2|) NIL) (($ $ $) 38)) (-1724 (((-765) (-1 (-112) |#2|) $) NIL) (((-765) |#2| $) 26)) (-4031 (($ (-638 |#2|)) 24)) (-2079 (($ $) 46)) (-4022 (((-856) $) 33)) (-1915 (((-765) $) 21)) (-1710 (($ (-638 |#2|)) 19) (($) NIL)) (-1733 (((-112) $ $) 16)))
+(((-423 |#1| |#2|) (-10 -8 (-15 -1393 ((-765))) (-15 -2413 (|#1| (-914))) (-15 -3198 ((-914) |#1|)) (-15 -1332 (|#1|)) (-15 -3443 (|#2| |#1|)) (-15 -2986 (|#2| |#1|)) (-15 -4080 (|#1|)) (-15 -2079 (|#1| |#1|)) (-15 -1915 ((-765) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -4198 ((-112) |#1| |#1|)) (-15 -1710 (|#1|)) (-15 -1710 (|#1| (-638 |#2|))) (-15 -1627 (|#1|)) (-15 -1627 (|#1| (-638 |#2|))) (-15 -2579 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#2|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -3903 ((-112) |#1| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|))) (-424 |#2|) (-1090)) (T -423))
+((-1393 (*1 *2) (-12 (-4 *4 (-1090)) (-5 *2 (-765)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))))
+(-10 -8 (-15 -1393 ((-765))) (-15 -2413 (|#1| (-914))) (-15 -3198 ((-914) |#1|)) (-15 -1332 (|#1|)) (-15 -3443 (|#2| |#1|)) (-15 -2986 (|#2| |#1|)) (-15 -4080 (|#1|)) (-15 -2079 (|#1| |#1|)) (-15 -1915 ((-765) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -4198 ((-112) |#1| |#1|)) (-15 -1710 (|#1|)) (-15 -1710 (|#1| (-638 |#2|))) (-15 -1627 (|#1|)) (-15 -1627 (|#1| (-638 |#2|))) (-15 -2579 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#2|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -3903 ((-112) |#1| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)))
+((-4011 (((-112) $ $) 19)) (-4080 (($) 67 (|has| |#1| (-367)))) (-2443 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2613 (($ $ $) 78)) (-3903 (((-112) $ $) 79)) (-1630 (((-112) $ (-765)) 8)) (-1393 (((-765)) 61 (|has| |#1| (-367)))) (-1627 (($ (-638 |#1|)) 74) (($) 73)) (-3388 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-1472 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ |#1| $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4390)))) (-1332 (($) 64 (|has| |#1| (-367)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-4198 (((-112) $ $) 70)) (-3744 (((-112) $ (-765)) 9)) (-3443 ((|#1| $) 65 (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2986 ((|#1| $) 66 (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-3198 (((-914) $) 63 (|has| |#1| (-367)))) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22)) (-2579 (($ $ $) 75)) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40)) (-2413 (($ (-914)) 62 (|has| |#1| (-367)))) (-1714 (((-1110) $) 21)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-4294 (($ $ |#1|) 77) (($ $ $) 76)) (-3579 (($) 49) (($ (-638 |#1|)) 48)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 50)) (-2079 (($ $) 68 (|has| |#1| (-367)))) (-4022 (((-856) $) 18)) (-1915 (((-765) $) 69)) (-1710 (($ (-638 |#1|)) 72) (($) 71)) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20)) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-424 |#1|) (-139) (-1090)) (T -424))
+((-1915 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1090)) (-5 *2 (-765)))) (-2079 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-367)))) (-4080 (*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1090)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844)))))
+(-13 (-228 |t#1|) (-1088 |t#1|) (-10 -8 (-6 -4390) (-15 -1915 ((-765) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -2079 ($ $)) (-15 -4080 ($))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -2986 (|t#1| $)) (-15 -3443 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-367) |has| |#1| (-367)) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1088 |#1|) . T) ((-1090) . T) ((-1205) . T))
+((-1680 (((-582 |#2|) |#2| (-1166)) 35)) (-3573 (((-582 |#2|) |#2| (-1166)) 20)) (-1654 ((|#2| |#2| (-1166)) 25)))
+(((-425 |#1| |#2|) (-10 -7 (-15 -3573 ((-582 |#2|) |#2| (-1166))) (-15 -1680 ((-582 |#2|) |#2| (-1166))) (-15 -1654 (|#2| |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-29 |#1|))) (T -425))
+((-1654 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4))))) (-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))))
+(-10 -7 (-15 -3573 ((-582 |#2|) |#2| (-1166))) (-15 -1680 ((-582 |#2|) |#2| (-1166))) (-15 -1654 (|#2| |#2| (-1166))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-2439 (($ |#2| |#1|) 35)) (-3453 (($ |#2| |#1|) 33)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-4259 (((-765)) NIL)) (-2211 (($) 10 T CONST)) (-2222 (($) 16 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 34)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-426 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4377)) (IF (|has| |#1| (-6 -4377)) (-6 -4377) |%noBranch|) |%noBranch|) (-15 -4022 ($ |#1|)) (-15 -4022 ($ (-330 |#2|))) (-15 -2439 ($ |#2| |#1|)) (-15 -3453 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-561)))) (-13 (-844) (-21))) (T -426))
+((-4022 (*1 *1 *2) (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-561))))) (-4 *3 (-13 (-844) (-21))))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21))) (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-561))))))) (-2439 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561))))) (-4 *2 (-13 (-844) (-21))))) (-3453 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561))))) (-4 *2 (-13 (-844) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4377)) (IF (|has| |#1| (-6 -4377)) (-6 -4377) |%noBranch|) |%noBranch|) (-15 -4022 ($ |#1|)) (-15 -4022 ($ (-330 |#2|))) (-15 -2439 ($ |#2| |#1|)) (-15 -3453 ($ |#2| |#1|))))
+((-1842 (((-3 |#2| (-638 |#2|)) |#2| (-1166)) 108)))
+(((-427 |#1| |#2|) (-10 -7 (-15 -1842 ((-3 |#2| (-638 |#2|)) |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-29 |#1|))) (T -427))
+((-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 *3 (-638 *3))) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-952) (-29 *5))))))
+(-10 -7 (-15 -1842 ((-3 |#2| (-638 |#2|)) |#2| (-1166))))
+((-1412 (((-638 (-1166)) $) 72)) (-1620 (((-406 (-1162 $)) $ (-607 $)) 273)) (-2612 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) 237)) (-4017 (((-3 (-607 $) "failed") $) NIL) (((-3 (-1166) "failed") $) 75) (((-3 (-561) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-406 (-945 |#2|)) "failed") $) 324) (((-3 (-945 |#2|) "failed") $) 235) (((-3 (-406 (-561)) "failed") $) NIL)) (-3938 (((-607 $) $) NIL) (((-1166) $) 30) (((-561) $) NIL) ((|#2| $) 231) (((-406 (-945 |#2|)) $) 305) (((-945 |#2|) $) 232) (((-406 (-561)) $) NIL)) (-3479 (((-114) (-114)) 47)) (-3458 (($ $) 87)) (-2012 (((-3 (-607 $) "failed") $) 228)) (-1600 (((-638 (-607 $)) $) 229)) (-3638 (((-3 (-638 $) "failed") $) 247)) (-3772 (((-3 (-2 (|:| |val| $) (|:| -4196 (-561))) "failed") $) 254)) (-1664 (((-3 (-638 $) "failed") $) 245)) (-4336 (((-3 (-2 (|:| -4188 (-561)) (|:| |var| (-607 $))) "failed") $) 264)) (-3431 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $) 251) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-1166)) 219)) (-1551 (((-112) $) 19)) (-1561 ((|#2| $) 21)) (-1444 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) 236) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 96) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1166)) 57) (($ $ (-638 (-1166))) 240) (($ $) 241) (($ $ (-114) $ (-1166)) 60) (($ $ (-638 (-114)) (-638 $) (-1166)) 67) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) 107) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) 242) (($ $ (-1166) (-765) (-1 $ (-638 $))) 94) (($ $ (-1166) (-765) (-1 $ $)) 93)) (-2277 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) 106)) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) 238)) (-2861 (($ $) 284)) (-4174 (((-885 (-561)) $) 257) (((-885 (-378)) $) 261) (($ (-417 $)) 320) (((-534) $) NIL)) (-4022 (((-856) $) 239) (($ (-607 $)) 84) (($ (-1166)) 26) (($ |#2|) NIL) (($ (-1115 |#2| (-607 $))) NIL) (($ (-406 |#2|)) 289) (($ (-945 (-406 |#2|))) 329) (($ (-406 (-945 (-406 |#2|)))) 301) (($ (-406 (-945 |#2|))) 295) (($ $) NIL) (($ (-945 |#2|)) 185) (($ (-406 (-561))) 334) (($ (-561)) NIL)) (-4259 (((-765)) 79)) (-2665 (((-112) (-114)) 41)) (-3117 (($ (-1166) $) 33) (($ (-1166) $ $) 34) (($ (-1166) $ $ $) 35) (($ (-1166) $ $ $ $) 36) (($ (-1166) (-638 $)) 39)) (* (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
+(((-428 |#1| |#2|) (-10 -8 (-15 * (|#1| (-914) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4022 (|#1| (-561))) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4022 (|#1| (-945 |#2|))) (-15 -4017 ((-3 (-945 |#2|) "failed") |#1|)) (-15 -3938 ((-945 |#2|) |#1|)) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4022 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4022 (|#1| (-406 (-945 |#2|)))) (-15 -4017 ((-3 (-406 (-945 |#2|)) "failed") |#1|)) (-15 -3938 ((-406 (-945 |#2|)) |#1|)) (-15 -1620 ((-406 (-1162 |#1|)) |#1| (-607 |#1|))) (-15 -4022 (|#1| (-406 (-945 (-406 |#2|))))) (-15 -4022 (|#1| (-945 (-406 |#2|)))) (-15 -4022 (|#1| (-406 |#2|))) (-15 -2861 (|#1| |#1|)) (-15 -4174 (|#1| (-417 |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-765) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| |#1|)))) (-15 -3772 ((-3 (-2 (|:| |val| |#1|) (|:| -4196 (-561))) "failed") |#1|)) (-15 -3431 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4196 (-561))) "failed") |#1| (-1166))) (-15 -3431 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4196 (-561))) "failed") |#1| (-114))) (-15 -3458 (|#1| |#1|)) (-15 -4022 (|#1| (-1115 |#2| (-607 |#1|)))) (-15 -4336 ((-3 (-2 (|:| -4188 (-561)) (|:| |var| (-607 |#1|))) "failed") |#1|)) (-15 -1664 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -3431 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4196 (-561))) "failed") |#1|)) (-15 -3638 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 |#1|) (-1166))) (-15 -1444 (|#1| |#1| (-114) |#1| (-1166))) (-15 -1444 (|#1| |#1|)) (-15 -1444 (|#1| |#1| (-638 (-1166)))) (-15 -1444 (|#1| |#1| (-1166))) (-15 -3117 (|#1| (-1166) (-638 |#1|))) (-15 -3117 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -3117 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -3117 (|#1| (-1166) |#1| |#1|)) (-15 -3117 (|#1| (-1166) |#1|)) (-15 -1412 ((-638 (-1166)) |#1|)) (-15 -1561 (|#2| |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4022 (|#1| (-1166))) (-15 -4017 ((-3 (-1166) "failed") |#1|)) (-15 -3938 ((-1166) |#1|)) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -1600 ((-638 (-607 |#1|)) |#1|)) (-15 -2012 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2612 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -2612 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2612 (|#1| |#1| (-293 |#1|))) (-15 -2277 (|#1| (-114) (-638 |#1|))) (-15 -2277 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1444 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4022 (|#1| (-607 |#1|))) (-15 -4017 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3938 ((-607 |#1|) |#1|)) (-15 -4022 ((-856) |#1|))) (-429 |#2|) (-844)) (T -428))
+((-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-844)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) (-4259 (*1 *2) (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))))
+(-10 -8 (-15 * (|#1| (-914) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4022 (|#1| (-561))) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4022 (|#1| (-945 |#2|))) (-15 -4017 ((-3 (-945 |#2|) "failed") |#1|)) (-15 -3938 ((-945 |#2|) |#1|)) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4022 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -4022 (|#1| (-406 (-945 |#2|)))) (-15 -4017 ((-3 (-406 (-945 |#2|)) "failed") |#1|)) (-15 -3938 ((-406 (-945 |#2|)) |#1|)) (-15 -1620 ((-406 (-1162 |#1|)) |#1| (-607 |#1|))) (-15 -4022 (|#1| (-406 (-945 (-406 |#2|))))) (-15 -4022 (|#1| (-945 (-406 |#2|)))) (-15 -4022 (|#1| (-406 |#2|))) (-15 -2861 (|#1| |#1|)) (-15 -4174 (|#1| (-417 |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-765) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-765)) (-638 (-1 |#1| |#1|)))) (-15 -3772 ((-3 (-2 (|:| |val| |#1|) (|:| -4196 (-561))) "failed") |#1|)) (-15 -3431 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4196 (-561))) "failed") |#1| (-1166))) (-15 -3431 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4196 (-561))) "failed") |#1| (-114))) (-15 -3458 (|#1| |#1|)) (-15 -4022 (|#1| (-1115 |#2| (-607 |#1|)))) (-15 -4336 ((-3 (-2 (|:| -4188 (-561)) (|:| |var| (-607 |#1|))) "failed") |#1|)) (-15 -1664 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -3431 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -4196 (-561))) "failed") |#1|)) (-15 -3638 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 |#1|) (-1166))) (-15 -1444 (|#1| |#1| (-114) |#1| (-1166))) (-15 -1444 (|#1| |#1|)) (-15 -1444 (|#1| |#1| (-638 (-1166)))) (-15 -1444 (|#1| |#1| (-1166))) (-15 -3117 (|#1| (-1166) (-638 |#1|))) (-15 -3117 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -3117 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -3117 (|#1| (-1166) |#1| |#1|)) (-15 -3117 (|#1| (-1166) |#1|)) (-15 -1412 ((-638 (-1166)) |#1|)) (-15 -1561 (|#2| |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4022 (|#1| (-1166))) (-15 -4017 ((-3 (-1166) "failed") |#1|)) (-15 -3938 ((-1166) |#1|)) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-114) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-114)) (-638 (-1 |#1| |#1|)))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -1444 (|#1| |#1| (-1166) (-1 |#1| (-638 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| (-638 |#1|))))) (-15 -1444 (|#1| |#1| (-638 (-1166)) (-638 (-1 |#1| |#1|)))) (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -1600 ((-638 (-607 |#1|)) |#1|)) (-15 -2012 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2612 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -2612 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2612 (|#1| |#1| (-293 |#1|))) (-15 -2277 (|#1| (-114) (-638 |#1|))) (-15 -2277 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1| |#1|)) (-15 -2277 (|#1| (-114) |#1|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1444 (|#1| |#1| (-638 (-607 |#1|)) (-638 |#1|))) (-15 -1444 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -4022 (|#1| (-607 |#1|))) (-15 -4017 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3938 ((-607 |#1|) |#1|)) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 114 (|has| |#1| (-25)))) (-1412 (((-638 (-1166)) $) 201)) (-1620 (((-406 (-1162 $)) $ (-607 $)) 169 (|has| |#1| (-553)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 141 (|has| |#1| (-553)))) (-2851 (($ $) 142 (|has| |#1| (-553)))) (-3359 (((-112) $) 144 (|has| |#1| (-553)))) (-1510 (((-638 (-607 $)) $) 44)) (-2249 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-2612 (($ $ (-293 $)) 56) (($ $ (-638 (-293 $))) 55) (($ $ (-638 (-607 $)) (-638 $)) 54)) (-1591 (($ $) 161 (|has| |#1| (-553)))) (-3422 (((-417 $) $) 162 (|has| |#1| (-553)))) (-1671 (((-112) $ $) 152 (|has| |#1| (-553)))) (-1965 (($) 102 (-4007 (|has| |#1| (-1102)) (|has| |#1| (-25))) CONST)) (-4017 (((-3 (-607 $) "failed") $) 69) (((-3 (-1166) "failed") $) 214) (((-3 (-561) "failed") $) 208 (|has| |#1| (-1031 (-561)))) (((-3 |#1| "failed") $) 205) (((-3 (-406 (-945 |#1|)) "failed") $) 167 (|has| |#1| (-553))) (((-3 (-945 |#1|) "failed") $) 121 (|has| |#1| (-1042))) (((-3 (-406 (-561)) "failed") $) 96 (-4007 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-3938 (((-607 $) $) 70) (((-1166) $) 215) (((-561) $) 207 (|has| |#1| (-1031 (-561)))) ((|#1| $) 206) (((-406 (-945 |#1|)) $) 168 (|has| |#1| (-553))) (((-945 |#1|) $) 122 (|has| |#1| (-1042))) (((-406 (-561)) $) 97 (-4007 (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561))))))) (-1793 (($ $ $) 156 (|has| |#1| (-553)))) (-3602 (((-682 (-561)) (-682 $)) 135 (-2170 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 134 (-2170 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 133 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 132 (|has| |#1| (-1042)))) (-3466 (((-3 $ "failed") $) 104 (|has| |#1| (-1102)))) (-1774 (($ $ $) 155 (|has| |#1| (-553)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 150 (|has| |#1| (-553)))) (-2737 (((-112) $) 163 (|has| |#1| (-553)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 210 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 209 (|has| |#1| (-879 (-378))))) (-1890 (($ $) 51) (($ (-638 $)) 50)) (-1719 (((-638 (-114)) $) 43)) (-3479 (((-114) (-114)) 42)) (-3113 (((-112) $) 103 (|has| |#1| (-1102)))) (-3402 (((-112) $) 22 (|has| $ (-1031 (-561))))) (-3458 (($ $) 184 (|has| |#1| (-1042)))) (-4030 (((-1115 |#1| (-607 $)) $) 185 (|has| |#1| (-1042)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 159 (|has| |#1| (-553)))) (-3217 (((-1162 $) (-607 $)) 25 (|has| $ (-1042)))) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-4120 (($ (-1 $ $) (-607 $)) 36)) (-2012 (((-3 (-607 $) "failed") $) 46)) (-1582 (($ (-638 $)) 148 (|has| |#1| (-553))) (($ $ $) 147 (|has| |#1| (-553)))) (-1764 (((-1148) $) 9)) (-1600 (((-638 (-607 $)) $) 45)) (-4109 (($ (-114) $) 38) (($ (-114) (-638 $)) 37)) (-3638 (((-3 (-638 $) "failed") $) 190 (|has| |#1| (-1102)))) (-3772 (((-3 (-2 (|:| |val| $) (|:| -4196 (-561))) "failed") $) 181 (|has| |#1| (-1042)))) (-1664 (((-3 (-638 $) "failed") $) 188 (|has| |#1| (-25)))) (-4336 (((-3 (-2 (|:| -4188 (-561)) (|:| |var| (-607 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3431 (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $) 189 (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-114)) 183 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-1166)) 182 (|has| |#1| (-1042)))) (-2561 (((-112) $ (-114)) 40) (((-112) $ (-1166)) 39)) (-1540 (($ $) 106 (-4007 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-3061 (((-765) $) 47)) (-1714 (((-1110) $) 10)) (-1551 (((-112) $) 203)) (-1561 ((|#1| $) 202)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 149 (|has| |#1| (-553)))) (-1623 (($ (-638 $)) 146 (|has| |#1| (-553))) (($ $ $) 145 (|has| |#1| (-553)))) (-1297 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-1657 (((-417 $) $) 160 (|has| |#1| (-553)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-553))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 157 (|has| |#1| (-553)))) (-1756 (((-3 $ "failed") $ $) 140 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 151 (|has| |#1| (-553)))) (-2736 (((-112) $) 23 (|has| $ (-1031 (-561))))) (-1444 (($ $ (-607 $) $) 67) (($ $ (-638 (-607 $)) (-638 $)) 66) (($ $ (-638 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-638 $) (-638 $)) 62) (($ $ (-638 (-1166)) (-638 (-1 $ $))) 33) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) 32) (($ $ (-1166) (-1 $ (-638 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-638 (-114)) (-638 (-1 $ $))) 29) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) 28) (($ $ (-114) (-1 $ (-638 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1166)) 195 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166))) 194 (|has| |#1| (-609 (-534)))) (($ $) 193 (|has| |#1| (-609 (-534)))) (($ $ (-114) $ (-1166)) 192 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-114)) (-638 $) (-1166)) 191 (|has| |#1| (-609 (-534)))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $))) 180 (|has| |#1| (-1042))) (($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $)))) 179 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-638 $))) 178 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) 177 (|has| |#1| (-1042)))) (-3569 (((-765) $) 153 (|has| |#1| (-553)))) (-2277 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-638 $)) 57)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 154 (|has| |#1| (-553)))) (-1584 (($ $) 49) (($ $ $) 48)) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) 126 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 125 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 124 (|has| |#1| (-1042))) (($ $ (-1166)) 123 (|has| |#1| (-1042)))) (-2861 (($ $) 174 (|has| |#1| (-553)))) (-4045 (((-1115 |#1| (-607 $)) $) 175 (|has| |#1| (-553)))) (-3660 (($ $) 24 (|has| $ (-1042)))) (-4174 (((-885 (-561)) $) 212 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 211 (|has| |#1| (-609 (-885 (-378))))) (($ (-417 $)) 176 (|has| |#1| (-553))) (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-2260 (($ $ $) 109 (|has| |#1| (-471)))) (-3800 (($ $ $) 110 (|has| |#1| (-471)))) (-4022 (((-856) $) 11) (($ (-607 $)) 68) (($ (-1166)) 213) (($ |#1|) 204) (($ (-1115 |#1| (-607 $))) 186 (|has| |#1| (-1042))) (($ (-406 |#1|)) 172 (|has| |#1| (-553))) (($ (-945 (-406 |#1|))) 171 (|has| |#1| (-553))) (($ (-406 (-945 (-406 |#1|)))) 170 (|has| |#1| (-553))) (($ (-406 (-945 |#1|))) 166 (|has| |#1| (-553))) (($ $) 139 (|has| |#1| (-553))) (($ (-945 |#1|)) 120 (|has| |#1| (-1042))) (($ (-406 (-561))) 95 (-4007 (|has| |#1| (-553)) (-12 (|has| |#1| (-1031 (-561))) (|has| |#1| (-553))) (|has| |#1| (-1031 (-406 (-561)))))) (($ (-561)) 94 (-4007 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-561)))))) (-1760 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-4259 (((-765)) 131 (|has| |#1| (-1042)))) (-3300 (($ $) 53) (($ (-638 $)) 52)) (-2665 (((-112) (-114)) 41)) (-3168 (((-112) $ $) 143 (|has| |#1| (-553)))) (-3117 (($ (-1166) $) 200) (($ (-1166) $ $) 199) (($ (-1166) $ $ $) 198) (($ (-1166) $ $ $ $) 197) (($ (-1166) (-638 $)) 196)) (-2211 (($) 113 (|has| |#1| (-25)) CONST)) (-2222 (($) 101 (|has| |#1| (-1102)) CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) 130 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 129 (|has| |#1| (-1042))) (($ $ (-638 (-1166))) 128 (|has| |#1| (-1042))) (($ $ (-1166)) 127 (|has| |#1| (-1042)))) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-1833 (($ (-1115 |#1| (-607 $)) (-1115 |#1| (-607 $))) 173 (|has| |#1| (-553))) (($ $ $) 107 (-4007 (|has| |#1| (-471)) (|has| |#1| (-553))))) (-1824 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1813 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-561)) 108 (-4007 (|has| |#1| (-471)) (|has| |#1| (-553)))) (($ $ (-765)) 105 (|has| |#1| (-1102))) (($ $ (-914)) 100 (|has| |#1| (-1102)))) (* (($ (-406 (-561)) $) 165 (|has| |#1| (-553))) (($ $ (-406 (-561))) 164 (|has| |#1| (-553))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-561) $) 119 (|has| |#1| (-21))) (($ (-765) $) 115 (|has| |#1| (-25))) (($ (-914) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1102)))))
+(((-429 |#1|) (-139) (-844)) (T -429))
+((-1551 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-112)))) (-1561 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-638 (-1166))))) (-3117 (*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3117 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3117 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3117 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))) (-3117 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 *1)) (-4 *1 (-429 *4)) (-4 *4 (-844)))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-534))))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1166))) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-534))))) (-1444 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-534))))) (-1444 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1166)) (-4 *1 (-429 *4)) (-4 *4 (-844)) (-4 *4 (-609 (-534))))) (-1444 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 *1)) (-5 *4 (-1166)) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-534))))) (-3638 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-429 *3)))) (-3431 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4196 (-561)))) (-4 *1 (-429 *3)))) (-1664 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-429 *3)))) (-4336 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4188 (-561)) (|:| |var| (-607 *1)))) (-4 *1 (-429 *3)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-1042)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1))) (-4 *1 (-429 *3)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-1042)))) (-3431 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4196 (-561)))) (-4 *1 (-429 *4)))) (-3431 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4196 (-561)))) (-4 *1 (-429 *4)))) (-3772 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |val| *1) (|:| -4196 (-561)))) (-4 *1 (-429 *3)))) (-1444 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765))) (-5 *4 (-638 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-1444 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765))) (-5 *4 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-1444 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-638 *1))) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-1444 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1)) (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-553)) (-4 *3 (-844)))) (-4045 (*1 *2 *1) (-12 (-4 *3 (-553)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1))) (-4 *1 (-429 *3)))) (-2861 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-553)))) (-1833 (*1 *1 *2 *2) (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-945 (-406 *3))) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-406 *3)))) (-4 *3 (-553)) (-4 *3 (-844)) (-4 *1 (-429 *3)))) (-1620 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-429 *4)) (-4 *4 (-844)) (-4 *4 (-553)) (-5 *2 (-406 (-1162 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-1102)))))
+(-13 (-301) (-1031 (-1166)) (-877 |t#1|) (-399 |t#1|) (-410 |t#1|) (-10 -8 (-15 -1551 ((-112) $)) (-15 -1561 (|t#1| $)) (-15 -1412 ((-638 (-1166)) $)) (-15 -3117 ($ (-1166) $)) (-15 -3117 ($ (-1166) $ $)) (-15 -3117 ($ (-1166) $ $ $)) (-15 -3117 ($ (-1166) $ $ $ $)) (-15 -3117 ($ (-1166) (-638 $))) (IF (|has| |t#1| (-609 (-534))) (PROGN (-6 (-609 (-534))) (-15 -1444 ($ $ (-1166))) (-15 -1444 ($ $ (-638 (-1166)))) (-15 -1444 ($ $)) (-15 -1444 ($ $ (-114) $ (-1166))) (-15 -1444 ($ $ (-638 (-114)) (-638 $) (-1166)))) |%noBranch|) (IF (|has| |t#1| (-1102)) (PROGN (-6 (-720)) (-15 ** ($ $ (-765))) (-15 -3638 ((-3 (-638 $) "failed") $)) (-15 -3431 ((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-471)) (-6 (-471)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1664 ((-3 (-638 $) "failed") $)) (-15 -4336 ((-3 (-2 (|:| -4188 (-561)) (|:| |var| (-607 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-1031 (-945 |t#1|))) (-6 (-893 (-1166))) (-6 (-376 |t#1|)) (-15 -4022 ($ (-1115 |t#1| (-607 $)))) (-15 -4030 ((-1115 |t#1| (-607 $)) $)) (-15 -3458 ($ $)) (-15 -3431 ((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-114))) (-15 -3431 ((-3 (-2 (|:| |var| (-607 $)) (|:| -4196 (-561))) "failed") $ (-1166))) (-15 -3772 ((-3 (-2 (|:| |val| $) (|:| -4196 (-561))) "failed") $)) (-15 -1444 ($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ $)))) (-15 -1444 ($ $ (-638 (-1166)) (-638 (-765)) (-638 (-1 $ (-638 $))))) (-15 -1444 ($ $ (-1166) (-765) (-1 $ (-638 $)))) (-15 -1444 ($ $ (-1166) (-765) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-6 (-362)) (-6 (-1031 (-406 (-945 |t#1|)))) (-15 -4174 ($ (-417 $))) (-15 -4045 ((-1115 |t#1| (-607 $)) $)) (-15 -2861 ($ $)) (-15 -1833 ($ (-1115 |t#1| (-607 $)) (-1115 |t#1| (-607 $)))) (-15 -4022 ($ (-406 |t#1|))) (-15 -4022 ($ (-945 (-406 |t#1|)))) (-15 -4022 ($ (-406 (-945 (-406 |t#1|))))) (-15 -1620 ((-406 (-1162 $)) $ (-607 $))) (IF (|has| |t#1| (-1031 (-561))) (-6 (-1031 (-406 (-561)))) |%noBranch|)) |%noBranch|)))
+(((-21) -4007 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -4007 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4007 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-406 (-561))) |has| |#1| (-553)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-553)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-553)) ((-130) -4007 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-553))) ((-611 #1=(-406 (-945 |#1|))) |has| |#1| (-553)) ((-611 (-561)) -4007 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-561))) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-611 #2=(-607 $)) . T) ((-611 #3=(-945 |#1|)) |has| |#1| (-1042)) ((-611 #4=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) |has| |#1| (-553)) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-242) |has| |#1| (-553)) ((-289) |has| |#1| (-553)) ((-306) |has| |#1| (-553)) ((-308 $) . T) ((-301) . T) ((-362) |has| |#1| (-553)) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-450) |has| |#1| (-553)) ((-471) |has| |#1| (-471)) ((-512 (-607 $) $) . T) ((-512 $ $) . T) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-553)) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) -4007 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-634 (-561)) -12 (|has| |#1| (-634 (-561))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #0#) |has| |#1| (-553)) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) -4007 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-913) |has| |#1| (-553)) ((-1031 (-406 (-561))) -4007 (|has| |#1| (-1031 (-406 (-561)))) (-12 (|has| |#1| (-553)) (|has| |#1| (-1031 (-561))))) ((-1031 #1#) |has| |#1| (-553)) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #2#) . T) ((-1031 #3#) |has| |#1| (-1042)) ((-1031 #4#) . T) ((-1031 |#1|) . T) ((-1048 #0#) |has| |#1| (-553)) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) |has| |#1| (-553)) ((-1042) -4007 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1049) -4007 (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1102) -4007 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-553)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1090) . T) ((-1205) . T) ((-1209) |has| |#1| (-553)))
+((-3196 ((|#2| |#2| |#2|) 33)) (-3479 (((-114) (-114)) 44)) (-1345 ((|#2| |#2|) 66)) (-2960 ((|#2| |#2|) 69)) (-2054 ((|#2| |#2|) 32)) (-2974 ((|#2| |#2| |#2|) 35)) (-3717 ((|#2| |#2| |#2|) 37)) (-3005 ((|#2| |#2| |#2|) 34)) (-1436 ((|#2| |#2| |#2|) 36)) (-2665 (((-112) (-114)) 42)) (-2096 ((|#2| |#2|) 39)) (-1887 ((|#2| |#2|) 38)) (-3749 ((|#2| |#2|) 27)) (-3758 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3882 ((|#2| |#2| |#2|) 31)))
+(((-430 |#1| |#2|) (-10 -7 (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -3749 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3758 (|#2| |#2| |#2|)) (-15 -3882 (|#2| |#2| |#2|)) (-15 -2054 (|#2| |#2|)) (-15 -3196 (|#2| |#2| |#2|)) (-15 -3005 (|#2| |#2| |#2|)) (-15 -2974 (|#2| |#2| |#2|)) (-15 -1436 (|#2| |#2| |#2|)) (-15 -3717 (|#2| |#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -2960 (|#2| |#2|)) (-15 -1345 (|#2| |#2|))) (-13 (-844) (-553)) (-429 |#1|)) (T -430))
+((-1345 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2960 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2096 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3717 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1436 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2974 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3005 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3196 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3882 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3758 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *4)) (-4 *4 (-429 *3)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4)))))
+(-10 -7 (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -3749 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3758 (|#2| |#2| |#2|)) (-15 -3882 (|#2| |#2| |#2|)) (-15 -2054 (|#2| |#2|)) (-15 -3196 (|#2| |#2| |#2|)) (-15 -3005 (|#2| |#2| |#2|)) (-15 -2974 (|#2| |#2| |#2|)) (-15 -1436 (|#2| |#2| |#2|)) (-15 -3717 (|#2| |#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -2960 (|#2| |#2|)) (-15 -1345 (|#2| |#2|)))
+((-2022 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1162 |#2|)) (|:| |pol2| (-1162 |#2|)) (|:| |prim| (-1162 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-638 (-1162 |#2|))) (|:| |prim| (-1162 |#2|))) (-638 |#2|)) 61)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -2022 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-638 (-1162 |#2|))) (|:| |prim| (-1162 |#2|))) (-638 |#2|))) (IF (|has| |#2| (-27)) (-15 -2022 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1162 |#2|)) (|:| |pol2| (-1162 |#2|)) (|:| |prim| (-1162 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-553) (-844) (-146)) (-429 |#1|)) (T -431))
+((-2022 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-553) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1162 *3)) (|:| |pol2| (-1162 *3)) (|:| |prim| (-1162 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-553) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-638 (-1162 *5))) (|:| |prim| (-1162 *5)))) (-5 *1 (-431 *4 *5)))))
+(-10 -7 (-15 -2022 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-638 (-1162 |#2|))) (|:| |prim| (-1162 |#2|))) (-638 |#2|))) (IF (|has| |#2| (-27)) (-15 -2022 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1162 |#2|)) (|:| |pol2| (-1162 |#2|)) (|:| |prim| (-1162 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2498 (((-1258)) 19)) (-2767 (((-1162 (-406 (-561))) |#2| (-607 |#2|)) 41) (((-406 (-561)) |#2|) 25)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -2767 ((-406 (-561)) |#2|)) (-15 -2767 ((-1162 (-406 (-561))) |#2| (-607 |#2|))) (-15 -2498 ((-1258)))) (-13 (-844) (-553) (-1031 (-561))) (-429 |#1|)) (T -432))
+((-2498 (*1 *2) (-12 (-4 *3 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-1258)) (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-429 *5)) (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-432 *5 *3)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-406 (-561))) (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4)))))
+(-10 -7 (-15 -2767 ((-406 (-561)) |#2|)) (-15 -2767 ((-1162 (-406 (-561))) |#2| (-607 |#2|))) (-15 -2498 ((-1258))))
+((-3134 (((-112) $) 28)) (-2808 (((-112) $) 30)) (-2382 (((-112) $) 31)) (-3503 (((-112) $) 34)) (-2126 (((-112) $) 29)) (-2407 (((-112) $) 33)) (-4022 (((-856) $) 18) (($ (-1148)) 27) (($ (-1166)) 23) (((-1166) $) 22) (((-1094) $) 21)) (-3732 (((-112) $) 32)) (-1733 (((-112) $ $) 15)))
+(((-433) (-13 (-608 (-856)) (-10 -8 (-15 -4022 ($ (-1148))) (-15 -4022 ($ (-1166))) (-15 -4022 ((-1166) $)) (-15 -4022 ((-1094) $)) (-15 -3134 ((-112) $)) (-15 -2126 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -2407 ((-112) $)) (-15 -3503 ((-112) $)) (-15 -3732 ((-112) $)) (-15 -2808 ((-112) $)) (-15 -1733 ((-112) $ $))))) (T -433))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-433)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-433)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1733 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -4022 ($ (-1148))) (-15 -4022 ($ (-1166))) (-15 -4022 ((-1166) $)) (-15 -4022 ((-1094) $)) (-15 -3134 ((-112) $)) (-15 -2126 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -2407 ((-112) $)) (-15 -3503 ((-112) $)) (-15 -3732 ((-112) $)) (-15 -2808 ((-112) $)) (-15 -1733 ((-112) $ $))))
+((-4001 (((-3 (-417 (-1162 (-406 (-561)))) "failed") |#3|) 70)) (-2758 (((-417 |#3|) |#3|) 34)) (-2179 (((-3 (-417 (-1162 (-48))) "failed") |#3|) 46 (|has| |#2| (-1031 (-48))))) (-3922 (((-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4223 (-112))) |#3|) 37)))
+(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -2758 ((-417 |#3|) |#3|)) (-15 -4001 ((-3 (-417 (-1162 (-406 (-561)))) "failed") |#3|)) (-15 -3922 ((-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4223 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -2179 ((-3 (-417 (-1162 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-553) (-844) (-1031 (-561))) (-429 |#1|) (-1229 |#2|)) (T -434))
+((-2179 (*1 *2 *3) (|partial| -12 (-4 *5 (-1031 (-48))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1162 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4223 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-4001 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1162 (-406 (-561))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-2758 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4)) (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -2758 ((-417 |#3|) |#3|)) (-15 -4001 ((-3 (-417 (-1162 (-406 (-561)))) "failed") |#3|)) (-15 -3922 ((-3 (|:| |overq| (-1162 (-406 (-561)))) (|:| |overan| (-1162 (-48))) (|:| -4223 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -2179 ((-3 (-417 (-1162 (-48))) "failed") |#3|)) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-3974 (((-1148) $ (-1148)) NIL)) (-2462 (($ $ (-1148)) NIL)) (-2669 (((-1148) $) NIL)) (-3096 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-3333 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3269 (((-387) $) NIL)) (-1764 (((-1148) $) NIL)) (-3647 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2913 (((-1258) (-1148)) 9)) (-3600 (((-1258) (-1148)) 10)) (-4263 (((-1258)) 11)) (-4022 (((-856) $) NIL)) (-2836 (($ $) 34)) (-1733 (((-112) $ $) NIL)))
+(((-435) (-13 (-363 (-387) (-1148)) (-10 -7 (-15 -3096 ((-387) (-387) (-387))) (-15 -3096 ((-387) (-387))) (-15 -2913 ((-1258) (-1148))) (-15 -3600 ((-1258) (-1148))) (-15 -4263 ((-1258)))))) (T -435))
+((-3096 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-435)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-435)))) (-4263 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-435)))))
+(-13 (-363 (-387) (-1148)) (-10 -7 (-15 -3096 ((-387) (-387) (-387))) (-15 -3096 ((-387) (-387))) (-15 -2913 ((-1258) (-1148))) (-15 -3600 ((-1258) (-1148))) (-15 -4263 ((-1258)))))
+((-4011 (((-112) $ $) NIL)) (-2035 (((-3 (|:| |fst| (-433)) (|:| -2609 "void")) $) 11)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4043 (($) 32)) (-2774 (($) 38)) (-2652 (($) 34)) (-4066 (($) 36)) (-3750 (($) 33)) (-3221 (($) 35)) (-2831 (($) 37)) (-2830 (((-112) $) 8)) (-2479 (((-638 (-945 (-561))) $) 19)) (-4031 (($ (-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-638 (-1166)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-638 (-945 (-561))) (-112)) 28)) (-4022 (((-856) $) 23) (($ (-433)) 29)) (-1733 (((-112) $ $) NIL)))
+(((-436) (-13 (-1090) (-10 -8 (-15 -4022 ($ (-433))) (-15 -2035 ((-3 (|:| |fst| (-433)) (|:| -2609 "void")) $)) (-15 -2479 ((-638 (-945 (-561))) $)) (-15 -2830 ((-112) $)) (-15 -4031 ($ (-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-638 (-1166)) (-112))) (-15 -4031 ($ (-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-638 (-945 (-561))) (-112))) (-15 -4043 ($)) (-15 -3750 ($)) (-15 -2652 ($)) (-15 -2774 ($)) (-15 -3221 ($)) (-15 -4066 ($)) (-15 -2831 ($))))) (T -436))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *1 (-436)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-638 (-945 (-561)))) (-5 *1 (-436)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4031 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *3 (-638 (-1166))) (-5 *4 (-112)) (-5 *1 (-436)))) (-4031 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-112)) (-5 *1 (-436)))) (-4043 (*1 *1) (-5 *1 (-436))) (-3750 (*1 *1) (-5 *1 (-436))) (-2652 (*1 *1) (-5 *1 (-436))) (-2774 (*1 *1) (-5 *1 (-436))) (-3221 (*1 *1) (-5 *1 (-436))) (-4066 (*1 *1) (-5 *1 (-436))) (-2831 (*1 *1) (-5 *1 (-436))))
+(-13 (-1090) (-10 -8 (-15 -4022 ($ (-433))) (-15 -2035 ((-3 (|:| |fst| (-433)) (|:| -2609 "void")) $)) (-15 -2479 ((-638 (-945 (-561))) $)) (-15 -2830 ((-112) $)) (-15 -4031 ($ (-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-638 (-1166)) (-112))) (-15 -4031 ($ (-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-638 (-945 (-561))) (-112))) (-15 -4043 ($)) (-15 -3750 ($)) (-15 -2652 ($)) (-15 -2774 ($)) (-15 -3221 ($)) (-15 -4066 ($)) (-15 -2831 ($))))
+((-4011 (((-112) $ $) NIL)) (-3269 (((-1166) $) 8)) (-1764 (((-1148) $) 16)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 13)))
+(((-437 |#1|) (-13 (-1090) (-10 -8 (-15 -3269 ((-1166) $)))) (-1166)) (T -437))
+((-3269 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-437 *3)) (-14 *3 *2))))
+(-13 (-1090) (-10 -8 (-15 -3269 ((-1166) $))))
+((-2633 (((-1258) $) 7)) (-4022 (((-856) $) 8) (($ (-1253 (-692))) 14) (($ (-638 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 11)))
(((-438) (-139)) (T -438))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-689))) (-4 *1 (-438)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) (-4 *1 (-438)))))
-(-13 (-394) (-10 -8 (-15 -3940 ($ (-1246 (-689)))) (-15 -3940 ($ (-635 (-329)))) (-15 -3940 ($ (-329))) (-15 -3940 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))))))
-(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
-((-3302 (((-3 $ "failed") (-1246 (-315 (-378)))) 21) (((-3 $ "failed") (-1246 (-315 (-558)))) 19) (((-3 $ "failed") (-1246 (-942 (-378)))) 17) (((-3 $ "failed") (-1246 (-942 (-558)))) 15) (((-3 $ "failed") (-1246 (-406 (-942 (-378))))) 13) (((-3 $ "failed") (-1246 (-406 (-942 (-558))))) 11)) (-3226 (($ (-1246 (-315 (-378)))) 22) (($ (-1246 (-315 (-558)))) 20) (($ (-1246 (-942 (-378)))) 18) (($ (-1246 (-942 (-558)))) 16) (($ (-1246 (-406 (-942 (-378))))) 14) (($ (-1246 (-406 (-942 (-558))))) 12)) (-3154 (((-1251) $) 7)) (-3940 (((-853) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) 23)))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-692))) (-4 *1 (-438)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-438)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) (-4 *1 (-438)))))
+(-13 (-394) (-10 -8 (-15 -4022 ($ (-1253 (-692)))) (-15 -4022 ($ (-638 (-329)))) (-15 -4022 ($ (-329))) (-15 -4022 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))))))
+(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
+((-4017 (((-3 $ "failed") (-1253 (-315 (-378)))) 21) (((-3 $ "failed") (-1253 (-315 (-561)))) 19) (((-3 $ "failed") (-1253 (-945 (-378)))) 17) (((-3 $ "failed") (-1253 (-945 (-561)))) 15) (((-3 $ "failed") (-1253 (-406 (-945 (-378))))) 13) (((-3 $ "failed") (-1253 (-406 (-945 (-561))))) 11)) (-3938 (($ (-1253 (-315 (-378)))) 22) (($ (-1253 (-315 (-561)))) 20) (($ (-1253 (-945 (-378)))) 18) (($ (-1253 (-945 (-561)))) 16) (($ (-1253 (-406 (-945 (-378))))) 14) (($ (-1253 (-406 (-945 (-561))))) 12)) (-2633 (((-1258) $) 7)) (-4022 (((-856) $) 8) (($ (-638 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) 23)))
(((-439) (-139)) (T -439))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329))))) (-4 *1 (-439)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439)))))
-(-13 (-394) (-10 -8 (-15 -3940 ($ (-635 (-329)))) (-15 -3940 ($ (-329))) (-15 -3940 ($ (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))) (-15 -3226 ($ (-1246 (-315 (-378))))) (-15 -3302 ((-3 $ "failed") (-1246 (-315 (-378))))) (-15 -3226 ($ (-1246 (-315 (-558))))) (-15 -3302 ((-3 $ "failed") (-1246 (-315 (-558))))) (-15 -3226 ($ (-1246 (-942 (-378))))) (-15 -3302 ((-3 $ "failed") (-1246 (-942 (-378))))) (-15 -3226 ($ (-1246 (-942 (-558))))) (-15 -3302 ((-3 $ "failed") (-1246 (-942 (-558))))) (-15 -3226 ($ (-1246 (-406 (-942 (-378)))))) (-15 -3302 ((-3 $ "failed") (-1246 (-406 (-942 (-378)))))) (-15 -3226 ($ (-1246 (-406 (-942 (-558)))))) (-15 -3302 ((-3 $ "failed") (-1246 (-406 (-942 (-558))))))))
-(((-605 (-853)) . T) ((-394) . T) ((-1200) . T))
-((-1452 (((-112)) 17)) (-2337 (((-112) (-112)) 18)) (-1483 (((-112)) 13)) (-2739 (((-112) (-112)) 14)) (-1783 (((-112)) 15)) (-4217 (((-112) (-112)) 16)) (-4022 (((-911) (-911)) 21) (((-911)) 20)) (-1568 (((-762) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558))))) 41)) (-2488 (((-911) (-911)) 23) (((-911)) 22)) (-3858 (((-2 (|:| -4144 (-558)) (|:| -3381 (-635 |#1|))) |#1|) 61)) (-2995 (((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558))))))) 126)) (-2784 (((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112)) 152)) (-1758 (((-417 |#1|) |#1| (-762) (-762)) 165) (((-417 |#1|) |#1| (-635 (-762)) (-762)) 162) (((-417 |#1|) |#1| (-635 (-762))) 164) (((-417 |#1|) |#1| (-762)) 163) (((-417 |#1|) |#1|) 161)) (-2800 (((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762) (-112)) 167) (((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762)) 168) (((-3 |#1| "failed") (-911) |#1| (-635 (-762))) 170) (((-3 |#1| "failed") (-911) |#1| (-762)) 169) (((-3 |#1| "failed") (-911) |#1|) 171)) (-3939 (((-417 |#1|) |#1| (-762) (-762)) 160) (((-417 |#1|) |#1| (-635 (-762)) (-762)) 156) (((-417 |#1|) |#1| (-635 (-762))) 158) (((-417 |#1|) |#1| (-762)) 157) (((-417 |#1|) |#1|) 155)) (-4209 (((-112) |#1|) 36)) (-3581 (((-728 (-762)) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558))))) 66)) (-1663 (((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112) (-1089 (-762)) (-762)) 154)))
-(((-440 |#1|) (-10 -7 (-15 -2995 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))))) (-15 -3581 ((-728 (-762)) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))))) (-15 -2488 ((-911))) (-15 -2488 ((-911) (-911))) (-15 -4022 ((-911))) (-15 -4022 ((-911) (-911))) (-15 -1568 ((-762) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))))) (-15 -3858 ((-2 (|:| -4144 (-558)) (|:| -3381 (-635 |#1|))) |#1|)) (-15 -1452 ((-112))) (-15 -2337 ((-112) (-112))) (-15 -1483 ((-112))) (-15 -2739 ((-112) (-112))) (-15 -4209 ((-112) |#1|)) (-15 -1783 ((-112))) (-15 -4217 ((-112) (-112))) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -3939 ((-417 |#1|) |#1| (-762))) (-15 -3939 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -3939 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -3939 ((-417 |#1|) |#1| (-762) (-762))) (-15 -1758 ((-417 |#1|) |#1|)) (-15 -1758 ((-417 |#1|) |#1| (-762))) (-15 -1758 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -1758 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -1758 ((-417 |#1|) |#1| (-762) (-762))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1|)) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-762))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762) (-112))) (-15 -2784 ((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112))) (-15 -1663 ((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112) (-1089 (-762)) (-762)))) (-1222 (-558))) (T -440))
-((-1663 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1089 (-762))) (-5 *6 (-762)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558))))))) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2784 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558))))))) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2800 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-2800 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-2800 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-2800 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-911)) (-5 *4 (-762)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-2800 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-911)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558))))) (-1758 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1758 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1758 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1758 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1758 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3939 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3939 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3939 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-4217 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1783 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-4209 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1483 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2337 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1452 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3858 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4144 (-558)) (|:| -3381 (-635 *3)))) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3939 *4) (|:| -4263 (-558))))) (-4 *4 (-1222 (-558))) (-5 *2 (-762)) (-5 *1 (-440 *4)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-4022 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-2488 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3939 *4) (|:| -4263 (-558))))) (-4 *4 (-1222 (-558))) (-5 *2 (-728 (-762))) (-5 *1 (-440 *4)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| *4) (|:| -2074 (-558))))))) (-4 *4 (-1222 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
-(-10 -7 (-15 -2995 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))))) (-15 -3581 ((-728 (-762)) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))))) (-15 -2488 ((-911))) (-15 -2488 ((-911) (-911))) (-15 -4022 ((-911))) (-15 -4022 ((-911) (-911))) (-15 -1568 ((-762) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))))) (-15 -3858 ((-2 (|:| -4144 (-558)) (|:| -3381 (-635 |#1|))) |#1|)) (-15 -1452 ((-112))) (-15 -2337 ((-112) (-112))) (-15 -1483 ((-112))) (-15 -2739 ((-112) (-112))) (-15 -4209 ((-112) |#1|)) (-15 -1783 ((-112))) (-15 -4217 ((-112) (-112))) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -3939 ((-417 |#1|) |#1| (-762))) (-15 -3939 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -3939 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -3939 ((-417 |#1|) |#1| (-762) (-762))) (-15 -1758 ((-417 |#1|) |#1|)) (-15 -1758 ((-417 |#1|) |#1| (-762))) (-15 -1758 ((-417 |#1|) |#1| (-635 (-762)))) (-15 -1758 ((-417 |#1|) |#1| (-635 (-762)) (-762))) (-15 -1758 ((-417 |#1|) |#1| (-762) (-762))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1|)) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-762))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762))) (-15 -2800 ((-3 |#1| "failed") (-911) |#1| (-635 (-762)) (-762) (-112))) (-15 -2784 ((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112))) (-15 -1663 ((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112) (-1089 (-762)) (-762))))
-((-1442 (((-558) |#2|) 48) (((-558) |#2| (-762)) 47)) (-2913 (((-558) |#2|) 55)) (-1722 ((|#3| |#2|) 25)) (-1423 ((|#3| |#2| (-911)) 14)) (-2958 ((|#3| |#2|) 15)) (-2041 ((|#3| |#2|) 9)) (-2361 ((|#3| |#2|) 10)) (-1734 ((|#3| |#2| (-911)) 62) ((|#3| |#2|) 30)) (-3774 (((-558) |#2|) 57)))
-(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -3774 ((-558) |#2|)) (-15 -1734 (|#3| |#2|)) (-15 -1734 (|#3| |#2| (-911))) (-15 -2913 ((-558) |#2|)) (-15 -1442 ((-558) |#2| (-762))) (-15 -1442 ((-558) |#2|)) (-15 -1423 (|#3| |#2| (-911))) (-15 -1722 (|#3| |#2|)) (-15 -2041 (|#3| |#2|)) (-15 -2361 (|#3| |#2|)) (-15 -2958 (|#3| |#2|))) (-1039) (-1222 |#1|) (-13 (-403) (-1028 |#1|) (-362) (-1185) (-283))) (T -441))
-((-2958 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-2361 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-1722 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-1423 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5)))) (-1442 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1222 *4)) (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))) (-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1222 *5)) (-4 *6 (-13 (-403) (-1028 *5) (-362) (-1185) (-283))))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1222 *4)) (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5)))) (-1734 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))) (-3774 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1222 *4)) (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
-(-10 -7 (-15 -3774 ((-558) |#2|)) (-15 -1734 (|#3| |#2|)) (-15 -1734 (|#3| |#2| (-911))) (-15 -2913 ((-558) |#2|)) (-15 -1442 ((-558) |#2| (-762))) (-15 -1442 ((-558) |#2|)) (-15 -1423 (|#3| |#2| (-911))) (-15 -1722 (|#3| |#2|)) (-15 -2041 (|#3| |#2|)) (-15 -2361 (|#3| |#2|)) (-15 -2958 (|#3| |#2|)))
-((-2717 ((|#2| (-1246 |#1|)) 36)) (-2045 ((|#2| |#2| |#1|) 49)) (-2443 ((|#2| |#2| |#1|) 41)) (-1911 ((|#2| |#2|) 38)) (-1953 (((-112) |#2|) 30)) (-3033 (((-635 |#2|) (-911) (-417 |#2|)) 17)) (-2800 ((|#2| (-911) (-417 |#2|)) 21)) (-3581 (((-728 (-762)) (-417 |#2|)) 25)))
-(((-442 |#1| |#2|) (-10 -7 (-15 -1953 ((-112) |#2|)) (-15 -2717 (|#2| (-1246 |#1|))) (-15 -1911 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -2045 (|#2| |#2| |#1|)) (-15 -3581 ((-728 (-762)) (-417 |#2|))) (-15 -2800 (|#2| (-911) (-417 |#2|))) (-15 -3033 ((-635 |#2|) (-911) (-417 |#2|)))) (-1039) (-1222 |#1|)) (T -442))
-((-3033 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-417 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-1039)) (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-417 *2)) (-4 *2 (-1222 *5)) (-5 *1 (-442 *5 *2)) (-4 *5 (-1039)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1039)) (-5 *2 (-728 (-762))) (-5 *1 (-442 *4 *5)))) (-2045 (*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))) (-1911 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-1039)) (-4 *2 (-1222 *4)) (-5 *1 (-442 *4 *2)))) (-1953 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -1953 ((-112) |#2|)) (-15 -2717 (|#2| (-1246 |#1|))) (-15 -1911 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -2045 (|#2| |#2| |#1|)) (-15 -3581 ((-728 (-762)) (-417 |#2|))) (-15 -2800 (|#2| (-911) (-417 |#2|))) (-15 -3033 ((-635 |#2|) (-911) (-417 |#2|))))
-((-3160 (((-762)) 41)) (-1417 (((-762)) 23 (|has| |#1| (-403))) (((-762) (-762)) 22 (|has| |#1| (-403)))) (-1517 (((-558) |#1|) 18 (|has| |#1| (-403)))) (-3684 (((-558) |#1|) 20 (|has| |#1| (-403)))) (-3690 (((-762)) 40) (((-762) (-762)) 39)) (-3945 ((|#1| (-762) (-558)) 29)) (-2360 (((-1251)) 43)))
-(((-443 |#1|) (-10 -7 (-15 -3945 (|#1| (-762) (-558))) (-15 -3690 ((-762) (-762))) (-15 -3690 ((-762))) (-15 -3160 ((-762))) (-15 -2360 ((-1251))) (IF (|has| |#1| (-403)) (PROGN (-15 -3684 ((-558) |#1|)) (-15 -1517 ((-558) |#1|)) (-15 -1417 ((-762) (-762))) (-15 -1417 ((-762)))) |%noBranch|)) (-1039)) (T -443))
-((-1417 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-1417 (*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-3684 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))) (-2360 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3160 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3690 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3690 (*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-558)) (-5 *1 (-443 *2)) (-4 *2 (-1039)))))
-(-10 -7 (-15 -3945 (|#1| (-762) (-558))) (-15 -3690 ((-762) (-762))) (-15 -3690 ((-762))) (-15 -3160 ((-762))) (-15 -2360 ((-1251))) (IF (|has| |#1| (-403)) (PROGN (-15 -3684 ((-558) |#1|)) (-15 -1517 ((-558) |#1|)) (-15 -1417 ((-762) (-762))) (-15 -1417 ((-762)))) |%noBranch|))
-((-3510 (((-635 (-558)) (-558)) 60)) (-2992 (((-112) (-168 (-558))) 64)) (-3939 (((-417 (-168 (-558))) (-168 (-558))) 59)))
-(((-444) (-10 -7 (-15 -3939 ((-417 (-168 (-558))) (-168 (-558)))) (-15 -3510 ((-635 (-558)) (-558))) (-15 -2992 ((-112) (-168 (-558)))))) (T -444))
-((-2992 (*1 *2 *3) (-12 (-5 *3 (-168 (-558))) (-5 *2 (-112)) (-5 *1 (-444)))) (-3510 (*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-444)) (-5 *3 (-558)))) (-3939 (*1 *2 *3) (-12 (-5 *2 (-417 (-168 (-558)))) (-5 *1 (-444)) (-5 *3 (-168 (-558))))))
-(-10 -7 (-15 -3939 ((-417 (-168 (-558))) (-168 (-558)))) (-15 -3510 ((-635 (-558)) (-558))) (-15 -2992 ((-112) (-168 (-558)))))
-((-1775 ((|#4| |#4| (-635 |#4|)) 60)) (-3799 (((-635 |#4|) (-635 |#4|) (-1145) (-1145)) 17) (((-635 |#4|) (-635 |#4|) (-1145)) 16) (((-635 |#4|) (-635 |#4|)) 11)))
-(((-445 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1775 (|#4| |#4| (-635 |#4|))) (-15 -3799 ((-635 |#4|) (-635 |#4|))) (-15 -3799 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -3799 ((-635 |#4|) (-635 |#4|) (-1145) (-1145)))) (-306) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -445))
-((-3799 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *7)))) (-3799 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *7)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-445 *3 *4 *5 *6)))) (-1775 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1775 (|#4| |#4| (-635 |#4|))) (-15 -3799 ((-635 |#4|) (-635 |#4|))) (-15 -3799 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -3799 ((-635 |#4|) (-635 |#4|) (-1145) (-1145))))
-((-4302 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 72) (((-635 (-635 |#4|)) (-635 |#4|)) 71) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112)) 65) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|)) 66)) (-3049 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 41) (((-635 (-635 |#4|)) (-635 |#4|)) 62)))
-(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3049 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -3049 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|) (-112)))) (-13 (-306) (-146)) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -446))
-((-4302 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-4302 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-4302 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-4302 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-3049 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
-(-10 -7 (-15 -3049 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -3049 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -4302 ((-635 (-635 |#4|)) (-635 |#4|) (-112))))
-((-1763 (((-762) |#4|) 12)) (-3356 (((-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|))) |#4| (-762) (-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|)))) 31)) (-4270 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3069 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-2579 ((|#4| |#4| (-635 |#4|)) 39)) (-1322 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|)) 69)) (-2057 (((-1251) |#4|) 41)) (-2107 (((-1251) (-635 |#4|)) 50)) (-3758 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558)) 47)) (-1704 (((-1251) (-558)) 78)) (-3749 (((-635 |#4|) (-635 |#4|)) 76)) (-2399 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|)) |#4| (-762)) 25)) (-2278 (((-558) |#4|) 77)) (-1618 ((|#4| |#4|) 29)) (-2585 (((-635 |#4|) (-635 |#4|) (-558) (-558)) 55)) (-3403 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558)) 88)) (-3558 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2457 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-1528 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-1575 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-2613 (((-112) |#2| |#2|) 56)) (-3822 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-4120 (((-112) |#2| |#2| |#2| |#2|) 59)) (-1628 ((|#4| |#4| (-635 |#4|)) 70)))
-(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1628 (|#4| |#4| (-635 |#4|))) (-15 -2579 (|#4| |#4| (-635 |#4|))) (-15 -2585 ((-635 |#4|) (-635 |#4|) (-558) (-558))) (-15 -2457 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2613 ((-112) |#2| |#2|)) (-15 -4120 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3822 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1575 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1528 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1322 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -1618 (|#4| |#4|)) (-15 -3356 ((-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|))) |#4| (-762) (-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|))))) (-15 -3069 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4270 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3749 ((-635 |#4|) (-635 |#4|))) (-15 -2278 ((-558) |#4|)) (-15 -2057 ((-1251) |#4|)) (-15 -3758 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -3403 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -2107 ((-1251) (-635 |#4|))) (-15 -1704 ((-1251) (-558))) (-15 -3558 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2399 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|)) |#4| (-762))) (-15 -1763 ((-762) |#4|))) (-450) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -447))
-((-1763 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-2399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-762)) (|:| -3936 *4))) (-5 *5 (-762)) (-4 *4 (-939 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-447 *6 *7 *8 *4)))) (-3558 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3403 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *4)))) (-3758 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *4)))) (-2057 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-2278 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-558)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))) (-4270 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-784)) (-4 *2 (-939 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2)) (-4 *4 (-450)) (-4 *6 (-841)))) (-3356 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 *3)))) (-5 *4 (-762)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *3)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))) (-1322 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-447 *5 *6 *7 *3)))) (-1528 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-762)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-784)) (-4 *6 (-939 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-841)) (-5 *1 (-447 *4 *3 *5 *6)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3822 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-784)) (-4 *3 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *3)))) (-4120 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))) (-2613 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2585 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2579 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))) (-1628 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1628 (|#4| |#4| (-635 |#4|))) (-15 -2579 (|#4| |#4| (-635 |#4|))) (-15 -2585 ((-635 |#4|) (-635 |#4|) (-558) (-558))) (-15 -2457 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2613 ((-112) |#2| |#2|)) (-15 -4120 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3822 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1575 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1528 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1322 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -1618 (|#4| |#4|)) (-15 -3356 ((-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|))) |#4| (-762) (-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|))))) (-15 -3069 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4270 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3749 ((-635 |#4|) (-635 |#4|))) (-15 -2278 ((-558) |#4|)) (-15 -2057 ((-1251) |#4|)) (-15 -3758 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -3403 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -2107 ((-1251) (-635 |#4|))) (-15 -1704 ((-1251) (-558))) (-15 -3558 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2399 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-762)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-762)) (|:| -3936 |#4|)) |#4| (-762))) (-15 -1763 ((-762) |#4|)))
-((-3957 ((|#4| |#4| (-635 |#4|)) 22 (|has| |#1| (-362)))) (-2205 (((-635 |#4|) (-635 |#4|) (-1145) (-1145)) 41) (((-635 |#4|) (-635 |#4|) (-1145)) 40) (((-635 |#4|) (-635 |#4|)) 35)))
-(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2205 ((-635 |#4|) (-635 |#4|))) (-15 -2205 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -2205 ((-635 |#4|) (-635 |#4|) (-1145) (-1145))) (IF (|has| |#1| (-362)) (-15 -3957 (|#4| |#4| (-635 |#4|))) |%noBranch|)) (-450) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -448))
-((-3957 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-448 *4 *5 *6 *2)))) (-2205 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2205 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-448 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2205 ((-635 |#4|) (-635 |#4|))) (-15 -2205 ((-635 |#4|) (-635 |#4|) (-1145))) (-15 -2205 ((-635 |#4|) (-635 |#4|) (-1145) (-1145))) (IF (|has| |#1| (-362)) (-15 -3957 (|#4| |#4| (-635 |#4|))) |%noBranch|))
-((-1500 (($ $ $) 14) (($ (-635 $)) 21)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 41)) (-1544 (($ $ $) NIL) (($ (-635 $)) 22)))
-(((-449 |#1|) (-10 -8 (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1500 (|#1| (-635 |#1|))) (-15 -1500 (|#1| |#1| |#1|)) (-15 -1544 (|#1| (-635 |#1|))) (-15 -1544 (|#1| |#1| |#1|))) (-450)) (T -449))
-NIL
-(-10 -8 (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1500 (|#1| (-635 |#1|))) (-15 -1500 (|#1| |#1| |#1|)) (-15 -1544 (|#1| (-635 |#1|))) (-15 -1544 (|#1| |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-2861 (((-3 $ "failed") $ $) 43)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-439)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329))))) (-4 *1 (-439)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1253 (-315 (-378)))) (-4 *1 (-439)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-315 (-378)))) (-4 *1 (-439)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1253 (-315 (-561)))) (-4 *1 (-439)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-315 (-561)))) (-4 *1 (-439)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1253 (-945 (-378)))) (-4 *1 (-439)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-945 (-378)))) (-4 *1 (-439)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1253 (-945 (-561)))) (-4 *1 (-439)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-945 (-561)))) (-4 *1 (-439)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-945 (-378))))) (-4 *1 (-439)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-406 (-945 (-378))))) (-4 *1 (-439)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-945 (-561))))) (-4 *1 (-439)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-406 (-945 (-561))))) (-4 *1 (-439)))))
+(-13 (-394) (-10 -8 (-15 -4022 ($ (-638 (-329)))) (-15 -4022 ($ (-329))) (-15 -4022 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))) (-15 -3938 ($ (-1253 (-315 (-378))))) (-15 -4017 ((-3 $ "failed") (-1253 (-315 (-378))))) (-15 -3938 ($ (-1253 (-315 (-561))))) (-15 -4017 ((-3 $ "failed") (-1253 (-315 (-561))))) (-15 -3938 ($ (-1253 (-945 (-378))))) (-15 -4017 ((-3 $ "failed") (-1253 (-945 (-378))))) (-15 -3938 ($ (-1253 (-945 (-561))))) (-15 -4017 ((-3 $ "failed") (-1253 (-945 (-561))))) (-15 -3938 ($ (-1253 (-406 (-945 (-378)))))) (-15 -4017 ((-3 $ "failed") (-1253 (-406 (-945 (-378)))))) (-15 -3938 ($ (-1253 (-406 (-945 (-561)))))) (-15 -4017 ((-3 $ "failed") (-1253 (-406 (-945 (-561))))))))
+(((-608 (-856)) . T) ((-394) . T) ((-1205) . T))
+((-3804 (((-112)) 17)) (-2791 (((-112) (-112)) 18)) (-2157 (((-112)) 13)) (-2589 (((-112) (-112)) 14)) (-3827 (((-112)) 15)) (-2879 (((-112) (-112)) 16)) (-3757 (((-914) (-914)) 21) (((-914)) 20)) (-3854 (((-765) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561))))) 41)) (-2897 (((-914) (-914)) 23) (((-914)) 22)) (-3401 (((-2 (|:| -4233 (-561)) (|:| -4282 (-638 |#1|))) |#1|) 61)) (-2503 (((-417 |#1|) (-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561))))))) 126)) (-3920 (((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112)) 152)) (-2494 (((-417 |#1|) |#1| (-765) (-765)) 165) (((-417 |#1|) |#1| (-638 (-765)) (-765)) 162) (((-417 |#1|) |#1| (-638 (-765))) 164) (((-417 |#1|) |#1| (-765)) 163) (((-417 |#1|) |#1|) 161)) (-1929 (((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765) (-112)) 167) (((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765)) 168) (((-3 |#1| "failed") (-914) |#1| (-638 (-765))) 170) (((-3 |#1| "failed") (-914) |#1| (-765)) 169) (((-3 |#1| "failed") (-914) |#1|) 171)) (-1657 (((-417 |#1|) |#1| (-765) (-765)) 160) (((-417 |#1|) |#1| (-638 (-765)) (-765)) 156) (((-417 |#1|) |#1| (-638 (-765))) 158) (((-417 |#1|) |#1| (-765)) 157) (((-417 |#1|) |#1|) 155)) (-1807 (((-112) |#1|) 36)) (-3962 (((-731 (-765)) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561))))) 66)) (-2871 (((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112) (-1092 (-765)) (-765)) 154)))
+(((-440 |#1|) (-10 -7 (-15 -2503 ((-417 |#1|) (-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))))) (-15 -3962 ((-731 (-765)) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))))) (-15 -2897 ((-914))) (-15 -2897 ((-914) (-914))) (-15 -3757 ((-914))) (-15 -3757 ((-914) (-914))) (-15 -3854 ((-765) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))))) (-15 -3401 ((-2 (|:| -4233 (-561)) (|:| -4282 (-638 |#1|))) |#1|)) (-15 -3804 ((-112))) (-15 -2791 ((-112) (-112))) (-15 -2157 ((-112))) (-15 -2589 ((-112) (-112))) (-15 -1807 ((-112) |#1|)) (-15 -3827 ((-112))) (-15 -2879 ((-112) (-112))) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -1657 ((-417 |#1|) |#1| (-765))) (-15 -1657 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -1657 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -1657 ((-417 |#1|) |#1| (-765) (-765))) (-15 -2494 ((-417 |#1|) |#1|)) (-15 -2494 ((-417 |#1|) |#1| (-765))) (-15 -2494 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -2494 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -2494 ((-417 |#1|) |#1| (-765) (-765))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1|)) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-765))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765) (-112))) (-15 -3920 ((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112))) (-15 -2871 ((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112) (-1092 (-765)) (-765)))) (-1229 (-561))) (T -440))
+((-2871 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1092 (-765))) (-5 *6 (-765)) (-5 *2 (-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561))))))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561))))))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-1929 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-561))))) (-1929 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-561))))) (-1929 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-561))))) (-1929 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-914)) (-5 *4 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-561))))) (-1929 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-914)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-561))))) (-2494 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2494 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2494 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-1657 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-1657 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-1657 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-3827 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-1807 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2157 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-3804 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-3401 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4233 (-561)) (|:| -4282 (-638 *3)))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1657 *4) (|:| -2894 (-561))))) (-4 *4 (-1229 (-561))) (-5 *2 (-765)) (-5 *1 (-440 *4)))) (-3757 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-3757 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2897 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-2897 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1657 *4) (|:| -2894 (-561))))) (-4 *4 (-1229 (-561))) (-5 *2 (-731 (-765))) (-5 *1 (-440 *4)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| *4) (|:| -2449 (-561))))))) (-4 *4 (-1229 (-561))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
+(-10 -7 (-15 -2503 ((-417 |#1|) (-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))))) (-15 -3962 ((-731 (-765)) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))))) (-15 -2897 ((-914))) (-15 -2897 ((-914) (-914))) (-15 -3757 ((-914))) (-15 -3757 ((-914) (-914))) (-15 -3854 ((-765) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))))) (-15 -3401 ((-2 (|:| -4233 (-561)) (|:| -4282 (-638 |#1|))) |#1|)) (-15 -3804 ((-112))) (-15 -2791 ((-112) (-112))) (-15 -2157 ((-112))) (-15 -2589 ((-112) (-112))) (-15 -1807 ((-112) |#1|)) (-15 -3827 ((-112))) (-15 -2879 ((-112) (-112))) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -1657 ((-417 |#1|) |#1| (-765))) (-15 -1657 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -1657 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -1657 ((-417 |#1|) |#1| (-765) (-765))) (-15 -2494 ((-417 |#1|) |#1|)) (-15 -2494 ((-417 |#1|) |#1| (-765))) (-15 -2494 ((-417 |#1|) |#1| (-638 (-765)))) (-15 -2494 ((-417 |#1|) |#1| (-638 (-765)) (-765))) (-15 -2494 ((-417 |#1|) |#1| (-765) (-765))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1|)) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-765))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765))) (-15 -1929 ((-3 |#1| "failed") (-914) |#1| (-638 (-765)) (-765) (-112))) (-15 -3920 ((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112))) (-15 -2871 ((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112) (-1092 (-765)) (-765))))
+((-1742 (((-561) |#2|) 48) (((-561) |#2| (-765)) 47)) (-2572 (((-561) |#2|) 55)) (-4290 ((|#3| |#2|) 25)) (-1672 ((|#3| |#2| (-914)) 14)) (-3617 ((|#3| |#2|) 15)) (-2823 ((|#3| |#2|) 9)) (-3061 ((|#3| |#2|) 10)) (-2927 ((|#3| |#2| (-914)) 62) ((|#3| |#2|) 30)) (-3713 (((-561) |#2|) 57)))
+(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -3713 ((-561) |#2|)) (-15 -2927 (|#3| |#2|)) (-15 -2927 (|#3| |#2| (-914))) (-15 -2572 ((-561) |#2|)) (-15 -1742 ((-561) |#2| (-765))) (-15 -1742 ((-561) |#2|)) (-15 -1672 (|#3| |#2| (-914))) (-15 -4290 (|#3| |#2|)) (-15 -2823 (|#3| |#2|)) (-15 -3061 (|#3| |#2|)) (-15 -3617 (|#3| |#2|))) (-1042) (-1229 |#1|) (-13 (-403) (-1031 |#1|) (-362) (-1190) (-283))) (T -441))
+((-3617 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-3061 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-4290 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))) (-1742 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-1742 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1229 *5)) (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(-10 -7 (-15 -3713 ((-561) |#2|)) (-15 -2927 (|#3| |#2|)) (-15 -2927 (|#3| |#2| (-914))) (-15 -2572 ((-561) |#2|)) (-15 -1742 ((-561) |#2| (-765))) (-15 -1742 ((-561) |#2|)) (-15 -1672 (|#3| |#2| (-914))) (-15 -4290 (|#3| |#2|)) (-15 -2823 (|#3| |#2|)) (-15 -3061 (|#3| |#2|)) (-15 -3617 (|#3| |#2|)))
+((-3542 ((|#2| (-1253 |#1|)) 36)) (-4264 ((|#2| |#2| |#1|) 49)) (-4190 ((|#2| |#2| |#1|) 41)) (-2638 ((|#2| |#2|) 38)) (-1509 (((-112) |#2|) 30)) (-1588 (((-638 |#2|) (-914) (-417 |#2|)) 17)) (-1929 ((|#2| (-914) (-417 |#2|)) 21)) (-3962 (((-731 (-765)) (-417 |#2|)) 25)))
+(((-442 |#1| |#2|) (-10 -7 (-15 -1509 ((-112) |#2|)) (-15 -3542 (|#2| (-1253 |#1|))) (-15 -2638 (|#2| |#2|)) (-15 -4190 (|#2| |#2| |#1|)) (-15 -4264 (|#2| |#2| |#1|)) (-15 -3962 ((-731 (-765)) (-417 |#2|))) (-15 -1929 (|#2| (-914) (-417 |#2|))) (-15 -1588 ((-638 |#2|) (-914) (-417 |#2|)))) (-1042) (-1229 |#1|)) (T -442))
+((-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-417 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-1042)) (-5 *2 (-638 *6)) (-5 *1 (-442 *5 *6)))) (-1929 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-417 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-442 *5 *2)) (-4 *5 (-1042)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-731 (-765))) (-5 *1 (-442 *4 *5)))) (-4264 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-4190 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-1042)) (-4 *2 (-1229 *4)) (-5 *1 (-442 *4 *2)))) (-1509 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -1509 ((-112) |#2|)) (-15 -3542 (|#2| (-1253 |#1|))) (-15 -2638 (|#2| |#2|)) (-15 -4190 (|#2| |#2| |#1|)) (-15 -4264 (|#2| |#2| |#1|)) (-15 -3962 ((-731 (-765)) (-417 |#2|))) (-15 -1929 (|#2| (-914) (-417 |#2|))) (-15 -1588 ((-638 |#2|) (-914) (-417 |#2|))))
+((-2317 (((-765)) 41)) (-3676 (((-765)) 23 (|has| |#1| (-403))) (((-765) (-765)) 22 (|has| |#1| (-403)))) (-2370 (((-561) |#1|) 18 (|has| |#1| (-403)))) (-1320 (((-561) |#1|) 20 (|has| |#1| (-403)))) (-2947 (((-765)) 40) (((-765) (-765)) 39)) (-1909 ((|#1| (-765) (-561)) 29)) (-2353 (((-1258)) 43)))
+(((-443 |#1|) (-10 -7 (-15 -1909 (|#1| (-765) (-561))) (-15 -2947 ((-765) (-765))) (-15 -2947 ((-765))) (-15 -2317 ((-765))) (-15 -2353 ((-1258))) (IF (|has| |#1| (-403)) (PROGN (-15 -1320 ((-561) |#1|)) (-15 -2370 ((-561) |#1|)) (-15 -3676 ((-765) (-765))) (-15 -3676 ((-765)))) |%noBranch|)) (-1042)) (T -443))
+((-3676 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2370 (*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-1320 (*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2353 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2317 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2947 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-561)) (-5 *1 (-443 *2)) (-4 *2 (-1042)))))
+(-10 -7 (-15 -1909 (|#1| (-765) (-561))) (-15 -2947 ((-765) (-765))) (-15 -2947 ((-765))) (-15 -2317 ((-765))) (-15 -2353 ((-1258))) (IF (|has| |#1| (-403)) (PROGN (-15 -1320 ((-561) |#1|)) (-15 -2370 ((-561) |#1|)) (-15 -3676 ((-765) (-765))) (-15 -3676 ((-765)))) |%noBranch|))
+((-4055 (((-638 (-561)) (-561)) 60)) (-2737 (((-112) (-168 (-561))) 64)) (-1657 (((-417 (-168 (-561))) (-168 (-561))) 59)))
+(((-444) (-10 -7 (-15 -1657 ((-417 (-168 (-561))) (-168 (-561)))) (-15 -4055 ((-638 (-561)) (-561))) (-15 -2737 ((-112) (-168 (-561)))))) (T -444))
+((-2737 (*1 *2 *3) (-12 (-5 *3 (-168 (-561))) (-5 *2 (-112)) (-5 *1 (-444)))) (-4055 (*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-444)) (-5 *3 (-561)))) (-1657 (*1 *2 *3) (-12 (-5 *2 (-417 (-168 (-561)))) (-5 *1 (-444)) (-5 *3 (-168 (-561))))))
+(-10 -7 (-15 -1657 ((-417 (-168 (-561))) (-168 (-561)))) (-15 -4055 ((-638 (-561)) (-561))) (-15 -2737 ((-112) (-168 (-561)))))
+((-2784 ((|#4| |#4| (-638 |#4|)) 60)) (-2846 (((-638 |#4|) (-638 |#4|) (-1148) (-1148)) 17) (((-638 |#4|) (-638 |#4|) (-1148)) 16) (((-638 |#4|) (-638 |#4|)) 11)))
+(((-445 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2784 (|#4| |#4| (-638 |#4|))) (-15 -2846 ((-638 |#4|) (-638 |#4|))) (-15 -2846 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -2846 ((-638 |#4|) (-638 |#4|) (-1148) (-1148)))) (-306) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -445))
+((-2846 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2846 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2846 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6)))) (-2784 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2784 (|#4| |#4| (-638 |#4|))) (-15 -2846 ((-638 |#4|) (-638 |#4|))) (-15 -2846 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -2846 ((-638 |#4|) (-638 |#4|) (-1148) (-1148))))
+((-2416 (((-638 (-638 |#4|)) (-638 |#4|) (-112)) 72) (((-638 (-638 |#4|)) (-638 |#4|)) 71) (((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|) (-112)) 65) (((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|)) 66)) (-2775 (((-638 (-638 |#4|)) (-638 |#4|) (-112)) 41) (((-638 (-638 |#4|)) (-638 |#4|)) 62)))
+(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2775 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -2775 ((-638 (-638 |#4|)) (-638 |#4|) (-112))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|) (-112))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|) (-112)))) (-13 (-306) (-146)) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -446))
+((-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-2416 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))) (-2416 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-2775 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8))) (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))) (-2775 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
+(-10 -7 (-15 -2775 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -2775 ((-638 (-638 |#4|)) (-638 |#4|) (-112))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|) (-638 |#4|) (-112))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|))) (-15 -2416 ((-638 (-638 |#4|)) (-638 |#4|) (-112))))
+((-1379 (((-765) |#4|) 12)) (-4121 (((-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|))) |#4| (-765) (-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|)))) 31)) (-1797 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1816 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-3415 ((|#4| |#4| (-638 |#4|)) 39)) (-2841 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-638 |#4|)) 69)) (-3343 (((-1258) |#4|) 41)) (-3294 (((-1258) (-638 |#4|)) 50)) (-3212 (((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561)) 47)) (-1676 (((-1258) (-561)) 78)) (-2739 (((-638 |#4|) (-638 |#4|)) 76)) (-2984 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|)) |#4| (-765)) 25)) (-2351 (((-561) |#4|) 77)) (-1962 ((|#4| |#4|) 29)) (-1753 (((-638 |#4|) (-638 |#4|) (-561) (-561)) 55)) (-3476 (((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561) (-561)) 88)) (-4303 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1342 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-1865 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-4119 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-2648 (((-112) |#2| |#2|) 56)) (-1830 (((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3532 (((-112) |#2| |#2| |#2| |#2|) 59)) (-1819 ((|#4| |#4| (-638 |#4|)) 70)))
+(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1819 (|#4| |#4| (-638 |#4|))) (-15 -3415 (|#4| |#4| (-638 |#4|))) (-15 -1753 ((-638 |#4|) (-638 |#4|) (-561) (-561))) (-15 -1342 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2648 ((-112) |#2| |#2|)) (-15 -3532 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1830 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4119 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1865 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2841 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-638 |#4|))) (-15 -1962 (|#4| |#4|)) (-15 -4121 ((-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|))) |#4| (-765) (-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|))))) (-15 -1816 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1797 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2739 ((-638 |#4|) (-638 |#4|))) (-15 -2351 ((-561) |#4|)) (-15 -3343 ((-1258) |#4|)) (-15 -3212 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561))) (-15 -3476 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561) (-561))) (-15 -3294 ((-1258) (-638 |#4|))) (-15 -1676 ((-1258) (-561))) (-15 -4303 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2984 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|)) |#4| (-765))) (-15 -1379 ((-765) |#4|))) (-450) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -447))
+((-1379 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-2984 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -4158 *4))) (-5 *5 (-765)) (-4 *4 (-942 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-447 *6 *7 *8 *4)))) (-4303 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1258)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1258)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3476 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *4)))) (-3212 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1258)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-561)) (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1797 (*1 *2 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-787)) (-4 *2 (-942 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2)) (-4 *4 (-450)) (-4 *6 (-844)))) (-4121 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 *3)))) (-5 *4 (-765)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *3)))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-447 *5 *6 *7 *3)))) (-1865 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-787)) (-4 *6 (-942 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-5 *1 (-447 *4 *3 *5 *6)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1830 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-787)) (-4 *3 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *3)))) (-3532 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))) (-2648 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))) (-1753 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3415 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))) (-1819 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1819 (|#4| |#4| (-638 |#4|))) (-15 -3415 (|#4| |#4| (-638 |#4|))) (-15 -1753 ((-638 |#4|) (-638 |#4|) (-561) (-561))) (-15 -1342 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2648 ((-112) |#2| |#2|)) (-15 -3532 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1830 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4119 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1865 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2841 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-638 |#4|))) (-15 -1962 (|#4| |#4|)) (-15 -4121 ((-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|))) |#4| (-765) (-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|))))) (-15 -1816 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1797 ((-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-638 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2739 ((-638 |#4|) (-638 |#4|))) (-15 -2351 ((-561) |#4|)) (-15 -3343 ((-1258) |#4|)) (-15 -3212 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561))) (-15 -3476 ((-561) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-561) (-561) (-561) (-561))) (-15 -3294 ((-1258) (-638 |#4|))) (-15 -1676 ((-1258) (-561))) (-15 -4303 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2984 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -4158 |#4|)) |#4| (-765))) (-15 -1379 ((-765) |#4|)))
+((-4278 ((|#4| |#4| (-638 |#4|)) 22 (|has| |#1| (-362)))) (-4230 (((-638 |#4|) (-638 |#4|) (-1148) (-1148)) 41) (((-638 |#4|) (-638 |#4|) (-1148)) 40) (((-638 |#4|) (-638 |#4|)) 35)))
+(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4230 ((-638 |#4|) (-638 |#4|))) (-15 -4230 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -4230 ((-638 |#4|) (-638 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -4278 (|#4| |#4| (-638 |#4|))) |%noBranch|)) (-450) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -448))
+((-4278 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2)))) (-4230 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7)))) (-4230 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4230 ((-638 |#4|) (-638 |#4|))) (-15 -4230 ((-638 |#4|) (-638 |#4|) (-1148))) (-15 -4230 ((-638 |#4|) (-638 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -4278 (|#4| |#4| (-638 |#4|))) |%noBranch|))
+((-1582 (($ $ $) 14) (($ (-638 $)) 21)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 41)) (-1623 (($ $ $) NIL) (($ (-638 $)) 22)))
+(((-449 |#1|) (-10 -8 (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -1582 (|#1| (-638 |#1|))) (-15 -1582 (|#1| |#1| |#1|)) (-15 -1623 (|#1| (-638 |#1|))) (-15 -1623 (|#1| |#1| |#1|))) (-450)) (T -449))
+NIL
+(-10 -8 (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -1582 (|#1| (-638 |#1|))) (-15 -1582 (|#1| |#1| |#1|)) (-15 -1623 (|#1| (-638 |#1|))) (-15 -1623 (|#1| |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1756 (((-3 $ "failed") $ $) 43)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-450) (-139)) (T -450))
-((-1544 (*1 *1 *1 *1) (-4 *1 (-450))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-1500 (*1 *1 *1 *1) (-4 *1 (-450))) (-1500 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-4021 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-450)))))
-(-13 (-550) (-10 -8 (-15 -1544 ($ $ $)) (-15 -1544 ($ (-635 $))) (-15 -1500 ($ $ $)) (-15 -1500 ($ (-635 $))) (-15 -4021 ((-1159 $) (-1159 $) (-1159 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3466 (((-3 $ "failed")) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-1644 (((-1246 (-679 (-406 (-942 |#1|)))) (-1246 $)) NIL) (((-1246 (-679 (-406 (-942 |#1|))))) NIL)) (-3871 (((-1246 $)) NIL)) (-3457 (($) NIL T CONST)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL)) (-3262 (((-3 $ "failed")) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-4157 (((-679 (-406 (-942 |#1|))) (-1246 $)) NIL) (((-679 (-406 (-942 |#1|)))) NIL)) (-3890 (((-406 (-942 |#1|)) $) NIL)) (-1398 (((-679 (-406 (-942 |#1|))) $ (-1246 $)) NIL) (((-679 (-406 (-942 |#1|))) $) NIL)) (-2113 (((-3 $ "failed") $) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-3889 (((-1159 (-942 (-406 (-942 |#1|))))) NIL (|has| (-406 (-942 |#1|)) (-362))) (((-1159 (-406 (-942 |#1|)))) 84 (|has| |#1| (-550)))) (-2943 (($ $ (-911)) NIL)) (-3231 (((-406 (-942 |#1|)) $) NIL)) (-3324 (((-1159 (-406 (-942 |#1|))) $) 82 (|has| (-406 (-942 |#1|)) (-550)))) (-2392 (((-406 (-942 |#1|)) (-1246 $)) NIL) (((-406 (-942 |#1|))) NIL)) (-1292 (((-1159 (-406 (-942 |#1|))) $) NIL)) (-2706 (((-112)) NIL)) (-3431 (($ (-1246 (-406 (-942 |#1|))) (-1246 $)) 103) (($ (-1246 (-406 (-942 |#1|)))) NIL)) (-3248 (((-3 $ "failed") $) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-1489 (((-911)) NIL)) (-1831 (((-112)) NIL)) (-4337 (($ $ (-911)) NIL)) (-1889 (((-112)) NIL)) (-1508 (((-112)) NIL)) (-2728 (((-112)) NIL)) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL)) (-2251 (((-3 $ "failed")) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-2284 (((-679 (-406 (-942 |#1|))) (-1246 $)) NIL) (((-679 (-406 (-942 |#1|)))) NIL)) (-2818 (((-406 (-942 |#1|)) $) NIL)) (-4138 (((-679 (-406 (-942 |#1|))) $ (-1246 $)) NIL) (((-679 (-406 (-942 |#1|))) $) NIL)) (-4300 (((-3 $ "failed") $) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-3900 (((-1159 (-942 (-406 (-942 |#1|))))) NIL (|has| (-406 (-942 |#1|)) (-362))) (((-1159 (-406 (-942 |#1|)))) 83 (|has| |#1| (-550)))) (-1794 (($ $ (-911)) NIL)) (-2815 (((-406 (-942 |#1|)) $) NIL)) (-1637 (((-1159 (-406 (-942 |#1|))) $) 77 (|has| (-406 (-942 |#1|)) (-550)))) (-2408 (((-406 (-942 |#1|)) (-1246 $)) NIL) (((-406 (-942 |#1|))) NIL)) (-2889 (((-1159 (-406 (-942 |#1|))) $) NIL)) (-1475 (((-112)) NIL)) (-2510 (((-1145) $) NIL)) (-4165 (((-112)) NIL)) (-1323 (((-112)) NIL)) (-1310 (((-112)) NIL)) (-1688 (((-1107) $) NIL)) (-3363 (((-406 (-942 |#1|)) $ $) 71 (|has| |#1| (-550)))) (-3063 (((-406 (-942 |#1|)) $) 93 (|has| |#1| (-550)))) (-2718 (((-406 (-942 |#1|)) $) 95 (|has| |#1| (-550)))) (-3110 (((-1159 (-406 (-942 |#1|))) $) 88 (|has| |#1| (-550)))) (-3524 (((-406 (-942 |#1|))) 72 (|has| |#1| (-550)))) (-2665 (((-406 (-942 |#1|)) $ $) 64 (|has| |#1| (-550)))) (-2078 (((-406 (-942 |#1|)) $) 92 (|has| |#1| (-550)))) (-3933 (((-406 (-942 |#1|)) $) 94 (|has| |#1| (-550)))) (-2518 (((-1159 (-406 (-942 |#1|))) $) 87 (|has| |#1| (-550)))) (-1939 (((-406 (-942 |#1|))) 68 (|has| |#1| (-550)))) (-1988 (($) 101) (($ (-1163)) 107) (($ (-1246 (-1163))) 106) (($ (-1246 $)) 96) (($ (-1163) (-1246 $)) 105) (($ (-1246 (-1163)) (-1246 $)) 104)) (-3145 (((-112)) NIL)) (-2276 (((-406 (-942 |#1|)) $ (-558)) NIL)) (-2979 (((-1246 (-406 (-942 |#1|))) $ (-1246 $)) 98) (((-679 (-406 (-942 |#1|))) (-1246 $) (-1246 $)) NIL) (((-1246 (-406 (-942 |#1|))) $) 40) (((-679 (-406 (-942 |#1|))) (-1246 $)) NIL)) (-3441 (((-1246 (-406 (-942 |#1|))) $) NIL) (($ (-1246 (-406 (-942 |#1|)))) 37)) (-3175 (((-635 (-942 (-406 (-942 |#1|)))) (-1246 $)) NIL) (((-635 (-942 (-406 (-942 |#1|))))) NIL) (((-635 (-942 |#1|)) (-1246 $)) 99 (|has| |#1| (-550))) (((-635 (-942 |#1|))) 100 (|has| |#1| (-550)))) (-3072 (($ $ $) NIL)) (-4211 (((-112)) NIL)) (-3940 (((-853) $) NIL) (($ (-1246 (-406 (-942 |#1|)))) NIL)) (-2743 (((-1246 $)) 60)) (-3817 (((-635 (-1246 (-406 (-942 |#1|))))) NIL (|has| (-406 (-942 |#1|)) (-550)))) (-2536 (($ $ $ $) NIL)) (-2667 (((-112)) NIL)) (-2484 (($ (-679 (-406 (-942 |#1|))) $) NIL)) (-3467 (($ $ $) NIL)) (-2249 (((-112)) NIL)) (-2835 (((-112)) NIL)) (-2274 (((-112)) NIL)) (-2207 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) 97)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 56) (($ $ (-406 (-942 |#1|))) NIL) (($ (-406 (-942 |#1|)) $) NIL) (($ (-1129 |#2| (-406 (-942 |#1|))) $) NIL)))
-(((-451 |#1| |#2| |#3| |#4|) (-13 (-416 (-406 (-942 |#1|))) (-638 (-1129 |#2| (-406 (-942 |#1|)))) (-10 -8 (-15 -3940 ($ (-1246 (-406 (-942 |#1|))))) (-15 -3347 ((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed"))) (-15 -1873 ((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed"))) (-15 -1988 ($)) (-15 -1988 ($ (-1163))) (-15 -1988 ($ (-1246 (-1163)))) (-15 -1988 ($ (-1246 $))) (-15 -1988 ($ (-1163) (-1246 $))) (-15 -1988 ($ (-1246 (-1163)) (-1246 $))) (IF (|has| |#1| (-550)) (PROGN (-15 -3900 ((-1159 (-406 (-942 |#1|))))) (-15 -2518 ((-1159 (-406 (-942 |#1|))) $)) (-15 -2078 ((-406 (-942 |#1|)) $)) (-15 -3933 ((-406 (-942 |#1|)) $)) (-15 -3889 ((-1159 (-406 (-942 |#1|))))) (-15 -3110 ((-1159 (-406 (-942 |#1|))) $)) (-15 -3063 ((-406 (-942 |#1|)) $)) (-15 -2718 ((-406 (-942 |#1|)) $)) (-15 -2665 ((-406 (-942 |#1|)) $ $)) (-15 -1939 ((-406 (-942 |#1|)))) (-15 -3363 ((-406 (-942 |#1|)) $ $)) (-15 -3524 ((-406 (-942 |#1|)))) (-15 -3175 ((-635 (-942 |#1|)) (-1246 $))) (-15 -3175 ((-635 (-942 |#1|))))) |%noBranch|))) (-171) (-911) (-635 (-1163)) (-1246 (-679 |#1|))) (T -451))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 *3)))) (-4 *3 (-171)) (-14 *6 (-1246 (-679 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))))) (-3347 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2743 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-1873 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2743 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-1988 (*1 *1) (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-911)) (-14 *4 (-635 (-1163))) (-14 *5 (-1246 (-679 *2))))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 *2)) (-14 *6 (-1246 (-679 *3))))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-1246 (-1163))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-1246 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-1988 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911)) (-14 *6 (-635 *2)) (-14 *7 (-1246 (-679 *4))))) (-1988 (*1 *1 *2 *3) (-12 (-5 *2 (-1246 (-1163))) (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911)) (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4))))) (-3900 (*1 *2) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3889 (*1 *2) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-2665 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-1939 (*1 *2) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3363 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3524 (*1 *2) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-942 *4))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *4 (-171)) (-14 *5 (-911)) (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4))))) (-3175 (*1 *2) (-12 (-5 *2 (-635 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(-13 (-416 (-406 (-942 |#1|))) (-638 (-1129 |#2| (-406 (-942 |#1|)))) (-10 -8 (-15 -3940 ($ (-1246 (-406 (-942 |#1|))))) (-15 -3347 ((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed"))) (-15 -1873 ((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed"))) (-15 -1988 ($)) (-15 -1988 ($ (-1163))) (-15 -1988 ($ (-1246 (-1163)))) (-15 -1988 ($ (-1246 $))) (-15 -1988 ($ (-1163) (-1246 $))) (-15 -1988 ($ (-1246 (-1163)) (-1246 $))) (IF (|has| |#1| (-550)) (PROGN (-15 -3900 ((-1159 (-406 (-942 |#1|))))) (-15 -2518 ((-1159 (-406 (-942 |#1|))) $)) (-15 -2078 ((-406 (-942 |#1|)) $)) (-15 -3933 ((-406 (-942 |#1|)) $)) (-15 -3889 ((-1159 (-406 (-942 |#1|))))) (-15 -3110 ((-1159 (-406 (-942 |#1|))) $)) (-15 -3063 ((-406 (-942 |#1|)) $)) (-15 -2718 ((-406 (-942 |#1|)) $)) (-15 -2665 ((-406 (-942 |#1|)) $ $)) (-15 -1939 ((-406 (-942 |#1|)))) (-15 -3363 ((-406 (-942 |#1|)) $ $)) (-15 -3524 ((-406 (-942 |#1|)))) (-15 -3175 ((-635 (-942 |#1|)) (-1246 $))) (-15 -3175 ((-635 (-942 |#1|))))) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 13)) (-4078 (((-635 (-855 |#1|)) $) 74)) (-3907 (((-1159 $) $ (-855 |#1|)) 46) (((-1159 |#2|) $) 117)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-3244 (($ $) NIL (|has| |#2| (-550)))) (-4326 (((-112) $) NIL (|has| |#2| (-550)))) (-2909 (((-762) $) 21) (((-762) $ (-635 (-855 |#1|))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2018 (($ $) NIL (|has| |#2| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) 44) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-3226 ((|#2| $) 42) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-2862 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3146 (($ $ (-635 (-558))) 79)) (-3905 (($ $) 67)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#2| (-899)))) (-2704 (($ $ |#2| |#3| $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) 58)) (-4068 (($ (-1159 |#2|) (-855 |#1|)) 122) (($ (-1159 $) (-855 |#1|)) 52)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) 59)) (-4056 (($ |#2| |#3|) 28) (($ $ (-855 |#1|) (-762)) 30) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-855 |#1|)) NIL)) (-3672 ((|#3| $) NIL) (((-762) $ (-855 |#1|)) 50) (((-635 (-762)) $ (-635 (-855 |#1|))) 57)) (-2142 (($ $ $) NIL (|has| |#2| (-841)))) (-2281 (($ $ $) NIL (|has| |#2| (-841)))) (-2776 (($ (-1 |#3| |#3|) $) NIL)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-2135 (((-3 (-855 |#1|) "failed") $) 39)) (-3867 (($ $) NIL)) (-3881 ((|#2| $) 41)) (-1500 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2510 (((-1145) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1857 (-762))) "failed") $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) 40)) (-3853 ((|#2| $) 115)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) 127 (|has| |#2| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#2| (-899)))) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) 86) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) 89) (($ $ (-855 |#1|) $) 84) (($ $ (-635 (-855 |#1|)) (-635 $)) 105)) (-3789 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3780 (($ $ (-855 |#1|)) 53) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4263 ((|#3| $) 66) (((-762) $ (-855 |#1|)) 37) (((-635 (-762)) $ (-635 (-855 |#1|))) 56)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-3012 ((|#2| $) 124 (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3940 (((-853) $) 144) (($ (-558)) NIL) (($ |#2|) 85) (($ (-855 |#1|)) 31) (($ (-406 (-558))) NIL (-3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ |#3|) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2207 (($) 17 T CONST)) (-2220 (($) 25 T CONST)) (-3042 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1757 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1805 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 110)) (** (($ $ (-911)) NIL) (($ $ (-762)) 108)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 29) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-452 |#1| |#2| |#3|) (-13 (-939 |#2| |#3| (-855 |#1|)) (-10 -8 (-15 -3146 ($ $ (-635 (-558)))))) (-635 (-1163)) (-1039) (-237 (-1596 |#1|) (-762))) (T -452))
-((-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-14 *3 (-635 (-1163))) (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-237 (-1596 *3) (-762))))))
-(-13 (-939 |#2| |#3| (-855 |#1|)) (-10 -8 (-15 -3146 ($ $ (-635 (-558))))))
-((-4111 (((-112) |#1| (-635 |#2|)) 68)) (-3969 (((-3 (-1246 (-635 |#2|)) "failed") (-762) |#1| (-635 |#2|)) 77)) (-3797 (((-3 (-635 |#2|) "failed") |#2| |#1| (-1246 (-635 |#2|))) 79)) (-2915 ((|#2| |#2| |#1|) 28)) (-3383 (((-762) |#2| (-635 |#2|)) 20)))
-(((-453 |#1| |#2|) (-10 -7 (-15 -2915 (|#2| |#2| |#1|)) (-15 -3383 ((-762) |#2| (-635 |#2|))) (-15 -3969 ((-3 (-1246 (-635 |#2|)) "failed") (-762) |#1| (-635 |#2|))) (-15 -3797 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1246 (-635 |#2|)))) (-15 -4111 ((-112) |#1| (-635 |#2|)))) (-306) (-1222 |#1|)) (T -453))
-((-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-1222 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))) (-3797 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1246 (-635 *3))) (-4 *4 (-306)) (-5 *2 (-635 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1222 *4)))) (-3969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-762)) (-4 *4 (-306)) (-4 *6 (-1222 *4)) (-5 *2 (-1246 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-306)) (-5 *2 (-762)) (-5 *1 (-453 *5 *3)))) (-2915 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1222 *3)))))
-(-10 -7 (-15 -2915 (|#2| |#2| |#1|)) (-15 -3383 ((-762) |#2| (-635 |#2|))) (-15 -3969 ((-3 (-1246 (-635 |#2|)) "failed") (-762) |#1| (-635 |#2|))) (-15 -3797 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1246 (-635 |#2|)))) (-15 -4111 ((-112) |#1| (-635 |#2|))))
-((-3939 (((-417 |#5|) |#5|) 24)))
-(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3939 ((-417 |#5|) |#5|))) (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163))))) (-784) (-550) (-550) (-939 |#4| |#2| |#1|)) (T -454))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163)))))) (-4 *5 (-784)) (-4 *7 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-550)) (-4 *3 (-939 *7 *5 *4)))))
-(-10 -7 (-15 -3939 ((-417 |#5|) |#5|)))
-((-3268 ((|#3|) 37)) (-4021 (((-1159 |#4|) (-1159 |#4|) (-1159 |#4|)) 33)))
-(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4021 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -3268 (|#3|))) (-784) (-841) (-899) (-939 |#3| |#1| |#2|)) (T -455))
-((-3268 (*1 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899)) (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-939 *2 *3 *4)))) (-4021 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-899)) (-5 *1 (-455 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4021 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -3268 (|#3|)))
-((-3939 (((-417 (-1159 |#1|)) (-1159 |#1|)) 43)))
-(((-456 |#1|) (-10 -7 (-15 -3939 ((-417 (-1159 |#1|)) (-1159 |#1|)))) (-306)) (T -456))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1159 *4))) (-5 *1 (-456 *4)) (-5 *3 (-1159 *4)))))
-(-10 -7 (-15 -3939 ((-417 (-1159 |#1|)) (-1159 |#1|))))
-((-3776 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-762))) 42) (((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-762))) 41) (((-52) |#2| (-1163) (-293 |#2|)) 35) (((-52) (-1 |#2| (-558)) (-293 |#2|)) 28)) (-2095 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 80) (((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 79) (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558))) 78) (((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558))) 77) (((-52) |#2| (-1163) (-293 |#2|)) 72) (((-52) (-1 |#2| (-558)) (-293 |#2|)) 71)) (-3801 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 66) (((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))) 64)) (-3788 (((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558))) 48) (((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558))) 47)))
-(((-457 |#1| |#2|) (-10 -7 (-15 -3776 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -3776 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -3776 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-762)))) (-15 -3776 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-762)))) (-15 -3788 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -3788 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -3801 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -3801 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -2095 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -2095 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -2095 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -2095 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -2095 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -2095 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558))))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -457))
-((-2095 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558)))) (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8))) (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-2095 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8)) (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558))) (-4 *8 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-2095 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-2095 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558))) (-4 *7 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-2095 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-2095 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))) (-3801 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558)))) (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8))) (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-3801 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8)) (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558))) (-4 *8 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-3788 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558))) (-4 *7 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-762))) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-762))) (-4 *7 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))))
-(-10 -7 (-15 -3776 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -3776 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -3776 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-762)))) (-15 -3776 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-762)))) (-15 -3788 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -3788 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -3801 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -3801 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -2095 ((-52) (-1 |#2| (-558)) (-293 |#2|))) (-15 -2095 ((-52) |#2| (-1163) (-293 |#2|))) (-15 -2095 ((-52) (-1 |#2| (-558)) (-293 |#2|) (-1213 (-558)))) (-15 -2095 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-558)))) (-15 -2095 ((-52) (-1 |#2| (-406 (-558))) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))) (-15 -2095 ((-52) |#2| (-1163) (-293 |#2|) (-1213 (-406 (-558))) (-406 (-558)))))
-((-2915 ((|#2| |#2| |#1|) 15)) (-3546 (((-635 |#2|) |#2| (-635 |#2|) |#1| (-911)) 68)) (-2231 (((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-911)) 59)))
-(((-458 |#1| |#2|) (-10 -7 (-15 -2231 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-911))) (-15 -3546 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-911))) (-15 -2915 (|#2| |#2| |#1|))) (-306) (-1222 |#1|)) (T -458))
-((-2915 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1222 *3)))) (-3546 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-635 *3)) (-5 *5 (-911)) (-4 *3 (-1222 *4)) (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))) (-2231 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-911)) (-4 *5 (-306)) (-4 *3 (-1222 *5)) (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3)) (-5 *4 (-635 *3)))))
-(-10 -7 (-15 -2231 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-911))) (-15 -3546 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-911))) (-15 -2915 (|#2| |#2| |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 28)) (-1441 (($ |#3|) 25)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3905 (($ $) 32)) (-3644 (($ |#2| |#4| $) 33)) (-4056 (($ |#2| (-704 |#3| |#4| |#5|)) 24)) (-3867 (((-704 |#3| |#4| |#5|) $) 15)) (-3560 ((|#3| $) 19)) (-3543 ((|#4| $) 17)) (-3881 ((|#2| $) 29)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2569 (($ |#2| |#3| |#4|) 26)) (-2207 (($) 36 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 34)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-459 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-708 |#6|) (-708 |#2|) (-10 -8 (-15 -3881 (|#2| $)) (-15 -3867 ((-704 |#3| |#4| |#5|) $)) (-15 -3543 (|#4| $)) (-15 -3560 (|#3| $)) (-15 -3905 ($ $)) (-15 -4056 ($ |#2| (-704 |#3| |#4| |#5|))) (-15 -1441 ($ |#3|)) (-15 -2569 ($ |#2| |#3| |#4|)) (-15 -3644 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-635 (-1163)) (-171) (-841) (-237 (-1596 |#1|) (-762)) (-1 (-112) (-2 (|:| -2349 |#3|) (|:| -1857 |#4|)) (-2 (|:| -2349 |#3|) (|:| -1857 |#4|))) (-939 |#2| |#4| (-855 |#1|))) (T -459))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *6 (-237 (-1596 *3) (-762))) (-14 *7 (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *6)) (-2 (|:| -2349 *5) (|:| -1857 *6)))) (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-841)) (-4 *2 (-939 *4 *6 (-855 *3))))) (-3881 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *5 (-237 (-1596 *3) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2349 *4) (|:| -1857 *5)) (-2 (|:| -2349 *4) (|:| -1857 *5)))) (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-841)) (-4 *7 (-939 *2 *5 (-855 *3))))) (-3867 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *6 (-237 (-1596 *3) (-762))) (-14 *7 (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *6)) (-2 (|:| -2349 *5) (|:| -1857 *6)))) (-5 *2 (-704 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-841)) (-4 *8 (-939 *4 *6 (-855 *3))))) (-3543 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *2)) (-2 (|:| -2349 *5) (|:| -1857 *2)))) (-4 *2 (-237 (-1596 *3) (-762))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7)) (-4 *5 (-841)) (-4 *7 (-939 *4 *2 (-855 *3))))) (-3560 (*1 *2 *1) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *5 (-237 (-1596 *3) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *5)) (-2 (|:| -2349 *2) (|:| -1857 *5)))) (-4 *2 (-841)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *7 (-939 *4 *5 (-855 *3))))) (-3905 (*1 *1 *1) (-12 (-14 *2 (-635 (-1163))) (-4 *3 (-171)) (-4 *5 (-237 (-1596 *2) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2349 *4) (|:| -1857 *5)) (-2 (|:| -2349 *4) (|:| -1857 *5)))) (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-841)) (-4 *7 (-939 *3 *5 (-855 *2))))) (-4056 (*1 *1 *2 *3) (-12 (-5 *3 (-704 *5 *6 *7)) (-4 *5 (-841)) (-4 *6 (-237 (-1596 *4) (-762))) (-14 *7 (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *6)) (-2 (|:| -2349 *5) (|:| -1857 *6)))) (-14 *4 (-635 (-1163))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-939 *2 *6 (-855 *4))))) (-1441 (*1 *1 *2) (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171)) (-4 *5 (-237 (-1596 *3) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *5)) (-2 (|:| -2349 *2) (|:| -1857 *5)))) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-841)) (-4 *7 (-939 *4 *5 (-855 *3))))) (-2569 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-635 (-1163))) (-4 *2 (-171)) (-4 *4 (-237 (-1596 *5) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2349 *3) (|:| -1857 *4)) (-2 (|:| -2349 *3) (|:| -1857 *4)))) (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-841)) (-4 *7 (-939 *2 *4 (-855 *5))))) (-3644 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-635 (-1163))) (-4 *2 (-171)) (-4 *3 (-237 (-1596 *4) (-762))) (-14 *6 (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *3)) (-2 (|:| -2349 *5) (|:| -1857 *3)))) (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-841)) (-4 *7 (-939 *2 *3 (-855 *4))))))
-(-13 (-708 |#6|) (-708 |#2|) (-10 -8 (-15 -3881 (|#2| $)) (-15 -3867 ((-704 |#3| |#4| |#5|) $)) (-15 -3543 (|#4| $)) (-15 -3560 (|#3| $)) (-15 -3905 ($ $)) (-15 -4056 ($ |#2| (-704 |#3| |#4| |#5|))) (-15 -1441 ($ |#3|)) (-15 -2569 ($ |#2| |#3| |#4|)) (-15 -3644 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-1372 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-460 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1372 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-784) (-841) (-550) (-939 |#3| |#1| |#2|) (-13 (-1028 (-406 (-558))) (-362) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -3316 (|#4| $)) (-15 -3327 (|#4| $))))) (T -460))
-((-1372 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-841)) (-4 *5 (-784)) (-4 *6 (-550)) (-4 *7 (-939 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1028 (-406 (-558))) (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))))
-(-10 -7 (-15 -1372 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-3929 (((-112) $ $) NIL)) (-4078 (((-635 |#3|) $) 41)) (-3369 (((-112) $) NIL)) (-1852 (((-112) $) NIL (|has| |#1| (-550)))) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2072 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-3614 (((-112) $) NIL (|has| |#1| (-550)))) (-1293 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2211 (((-112) $ $) NIL (|has| |#1| (-550)))) (-3554 (((-112) $) NIL (|has| |#1| (-550)))) (-1542 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) 48)) (-3226 (($ (-635 |#4|)) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-1488 (($ |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4383)))) (-2917 (((-635 |#4|) $) 18 (|has| $ (-6 -4383)))) (-4346 ((|#3| $) 46)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#4|) $) 14 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-3674 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 21)) (-2327 (((-635 |#3|) $) NIL)) (-3541 (((-112) |#3| $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1688 (((-1107) $) NIL)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3314 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 39)) (-2876 (($) 17)) (-1698 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) 16)) (-3441 (((-534) $) NIL (|has| |#4| (-606 (-534)))) (($ (-635 |#4|)) 50)) (-3952 (($ (-635 |#4|)) 13)) (-3121 (($ $ |#3|) NIL)) (-2402 (($ $ |#3|) NIL)) (-3294 (($ $ |#3|) NIL)) (-3940 (((-853) $) 38) (((-635 |#4|) $) 49)) (-2831 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 30)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-461 |#1| |#2| |#3| |#4|) (-13 (-966 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ($ (-635 |#4|))) (-6 -4383) (-6 -4384))) (-1039) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -461))
-((-3441 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-461 *3 *4 *5 *6)))))
-(-13 (-966 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ($ (-635 |#4|))) (-6 -4383) (-6 -4384)))
-((-2207 (($) 11)) (-2220 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -2220 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2207 (|#1|))) (-463 |#2| |#3|) (-171) (-23)) (T -462))
-NIL
-(-10 -8 (-15 -2220 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2207 (|#1|)))
-((-3929 (((-112) $ $) 7)) (-3302 (((-3 |#1| "failed") $) 26)) (-3226 ((|#1| $) 27)) (-1362 (($ $ $) 23)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4263 ((|#2| $) 19)) (-3940 (((-853) $) 11) (($ |#1|) 25)) (-2207 (($) 18 T CONST)) (-2220 (($) 24 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 15) (($ $ $) 13)) (-1785 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-1623 (*1 *1 *1 *1) (-4 *1 (-450))) (-1623 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450)))) (-1582 (*1 *1 *1 *1) (-4 *1 (-450))) (-1582 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-450)))))
+(-13 (-553) (-10 -8 (-15 -1623 ($ $ $)) (-15 -1623 ($ (-638 $))) (-15 -1582 ($ $ $)) (-15 -1582 ($ (-638 $))) (-15 -2064 ((-1162 $) (-1162 $) (-1162 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3027 (((-3 $ "failed")) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-2602 (((-1253 (-682 (-406 (-945 |#1|)))) (-1253 $)) NIL) (((-1253 (-682 (-406 (-945 |#1|))))) NIL)) (-1533 (((-1253 $)) NIL)) (-1965 (($) NIL T CONST)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL)) (-2104 (((-3 $ "failed")) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-2483 (((-682 (-406 (-945 |#1|))) (-1253 $)) NIL) (((-682 (-406 (-945 |#1|)))) NIL)) (-2228 (((-406 (-945 |#1|)) $) NIL)) (-3689 (((-682 (-406 (-945 |#1|))) $ (-1253 $)) NIL) (((-682 (-406 (-945 |#1|))) $) NIL)) (-3494 (((-3 $ "failed") $) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-3337 (((-1162 (-945 (-406 (-945 |#1|))))) NIL (|has| (-406 (-945 |#1|)) (-362))) (((-1162 (-406 (-945 |#1|)))) 84 (|has| |#1| (-553)))) (-3928 (($ $ (-914)) NIL)) (-3589 (((-406 (-945 |#1|)) $) NIL)) (-2392 (((-1162 (-406 (-945 |#1|))) $) 82 (|has| (-406 (-945 |#1|)) (-553)))) (-1381 (((-406 (-945 |#1|)) (-1253 $)) NIL) (((-406 (-945 |#1|))) NIL)) (-1659 (((-1162 (-406 (-945 |#1|))) $) NIL)) (-2380 (((-112)) NIL)) (-2257 (($ (-1253 (-406 (-945 |#1|))) (-1253 $)) 103) (($ (-1253 (-406 (-945 |#1|)))) NIL)) (-3466 (((-3 $ "failed") $) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-1569 (((-914)) NIL)) (-1922 (((-112)) NIL)) (-3203 (($ $ (-914)) NIL)) (-3104 (((-112)) NIL)) (-2008 (((-112)) NIL)) (-3138 (((-112)) NIL)) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL)) (-2445 (((-3 $ "failed")) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-2919 (((-682 (-406 (-945 |#1|))) (-1253 $)) NIL) (((-682 (-406 (-945 |#1|)))) NIL)) (-3618 (((-406 (-945 |#1|)) $) NIL)) (-1354 (((-682 (-406 (-945 |#1|))) $ (-1253 $)) NIL) (((-682 (-406 (-945 |#1|))) $) NIL)) (-4063 (((-3 $ "failed") $) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-2502 (((-1162 (-945 (-406 (-945 |#1|))))) NIL (|has| (-406 (-945 |#1|)) (-362))) (((-1162 (-406 (-945 |#1|)))) 83 (|has| |#1| (-553)))) (-3394 (($ $ (-914)) NIL)) (-3847 (((-406 (-945 |#1|)) $) NIL)) (-2377 (((-1162 (-406 (-945 |#1|))) $) 77 (|has| (-406 (-945 |#1|)) (-553)))) (-2696 (((-406 (-945 |#1|)) (-1253 $)) NIL) (((-406 (-945 |#1|))) NIL)) (-1539 (((-1162 (-406 (-945 |#1|))) $) NIL)) (-3139 (((-112)) NIL)) (-1764 (((-1148) $) NIL)) (-4367 (((-112)) NIL)) (-1446 (((-112)) NIL)) (-3696 (((-112)) NIL)) (-1714 (((-1110) $) NIL)) (-2354 (((-406 (-945 |#1|)) $ $) 71 (|has| |#1| (-553)))) (-1544 (((-406 (-945 |#1|)) $) 93 (|has| |#1| (-553)))) (-3167 (((-406 (-945 |#1|)) $) 95 (|has| |#1| (-553)))) (-2664 (((-1162 (-406 (-945 |#1|))) $) 88 (|has| |#1| (-553)))) (-2877 (((-406 (-945 |#1|))) 72 (|has| |#1| (-553)))) (-3763 (((-406 (-945 |#1|)) $ $) 64 (|has| |#1| (-553)))) (-2423 (((-406 (-945 |#1|)) $) 92 (|has| |#1| (-553)))) (-1487 (((-406 (-945 |#1|)) $) 94 (|has| |#1| (-553)))) (-3540 (((-1162 (-406 (-945 |#1|))) $) 87 (|has| |#1| (-553)))) (-3709 (((-406 (-945 |#1|))) 68 (|has| |#1| (-553)))) (-3815 (($) 101) (($ (-1166)) 107) (($ (-1253 (-1166))) 106) (($ (-1253 $)) 96) (($ (-1166) (-1253 $)) 105) (($ (-1253 (-1166)) (-1253 $)) 104)) (-3701 (((-112)) NIL)) (-2277 (((-406 (-945 |#1|)) $ (-561)) NIL)) (-3969 (((-1253 (-406 (-945 |#1|))) $ (-1253 $)) 98) (((-682 (-406 (-945 |#1|))) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 (-945 |#1|))) $) 40) (((-682 (-406 (-945 |#1|))) (-1253 $)) NIL)) (-4174 (((-1253 (-406 (-945 |#1|))) $) NIL) (($ (-1253 (-406 (-945 |#1|)))) 37)) (-2508 (((-638 (-945 (-406 (-945 |#1|)))) (-1253 $)) NIL) (((-638 (-945 (-406 (-945 |#1|))))) NIL) (((-638 (-945 |#1|)) (-1253 $)) 99 (|has| |#1| (-553))) (((-638 (-945 |#1|))) 100 (|has| |#1| (-553)))) (-3800 (($ $ $) NIL)) (-3053 (((-112)) NIL)) (-4022 (((-856) $) NIL) (($ (-1253 (-406 (-945 |#1|)))) NIL)) (-3711 (((-1253 $)) 60)) (-1758 (((-638 (-1253 (-406 (-945 |#1|))))) NIL (|has| (-406 (-945 |#1|)) (-553)))) (-3392 (($ $ $ $) NIL)) (-2216 (((-112)) NIL)) (-1367 (($ (-682 (-406 (-945 |#1|))) $) NIL)) (-1761 (($ $ $) NIL)) (-2500 (((-112)) NIL)) (-2887 (((-112)) NIL)) (-4326 (((-112)) NIL)) (-2211 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) 97)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 56) (($ $ (-406 (-945 |#1|))) NIL) (($ (-406 (-945 |#1|)) $) NIL) (($ (-1132 |#2| (-406 (-945 |#1|))) $) NIL)))
+(((-451 |#1| |#2| |#3| |#4|) (-13 (-416 (-406 (-945 |#1|))) (-641 (-1132 |#2| (-406 (-945 |#1|)))) (-10 -8 (-15 -4022 ($ (-1253 (-406 (-945 |#1|))))) (-15 -2991 ((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed"))) (-15 -1312 ((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed"))) (-15 -3815 ($)) (-15 -3815 ($ (-1166))) (-15 -3815 ($ (-1253 (-1166)))) (-15 -3815 ($ (-1253 $))) (-15 -3815 ($ (-1166) (-1253 $))) (-15 -3815 ($ (-1253 (-1166)) (-1253 $))) (IF (|has| |#1| (-553)) (PROGN (-15 -2502 ((-1162 (-406 (-945 |#1|))))) (-15 -3540 ((-1162 (-406 (-945 |#1|))) $)) (-15 -2423 ((-406 (-945 |#1|)) $)) (-15 -1487 ((-406 (-945 |#1|)) $)) (-15 -3337 ((-1162 (-406 (-945 |#1|))))) (-15 -2664 ((-1162 (-406 (-945 |#1|))) $)) (-15 -1544 ((-406 (-945 |#1|)) $)) (-15 -3167 ((-406 (-945 |#1|)) $)) (-15 -3763 ((-406 (-945 |#1|)) $ $)) (-15 -3709 ((-406 (-945 |#1|)))) (-15 -2354 ((-406 (-945 |#1|)) $ $)) (-15 -2877 ((-406 (-945 |#1|)))) (-15 -2508 ((-638 (-945 |#1|)) (-1253 $))) (-15 -2508 ((-638 (-945 |#1|))))) |%noBranch|))) (-171) (-914) (-638 (-1166)) (-1253 (-682 |#1|))) (T -451))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-945 *3)))) (-4 *3 (-171)) (-14 *6 (-1253 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))))) (-2991 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -3711 (-638 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-1312 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -3711 (-638 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3815 (*1 *1) (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-914)) (-14 *4 (-638 (-1166))) (-14 *5 (-1253 (-682 *2))))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 *2)) (-14 *6 (-1253 (-682 *3))))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1253 (-1166))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1253 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3815 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914)) (-14 *6 (-638 *2)) (-14 *7 (-1253 (-682 *4))))) (-3815 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 (-1166))) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914)) (-14 *6 (-638 (-1166))) (-14 *7 (-1253 (-682 *4))))) (-2502 (*1 *2) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3337 (*1 *2) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3763 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-3709 (*1 *2) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2354 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2877 (*1 *2) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *2 (-638 (-945 *4))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-553)) (-4 *4 (-171)) (-14 *5 (-914)) (-14 *6 (-638 (-1166))) (-14 *7 (-1253 (-682 *4))))) (-2508 (*1 *2) (-12 (-5 *2 (-638 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(-13 (-416 (-406 (-945 |#1|))) (-641 (-1132 |#2| (-406 (-945 |#1|)))) (-10 -8 (-15 -4022 ($ (-1253 (-406 (-945 |#1|))))) (-15 -2991 ((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed"))) (-15 -1312 ((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed"))) (-15 -3815 ($)) (-15 -3815 ($ (-1166))) (-15 -3815 ($ (-1253 (-1166)))) (-15 -3815 ($ (-1253 $))) (-15 -3815 ($ (-1166) (-1253 $))) (-15 -3815 ($ (-1253 (-1166)) (-1253 $))) (IF (|has| |#1| (-553)) (PROGN (-15 -2502 ((-1162 (-406 (-945 |#1|))))) (-15 -3540 ((-1162 (-406 (-945 |#1|))) $)) (-15 -2423 ((-406 (-945 |#1|)) $)) (-15 -1487 ((-406 (-945 |#1|)) $)) (-15 -3337 ((-1162 (-406 (-945 |#1|))))) (-15 -2664 ((-1162 (-406 (-945 |#1|))) $)) (-15 -1544 ((-406 (-945 |#1|)) $)) (-15 -3167 ((-406 (-945 |#1|)) $)) (-15 -3763 ((-406 (-945 |#1|)) $ $)) (-15 -3709 ((-406 (-945 |#1|)))) (-15 -2354 ((-406 (-945 |#1|)) $ $)) (-15 -2877 ((-406 (-945 |#1|)))) (-15 -2508 ((-638 (-945 |#1|)) (-1253 $))) (-15 -2508 ((-638 (-945 |#1|))))) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 13)) (-1412 (((-638 (-858 |#1|)) $) 74)) (-1620 (((-1162 $) $ (-858 |#1|)) 46) (((-1162 |#2|) $) 117)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-2851 (($ $) NIL (|has| |#2| (-553)))) (-3359 (((-112) $) NIL (|has| |#2| (-553)))) (-2710 (((-765) $) 21) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1591 (($ $) NIL (|has| |#2| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) 44) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3938 ((|#2| $) 42) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-3051 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3405 (($ $ (-638 (-561))) 79)) (-1619 (($ $) 67)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#2| (-902)))) (-2103 (($ $ |#2| |#3| $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) 58)) (-1401 (($ (-1162 |#2|) (-858 |#1|)) 122) (($ (-1162 $) (-858 |#1|)) 52)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) 59)) (-1387 (($ |#2| |#3|) 28) (($ $ (-858 |#1|) (-765)) 30) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-858 |#1|)) NIL)) (-2393 ((|#3| $) NIL) (((-765) $ (-858 |#1|)) 50) (((-638 (-765)) $ (-638 (-858 |#1|))) 57)) (-3443 (($ $ $) NIL (|has| |#2| (-844)))) (-2986 (($ $ $) NIL (|has| |#2| (-844)))) (-3524 (($ (-1 |#3| |#3|) $) NIL)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-1358 (((-3 (-858 |#1|) "failed") $) 39)) (-1578 (($ $) NIL)) (-1590 ((|#2| $) 41)) (-1582 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1764 (((-1148) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4196 (-765))) "failed") $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) 40)) (-1561 ((|#2| $) 115)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) 127 (|has| |#2| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) 86) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) 89) (($ $ (-858 |#1|) $) 84) (($ $ (-638 (-858 |#1|)) (-638 $)) 105)) (-2553 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3238 (($ $ (-858 |#1|)) 53) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2894 ((|#3| $) 66) (((-765) $ (-858 |#1|)) 37) (((-638 (-765)) $ (-638 (-858 |#1|))) 56)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-3609 ((|#2| $) 124 (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4022 (((-856) $) 144) (($ (-561)) NIL) (($ |#2|) 85) (($ (-858 |#1|)) 31) (($ (-406 (-561))) NIL (-4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ |#3|) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2211 (($) 17 T CONST)) (-2222 (($) 25 T CONST)) (-3122 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1782 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1833 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 110)) (** (($ $ (-914)) NIL) (($ $ (-765)) 108)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 29) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-452 |#1| |#2| |#3|) (-13 (-942 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -3405 ($ $ (-638 (-561)))))) (-638 (-1166)) (-1042) (-237 (-3498 |#1|) (-765))) (T -452))
+((-3405 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-14 *3 (-638 (-1166))) (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-237 (-3498 *3) (-765))))))
+(-13 (-942 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -3405 ($ $ (-638 (-561))))))
+((-1997 (((-112) |#1| (-638 |#2|)) 68)) (-2518 (((-3 (-1253 (-638 |#2|)) "failed") (-765) |#1| (-638 |#2|)) 77)) (-3267 (((-3 (-638 |#2|) "failed") |#2| |#1| (-1253 (-638 |#2|))) 79)) (-3471 ((|#2| |#2| |#1|) 28)) (-1812 (((-765) |#2| (-638 |#2|)) 20)))
+(((-453 |#1| |#2|) (-10 -7 (-15 -3471 (|#2| |#2| |#1|)) (-15 -1812 ((-765) |#2| (-638 |#2|))) (-15 -2518 ((-3 (-1253 (-638 |#2|)) "failed") (-765) |#1| (-638 |#2|))) (-15 -3267 ((-3 (-638 |#2|) "failed") |#2| |#1| (-1253 (-638 |#2|)))) (-15 -1997 ((-112) |#1| (-638 |#2|)))) (-306) (-1229 |#1|)) (T -453))
+((-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *5)) (-4 *5 (-1229 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))) (-3267 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1253 (-638 *3))) (-4 *4 (-306)) (-5 *2 (-638 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1229 *4)))) (-2518 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1229 *4)) (-5 *2 (-1253 (-638 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-638 *6)))) (-1812 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-306)) (-5 *2 (-765)) (-5 *1 (-453 *5 *3)))) (-3471 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -3471 (|#2| |#2| |#1|)) (-15 -1812 ((-765) |#2| (-638 |#2|))) (-15 -2518 ((-3 (-1253 (-638 |#2|)) "failed") (-765) |#1| (-638 |#2|))) (-15 -3267 ((-3 (-638 |#2|) "failed") |#2| |#1| (-1253 (-638 |#2|)))) (-15 -1997 ((-112) |#1| (-638 |#2|))))
+((-1657 (((-417 |#5|) |#5|) 24)))
+(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1657 ((-417 |#5|) |#5|))) (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166))))) (-787) (-553) (-553) (-942 |#4| |#2| |#1|)) (T -454))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166)))))) (-4 *5 (-787)) (-4 *7 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-553)) (-4 *3 (-942 *7 *5 *4)))))
+(-10 -7 (-15 -1657 ((-417 |#5|) |#5|)))
+((-4314 ((|#3|) 37)) (-2064 (((-1162 |#4|) (-1162 |#4|) (-1162 |#4|)) 33)))
+(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2064 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -4314 (|#3|))) (-787) (-844) (-902) (-942 |#3| |#1| |#2|)) (T -455))
+((-4314 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902)) (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-902)) (-5 *1 (-455 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2064 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -4314 (|#3|)))
+((-1657 (((-417 (-1162 |#1|)) (-1162 |#1|)) 43)))
+(((-456 |#1|) (-10 -7 (-15 -1657 ((-417 (-1162 |#1|)) (-1162 |#1|)))) (-306)) (T -456))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1162 *4))) (-5 *1 (-456 *4)) (-5 *3 (-1162 *4)))))
+(-10 -7 (-15 -1657 ((-417 (-1162 |#1|)) (-1162 |#1|))))
+((-1482 (((-52) |#2| (-1166) (-293 |#2|) (-1220 (-765))) 42) (((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-765))) 41) (((-52) |#2| (-1166) (-293 |#2|)) 35) (((-52) (-1 |#2| (-561)) (-293 |#2|)) 28)) (-3406 (((-52) |#2| (-1166) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561))) 80) (((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561))) 79) (((-52) |#2| (-1166) (-293 |#2|) (-1220 (-561))) 78) (((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-561))) 77) (((-52) |#2| (-1166) (-293 |#2|)) 72) (((-52) (-1 |#2| (-561)) (-293 |#2|)) 71)) (-1515 (((-52) |#2| (-1166) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561))) 66) (((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561))) 64)) (-1499 (((-52) |#2| (-1166) (-293 |#2|) (-1220 (-561))) 48) (((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-561))) 47)))
+(((-457 |#1| |#2|) (-10 -7 (-15 -1482 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -1482 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -1482 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-765)))) (-15 -1482 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-765)))) (-15 -1499 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-561)))) (-15 -1499 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-561)))) (-15 -1515 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561)))) (-15 -1515 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561)))) (-15 -3406 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -3406 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -3406 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-561)))) (-15 -3406 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-561)))) (-15 -3406 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561)))) (-15 -3406 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561))))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -457))
+((-3406 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-406 (-561)))) (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8))) (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-3406 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8)) (-5 *5 (-1220 (-406 (-561)))) (-5 *6 (-406 (-561))) (-4 *8 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-3406 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1220 (-561))) (-4 *7 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))) (-1515 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-406 (-561)))) (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8))) (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *8 *3)))) (-1515 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8)) (-5 *5 (-1220 (-406 (-561)))) (-5 *6 (-406 (-561))) (-4 *8 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *8)))) (-1499 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1220 (-561))) (-4 *7 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-1482 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-765))) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *7 *3)))) (-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1220 (-765))) (-4 *7 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *7)))) (-1482 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *6 *3)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-52)) (-5 *1 (-457 *5 *6)))))
+(-10 -7 (-15 -1482 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -1482 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -1482 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-765)))) (-15 -1482 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-765)))) (-15 -1499 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-561)))) (-15 -1499 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-561)))) (-15 -1515 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561)))) (-15 -1515 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561)))) (-15 -3406 ((-52) (-1 |#2| (-561)) (-293 |#2|))) (-15 -3406 ((-52) |#2| (-1166) (-293 |#2|))) (-15 -3406 ((-52) (-1 |#2| (-561)) (-293 |#2|) (-1220 (-561)))) (-15 -3406 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-561)))) (-15 -3406 ((-52) (-1 |#2| (-406 (-561))) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561)))) (-15 -3406 ((-52) |#2| (-1166) (-293 |#2|) (-1220 (-406 (-561))) (-406 (-561)))))
+((-3471 ((|#2| |#2| |#1|) 15)) (-4124 (((-638 |#2|) |#2| (-638 |#2|) |#1| (-914)) 68)) (-3860 (((-2 (|:| |plist| (-638 |#2|)) (|:| |modulo| |#1|)) |#2| (-638 |#2|) |#1| (-914)) 59)))
+(((-458 |#1| |#2|) (-10 -7 (-15 -3860 ((-2 (|:| |plist| (-638 |#2|)) (|:| |modulo| |#1|)) |#2| (-638 |#2|) |#1| (-914))) (-15 -4124 ((-638 |#2|) |#2| (-638 |#2|) |#1| (-914))) (-15 -3471 (|#2| |#2| |#1|))) (-306) (-1229 |#1|)) (T -458))
+((-3471 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1229 *3)))) (-4124 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-638 *3)) (-5 *5 (-914)) (-4 *3 (-1229 *4)) (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))) (-3860 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-914)) (-4 *5 (-306)) (-4 *3 (-1229 *5)) (-5 *2 (-2 (|:| |plist| (-638 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3)) (-5 *4 (-638 *3)))))
+(-10 -7 (-15 -3860 ((-2 (|:| |plist| (-638 |#2|)) (|:| |modulo| |#1|)) |#2| (-638 |#2|) |#1| (-914))) (-15 -4124 ((-638 |#2|) |#2| (-638 |#2|) |#1| (-914))) (-15 -3471 (|#2| |#2| |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 28)) (-2923 (($ |#3|) 25)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-1619 (($ $) 32)) (-4244 (($ |#2| |#4| $) 33)) (-1387 (($ |#2| (-707 |#3| |#4| |#5|)) 24)) (-1578 (((-707 |#3| |#4| |#5|) $) 15)) (-2799 ((|#3| $) 19)) (-4229 ((|#4| $) 17)) (-1590 ((|#2| $) 29)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1766 (($ |#2| |#3| |#4|) 26)) (-2211 (($) 36 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 34)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-459 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -1590 (|#2| $)) (-15 -1578 ((-707 |#3| |#4| |#5|) $)) (-15 -4229 (|#4| $)) (-15 -2799 (|#3| $)) (-15 -1619 ($ $)) (-15 -1387 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -2923 ($ |#3|)) (-15 -1766 ($ |#2| |#3| |#4|)) (-15 -4244 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-638 (-1166)) (-171) (-844) (-237 (-3498 |#1|) (-765)) (-1 (-112) (-2 (|:| -2413 |#3|) (|:| -4196 |#4|)) (-2 (|:| -2413 |#3|) (|:| -4196 |#4|))) (-942 |#2| |#4| (-858 |#1|))) (T -459))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-3498 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *6)) (-2 (|:| -2413 *5) (|:| -4196 *6)))) (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-844)) (-4 *2 (-942 *4 *6 (-858 *3))))) (-1590 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *5 (-237 (-3498 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2413 *4) (|:| -4196 *5)) (-2 (|:| -2413 *4) (|:| -4196 *5)))) (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-942 *2 *5 (-858 *3))))) (-1578 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-3498 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *6)) (-2 (|:| -2413 *5) (|:| -4196 *6)))) (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-844)) (-4 *8 (-942 *4 *6 (-858 *3))))) (-4229 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *2)) (-2 (|:| -2413 *5) (|:| -4196 *2)))) (-4 *2 (-237 (-3498 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7)) (-4 *5 (-844)) (-4 *7 (-942 *4 *2 (-858 *3))))) (-2799 (*1 *2 *1) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-3498 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *5)) (-2 (|:| -2413 *2) (|:| -4196 *5)))) (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *7 (-942 *4 *5 (-858 *3))))) (-1619 (*1 *1 *1) (-12 (-14 *2 (-638 (-1166))) (-4 *3 (-171)) (-4 *5 (-237 (-3498 *2) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2413 *4) (|:| -4196 *5)) (-2 (|:| -2413 *4) (|:| -4196 *5)))) (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-942 *3 *5 (-858 *2))))) (-1387 (*1 *1 *2 *3) (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844)) (-4 *6 (-237 (-3498 *4) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *6)) (-2 (|:| -2413 *5) (|:| -4196 *6)))) (-14 *4 (-638 (-1166))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-942 *2 *6 (-858 *4))))) (-2923 (*1 *1 *2) (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-3498 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *5)) (-2 (|:| -2413 *2) (|:| -4196 *5)))) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844)) (-4 *7 (-942 *4 *5 (-858 *3))))) (-1766 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-638 (-1166))) (-4 *2 (-171)) (-4 *4 (-237 (-3498 *5) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2413 *3) (|:| -4196 *4)) (-2 (|:| -2413 *3) (|:| -4196 *4)))) (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844)) (-4 *7 (-942 *2 *4 (-858 *5))))) (-4244 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-638 (-1166))) (-4 *2 (-171)) (-4 *3 (-237 (-3498 *4) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *3)) (-2 (|:| -2413 *5) (|:| -4196 *3)))) (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844)) (-4 *7 (-942 *2 *3 (-858 *4))))))
+(-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -1590 (|#2| $)) (-15 -1578 ((-707 |#3| |#4| |#5|) $)) (-15 -4229 (|#4| $)) (-15 -2799 (|#3| $)) (-15 -1619 ($ $)) (-15 -1387 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -2923 ($ |#3|)) (-15 -1766 ($ |#2| |#3| |#4|)) (-15 -4244 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2731 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-460 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2731 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-787) (-844) (-553) (-942 |#3| |#1| |#2|) (-13 (-1031 (-406 (-561))) (-362) (-10 -8 (-15 -4022 ($ |#4|)) (-15 -4030 (|#4| $)) (-15 -4045 (|#4| $))))) (T -460))
+((-2731 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787)) (-4 *6 (-553)) (-4 *7 (-942 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1031 (-406 (-561))) (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))))
+(-10 -7 (-15 -2731 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-4011 (((-112) $ $) NIL)) (-1412 (((-638 |#3|) $) 41)) (-1978 (((-112) $) NIL)) (-2701 (((-112) $) NIL (|has| |#1| (-553)))) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-2002 (((-112) $) NIL (|has| |#1| (-553)))) (-1951 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1361 (((-112) $) NIL (|has| |#1| (-553)))) (-1825 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) 48)) (-3938 (($ (-638 |#4|)) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-1489 (($ |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4390)))) (-3571 (((-638 |#4|) $) 18 (|has| $ (-6 -4390)))) (-2783 ((|#3| $) 46)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#4|) $) 14 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-2065 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 21)) (-2209 (((-638 |#3|) $) NIL)) (-2866 (((-112) |#3| $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-1714 (((-1110) $) NIL)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2123 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 39)) (-3170 (($) 17)) (-1724 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) 16)) (-4174 (((-534) $) NIL (|has| |#4| (-609 (-534)))) (($ (-638 |#4|)) 50)) (-4031 (($ (-638 |#4|)) 13)) (-1755 (($ $ |#3|) NIL)) (-2794 (($ $ |#3|) NIL)) (-1967 (($ $ |#3|) NIL)) (-4022 (((-856) $) 38) (((-638 |#4|) $) 49)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 30)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-461 |#1| |#2| |#3| |#4|) (-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4174 ($ (-638 |#4|))) (-6 -4390) (-6 -4391))) (-1042) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -461))
+((-4174 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-461 *3 *4 *5 *6)))))
+(-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4174 ($ (-638 |#4|))) (-6 -4390) (-6 -4391)))
+((-2211 (($) 11)) (-2222 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -2222 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2211 (|#1|))) (-463 |#2| |#3|) (-171) (-23)) (T -462))
+NIL
+(-10 -8 (-15 -2222 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2211 (|#1|)))
+((-4011 (((-112) $ $) 7)) (-4017 (((-3 |#1| "failed") $) 26)) (-3938 ((|#1| $) 27)) (-3615 (($ $ $) 23)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2894 ((|#2| $) 19)) (-4022 (((-856) $) 11) (($ |#1|) 25)) (-2211 (($) 18 T CONST)) (-2222 (($) 24 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 15) (($ $ $) 13)) (-1813 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-463 |#1| |#2|) (-139) (-171) (-23)) (T -463))
-((-2220 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1362 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
-(-13 (-468 |t#1| |t#2|) (-1028 |t#1|) (-10 -8 (-15 (-2220) ($) -2010) (-15 -1362 ($ $ $))))
-(((-102) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-468 |#1| |#2|) . T) ((-1028 |#1|) . T) ((-1087) . T))
-((-2925 (((-1246 (-1246 (-558))) (-1246 (-1246 (-558))) (-911)) 18)) (-2006 (((-1246 (-1246 (-558))) (-911)) 16)))
-(((-464) (-10 -7 (-15 -2925 ((-1246 (-1246 (-558))) (-1246 (-1246 (-558))) (-911))) (-15 -2006 ((-1246 (-1246 (-558))) (-911))))) (T -464))
-((-2006 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 (-558)))) (-5 *1 (-464)))) (-2925 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 (-1246 (-558)))) (-5 *3 (-911)) (-5 *1 (-464)))))
-(-10 -7 (-15 -2925 ((-1246 (-1246 (-558))) (-1246 (-1246 (-558))) (-911))) (-15 -2006 ((-1246 (-1246 (-558))) (-911))))
-((-4271 (((-558) (-558)) 30) (((-558)) 22)) (-1717 (((-558) (-558)) 26) (((-558)) 18)) (-1720 (((-558) (-558)) 28) (((-558)) 20)) (-3017 (((-112) (-112)) 12) (((-112)) 10)) (-1480 (((-112) (-112)) 11) (((-112)) 9)) (-2124 (((-112) (-112)) 24) (((-112)) 15)))
-(((-465) (-10 -7 (-15 -1480 ((-112))) (-15 -3017 ((-112))) (-15 -1480 ((-112) (-112))) (-15 -3017 ((-112) (-112))) (-15 -2124 ((-112))) (-15 -1720 ((-558))) (-15 -1717 ((-558))) (-15 -4271 ((-558))) (-15 -2124 ((-112) (-112))) (-15 -1720 ((-558) (-558))) (-15 -1717 ((-558) (-558))) (-15 -4271 ((-558) (-558))))) (T -465))
-((-4271 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-4271 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-1717 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-1720 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465)))) (-2124 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3017 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-1480 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
-(-10 -7 (-15 -1480 ((-112))) (-15 -3017 ((-112))) (-15 -1480 ((-112) (-112))) (-15 -3017 ((-112) (-112))) (-15 -2124 ((-112))) (-15 -1720 ((-558))) (-15 -1717 ((-558))) (-15 -4271 ((-558))) (-15 -2124 ((-112) (-112))) (-15 -1720 ((-558) (-558))) (-15 -1717 ((-558) (-558))) (-15 -4271 ((-558) (-558))))
-((-3929 (((-112) $ $) NIL)) (-3344 (((-635 (-378)) $) 28) (((-635 (-378)) $ (-635 (-378))) 94)) (-2165 (((-635 (-1081 (-378))) $) 16) (((-635 (-1081 (-378))) $ (-635 (-1081 (-378)))) 91)) (-1930 (((-635 (-635 (-933 (-224)))) (-635 (-635 (-933 (-224)))) (-635 (-864))) 44)) (-3123 (((-635 (-635 (-933 (-224)))) $) 87)) (-2064 (((-1251) $ (-933 (-224)) (-864)) 106)) (-3389 (($ $) 86) (($ (-635 (-635 (-933 (-224))))) 97) (($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911))) 96) (($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)) (-635 (-262))) 98)) (-2510 (((-1145) $) NIL)) (-2176 (((-558) $) 68)) (-1688 (((-1107) $) NIL)) (-1555 (($) 95)) (-2611 (((-635 (-224)) (-635 (-635 (-933 (-224))))) 54)) (-2474 (((-1251) $ (-635 (-933 (-224))) (-864) (-864) (-911)) 100) (((-1251) $ (-933 (-224))) 102) (((-1251) $ (-933 (-224)) (-864) (-864) (-911)) 101)) (-3940 (((-853) $) 112) (($ (-635 (-635 (-933 (-224))))) 107)) (-3266 (((-1251) $ (-933 (-224))) 105)) (-1708 (((-112) $ $) NIL)))
-(((-466) (-13 (-1087) (-10 -8 (-15 -1555 ($)) (-15 -3389 ($ $)) (-15 -3389 ($ (-635 (-635 (-933 (-224)))))) (-15 -3389 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)))) (-15 -3389 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)) (-635 (-262)))) (-15 -3123 ((-635 (-635 (-933 (-224)))) $)) (-15 -2176 ((-558) $)) (-15 -2165 ((-635 (-1081 (-378))) $)) (-15 -2165 ((-635 (-1081 (-378))) $ (-635 (-1081 (-378))))) (-15 -3344 ((-635 (-378)) $)) (-15 -3344 ((-635 (-378)) $ (-635 (-378)))) (-15 -2474 ((-1251) $ (-635 (-933 (-224))) (-864) (-864) (-911))) (-15 -2474 ((-1251) $ (-933 (-224)))) (-15 -2474 ((-1251) $ (-933 (-224)) (-864) (-864) (-911))) (-15 -3266 ((-1251) $ (-933 (-224)))) (-15 -2064 ((-1251) $ (-933 (-224)) (-864))) (-15 -3940 ($ (-635 (-635 (-933 (-224)))))) (-15 -3940 ((-853) $)) (-15 -1930 ((-635 (-635 (-933 (-224)))) (-635 (-635 (-933 (-224)))) (-635 (-864)))) (-15 -2611 ((-635 (-224)) (-635 (-635 (-933 (-224))))))))) (T -466))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-466)))) (-1555 (*1 *1) (-5 *1 (-466))) (-3389 (*1 *1 *1) (-5 *1 (-466))) (-3389 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))) (-3389 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864))) (-5 *4 (-635 (-911))) (-5 *1 (-466)))) (-3389 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864))) (-5 *4 (-635 (-911))) (-5 *5 (-635 (-262))) (-5 *1 (-466)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-466)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466)))) (-2165 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466)))) (-3344 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466)))) (-2474 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *2 (-1251)) (-5 *1 (-466)))) (-2474 (*1 *2 *1 *3) (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466)))) (-2474 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *2 (-1251)) (-5 *1 (-466)))) (-3266 (*1 *2 *1 *3) (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466)))) (-2064 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-466)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))) (-1930 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864))) (-5 *1 (-466)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-635 (-224))) (-5 *1 (-466)))))
-(-13 (-1087) (-10 -8 (-15 -1555 ($)) (-15 -3389 ($ $)) (-15 -3389 ($ (-635 (-635 (-933 (-224)))))) (-15 -3389 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)))) (-15 -3389 ($ (-635 (-635 (-933 (-224)))) (-635 (-864)) (-635 (-864)) (-635 (-911)) (-635 (-262)))) (-15 -3123 ((-635 (-635 (-933 (-224)))) $)) (-15 -2176 ((-558) $)) (-15 -2165 ((-635 (-1081 (-378))) $)) (-15 -2165 ((-635 (-1081 (-378))) $ (-635 (-1081 (-378))))) (-15 -3344 ((-635 (-378)) $)) (-15 -3344 ((-635 (-378)) $ (-635 (-378)))) (-15 -2474 ((-1251) $ (-635 (-933 (-224))) (-864) (-864) (-911))) (-15 -2474 ((-1251) $ (-933 (-224)))) (-15 -2474 ((-1251) $ (-933 (-224)) (-864) (-864) (-911))) (-15 -3266 ((-1251) $ (-933 (-224)))) (-15 -2064 ((-1251) $ (-933 (-224)) (-864))) (-15 -3940 ($ (-635 (-635 (-933 (-224)))))) (-15 -3940 ((-853) $)) (-15 -1930 ((-635 (-635 (-933 (-224)))) (-635 (-635 (-933 (-224)))) (-635 (-864)))) (-15 -2611 ((-635 (-224)) (-635 (-635 (-933 (-224))))))))
-((-1796 (($ $) NIL) (($ $ $) 11)))
-(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|))) (-468 |#2| |#3|) (-171) (-23)) (T -467))
-NIL
-(-10 -8 (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4263 ((|#2| $) 19)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 15) (($ $ $) 13)) (-1785 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2222 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-3615 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
+(-13 (-468 |t#1| |t#2|) (-1031 |t#1|) (-10 -8 (-15 (-2222) ($) -1514) (-15 -3615 ($ $ $))))
+(((-102) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-468 |#1| |#2|) . T) ((-1031 |#1|) . T) ((-1090) . T))
+((-3068 (((-1253 (-1253 (-561))) (-1253 (-1253 (-561))) (-914)) 18)) (-3057 (((-1253 (-1253 (-561))) (-914)) 16)))
+(((-464) (-10 -7 (-15 -3068 ((-1253 (-1253 (-561))) (-1253 (-1253 (-561))) (-914))) (-15 -3057 ((-1253 (-1253 (-561))) (-914))))) (T -464))
+((-3057 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1253 (-1253 (-561)))) (-5 *1 (-464)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 (-1253 (-561)))) (-5 *3 (-914)) (-5 *1 (-464)))))
+(-10 -7 (-15 -3068 ((-1253 (-1253 (-561))) (-1253 (-1253 (-561))) (-914))) (-15 -3057 ((-1253 (-1253 (-561))) (-914))))
+((-1454 (((-561) (-561)) 30) (((-561)) 22)) (-3655 (((-561) (-561)) 26) (((-561)) 18)) (-3873 (((-561) (-561)) 28) (((-561)) 20)) (-1791 (((-112) (-112)) 12) (((-112)) 10)) (-4078 (((-112) (-112)) 11) (((-112)) 9)) (-1787 (((-112) (-112)) 24) (((-112)) 15)))
+(((-465) (-10 -7 (-15 -4078 ((-112))) (-15 -1791 ((-112))) (-15 -4078 ((-112) (-112))) (-15 -1791 ((-112) (-112))) (-15 -1787 ((-112))) (-15 -3873 ((-561))) (-15 -3655 ((-561))) (-15 -1454 ((-561))) (-15 -1787 ((-112) (-112))) (-15 -3873 ((-561) (-561))) (-15 -3655 ((-561) (-561))) (-15 -1454 ((-561) (-561))))) (T -465))
+((-1454 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-3655 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-1454 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-3655 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-3873 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465)))) (-1787 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-1791 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-4078 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-1791 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-4078 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(-10 -7 (-15 -4078 ((-112))) (-15 -1791 ((-112))) (-15 -4078 ((-112) (-112))) (-15 -1791 ((-112) (-112))) (-15 -1787 ((-112))) (-15 -3873 ((-561))) (-15 -3655 ((-561))) (-15 -1454 ((-561))) (-15 -1787 ((-112) (-112))) (-15 -3873 ((-561) (-561))) (-15 -3655 ((-561) (-561))) (-15 -1454 ((-561) (-561))))
+((-4011 (((-112) $ $) NIL)) (-3437 (((-638 (-378)) $) 28) (((-638 (-378)) $ (-638 (-378))) 94)) (-3454 (((-638 (-1084 (-378))) $) 16) (((-638 (-1084 (-378))) $ (-638 (-1084 (-378)))) 91)) (-1660 (((-638 (-638 (-936 (-224)))) (-638 (-638 (-936 (-224)))) (-638 (-867))) 44)) (-2985 (((-638 (-638 (-936 (-224)))) $) 87)) (-3376 (((-1258) $ (-936 (-224)) (-867)) 106)) (-1318 (($ $) 86) (($ (-638 (-638 (-936 (-224))))) 97) (($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914))) 96) (($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)) (-638 (-262))) 98)) (-1764 (((-1148) $) NIL)) (-2252 (((-561) $) 68)) (-1714 (((-1110) $) NIL)) (-1892 (($) 95)) (-3153 (((-638 (-224)) (-638 (-638 (-936 (-224))))) 54)) (-2653 (((-1258) $ (-638 (-936 (-224))) (-867) (-867) (-914)) 100) (((-1258) $ (-936 (-224))) 102) (((-1258) $ (-936 (-224)) (-867) (-867) (-914)) 101)) (-4022 (((-856) $) 112) (($ (-638 (-638 (-936 (-224))))) 107)) (-1645 (((-1258) $ (-936 (-224))) 105)) (-1733 (((-112) $ $) NIL)))
+(((-466) (-13 (-1090) (-10 -8 (-15 -1892 ($)) (-15 -1318 ($ $)) (-15 -1318 ($ (-638 (-638 (-936 (-224)))))) (-15 -1318 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)))) (-15 -1318 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)) (-638 (-262)))) (-15 -2985 ((-638 (-638 (-936 (-224)))) $)) (-15 -2252 ((-561) $)) (-15 -3454 ((-638 (-1084 (-378))) $)) (-15 -3454 ((-638 (-1084 (-378))) $ (-638 (-1084 (-378))))) (-15 -3437 ((-638 (-378)) $)) (-15 -3437 ((-638 (-378)) $ (-638 (-378)))) (-15 -2653 ((-1258) $ (-638 (-936 (-224))) (-867) (-867) (-914))) (-15 -2653 ((-1258) $ (-936 (-224)))) (-15 -2653 ((-1258) $ (-936 (-224)) (-867) (-867) (-914))) (-15 -1645 ((-1258) $ (-936 (-224)))) (-15 -3376 ((-1258) $ (-936 (-224)) (-867))) (-15 -4022 ($ (-638 (-638 (-936 (-224)))))) (-15 -4022 ((-856) $)) (-15 -1660 ((-638 (-638 (-936 (-224)))) (-638 (-638 (-936 (-224)))) (-638 (-867)))) (-15 -3153 ((-638 (-224)) (-638 (-638 (-936 (-224))))))))) (T -466))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-466)))) (-1892 (*1 *1) (-5 *1 (-466))) (-1318 (*1 *1 *1) (-5 *1 (-466))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))) (-1318 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867))) (-5 *4 (-638 (-914))) (-5 *1 (-466)))) (-1318 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867))) (-5 *4 (-638 (-914))) (-5 *5 (-638 (-262))) (-5 *1 (-466)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-466)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466)))) (-3454 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466)))) (-3437 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466)))) (-2653 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *2 (-1258)) (-5 *1 (-466)))) (-2653 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1258)) (-5 *1 (-466)))) (-2653 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *2 (-1258)) (-5 *1 (-466)))) (-1645 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1258)) (-5 *1 (-466)))) (-3376 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1258)) (-5 *1 (-466)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))) (-1660 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867))) (-5 *1 (-466)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-638 (-224))) (-5 *1 (-466)))))
+(-13 (-1090) (-10 -8 (-15 -1892 ($)) (-15 -1318 ($ $)) (-15 -1318 ($ (-638 (-638 (-936 (-224)))))) (-15 -1318 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)))) (-15 -1318 ($ (-638 (-638 (-936 (-224)))) (-638 (-867)) (-638 (-867)) (-638 (-914)) (-638 (-262)))) (-15 -2985 ((-638 (-638 (-936 (-224)))) $)) (-15 -2252 ((-561) $)) (-15 -3454 ((-638 (-1084 (-378))) $)) (-15 -3454 ((-638 (-1084 (-378))) $ (-638 (-1084 (-378))))) (-15 -3437 ((-638 (-378)) $)) (-15 -3437 ((-638 (-378)) $ (-638 (-378)))) (-15 -2653 ((-1258) $ (-638 (-936 (-224))) (-867) (-867) (-914))) (-15 -2653 ((-1258) $ (-936 (-224)))) (-15 -2653 ((-1258) $ (-936 (-224)) (-867) (-867) (-914))) (-15 -1645 ((-1258) $ (-936 (-224)))) (-15 -3376 ((-1258) $ (-936 (-224)) (-867))) (-15 -4022 ($ (-638 (-638 (-936 (-224)))))) (-15 -4022 ((-856) $)) (-15 -1660 ((-638 (-638 (-936 (-224)))) (-638 (-638 (-936 (-224)))) (-638 (-867)))) (-15 -3153 ((-638 (-224)) (-638 (-638 (-936 (-224))))))))
+((-1824 (($ $) NIL) (($ $ $) 11)))
+(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|))) (-468 |#2| |#3|) (-171) (-23)) (T -467))
+NIL
+(-10 -8 (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2894 ((|#2| $) 19)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 15) (($ $ $) 13)) (-1813 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-468 |#1| |#2|) (-139) (-171) (-23)) (T -468))
-((-4263 (*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-2207 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1785 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1796 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
-(-13 (-1087) (-10 -8 (-15 -4263 (|t#2| $)) (-15 (-2207) ($) -2010) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1796 ($ $)) (-15 -1785 ($ $ $)) (-15 -1796 ($ $ $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3167 (((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-855 |#1|))) 91)) (-2898 (((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|))) 89)) (-3419 (((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-558)))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|))) 61)))
-(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -2898 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3167 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3419 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-558)))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|))))) (-635 (-1163)) (-450) (-450)) (T -469))
-((-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-2 (|:| |dpolys| (-635 (-246 *5 *6))) (|:| |coords| (-635 (-558))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))) (-3167 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-855 *4))) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-450)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
-(-10 -7 (-15 -2898 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3167 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-855 |#1|)))) (-15 -3419 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-558)))) (-635 (-246 |#1| |#2|)) (-635 (-855 |#1|)))))
-((-3248 (((-3 $ "failed") $) 11)) (-3068 (($ $ $) 18)) (-3072 (($ $ $) 19)) (-1805 (($ $ $) 9)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 17)))
-(((-470 |#1|) (-10 -8 (-15 -3072 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1805 (|#1| |#1| |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911)))) (-471)) (T -470))
-NIL
-(-10 -8 (-15 -3072 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1805 (|#1| |#1| |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))))
-((-3929 (((-112) $ $) 7)) (-3457 (($) 18 T CONST)) (-3248 (((-3 $ "failed") $) 15)) (-3999 (((-112) $) 17)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 24)) (-1688 (((-1107) $) 10)) (-3068 (($ $ $) 21)) (-3072 (($ $ $) 20)) (-3940 (((-853) $) 11)) (-2220 (($) 19 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 23)) (** (($ $ (-911)) 13) (($ $ (-762)) 16) (($ $ (-558)) 22)) (* (($ $ $) 14)))
+((-2894 (*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-2211 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1813 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1824 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))))
+(-13 (-1090) (-10 -8 (-15 -2894 (|t#2| $)) (-15 (-2211) ($) -1514) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1824 ($ $)) (-15 -1813 ($ $ $)) (-15 -1824 ($ $ $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-1903 (((-3 (-638 (-479 |#1| |#2|)) "failed") (-638 (-479 |#1| |#2|)) (-638 (-858 |#1|))) 91)) (-1823 (((-638 (-638 (-246 |#1| |#2|))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|))) 89)) (-3012 (((-2 (|:| |dpolys| (-638 (-246 |#1| |#2|))) (|:| |coords| (-638 (-561)))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|))) 61)))
+(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -1823 ((-638 (-638 (-246 |#1| |#2|))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -1903 ((-3 (-638 (-479 |#1| |#2|)) "failed") (-638 (-479 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -3012 ((-2 (|:| |dpolys| (-638 (-246 |#1| |#2|))) (|:| |coords| (-638 (-561)))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|))))) (-638 (-1166)) (-450) (-450)) (T -469))
+((-3012 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-2 (|:| |dpolys| (-638 (-246 *5 *6))) (|:| |coords| (-638 (-561))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))) (-1903 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-638 (-858 *4))) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-450)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-638 (-638 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))))
+(-10 -7 (-15 -1823 ((-638 (-638 (-246 |#1| |#2|))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -1903 ((-3 (-638 (-479 |#1| |#2|)) "failed") (-638 (-479 |#1| |#2|)) (-638 (-858 |#1|)))) (-15 -3012 ((-2 (|:| |dpolys| (-638 (-246 |#1| |#2|))) (|:| |coords| (-638 (-561)))) (-638 (-246 |#1| |#2|)) (-638 (-858 |#1|)))))
+((-3466 (((-3 $ "failed") $) 11)) (-2260 (($ $ $) 18)) (-3800 (($ $ $) 19)) (-1833 (($ $ $) 9)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 17)))
+(((-470 |#1|) (-10 -8 (-15 -3800 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1833 (|#1| |#1| |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914)))) (-471)) (T -470))
+NIL
+(-10 -8 (-15 -3800 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1833 (|#1| |#1| |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))))
+((-4011 (((-112) $ $) 7)) (-1965 (($) 18 T CONST)) (-3466 (((-3 $ "failed") $) 15)) (-3113 (((-112) $) 17)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 24)) (-1714 (((-1110) $) 10)) (-2260 (($ $ $) 21)) (-3800 (($ $ $) 20)) (-4022 (((-856) $) 11)) (-2222 (($) 19 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 23)) (** (($ $ (-914)) 13) (($ $ (-765)) 16) (($ $ (-561)) 22)) (* (($ $ $) 14)))
(((-471) (-139)) (T -471))
-((-3823 (*1 *1 *1) (-4 *1 (-471))) (-1805 (*1 *1 *1 *1) (-4 *1 (-471))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-558)))) (-3068 (*1 *1 *1 *1) (-4 *1 (-471))) (-3072 (*1 *1 *1 *1) (-4 *1 (-471))))
-(-13 (-717) (-10 -8 (-15 -3823 ($ $)) (-15 -1805 ($ $ $)) (-15 ** ($ $ (-558))) (-6 -4380) (-15 -3068 ($ $ $)) (-15 -3072 ($ $ $))))
-(((-102) . T) ((-605 (-853)) . T) ((-717) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 17)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3414 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) NIL)) (-2277 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-2298 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) NIL)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-406 (-558))) NIL) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) 22)) (-4342 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1337 (($ $) 26 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 33 (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 27 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-406 (-558))) NIL)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3944 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) 25 (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $ (-1242 |#2|)) 15)) (-4263 (((-406 (-558)) $) NIL)) (-2312 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1242 |#2|)) NIL) (($ (-1231 |#1| |#2| |#3|)) 9) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3143 ((|#1| $ (-406 (-558))) NIL)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) 18)) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) 24)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-472 |#1| |#2| |#3|) (-13 (-1227 |#1|) (-10 -8 (-15 -3940 ($ (-1242 |#2|))) (-15 -3940 ($ (-1231 |#1| |#2| |#3|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -472))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(-13 (-1227 |#1|) (-10 -8 (-15 -3940 ($ (-1242 |#2|))) (-15 -3940 ($ (-1231 |#1| |#2| |#3|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|)))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3552 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#2| $ |#1| |#2|) 18)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) 19)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) 16)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) NIL)) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 ((|#1| $) NIL (|has| |#1| (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 ((|#1| $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1934 (((-635 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3051 (((-635 |#1|) $) NIL)) (-2740 (((-112) |#1| $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#2| $) NIL (|has| |#1| (-841)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-473 |#1| |#2| |#3| |#4|) (-1176 |#1| |#2|) (-1087) (-1087) (-1176 |#1| |#2|) |#2|) (T -473))
-NIL
-(-1176 |#1| |#2|)
-((-3929 (((-112) $ $) NIL)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3055 (((-635 $) (-635 |#4|)) NIL)) (-4078 (((-635 |#3|) $) NIL)) (-3369 (((-112) $) NIL)) (-1852 (((-112) $) NIL (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2299 ((|#4| |#4| $) NIL)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2072 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3457 (($) NIL T CONST)) (-3614 (((-112) $) 27 (|has| |#1| (-550)))) (-1293 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2211 (((-112) $ $) NIL (|has| |#1| (-550)))) (-3554 (((-112) $) NIL (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1542 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3226 (($ (-635 |#4|)) NIL)) (-3168 (((-3 $ "failed") $) 40)) (-2687 ((|#4| |#4| $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-1488 (($ |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2388 ((|#4| |#4| $) NIL)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) NIL)) (-2917 (((-635 |#4|) $) 17 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#4|) $) 18 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-3674 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 22)) (-2327 (((-635 |#3|) $) NIL)) (-3541 (((-112) |#3| $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1514 (((-3 |#4| "failed") $) 38)) (-2367 (((-635 |#4|) $) NIL)) (-2643 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1401 ((|#4| |#4| $) NIL)) (-3879 (((-112) $ $) NIL)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2224 ((|#4| |#4| $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-3 |#4| "failed") $) 36)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2562 (((-3 $ "failed") $ |#4|) 47)) (-2319 (($ $ |#4|) NIL)) (-3314 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 16)) (-2876 (($) 14)) (-4263 (((-762) $) NIL)) (-1698 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) 13)) (-3441 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 21)) (-3121 (($ $ |#3|) 43)) (-2402 (($ $ |#3|) 44)) (-2004 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-3940 (((-853) $) 32) (((-635 |#4|) $) 41)) (-1435 (((-762) $) NIL (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2831 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) NIL)) (-4062 (((-112) |#3| $) NIL)) (-1708 (((-112) $ $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-474 |#1| |#2| |#3| |#4|) (-1193 |#1| |#2| |#3| |#4|) (-550) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -474))
-NIL
-(-1193 |#1| |#2| |#3| |#4|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL)) (-3226 (((-558) $) NIL) (((-406 (-558)) $) NIL)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-3348 (($) 18)) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3441 (((-378) $) 22) (((-224) $) 25) (((-406 (-1159 (-558))) $) 19) (((-534) $) 52)) (-3940 (((-853) $) 50) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (((-224) $) 24) (((-378) $) 21)) (-2417 (((-762)) NIL)) (-2671 (((-112) $ $) NIL)) (-2207 (($) 36 T CONST)) (-2220 (($) 11 T CONST)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-475) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))) (-1012) (-605 (-224)) (-605 (-378)) (-606 (-406 (-1159 (-558)))) (-606 (-534)) (-10 -8 (-15 -3348 ($))))) (T -475))
-((-3348 (*1 *1) (-5 *1 (-475))))
-(-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))) (-1012) (-605 (-224)) (-605 (-378)) (-606 (-406 (-1159 (-558)))) (-606 (-534)) (-10 -8 (-15 -3348 ($))))
-((-3929 (((-112) $ $) NIL)) (-2385 (((-1122) $) 11)) (-2372 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-476) (-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))) (T -476))
-((-2372 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476)))))
-(-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3552 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#2| $ |#1| |#2|) 16)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) 20)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) 18)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) NIL)) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 ((|#1| $) NIL (|has| |#1| (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 ((|#1| $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1934 (((-635 |#1|) $) 13)) (-3336 (((-112) |#1| $) NIL)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3051 (((-635 |#1|) $) NIL)) (-2740 (((-112) |#1| $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#2| $) NIL (|has| |#1| (-841)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 19)) (-2276 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 11 (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1596 (((-762) $) 15 (|has| $ (-6 -4383)))))
-(((-477 |#1| |#2| |#3|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383))) (-1087) (-1087) (-1145)) (T -477))
-NIL
-(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383)))
-((-3134 (((-558) (-558) (-558)) 7)) (-1832 (((-112) (-558) (-558) (-558) (-558)) 11)) (-2009 (((-1246 (-635 (-558))) (-762) (-762)) 22)))
-(((-478) (-10 -7 (-15 -3134 ((-558) (-558) (-558))) (-15 -1832 ((-112) (-558) (-558) (-558) (-558))) (-15 -2009 ((-1246 (-635 (-558))) (-762) (-762))))) (T -478))
-((-2009 (*1 *2 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1246 (-635 (-558)))) (-5 *1 (-478)))) (-1832 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-478)))) (-3134 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-478)))))
-(-10 -7 (-15 -3134 ((-558) (-558) (-558))) (-15 -1832 ((-112) (-558) (-558) (-558) (-558))) (-15 -2009 ((-1246 (-635 (-558))) (-762) (-762))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-855 |#1|)) $) NIL)) (-3907 (((-1159 $) $ (-855 |#1|)) NIL) (((-1159 |#2|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-3244 (($ $) NIL (|has| |#2| (-550)))) (-4326 (((-112) $) NIL (|has| |#2| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-855 |#1|))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2018 (($ $) NIL (|has| |#2| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-3226 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-2862 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3146 (($ $ (-635 (-558))) NIL)) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#2| (-899)))) (-2704 (($ $ |#2| (-480 (-1596 |#1|) (-762)) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4068 (($ (-1159 |#2|) (-855 |#1|)) NIL) (($ (-1159 $) (-855 |#1|)) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#2| (-480 (-1596 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-855 |#1|)) NIL)) (-3672 (((-480 (-1596 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-2142 (($ $ $) NIL (|has| |#2| (-841)))) (-2281 (($ $ $) NIL (|has| |#2| (-841)))) (-2776 (($ (-1 (-480 (-1596 |#1|) (-762)) (-480 (-1596 |#1|) (-762))) $) NIL)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-2135 (((-3 (-855 |#1|) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#2| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2510 (((-1145) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1857 (-762))) "failed") $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#2| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#2| (-899)))) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) NIL) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) NIL) (($ $ (-855 |#1|) $) NIL) (($ $ (-635 (-855 |#1|)) (-635 $)) NIL)) (-3789 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3780 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4263 (((-480 (-1596 |#1|) (-762)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-3012 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-855 |#1|)) NIL) (($ (-406 (-558))) NIL (-3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-480 (-1596 |#1|) (-762))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1757 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-479 |#1| |#2|) (-13 (-939 |#2| (-480 (-1596 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3146 ($ $ (-635 (-558)))))) (-635 (-1163)) (-1039)) (T -479))
-((-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-479 *3 *4)) (-14 *3 (-635 (-1163))) (-4 *4 (-1039)))))
-(-13 (-939 |#2| (-480 (-1596 |#1|) (-762)) (-855 |#1|)) (-10 -8 (-15 -3146 ($ $ (-635 (-558))))))
-((-3929 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-3124 (((-112) $) NIL (|has| |#2| (-130)))) (-1441 (($ (-911)) NIL (|has| |#2| (-1039)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2707 (($ $ $) NIL (|has| |#2| (-784)))) (-1868 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3651 (((-112) $ (-762)) NIL)) (-2507 (((-762)) NIL (|has| |#2| (-367)))) (-1334 (((-558) $) NIL (|has| |#2| (-839)))) (-4077 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1087)))) (-3226 (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) NIL (|has| |#2| (-1087)))) (-1918 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1039)))) (-3248 (((-3 $ "failed") $) NIL (|has| |#2| (-717)))) (-3692 (($) NIL (|has| |#2| (-367)))) (-3683 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ (-558)) 11)) (-4053 (((-112) $) NIL (|has| |#2| (-839)))) (-2917 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL (|has| |#2| (-717)))) (-2032 (((-112) $) NIL (|has| |#2| (-839)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-3486 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-1486 (((-911) $) NIL (|has| |#2| (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#2| (-1087)))) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-2349 (($ (-911)) NIL (|has| |#2| (-367)))) (-1688 (((-1107) $) NIL (|has| |#2| (-1087)))) (-3156 ((|#2| $) NIL (|has| (-558) (-841)))) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) NIL)) (-2823 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-3982 (($ (-1246 |#2|)) NIL)) (-2887 (((-133)) NIL (|has| |#2| (-362)))) (-3780 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1698 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-1246 |#2|) $) NIL) (($ (-558)) NIL (-3994 (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) NIL (|has| |#2| (-1087))) (((-853) $) NIL (|has| |#2| (-605 (-853))))) (-2417 (((-762)) NIL (|has| |#2| (-1039)))) (-2831 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4241 (($ $) NIL (|has| |#2| (-839)))) (-2207 (($) NIL (|has| |#2| (-130)) CONST)) (-2220 (($) NIL (|has| |#2| (-717)) CONST)) (-3042 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1757 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1737 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1708 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-1749 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1728 (((-112) $ $) 15 (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1785 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-762)) NIL (|has| |#2| (-717))) (($ $ (-911)) NIL (|has| |#2| (-717)))) (* (($ (-558) $) NIL (|has| |#2| (-1039))) (($ $ $) NIL (|has| |#2| (-717))) (($ $ |#2|) NIL (|has| |#2| (-717))) (($ |#2| $) NIL (|has| |#2| (-717))) (($ (-762) $) NIL (|has| |#2| (-130))) (($ (-911) $) NIL (|has| |#2| (-25)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-480 |#1| |#2|) (-237 |#1| |#2|) (-762) (-784)) (T -480))
+((-1540 (*1 *1 *1) (-4 *1 (-471))) (-1833 (*1 *1 *1 *1) (-4 *1 (-471))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-561)))) (-2260 (*1 *1 *1 *1) (-4 *1 (-471))) (-3800 (*1 *1 *1 *1) (-4 *1 (-471))))
+(-13 (-720) (-10 -8 (-15 -1540 ($ $)) (-15 -1833 ($ $ $)) (-15 ** ($ $ (-561))) (-6 -4387) (-15 -2260 ($ $ $)) (-15 -3800 ($ $ $))))
+(((-102) . T) ((-608 (-856)) . T) ((-720) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 17)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-2457 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) NIL)) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3009 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) NIL)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-406 (-561))) NIL) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) 22)) (-4348 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-1842 (($ $) 26 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 33 (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1249 |#2|)) 27 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-406 (-561))) NIL)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) 25 (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $ (-1249 |#2|)) 15)) (-2894 (((-406 (-561)) $) NIL)) (-3021 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1249 |#2|)) NIL) (($ (-1238 |#1| |#2| |#3|)) 9) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-2634 ((|#1| $ (-406 (-561))) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) 18)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) 24)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-472 |#1| |#2| |#3|) (-13 (-1234 |#1|) (-10 -8 (-15 -4022 ($ (-1249 |#2|))) (-15 -4022 ($ (-1238 |#1| |#2| |#3|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -472))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1238 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1234 |#1|) (-10 -8 (-15 -4022 ($ (-1249 |#2|))) (-15 -4022 ($ (-1238 |#1| |#2| |#3|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|)))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3024 (((-1258) $ |#1| |#1|) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#2| $ |#1| |#2|) 18)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) 19)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) 16)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) NIL)) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 ((|#1| $) NIL (|has| |#1| (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 ((|#1| $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2017 (((-638 |#1|) $) NIL)) (-2857 (((-112) |#1| $) NIL)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2451 (((-638 |#1|) $) NIL)) (-1390 (((-112) |#1| $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#2| $) NIL (|has| |#1| (-844)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-473 |#1| |#2| |#3| |#4|) (-1181 |#1| |#2|) (-1090) (-1090) (-1181 |#1| |#2|) |#2|) (T -473))
+NIL
+(-1181 |#1| |#2|)
+((-4011 (((-112) $ $) NIL)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3047 (((-638 $) (-638 |#4|)) NIL)) (-1412 (((-638 |#3|) $) NIL)) (-1978 (((-112) $) NIL)) (-2701 (((-112) $) NIL (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2427 ((|#4| |#4| $) NIL)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1965 (($) NIL T CONST)) (-2002 (((-112) $) 27 (|has| |#1| (-553)))) (-1951 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1361 (((-112) $) NIL (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1825 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3938 (($ (-638 |#4|)) NIL)) (-1445 (((-3 $ "failed") $) 40)) (-3320 ((|#4| |#4| $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-1489 (($ |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3372 ((|#4| |#4| $) NIL)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) NIL)) (-3571 (((-638 |#4|) $) 17 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#4|) $) 18 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-2065 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 22)) (-2209 (((-638 |#3|) $) NIL)) (-2866 (((-112) |#3| $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-1520 (((-3 |#4| "failed") $) 38)) (-1981 (((-638 |#4|) $) NIL)) (-2153 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1829 ((|#4| |#4| $) NIL)) (-3863 (((-112) $ $) NIL)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-3 |#4| "failed") $) 36)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2916 (((-3 $ "failed") $ |#4|) 47)) (-1416 (($ $ |#4|) NIL)) (-2123 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 16)) (-3170 (($) 14)) (-2894 (((-765) $) NIL)) (-1724 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) 13)) (-4174 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 21)) (-1755 (($ $ |#3|) 43)) (-2794 (($ $ |#3|) 44)) (-2074 (($ $) NIL)) (-1967 (($ $ |#3|) NIL)) (-4022 (((-856) $) 32) (((-638 |#4|) $) 41)) (-4161 (((-765) $) NIL (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) NIL)) (-1751 (((-112) |#3| $) NIL)) (-1733 (((-112) $ $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-474 |#1| |#2| |#3| |#4|) (-1198 |#1| |#2| |#3| |#4|) (-553) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -474))
+NIL
+(-1198 |#1| |#2| |#3| |#4|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL)) (-3938 (((-561) $) NIL) (((-406 (-561)) $) NIL)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-4067 (($) 18)) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-4174 (((-378) $) 22) (((-224) $) 25) (((-406 (-1162 (-561))) $) 19) (((-534) $) 52)) (-4022 (((-856) $) 50) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (((-224) $) 24) (((-378) $) 21)) (-4259 (((-765)) NIL)) (-3168 (((-112) $ $) NIL)) (-2211 (($) 36 T CONST)) (-2222 (($) 11 T CONST)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-475) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))) (-1015) (-608 (-224)) (-608 (-378)) (-609 (-406 (-1162 (-561)))) (-609 (-534)) (-10 -8 (-15 -4067 ($))))) (T -475))
+((-4067 (*1 *1) (-5 *1 (-475))))
+(-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))) (-1015) (-608 (-224)) (-608 (-378)) (-609 (-406 (-1162 (-561)))) (-609 (-534)) (-10 -8 (-15 -4067 ($))))
+((-4011 (((-112) $ $) NIL)) (-4306 (((-1125) $) 11)) (-4293 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-476) (-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))) (T -476))
+((-4293 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))))
+(-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3024 (((-1258) $ |#1| |#1|) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#2| $ |#1| |#2|) 16)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) 20)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) 18)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) NIL)) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 ((|#1| $) NIL (|has| |#1| (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 ((|#1| $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2017 (((-638 |#1|) $) 13)) (-2857 (((-112) |#1| $) NIL)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2451 (((-638 |#1|) $) NIL)) (-1390 (((-112) |#1| $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#2| $) NIL (|has| |#1| (-844)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 19)) (-2277 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 11 (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3498 (((-765) $) 15 (|has| $ (-6 -4390)))))
+(((-477 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390))) (-1090) (-1090) (-1148)) (T -477))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390)))
+((-3872 (((-561) (-561) (-561)) 7)) (-3511 (((-112) (-561) (-561) (-561) (-561)) 11)) (-2097 (((-1253 (-638 (-561))) (-765) (-765)) 22)))
+(((-478) (-10 -7 (-15 -3872 ((-561) (-561) (-561))) (-15 -3511 ((-112) (-561) (-561) (-561) (-561))) (-15 -2097 ((-1253 (-638 (-561))) (-765) (-765))))) (T -478))
+((-2097 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1253 (-638 (-561)))) (-5 *1 (-478)))) (-3511 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-478)))) (-3872 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-478)))))
+(-10 -7 (-15 -3872 ((-561) (-561) (-561))) (-15 -3511 ((-112) (-561) (-561) (-561) (-561))) (-15 -2097 ((-1253 (-638 (-561))) (-765) (-765))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-858 |#1|)) $) NIL)) (-1620 (((-1162 $) $ (-858 |#1|)) NIL) (((-1162 |#2|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-2851 (($ $) NIL (|has| |#2| (-553)))) (-3359 (((-112) $) NIL (|has| |#2| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1591 (($ $) NIL (|has| |#2| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3938 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-3051 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3405 (($ $ (-638 (-561))) NIL)) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#2| (-902)))) (-2103 (($ $ |#2| (-480 (-3498 |#1|) (-765)) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1401 (($ (-1162 |#2|) (-858 |#1|)) NIL) (($ (-1162 $) (-858 |#1|)) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#2| (-480 (-3498 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-858 |#1|)) NIL)) (-2393 (((-480 (-3498 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-3443 (($ $ $) NIL (|has| |#2| (-844)))) (-2986 (($ $ $) NIL (|has| |#2| (-844)))) (-3524 (($ (-1 (-480 (-3498 |#1|) (-765)) (-480 (-3498 |#1|) (-765))) $) NIL)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-1358 (((-3 (-858 |#1|) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#2| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1764 (((-1148) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4196 (-765))) "failed") $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#2| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-638 (-858 |#1|)) (-638 $)) NIL)) (-2553 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3238 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2894 (((-480 (-3498 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-3609 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-561))) NIL (-4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-480 (-3498 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1782 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-479 |#1| |#2|) (-13 (-942 |#2| (-480 (-3498 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -3405 ($ $ (-638 (-561)))))) (-638 (-1166)) (-1042)) (T -479))
+((-3405 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-479 *3 *4)) (-14 *3 (-638 (-1166))) (-4 *4 (-1042)))))
+(-13 (-942 |#2| (-480 (-3498 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -3405 ($ $ (-638 (-561))))))
+((-4011 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-2800 (((-112) $) NIL (|has| |#2| (-130)))) (-2923 (($ (-914)) NIL (|has| |#2| (-1042)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-2090 (($ $ $) NIL (|has| |#2| (-787)))) (-2249 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1630 (((-112) $ (-765)) NIL)) (-1393 (((-765)) NIL (|has| |#2| (-367)))) (-2666 (((-561) $) NIL (|has| |#2| (-842)))) (-4167 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1090)))) (-3938 (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) NIL (|has| |#2| (-1090)))) (-3602 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3466 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-1332 (($) NIL (|has| |#2| (-367)))) (-2073 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ (-561)) 11)) (-3201 (((-112) $) NIL (|has| |#2| (-842)))) (-3571 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL (|has| |#2| (-720)))) (-2110 (((-112) $) NIL (|has| |#2| (-842)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1305 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-3198 (((-914) $) NIL (|has| |#2| (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#2| (-1090)))) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-2413 (($ (-914)) NIL (|has| |#2| (-367)))) (-1714 (((-1110) $) NIL (|has| |#2| (-1090)))) (-1433 ((|#2| $) NIL (|has| (-561) (-844)))) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) NIL)) (-1327 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1690 (($ (-1253 |#2|)) NIL)) (-3084 (((-133)) NIL (|has| |#2| (-362)))) (-3238 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1724 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-1253 |#2|) $) NIL) (($ (-561)) NIL (-4007 (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) NIL (|has| |#2| (-1090))) (((-856) $) NIL (|has| |#2| (-608 (-856))))) (-4259 (((-765)) NIL (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-3749 (($ $) NIL (|has| |#2| (-842)))) (-2211 (($) NIL (|has| |#2| (-130)) CONST)) (-2222 (($) NIL (|has| |#2| (-720)) CONST)) (-3122 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1782 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1762 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1733 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-1773 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1754 (((-112) $ $) 15 (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-1813 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-914)) NIL (|has| |#2| (-720)))) (* (($ (-561) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-914) $) NIL (|has| |#2| (-25)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-480 |#1| |#2|) (-237 |#1| |#2|) (-765) (-787)) (T -480))
NIL
(-237 |#1| |#2|)
-((-3929 (((-112) $ $) NIL)) (-3634 (((-635 (-504)) $) 11)) (-3179 (((-504) $) 10)) (-2510 (((-1145) $) NIL)) (-4112 (($ (-504) (-635 (-504))) 9)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 20) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-481) (-13 (-1070) (-10 -8 (-15 -4112 ($ (-504) (-635 (-504)))) (-15 -3179 ((-504) $)) (-15 -3634 ((-635 (-504)) $))))) (T -481))
-((-4112 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481)))))
-(-13 (-1070) (-10 -8 (-15 -4112 ($ (-504) (-635 (-504)))) (-15 -3179 ((-504) $)) (-15 -3634 ((-635 (-504)) $))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) NIL)) (-3457 (($) NIL T CONST)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-4150 (($ $ $) 32)) (-3391 (($ $ $) 31)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2281 ((|#1| $) 26)) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1498 ((|#1| $) 27)) (-2650 (($ |#1| $) 10)) (-2410 (($ (-635 |#1|)) 12)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2533 ((|#1| $) 23)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 9)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 29)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) 21 (|has| $ (-6 -4383)))))
-(((-482 |#1|) (-13 (-958 |#1|) (-10 -8 (-15 -2410 ($ (-635 |#1|))))) (-841)) (T -482))
-((-2410 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-482 *3)))))
-(-13 (-958 |#1|) (-10 -8 (-15 -2410 ($ (-635 |#1|)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3866 (($ $) 69)) (-2125 (((-112) $) NIL)) (-2510 (((-1145) $) NIL)) (-1776 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-1688 (((-1107) $) NIL)) (-2461 (((-3 |#4| "failed") $) 107)) (-3034 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-558)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3353 (((-2 (|:| -1349 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3940 (((-853) $) 102)) (-2207 (($) 33 T CONST)) (-1708 (((-112) $ $) 109)) (-1796 (($ $) 72) (($ $ $) NIL)) (-1785 (($ $ $) 70)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 73)))
-(((-483 |#1| |#2| |#3| |#4|) (-334 |#1| |#2| |#3| |#4|) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -483))
+((-4011 (((-112) $ $) NIL)) (-3734 (((-638 (-504)) $) 11)) (-3269 (((-504) $) 10)) (-1764 (((-1148) $) NIL)) (-1626 (($ (-504) (-638 (-504))) 9)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-481) (-13 (-1073) (-10 -8 (-15 -1626 ($ (-504) (-638 (-504)))) (-15 -3269 ((-504) $)) (-15 -3734 ((-638 (-504)) $))))) (T -481))
+((-1626 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-638 (-504))) (-5 *1 (-481)))))
+(-13 (-1073) (-10 -8 (-15 -1626 ($ (-504) (-638 (-504)))) (-15 -3269 ((-504) $)) (-15 -3734 ((-638 (-504)) $))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) NIL)) (-1965 (($) NIL T CONST)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3092 (($ $ $) 32)) (-1407 (($ $ $) 31)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2986 ((|#1| $) 26)) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3211 ((|#1| $) 27)) (-3671 (($ |#1| $) 10)) (-1511 (($ (-638 |#1|)) 12)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3522 ((|#1| $) 23)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 9)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 29)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) 21 (|has| $ (-6 -4390)))))
+(((-482 |#1|) (-13 (-961 |#1|) (-10 -8 (-15 -1511 ($ (-638 |#1|))))) (-844)) (T -482))
+((-1511 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3)))))
+(-13 (-961 |#1|) (-10 -8 (-15 -1511 ($ (-638 |#1|)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3185 (($ $) 69)) (-3487 (((-112) $) NIL)) (-1764 (((-1148) $) NIL)) (-1359 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-1714 (((-1110) $) NIL)) (-3158 (((-3 |#4| "failed") $) 107)) (-1895 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-561)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-2091 (((-2 (|:| -1429 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4022 (((-856) $) 102)) (-2211 (($) 33 T CONST)) (-1733 (((-112) $ $) 109)) (-1824 (($ $) 72) (($ $ $) NIL)) (-1813 (($ $ $) 70)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 73)))
+(((-483 |#1| |#2| |#3| |#4|) (-334 |#1| |#2| |#3| |#4|) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -483))
NIL
(-334 |#1| |#2| |#3| |#4|)
-((-2261 (((-558) (-635 (-558))) 29)) (-3536 ((|#1| (-635 |#1|)) 55)) (-4260 (((-635 |#1|) (-635 |#1|)) 56)) (-3992 (((-635 |#1|) (-635 |#1|)) 58)) (-1544 ((|#1| (-635 |#1|)) 57)) (-3012 (((-635 (-558)) (-635 |#1|)) 32)))
-(((-484 |#1|) (-10 -7 (-15 -1544 (|#1| (-635 |#1|))) (-15 -3536 (|#1| (-635 |#1|))) (-15 -3992 ((-635 |#1|) (-635 |#1|))) (-15 -4260 ((-635 |#1|) (-635 |#1|))) (-15 -3012 ((-635 (-558)) (-635 |#1|))) (-15 -2261 ((-558) (-635 (-558))))) (-1222 (-558))) (T -484))
-((-2261 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-558)) (-5 *1 (-484 *4)) (-4 *4 (-1222 *2)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1222 (-558))) (-5 *2 (-635 (-558))) (-5 *1 (-484 *4)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558))))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558))))))
-(-10 -7 (-15 -1544 (|#1| (-635 |#1|))) (-15 -3536 (|#1| (-635 |#1|))) (-15 -3992 ((-635 |#1|) (-635 |#1|))) (-15 -4260 ((-635 |#1|) (-635 |#1|))) (-15 -3012 ((-635 (-558)) (-635 |#1|))) (-15 -2261 ((-558) (-635 (-558)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 (((-558) $) NIL (|has| (-558) (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| (-558) (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-558) (-1028 (-558))))) (-3226 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-558) (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| (-558) (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 (((-558) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2032 (((-112) $) NIL (|has| (-558) (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-558) (-841)))) (-3397 (($ (-1 (-558) (-558)) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-558) (-1138)) CONST)) (-2308 (($ (-406 (-558))) 9)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) NIL)) (-4259 (((-558) $) NIL (|has| (-558) (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-1562 (((-762) $) NIL)) (-2276 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-4218 (($ $) NIL)) (-3327 (((-558) $) NIL)) (-3441 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 8) (($ (-558)) NIL) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL) (((-994 16) $) 10)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2417 (((-762)) NIL)) (-2912 (((-558) $) NIL (|has| (-558) (-543)))) (-2671 (((-112) $ $) NIL)) (-4241 (($ $) NIL (|has| (-558) (-811)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1757 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1805 (($ $ $) NIL) (($ (-558) (-558)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) NIL) (($ $ (-558)) NIL)))
-(((-485) (-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 16)) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -2308 ($ (-406 (-558))))))) (T -485))
-((-1636 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485)))))
-(-13 (-982 (-558)) (-605 (-406 (-558))) (-605 (-994 16)) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -2308 ($ (-406 (-558))))))
-((-3486 (((-635 |#2|) $) 23)) (-3764 (((-112) |#2| $) 28)) (-3314 (((-112) (-1 (-112) |#2|) $) 21)) (-1369 (($ $ (-635 (-293 |#2|))) 13) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-1698 (((-762) (-1 (-112) |#2|) $) 22) (((-762) |#2| $) 26)) (-3940 (((-853) $) 37)) (-2831 (((-112) (-1 (-112) |#2|) $) 20)) (-1708 (((-112) $ $) 31)) (-1596 (((-762) $) 17)))
-(((-486 |#1| |#2|) (-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#2| |#2|)) (-15 -1369 (|#1| |#1| (-293 |#2|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -3764 ((-112) |#2| |#1|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -3486 ((-635 |#2|) |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1596 ((-762) |#1|))) (-487 |#2|) (-1200)) (T -486))
-NIL
-(-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#2| |#2|)) (-15 -1369 (|#1| |#1| (-293 |#2|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#2|)))) (-15 -3764 ((-112) |#2| |#1|)) (-15 -1698 ((-762) |#2| |#1|)) (-15 -3486 ((-635 |#2|) |#1|)) (-15 -1698 ((-762) (-1 (-112) |#2|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1596 ((-762) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-3457 (($) 7 T CONST)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-487 |#1|) (-139) (-1200)) (T -487))
-((-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1200)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4384)) (-4 *1 (-487 *3)) (-4 *3 (-1200)))) (-2831 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *4)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-3314 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *4)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-1698 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *4)) (-4 *4 (-1200)) (-5 *2 (-762)))) (-2917 (*1 *2 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))) (-3486 (*1 *2 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))) (-1698 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-762)))) (-3764 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) (IF (|has| |t#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |t#1| (-1087)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3397 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4384)) (-15 -3674 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4383)) (PROGN (-15 -2831 ((-112) (-1 (-112) |t#1|) $)) (-15 -3314 ((-112) (-1 (-112) |t#1|) $)) (-15 -1698 ((-762) (-1 (-112) |t#1|) $)) (-15 -2917 ((-635 |t#1|) $)) (-15 -3486 ((-635 |t#1|) $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -1698 ((-762) |t#1| $)) (-15 -3764 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3940 ((|#1| $) 6) (($ |#1|) 9)))
-(((-488 |#1|) (-139) (-1200)) (T -488))
-NIL
-(-13 (-605 |t#1|) (-608 |t#1|))
-(((-608 |#1|) . T) ((-605 |#1|) . T))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-2836 (($ (-1145)) 8)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 14) (((-1145) $) 11)) (-1708 (((-112) $ $) 10)))
-(((-489) (-13 (-1087) (-605 (-1145)) (-10 -8 (-15 -2836 ($ (-1145)))))) (T -489))
-((-2836 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-489)))))
-(-13 (-1087) (-605 (-1145)) (-10 -8 (-15 -2836 ($ (-1145)))))
-((-2277 (($ $) 15)) (-2254 (($ $) 24)) (-2298 (($ $) 12)) (-2312 (($ $) 10)) (-2289 (($ $) 17)) (-2265 (($ $) 22)))
-(((-490 |#1|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2277 (|#1| |#1|))) (-491)) (T -490))
-NIL
-(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2277 (|#1| |#1|)))
-((-2277 (($ $) 11)) (-2254 (($ $) 10)) (-2298 (($ $) 9)) (-2312 (($ $) 8)) (-2289 (($ $) 7)) (-2265 (($ $) 6)))
+((-3942 (((-561) (-638 (-561))) 29)) (-3610 ((|#1| (-638 |#1|)) 55)) (-1935 (((-638 |#1|) (-638 |#1|)) 56)) (-3612 (((-638 |#1|) (-638 |#1|)) 58)) (-1623 ((|#1| (-638 |#1|)) 57)) (-3609 (((-638 (-561)) (-638 |#1|)) 32)))
+(((-484 |#1|) (-10 -7 (-15 -1623 (|#1| (-638 |#1|))) (-15 -3610 (|#1| (-638 |#1|))) (-15 -3612 ((-638 |#1|) (-638 |#1|))) (-15 -1935 ((-638 |#1|) (-638 |#1|))) (-15 -3609 ((-638 (-561)) (-638 |#1|))) (-15 -3942 ((-561) (-638 (-561))))) (-1229 (-561))) (T -484))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-561)) (-5 *1 (-484 *4)) (-4 *4 (-1229 *2)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1229 (-561))) (-5 *2 (-638 (-561))) (-5 *1 (-484 *4)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1229 (-561))) (-5 *1 (-484 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1229 (-561))) (-5 *1 (-484 *3)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-561))))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-561))))))
+(-10 -7 (-15 -1623 (|#1| (-638 |#1|))) (-15 -3610 (|#1| (-638 |#1|))) (-15 -3612 ((-638 |#1|) (-638 |#1|))) (-15 -1935 ((-638 |#1|) (-638 |#1|))) (-15 -3609 ((-638 (-561)) (-638 |#1|))) (-15 -3942 ((-561) (-638 (-561)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 (((-561) $) NIL (|has| (-561) (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| (-561) (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-561) (-1031 (-561))))) (-3938 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-561) (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| (-561) (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 (((-561) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-2110 (((-112) $) NIL (|has| (-561) (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-561) (-844)))) (-4120 (($ (-1 (-561) (-561)) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-561) (-1141)) CONST)) (-2512 (($ (-406 (-561))) 9)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) NIL)) (-1388 (((-561) $) NIL (|has| (-561) (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-3569 (((-765) $) NIL)) (-2277 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-2861 (($ $) NIL)) (-4045 (((-561) $) NIL)) (-4174 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 8) (($ (-561)) NIL) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL) (((-997 16) $) 10)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-4259 (((-765)) NIL)) (-2432 (((-561) $) NIL (|has| (-561) (-543)))) (-3168 (((-112) $ $) NIL)) (-3749 (($ $) NIL (|has| (-561) (-814)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1782 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1833 (($ $ $) NIL) (($ (-561) (-561)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) NIL) (($ $ (-561)) NIL)))
+(((-485) (-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 16)) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -2512 ($ (-406 (-561))))))) (T -485))
+((-3841 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485)))))
+(-13 (-985 (-561)) (-608 (-406 (-561))) (-608 (-997 16)) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -2512 ($ (-406 (-561))))))
+((-1305 (((-638 |#2|) $) 23)) (-4087 (((-112) |#2| $) 28)) (-2123 (((-112) (-1 (-112) |#2|) $) 21)) (-1444 (($ $ (-638 (-293 |#2|))) 13) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-638 |#2|) (-638 |#2|)) NIL)) (-1724 (((-765) (-1 (-112) |#2|) $) 22) (((-765) |#2| $) 26)) (-4022 (((-856) $) 37)) (-3715 (((-112) (-1 (-112) |#2|) $) 20)) (-1733 (((-112) $ $) 31)) (-3498 (((-765) $) 17)))
+(((-486 |#1| |#2|) (-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#2| |#2|)) (-15 -1444 (|#1| |#1| (-293 |#2|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -4087 ((-112) |#2| |#1|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1305 ((-638 |#2|) |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3498 ((-765) |#1|))) (-487 |#2|) (-1205)) (T -486))
+NIL
+(-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#2| |#2|)) (-15 -1444 (|#1| |#1| (-293 |#2|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#2|)))) (-15 -4087 ((-112) |#2| |#1|)) (-15 -1724 ((-765) |#2| |#1|)) (-15 -1305 ((-638 |#2|) |#1|)) (-15 -1724 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3498 ((-765) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-1965 (($) 7 T CONST)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-487 |#1|) (-139) (-1205)) (T -487))
+((-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1205)))) (-2065 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4391)) (-4 *1 (-487 *3)) (-4 *3 (-1205)))) (-3715 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4390)) (-4 *1 (-487 *4)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-2123 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4390)) (-4 *1 (-487 *4)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-1724 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4390)) (-4 *1 (-487 *4)) (-4 *4 (-1205)) (-5 *2 (-765)))) (-3571 (*1 *2 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))) (-1305 (*1 *2 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))) (-1724 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-765)))) (-4087 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) (IF (|has| |t#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4120 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4391)) (-15 -2065 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4390)) (PROGN (-15 -3715 ((-112) (-1 (-112) |t#1|) $)) (-15 -2123 ((-112) (-1 (-112) |t#1|) $)) (-15 -1724 ((-765) (-1 (-112) |t#1|) $)) (-15 -3571 ((-638 |t#1|) $)) (-15 -1305 ((-638 |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -1724 ((-765) |t#1| $)) (-15 -4087 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-4022 ((|#1| $) 6) (($ |#1|) 9)))
+(((-488 |#1|) (-139) (-1205)) (T -488))
+NIL
+(-13 (-608 |t#1|) (-611 |t#1|))
+(((-611 |#1|) . T) ((-608 |#1|) . T))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-2651 (($ (-1148)) 8)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 14) (((-1148) $) 11)) (-1733 (((-112) $ $) 10)))
+(((-489) (-13 (-1090) (-608 (-1148)) (-10 -8 (-15 -2651 ($ (-1148)))))) (T -489))
+((-2651 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489)))))
+(-13 (-1090) (-608 (-1148)) (-10 -8 (-15 -2651 ($ (-1148)))))
+((-2978 (($ $) 15)) (-4172 (($ $) 24)) (-3009 (($ $) 12)) (-3021 (($ $) 10)) (-2995 (($ $) 17)) (-2968 (($ $) 22)))
+(((-490 |#1|) (-10 -8 (-15 -2968 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -2978 (|#1| |#1|))) (-491)) (T -490))
+NIL
+(-10 -8 (-15 -2968 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)))
+((-2978 (($ $) 11)) (-4172 (($ $) 10)) (-3009 (($ $) 9)) (-3021 (($ $) 8)) (-2995 (($ $) 7)) (-2968 (($ $) 6)))
(((-491) (-139)) (T -491))
-((-2277 (*1 *1 *1) (-4 *1 (-491))) (-2254 (*1 *1 *1) (-4 *1 (-491))) (-2298 (*1 *1 *1) (-4 *1 (-491))) (-2312 (*1 *1 *1) (-4 *1 (-491))) (-2289 (*1 *1 *1) (-4 *1 (-491))) (-2265 (*1 *1 *1) (-4 *1 (-491))))
-(-13 (-10 -8 (-15 -2265 ($ $)) (-15 -2289 ($ $)) (-15 -2312 ($ $)) (-15 -2298 ($ $)) (-15 -2254 ($ $)) (-15 -2277 ($ $))))
-((-3939 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 42)))
-(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3939 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-362) (-1222 |#1|) (-13 (-362) (-146) (-715 |#1| |#2|)) (-1222 |#3|)) (T -492))
-((-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-715 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1222 *7)))))
-(-10 -7 (-15 -3939 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|))))
-((-3929 (((-112) $ $) NIL)) (-2598 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-3368 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-3124 (((-112) $) 38)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-2967 (((-112) $ $) 63)) (-3798 (((-635 (-604 $)) $) 47)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2564 (($ $ (-293 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-3948 (($ $) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-1571 (((-635 $) (-1159 $) (-1163)) NIL) (((-635 $) (-1159 $)) NIL) (((-635 $) (-942 $)) NIL)) (-2363 (($ (-1159 $) (-1163)) NIL) (($ (-1159 $)) NIL) (($ (-942 $)) NIL)) (-3302 (((-3 (-604 $) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL)) (-3226 (((-604 $) $) NIL) (((-558) $) NIL) (((-406 (-558)) $) 49)) (-1709 (($ $ $) NIL)) (-1918 (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-406 (-558)))) (|:| |vec| (-1246 (-406 (-558))))) (-679 $) (-1246 $)) NIL) (((-679 (-406 (-558))) (-679 $)) NIL)) (-3866 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2058 (($ $) NIL) (($ (-635 $)) NIL)) (-2380 (((-635 (-114)) $) NIL)) (-2154 (((-114) (-114)) NIL)) (-3999 (((-112) $) 41)) (-1495 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-3316 (((-1112 (-558) (-604 $)) $) 36)) (-2136 (($ $ (-558)) NIL)) (-1423 (((-1159 $) (-1159 $) (-604 $)) 77) (((-1159 $) (-1159 $) (-635 (-604 $))) 54) (($ $ (-604 $)) 66) (($ $ (-635 (-604 $))) 67)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2550 (((-1159 $) (-604 $)) 64 (|has| $ (-1039)))) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 $ $) (-604 $)) NIL)) (-2025 (((-3 (-604 $) "failed") $) NIL)) (-1500 (($ (-635 $)) NIL) (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-3892 (((-635 (-604 $)) $) NIL)) (-3390 (($ (-114) $) NIL) (($ (-114) (-635 $)) NIL)) (-3557 (((-112) $ (-114)) NIL) (((-112) $ (-1163)) NIL)) (-3823 (($ $) NIL)) (-2361 (((-762) $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1711 (((-112) $ $) NIL) (((-112) $ (-1163)) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4254 (((-112) $) NIL (|has| $ (-1028 (-558))))) (-1369 (($ $ (-604 $) $) NIL) (($ $ (-635 (-604 $)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1163)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1163) (-1 $ (-635 $))) NIL) (($ $ (-1163) (-1 $ $)) NIL) (($ $ (-635 (-114)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-114)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-114) (-1 $ (-635 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1562 (((-762) $) NIL)) (-2276 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-635 $)) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3604 (($ $) NIL) (($ $ $) NIL)) (-3780 (($ $ (-762)) NIL) (($ $) 35)) (-3327 (((-1112 (-558) (-604 $)) $) 19)) (-2297 (($ $) NIL (|has| $ (-1039)))) (-3441 (((-378) $) 91) (((-224) $) 99) (((-168 (-378)) $) 107)) (-3940 (((-853) $) NIL) (($ (-604 $)) NIL) (($ (-406 (-558))) NIL) (($ $) NIL) (($ (-558)) NIL) (($ (-1112 (-558) (-604 $))) 20)) (-2417 (((-762)) NIL)) (-2638 (($ $) NIL) (($ (-635 $)) NIL)) (-2480 (((-112) (-114)) 83)) (-2671 (((-112) $ $) NIL)) (-2207 (($) 10 T CONST)) (-2220 (($) 21 T CONST)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 23)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1805 (($ $ $) 43)) (-1796 (($ $ $) NIL) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-406 (-558))) NIL) (($ $ (-558)) 45) (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ $ $) 26) (($ (-558) $) NIL) (($ (-762) $) NIL) (($ (-911) $) NIL)))
-(((-493) (-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3940 ($ (-1112 (-558) (-604 $)))) (-15 -3316 ((-1112 (-558) (-604 $)) $)) (-15 -3327 ((-1112 (-558) (-604 $)) $)) (-15 -3866 ($ $)) (-15 -2967 ((-112) $ $)) (-15 -1423 ((-1159 $) (-1159 $) (-604 $))) (-15 -1423 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -1423 ($ $ (-604 $))) (-15 -1423 ($ $ (-635 (-604 $))))))) (T -493))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493)))) (-3866 (*1 *1 *1) (-5 *1 (-493))) (-2967 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-604 (-493))) (-5 *1 (-493)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-635 (-604 (-493)))) (-5 *1 (-493)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-604 (-493))) (-5 *1 (-493)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-493)))) (-5 *1 (-493)))))
-(-13 (-301) (-27) (-1028 (-558)) (-1028 (-406 (-558))) (-631 (-558)) (-1012) (-631 (-406 (-558))) (-146) (-606 (-168 (-378))) (-232) (-10 -8 (-15 -3940 ($ (-1112 (-558) (-604 $)))) (-15 -3316 ((-1112 (-558) (-604 $)) $)) (-15 -3327 ((-1112 (-558) (-604 $)) $)) (-15 -3866 ($ $)) (-15 -2967 ((-112) $ $)) (-15 -1423 ((-1159 $) (-1159 $) (-604 $))) (-15 -1423 ((-1159 $) (-1159 $) (-635 (-604 $)))) (-15 -1423 ($ $ (-604 $))) (-15 -1423 ($ $ (-635 (-604 $))))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) |#1|) 25 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 22 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 21)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) 14)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 12 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) 23 (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) 10 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 13)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 24) (($ $ (-1213 (-558))) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) 9 (|has| $ (-6 -4383)))))
-(((-494 |#1| |#2|) (-19 |#1|) (-1200) (-558)) (T -494))
+((-2978 (*1 *1 *1) (-4 *1 (-491))) (-4172 (*1 *1 *1) (-4 *1 (-491))) (-3009 (*1 *1 *1) (-4 *1 (-491))) (-3021 (*1 *1 *1) (-4 *1 (-491))) (-2995 (*1 *1 *1) (-4 *1 (-491))) (-2968 (*1 *1 *1) (-4 *1 (-491))))
+(-13 (-10 -8 (-15 -2968 ($ $)) (-15 -2995 ($ $)) (-15 -3021 ($ $)) (-15 -3009 ($ $)) (-15 -4172 ($ $)) (-15 -2978 ($ $))))
+((-1657 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 42)))
+(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-362) (-1229 |#1|) (-13 (-362) (-146) (-718 |#1| |#2|)) (-1229 |#3|)) (T -492))
+((-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1229 *7)))))
+(-10 -7 (-15 -1657 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|))))
+((-4011 (((-112) $ $) NIL)) (-3803 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-2964 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-2800 (((-112) $) 38)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3094 (((-112) $ $) 63)) (-1510 (((-638 (-607 $)) $) 47)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2612 (($ $ (-293 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1665 (($ $) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-2137 (((-638 $) (-1162 $) (-1166)) NIL) (((-638 $) (-1162 $)) NIL) (((-638 $) (-945 $)) NIL)) (-3559 (($ (-1162 $) (-1166)) NIL) (($ (-1162 $)) NIL) (($ (-945 $)) NIL)) (-4017 (((-3 (-607 $) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL)) (-3938 (((-607 $) $) NIL) (((-561) $) NIL) (((-406 (-561)) $) 49)) (-1793 (($ $ $) NIL)) (-3602 (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-406 (-561)))) (|:| |vec| (-1253 (-406 (-561))))) (-682 $) (-1253 $)) NIL) (((-682 (-406 (-561))) (-682 $)) NIL)) (-3185 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1890 (($ $) NIL) (($ (-638 $)) NIL)) (-1719 (((-638 (-114)) $) NIL)) (-3479 (((-114) (-114)) NIL)) (-3113 (((-112) $) 41)) (-3402 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-4030 (((-1115 (-561) (-607 $)) $) 36)) (-2556 (($ $ (-561)) NIL)) (-1672 (((-1162 $) (-1162 $) (-607 $)) 77) (((-1162 $) (-1162 $) (-638 (-607 $))) 54) (($ $ (-607 $)) 66) (($ $ (-638 (-607 $))) 67)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3217 (((-1162 $) (-607 $)) 64 (|has| $ (-1042)))) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 $ $) (-607 $)) NIL)) (-2012 (((-3 (-607 $) "failed") $) NIL)) (-1582 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1600 (((-638 (-607 $)) $) NIL)) (-4109 (($ (-114) $) NIL) (($ (-114) (-638 $)) NIL)) (-2561 (((-112) $ (-114)) NIL) (((-112) $ (-1166)) NIL)) (-1540 (($ $) NIL)) (-3061 (((-765) $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1297 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2736 (((-112) $) NIL (|has| $ (-1031 (-561))))) (-1444 (($ $ (-607 $) $) NIL) (($ $ (-638 (-607 $)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-1166)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-1166) (-1 $ (-638 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-638 (-114)) (-638 (-1 $ $))) NIL) (($ $ (-638 (-114)) (-638 (-1 $ (-638 $)))) NIL) (($ $ (-114) (-1 $ (-638 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3569 (((-765) $) NIL)) (-2277 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-638 $)) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1584 (($ $) NIL) (($ $ $) NIL)) (-3238 (($ $ (-765)) NIL) (($ $) 35)) (-4045 (((-1115 (-561) (-607 $)) $) 19)) (-3660 (($ $) NIL (|has| $ (-1042)))) (-4174 (((-378) $) 91) (((-224) $) 99) (((-168 (-378)) $) 107)) (-4022 (((-856) $) NIL) (($ (-607 $)) NIL) (($ (-406 (-561))) NIL) (($ $) NIL) (($ (-561)) NIL) (($ (-1115 (-561) (-607 $))) 20)) (-4259 (((-765)) NIL)) (-3300 (($ $) NIL) (($ (-638 $)) NIL)) (-2665 (((-112) (-114)) 83)) (-3168 (((-112) $ $) NIL)) (-2211 (($) 10 T CONST)) (-2222 (($) 21 T CONST)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 23)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1833 (($ $ $) 43)) (-1824 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-406 (-561))) NIL) (($ $ (-561)) 45) (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ $ $) 26) (($ (-561) $) NIL) (($ (-765) $) NIL) (($ (-914) $) NIL)))
+(((-493) (-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4022 ($ (-1115 (-561) (-607 $)))) (-15 -4030 ((-1115 (-561) (-607 $)) $)) (-15 -4045 ((-1115 (-561) (-607 $)) $)) (-15 -3185 ($ $)) (-15 -3094 ((-112) $ $)) (-15 -1672 ((-1162 $) (-1162 $) (-607 $))) (-15 -1672 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -1672 ($ $ (-607 $))) (-15 -1672 ($ $ (-638 (-607 $))))))) (T -493))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493)))) (-3185 (*1 *1 *1) (-5 *1 (-493))) (-3094 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))) (-1672 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-607 (-493))) (-5 *1 (-493)))) (-1672 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-638 (-607 (-493)))) (-5 *1 (-493)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-493))) (-5 *1 (-493)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-493)))) (-5 *1 (-493)))))
+(-13 (-301) (-27) (-1031 (-561)) (-1031 (-406 (-561))) (-634 (-561)) (-1015) (-634 (-406 (-561))) (-146) (-609 (-168 (-378))) (-232) (-10 -8 (-15 -4022 ($ (-1115 (-561) (-607 $)))) (-15 -4030 ((-1115 (-561) (-607 $)) $)) (-15 -4045 ((-1115 (-561) (-607 $)) $)) (-15 -3185 ($ $)) (-15 -3094 ((-112) $ $)) (-15 -1672 ((-1162 $) (-1162 $) (-607 $))) (-15 -1672 ((-1162 $) (-1162 $) (-638 (-607 $)))) (-15 -1672 ($ $ (-607 $))) (-15 -1672 ($ $ (-638 (-607 $))))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) |#1|) 25 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 22 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 21)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) 14)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 12 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) 23 (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) 10 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 13)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 24) (($ $ (-1220 (-561))) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) 9 (|has| $ (-6 -4390)))))
+(((-494 |#1| |#2|) (-19 |#1|) (-1205) (-561)) (T -494))
NIL
(-19 |#1|)
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) (-558) |#1|) NIL)) (-3425 (($ $ (-558) (-494 |#1| |#3|)) NIL)) (-3456 (($ $ (-558) (-494 |#1| |#2|)) NIL)) (-3457 (($) NIL T CONST)) (-2500 (((-494 |#1| |#3|) $ (-558)) NIL)) (-3683 ((|#1| $ (-558) (-558) |#1|) NIL)) (-3620 ((|#1| $ (-558) (-558)) NIL)) (-2917 (((-635 |#1|) $) NIL)) (-1430 (((-762) $) NIL)) (-1395 (($ (-762) (-762) |#1|) NIL)) (-1444 (((-762) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-3942 (((-558) $) NIL)) (-1478 (((-558) $) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4153 (((-558) $) NIL)) (-3508 (((-558) $) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3962 (((-494 |#1| |#2|) $ (-558)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-495 |#1| |#2| |#3|) (-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) (-1200) (-558) (-558)) (T -495))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) (-561) |#1|) NIL)) (-2550 (($ $ (-561) (-494 |#1| |#3|)) NIL)) (-2971 (($ $ (-561) (-494 |#1| |#2|)) NIL)) (-1965 (($) NIL T CONST)) (-3845 (((-494 |#1| |#3|) $ (-561)) NIL)) (-2073 ((|#1| $ (-561) (-561) |#1|) NIL)) (-4344 ((|#1| $ (-561) (-561)) NIL)) (-3571 (((-638 |#1|) $) NIL)) (-1513 (((-765) $) NIL)) (-1470 (($ (-765) (-765) |#1|) NIL)) (-1526 (((-765) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3514 (((-561) $) NIL)) (-2804 (((-561) $) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3089 (((-561) $) NIL)) (-1709 (((-561) $) NIL)) (-2065 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-2745 (((-494 |#1| |#2|) $ (-561)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-495 |#1| |#2| |#3|) (-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) (-1205) (-561) (-561)) (T -495))
NIL
(-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|))
-((-1581 (((-635 (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-762) (-762)) 27)) (-1537 (((-635 (-1159 |#1|)) |#1| (-762) (-762) (-762)) 34)) (-2493 (((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-762)) 84)))
-(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -1537 ((-635 (-1159 |#1|)) |#1| (-762) (-762) (-762))) (-15 -1581 ((-635 (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-762) (-762))) (-15 -2493 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-762)))) (-348) (-1222 |#1|) (-1222 |#2|)) (T -496))
-((-2493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-2 (|:| -2743 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7))))) (-5 *5 (-762)) (-4 *8 (-1222 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -2743 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7)))) (-5 *1 (-496 *6 *7 *8)))) (-1581 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-762)) (-4 *5 (-348)) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2743 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6))))) (-5 *1 (-496 *5 *6 *7)) (-5 *3 (-2 (|:| -2743 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6)))) (-4 *7 (-1222 *6)))) (-1537 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-762)) (-4 *3 (-348)) (-4 *5 (-1222 *3)) (-5 *2 (-635 (-1159 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1222 *5)))))
-(-10 -7 (-15 -1537 ((-635 (-1159 |#1|)) |#1| (-762) (-762) (-762))) (-15 -1581 ((-635 (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-762) (-762))) (-15 -2493 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-762))))
-((-3220 (((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))) 62)) (-2645 ((|#1| (-679 |#1|) |#1| (-762)) 25)) (-3334 (((-762) (-762) (-762)) 30)) (-1635 (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 42)) (-1940 (((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|) 50) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 47)) (-2047 ((|#1| (-679 |#1|) (-679 |#1|) |#1| (-558)) 29)) (-4139 ((|#1| (-679 |#1|)) 18)))
-(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -4139 (|#1| (-679 |#1|))) (-15 -2645 (|#1| (-679 |#1|) |#1| (-762))) (-15 -2047 (|#1| (-679 |#1|) (-679 |#1|) |#1| (-558))) (-15 -3334 ((-762) (-762) (-762))) (-15 -1940 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1940 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -1635 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3220 ((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))))) (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))) (-1222 |#1|) (-408 |#1| |#2|)) (T -497))
-((-3220 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1635 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1940 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3334 (*1 *2 *2 *2) (-12 (-5 *2 (-762)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2047 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-558)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-2645 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-762)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-679 *2)) (-4 *4 (-1222 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $))))) (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4)))))
-(-10 -7 (-15 -4139 (|#1| (-679 |#1|))) (-15 -2645 (|#1| (-679 |#1|) |#1| (-762))) (-15 -2047 (|#1| (-679 |#1|) (-679 |#1|) |#1| (-558))) (-15 -3334 ((-762) (-762) (-762))) (-15 -1940 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1940 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -1635 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3220 ((-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -2743 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))))
-((-3929 (((-112) $ $) NIL)) (-3209 (($ $) NIL)) (-2182 (($ $ $) 35)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) $) NIL (|has| (-112) (-841))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3041 (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| (-112) (-841)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4384)))) (-3648 (($ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-4077 (((-112) $ (-1213 (-558)) (-112)) NIL (|has| $ (-6 -4384))) (((-112) $ (-558) (-112)) 36 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-1488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-3866 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-3683 (((-112) $ (-558) (-112)) NIL (|has| $ (-6 -4384)))) (-3620 (((-112) $ (-558)) NIL)) (-4145 (((-558) (-112) $ (-558)) NIL (|has| (-112) (-1087))) (((-558) (-112) $) NIL (|has| (-112) (-1087))) (((-558) (-1 (-112) (-112)) $) NIL)) (-2917 (((-635 (-112)) $) NIL (|has| $ (-6 -4383)))) (-2168 (($ $ $) 33)) (-2143 (($ $) NIL)) (-1942 (($ $ $) NIL)) (-1395 (($ (-762) (-112)) 23)) (-3078 (($ $ $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 8 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL)) (-3391 (($ $ $) NIL (|has| (-112) (-841))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3486 (((-635 (-112)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL)) (-3674 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1363 (($ $ $ (-558)) NIL) (($ (-112) $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-112) $) NIL (|has| (-558) (-841)))) (-2820 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2830 (($ $ (-112)) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087)))) (($ $ (-635 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087))))) (-4318 (((-635 (-112)) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 24)) (-2276 (($ $ (-1213 (-558))) NIL) (((-112) $ (-558)) 18) (((-112) $ (-558) (-112)) NIL)) (-3976 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-1698 (((-762) (-112) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-112) (-1087)))) (((-762) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) 25)) (-3441 (((-534) $) NIL (|has| (-112) (-606 (-534))))) (-3952 (($ (-635 (-112))) NIL)) (-2683 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3940 (((-853) $) 22)) (-2831 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4383)))) (-2157 (($ $ $) 31)) (-3245 (($ $ $) NIL)) (-4275 (($ $ $) 39)) (-2875 (($ $) 37)) (-4261 (($ $ $) 38)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 26)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 27)) (-3234 (($ $ $) NIL)) (-1596 (((-762) $) 10 (|has| $ (-6 -4383)))))
-(((-498 |#1|) (-13 (-123) (-10 -8 (-15 -2875 ($ $)) (-15 -4275 ($ $ $)) (-15 -4261 ($ $ $)))) (-558)) (T -498))
-((-2875 (*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558)))) (-4275 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558)))) (-4261 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558)))))
-(-13 (-123) (-10 -8 (-15 -2875 ($ $)) (-15 -4275 ($ $ $)) (-15 -4261 ($ $ $))))
-((-4322 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1159 |#4|)) 34)) (-3423 (((-1159 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1159 |#4|)) 21)) (-2199 (((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1159 |#4|))) 45)) (-2621 (((-1159 (-1159 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
-(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3423 (|#2| (-1 |#1| |#4|) (-1159 |#4|))) (-15 -3423 ((-1159 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4322 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1159 |#4|))) (-15 -2199 ((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1159 |#4|)))) (-15 -2621 ((-1159 (-1159 |#4|)) (-1 |#4| |#1|) |#3|))) (-1039) (-1222 |#1|) (-1222 |#2|) (-1039)) (T -499))
-((-2621 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *6 (-1222 *5)) (-5 *2 (-1159 (-1159 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1222 *6)))) (-2199 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-679 (-1159 *8))) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-1222 *5)) (-5 *2 (-679 *6)) (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1222 *6)))) (-4322 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1159 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1222 *2)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *4 (-1222 *5)) (-5 *2 (-1159 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1222 *4)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1159 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1222 *2)))))
-(-10 -7 (-15 -3423 (|#2| (-1 |#1| |#4|) (-1159 |#4|))) (-15 -3423 ((-1159 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4322 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1159 |#4|))) (-15 -2199 ((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1159 |#4|)))) (-15 -2621 ((-1159 (-1159 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-3929 (((-112) $ $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1963 (((-1251) $) 19)) (-2276 (((-1145) $ (-1163)) 23)) (-1490 (((-1251) $) 15)) (-3940 (((-853) $) 21) (($ (-1145)) 20)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 9)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 8)))
-(((-500) (-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $)) (-15 -3940 ($ (-1145)))))) (T -500))
-((-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1145)) (-5 *1 (-500)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-500)))))
-(-13 (-841) (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $)) (-15 -1963 ((-1251) $)) (-15 -3940 ($ (-1145)))))
-((-4247 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1515 ((|#1| |#4|) 10)) (-3275 ((|#3| |#4|) 17)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1515 (|#1| |#4|)) (-15 -3275 (|#3| |#4|)) (-15 -4247 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-550) (-982 |#1|) (-372 |#1|) (-372 |#2|)) (T -501))
-((-4247 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) (-3275 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-4 *2 (-372 *4)) (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) (-1515 (*1 *2 *3) (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-501 *2 *4 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-372 *4)))))
-(-10 -7 (-15 -1515 (|#1| |#4|)) (-15 -3275 (|#3| |#4|)) (-15 -4247 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-3929 (((-112) $ $) NIL)) (-2974 (((-112) $ (-635 |#3|)) 103) (((-112) $) 104)) (-3124 (((-112) $) 147)) (-2637 (($ $ |#4|) 95) (($ $ |#4| (-635 |#3|)) 99)) (-2746 (((-1152 (-635 (-942 |#1|)) (-635 (-293 (-942 |#1|)))) (-635 |#4|)) 140 (|has| |#3| (-606 (-1163))))) (-2263 (($ $ $) 89) (($ $ |#4|) 87)) (-3999 (((-112) $) 146)) (-3903 (($ $) 107)) (-2510 (((-1145) $) NIL)) (-3490 (($ $ $) 81) (($ (-635 $)) 83)) (-2570 (((-112) |#4| $) 106)) (-3622 (((-112) $ $) 70)) (-1776 (($ (-635 |#4|)) 88)) (-1688 (((-1107) $) NIL)) (-2896 (($ (-635 |#4|)) 144)) (-2335 (((-112) $) 145)) (-2205 (($ $) 72)) (-2272 (((-635 |#4|) $) 56)) (-2884 (((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|)) NIL)) (-4288 (((-112) |#4| $) 75)) (-2887 (((-558) $ (-635 |#3|)) 108) (((-558) $) 109)) (-3940 (((-853) $) 143) (($ (-635 |#4|)) 84)) (-3027 (($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $))) NIL)) (-1708 (((-112) $ $) 71)) (-1785 (($ $ $) 91)) (** (($ $ (-762)) 94)) (* (($ $ $) 93)))
-(((-502 |#1| |#2| |#3| |#4|) (-13 (-1087) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 -1785 ($ $ $)) (-15 -3999 ((-112) $)) (-15 -3124 ((-112) $)) (-15 -4288 ((-112) |#4| $)) (-15 -3622 ((-112) $ $)) (-15 -2570 ((-112) |#4| $)) (-15 -2974 ((-112) $ (-635 |#3|))) (-15 -2974 ((-112) $)) (-15 -3490 ($ $ $)) (-15 -3490 ($ (-635 $))) (-15 -2263 ($ $ $)) (-15 -2263 ($ $ |#4|)) (-15 -2205 ($ $)) (-15 -2884 ((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -3027 ($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)))) (-15 -2887 ((-558) $ (-635 |#3|))) (-15 -2887 ((-558) $)) (-15 -3903 ($ $)) (-15 -1776 ($ (-635 |#4|))) (-15 -2896 ($ (-635 |#4|))) (-15 -2335 ((-112) $)) (-15 -2272 ((-635 |#4|) $)) (-15 -3940 ($ (-635 |#4|))) (-15 -2637 ($ $ |#4|)) (-15 -2637 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-606 (-1163))) (-15 -2746 ((-1152 (-635 (-942 |#1|)) (-635 (-293 (-942 |#1|)))) (-635 |#4|))) |%noBranch|))) (-362) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -502))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-1785 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-3999 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-3124 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-4288 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-3622 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2570 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))) (-2974 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-2974 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-3490 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2263 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))) (-2205 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |mval| (-679 *4)) (|:| |invmval| (-679 *4)) (|:| |genIdeal| (-502 *4 *5 *6 *7)))) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-679 *3)) (|:| |invmval| (-679 *3)) (|:| |genIdeal| (-502 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *2 (-558)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))) (-2887 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-3903 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2896 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2335 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-2272 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *6)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))) (-2637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-939 *4 *5 *6)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *6 (-606 (-1163))) (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1152 (-635 (-942 *4)) (-635 (-293 (-942 *4))))) (-5 *1 (-502 *4 *5 *6 *7)))))
-(-13 (-1087) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 -1785 ($ $ $)) (-15 -3999 ((-112) $)) (-15 -3124 ((-112) $)) (-15 -4288 ((-112) |#4| $)) (-15 -3622 ((-112) $ $)) (-15 -2570 ((-112) |#4| $)) (-15 -2974 ((-112) $ (-635 |#3|))) (-15 -2974 ((-112) $)) (-15 -3490 ($ $ $)) (-15 -3490 ($ (-635 $))) (-15 -2263 ($ $ $)) (-15 -2263 ($ $ |#4|)) (-15 -2205 ($ $)) (-15 -2884 ((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -3027 ($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)))) (-15 -2887 ((-558) $ (-635 |#3|))) (-15 -2887 ((-558) $)) (-15 -3903 ($ $)) (-15 -1776 ($ (-635 |#4|))) (-15 -2896 ($ (-635 |#4|))) (-15 -2335 ((-112) $)) (-15 -2272 ((-635 |#4|) $)) (-15 -3940 ($ (-635 |#4|))) (-15 -2637 ($ $ |#4|)) (-15 -2637 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-606 (-1163))) (-15 -2746 ((-1152 (-635 (-942 |#1|)) (-635 (-293 (-942 |#1|)))) (-635 |#4|))) |%noBranch|)))
-((-2528 (((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 148)) (-4136 (((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 149)) (-3446 (((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 107)) (-2992 (((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) NIL)) (-3629 (((-635 (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) 151)) (-3631 (((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-635 (-855 |#1|))) 163)))
-(((-503 |#1| |#2|) (-10 -7 (-15 -2528 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -4136 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2992 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3446 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3629 ((-635 (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3631 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-635 (-855 |#1|))))) (-635 (-1163)) (-762)) (T -503))
-((-3631 (*1 *2 *2 *3) (-12 (-5 *2 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-5 *3 (-635 (-855 *4))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *1 (-503 *4 *5)))) (-3629 (*1 *2 *3) (-12 (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-635 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558)))))) (-5 *1 (-503 *4 *5)) (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-502 (-406 (-558)) (-239 *4 (-762)) (-855 *3) (-246 *3 (-406 (-558))))) (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-503 *3 *4)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4) (-246 *4 (-406 (-558))))) (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))))
-(-10 -7 (-15 -2528 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -4136 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -2992 ((-112) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3446 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3629 ((-635 (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558))))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))))) (-15 -3631 ((-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-502 (-406 (-558)) (-239 |#2| (-762)) (-855 |#1|) (-246 |#1| (-406 (-558)))) (-635 (-855 |#1|)))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 11) (((-1163) $) 9)) (-1708 (((-112) $ $) 7)))
-(((-504) (-13 (-1087) (-605 (-1163)))) (T -504))
-NIL
-(-13 (-1087) (-605 (-1163)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-4056 (($ |#1| |#2|) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2218 ((|#2| $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2207 (($) 12 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) 11) (($ $ $) 23)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 18)))
-(((-505 |#1| |#2|) (-13 (-21) (-507 |#1| |#2|)) (-21) (-841)) (T -505))
+((-1805 (((-638 (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765)) 27)) (-2089 (((-638 (-1162 |#1|)) |#1| (-765) (-765) (-765)) 34)) (-2454 (((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-638 |#3|) (-638 (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)) 84)))
+(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -2089 ((-638 (-1162 |#1|)) |#1| (-765) (-765) (-765))) (-15 -1805 ((-638 (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2454 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-638 |#3|) (-638 (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)))) (-348) (-1229 |#1|) (-1229 |#2|)) (T -496))
+((-2454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-2 (|:| -3711 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7))))) (-5 *5 (-765)) (-4 *8 (-1229 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -3711 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7)))) (-5 *1 (-496 *6 *7 *8)))) (-1805 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-4 *5 (-348)) (-4 *6 (-1229 *5)) (-5 *2 (-638 (-2 (|:| -3711 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6))))) (-5 *1 (-496 *5 *6 *7)) (-5 *3 (-2 (|:| -3711 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6)))) (-4 *7 (-1229 *6)))) (-2089 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-765)) (-4 *3 (-348)) (-4 *5 (-1229 *3)) (-5 *2 (-638 (-1162 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1229 *5)))))
+(-10 -7 (-15 -2089 ((-638 (-1162 |#1|)) |#1| (-765) (-765) (-765))) (-15 -1805 ((-638 (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2454 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-638 |#3|) (-638 (-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765))))
+((-2437 (((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 62)) (-3483 ((|#1| (-682 |#1|) |#1| (-765)) 25)) (-4183 (((-765) (-765) (-765)) 30)) (-3948 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 42)) (-1594 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 50) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 47)) (-3972 ((|#1| (-682 |#1|) (-682 |#1|) |#1| (-561)) 29)) (-1382 ((|#1| (-682 |#1|)) 18)))
+(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -1382 (|#1| (-682 |#1|))) (-15 -3483 (|#1| (-682 |#1|) |#1| (-765))) (-15 -3972 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-561))) (-15 -4183 ((-765) (-765) (-765))) (-15 -1594 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1594 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -3948 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2437 ((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))))) (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))) (-1229 |#1|) (-408 |#1| |#2|)) (T -497))
+((-2437 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3948 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1594 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1594 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-4183 (*1 *2 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3972 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-561)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-3483 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-765)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-682 *2)) (-4 *4 (-1229 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $))))) (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4)))))
+(-10 -7 (-15 -1382 (|#1| (-682 |#1|))) (-15 -3483 (|#1| (-682 |#1|) |#1| (-765))) (-15 -3972 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-561))) (-15 -4183 ((-765) (-765) (-765))) (-15 -1594 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1594 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -3948 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2437 ((-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -3711 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))))
+((-4011 (((-112) $ $) NIL)) (-3310 (($ $) NIL)) (-2190 (($ $ $) 35)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3702 (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4391)))) (-1289 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-4167 (((-112) $ (-1220 (-561)) (-112)) NIL (|has| $ (-6 -4391))) (((-112) $ (-561) (-112)) 36 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-1489 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-3185 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-2073 (((-112) $ (-561) (-112)) NIL (|has| $ (-6 -4391)))) (-4344 (((-112) $ (-561)) NIL)) (-4235 (((-561) (-112) $ (-561)) NIL (|has| (-112) (-1090))) (((-561) (-112) $) NIL (|has| (-112) (-1090))) (((-561) (-1 (-112) (-112)) $) NIL)) (-3571 (((-638 (-112)) $) NIL (|has| $ (-6 -4390)))) (-2180 (($ $ $) 33)) (-2159 (($ $) NIL)) (-1847 (($ $ $) NIL)) (-1470 (($ (-765) (-112)) 23)) (-4042 (($ $ $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 8 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL)) (-1407 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1305 (((-638 (-112)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL)) (-2065 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-3312 (($ $ $ (-561)) NIL) (($ (-112) $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-112) $) NIL (|has| (-561) (-844)))) (-1330 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1799 (($ $ (-112)) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-112)) (-638 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090)))) (($ $ (-638 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090))))) (-2658 (((-638 (-112)) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 24)) (-2277 (($ $ (-1220 (-561))) NIL) (((-112) $ (-561)) 18) (((-112) $ (-561) (-112)) NIL)) (-2849 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-1724 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-112) (-1090)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) 25)) (-4174 (((-534) $) NIL (|has| (-112) (-609 (-534))))) (-4031 (($ (-638 (-112))) NIL)) (-2725 (($ (-638 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4022 (((-856) $) 22)) (-3715 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4390)))) (-2170 (($ $ $) 31)) (-2236 (($ $ $) NIL)) (-2920 (($ $ $) 39)) (-2931 (($ $) 37)) (-2908 (($ $ $) 38)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 26)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 27)) (-2225 (($ $ $) NIL)) (-3498 (((-765) $) 10 (|has| $ (-6 -4390)))))
+(((-498 |#1|) (-13 (-123) (-10 -8 (-15 -2931 ($ $)) (-15 -2920 ($ $ $)) (-15 -2908 ($ $ $)))) (-561)) (T -498))
+((-2931 (*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561)))) (-2920 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561)))) (-2908 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561)))))
+(-13 (-123) (-10 -8 (-15 -2931 ($ $)) (-15 -2920 ($ $ $)) (-15 -2908 ($ $ $))))
+((-1827 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1162 |#4|)) 34)) (-1306 (((-1162 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1162 |#4|)) 21)) (-3357 (((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1162 |#4|))) 45)) (-3786 (((-1162 (-1162 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
+(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1306 (|#2| (-1 |#1| |#4|) (-1162 |#4|))) (-15 -1306 ((-1162 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1827 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1162 |#4|))) (-15 -3357 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1162 |#4|)))) (-15 -3786 ((-1162 (-1162 |#4|)) (-1 |#4| |#1|) |#3|))) (-1042) (-1229 |#1|) (-1229 |#2|) (-1042)) (T -499))
+((-3786 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-1162 (-1162 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1229 *6)))) (-3357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-682 (-1162 *8))) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *6)) (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1229 *6)))) (-1827 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1162 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *4 (-1229 *5)) (-5 *2 (-1162 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1229 *4)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1162 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))))
+(-10 -7 (-15 -1306 (|#2| (-1 |#1| |#4|) (-1162 |#4|))) (-15 -1306 ((-1162 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1827 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1162 |#4|))) (-15 -3357 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1162 |#4|)))) (-15 -3786 ((-1162 (-1162 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-4011 (((-112) $ $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3148 (((-1258) $) 19)) (-2277 (((-1148) $ (-1166)) 23)) (-1491 (((-1258) $) 15)) (-4022 (((-856) $) 21) (($ (-1148)) 20)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 9)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 8)))
+(((-500) (-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $)) (-15 -4022 ($ (-1148)))))) (T -500))
+((-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-500)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-500)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-500)))))
+(-13 (-844) (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $)) (-15 -3148 ((-1258) $)) (-15 -4022 ($ (-1148)))))
+((-3961 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4237 ((|#1| |#4|) 10)) (-3799 ((|#3| |#4|) 17)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4237 (|#1| |#4|)) (-15 -3799 (|#3| |#4|)) (-15 -3961 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-553) (-985 |#1|) (-372 |#1|) (-372 |#2|)) (T -501))
+((-3961 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) (-3799 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-4 *2 (-372 *4)) (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) (-4237 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-501 *2 *4 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-372 *4)))))
+(-10 -7 (-15 -4237 (|#1| |#4|)) (-15 -3799 (|#3| |#4|)) (-15 -3961 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-4011 (((-112) $ $) NIL)) (-3115 (((-112) $ (-638 |#3|)) 103) (((-112) $) 104)) (-2800 (((-112) $) 147)) (-3058 (($ $ |#4|) 95) (($ $ |#4| (-638 |#3|)) 99)) (-2021 (((-1155 (-638 (-945 |#1|)) (-638 (-293 (-945 |#1|)))) (-638 |#4|)) 140 (|has| |#3| (-609 (-1166))))) (-1307 (($ $ $) 89) (($ $ |#4|) 87)) (-3113 (((-112) $) 146)) (-1384 (($ $) 107)) (-1764 (((-1148) $) NIL)) (-2579 (($ $ $) 81) (($ (-638 $)) 83)) (-3338 (((-112) |#4| $) 106)) (-3517 (((-112) $ $) 70)) (-1359 (($ (-638 |#4|)) 88)) (-1714 (((-1110) $) NIL)) (-1465 (($ (-638 |#4|)) 144)) (-3544 (((-112) $) 145)) (-4230 (($ $) 72)) (-3227 (((-638 |#4|) $) 56)) (-1484 (((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-638 |#3|)) NIL)) (-1856 (((-112) |#4| $) 75)) (-3084 (((-561) $ (-638 |#3|)) 108) (((-561) $) 109)) (-4022 (((-856) $) 143) (($ (-638 |#4|)) 84)) (-1681 (($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $))) NIL)) (-1733 (((-112) $ $) 71)) (-1813 (($ $ $) 91)) (** (($ $ (-765)) 94)) (* (($ $ $) 93)))
+(((-502 |#1| |#2| |#3| |#4|) (-13 (-1090) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -1813 ($ $ $)) (-15 -3113 ((-112) $)) (-15 -2800 ((-112) $)) (-15 -1856 ((-112) |#4| $)) (-15 -3517 ((-112) $ $)) (-15 -3338 ((-112) |#4| $)) (-15 -3115 ((-112) $ (-638 |#3|))) (-15 -3115 ((-112) $)) (-15 -2579 ($ $ $)) (-15 -2579 ($ (-638 $))) (-15 -1307 ($ $ $)) (-15 -1307 ($ $ |#4|)) (-15 -4230 ($ $)) (-15 -1484 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-638 |#3|))) (-15 -1681 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -3084 ((-561) $ (-638 |#3|))) (-15 -3084 ((-561) $)) (-15 -1384 ($ $)) (-15 -1359 ($ (-638 |#4|))) (-15 -1465 ($ (-638 |#4|))) (-15 -3544 ((-112) $)) (-15 -3227 ((-638 |#4|) $)) (-15 -4022 ($ (-638 |#4|))) (-15 -3058 ($ $ |#4|)) (-15 -3058 ($ $ |#4| (-638 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -2021 ((-1155 (-638 (-945 |#1|)) (-638 (-293 (-945 |#1|)))) (-638 |#4|))) |%noBranch|))) (-362) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -502))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1813 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-3113 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1856 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-3517 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-3338 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-3115 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2579 (*1 *1 *2) (-12 (-5 *2 (-638 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1307 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-1307 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-4230 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4)) (|:| |genIdeal| (-502 *4 *5 *6 *7)))) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-1681 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3)) (|:| |genIdeal| (-502 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-561)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-3084 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1384 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-1359 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-3544 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-3227 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *6)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-3058 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-3058 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-942 *4 *5 *6)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *6 (-609 (-1166))) (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1155 (-638 (-945 *4)) (-638 (-293 (-945 *4))))) (-5 *1 (-502 *4 *5 *6 *7)))))
+(-13 (-1090) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -1813 ($ $ $)) (-15 -3113 ((-112) $)) (-15 -2800 ((-112) $)) (-15 -1856 ((-112) |#4| $)) (-15 -3517 ((-112) $ $)) (-15 -3338 ((-112) |#4| $)) (-15 -3115 ((-112) $ (-638 |#3|))) (-15 -3115 ((-112) $)) (-15 -2579 ($ $ $)) (-15 -2579 ($ (-638 $))) (-15 -1307 ($ $ $)) (-15 -1307 ($ $ |#4|)) (-15 -4230 ($ $)) (-15 -1484 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-638 |#3|))) (-15 -1681 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -3084 ((-561) $ (-638 |#3|))) (-15 -3084 ((-561) $)) (-15 -1384 ($ $)) (-15 -1359 ($ (-638 |#4|))) (-15 -1465 ($ (-638 |#4|))) (-15 -3544 ((-112) $)) (-15 -3227 ((-638 |#4|) $)) (-15 -4022 ($ (-638 |#4|))) (-15 -3058 ($ $ |#4|)) (-15 -3058 ($ $ |#4| (-638 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -2021 ((-1155 (-638 (-945 |#1|)) (-638 (-293 (-945 |#1|)))) (-638 |#4|))) |%noBranch|)))
+((-1985 (((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 148)) (-3575 (((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 149)) (-3530 (((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 107)) (-2737 (((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) NIL)) (-3161 (((-638 (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) 151)) (-2805 (((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-638 (-858 |#1|))) 163)))
+(((-503 |#1| |#2|) (-10 -7 (-15 -1985 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -3575 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2737 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -3530 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -3161 ((-638 (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2805 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-638 (-858 |#1|))))) (-638 (-1166)) (-765)) (T -503))
+((-2805 (*1 *2 *2 *3) (-12 (-5 *2 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-5 *3 (-638 (-858 *4))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *1 (-503 *4 *5)))) (-3161 (*1 *2 *3) (-12 (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-638 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561)))))) (-5 *1 (-503 *4 *5)) (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))))) (-3530 (*1 *2 *2) (-12 (-5 *2 (-502 (-406 (-561)) (-239 *4 (-765)) (-858 *3) (-246 *3 (-406 (-561))))) (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4) (-246 *4 (-406 (-561))))) (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))))
+(-10 -7 (-15 -1985 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -3575 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2737 ((-112) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -3530 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -3161 ((-638 (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561))))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))))) (-15 -2805 ((-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-502 (-406 (-561)) (-239 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-561)))) (-638 (-858 |#1|)))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 11) (((-1166) $) 9)) (-1733 (((-112) $ $) 7)))
+(((-504) (-13 (-1090) (-608 (-1166)))) (T -504))
+NIL
+(-13 (-1090) (-608 (-1166)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-1387 (($ |#1| |#2|) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3332 ((|#2| $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-2211 (($) 12 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) 11) (($ $ $) 23)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 18)))
+(((-505 |#1| |#2|) (-13 (-21) (-507 |#1| |#2|)) (-21) (-844)) (T -505))
NIL
(-13 (-21) (-507 |#1| |#2|))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 12)) (-3457 (($) NIL T CONST)) (-3905 (($ $) 27)) (-4056 (($ |#1| |#2|) 24)) (-3397 (($ (-1 |#1| |#1|) $) 26)) (-2218 ((|#2| $) NIL)) (-3881 ((|#1| $) 28)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2207 (($) 10 T CONST)) (-1708 (((-112) $ $) NIL)) (-1785 (($ $ $) 17)) (* (($ (-911) $) NIL) (($ (-762) $) 22)))
-(((-506 |#1| |#2|) (-13 (-23) (-507 |#1| |#2|)) (-23) (-841)) (T -506))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 12)) (-1965 (($) NIL T CONST)) (-1619 (($ $) 27)) (-1387 (($ |#1| |#2|) 24)) (-4120 (($ (-1 |#1| |#1|) $) 26)) (-3332 ((|#2| $) NIL)) (-1590 ((|#1| $) 28)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-2211 (($) 10 T CONST)) (-1733 (((-112) $ $) NIL)) (-1813 (($ $ $) 17)) (* (($ (-914) $) NIL) (($ (-765) $) 22)))
+(((-506 |#1| |#2|) (-13 (-23) (-507 |#1| |#2|)) (-23) (-844)) (T -506))
NIL
(-13 (-23) (-507 |#1| |#2|))
-((-3929 (((-112) $ $) 7)) (-3905 (($ $) 13)) (-4056 (($ |#1| |#2|) 16)) (-3397 (($ (-1 |#1| |#1|) $) 17)) (-2218 ((|#2| $) 14)) (-3881 ((|#1| $) 15)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)))
-(((-507 |#1| |#2|) (-139) (-1087) (-841)) (T -507))
-((-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-841)))) (-4056 (*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1087)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-841)))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841)))))
-(-13 (-1087) (-10 -8 (-15 -3397 ($ (-1 |t#1| |t#1|) $)) (-15 -4056 ($ |t#1| |t#2|)) (-15 -3881 (|t#1| $)) (-15 -2218 (|t#2| $)) (-15 -3905 ($ $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-4056 (($ |#1| |#2|) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2218 ((|#2| $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2207 (($) NIL T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 13)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL)))
-(((-508 |#1| |#2|) (-13 (-783) (-507 |#1| |#2|)) (-783) (-841)) (T -508))
-NIL
-(-13 (-783) (-507 |#1| |#2|))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2707 (($ $ $) 16)) (-1868 (((-3 $ "failed") $ $) 13)) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-4056 (($ |#1| |#2|) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2218 ((|#2| $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL)) (-2207 (($) NIL T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL)))
-(((-509 |#1| |#2|) (-13 (-784) (-507 |#1| |#2|)) (-784) (-841)) (T -509))
-NIL
-(-13 (-784) (-507 |#1| |#2|))
-((-3929 (((-112) $ $) NIL)) (-3905 (($ $) 24)) (-4056 (($ |#1| |#2|) 21)) (-3397 (($ (-1 |#1| |#1|) $) 23)) (-2218 ((|#2| $) 26)) (-3881 ((|#1| $) 25)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 20)) (-1708 (((-112) $ $) 13)))
-(((-510 |#1| |#2|) (-507 |#1| |#2|) (-1087) (-841)) (T -510))
+((-4011 (((-112) $ $) 7)) (-1619 (($ $) 13)) (-1387 (($ |#1| |#2|) 16)) (-4120 (($ (-1 |#1| |#1|) $) 17)) (-3332 ((|#2| $) 14)) (-1590 ((|#1| $) 15)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)))
+(((-507 |#1| |#2|) (-139) (-1090) (-844)) (T -507))
+((-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-844)))) (-1387 (*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1090)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-844)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844)))))
+(-13 (-1090) (-10 -8 (-15 -4120 ($ (-1 |t#1| |t#1|) $)) (-15 -1387 ($ |t#1| |t#2|)) (-15 -1590 (|t#1| $)) (-15 -3332 (|t#2| $)) (-15 -1619 ($ $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-1387 (($ |#1| |#2|) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3332 ((|#2| $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-2211 (($) NIL T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 13)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL)))
+(((-508 |#1| |#2|) (-13 (-786) (-507 |#1| |#2|)) (-786) (-844)) (T -508))
+NIL
+(-13 (-786) (-507 |#1| |#2|))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2090 (($ $ $) 16)) (-2249 (((-3 $ "failed") $ $) 13)) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-1387 (($ |#1| |#2|) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3332 ((|#2| $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-2211 (($) NIL T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL)))
+(((-509 |#1| |#2|) (-13 (-787) (-507 |#1| |#2|)) (-787) (-844)) (T -509))
+NIL
+(-13 (-787) (-507 |#1| |#2|))
+((-4011 (((-112) $ $) NIL)) (-1619 (($ $) 24)) (-1387 (($ |#1| |#2|) 21)) (-4120 (($ (-1 |#1| |#1|) $) 23)) (-3332 ((|#2| $) 26)) (-1590 ((|#1| $) 25)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 20)) (-1733 (((-112) $ $) 13)))
+(((-510 |#1| |#2|) (-507 |#1| |#2|) (-1090) (-844)) (T -510))
NIL
(-507 |#1| |#2|)
-((-1369 (($ $ (-635 |#2|) (-635 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-511 |#1| |#2| |#3|) (-10 -8 (-15 -1369 (|#1| |#1| |#2| |#3|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#3|)))) (-512 |#2| |#3|) (-1087) (-1200)) (T -511))
+((-1444 (($ $ (-638 |#2|) (-638 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-511 |#1| |#2| |#3|) (-10 -8 (-15 -1444 (|#1| |#1| |#2| |#3|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#3|)))) (-512 |#2| |#3|) (-1090) (-1205)) (T -511))
NIL
-(-10 -8 (-15 -1369 (|#1| |#1| |#2| |#3|)) (-15 -1369 (|#1| |#1| (-635 |#2|) (-635 |#3|))))
-((-1369 (($ $ (-635 |#1|) (-635 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-512 |#1| |#2|) (-139) (-1087) (-1200)) (T -512))
-((-1369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1200)))) (-1369 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1200)))))
-(-13 (-10 -8 (-15 -1369 ($ $ |t#1| |t#2|)) (-15 -1369 ($ $ (-635 |t#1|) (-635 |t#2|)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 16)) (-3414 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 18)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2507 (((-762) $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3572 ((|#1| $ (-558)) 23)) (-3513 ((|#2| $ (-558)) 21)) (-3838 (($ (-1 |#1| |#1|) $) 46)) (-1996 (($ (-1 |#2| |#2|) $) 43)) (-2510 (((-1145) $) NIL)) (-1740 (($ $ $) 53 (|has| |#2| (-783)))) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 42) (($ |#1|) NIL)) (-3143 ((|#2| |#1| $) 49)) (-2207 (($) 11 T CONST)) (-1708 (((-112) $ $) 29)) (-1785 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-911) $) NIL) (($ (-762) $) 36) (($ |#2| |#1|) 31)))
-(((-513 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1087) (-130) |#2|) (T -513))
+(-10 -8 (-15 -1444 (|#1| |#1| |#2| |#3|)) (-15 -1444 (|#1| |#1| (-638 |#2|) (-638 |#3|))))
+((-1444 (($ $ (-638 |#1|) (-638 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-512 |#1| |#2|) (-139) (-1090) (-1205)) (T -512))
+((-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1205)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1205)))))
+(-13 (-10 -8 (-15 -1444 ($ $ |t#1| |t#2|)) (-15 -1444 ($ $ (-638 |t#1|) (-638 |t#2|)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 16)) (-2457 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|))) $) 18)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1393 (((-765) $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-2740 ((|#1| $ (-561)) 23)) (-3762 ((|#2| $ (-561)) 21)) (-2272 (($ (-1 |#1| |#1|) $) 46)) (-4024 (($ (-1 |#2| |#2|) $) 43)) (-1764 (((-1148) $) NIL)) (-2376 (($ $ $) 53 (|has| |#2| (-786)))) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 42) (($ |#1|) NIL)) (-2634 ((|#2| |#1| $) 49)) (-2211 (($) 11 T CONST)) (-1733 (((-112) $ $) 29)) (-1813 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-914) $) NIL) (($ (-765) $) 36) (($ |#2| |#1|) 31)))
+(((-513 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1090) (-130) |#2|) (T -513))
NIL
(-322 |#1| |#2|)
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-1784 (((-112) (-112)) 25)) (-4077 ((|#1| $ (-558) |#1|) 28 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) |#1|) $) 52)) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-1958 (($ $) 56 (|has| |#1| (-1087)))) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) 44)) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-3436 (($ $ (-558)) 13)) (-3959 (((-762) $) 11)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) 23)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 21 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-4150 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) 20 (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-2650 (($ $ $ (-558)) 51) (($ |#1| $ (-558)) 37)) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2492 (($ (-635 |#1|)) 29)) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) 19 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 40)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 16)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 33) (($ $ (-1213 (-558))) NIL)) (-3738 (($ $ (-1213 (-558))) 50) (($ $ (-558)) 45)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) 41 (|has| $ (-6 -4384)))) (-4098 (($ $) 32)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-1651 (($ $ $) 42) (($ $ |#1|) 39)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) 17 (|has| $ (-6 -4383)))))
-(((-514 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2492 ($ (-635 |#1|))) (-15 -3959 ((-762) $)) (-15 -3436 ($ $ (-558))) (-15 -1784 ((-112) (-112))))) (-1200) (-558)) (T -514))
-((-2492 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-514 *3 *4)) (-14 *4 (-558)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 (-558)))) (-3436 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 *2))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 (-558)))))
-(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2492 ($ (-635 |#1|))) (-15 -3959 ((-762) $)) (-15 -3436 ($ $ (-558))) (-15 -1784 ((-112) (-112)))))
-((-3929 (((-112) $ $) NIL)) (-2775 (((-1122) $) 11)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2542 (((-1122) $) 13)) (-3814 (((-1122) $) 9)) (-3940 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-515) (-13 (-1070) (-10 -8 (-15 -3814 ((-1122) $)) (-15 -2775 ((-1122) $)) (-15 -2542 ((-1122) $))))) (T -515))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))))
-(-13 (-1070) (-10 -8 (-15 -3814 ((-1122) $)) (-15 -2775 ((-1122) $)) (-15 -2542 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 (((-575 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-575 |#1|) (-367)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL (|has| (-575 |#1|) (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-575 |#1|) "failed") $) NIL)) (-3226 (((-575 |#1|) $) NIL)) (-3431 (($ (-1246 (-575 |#1|))) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-575 |#1|) (-367)))) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-575 |#1|) (-367)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL (|has| (-575 |#1|) (-367)))) (-3617 (((-112) $) NIL (|has| (-575 |#1|) (-367)))) (-4362 (($ $ (-762)) NIL (-3994 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367)))) (($ $) NIL (-3994 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-2992 (((-112) $) NIL)) (-2532 (((-911) $) NIL (|has| (-575 |#1|) (-367))) (((-824 (-911)) $) NIL (-3994 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| (-575 |#1|) (-367)))) (-3235 (((-112) $) NIL (|has| (-575 |#1|) (-367)))) (-1423 (((-575 |#1|) $) NIL) (($ $ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-2521 (((-3 $ "failed") $) NIL (|has| (-575 |#1|) (-367)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 (-575 |#1|)) $) NIL) (((-1159 $) $ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-1486 (((-911) $) NIL (|has| (-575 |#1|) (-367)))) (-1937 (((-1159 (-575 |#1|)) $) NIL (|has| (-575 |#1|) (-367)))) (-3811 (((-1159 (-575 |#1|)) $) NIL (|has| (-575 |#1|) (-367))) (((-3 (-1159 (-575 |#1|)) "failed") $ $) NIL (|has| (-575 |#1|) (-367)))) (-3635 (($ $ (-1159 (-575 |#1|))) NIL (|has| (-575 |#1|) (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-575 |#1|) (-367)) CONST)) (-2349 (($ (-911)) NIL (|has| (-575 |#1|) (-367)))) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-2461 (($) NIL (|has| (-575 |#1|) (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| (-575 |#1|) (-367)))) (-3939 (((-417 $) $) NIL)) (-3670 (((-824 (-911))) NIL) (((-911)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-762) $) NIL (|has| (-575 |#1|) (-367))) (((-3 (-762) "failed") $ $) NIL (-3994 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-2887 (((-133)) NIL)) (-3780 (($ $) NIL (|has| (-575 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-575 |#1|) (-367)))) (-4263 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-2297 (((-1159 (-575 |#1|))) NIL)) (-2933 (($) NIL (|has| (-575 |#1|) (-367)))) (-3703 (($) NIL (|has| (-575 |#1|) (-367)))) (-2979 (((-1246 (-575 |#1|)) $) NIL) (((-679 (-575 |#1|)) (-1246 $)) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-575 |#1|) (-367)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-575 |#1|)) NIL)) (-1487 (($ $) NIL (|has| (-575 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3994 (|has| (-575 |#1|) (-144)) (|has| (-575 |#1|) (-367))))) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL) (((-1246 $) (-911)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $) NIL (|has| (-575 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-575 |#1|) (-367)))) (-3042 (($ $) NIL (|has| (-575 |#1|) (-367))) (($ $ (-762)) NIL (|has| (-575 |#1|) (-367)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL) (($ $ (-575 |#1|)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-575 |#1|)) NIL) (($ (-575 |#1|) $) NIL)))
-(((-516 |#1| |#2|) (-328 (-575 |#1|)) (-911) (-911)) (T -516))
-NIL
-(-328 (-575 |#1|))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) (-558) |#1|) 35)) (-3425 (($ $ (-558) |#4|) NIL)) (-3456 (($ $ (-558) |#5|) NIL)) (-3457 (($) NIL T CONST)) (-2500 ((|#4| $ (-558)) NIL)) (-3683 ((|#1| $ (-558) (-558) |#1|) 34)) (-3620 ((|#1| $ (-558) (-558)) 32)) (-2917 (((-635 |#1|) $) NIL)) (-1430 (((-762) $) 28)) (-1395 (($ (-762) (-762) |#1|) 25)) (-1444 (((-762) $) 30)) (-4007 (((-112) $ (-762)) NIL)) (-3942 (((-558) $) 26)) (-1478 (((-558) $) 27)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4153 (((-558) $) 29)) (-3508 (((-558) $) 31)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) 38 (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 14)) (-2876 (($) 16)) (-2276 ((|#1| $ (-558) (-558)) 33) ((|#1| $ (-558) (-558) |#1|) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3962 ((|#5| $ (-558)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-517 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1200) (-558) (-558) (-372 |#1|) (-372 |#1|)) (T -517))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-2361 (((-112) (-112)) 25)) (-4167 ((|#1| $ (-561) |#1|) 28 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) |#1|) $) 52)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-3776 (($ $) 56 (|has| |#1| (-1090)))) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) 44)) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-2786 (($ $ (-561)) 13)) (-2418 (((-765) $) 11)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) 23)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 21 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-3092 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) 20 (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3671 (($ $ $ (-561)) 51) (($ |#1| $ (-561)) 37)) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3774 (($ (-638 |#1|)) 29)) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) 19 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 40)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 16)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 33) (($ $ (-1220 (-561))) NIL)) (-2114 (($ $ (-1220 (-561))) 50) (($ $ (-561)) 45)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) 41 (|has| $ (-6 -4391)))) (-4187 (($ $) 32)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-4173 (($ $ $) 42) (($ $ |#1|) 39)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) 17 (|has| $ (-6 -4390)))))
+(((-514 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -3774 ($ (-638 |#1|))) (-15 -2418 ((-765) $)) (-15 -2786 ($ $ (-561))) (-15 -2361 ((-112) (-112))))) (-1205) (-561)) (T -514))
+((-3774 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-514 *3 *4)) (-14 *4 (-561)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 (-561)))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 *2))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 (-561)))))
+(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -3774 ($ (-638 |#1|))) (-15 -2418 ((-765) $)) (-15 -2786 ($ $ (-561))) (-15 -2361 ((-112) (-112)))))
+((-4011 (((-112) $ $) NIL)) (-3912 (((-1125) $) 11)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2199 (((-1125) $) 13)) (-3334 (((-1125) $) 9)) (-4022 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-515) (-13 (-1073) (-10 -8 (-15 -3334 ((-1125) $)) (-15 -3912 ((-1125) $)) (-15 -2199 ((-1125) $))))) (T -515))
+((-3334 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
+(-13 (-1073) (-10 -8 (-15 -3334 ((-1125) $)) (-15 -3912 ((-1125) $)) (-15 -2199 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 (((-578 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-578 |#1|) (-367)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL (|has| (-578 |#1|) (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-578 |#1|) "failed") $) NIL)) (-3938 (((-578 |#1|) $) NIL)) (-2257 (($ (-1253 (-578 |#1|))) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-578 |#1|) (-367)))) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-578 |#1|) (-367)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL (|has| (-578 |#1|) (-367)))) (-1803 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-1575 (($ $ (-765)) NIL (-4007 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367)))) (($ $) NIL (-4007 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-2737 (((-112) $) NIL)) (-4163 (((-914) $) NIL (|has| (-578 |#1|) (-367))) (((-827 (-914)) $) NIL (-4007 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| (-578 |#1|) (-367)))) (-3584 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-1672 (((-578 |#1|) $) NIL) (($ $ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-1663 (((-3 $ "failed") $) NIL (|has| (-578 |#1|) (-367)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 (-578 |#1|)) $) NIL) (((-1162 $) $ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-3198 (((-914) $) NIL (|has| (-578 |#1|) (-367)))) (-2300 (((-1162 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367)))) (-2409 (((-1162 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-1162 (-578 |#1|)) "failed") $ $) NIL (|has| (-578 |#1|) (-367)))) (-3152 (($ $ (-1162 (-578 |#1|))) NIL (|has| (-578 |#1|) (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-578 |#1|) (-367)) CONST)) (-2413 (($ (-914)) NIL (|has| (-578 |#1|) (-367)))) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-3158 (($) NIL (|has| (-578 |#1|) (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| (-578 |#1|) (-367)))) (-1657 (((-417 $) $) NIL)) (-4150 (((-827 (-914))) NIL) (((-914)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-765) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-4007 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-3084 (((-133)) NIL)) (-3238 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-2894 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3660 (((-1162 (-578 |#1|))) NIL)) (-1796 (($) NIL (|has| (-578 |#1|) (-367)))) (-2111 (($) NIL (|has| (-578 |#1|) (-367)))) (-3969 (((-1253 (-578 |#1|)) $) NIL) (((-682 (-578 |#1|)) (-1253 $)) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-578 |#1|) (-367)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-578 |#1|)) NIL)) (-1760 (($ $) NIL (|has| (-578 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4007 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL) (((-1253 $) (-914)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-3122 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL) (($ $ (-578 |#1|)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-578 |#1|)) NIL) (($ (-578 |#1|) $) NIL)))
+(((-516 |#1| |#2|) (-328 (-578 |#1|)) (-914) (-914)) (T -516))
+NIL
+(-328 (-578 |#1|))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) (-561) |#1|) 35)) (-2550 (($ $ (-561) |#4|) NIL)) (-2971 (($ $ (-561) |#5|) NIL)) (-1965 (($) NIL T CONST)) (-3845 ((|#4| $ (-561)) NIL)) (-2073 ((|#1| $ (-561) (-561) |#1|) 34)) (-4344 ((|#1| $ (-561) (-561)) 32)) (-3571 (((-638 |#1|) $) NIL)) (-1513 (((-765) $) 28)) (-1470 (($ (-765) (-765) |#1|) 25)) (-1526 (((-765) $) 30)) (-3744 (((-112) $ (-765)) NIL)) (-3514 (((-561) $) 26)) (-2804 (((-561) $) 27)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3089 (((-561) $) 29)) (-1709 (((-561) $) 31)) (-2065 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) 38 (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 14)) (-3170 (($) 16)) (-2277 ((|#1| $ (-561) (-561)) 33) ((|#1| $ (-561) (-561) |#1|) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-2745 ((|#5| $ (-561)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-517 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1205) (-561) (-561) (-372 |#1|) (-372 |#1|)) (T -517))
NIL
(-57 |#1| |#4| |#5|)
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) NIL)) (-1611 ((|#1| $) NIL)) (-2427 (($ $) NIL)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) 58 (|has| $ (-6 -4384)))) (-2878 (((-112) $) NIL (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3041 (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4384)))) (-3648 (($ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-1649 (($ $ $) 23 (|has| $ (-6 -4384)))) (-2851 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) 21 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4384))) (($ $ "rest" $) 24 (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) |#1|) $) NIL)) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1601 ((|#1| $) NIL)) (-3457 (($) NIL T CONST)) (-2240 (($ $) 28 (|has| $ (-6 -4384)))) (-1911 (($ $) 29)) (-3168 (($ $) 18) (($ $ (-762)) 32)) (-1958 (($ $) 54 (|has| |#1| (-1087)))) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4151 (((-112) $) NIL)) (-4145 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087))) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) NIL)) (-2917 (((-635 |#1|) $) 27 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1395 (($ (-762) |#1|) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 31 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-4150 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-3391 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2411 (($ |#1|) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) NIL)) (-2510 (((-1145) $) 50 (|has| |#1| (-1087)))) (-1514 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-2650 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1363 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) 13) (($ $ (-762)) NIL)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-1890 (((-112) $) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 12)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) 17)) (-2876 (($) 16)) (-2276 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) NIL) ((|#1| $ (-558) |#1|) NIL)) (-1904 (((-558) $ $) NIL)) (-3738 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-3976 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-1609 (((-112) $) 33)) (-3070 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4384)))) (-2398 (((-762) $) NIL)) (-4009 (($ $) 35)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) 34)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 26)) (-1651 (($ $ $) 53) (($ $ |#1|) NIL)) (-2683 (($ $ $) NIL) (($ |#1| $) 10) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-3940 (((-853) $) 45 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) 47 (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) 9 (|has| $ (-6 -4383)))))
-(((-518 |#1| |#2|) (-656 |#1|) (-1200) (-558)) (T -518))
-NIL
-(-656 |#1|)
-((-3125 ((|#4| |#4|) 27)) (-1489 (((-762) |#4|) 32)) (-2556 (((-762) |#4|) 33)) (-3693 (((-635 |#3|) |#4|) 39 (|has| |#3| (-6 -4384)))) (-3191 (((-3 |#4| "failed") |#4|) 50)) (-3151 ((|#4| |#4|) 43)) (-3843 ((|#1| |#4|) 42)))
-(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3125 (|#4| |#4|)) (-15 -1489 ((-762) |#4|)) (-15 -2556 ((-762) |#4|)) (IF (|has| |#3| (-6 -4384)) (-15 -3693 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3843 (|#1| |#4|)) (-15 -3151 (|#4| |#4|)) (-15 -3191 ((-3 |#4| "failed") |#4|))) (-362) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -519))
-((-3191 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3151 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) (-3693 (*1 *2 *3) (-12 (|has| *6 (-6 -4384)) (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2556 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-1489 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
-(-10 -7 (-15 -3125 (|#4| |#4|)) (-15 -1489 ((-762) |#4|)) (-15 -2556 ((-762) |#4|)) (IF (|has| |#3| (-6 -4384)) (-15 -3693 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3843 (|#1| |#4|)) (-15 -3151 (|#4| |#4|)) (-15 -3191 ((-3 |#4| "failed") |#4|)))
-((-3125 ((|#8| |#4|) 20)) (-3693 (((-635 |#3|) |#4|) 29 (|has| |#7| (-6 -4384)))) (-3191 (((-3 |#8| "failed") |#4|) 23)))
-(((-520 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3125 (|#8| |#4|)) (-15 -3191 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4384)) (-15 -3693 ((-635 |#3|) |#4|)) |%noBranch|)) (-550) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|) (-982 |#1|) (-372 |#5|) (-372 |#5|) (-677 |#5| |#6| |#7|)) (T -520))
-((-3693 (*1 *2 *3) (-12 (|has| *9 (-6 -4384)) (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-635 *6)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-677 *4 *5 *6)) (-4 *10 (-677 *7 *8 *9)))) (-3191 (*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) (-3125 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))))
-(-10 -7 (-15 -3125 (|#8| |#4|)) (-15 -3191 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4384)) (-15 -3693 ((-635 |#3|) |#4|)) |%noBranch|))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4237 (($ (-762) (-762)) NIL)) (-2565 (($ $ $) NIL)) (-3295 (($ (-594 |#1| |#3|)) NIL) (($ $) NIL)) (-2086 (((-112) $) NIL)) (-2037 (($ $ (-558) (-558)) 12)) (-4126 (($ $ (-558) (-558)) NIL)) (-3311 (($ $ (-558) (-558) (-558) (-558)) NIL)) (-3230 (($ $) NIL)) (-1693 (((-112) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-1683 (($ $ (-558) (-558) $) NIL)) (-4077 ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) NIL)) (-3425 (($ $ (-558) (-594 |#1| |#3|)) NIL)) (-3456 (($ $ (-558) (-594 |#1| |#2|)) NIL)) (-1866 (($ (-762) |#1|) NIL)) (-3457 (($) NIL T CONST)) (-3125 (($ $) 21 (|has| |#1| (-306)))) (-2500 (((-594 |#1| |#3|) $ (-558)) NIL)) (-1489 (((-762) $) 24 (|has| |#1| (-550)))) (-3683 ((|#1| $ (-558) (-558) |#1|) NIL)) (-3620 ((|#1| $ (-558) (-558)) NIL)) (-2917 (((-635 |#1|) $) NIL)) (-2556 (((-762) $) 26 (|has| |#1| (-550)))) (-3693 (((-635 (-594 |#1| |#2|)) $) 29 (|has| |#1| (-550)))) (-1430 (((-762) $) NIL)) (-1395 (($ (-762) (-762) |#1|) NIL)) (-1444 (((-762) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2591 ((|#1| $) 19 (|has| |#1| (-6 (-4385 "*"))))) (-3942 (((-558) $) 10)) (-1478 (((-558) $) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4153 (((-558) $) 11)) (-3508 (((-558) $) NIL)) (-2144 (($ (-635 (-635 |#1|))) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3922 (((-635 (-635 |#1|)) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-3191 (((-3 $ "failed") $) 33 (|has| |#1| (-362)))) (-2709 (($ $ $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) NIL)) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558))) NIL)) (-2049 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-1312 (((-112) $) NIL)) (-3843 ((|#1| $) 17 (|has| |#1| (-6 (-4385 "*"))))) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3962 (((-594 |#1| |#2|) $ (-558)) NIL)) (-3940 (($ (-594 |#1| |#2|)) NIL) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3551 (((-112) $) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $ $) NIL) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-558) $) NIL) (((-594 |#1| |#2|) $ (-594 |#1| |#2|)) NIL) (((-594 |#1| |#3|) (-594 |#1| |#3|) $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-521 |#1| |#2| |#3|) (-677 |#1| (-594 |#1| |#3|) (-594 |#1| |#2|)) (-1039) (-558) (-558)) (T -521))
-NIL
-(-677 |#1| (-594 |#1| |#3|) (-594 |#1| |#2|))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-2180 (((-635 (-1199)) $) 13)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 20) (($ (-1168)) NIL) (((-1168) $) NIL) (($ (-635 (-1199))) 11)) (-1708 (((-112) $ $) NIL)))
-(((-522) (-13 (-1070) (-10 -8 (-15 -3940 ($ (-635 (-1199)))) (-15 -2180 ((-635 (-1199)) $))))) (T -522))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522)))))
-(-13 (-1070) (-10 -8 (-15 -3940 ($ (-635 (-1199)))) (-15 -2180 ((-635 (-1199)) $))))
-((-3929 (((-112) $ $) NIL)) (-3094 (((-1122) $) 14)) (-2510 (((-1145) $) NIL)) (-1972 (((-1163) $) 11)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-523) (-13 (-1070) (-10 -8 (-15 -1972 ((-1163) $)) (-15 -3094 ((-1122) $))))) (T -523))
-((-1972 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-523)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-523)))))
-(-13 (-1070) (-10 -8 (-15 -1972 ((-1163) $)) (-15 -3094 ((-1122) $))))
-((-2657 (((-762) $ (-128)) 20)))
-(((-524 |#1|) (-10 -8 (-15 -2657 ((-762) |#1| (-128)))) (-525)) (T -524))
-NIL
-(-10 -8 (-15 -2657 ((-762) |#1| (-128))))
-((-2657 (((-762) $ (-128)) 7)) (-3519 (((-681 (-129)) $) 8)) (-1388 (($ $) 6)))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) NIL)) (-2295 ((|#1| $) NIL)) (-3129 (($ $) NIL)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) 58 (|has| $ (-6 -4391)))) (-4268 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3702 (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4391)))) (-1289 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-1353 (($ $ $) 23 (|has| $ (-6 -4391)))) (-1726 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) 21 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4391))) (($ $ "rest" $) 24 (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-2285 ((|#1| $) NIL)) (-1965 (($) NIL T CONST)) (-4075 (($ $) 28 (|has| $ (-6 -4391)))) (-2638 (($ $) 29)) (-1445 (($ $) 18) (($ $ (-765)) 32)) (-3776 (($ $) 54 (|has| |#1| (-1090)))) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-3032 (((-112) $) NIL)) (-4235 (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090))) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) NIL)) (-3571 (((-638 |#1|) $) 27 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1470 (($ (-765) |#1|) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 31 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-3092 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-1407 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3708 (($ |#1|) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) NIL)) (-1764 (((-1148) $) 50 (|has| |#1| (-1090)))) (-1520 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-3671 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3312 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) 13) (($ $ (-765)) NIL)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-2667 (((-112) $) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 12)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) 17)) (-3170 (($) 16)) (-2277 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1220 (-561))) NIL) ((|#1| $ (-561)) NIL) ((|#1| $ (-561) |#1|) NIL)) (-2004 (((-561) $ $) NIL)) (-2114 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-2849 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-3849 (((-112) $) 33)) (-3222 (($ $) NIL)) (-4364 (($ $) NIL (|has| $ (-6 -4391)))) (-1624 (((-765) $) NIL)) (-2883 (($ $) 35)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) 34)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 26)) (-4173 (($ $ $) 53) (($ $ |#1|) NIL)) (-2725 (($ $ $) NIL) (($ |#1| $) 10) (($ (-638 $)) NIL) (($ $ |#1|) NIL)) (-4022 (((-856) $) 45 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) 47 (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) 9 (|has| $ (-6 -4390)))))
+(((-518 |#1| |#2|) (-659 |#1|) (-1205) (-561)) (T -518))
+NIL
+(-659 |#1|)
+((-1298 ((|#4| |#4|) 27)) (-1569 (((-765) |#4|) 32)) (-3370 (((-765) |#4|) 33)) (-2542 (((-638 |#3|) |#4|) 39 (|has| |#3| (-6 -4391)))) (-4222 (((-3 |#4| "failed") |#4|) 50)) (-3004 ((|#4| |#4|) 43)) (-2622 ((|#1| |#4|) 42)))
+(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1298 (|#4| |#4|)) (-15 -1569 ((-765) |#4|)) (-15 -3370 ((-765) |#4|)) (IF (|has| |#3| (-6 -4391)) (-15 -2542 ((-638 |#3|) |#4|)) |%noBranch|) (-15 -2622 (|#1| |#4|)) (-15 -3004 (|#4| |#4|)) (-15 -4222 ((-3 |#4| "failed") |#4|))) (-362) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -519))
+((-4222 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-3004 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-2622 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5)))) (-2542 (*1 *2 *3) (-12 (|has| *6 (-6 -4391)) (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-3370 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-1569 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-1298 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
+(-10 -7 (-15 -1298 (|#4| |#4|)) (-15 -1569 ((-765) |#4|)) (-15 -3370 ((-765) |#4|)) (IF (|has| |#3| (-6 -4391)) (-15 -2542 ((-638 |#3|) |#4|)) |%noBranch|) (-15 -2622 (|#1| |#4|)) (-15 -3004 (|#4| |#4|)) (-15 -4222 ((-3 |#4| "failed") |#4|)))
+((-1298 ((|#8| |#4|) 20)) (-2542 (((-638 |#3|) |#4|) 29 (|has| |#7| (-6 -4391)))) (-4222 (((-3 |#8| "failed") |#4|) 23)))
+(((-520 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1298 (|#8| |#4|)) (-15 -4222 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4391)) (-15 -2542 ((-638 |#3|) |#4|)) |%noBranch|)) (-553) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|) (-985 |#1|) (-372 |#5|) (-372 |#5|) (-680 |#5| |#6| |#7|)) (T -520))
+((-2542 (*1 *2 *3) (-12 (|has| *9 (-6 -4391)) (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-638 *6)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-680 *4 *5 *6)) (-4 *10 (-680 *7 *8 *9)))) (-4222 (*1 *2 *3) (|partial| -12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) (-1298 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))))
+(-10 -7 (-15 -1298 (|#8| |#4|)) (-15 -4222 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4391)) (-15 -2542 ((-638 |#3|) |#4|)) |%noBranch|))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2888 (($ (-765) (-765)) NIL)) (-1548 (($ $ $) NIL)) (-1820 (($ (-597 |#1| |#3|)) NIL) (($ $) NIL)) (-1810 (((-112) $) NIL)) (-1679 (($ $ (-561) (-561)) 12)) (-3925 (($ $ (-561) (-561)) NIL)) (-2839 (($ $ (-561) (-561) (-561) (-561)) NIL)) (-1961 (($ $) NIL)) (-2487 (((-112) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-4153 (($ $ (-561) (-561) $) NIL)) (-4167 ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) NIL)) (-2550 (($ $ (-561) (-597 |#1| |#3|)) NIL)) (-2971 (($ $ (-561) (-597 |#1| |#2|)) NIL)) (-3539 (($ (-765) |#1|) NIL)) (-1965 (($) NIL T CONST)) (-1298 (($ $) 21 (|has| |#1| (-306)))) (-3845 (((-597 |#1| |#3|) $ (-561)) NIL)) (-1569 (((-765) $) 24 (|has| |#1| (-553)))) (-2073 ((|#1| $ (-561) (-561) |#1|) NIL)) (-4344 ((|#1| $ (-561) (-561)) NIL)) (-3571 (((-638 |#1|) $) NIL)) (-3370 (((-765) $) 26 (|has| |#1| (-553)))) (-2542 (((-638 (-597 |#1| |#2|)) $) 29 (|has| |#1| (-553)))) (-1513 (((-765) $) NIL)) (-1470 (($ (-765) (-765) |#1|) NIL)) (-1526 (((-765) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-2093 ((|#1| $) 19 (|has| |#1| (-6 (-4392 "*"))))) (-3514 (((-561) $) 10)) (-2804 (((-561) $) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3089 (((-561) $) 11)) (-1709 (((-561) $) NIL)) (-2855 (($ (-638 (-638 |#1|))) NIL)) (-2065 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-638 (-638 |#1|)) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-4222 (((-3 $ "failed") $) 33 (|has| |#1| (-362)))) (-2488 (($ $ $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) NIL)) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561))) NIL)) (-2450 (($ (-638 |#1|)) NIL) (($ (-638 $)) NIL)) (-2182 (((-112) $) NIL)) (-2622 ((|#1| $) 17 (|has| |#1| (-6 (-4392 "*"))))) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-2745 (((-597 |#1| |#2|) $ (-561)) NIL)) (-4022 (($ (-597 |#1| |#2|)) NIL) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-4247 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-561) $) NIL) (((-597 |#1| |#2|) $ (-597 |#1| |#2|)) NIL) (((-597 |#1| |#3|) (-597 |#1| |#3|) $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-521 |#1| |#2| |#3|) (-680 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) (-1042) (-561) (-561)) (T -521))
+NIL
+(-680 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-3305 (((-638 (-1204)) $) 13)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL) (($ (-638 (-1204))) 11)) (-1733 (((-112) $ $) NIL)))
+(((-522) (-13 (-1073) (-10 -8 (-15 -4022 ($ (-638 (-1204)))) (-15 -3305 ((-638 (-1204)) $))))) (T -522))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522)))))
+(-13 (-1073) (-10 -8 (-15 -4022 ($ (-638 (-1204)))) (-15 -3305 ((-638 (-1204)) $))))
+((-4011 (((-112) $ $) NIL)) (-1319 (((-1125) $) 14)) (-1764 (((-1148) $) NIL)) (-1767 (((-1166) $) 11)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-523) (-13 (-1073) (-10 -8 (-15 -1767 ((-1166) $)) (-15 -1319 ((-1125) $))))) (T -523))
+((-1767 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523)))))
+(-13 (-1073) (-10 -8 (-15 -1767 ((-1166) $)) (-15 -1319 ((-1125) $))))
+((-3088 (((-765) $ (-128)) 20)))
+(((-524 |#1|) (-10 -8 (-15 -3088 ((-765) |#1| (-128)))) (-525)) (T -524))
+NIL
+(-10 -8 (-15 -3088 ((-765) |#1| (-128))))
+((-3088 (((-765) $ (-128)) 7)) (-2568 (((-684 (-129)) $) 8)) (-2836 (($ $) 6)))
(((-525) (-139)) (T -525))
-((-3519 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-681 (-129))))) (-2657 (*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-762)))))
-(-13 (-172) (-10 -8 (-15 -3519 ((-681 (-129)) $)) (-15 -2657 ((-762) $ (-128)))))
+((-2568 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-129))))) (-3088 (*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-765)))))
+(-13 (-172) (-10 -8 (-15 -2568 ((-684 (-129)) $)) (-15 -3088 ((-765) $ (-128)))))
(((-172) . T))
-((-2738 (((-1159 |#1|) (-762)) 75)) (-1719 (((-1246 |#1|) (-1246 |#1|) (-911)) 68)) (-4207 (((-1251) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) |#1|) 83)) (-3713 (((-1246 |#1|) (-1246 |#1|) (-762)) 36)) (-3692 (((-1246 |#1|) (-911)) 70)) (-1301 (((-1246 |#1|) (-1246 |#1|) (-558)) 24)) (-3936 (((-1159 |#1|) (-1246 |#1|)) 76)) (-2942 (((-1246 |#1|) (-911)) 94)) (-3235 (((-112) (-1246 |#1|)) 79)) (-1423 (((-1246 |#1|) (-1246 |#1|) (-911)) 61)) (-1715 (((-1159 |#1|) (-1246 |#1|)) 88)) (-1486 (((-911) (-1246 |#1|)) 58)) (-3823 (((-1246 |#1|) (-1246 |#1|)) 30)) (-2349 (((-1246 |#1|) (-911) (-911)) 96)) (-2519 (((-1246 |#1|) (-1246 |#1|) (-1107) (-1107)) 23)) (-2825 (((-1246 |#1|) (-1246 |#1|) (-762) (-1107)) 37)) (-2743 (((-1246 (-1246 |#1|)) (-911)) 93)) (-1805 (((-1246 |#1|) (-1246 |#1|) (-1246 |#1|)) 80)) (** (((-1246 |#1|) (-1246 |#1|) (-558)) 43)) (* (((-1246 |#1|) (-1246 |#1|) (-1246 |#1|)) 25)))
-(((-526 |#1|) (-10 -7 (-15 -4207 ((-1251) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) |#1|)) (-15 -3692 ((-1246 |#1|) (-911))) (-15 -2349 ((-1246 |#1|) (-911) (-911))) (-15 -3936 ((-1159 |#1|) (-1246 |#1|))) (-15 -2738 ((-1159 |#1|) (-762))) (-15 -2825 ((-1246 |#1|) (-1246 |#1|) (-762) (-1107))) (-15 -3713 ((-1246 |#1|) (-1246 |#1|) (-762))) (-15 -2519 ((-1246 |#1|) (-1246 |#1|) (-1107) (-1107))) (-15 -1301 ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 ** ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 * ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -1805 ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -1423 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -1719 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -3823 ((-1246 |#1|) (-1246 |#1|))) (-15 -1486 ((-911) (-1246 |#1|))) (-15 -3235 ((-112) (-1246 |#1|))) (-15 -2743 ((-1246 (-1246 |#1|)) (-911))) (-15 -2942 ((-1246 |#1|) (-911))) (-15 -1715 ((-1159 |#1|) (-1246 |#1|)))) (-348)) (T -526))
-((-1715 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 *4))) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-526 *4)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-911)) (-5 *1 (-526 *4)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (-1719 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1805 (*1 *2 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1301 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2519 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1107)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-3713 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-2825 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1246 *5)) (-5 *3 (-762)) (-5 *4 (-1107)) (-4 *5 (-348)) (-5 *1 (-526 *5)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4)))) (-2349 (*1 *2 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-4207 (*1 *2 *3 *4) (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107)))))) (-4 *4 (-348)) (-5 *2 (-1251)) (-5 *1 (-526 *4)))))
-(-10 -7 (-15 -4207 ((-1251) (-1246 (-635 (-2 (|:| -2426 |#1|) (|:| -2349 (-1107))))) |#1|)) (-15 -3692 ((-1246 |#1|) (-911))) (-15 -2349 ((-1246 |#1|) (-911) (-911))) (-15 -3936 ((-1159 |#1|) (-1246 |#1|))) (-15 -2738 ((-1159 |#1|) (-762))) (-15 -2825 ((-1246 |#1|) (-1246 |#1|) (-762) (-1107))) (-15 -3713 ((-1246 |#1|) (-1246 |#1|) (-762))) (-15 -2519 ((-1246 |#1|) (-1246 |#1|) (-1107) (-1107))) (-15 -1301 ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 ** ((-1246 |#1|) (-1246 |#1|) (-558))) (-15 * ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -1805 ((-1246 |#1|) (-1246 |#1|) (-1246 |#1|))) (-15 -1423 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -1719 ((-1246 |#1|) (-1246 |#1|) (-911))) (-15 -3823 ((-1246 |#1|) (-1246 |#1|))) (-15 -1486 ((-911) (-1246 |#1|))) (-15 -3235 ((-112) (-1246 |#1|))) (-15 -2743 ((-1246 (-1246 |#1|)) (-911))) (-15 -2942 ((-1246 |#1|) (-911))) (-15 -1715 ((-1159 |#1|) (-1246 |#1|))))
-((-2657 (((-762) $ (-128)) NIL)) (-3519 (((-681 (-129)) $) 23)) (-2991 (((-1107) $ (-1107)) 28)) (-4145 (((-1107) $) 27)) (-2513 (((-112) $) 18)) (-2506 (($ (-387)) 12) (($ (-1145)) 14)) (-1600 (((-112) $) 24)) (-3940 (((-853) $) 31)) (-1388 (($ $) 25)))
-(((-527) (-13 (-525) (-605 (-853)) (-10 -8 (-15 -2506 ($ (-387))) (-15 -2506 ($ (-1145))) (-15 -1600 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -4145 ((-1107) $)) (-15 -2991 ((-1107) $ (-1107)))))) (T -527))
-((-2506 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))) (-2506 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-527)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-527)))) (-2991 (*1 *2 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-527)))))
-(-13 (-525) (-605 (-853)) (-10 -8 (-15 -2506 ($ (-387))) (-15 -2506 ($ (-1145))) (-15 -1600 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -4145 ((-1107) $)) (-15 -2991 ((-1107) $ (-1107)))))
-((-2029 (((-1 |#1| |#1|) |#1|) 11)) (-3163 (((-1 |#1| |#1|)) 10)))
-(((-528 |#1|) (-10 -7 (-15 -3163 ((-1 |#1| |#1|))) (-15 -2029 ((-1 |#1| |#1|) |#1|))) (-13 (-717) (-25))) (T -528))
-((-2029 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))) (-3163 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))))
-(-10 -7 (-15 -3163 ((-1 |#1| |#1|))) (-15 -2029 ((-1 |#1| |#1|) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2707 (($ $ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-4056 (($ (-762) |#1|) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 (-762) (-762)) $) NIL)) (-2218 ((|#1| $) NIL)) (-3881 (((-762) $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 20)) (-2207 (($) NIL T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL)))
-(((-529 |#1|) (-13 (-784) (-507 (-762) |#1|)) (-841)) (T -529))
-NIL
-(-13 (-784) (-507 (-762) |#1|))
-((-2714 (((-635 |#2|) (-1159 |#1|) |#3|) 83)) (-3781 (((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-417 (-1159 |#1|)) (-1159 |#1|))) 100)) (-2139 (((-1159 |#1|) (-679 |#1|)) 95)))
-(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2139 ((-1159 |#1|) (-679 |#1|))) (-15 -2714 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -3781 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-417 (-1159 |#1|)) (-1159 |#1|))))) (-362) (-362) (-13 (-362) (-839))) (T -530))
-((-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *6)) (-5 *5 (-1 (-417 (-1159 *6)) (-1159 *6))) (-4 *6 (-362)) (-5 *2 (-635 (-2 (|:| |outval| *7) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 *7)))))) (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-839))))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-362)) (-5 *2 (-1159 *4)) (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-839))))))
-(-10 -7 (-15 -2139 ((-1159 |#1|) (-679 |#1|))) (-15 -2714 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -3781 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-417 (-1159 |#1|)) (-1159 |#1|)))))
-((-3025 (((-762) $ (-128)) 39)) (-2432 (((-681 (-129)) $ (-129)) 40)) (-2657 (((-762) $ (-128)) 34)) (-3519 (((-681 (-129)) $) 37)) (-1712 (((-112) $) 29)) (-3376 (((-681 $) (-573) (-944)) 19) (((-681 $) (-489) (-944)) 26)) (-3940 (((-853) $) 49)) (-1388 (($ $) 41)))
-(((-531) (-13 (-758 (-573)) (-605 (-853)) (-10 -8 (-15 -3376 ((-681 $) (-489) (-944)))))) (T -531))
-((-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-489)) (-5 *4 (-944)) (-5 *2 (-681 (-531))) (-5 *1 (-531)))))
-(-13 (-758 (-573)) (-605 (-853)) (-10 -8 (-15 -3376 ((-681 $) (-489) (-944)))))
-((-3564 (((-834 (-558))) 12)) (-3576 (((-834 (-558))) 14)) (-3359 (((-824 (-558))) 9)))
-(((-532) (-10 -7 (-15 -3359 ((-824 (-558)))) (-15 -3564 ((-834 (-558)))) (-15 -3576 ((-834 (-558)))))) (T -532))
-((-3576 (*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532)))) (-3564 (*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532)))) (-3359 (*1 *2) (-12 (-5 *2 (-824 (-558))) (-5 *1 (-532)))))
-(-10 -7 (-15 -3359 ((-824 (-558)))) (-15 -3564 ((-834 (-558)))) (-15 -3576 ((-834 (-558)))))
-((-2466 (((-534) (-1163)) 15)) (-1389 ((|#1| (-534)) 20)))
-(((-533 |#1|) (-10 -7 (-15 -2466 ((-534) (-1163))) (-15 -1389 (|#1| (-534)))) (-1200)) (T -533))
-((-1389 (*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1200)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-534)) (-5 *1 (-533 *4)) (-4 *4 (-1200)))))
-(-10 -7 (-15 -2466 ((-534) (-1163))) (-15 -1389 (|#1| (-534))))
-((-3929 (((-112) $ $) NIL)) (-2351 (((-1145) $) 47)) (-2848 (((-112) $) 43)) (-1650 (((-1163) $) 44)) (-3181 (((-112) $) 41)) (-3503 (((-1145) $) 42)) (-2684 (($ (-1145)) 48)) (-3208 (((-112) $) NIL)) (-3549 (((-112) $) NIL)) (-1974 (((-112) $) NIL)) (-2510 (((-1145) $) NIL)) (-3762 (($ $ (-635 (-1163))) 20)) (-1389 (((-52) $) 22)) (-3840 (((-112) $) NIL)) (-1667 (((-558) $) NIL)) (-1688 (((-1107) $) NIL)) (-1341 (($ $ (-635 (-1163)) (-1163)) 60)) (-1335 (((-112) $) NIL)) (-4114 (((-224) $) NIL)) (-3240 (($ $) 38)) (-3445 (((-853) $) NIL)) (-3846 (((-112) $ $) NIL)) (-2276 (($ $ (-558)) NIL) (($ $ (-635 (-558))) NIL)) (-4017 (((-635 $) $) 28)) (-3587 (((-1163) (-635 $)) 49)) (-3441 (($ (-1145)) NIL) (($ (-1163)) 18) (($ (-558)) 8) (($ (-224)) 25) (($ (-853)) NIL) (($ (-635 $)) 56) (((-1091) $) 11) (($ (-1091)) 12)) (-3988 (((-1163) (-1163) (-635 $)) 52)) (-3940 (((-853) $) 46)) (-2437 (($ $) 51)) (-2423 (($ $) 50)) (-2438 (($ $ (-635 $)) 57)) (-1670 (((-112) $) 27)) (-2207 (($) 9 T CONST)) (-2220 (($) 10 T CONST)) (-1708 (((-112) $ $) 61)) (-1805 (($ $ $) 66)) (-1785 (($ $ $) 62)) (** (($ $ (-762)) 65) (($ $ (-558)) 64)) (* (($ $ $) 63)) (-1596 (((-558) $) NIL)))
-(((-534) (-13 (-1090 (-1145) (-1163) (-558) (-224) (-853)) (-606 (-1091)) (-10 -8 (-15 -1389 ((-52) $)) (-15 -3441 ($ (-1091))) (-15 -2438 ($ $ (-635 $))) (-15 -1341 ($ $ (-635 (-1163)) (-1163))) (-15 -3762 ($ $ (-635 (-1163)))) (-15 -1785 ($ $ $)) (-15 * ($ $ $)) (-15 -1805 ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ (-558))) (-15 0 ($) -2010) (-15 1 ($) -2010) (-15 -3240 ($ $)) (-15 -2351 ((-1145) $)) (-15 -2684 ($ (-1145))) (-15 -3587 ((-1163) (-635 $))) (-15 -3988 ((-1163) (-1163) (-635 $)))))) (T -534))
-((-1389 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-534)))) (-2438 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-534))) (-5 *1 (-534)))) (-1341 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1163)) (-5 *1 (-534)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-534)))) (-1785 (*1 *1 *1 *1) (-5 *1 (-534))) (* (*1 *1 *1 *1) (-5 *1 (-534))) (-1805 (*1 *1 *1 *1) (-5 *1 (-534))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-534)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-534)))) (-2207 (*1 *1) (-5 *1 (-534))) (-2220 (*1 *1) (-5 *1 (-534))) (-3240 (*1 *1 *1) (-5 *1 (-534))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))) (-2684 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-635 (-534))) (-5 *2 (-1163)) (-5 *1 (-534)))) (-3988 (*1 *2 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-534))) (-5 *1 (-534)))))
-(-13 (-1090 (-1145) (-1163) (-558) (-224) (-853)) (-606 (-1091)) (-10 -8 (-15 -1389 ((-52) $)) (-15 -3441 ($ (-1091))) (-15 -2438 ($ $ (-635 $))) (-15 -1341 ($ $ (-635 (-1163)) (-1163))) (-15 -3762 ($ $ (-635 (-1163)))) (-15 -1785 ($ $ $)) (-15 * ($ $ $)) (-15 -1805 ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ (-558))) (-15 (-2207) ($) -2010) (-15 (-2220) ($) -2010) (-15 -3240 ($ $)) (-15 -2351 ((-1145) $)) (-15 -2684 ($ (-1145))) (-15 -3587 ((-1163) (-635 $))) (-15 -3988 ((-1163) (-1163) (-635 $)))))
-((-2065 ((|#2| |#2|) 17)) (-2460 ((|#2| |#2|) 13)) (-3260 ((|#2| |#2| (-558) (-558)) 20)) (-3709 ((|#2| |#2|) 15)))
-(((-535 |#1| |#2|) (-10 -7 (-15 -2460 (|#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -3260 (|#2| |#2| (-558) (-558)))) (-13 (-550) (-146)) (-1237 |#1|)) (T -535))
-((-3260 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-535 *4 *2)) (-4 *2 (-1237 *4)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1237 *3)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1237 *3)))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1237 *3)))))
-(-10 -7 (-15 -2460 (|#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -3260 (|#2| |#2| (-558) (-558))))
-((-1682 (((-635 (-293 (-942 |#2|))) (-635 |#2|) (-635 (-1163))) 32)) (-2785 (((-635 |#2|) (-942 |#1|) |#3|) 53) (((-635 |#2|) (-1159 |#1|) |#3|) 52)) (-2934 (((-635 (-635 |#2|)) (-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)) |#3|) 88)))
-(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2785 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -2785 ((-635 |#2|) (-942 |#1|) |#3|)) (-15 -2934 ((-635 (-635 |#2|)) (-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)) |#3|)) (-15 -1682 ((-635 (-293 (-942 |#2|))) (-635 |#2|) (-635 (-1163))))) (-450) (-362) (-13 (-362) (-839))) (T -536))
-((-1682 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1163))) (-4 *6 (-362)) (-5 *2 (-635 (-293 (-942 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-13 (-362) (-839))))) (-2934 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-839))))) (-2785 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))) (-2785 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))))
-(-10 -7 (-15 -2785 ((-635 |#2|) (-1159 |#1|) |#3|)) (-15 -2785 ((-635 |#2|) (-942 |#1|) |#3|)) (-15 -2934 ((-635 (-635 |#2|)) (-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)) |#3|)) (-15 -1682 ((-635 (-293 (-942 |#2|))) (-635 |#2|) (-635 (-1163)))))
-((-2915 ((|#2| |#2| |#1|) 17)) (-3008 ((|#2| (-635 |#2|)) 26)) (-2741 ((|#2| (-635 |#2|)) 45)))
-(((-537 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3008 (|#2| (-635 |#2|))) (-15 -2741 (|#2| (-635 |#2|))) (-15 -2915 (|#2| |#2| |#1|))) (-306) (-1222 |#1|) |#1| (-1 |#1| |#1| (-762))) (T -537))
-((-2915 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-762))) (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1222 *3)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))))
-(-10 -7 (-15 -3008 (|#2| (-635 |#2|))) (-15 -2741 (|#2| (-635 |#2|))) (-15 -2915 (|#2| |#2| |#1|)))
-((-3939 (((-417 (-1159 |#4|)) (-1159 |#4|) (-1 (-417 (-1159 |#3|)) (-1159 |#3|))) 79) (((-417 |#4|) |#4| (-1 (-417 (-1159 |#3|)) (-1159 |#3|))) 167)))
-(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3939 ((-417 |#4|) |#4| (-1 (-417 (-1159 |#3|)) (-1159 |#3|)))) (-15 -3939 ((-417 (-1159 |#4|)) (-1159 |#4|) (-1 (-417 (-1159 |#3|)) (-1159 |#3|))))) (-841) (-784) (-13 (-306) (-146)) (-939 |#3| |#2| |#1|)) (T -538))
-((-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *8 (-939 *7 *6 *5)) (-5 *2 (-417 (-1159 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1159 *8)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784)) (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3)) (-4 *3 (-939 *7 *6 *5)))))
-(-10 -7 (-15 -3939 ((-417 |#4|) |#4| (-1 (-417 (-1159 |#3|)) (-1159 |#3|)))) (-15 -3939 ((-417 (-1159 |#4|)) (-1159 |#4|) (-1 (-417 (-1159 |#3|)) (-1159 |#3|)))))
-((-2065 ((|#4| |#4|) 73)) (-2460 ((|#4| |#4|) 69)) (-3260 ((|#4| |#4| (-558) (-558)) 75)) (-3709 ((|#4| |#4|) 71)))
-(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2460 (|#4| |#4|)) (-15 -3709 (|#4| |#4|)) (-15 -2065 (|#4| |#4|)) (-15 -3260 (|#4| |#4| (-558) (-558)))) (-13 (-362) (-367) (-606 (-558))) (-1222 |#1|) (-715 |#1| |#2|) (-1237 |#3|)) (T -539))
-((-3260 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3))) (-4 *5 (-1222 *4)) (-4 *6 (-715 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1237 *6)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3)) (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3)) (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5)))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3)) (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5)))))
-(-10 -7 (-15 -2460 (|#4| |#4|)) (-15 -3709 (|#4| |#4|)) (-15 -2065 (|#4| |#4|)) (-15 -3260 (|#4| |#4| (-558) (-558))))
-((-2065 ((|#2| |#2|) 27)) (-2460 ((|#2| |#2|) 23)) (-3260 ((|#2| |#2| (-558) (-558)) 29)) (-3709 ((|#2| |#2|) 25)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -2460 (|#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -3260 (|#2| |#2| (-558) (-558)))) (-13 (-362) (-367) (-606 (-558))) (-1237 |#1|)) (T -540))
-((-3260 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1237 *4)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1237 *3)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1237 *3)))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1237 *3)))))
-(-10 -7 (-15 -2460 (|#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -3260 (|#2| |#2| (-558) (-558))))
-((-2957 (((-3 (-558) "failed") |#2| |#1| (-1 (-3 (-558) "failed") |#1|)) 14) (((-3 (-558) "failed") |#2| |#1| (-558) (-1 (-3 (-558) "failed") |#1|)) 13) (((-3 (-558) "failed") |#2| (-558) (-1 (-3 (-558) "failed") |#1|)) 26)))
-(((-541 |#1| |#2|) (-10 -7 (-15 -2957 ((-3 (-558) "failed") |#2| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -2957 ((-3 (-558) "failed") |#2| |#1| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -2957 ((-3 (-558) "failed") |#2| |#1| (-1 (-3 (-558) "failed") |#1|)))) (-1039) (-1222 |#1|)) (T -541))
-((-2957 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4)))) (-2957 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4)))) (-2957 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-558) "failed") *5)) (-4 *5 (-1039)) (-5 *2 (-558)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1222 *5)))))
-(-10 -7 (-15 -2957 ((-3 (-558) "failed") |#2| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -2957 ((-3 (-558) "failed") |#2| |#1| (-558) (-1 (-3 (-558) "failed") |#1|))) (-15 -2957 ((-3 (-558) "failed") |#2| |#1| (-1 (-3 (-558) "failed") |#1|))))
-((-1997 (($ $ $) 78)) (-4110 (((-417 $) $) 46)) (-3302 (((-3 (-558) "failed") $) 58)) (-3226 (((-558) $) 36)) (-3904 (((-3 (-406 (-558)) "failed") $) 73)) (-2288 (((-112) $) 23)) (-1673 (((-406 (-558)) $) 71)) (-2992 (((-112) $) 49)) (-2283 (($ $ $ $) 85)) (-4053 (((-112) $) 15)) (-3322 (($ $ $) 56)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 68)) (-2521 (((-3 $ "failed") $) 63)) (-1397 (($ $) 22)) (-1521 (($ $ $) 83)) (-1823 (($) 59)) (-3608 (($ $) 52)) (-3939 (((-417 $) $) 44)) (-4254 (((-112) $) 13)) (-1562 (((-762) $) 27)) (-3780 (($ $ (-762)) NIL) (($ $) 10)) (-4098 (($ $) 16)) (-3441 (((-558) $) NIL) (((-534) $) 35) (((-882 (-558)) $) 39) (((-378) $) 30) (((-224) $) 32)) (-2417 (((-762)) 8)) (-2626 (((-112) $ $) 19)) (-3207 (($ $ $) 54)))
-(((-542 |#1|) (-10 -8 (-15 -1521 (|#1| |#1| |#1|)) (-15 -2283 (|#1| |#1| |#1| |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -1997 (|#1| |#1| |#1|)) (-15 -2626 ((-112) |#1| |#1|)) (-15 -4254 ((-112) |#1|)) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -3441 ((-224) |#1|)) (-15 -3441 ((-378) |#1|)) (-15 -3322 (|#1| |#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3441 ((-558) |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -4053 ((-112) |#1|)) (-15 -1562 ((-762) |#1|)) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -2417 ((-762)))) (-543)) (T -542))
-((-2417 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-542 *3)) (-4 *3 (-543)))))
-(-10 -8 (-15 -1521 (|#1| |#1| |#1|)) (-15 -2283 (|#1| |#1| |#1| |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -1997 (|#1| |#1| |#1|)) (-15 -2626 ((-112) |#1| |#1|)) (-15 -4254 ((-112) |#1|)) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -3441 ((-224) |#1|)) (-15 -3441 ((-378) |#1|)) (-15 -3322 (|#1| |#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3441 ((-558) |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -4053 ((-112) |#1|)) (-15 -1562 ((-762) |#1|)) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -2417 ((-762))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1997 (($ $ $) 85)) (-1868 (((-3 $ "failed") $ $) 19)) (-1502 (($ $ $ $) 74)) (-2018 (($ $) 52)) (-4110 (((-417 $) $) 53)) (-1599 (((-112) $ $) 125)) (-1334 (((-558) $) 114)) (-3277 (($ $ $) 88)) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 106)) (-3226 (((-558) $) 107)) (-1709 (($ $ $) 129)) (-1918 (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 104) (((-679 (-558)) (-679 $)) 103)) (-3248 (((-3 $ "failed") $) 33)) (-3904 (((-3 (-406 (-558)) "failed") $) 82)) (-2288 (((-112) $) 84)) (-1673 (((-406 (-558)) $) 83)) (-3692 (($) 81) (($ $) 80)) (-2881 (($ $ $) 128)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 123)) (-2992 (((-112) $) 54)) (-2283 (($ $ $ $) 72)) (-4089 (($ $ $) 86)) (-4053 (((-112) $) 116)) (-3322 (($ $ $) 97)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 100)) (-3999 (((-112) $) 31)) (-1495 (((-112) $) 92)) (-2521 (((-3 $ "failed") $) 94)) (-2032 (((-112) $) 115)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 132)) (-3664 (($ $ $ $) 73)) (-2142 (($ $ $) 117)) (-2281 (($ $ $) 118)) (-1397 (($ $) 76)) (-2958 (($ $) 89)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-1521 (($ $ $) 71)) (-1823 (($) 93 T CONST)) (-1610 (($ $) 78)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3608 (($ $) 98)) (-3939 (((-417 $) $) 51)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 130)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 124)) (-4254 (((-112) $) 91)) (-1562 (((-762) $) 126)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 127)) (-3780 (($ $ (-762)) 111) (($ $) 109)) (-3915 (($ $) 77)) (-4098 (($ $) 79)) (-3441 (((-558) $) 108) (((-534) $) 102) (((-882 (-558)) $) 101) (((-378) $) 96) (((-224) $) 95)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-558)) 105)) (-2417 (((-762)) 28)) (-2626 (((-112) $ $) 87)) (-3207 (($ $ $) 99)) (-2636 (($) 90)) (-2671 (((-112) $ $) 40)) (-4363 (($ $ $ $) 75)) (-4241 (($ $) 113)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-762)) 112) (($ $) 110)) (-1757 (((-112) $ $) 120)) (-1737 (((-112) $ $) 121)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 119)) (-1728 (((-112) $ $) 122)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
+((-3287 (((-1162 |#1|) (-765)) 75)) (-1744 (((-1253 |#1|) (-1253 |#1|) (-914)) 68)) (-4133 (((-1258) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) |#1|) 83)) (-4308 (((-1253 |#1|) (-1253 |#1|) (-765)) 36)) (-1332 (((-1253 |#1|) (-914)) 70)) (-1937 (((-1253 |#1|) (-1253 |#1|) (-561)) 24)) (-4158 (((-1162 |#1|) (-1253 |#1|)) 76)) (-2052 (((-1253 |#1|) (-914)) 94)) (-3584 (((-112) (-1253 |#1|)) 79)) (-1672 (((-1253 |#1|) (-1253 |#1|) (-914)) 61)) (-2692 (((-1162 |#1|) (-1253 |#1|)) 88)) (-3198 (((-914) (-1253 |#1|)) 58)) (-1540 (((-1253 |#1|) (-1253 |#1|)) 30)) (-2413 (((-1253 |#1|) (-914) (-914)) 96)) (-3442 (((-1253 |#1|) (-1253 |#1|) (-1110) (-1110)) 23)) (-1615 (((-1253 |#1|) (-1253 |#1|) (-765) (-1110)) 37)) (-3711 (((-1253 (-1253 |#1|)) (-914)) 93)) (-1833 (((-1253 |#1|) (-1253 |#1|) (-1253 |#1|)) 80)) (** (((-1253 |#1|) (-1253 |#1|) (-561)) 43)) (* (((-1253 |#1|) (-1253 |#1|) (-1253 |#1|)) 25)))
+(((-526 |#1|) (-10 -7 (-15 -4133 ((-1258) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) |#1|)) (-15 -1332 ((-1253 |#1|) (-914))) (-15 -2413 ((-1253 |#1|) (-914) (-914))) (-15 -4158 ((-1162 |#1|) (-1253 |#1|))) (-15 -3287 ((-1162 |#1|) (-765))) (-15 -1615 ((-1253 |#1|) (-1253 |#1|) (-765) (-1110))) (-15 -4308 ((-1253 |#1|) (-1253 |#1|) (-765))) (-15 -3442 ((-1253 |#1|) (-1253 |#1|) (-1110) (-1110))) (-15 -1937 ((-1253 |#1|) (-1253 |#1|) (-561))) (-15 ** ((-1253 |#1|) (-1253 |#1|) (-561))) (-15 * ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -1833 ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -1672 ((-1253 |#1|) (-1253 |#1|) (-914))) (-15 -1744 ((-1253 |#1|) (-1253 |#1|) (-914))) (-15 -1540 ((-1253 |#1|) (-1253 |#1|))) (-15 -3198 ((-914) (-1253 |#1|))) (-15 -3584 ((-112) (-1253 |#1|))) (-15 -3711 ((-1253 (-1253 |#1|)) (-914))) (-15 -2052 ((-1253 |#1|) (-914))) (-15 -2692 ((-1162 |#1|) (-1253 |#1|)))) (-348)) (T -526))
+((-2692 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1253 (-1253 *4))) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-526 *4)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-914)) (-5 *1 (-526 *4)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (-1744 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-914)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1672 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-914)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1833 (*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-561)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1937 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-561)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-3442 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1110)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-4308 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-526 *4)))) (-1615 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1253 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-348)) (-5 *1 (-526 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4)))) (-2413 (*1 *2 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-348)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110)))))) (-4 *4 (-348)) (-5 *2 (-1258)) (-5 *1 (-526 *4)))))
+(-10 -7 (-15 -4133 ((-1258) (-1253 (-638 (-2 (|:| -2484 |#1|) (|:| -2413 (-1110))))) |#1|)) (-15 -1332 ((-1253 |#1|) (-914))) (-15 -2413 ((-1253 |#1|) (-914) (-914))) (-15 -4158 ((-1162 |#1|) (-1253 |#1|))) (-15 -3287 ((-1162 |#1|) (-765))) (-15 -1615 ((-1253 |#1|) (-1253 |#1|) (-765) (-1110))) (-15 -4308 ((-1253 |#1|) (-1253 |#1|) (-765))) (-15 -3442 ((-1253 |#1|) (-1253 |#1|) (-1110) (-1110))) (-15 -1937 ((-1253 |#1|) (-1253 |#1|) (-561))) (-15 ** ((-1253 |#1|) (-1253 |#1|) (-561))) (-15 * ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -1833 ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -1672 ((-1253 |#1|) (-1253 |#1|) (-914))) (-15 -1744 ((-1253 |#1|) (-1253 |#1|) (-914))) (-15 -1540 ((-1253 |#1|) (-1253 |#1|))) (-15 -3198 ((-914) (-1253 |#1|))) (-15 -3584 ((-112) (-1253 |#1|))) (-15 -3711 ((-1253 (-1253 |#1|)) (-914))) (-15 -2052 ((-1253 |#1|) (-914))) (-15 -2692 ((-1162 |#1|) (-1253 |#1|))))
+((-3088 (((-765) $ (-128)) NIL)) (-2568 (((-684 (-129)) $) 23)) (-4261 (((-1110) $ (-1110)) 28)) (-4235 (((-1110) $) 27)) (-2723 (((-112) $) 18)) (-3162 (($ (-387)) 12) (($ (-1148)) 14)) (-4169 (((-112) $) 24)) (-4022 (((-856) $) 31)) (-2836 (($ $) 25)))
+(((-527) (-13 (-525) (-608 (-856)) (-10 -8 (-15 -3162 ($ (-387))) (-15 -3162 ($ (-1148))) (-15 -4169 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -4235 ((-1110) $)) (-15 -4261 ((-1110) $ (-1110)))))) (T -527))
+((-3162 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))) (-4261 (*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))))
+(-13 (-525) (-608 (-856)) (-10 -8 (-15 -3162 ($ (-387))) (-15 -3162 ($ (-1148))) (-15 -4169 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -4235 ((-1110) $)) (-15 -4261 ((-1110) $ (-1110)))))
+((-3518 (((-1 |#1| |#1|) |#1|) 11)) (-2263 (((-1 |#1| |#1|)) 10)))
+(((-528 |#1|) (-10 -7 (-15 -2263 ((-1 |#1| |#1|))) (-15 -3518 ((-1 |#1| |#1|) |#1|))) (-13 (-720) (-25))) (T -528))
+((-3518 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))) (-2263 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
+(-10 -7 (-15 -2263 ((-1 |#1| |#1|))) (-15 -3518 ((-1 |#1| |#1|) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2090 (($ $ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-1387 (($ (-765) |#1|) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 (-765) (-765)) $) NIL)) (-3332 ((|#1| $) NIL)) (-1590 (((-765) $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 20)) (-2211 (($) NIL T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL)))
+(((-529 |#1|) (-13 (-787) (-507 (-765) |#1|)) (-844)) (T -529))
+NIL
+(-13 (-787) (-507 (-765) |#1|))
+((-4047 (((-638 |#2|) (-1162 |#1|) |#3|) 83)) (-4246 (((-638 (-2 (|:| |outval| |#2|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-417 (-1162 |#1|)) (-1162 |#1|))) 100)) (-1477 (((-1162 |#1|) (-682 |#1|)) 95)))
+(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -1477 ((-1162 |#1|) (-682 |#1|))) (-15 -4047 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -4246 ((-638 (-2 (|:| |outval| |#2|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-417 (-1162 |#1|)) (-1162 |#1|))))) (-362) (-362) (-13 (-362) (-842))) (T -530))
+((-4246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-417 (-1162 *6)) (-1162 *6))) (-4 *6 (-362)) (-5 *2 (-638 (-2 (|:| |outval| *7) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 *7)))))) (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842))))) (-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *5)) (-4 *5 (-362)) (-5 *2 (-638 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1162 *4)) (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842))))))
+(-10 -7 (-15 -1477 ((-1162 |#1|) (-682 |#1|))) (-15 -4047 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -4246 ((-638 (-2 (|:| |outval| |#2|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-417 (-1162 |#1|)) (-1162 |#1|)))))
+((-2569 (((-765) $ (-128)) 39)) (-2623 (((-684 (-129)) $ (-129)) 40)) (-3088 (((-765) $ (-128)) 34)) (-2568 (((-684 (-129)) $) 37)) (-4027 (((-112) $) 29)) (-2825 (((-684 $) (-576) (-947)) 19) (((-684 $) (-489) (-947)) 26)) (-4022 (((-856) $) 49)) (-2836 (($ $) 41)))
+(((-531) (-13 (-761 (-576)) (-608 (-856)) (-10 -8 (-15 -2825 ((-684 $) (-489) (-947)))))) (T -531))
+((-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531))) (-5 *1 (-531)))))
+(-13 (-761 (-576)) (-608 (-856)) (-10 -8 (-15 -2825 ((-684 $) (-489) (-947)))))
+((-3603 (((-837 (-561))) 12)) (-3614 (((-837 (-561))) 14)) (-4079 (((-827 (-561))) 9)))
+(((-532) (-10 -7 (-15 -4079 ((-827 (-561)))) (-15 -3603 ((-837 (-561)))) (-15 -3614 ((-837 (-561)))))) (T -532))
+((-3614 (*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532)))) (-3603 (*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532)))) (-4079 (*1 *2) (-12 (-5 *2 (-827 (-561))) (-5 *1 (-532)))))
+(-10 -7 (-15 -4079 ((-827 (-561)))) (-15 -3603 ((-837 (-561)))) (-15 -3614 ((-837 (-561)))))
+((-2834 (((-534) (-1166)) 15)) (-3902 ((|#1| (-534)) 20)))
+(((-533 |#1|) (-10 -7 (-15 -2834 ((-534) (-1166))) (-15 -3902 (|#1| (-534)))) (-1205)) (T -533))
+((-3902 (*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1205)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-534)) (-5 *1 (-533 *4)) (-4 *4 (-1205)))))
+(-10 -7 (-15 -2834 ((-534) (-1166))) (-15 -3902 (|#1| (-534))))
+((-4011 (((-112) $ $) NIL)) (-4219 (((-1148) $) 47)) (-3997 (((-112) $) 43)) (-1730 (((-1166) $) 44)) (-1669 (((-112) $) 41)) (-3595 (((-1148) $) 42)) (-3493 (($ (-1148)) 48)) (-3285 (((-112) $) NIL)) (-1328 (((-112) $) NIL)) (-1448 (((-112) $) NIL)) (-1764 (((-1148) $) NIL)) (-3864 (($ $ (-638 (-1166))) 20)) (-3902 (((-52) $) 22)) (-2382 (((-112) $) NIL)) (-1750 (((-561) $) NIL)) (-1714 (((-1110) $) NIL)) (-1418 (($ $ (-638 (-1166)) (-1166)) 60)) (-1422 (((-112) $) NIL)) (-4205 (((-224) $) NIL)) (-2714 (($ $) 38)) (-2345 (((-856) $) NIL)) (-3360 (((-112) $ $) NIL)) (-2277 (($ $ (-561)) NIL) (($ $ (-638 (-561))) NIL)) (-1721 (((-638 $) $) 28)) (-3102 (((-1166) (-638 $)) 49)) (-4174 (($ (-1148)) NIL) (($ (-1166)) 18) (($ (-561)) 8) (($ (-224)) 25) (($ (-856)) NIL) (($ (-638 $)) 56) (((-1094) $) 11) (($ (-1094)) 12)) (-3473 (((-1166) (-1166) (-638 $)) 52)) (-4022 (((-856) $) 46)) (-3731 (($ $) 51)) (-3719 (($ $) 50)) (-1708 (($ $ (-638 $)) 57)) (-2988 (((-112) $) 27)) (-2211 (($) 9 T CONST)) (-2222 (($) 10 T CONST)) (-1733 (((-112) $ $) 61)) (-1833 (($ $ $) 66)) (-1813 (($ $ $) 62)) (** (($ $ (-765)) 65) (($ $ (-561)) 64)) (* (($ $ $) 63)) (-3498 (((-561) $) NIL)))
+(((-534) (-13 (-1093 (-1148) (-1166) (-561) (-224) (-856)) (-609 (-1094)) (-10 -8 (-15 -3902 ((-52) $)) (-15 -4174 ($ (-1094))) (-15 -1708 ($ $ (-638 $))) (-15 -1418 ($ $ (-638 (-1166)) (-1166))) (-15 -3864 ($ $ (-638 (-1166)))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 -1833 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-561))) (-15 0 ($) -1514) (-15 1 ($) -1514) (-15 -2714 ($ $)) (-15 -4219 ((-1148) $)) (-15 -3493 ($ (-1148))) (-15 -3102 ((-1166) (-638 $))) (-15 -3473 ((-1166) (-1166) (-638 $)))))) (T -534))
+((-3902 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-534)))) (-1708 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-534))) (-5 *1 (-534)))) (-1418 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1166)) (-5 *1 (-534)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-534)))) (-1813 (*1 *1 *1 *1) (-5 *1 (-534))) (* (*1 *1 *1 *1) (-5 *1 (-534))) (-1833 (*1 *1 *1 *1) (-5 *1 (-534))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-534)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-534)))) (-2211 (*1 *1) (-5 *1 (-534))) (-2222 (*1 *1) (-5 *1 (-534))) (-2714 (*1 *1 *1) (-5 *1 (-534))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-638 (-534))) (-5 *2 (-1166)) (-5 *1 (-534)))) (-3473 (*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-534))) (-5 *1 (-534)))))
+(-13 (-1093 (-1148) (-1166) (-561) (-224) (-856)) (-609 (-1094)) (-10 -8 (-15 -3902 ((-52) $)) (-15 -4174 ($ (-1094))) (-15 -1708 ($ $ (-638 $))) (-15 -1418 ($ $ (-638 (-1166)) (-1166))) (-15 -3864 ($ $ (-638 (-1166)))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 -1833 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-561))) (-15 (-2211) ($) -1514) (-15 (-2222) ($) -1514) (-15 -2714 ($ $)) (-15 -4219 ((-1148) $)) (-15 -3493 ($ (-1148))) (-15 -3102 ((-1166) (-638 $))) (-15 -3473 ((-1166) (-1166) (-638 $)))))
+((-2289 ((|#2| |#2|) 17)) (-2459 ((|#2| |#2|) 13)) (-2000 ((|#2| |#2| (-561) (-561)) 20)) (-1300 ((|#2| |#2|) 15)))
+(((-535 |#1| |#2|) (-10 -7 (-15 -2459 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2000 (|#2| |#2| (-561) (-561)))) (-13 (-553) (-146)) (-1244 |#1|)) (T -535))
+((-2000 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-535 *4 *2)) (-4 *2 (-1244 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1244 *3)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1244 *3)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1244 *3)))))
+(-10 -7 (-15 -2459 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2000 (|#2| |#2| (-561) (-561))))
+((-4284 (((-638 (-293 (-945 |#2|))) (-638 |#2|) (-638 (-1166))) 32)) (-2340 (((-638 |#2|) (-945 |#1|) |#3|) 53) (((-638 |#2|) (-1162 |#1|) |#3|) 52)) (-3955 (((-638 (-638 |#2|)) (-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)) |#3|) 88)))
+(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -2340 ((-638 |#2|) (-945 |#1|) |#3|)) (-15 -3955 ((-638 (-638 |#2|)) (-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)) |#3|)) (-15 -4284 ((-638 (-293 (-945 |#2|))) (-638 |#2|) (-638 (-1166))))) (-450) (-362) (-13 (-362) (-842))) (T -536))
+((-4284 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1166))) (-4 *6 (-362)) (-5 *2 (-638 (-293 (-945 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-13 (-362) (-842))))) (-3955 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-638 (-638 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-842))))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2340 ((-638 |#2|) (-1162 |#1|) |#3|)) (-15 -2340 ((-638 |#2|) (-945 |#1|) |#3|)) (-15 -3955 ((-638 (-638 |#2|)) (-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)) |#3|)) (-15 -4284 ((-638 (-293 (-945 |#2|))) (-638 |#2|) (-638 (-1166)))))
+((-3471 ((|#2| |#2| |#1|) 17)) (-2771 ((|#2| (-638 |#2|)) 26)) (-4334 ((|#2| (-638 |#2|)) 45)))
+(((-537 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2771 (|#2| (-638 |#2|))) (-15 -4334 (|#2| (-638 |#2|))) (-15 -3471 (|#2| |#2| |#1|))) (-306) (-1229 |#1|) |#1| (-1 |#1| |#1| (-765))) (T -537))
+((-3471 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765))) (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1229 *3)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
+(-10 -7 (-15 -2771 (|#2| (-638 |#2|))) (-15 -4334 (|#2| (-638 |#2|))) (-15 -3471 (|#2| |#2| |#1|)))
+((-1657 (((-417 (-1162 |#4|)) (-1162 |#4|) (-1 (-417 (-1162 |#3|)) (-1162 |#3|))) 79) (((-417 |#4|) |#4| (-1 (-417 (-1162 |#3|)) (-1162 |#3|))) 167)))
+(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-417 |#4|) |#4| (-1 (-417 (-1162 |#3|)) (-1162 |#3|)))) (-15 -1657 ((-417 (-1162 |#4|)) (-1162 |#4|) (-1 (-417 (-1162 |#3|)) (-1162 |#3|))))) (-844) (-787) (-13 (-306) (-146)) (-942 |#3| |#2| |#1|)) (T -538))
+((-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-942 *7 *6 *5)) (-5 *2 (-417 (-1162 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1162 *8)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3)) (-4 *3 (-942 *7 *6 *5)))))
+(-10 -7 (-15 -1657 ((-417 |#4|) |#4| (-1 (-417 (-1162 |#3|)) (-1162 |#3|)))) (-15 -1657 ((-417 (-1162 |#4|)) (-1162 |#4|) (-1 (-417 (-1162 |#3|)) (-1162 |#3|)))))
+((-2289 ((|#4| |#4|) 73)) (-2459 ((|#4| |#4|) 69)) (-2000 ((|#4| |#4| (-561) (-561)) 75)) (-1300 ((|#4| |#4|) 71)))
+(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2459 (|#4| |#4|)) (-15 -1300 (|#4| |#4|)) (-15 -2289 (|#4| |#4|)) (-15 -2000 (|#4| |#4| (-561) (-561)))) (-13 (-362) (-367) (-609 (-561))) (-1229 |#1|) (-718 |#1| |#2|) (-1244 |#3|)) (T -539))
+((-2000 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-4 *5 (-1229 *4)) (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1244 *6)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1244 *5)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1244 *5)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1244 *5)))))
+(-10 -7 (-15 -2459 (|#4| |#4|)) (-15 -1300 (|#4| |#4|)) (-15 -2289 (|#4| |#4|)) (-15 -2000 (|#4| |#4| (-561) (-561))))
+((-2289 ((|#2| |#2|) 27)) (-2459 ((|#2| |#2|) 23)) (-2000 ((|#2| |#2| (-561) (-561)) 29)) (-1300 ((|#2| |#2|) 25)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -2459 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2000 (|#2| |#2| (-561) (-561)))) (-13 (-362) (-367) (-609 (-561))) (-1244 |#1|)) (T -540))
+((-2000 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1244 *4)))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1244 *3)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1244 *3)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1244 *3)))))
+(-10 -7 (-15 -2459 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2000 (|#2| |#2| (-561) (-561))))
+((-1331 (((-3 (-561) "failed") |#2| |#1| (-1 (-3 (-561) "failed") |#1|)) 14) (((-3 (-561) "failed") |#2| |#1| (-561) (-1 (-3 (-561) "failed") |#1|)) 13) (((-3 (-561) "failed") |#2| (-561) (-1 (-3 (-561) "failed") |#1|)) 26)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -1331 ((-3 (-561) "failed") |#2| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -1331 ((-3 (-561) "failed") |#2| |#1| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -1331 ((-3 (-561) "failed") |#2| |#1| (-1 (-3 (-561) "failed") |#1|)))) (-1042) (-1229 |#1|)) (T -541))
+((-1331 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))) (-1331 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))) (-1331 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-561) "failed") *5)) (-4 *5 (-1042)) (-5 *2 (-561)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -1331 ((-3 (-561) "failed") |#2| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -1331 ((-3 (-561) "failed") |#2| |#1| (-561) (-1 (-3 (-561) "failed") |#1|))) (-15 -1331 ((-3 (-561) "failed") |#2| |#1| (-1 (-3 (-561) "failed") |#1|))))
+((-1854 (($ $ $) 78)) (-3422 (((-417 $) $) 46)) (-4017 (((-3 (-561) "failed") $) 58)) (-3938 (((-561) $) 36)) (-2937 (((-3 (-406 (-561)) "failed") $) 73)) (-3798 (((-112) $) 23)) (-3354 (((-406 (-561)) $) 71)) (-2737 (((-112) $) 49)) (-1288 (($ $ $ $) 85)) (-3201 (((-112) $) 15)) (-2227 (($ $ $) 56)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 68)) (-1663 (((-3 $ "failed") $) 63)) (-3908 (($ $) 22)) (-4305 (($ $ $) 83)) (-3721 (($) 59)) (-2101 (($ $) 52)) (-1657 (((-417 $) $) 44)) (-2736 (((-112) $) 13)) (-3569 (((-765) $) 27)) (-3238 (($ $ (-765)) NIL) (($ $) 10)) (-4187 (($ $) 16)) (-4174 (((-561) $) NIL) (((-534) $) 35) (((-885 (-561)) $) 39) (((-378) $) 30) (((-224) $) 32)) (-4259 (((-765)) 8)) (-1383 (((-112) $ $) 19)) (-3599 (($ $ $) 54)))
+(((-542 |#1|) (-10 -8 (-15 -4305 (|#1| |#1| |#1|)) (-15 -1288 (|#1| |#1| |#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -4187 (|#1| |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1383 ((-112) |#1| |#1|)) (-15 -2736 ((-112) |#1|)) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -4174 ((-224) |#1|)) (-15 -4174 ((-378) |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4174 ((-561) |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3201 ((-112) |#1|)) (-15 -3569 ((-765) |#1|)) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -2737 ((-112) |#1|)) (-15 -4259 ((-765)))) (-543)) (T -542))
+((-4259 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543)))))
+(-10 -8 (-15 -4305 (|#1| |#1| |#1|)) (-15 -1288 (|#1| |#1| |#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -4187 (|#1| |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1383 ((-112) |#1| |#1|)) (-15 -2736 ((-112) |#1|)) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -4174 ((-224) |#1|)) (-15 -4174 ((-378) |#1|)) (-15 -2227 (|#1| |#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -3599 (|#1| |#1| |#1|)) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4174 ((-561) |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3201 ((-112) |#1|)) (-15 -3569 ((-765) |#1|)) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -2737 ((-112) |#1|)) (-15 -4259 ((-765))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-1854 (($ $ $) 85)) (-2249 (((-3 $ "failed") $ $) 19)) (-3420 (($ $ $ $) 74)) (-1591 (($ $) 52)) (-3422 (((-417 $) $) 53)) (-1671 (((-112) $ $) 125)) (-2666 (((-561) $) 114)) (-3368 (($ $ $) 88)) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 106)) (-3938 (((-561) $) 107)) (-1793 (($ $ $) 129)) (-3602 (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 104) (((-682 (-561)) (-682 $)) 103)) (-3466 (((-3 $ "failed") $) 33)) (-2937 (((-3 (-406 (-561)) "failed") $) 82)) (-3798 (((-112) $) 84)) (-3354 (((-406 (-561)) $) 83)) (-1332 (($) 81) (($ $) 80)) (-1774 (($ $ $) 128)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 123)) (-2737 (((-112) $) 54)) (-1288 (($ $ $ $) 72)) (-3531 (($ $ $) 86)) (-3201 (((-112) $) 116)) (-2227 (($ $ $) 97)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 100)) (-3113 (((-112) $) 31)) (-3402 (((-112) $) 92)) (-1663 (((-3 $ "failed") $) 94)) (-2110 (((-112) $) 115)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 132)) (-3386 (($ $ $ $) 73)) (-3443 (($ $ $) 117)) (-2986 (($ $ $) 118)) (-3908 (($ $) 76)) (-3617 (($ $) 89)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-4305 (($ $ $) 71)) (-3721 (($) 93 T CONST)) (-4103 (($ $) 78)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-2101 (($ $) 98)) (-1657 (((-417 $) $) 51)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 130)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 124)) (-2736 (((-112) $) 91)) (-3569 (((-765) $) 126)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 127)) (-3238 (($ $ (-765)) 111) (($ $) 109)) (-3994 (($ $) 77)) (-4187 (($ $) 79)) (-4174 (((-561) $) 108) (((-534) $) 102) (((-885 (-561)) $) 101) (((-378) $) 96) (((-224) $) 95)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-561)) 105)) (-4259 (((-765)) 28)) (-1383 (((-112) $ $) 87)) (-3599 (($ $ $) 99)) (-2684 (($) 90)) (-3168 (((-112) $ $) 40)) (-3383 (($ $ $ $) 75)) (-3749 (($ $) 113)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-765)) 112) (($ $) 110)) (-1782 (((-112) $ $) 120)) (-1762 (((-112) $ $) 121)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 119)) (-1754 (((-112) $ $) 122)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
(((-543) (-139)) (T -543))
-((-1495 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2636 (*1 *1) (-4 *1 (-543))) (-2958 (*1 *1 *1) (-4 *1 (-543))) (-3277 (*1 *1 *1 *1) (-4 *1 (-543))) (-2626 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-4089 (*1 *1 *1 *1) (-4 *1 (-543))) (-1997 (*1 *1 *1 *1) (-4 *1 (-543))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-558))))) (-3904 (*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-558))))) (-3692 (*1 *1) (-4 *1 (-543))) (-3692 (*1 *1 *1) (-4 *1 (-543))) (-4098 (*1 *1 *1) (-4 *1 (-543))) (-1610 (*1 *1 *1) (-4 *1 (-543))) (-3915 (*1 *1 *1) (-4 *1 (-543))) (-1397 (*1 *1 *1) (-4 *1 (-543))) (-4363 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1502 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-3664 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2283 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1521 (*1 *1 *1 *1) (-4 *1 (-543))))
-(-13 (-1204) (-306) (-811) (-232) (-606 (-558)) (-1028 (-558)) (-631 (-558)) (-606 (-534)) (-606 (-882 (-558))) (-876 (-558)) (-142) (-1012) (-146) (-1138) (-10 -8 (-15 -1495 ((-112) $)) (-15 -4254 ((-112) $)) (-6 -4382) (-15 -2636 ($)) (-15 -2958 ($ $)) (-15 -3277 ($ $ $)) (-15 -2626 ((-112) $ $)) (-15 -4089 ($ $ $)) (-15 -1997 ($ $ $)) (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $)) (-15 -3692 ($)) (-15 -3692 ($ $)) (-15 -4098 ($ $)) (-15 -1610 ($ $)) (-15 -3915 ($ $)) (-15 -1397 ($ $)) (-15 -4363 ($ $ $ $)) (-15 -1502 ($ $ $ $)) (-15 -3664 ($ $ $ $)) (-15 -2283 ($ $ $ $)) (-15 -1521 ($ $ $)) (-6 -4381)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-142) . T) ((-171) . T) ((-606 (-224)) . T) ((-606 (-378)) . T) ((-606 (-534)) . T) ((-606 (-558)) . T) ((-606 (-882 (-558))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-631 (-558)) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-811) . T) ((-839) . T) ((-841) . T) ((-876 (-558)) . T) ((-910) . T) ((-1012) . T) ((-1028 (-558)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) . T) ((-1204) . T))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3552 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#2| $ |#1| |#2|) NIL)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) NIL)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) NIL)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) NIL)) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 ((|#1| $) NIL (|has| |#1| (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 ((|#1| $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1934 (((-635 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3051 (((-635 |#1|) $) NIL)) (-2740 (((-112) |#1| $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#2| $) NIL (|has| |#1| (-841)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-544 |#1| |#2| |#3|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383))) (-1087) (-1087) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383)))) (T -544))
-NIL
-(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383)))
-((-3579 (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-1 (-1159 |#2|) (-1159 |#2|))) 51)))
-(((-545 |#1| |#2|) (-10 -7 (-15 -3579 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-1 (-1159 |#2|) (-1159 |#2|))))) (-13 (-841) (-550)) (-13 (-27) (-429 |#1|))) (T -545))
-((-3579 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-604 *3)) (-5 *5 (-1 (-1159 *3) (-1159 *3))) (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-841) (-550))) (-5 *2 (-579 *3)) (-5 *1 (-545 *6 *3)))))
-(-10 -7 (-15 -3579 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-1 (-1159 |#2|) (-1159 |#2|)))))
-((-3047 (((-579 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-3058 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-4335 (((-579 |#5|) |#5| (-1 |#3| |#3|)) 201)))
-(((-546 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4335 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3047 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3058 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-841) (-550) (-1028 (-558))) (-13 (-27) (-429 |#1|)) (-1222 |#2|) (-1222 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -546))
-((-3058 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-27) (-429 *4))) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-4 *7 (-1222 (-406 *6))) (-5 *1 (-546 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7))) (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-4335 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7))) (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))))
-(-10 -7 (-15 -4335 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3047 ((-579 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3058 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1748 (((-112) (-558) (-558)) 10)) (-3512 (((-558) (-558)) 7)) (-1585 (((-558) (-558) (-558)) 8)))
-(((-547) (-10 -7 (-15 -3512 ((-558) (-558))) (-15 -1585 ((-558) (-558) (-558))) (-15 -1748 ((-112) (-558) (-558))))) (T -547))
-((-1748 (*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-547)))) (-1585 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))))
-(-10 -7 (-15 -3512 ((-558) (-558))) (-15 -1585 ((-558) (-558) (-558))) (-15 -1748 ((-112) (-558) (-558))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3592 ((|#1| $) 62)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-2277 (($ $) 92)) (-2131 (($ $) 75)) (-2707 ((|#1| $) 63)) (-1868 (((-3 $ "failed") $ $) 19)) (-3948 (($ $) 74)) (-2254 (($ $) 91)) (-2109 (($ $) 76)) (-2298 (($ $) 90)) (-2158 (($ $) 77)) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 70)) (-3226 (((-558) $) 71)) (-3248 (((-3 $ "failed") $) 33)) (-2641 (($ |#1| |#1|) 67)) (-4053 (((-112) $) 61)) (-3348 (($) 102)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 73)) (-2032 (((-112) $) 60)) (-2142 (($ $ $) 108)) (-2281 (($ $ $) 107)) (-4342 (($ $) 99)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-2303 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-558))) 65)) (-2790 ((|#1| $) 64)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-2861 (((-3 $ "failed") $ $) 43)) (-3944 (($ $) 100)) (-2312 (($ $) 89)) (-2170 (($ $) 78)) (-2289 (($ $) 88)) (-2146 (($ $) 79)) (-2265 (($ $) 87)) (-2120 (($ $) 80)) (-2232 (((-112) $ |#1|) 59)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-558)) 69)) (-2417 (((-762)) 28)) (-4175 (($ $) 98)) (-2209 (($ $) 86)) (-2671 (((-112) $ $) 40)) (-2325 (($ $) 97)) (-2184 (($ $) 85)) (-4197 (($ $) 96)) (-2233 (($ $) 84)) (-2038 (($ $) 95)) (-2244 (($ $) 83)) (-4185 (($ $) 94)) (-2221 (($ $) 82)) (-4164 (($ $) 93)) (-2195 (($ $) 81)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1757 (((-112) $ $) 105)) (-1737 (((-112) $ $) 104)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 106)) (-1728 (((-112) $ $) 103)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ $) 101) (($ $ (-406 (-558))) 72)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-548 |#1|) (-139) (-13 (-403) (-1185))) (T -548))
-((-2303 (*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-2641 (*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-2303 (*1 *1 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-2303 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))) (-2232 (*1 *2 *1 *3) (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))))
-(-13 (-450) (-841) (-1185) (-992) (-1028 (-558)) (-10 -8 (-6 -1422) (-15 -2303 ($ |t#1| |t#1|)) (-15 -2641 ($ |t#1| |t#1|)) (-15 -2303 ($ |t#1|)) (-15 -2303 ($ (-406 (-558)))) (-15 -2790 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -3592 (|t#1| $)) (-15 -4053 ((-112) $)) (-15 -2032 ((-112) $)) (-15 -2232 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-450) . T) ((-491) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-841) . T) ((-992) . T) ((-1028 (-558)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) . T) ((-1188) . T))
-((-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 9)) (-3244 (($ $) 11)) (-4326 (((-112) $) 18)) (-3248 (((-3 $ "failed") $) 16)) (-2671 (((-112) $ $) 20)))
-(((-549 |#1|) (-10 -8 (-15 -4326 ((-112) |#1|)) (-15 -2671 ((-112) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -2008 ((-2 (|:| -3466 |#1|) (|:| -4370 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|))) (-550)) (T -549))
-NIL
-(-10 -8 (-15 -4326 ((-112) |#1|)) (-15 -2671 ((-112) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -2008 ((-2 (|:| -3466 |#1|) (|:| -4370 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ $) 43)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-550) (-139)) (T -550))
-((-2861 (*1 *1 *1 *1) (|partial| -4 *1 (-550))) (-2008 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3466 *1) (|:| -4370 *1) (|:| |associate| *1))) (-4 *1 (-550)))) (-3244 (*1 *1 *1) (-4 *1 (-550))) (-2671 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4326 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
-(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -2861 ((-3 $ "failed") $ $)) (-15 -2008 ((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $)) (-15 -3244 ($ $)) (-15 -2671 ((-112) $ $)) (-15 -4326 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-2079 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1163) (-635 |#2|)) 37)) (-3626 (((-579 |#2|) |#2| (-1163)) 62)) (-2430 (((-3 |#2| "failed") |#2| (-1163)) 151)) (-1461 (((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) (-604 |#2|) (-635 (-604 |#2|))) 154)) (-2024 (((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) |#2|) 40)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -2024 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) |#2|)) (-15 -2079 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1163) (-635 |#2|))) (-15 -2430 ((-3 |#2| "failed") |#2| (-1163))) (-15 -3626 ((-579 |#2|) |#2| (-1163))) (-15 -1461 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) (-604 |#2|) (-635 (-604 |#2|))))) (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -551))
-((-1461 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1163)) (-5 *6 (-635 (-604 *3))) (-5 *5 (-604 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *7))) (-4 *7 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3))) (-5 *1 (-551 *7 *3)))) (-3626 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-2430 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-2079 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3)))) (-2024 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
-(-10 -7 (-15 -2024 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) |#2|)) (-15 -2079 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1163) (-635 |#2|))) (-15 -2430 ((-3 |#2| "failed") |#2| (-1163))) (-15 -3626 ((-579 |#2|) |#2| (-1163))) (-15 -1461 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1163) (-604 |#2|) (-635 (-604 |#2|)))))
-((-4110 (((-417 |#1|) |#1|) 18)) (-3939 (((-417 |#1|) |#1|) 33)) (-1447 (((-3 |#1| "failed") |#1|) 44)) (-1473 (((-417 |#1|) |#1|) 51)))
-(((-552 |#1|) (-10 -7 (-15 -3939 ((-417 |#1|) |#1|)) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -1473 ((-417 |#1|) |#1|)) (-15 -1447 ((-3 |#1| "failed") |#1|))) (-543)) (T -552))
-((-1447 (*1 *2 *2) (|partial| -12 (-5 *1 (-552 *2)) (-4 *2 (-543)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))) (-4110 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))) (-3939 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))))
-(-10 -7 (-15 -3939 ((-417 |#1|) |#1|)) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -1473 ((-417 |#1|) |#1|)) (-15 -1447 ((-3 |#1| "failed") |#1|)))
-((-3863 (($) 9)) (-1638 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-1934 (((-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-2650 (($ (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1952 (($ (-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1925 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-4318 (((-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2524 (((-1251)) 12)))
-(((-553) (-10 -8 (-15 -3863 ($)) (-15 -2524 ((-1251))) (-15 -1934 ((-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1952 ($ (-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2650 ($ (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1638 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4318 ((-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1925 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -553))
-((-1925 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-553)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-553)))) (-1638 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-553)))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-553)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-553)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-553)))) (-2524 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-553)))) (-3863 (*1 *1) (-5 *1 (-553))))
-(-10 -8 (-15 -3863 ($)) (-15 -2524 ((-1251))) (-15 -1934 ((-635 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1952 ($ (-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2650 ($ (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1638 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4318 ((-635 (-2 (|:| -2176 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1925 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2103 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-3907 (((-1159 (-406 (-1159 |#2|))) |#2| (-604 |#2|) (-604 |#2|) (-1159 |#2|)) 32)) (-3971 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) |#2| (-1159 |#2|)) 110)) (-1869 (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 80) (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|)) 52)) (-2405 (((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| (-604 |#2|) |#2| (-406 (-1159 |#2|))) 87) (((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| |#2| (-1159 |#2|)) 109)) (-4284 (((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) |#2| (-1159 |#2|)) 111)) (-3088 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))) 128 (|has| |#3| (-646 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|)) 127 (|has| |#3| (-646 |#2|)))) (-4068 ((|#2| (-1159 (-406 (-1159 |#2|))) (-604 |#2|) |#2|) 50)) (-3850 (((-1159 (-406 (-1159 |#2|))) (-1159 |#2|) (-604 |#2|)) 31)))
-(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -1869 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -1869 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2405 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| |#2| (-1159 |#2|))) (-15 -2405 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -3971 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) |#2| (-1159 |#2|))) (-15 -3971 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -4284 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) |#2| (-1159 |#2|))) (-15 -4284 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -3907 ((-1159 (-406 (-1159 |#2|))) |#2| (-604 |#2|) (-604 |#2|) (-1159 |#2|))) (-15 -4068 (|#2| (-1159 (-406 (-1159 |#2|))) (-604 |#2|) |#2|)) (-15 -3850 ((-1159 (-406 (-1159 |#2|))) (-1159 |#2|) (-604 |#2|))) (IF (|has| |#3| (-646 |#2|)) (PROGN (-15 -3088 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -3088 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))))) |%noBranch|)) (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))) (-13 (-429 |#1|) (-27) (-1185)) (-1087)) (T -554))
-((-3088 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-604 *4)) (-5 *6 (-406 (-1159 *4))) (-4 *4 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))) (-3088 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-604 *4)) (-5 *6 (-1159 *4)) (-4 *4 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *4 (-604 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-1159 (-406 (-1159 *6)))) (-5 *1 (-554 *5 *6 *7)) (-5 *3 (-1159 *6)) (-4 *7 (-1087)))) (-4068 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1159 (-406 (-1159 *2)))) (-5 *4 (-604 *2)) (-4 *2 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1087)))) (-3907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-1159 (-406 (-1159 *3)))) (-5 *1 (-554 *6 *3 *7)) (-5 *5 (-1159 *3)) (-4 *7 (-1087)))) (-4284 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-604 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-5 *5 (-406 (-1159 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087)))) (-4284 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-604 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-5 *5 (-1159 *2)) (-4 *2 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087)))) (-3971 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-5 *6 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087)))) (-3971 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1159 *3)) (-4 *3 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087)))) (-2405 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))) (-2405 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))) (-1869 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))) (-1869 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))))
-(-10 -7 (-15 -1869 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -1869 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -2405 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| |#2| (-1159 |#2|))) (-15 -2405 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2| (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -3971 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) |#2| (-1159 |#2|))) (-15 -3971 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -4284 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) |#2| (-1159 |#2|))) (-15 -4284 ((-3 |#2| "failed") |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)) (-604 |#2|) |#2| (-406 (-1159 |#2|)))) (-15 -3907 ((-1159 (-406 (-1159 |#2|))) |#2| (-604 |#2|) (-604 |#2|) (-1159 |#2|))) (-15 -4068 (|#2| (-1159 (-406 (-1159 |#2|))) (-604 |#2|) |#2|)) (-15 -3850 ((-1159 (-406 (-1159 |#2|))) (-1159 |#2|) (-604 |#2|))) (IF (|has| |#3| (-646 |#2|)) (PROGN (-15 -3088 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) |#2| (-1159 |#2|))) (-15 -3088 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-604 |#2|) |#2| (-406 (-1159 |#2|))))) |%noBranch|))
-((-3586 (((-558) (-558) (-762)) 66)) (-4212 (((-558) (-558)) 65)) (-2961 (((-558) (-558)) 64)) (-2223 (((-558) (-558)) 69)) (-3901 (((-558) (-558) (-558)) 49)) (-3991 (((-558) (-558) (-558)) 46)) (-3916 (((-406 (-558)) (-558)) 20)) (-2948 (((-558) (-558)) 21)) (-1772 (((-558) (-558)) 58)) (-3861 (((-558) (-558)) 32)) (-3561 (((-635 (-558)) (-558)) 63)) (-2493 (((-558) (-558) (-558) (-558) (-558)) 44)) (-1386 (((-406 (-558)) (-558)) 41)))
-(((-555) (-10 -7 (-15 -1386 ((-406 (-558)) (-558))) (-15 -2493 ((-558) (-558) (-558) (-558) (-558))) (-15 -3561 ((-635 (-558)) (-558))) (-15 -3861 ((-558) (-558))) (-15 -1772 ((-558) (-558))) (-15 -2948 ((-558) (-558))) (-15 -3916 ((-406 (-558)) (-558))) (-15 -3991 ((-558) (-558) (-558))) (-15 -3901 ((-558) (-558) (-558))) (-15 -2223 ((-558) (-558))) (-15 -2961 ((-558) (-558))) (-15 -4212 ((-558) (-558))) (-15 -3586 ((-558) (-558) (-762))))) (T -555))
-((-3586 (*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-762)) (-5 *1 (-555)))) (-4212 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2961 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-2223 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-3901 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-3991 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-3916 (*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))) (-2948 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-3561 (*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))) (-2493 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))) (-1386 (*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))))
-(-10 -7 (-15 -1386 ((-406 (-558)) (-558))) (-15 -2493 ((-558) (-558) (-558) (-558) (-558))) (-15 -3561 ((-635 (-558)) (-558))) (-15 -3861 ((-558) (-558))) (-15 -1772 ((-558) (-558))) (-15 -2948 ((-558) (-558))) (-15 -3916 ((-406 (-558)) (-558))) (-15 -3991 ((-558) (-558) (-558))) (-15 -3901 ((-558) (-558) (-558))) (-15 -2223 ((-558) (-558))) (-15 -2961 ((-558) (-558))) (-15 -4212 ((-558) (-558))) (-15 -3586 ((-558) (-558) (-762))))
-((-2469 (((-2 (|:| |answer| |#4|) (|:| -2366 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-556 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2469 ((-2 (|:| |answer| |#4|) (|:| -2366 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -556))
-((-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-4 *7 (-1222 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2366 *3))) (-5 *1 (-556 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))))
-(-10 -7 (-15 -2469 ((-2 (|:| |answer| |#4|) (|:| -2366 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2469 (((-2 (|:| |answer| (-406 |#2|)) (|:| -2366 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -2469 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2366 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1222 |#1|)) (T -557))
-((-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -2366 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-406 *6)))))
-(-10 -7 (-15 -2469 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2366 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 25)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 88)) (-3244 (($ $) 89)) (-4326 (((-112) $) NIL)) (-1997 (($ $ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1502 (($ $ $ $) 43)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL)) (-3277 (($ $ $) 82)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL)) (-3226 (((-558) $) NIL)) (-1709 (($ $ $) 81)) (-1918 (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 62) (((-679 (-558)) (-679 $)) 58)) (-3248 (((-3 $ "failed") $) 85)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL)) (-2288 (((-112) $) NIL)) (-1673 (((-406 (-558)) $) NIL)) (-3692 (($) 64) (($ $) 65)) (-2881 (($ $ $) 80)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2283 (($ $ $ $) NIL)) (-4089 (($ $ $) 55)) (-4053 (((-112) $) NIL)) (-3322 (($ $ $) NIL)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-3999 (((-112) $) 26)) (-1495 (((-112) $) 75)) (-2521 (((-3 $ "failed") $) NIL)) (-2032 (((-112) $) 35)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3664 (($ $ $ $) 44)) (-2142 (($ $ $) 77)) (-2281 (($ $ $) 76)) (-1397 (($ $) NIL)) (-2958 (($ $) 41)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) 54)) (-1521 (($ $ $) NIL)) (-1823 (($) NIL T CONST)) (-1610 (($ $) 31)) (-1688 (((-1107) $) 34)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 119)) (-1544 (($ $ $) 86) (($ (-635 $)) NIL)) (-3608 (($ $) NIL)) (-3939 (((-417 $) $) 105)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL)) (-2861 (((-3 $ "failed") $ $) 84)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4254 (((-112) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 79)) (-3780 (($ $ (-762)) NIL) (($ $) NIL)) (-3915 (($ $) 32)) (-4098 (($ $) 30)) (-3441 (((-558) $) 40) (((-534) $) 52) (((-882 (-558)) $) NIL) (((-378) $) 47) (((-224) $) 49) (((-1145) $) 53)) (-3940 (((-853) $) 38) (($ (-558)) 39) (($ $) NIL) (($ (-558)) 39)) (-2417 (((-762)) NIL)) (-2626 (((-112) $ $) NIL)) (-3207 (($ $ $) NIL)) (-2636 (($) 29)) (-2671 (((-112) $ $) NIL)) (-4363 (($ $ $ $) 42)) (-4241 (($ $) 63)) (-2207 (($) 27 T CONST)) (-2220 (($) 28 T CONST)) (-2555 (((-1145) $) 20) (((-1145) $ (-112)) 22) (((-1251) (-813) $) 23) (((-1251) (-813) $ (-112)) 24)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 66)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 67)) (-1796 (($ $) 68) (($ $ $) 70)) (-1785 (($ $ $) 69)) (** (($ $ (-911)) NIL) (($ $ (-762)) 74)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 72) (($ $ $) 71)))
-(((-558) (-13 (-543) (-606 (-1145)) (-819) (-10 -8 (-15 -3692 ($ $)) (-6 -4370) (-6 -4375) (-6 -4371) (-6 -4365)))) (T -558))
-((-3692 (*1 *1 *1) (-5 *1 (-558))))
-(-13 (-543) (-606 (-1145)) (-819) (-10 -8 (-15 -3692 ($ $)) (-6 -4370) (-6 -4375) (-6 -4371) (-6 -4365)))
-((-4131 (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760) (-1051)) 108) (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760)) 110)) (-1337 (((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1163)) 172) (((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1145)) 171) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378) (-1051)) 176) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378)) 177) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378)) 178) (((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378))))) 179) (((-1025) (-315 (-378)) (-1081 (-834 (-378)))) 167) (((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378)) 166) (((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378)) 162) (((-1025) (-760)) 155) (((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378) (-1051)) 161)))
-(((-559) (-10 -7 (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378) (-1051))) (-15 -1337 ((-1025) (-760))) (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378) (-1051))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760) (-1051))) (-15 -1337 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1145))) (-15 -1337 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1163))))) (T -559))
-((-1337 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378)))) (-5 *5 (-1163)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378)))) (-5 *5 (-1145)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-760)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) (-5 *1 (-559)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025)))) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378))))) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1025)) (-5 *1 (-559)))) (-1337 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378)))) (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559)))))
-(-10 -7 (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378) (-1051))) (-15 -1337 ((-1025) (-760))) (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-1081 (-834 (-378))))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378))) (-15 -1337 ((-1025) (-315 (-378)) (-635 (-1081 (-834 (-378)))) (-378) (-378) (-1051))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))) (-760) (-1051))) (-15 -1337 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1145))) (-15 -1337 ((-3 (-1025) "failed") (-315 (-378)) (-1079 (-834 (-378))) (-1163))))
-((-1782 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|)) 183)) (-3632 (((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|)) 98)) (-2954 (((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2|) 179)) (-2292 (((-3 |#2| "failed") |#2| |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163))) 188)) (-3609 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-1163)) 196 (|has| |#3| (-646 |#2|)))))
-(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -3632 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|))) (-15 -2954 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2|)) (-15 -1782 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|))) (-15 -2292 ((-3 |#2| "failed") |#2| |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)))) (IF (|has| |#3| (-646 |#2|)) (-15 -3609 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-1163))) |%noBranch|)) (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))) (-13 (-429 |#1|) (-27) (-1185)) (-1087)) (T -560))
-((-3609 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-604 *4)) (-5 *6 (-1163)) (-4 *4 (-13 (-429 *7) (-27) (-1185))) (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))) (-2292 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-604 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-4 *2 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1087)))) (-1782 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185))) (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1087)))) (-2954 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))) (-3632 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1185))) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558)))) (-5 *2 (-579 *3)) (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))))
-(-10 -7 (-15 -3632 ((-579 |#2|) |#2| (-604 |#2|) (-604 |#2|))) (-15 -2954 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-604 |#2|) (-604 |#2|) |#2|)) (-15 -1782 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-604 |#2|) (-604 |#2|) (-635 |#2|))) (-15 -2292 ((-3 |#2| "failed") |#2| |#2| |#2| (-604 |#2|) (-604 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1163)))) (IF (|has| |#3| (-646 |#2|)) (-15 -3609 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2743 (-635 |#2|))) |#3| |#2| (-604 |#2|) (-604 |#2|) (-1163))) |%noBranch|))
-((-3173 (((-2 (|:| -1306 |#2|) (|:| |nconst| |#2|)) |#2| (-1163)) 63)) (-3192 (((-3 |#2| "failed") |#2| (-1163) (-834 |#2|) (-834 |#2|)) 163 (-12 (|has| |#2| (-1126)) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-876 (-558))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)) 146 (-12 (|has| |#2| (-621)) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-876 (-558)))))) (-1413 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)) 147 (-12 (|has| |#2| (-621)) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-876 (-558)))))))
-(((-561 |#1| |#2|) (-10 -7 (-15 -3173 ((-2 (|:| -1306 |#2|) (|:| |nconst| |#2|)) |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (PROGN (IF (|has| |#2| (-621)) (PROGN (-15 -1413 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163))) (-15 -3192 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) (IF (|has| |#2| (-1126)) (-15 -3192 ((-3 |#2| "failed") |#2| (-1163) (-834 |#2|) (-834 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -561))
-((-3192 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1163)) (-5 *4 (-834 *2)) (-4 *2 (-1126)) (-4 *2 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558))) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *1 (-561 *5 *2)))) (-3192 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558))) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-621)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-1413 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558))) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-621)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-3173 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558)))) (-5 *2 (-2 (|:| -1306 *3) (|:| |nconst| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
-(-10 -7 (-15 -3173 ((-2 (|:| -1306 |#2|) (|:| |nconst| |#2|)) |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (PROGN (IF (|has| |#2| (-621)) (PROGN (-15 -1413 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163))) (-15 -3192 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) (IF (|has| |#2| (-1126)) (-15 -3192 ((-3 |#2| "failed") |#2| (-1163) (-834 |#2|) (-834 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1702 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))) 41)) (-1337 (((-579 (-406 |#2|)) (-406 |#2|)) 28)) (-1510 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-2111 (((-3 (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48)))
-(((-562 |#1| |#2|) (-10 -7 (-15 -1337 ((-579 (-406 |#2|)) (-406 |#2|))) (-15 -1510 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2111 ((-3 (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -1702 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1028 (-558))) (-1222 |#1|)) (T -562))
-((-1702 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *5 *6)))) (-2111 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -2475 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5)))) (-1510 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146) (-1028 (-558)))) (-5 *1 (-562 *3 *4)))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-579 (-406 *5))) (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5)))))
-(-10 -7 (-15 -1337 ((-579 (-406 |#2|)) (-406 |#2|))) (-15 -1510 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2111 ((-3 (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -1702 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|)))))
-((-2854 (((-3 (-558) "failed") |#1|) 14)) (-3840 (((-112) |#1|) 13)) (-1667 (((-558) |#1|) 9)))
-(((-563 |#1|) (-10 -7 (-15 -1667 ((-558) |#1|)) (-15 -3840 ((-112) |#1|)) (-15 -2854 ((-3 (-558) "failed") |#1|))) (-1028 (-558))) (T -563))
-((-2854 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2)))) (-3840 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-563 *3)) (-4 *3 (-1028 (-558))))) (-1667 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2)))))
-(-10 -7 (-15 -1667 ((-558) |#1|)) (-15 -3840 ((-112) |#1|)) (-15 -2854 ((-3 (-558) "failed") |#1|)))
-((-2673 (((-3 (-2 (|:| |mainpart| (-406 (-942 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-942 |#1|))) (|:| |logand| (-406 (-942 |#1|))))))) "failed") (-406 (-942 |#1|)) (-1163) (-635 (-406 (-942 |#1|)))) 48)) (-2795 (((-579 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-1163)) 28)) (-1761 (((-3 (-406 (-942 |#1|)) "failed") (-406 (-942 |#1|)) (-1163)) 23)) (-3804 (((-3 (-2 (|:| -2475 (-406 (-942 |#1|))) (|:| |coeff| (-406 (-942 |#1|)))) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|))) 35)))
-(((-564 |#1|) (-10 -7 (-15 -2795 ((-579 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -1761 ((-3 (-406 (-942 |#1|)) "failed") (-406 (-942 |#1|)) (-1163))) (-15 -2673 ((-3 (-2 (|:| |mainpart| (-406 (-942 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-942 |#1|))) (|:| |logand| (-406 (-942 |#1|))))))) "failed") (-406 (-942 |#1|)) (-1163) (-635 (-406 (-942 |#1|))))) (-15 -3804 ((-3 (-2 (|:| -2475 (-406 (-942 |#1|))) (|:| |coeff| (-406 (-942 |#1|)))) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|))))) (-13 (-550) (-1028 (-558)) (-146))) (T -564))
-((-3804 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-1028 (-558)) (-146))) (-5 *2 (-2 (|:| -2475 (-406 (-942 *5))) (|:| |coeff| (-406 (-942 *5))))) (-5 *1 (-564 *5)) (-5 *3 (-406 (-942 *5))))) (-2673 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 (-406 (-942 *6)))) (-5 *3 (-406 (-942 *6))) (-4 *6 (-13 (-550) (-1028 (-558)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *6)))) (-1761 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-1028 (-558)) (-146))) (-5 *1 (-564 *4)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-1028 (-558)) (-146))) (-5 *2 (-579 (-406 (-942 *5)))) (-5 *1 (-564 *5)) (-5 *3 (-406 (-942 *5))))))
-(-10 -7 (-15 -2795 ((-579 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -1761 ((-3 (-406 (-942 |#1|)) "failed") (-406 (-942 |#1|)) (-1163))) (-15 -2673 ((-3 (-2 (|:| |mainpart| (-406 (-942 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-942 |#1|))) (|:| |logand| (-406 (-942 |#1|))))))) "failed") (-406 (-942 |#1|)) (-1163) (-635 (-406 (-942 |#1|))))) (-15 -3804 ((-3 (-2 (|:| -2475 (-406 (-942 |#1|))) (|:| |coeff| (-406 (-942 |#1|)))) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)))))
-((-3929 (((-112) $ $) 58)) (-3124 (((-112) $) 36)) (-3592 ((|#1| $) 30)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) 62)) (-2277 (($ $) 122)) (-2131 (($ $) 102)) (-2707 ((|#1| $) 28)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $) NIL)) (-2254 (($ $) 124)) (-2109 (($ $) 98)) (-2298 (($ $) 126)) (-2158 (($ $) 106)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) 77)) (-3226 (((-558) $) 79)) (-3248 (((-3 $ "failed") $) 61)) (-2641 (($ |#1| |#1|) 26)) (-4053 (((-112) $) 33)) (-3348 (($) 88)) (-3999 (((-112) $) 43)) (-2136 (($ $ (-558)) NIL)) (-2032 (((-112) $) 34)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-4342 (($ $) 90)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-2303 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-558))) 76)) (-2790 ((|#1| $) 27)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) 64) (($ (-635 $)) NIL)) (-2861 (((-3 $ "failed") $ $) 63)) (-3944 (($ $) 92)) (-2312 (($ $) 130)) (-2170 (($ $) 104)) (-2289 (($ $) 132)) (-2146 (($ $) 108)) (-2265 (($ $) 128)) (-2120 (($ $) 100)) (-2232 (((-112) $ |#1|) 31)) (-3940 (((-853) $) 84) (($ (-558)) 66) (($ $) NIL) (($ (-558)) 66)) (-2417 (((-762)) 86)) (-4175 (($ $) 144)) (-2209 (($ $) 114)) (-2671 (((-112) $ $) NIL)) (-2325 (($ $) 142)) (-2184 (($ $) 110)) (-4197 (($ $) 140)) (-2233 (($ $) 120)) (-2038 (($ $) 138)) (-2244 (($ $) 118)) (-4185 (($ $) 136)) (-2221 (($ $) 116)) (-4164 (($ $) 134)) (-2195 (($ $) 112)) (-2207 (($) 21 T CONST)) (-2220 (($) 10 T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 37)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 35)) (-1796 (($ $) 41) (($ $ $) 42)) (-1785 (($ $ $) 40)) (** (($ $ (-911)) 54) (($ $ (-762)) NIL) (($ $ $) 94) (($ $ (-406 (-558))) 146)) (* (($ (-911) $) 51) (($ (-762) $) NIL) (($ (-558) $) 50) (($ $ $) 48)))
-(((-565 |#1|) (-548 |#1|) (-13 (-403) (-1185))) (T -565))
-NIL
-(-548 |#1|)
-((-1671 (((-3 (-635 (-1159 (-558))) "failed") (-635 (-1159 (-558))) (-1159 (-558))) 24)))
-(((-566) (-10 -7 (-15 -1671 ((-3 (-635 (-1159 (-558))) "failed") (-635 (-1159 (-558))) (-1159 (-558)))))) (T -566))
-((-1671 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 (-558)))) (-5 *3 (-1159 (-558))) (-5 *1 (-566)))))
-(-10 -7 (-15 -1671 ((-3 (-635 (-1159 (-558))) "failed") (-635 (-1159 (-558))) (-1159 (-558)))))
-((-4086 (((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-1163)) 19)) (-3222 (((-635 (-604 |#2|)) (-635 |#2|) (-1163)) 23)) (-2382 (((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-635 (-604 |#2|))) 11)) (-4125 ((|#2| |#2| (-1163)) 53 (|has| |#1| (-550)))) (-1830 ((|#2| |#2| (-1163)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-450))))) (-3782 (((-604 |#2|) (-604 |#2|) (-635 (-604 |#2|)) (-1163)) 25)) (-3611 (((-604 |#2|) (-635 (-604 |#2|))) 24)) (-2114 (((-579 |#2|) |#2| (-1163) (-1 (-579 |#2|) |#2| (-1163)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-621)) (|has| |#2| (-1028 (-1163))) (|has| |#1| (-606 (-882 (-558)))) (|has| |#1| (-450)) (|has| |#1| (-876 (-558)))))))
-(((-567 |#1| |#2|) (-10 -7 (-15 -4086 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-1163))) (-15 -3611 ((-604 |#2|) (-635 (-604 |#2|)))) (-15 -3782 ((-604 |#2|) (-604 |#2|) (-635 (-604 |#2|)) (-1163))) (-15 -2382 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-635 (-604 |#2|)))) (-15 -3222 ((-635 (-604 |#2|)) (-635 |#2|) (-1163))) (IF (|has| |#1| (-550)) (-15 -4125 (|#2| |#2| (-1163))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -1830 (|#2| |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (IF (|has| |#2| (-621)) (IF (|has| |#2| (-1028 (-1163))) (-15 -2114 ((-579 |#2|) |#2| (-1163) (-1 (-579 |#2|) |#2| (-1163)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-841) (-429 |#1|)) (T -567))
-((-2114 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-579 *3) *3 (-1163))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1163))) (-4 *3 (-283)) (-4 *3 (-621)) (-4 *3 (-1028 *4)) (-4 *3 (-429 *7)) (-5 *4 (-1163)) (-4 *7 (-606 (-882 (-558)))) (-4 *7 (-450)) (-4 *7 (-876 (-558))) (-4 *7 (-841)) (-5 *2 (-579 *3)) (-5 *1 (-567 *7 *3)))) (-1830 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-450)) (-4 *4 (-841)) (-5 *1 (-567 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))) (-4125 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-550)) (-4 *4 (-841)) (-5 *1 (-567 *4 *2)) (-4 *2 (-429 *4)))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-1163)) (-4 *6 (-429 *5)) (-4 *5 (-841)) (-5 *2 (-635 (-604 *6))) (-5 *1 (-567 *5 *6)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-604 *4))) (-4 *4 (-429 *3)) (-4 *3 (-841)) (-5 *1 (-567 *3 *4)))) (-3782 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-604 *6))) (-5 *4 (-1163)) (-5 *2 (-604 *6)) (-4 *6 (-429 *5)) (-4 *5 (-841)) (-5 *1 (-567 *5 *6)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-635 (-604 *5))) (-4 *4 (-841)) (-5 *2 (-604 *5)) (-5 *1 (-567 *4 *5)) (-4 *5 (-429 *4)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-604 *5))) (-5 *3 (-1163)) (-4 *5 (-429 *4)) (-4 *4 (-841)) (-5 *1 (-567 *4 *5)))))
-(-10 -7 (-15 -4086 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-1163))) (-15 -3611 ((-604 |#2|) (-635 (-604 |#2|)))) (-15 -3782 ((-604 |#2|) (-604 |#2|) (-635 (-604 |#2|)) (-1163))) (-15 -2382 ((-635 (-604 |#2|)) (-635 (-604 |#2|)) (-635 (-604 |#2|)))) (-15 -3222 ((-635 (-604 |#2|)) (-635 |#2|) (-1163))) (IF (|has| |#1| (-550)) (-15 -4125 (|#2| |#2| (-1163))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -1830 (|#2| |#2| (-1163))) (IF (|has| |#1| (-606 (-882 (-558)))) (IF (|has| |#1| (-876 (-558))) (IF (|has| |#2| (-621)) (IF (|has| |#2| (-1028 (-1163))) (-15 -2114 ((-579 |#2|) |#2| (-1163) (-1 (-579 |#2|) |#2| (-1163)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1163)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1692 (((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-558) |#1| |#1|)) 172)) (-4204 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-635 (-406 |#2|))) 148)) (-2944 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|))) 145)) (-4234 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3053 (((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3926 (((-3 (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 175)) (-1905 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|)) 178)) (-4226 (((-2 (|:| |ir| (-579 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-2777 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1705 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-635 (-406 |#2|))) 152)) (-2658 (((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|)) 137)) (-2847 (((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|)) 162)) (-1658 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-406 |#2|)) 183)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -3053 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2847 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -1692 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-558) |#1| |#1|))) (-15 -1905 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -1658 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-406 |#2|))) (-15 -4204 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-635 (-406 |#2|)))) (-15 -1705 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-635 (-406 |#2|)))) (-15 -3926 ((-3 (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2944 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -4234 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2658 ((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -4226 ((-2 (|:| |ir| (-579 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2777 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1222 |#1|)) (T -568))
-((-2777 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-568 *5 *3)))) (-4226 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-579 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))) (-2658 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-615 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1540 *4) (|:| |sol?| (-112))) (-558) *4)) (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *1 (-568 *4 *5)))) (-4234 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2475 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-362)) (-5 *1 (-568 *4 *2)) (-4 *2 (-1222 *4)))) (-2944 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7))) (-4 *7 (-1222 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *7)))) (-3926 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2475 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))) (-1705 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1540 *7) (|:| |sol?| (-112))) (-558) *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-568 *7 *8)))) (-4204 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2475 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-568 *7 *8)))) (-1658 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1540 *6) (|:| |sol?| (-112))) (-558) *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2475 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-1905 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2475 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2475 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-1692 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-635 *6) "failed") (-558) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-2847 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1540 *6) (|:| |sol?| (-112))) (-558) *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2475 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
-(-10 -7 (-15 -3053 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2847 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -1692 ((-2 (|:| |answer| (-579 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-558) |#1| |#1|))) (-15 -1905 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -1658 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-406 |#2|))) (-15 -4204 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-635 (-406 |#2|)))) (-15 -1705 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|) (-635 (-406 |#2|)))) (-15 -3926 ((-3 (-2 (|:| -2475 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2944 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -4234 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2658 ((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1540 |#1|) (|:| |sol?| (-112))) (-558) |#1|))) (-15 -4226 ((-2 (|:| |ir| (-579 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2777 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3955 (((-3 |#2| "failed") |#2| (-1163) (-1163)) 10)))
-(((-569 |#1| |#2|) (-10 -7 (-15 -3955 ((-3 |#2| "failed") |#2| (-1163) (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-1126) (-29 |#1|))) (T -569))
-((-3955 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-1185) (-949) (-1126) (-29 *4))))))
-(-10 -7 (-15 -3955 ((-3 |#2| "failed") |#2| (-1163) (-1163))))
-((-3025 (((-1107) $ (-128)) 12)) (|writeByteIfCan!| (((-1107) $ (-129)) 11)) (-2657 (((-1107) $ (-128)) 7)) (|readByteIfCan!| (((-1107) $) 8)) (-1388 (($ $) 6)))
-(((-570) (-139)) (T -570))
-NIL
-(-13 (-525) (-851))
-(((-172) . T) ((-525) . T) ((-851) . T))
-((-3025 (((-762) $ (-128)) NIL)) (-2432 (((-681 (-129)) $ (-129)) NIL)) (-2657 (((-762) $ (-128)) NIL)) (-3519 (((-681 (-129)) $) NIL)) (-2513 (((-112) $) NIL)) (-3437 (($ (-387)) 14) (($ (-1145)) 16)) (-3940 (((-853) $) NIL)) (-1388 (($ $) NIL)))
-(((-571) (-13 (-570) (-605 (-853)) (-10 -8 (-15 -3437 ($ (-387))) (-15 -3437 ($ (-1145))) (-15 -2513 ((-112) $))))) (T -571))
-((-3437 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-571)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-571)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571)))))
-(-13 (-570) (-605 (-853)) (-10 -8 (-15 -3437 ($ (-387))) (-15 -3437 ($ (-1145))) (-15 -2513 ((-112) $))))
-((-3929 (((-112) $ $) NIL)) (-2770 (($) 7 T CONST)) (-2510 (((-1145) $) NIL)) (-1558 (($) 6 T CONST)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 14)) (-1642 (($) 8 T CONST)) (-1708 (((-112) $ $) 10)))
-(((-572) (-13 (-1087) (-10 -8 (-15 -1558 ($) -2010) (-15 -2770 ($) -2010) (-15 -1642 ($) -2010)))) (T -572))
-((-1558 (*1 *1) (-5 *1 (-572))) (-2770 (*1 *1) (-5 *1 (-572))) (-1642 (*1 *1) (-5 *1 (-572))))
-(-13 (-1087) (-10 -8 (-15 -1558 ($) -2010) (-15 -2770 ($) -2010) (-15 -1642 ($) -2010)))
-((-3929 (((-112) $ $) NIL)) (-3139 (((-681 $) (-489)) 16)) (-2510 (((-1145) $) NIL)) (-2919 (($ (-1145)) 9)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 31)) (-1604 (((-212 4 (-129)) $) 19)) (-1708 (((-112) $ $) 22)))
-(((-573) (-13 (-1087) (-10 -8 (-15 -2919 ($ (-1145))) (-15 -1604 ((-212 4 (-129)) $)) (-15 -3139 ((-681 $) (-489)))))) (T -573))
-((-2919 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-573)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-573)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-681 (-573))) (-5 *1 (-573)))))
-(-13 (-1087) (-10 -8 (-15 -2919 ($ (-1145))) (-15 -1604 ((-212 4 (-129)) $)) (-15 -3139 ((-681 $) (-489)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $ (-558)) 66)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-4350 (($ (-1159 (-558)) (-558)) 72)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) 58)) (-2202 (($ $) 34)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2532 (((-762) $) 15)) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3142 (((-558)) 29)) (-3511 (((-558) $) 32)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2319 (($ $ (-558)) 21)) (-2861 (((-3 $ "failed") $ $) 59)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) 16)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 61)) (-3035 (((-1143 (-558)) $) 18)) (-1559 (($ $) 23)) (-3940 (((-853) $) 86) (($ (-558)) 52) (($ $) NIL)) (-2417 (((-762)) 14)) (-2671 (((-112) $ $) NIL)) (-1422 (((-558) $ (-558)) 36)) (-2207 (($) 35 T CONST)) (-2220 (($) 19 T CONST)) (-1708 (((-112) $ $) 39)) (-1796 (($ $) 51) (($ $ $) 37)) (-1785 (($ $ $) 50)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 54) (($ $ $) 55)))
-(((-574 |#1| |#2|) (-859 |#1|) (-558) (-112)) (T -574))
-NIL
-(-859 |#1|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 21)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-3067 (((-1173 (-911) (-762)) (-558)) 47)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 $ "failed") $) 75)) (-3226 (($ $) 74)) (-3431 (($ (-1246 $)) 73)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) 32)) (-3692 (($) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) 49)) (-3617 (((-112) $) NIL)) (-4362 (($ $) NIL) (($ $ (-762)) NIL)) (-2992 (((-112) $) NIL)) (-2532 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-3999 (((-112) $) NIL)) (-2942 (($) 37 (|has| $ (-367)))) (-3235 (((-112) $) NIL (|has| $ (-367)))) (-1423 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-2521 (((-3 $ "failed") $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 $) $ (-911)) NIL (|has| $ (-367))) (((-1159 $) $) 83)) (-1486 (((-911) $) 55)) (-1937 (((-1159 $) $) NIL (|has| $ (-367)))) (-3811 (((-3 (-1159 $) "failed") $ $) NIL (|has| $ (-367))) (((-1159 $) $) NIL (|has| $ (-367)))) (-3635 (($ $ (-1159 $)) NIL (|has| $ (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL T CONST)) (-2349 (($ (-911)) 48)) (-3743 (((-112) $) 67)) (-1688 (((-1107) $) NIL)) (-2461 (($) 19 (|has| $ (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 42)) (-3939 (((-417 $) $) NIL)) (-3670 (((-911)) 66) (((-824 (-911))) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-3 (-762) "failed") $ $) NIL) (((-762) $) NIL)) (-2887 (((-133)) NIL)) (-3780 (($ $ (-762)) NIL) (($ $) NIL)) (-4263 (((-911) $) 65) (((-824 (-911)) $) NIL)) (-2297 (((-1159 $)) 82)) (-2933 (($) 54)) (-3703 (($) 38 (|has| $ (-367)))) (-2979 (((-679 $) (-1246 $)) NIL) (((-1246 $) $) 71)) (-3441 (((-558) $) 28)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) 30) (($ $) NIL) (($ (-406 (-558))) NIL)) (-1487 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2417 (((-762)) 39)) (-2743 (((-1246 $) (-911)) 77) (((-1246 $)) 76)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) 22 T CONST)) (-2220 (($) 18 T CONST)) (-3607 (($ $ (-762)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 26)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 61) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-575 |#1|) (-13 (-348) (-328 $) (-606 (-558))) (-911)) (T -575))
-NIL
-(-13 (-348) (-328 $) (-606 (-558)))
-((-2762 (((-1251) (-1145)) 10)))
-(((-576) (-10 -7 (-15 -2762 ((-1251) (-1145))))) (T -576))
-((-2762 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-576)))))
-(-10 -7 (-15 -2762 ((-1251) (-1145))))
-((-3566 (((-579 |#2|) (-579 |#2|)) 39)) (-2040 (((-635 |#2|) (-579 |#2|)) 41)) (-2759 ((|#2| (-579 |#2|)) 47)))
-(((-577 |#1| |#2|) (-10 -7 (-15 -3566 ((-579 |#2|) (-579 |#2|))) (-15 -2040 ((-635 |#2|) (-579 |#2|))) (-15 -2759 (|#2| (-579 |#2|)))) (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))) (-13 (-29 |#1|) (-1185))) (T -577))
-((-2759 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-13 (-29 *4) (-1185))) (-5 *1 (-577 *4 *2)) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-579 *5)) (-4 *5 (-13 (-29 *4) (-1185))) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-635 *5)) (-5 *1 (-577 *4 *5)))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-579 *4)) (-4 *4 (-13 (-29 *3) (-1185))) (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *1 (-577 *3 *4)))))
-(-10 -7 (-15 -3566 ((-579 |#2|) (-579 |#2|))) (-15 -2040 ((-635 |#2|) (-579 |#2|))) (-15 -2759 (|#2| (-579 |#2|))))
-((-3397 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)) 30)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -3397 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|))) (-15 -3397 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3397 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -578))
-((-3397 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-578 *5 *6)))) (-3397 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-578 *5 *2)))) (-3397 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2475 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -2475 *6) (|:| |coeff| *6))) (-5 *1 (-578 *5 *6)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-579 *6)) (-5 *1 (-578 *5 *6)))))
-(-10 -7 (-15 -3397 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|))) (-15 -3397 ((-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2475 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3397 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 69)) (-3226 ((|#1| $) NIL)) (-2475 ((|#1| $) 26)) (-1788 (((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2773 (($ |#1| (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2366 (((-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) $) 27)) (-2510 (((-1145) $) NIL)) (-3082 (($ |#1| |#1|) 33) (($ |#1| (-1163)) 44 (|has| |#1| (-1028 (-1163))))) (-1688 (((-1107) $) NIL)) (-3384 (((-112) $) 30)) (-3780 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1163)) 82 (|has| |#1| (-890 (-1163))))) (-3940 (((-853) $) 96) (($ |#1|) 25)) (-2207 (($) 16 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) 15) (($ $ $) NIL)) (-1785 (($ $ $) 78)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 14) (($ (-406 (-558)) $) 36) (($ $ (-406 (-558))) NIL)))
-(((-579 |#1|) (-13 (-708 (-406 (-558))) (-1028 |#1|) (-10 -8 (-15 -2773 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2475 (|#1| $)) (-15 -2366 ((-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) $)) (-15 -1788 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3384 ((-112) $)) (-15 -3082 ($ |#1| |#1|)) (-15 -3780 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-890 (-1163))) (-15 -3780 (|#1| $ (-1163))) |%noBranch|) (IF (|has| |#1| (-1028 (-1163))) (-15 -3082 ($ |#1| (-1163))) |%noBranch|))) (-362)) (T -579))
-((-2773 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *2)) (|:| |logand| (-1159 *2))))) (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-579 *2)))) (-2475 (*1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *3)) (|:| |logand| (-1159 *3))))) (-5 *1 (-579 *3)) (-4 *3 (-362)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-579 *3)) (-4 *3 (-362)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-362)))) (-3082 (*1 *1 *2 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362)))) (-3780 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-579 *2)) (-4 *2 (-362)))) (-3780 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-890 *3)) (-5 *1 (-579 *2)) (-5 *3 (-1163)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *1 (-579 *2)) (-4 *2 (-1028 *3)) (-4 *2 (-362)))))
-(-13 (-708 (-406 (-558))) (-1028 |#1|) (-10 -8 (-15 -2773 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2475 (|#1| $)) (-15 -2366 ((-635 (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 |#1|)) (|:| |logand| (-1159 |#1|)))) $)) (-15 -1788 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3384 ((-112) $)) (-15 -3082 ($ |#1| |#1|)) (-15 -3780 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-890 (-1163))) (-15 -3780 (|#1| $ (-1163))) |%noBranch|) (IF (|has| |#1| (-1028 (-1163))) (-15 -3082 ($ |#1| (-1163))) |%noBranch|)))
-((-3972 (((-112) |#1|) 16)) (-2262 (((-3 |#1| "failed") |#1|) 14)) (-1975 (((-2 (|:| -2636 |#1|) (|:| -1857 (-762))) |#1|) 30) (((-3 |#1| "failed") |#1| (-762)) 18)) (-3278 (((-112) |#1| (-762)) 19)) (-2539 ((|#1| |#1|) 31)) (-2001 ((|#1| |#1| (-762)) 33)))
-(((-580 |#1|) (-10 -7 (-15 -3278 ((-112) |#1| (-762))) (-15 -1975 ((-3 |#1| "failed") |#1| (-762))) (-15 -1975 ((-2 (|:| -2636 |#1|) (|:| -1857 (-762))) |#1|)) (-15 -2001 (|#1| |#1| (-762))) (-15 -3972 ((-112) |#1|)) (-15 -2262 ((-3 |#1| "failed") |#1|)) (-15 -2539 (|#1| |#1|))) (-543)) (T -580))
-((-2539 (*1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-2262 (*1 *2 *2) (|partial| -12 (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))) (-2001 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-1975 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2636 *3) (|:| -1857 (-762)))) (-5 *1 (-580 *3)) (-4 *3 (-543)))) (-1975 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))))
-(-10 -7 (-15 -3278 ((-112) |#1| (-762))) (-15 -1975 ((-3 |#1| "failed") |#1| (-762))) (-15 -1975 ((-2 (|:| -2636 |#1|) (|:| -1857 (-762))) |#1|)) (-15 -2001 (|#1| |#1| (-762))) (-15 -3972 ((-112) |#1|)) (-15 -2262 ((-3 |#1| "failed") |#1|)) (-15 -2539 (|#1| |#1|)))
-((-3317 (((-1159 |#1|) (-911)) 26)))
-(((-581 |#1|) (-10 -7 (-15 -3317 ((-1159 |#1|) (-911)))) (-348)) (T -581))
-((-3317 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-581 *4)) (-4 *4 (-348)))))
-(-10 -7 (-15 -3317 ((-1159 |#1|) (-911))))
-((-3566 (((-579 (-406 (-942 |#1|))) (-579 (-406 (-942 |#1|)))) 27)) (-1337 (((-3 (-315 |#1|) (-635 (-315 |#1|))) (-406 (-942 |#1|)) (-1163)) 34 (|has| |#1| (-146)))) (-2040 (((-635 (-315 |#1|)) (-579 (-406 (-942 |#1|)))) 19)) (-3615 (((-315 |#1|) (-406 (-942 |#1|)) (-1163)) 32 (|has| |#1| (-146)))) (-2759 (((-315 |#1|) (-579 (-406 (-942 |#1|)))) 21)))
-(((-582 |#1|) (-10 -7 (-15 -3566 ((-579 (-406 (-942 |#1|))) (-579 (-406 (-942 |#1|))))) (-15 -2040 ((-635 (-315 |#1|)) (-579 (-406 (-942 |#1|))))) (-15 -2759 ((-315 |#1|) (-579 (-406 (-942 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -1337 ((-3 (-315 |#1|) (-635 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -3615 ((-315 |#1|) (-406 (-942 |#1|)) (-1163)))) |%noBranch|)) (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (T -582))
-((-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-315 *5)) (-5 *1 (-582 *5)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-3 (-315 *5) (-635 (-315 *5)))) (-5 *1 (-582 *5)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-579 (-406 (-942 *4)))) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-315 *4)) (-5 *1 (-582 *4)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-579 (-406 (-942 *4)))) (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *2 (-635 (-315 *4))) (-5 *1 (-582 *4)))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-579 (-406 (-942 *3)))) (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558)))) (-5 *1 (-582 *3)))))
-(-10 -7 (-15 -3566 ((-579 (-406 (-942 |#1|))) (-579 (-406 (-942 |#1|))))) (-15 -2040 ((-635 (-315 |#1|)) (-579 (-406 (-942 |#1|))))) (-15 -2759 ((-315 |#1|) (-579 (-406 (-942 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -1337 ((-3 (-315 |#1|) (-635 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -3615 ((-315 |#1|) (-406 (-942 |#1|)) (-1163)))) |%noBranch|))
-((-1739 (((-635 (-679 (-558))) (-635 (-558)) (-635 (-895 (-558)))) 45) (((-635 (-679 (-558))) (-635 (-558))) 46) (((-679 (-558)) (-635 (-558)) (-895 (-558))) 41)) (-2323 (((-762) (-635 (-558))) 39)))
-(((-583) (-10 -7 (-15 -2323 ((-762) (-635 (-558)))) (-15 -1739 ((-679 (-558)) (-635 (-558)) (-895 (-558)))) (-15 -1739 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -1739 ((-635 (-679 (-558))) (-635 (-558)) (-635 (-895 (-558))))))) (T -583))
-((-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-558))) (-5 *4 (-635 (-895 (-558)))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-583)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-583)))) (-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-558))) (-5 *4 (-895 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-583)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-762)) (-5 *1 (-583)))))
-(-10 -7 (-15 -2323 ((-762) (-635 (-558)))) (-15 -1739 ((-679 (-558)) (-635 (-558)) (-895 (-558)))) (-15 -1739 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -1739 ((-635 (-679 (-558))) (-635 (-558)) (-635 (-895 (-558))))))
-((-1848 (((-635 |#5|) |#5| (-112)) 72)) (-3157 (((-112) |#5| (-635 |#5|)) 30)))
-(((-584 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1848 ((-635 |#5|) |#5| (-112))) (-15 -3157 ((-112) |#5| (-635 |#5|)))) (-13 (-306) (-146)) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -584))
-((-3157 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-584 *5 *6 *7 *8 *3)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-635 *3)) (-5 *1 (-584 *5 *6 *7 *8 *3)) (-4 *3 (-1096 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1848 ((-635 |#5|) |#5| (-112))) (-15 -3157 ((-112) |#5| (-635 |#5|))))
-((-3929 (((-112) $ $) NIL)) (-2385 (((-1122) $) 11)) (-2372 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-585) (-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))) (T -585))
-((-2372 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585)))))
-(-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))
-((-3929 (((-112) $ $) NIL (|has| (-143) (-1087)))) (-2535 (($ $) 34)) (-3847 (($ $) NIL)) (-3756 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-1282 (((-112) $ $) 51)) (-4341 (((-112) $ $ (-558)) 46)) (-3566 (((-635 $) $ (-143)) 59) (((-635 $) $ (-140)) 60)) (-2878 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-841)))) (-3041 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| (-143) (-841))))) (-3648 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 (((-143) $ (-558) (-143)) 45 (|has| $ (-6 -4384))) (((-143) $ (-1213 (-558)) (-143)) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-1835 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3284 (($ $ (-1213 (-558)) $) 44)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-1488 (($ (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4383))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3683 (((-143) $ (-558) (-143)) NIL (|has| $ (-6 -4384)))) (-3620 (((-143) $ (-558)) NIL)) (-1307 (((-112) $ $) 71)) (-4145 (((-558) (-1 (-112) (-143)) $) NIL) (((-558) (-143) $) NIL (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) 48 (|has| (-143) (-1087))) (((-558) $ $ (-558)) 47) (((-558) (-140) $ (-558)) 50)) (-2917 (((-635 (-143)) $) NIL (|has| $ (-6 -4383)))) (-1395 (($ (-762) (-143)) 9)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 28 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| (-143) (-841)))) (-3391 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-841)))) (-3486 (((-635 (-143)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-3186 (((-558) $) 42 (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-143) (-841)))) (-4143 (((-112) $ $ (-143)) 72)) (-3073 (((-762) $ $ (-143)) 69)) (-3674 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-2630 (($ $) 37)) (-4331 (($ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-1845 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-2510 (((-1145) $) 38 (|has| (-143) (-1087)))) (-1363 (($ (-143) $ (-558)) NIL) (($ $ $ (-558)) 23)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-558) $) 68) (((-1107) $) NIL (|has| (-143) (-1087)))) (-3156 (((-143) $) NIL (|has| (-558) (-841)))) (-2820 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2830 (($ $ (-143)) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-4318 (((-635 (-143)) $) NIL)) (-3711 (((-112) $) 12)) (-2876 (($) 10)) (-2276 (((-143) $ (-558) (-143)) NIL) (((-143) $ (-558)) 52) (($ $ (-1213 (-558))) 21) (($ $ $) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383))) (((-762) (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-2834 (($ $ $ (-558)) 65 (|has| $ (-6 -4384)))) (-4098 (($ $) 17)) (-3441 (((-534) $) NIL (|has| (-143) (-606 (-534))))) (-3952 (($ (-635 (-143))) NIL)) (-2683 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-635 $)) 66)) (-3940 (($ (-143)) NIL) (((-853) $) 27 (|has| (-143) (-605 (-853))))) (-2831 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1708 (((-112) $ $) 14 (|has| (-143) (-1087)))) (-1749 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1728 (((-112) $ $) 15 (|has| (-143) (-841)))) (-1596 (((-762) $) 13 (|has| $ (-6 -4383)))))
-(((-586 |#1|) (-13 (-1131) (-10 -8 (-15 -1688 ((-558) $)))) (-558)) (T -586))
-((-1688 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-586 *3)) (-14 *3 *2))))
-(-13 (-1131) (-10 -8 (-15 -1688 ((-558) $))))
-((-2757 (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1081 |#4|)) 32)))
-(((-587 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2757 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1081 |#4|))) (-15 -2757 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|))) (-784) (-841) (-550) (-939 |#3| |#1| |#2|)) (T -587))
-((-2757 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-587 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4)))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1081 *3)) (-4 *3 (-939 *7 *6 *4)) (-4 *6 (-784)) (-4 *4 (-841)) (-4 *7 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-587 *6 *4 *7 *3)))))
-(-10 -7 (-15 -2757 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1081 |#4|))) (-15 -2757 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 63)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-558)) 54) (($ $ (-558) (-558)) 55)) (-3414 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 60)) (-3818 (($ $) 99)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2499 (((-853) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1016 (-834 (-558))) (-1163) |#1| (-406 (-558))) 223)) (-2095 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 34)) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3459 (((-112) $) NIL)) (-2532 (((-558) $) 58) (((-558) $ (-558)) 59)) (-3999 (((-112) $) NIL)) (-4184 (($ $ (-911)) 76)) (-1448 (($ (-1 |#1| (-558)) $) 73)) (-3594 (((-112) $) 25)) (-4056 (($ |#1| (-558)) 22) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) 67)) (-3365 (($ (-1016 (-834 (-558))) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 13)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1337 (($ $) 149 (|has| |#1| (-38 (-406 (-558)))))) (-1546 (((-3 $ "failed") $ $ (-112)) 98)) (-1583 (($ $ $) 107)) (-1688 (((-1107) $) NIL)) (-3076 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 15)) (-1467 (((-1016 (-834 (-558))) $) 14)) (-2319 (($ $ (-558)) 45)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))))) (-2276 ((|#1| $ (-558)) 57) (($ $ $) NIL (|has| (-558) (-1099)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-4263 (((-558) $) NIL)) (-1559 (($ $) 46)) (-3940 (((-853) $) NIL) (($ (-558)) 28) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 27 (|has| |#1| (-171)))) (-3143 ((|#1| $ (-558)) 56)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) 37)) (-2814 ((|#1| $) NIL)) (-4048 (($ $) 185 (|has| |#1| (-38 (-406 (-558)))))) (-1841 (($ $) 157 (|has| |#1| (-38 (-406 (-558)))))) (-4304 (($ $) 189 (|has| |#1| (-38 (-406 (-558)))))) (-4152 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-1279 (($ $) 188 (|has| |#1| (-38 (-406 (-558)))))) (-1339 (($ $) 161 (|has| |#1| (-38 (-406 (-558)))))) (-3346 (($ $ (-406 (-558))) 165 (|has| |#1| (-38 (-406 (-558)))))) (-1863 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-558)))))) (-1742 (($ $) 191 (|has| |#1| (-38 (-406 (-558)))))) (-3478 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-1551 (($ $) 190 (|has| |#1| (-38 (-406 (-558)))))) (-2420 (($ $) 163 (|has| |#1| (-38 (-406 (-558)))))) (-3211 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-2062 (($ $) 159 (|has| |#1| (-38 (-406 (-558)))))) (-1366 (($ $) 187 (|has| |#1| (-38 (-406 (-558)))))) (-2602 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-2769 (($ $) 196 (|has| |#1| (-38 (-406 (-558)))))) (-4268 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-1587 (($ $) 193 (|has| |#1| (-38 (-406 (-558)))))) (-2021 (($ $) 167 (|has| |#1| (-38 (-406 (-558)))))) (-2151 (($ $) 200 (|has| |#1| (-38 (-406 (-558)))))) (-3270 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-1624 (($ $) 202 (|has| |#1| (-38 (-406 (-558)))))) (-3710 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-3251 (($ $) 198 (|has| |#1| (-38 (-406 (-558)))))) (-3170 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-2505 (($ $) 195 (|has| |#1| (-38 (-406 (-558)))))) (-2147 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-1422 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2207 (($) 29 T CONST)) (-2220 (($) 38 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-1708 (((-112) $ $) 65)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) 84) (($ $ $) 64)) (-1785 (($ $ $) 81)) (** (($ $ (-911)) NIL) (($ $ (-762)) 102)) (* (($ (-911) $) 89) (($ (-762) $) 87) (($ (-558) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-588 |#1|) (-13 (-1224 |#1| (-558)) (-10 -8 (-15 -3365 ($ (-1016 (-834 (-558))) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -1467 ((-1016 (-834 (-558))) $)) (-15 -3076 ((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -2095 ($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -3594 ((-112) $)) (-15 -1448 ($ (-1 |#1| (-558)) $)) (-15 -1546 ((-3 $ "failed") $ $ (-112))) (-15 -3818 ($ $)) (-15 -1583 ($ $ $)) (-15 -2499 ((-853) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1016 (-834 (-558))) (-1163) |#1| (-406 (-558)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $)) (-15 -1863 ($ $ |#1|)) (-15 -3346 ($ $ (-406 (-558)))) (-15 -3478 ($ $)) (-15 -1742 ($ $)) (-15 -4152 ($ $)) (-15 -2602 ($ $)) (-15 -1841 ($ $)) (-15 -2062 ($ $)) (-15 -1339 ($ $)) (-15 -2420 ($ $)) (-15 -2021 ($ $)) (-15 -2147 ($ $)) (-15 -4268 ($ $)) (-15 -3170 ($ $)) (-15 -3270 ($ $)) (-15 -3710 ($ $)) (-15 -4304 ($ $)) (-15 -1366 ($ $)) (-15 -4048 ($ $)) (-15 -3211 ($ $)) (-15 -1279 ($ $)) (-15 -1551 ($ $)) (-15 -1587 ($ $)) (-15 -2505 ($ $)) (-15 -2769 ($ $)) (-15 -3251 ($ $)) (-15 -2151 ($ $)) (-15 -1624 ($ $))) |%noBranch|))) (-1039)) (T -588))
-((-3594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-3365 (*1 *1 *2 *3) (-12 (-5 *2 (-1016 (-834 (-558)))) (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1039)) (-5 *1 (-588 *4)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1016 (-834 (-558)))) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1039)) (-5 *1 (-588 *3)))) (-1448 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-588 *3)))) (-1546 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))) (-1583 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))) (-2499 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *6)))) (-5 *4 (-1016 (-834 (-558)))) (-5 *5 (-1163)) (-5 *7 (-406 (-558))) (-4 *6 (-1039)) (-5 *2 (-853)) (-5 *1 (-588 *6)))) (-1337 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1863 (*1 *1 *1 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3346 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-588 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1039)))) (-3478 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1742 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-4152 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2602 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1841 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2062 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1339 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2420 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2021 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3170 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3270 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-4304 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1366 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-4048 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3211 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1279 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1587 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2505 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-3251 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(-13 (-1224 |#1| (-558)) (-10 -8 (-15 -3365 ($ (-1016 (-834 (-558))) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -1467 ((-1016 (-834 (-558))) $)) (-15 -3076 ((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -2095 ($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -3594 ((-112) $)) (-15 -1448 ($ (-1 |#1| (-558)) $)) (-15 -1546 ((-3 $ "failed") $ $ (-112))) (-15 -3818 ($ $)) (-15 -1583 ($ $ $)) (-15 -2499 ((-853) (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1016 (-834 (-558))) (-1163) |#1| (-406 (-558)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $)) (-15 -1863 ($ $ |#1|)) (-15 -3346 ($ $ (-406 (-558)))) (-15 -3478 ($ $)) (-15 -1742 ($ $)) (-15 -4152 ($ $)) (-15 -2602 ($ $)) (-15 -1841 ($ $)) (-15 -2062 ($ $)) (-15 -1339 ($ $)) (-15 -2420 ($ $)) (-15 -2021 ($ $)) (-15 -2147 ($ $)) (-15 -4268 ($ $)) (-15 -3170 ($ $)) (-15 -3270 ($ $)) (-15 -3710 ($ $)) (-15 -4304 ($ $)) (-15 -1366 ($ $)) (-15 -4048 ($ $)) (-15 -3211 ($ $)) (-15 -1279 ($ $)) (-15 -1551 ($ $)) (-15 -1587 ($ $)) (-15 -2505 ($ $)) (-15 -2769 ($ $)) (-15 -3251 ($ $)) (-15 -2151 ($ $)) (-15 -1624 ($ $))) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2095 (($ (-1143 |#1|)) 9)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) 42)) (-3459 (((-112) $) 52)) (-2532 (((-762) $) 55) (((-762) $ (-762)) 54)) (-3999 (((-112) $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ $) 44 (|has| |#1| (-550)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-1143 |#1|) $) 23)) (-2417 (((-762)) 51)) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) 10 T CONST)) (-2220 (($) 14 T CONST)) (-1708 (((-112) $ $) 22)) (-1796 (($ $) 30) (($ $ $) 16)) (-1785 (($ $ $) 25)) (** (($ $ (-911)) NIL) (($ $ (-762)) 49)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-558)) 36)))
-(((-589 |#1|) (-13 (-1039) (-10 -8 (-15 -3712 ((-1143 |#1|) $)) (-15 -2095 ($ (-1143 |#1|))) (-15 -3459 ((-112) $)) (-15 -2532 ((-762) $)) (-15 -2532 ((-762) $ (-762))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-558))) (IF (|has| |#1| (-550)) (-6 (-550)) |%noBranch|))) (-1039)) (T -589))
-((-3712 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-589 *3)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (-2532 (*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-589 *3)) (-4 *3 (-1039)))))
-(-13 (-1039) (-10 -8 (-15 -3712 ((-1143 |#1|) $)) (-15 -2095 ($ (-1143 |#1|))) (-15 -3459 ((-112) $)) (-15 -2532 ((-762) $)) (-15 -2532 ((-762) $ (-762))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-558))) (IF (|has| |#1| (-550)) (-6 (-550)) |%noBranch|)))
-((-3397 (((-593 |#2|) (-1 |#2| |#1|) (-593 |#1|)) 15)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -3397 ((-593 |#2|) (-1 |#2| |#1|) (-593 |#1|)))) (-1200) (-1200)) (T -590))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-593 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-593 *6)) (-5 *1 (-590 *5 *6)))))
-(-10 -7 (-15 -3397 ((-593 |#2|) (-1 |#2| |#1|) (-593 |#1|))))
-((-3397 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-1143 |#2|)) 20) (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-593 |#2|)) 19) (((-593 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-593 |#2|)) 18)))
-(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -3397 ((-593 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-593 |#2|))) (-15 -3397 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-593 |#2|))) (-15 -3397 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-1143 |#2|)))) (-1200) (-1200) (-1200)) (T -591))
-((-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8)) (-5 *1 (-591 *6 *7 *8)))) (-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-593 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8)) (-5 *1 (-591 *6 *7 *8)))) (-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-593 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-593 *8)) (-5 *1 (-591 *6 *7 *8)))))
-(-10 -7 (-15 -3397 ((-593 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-593 |#2|))) (-15 -3397 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-593 |#2|))) (-15 -3397 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-593 |#1|) (-1143 |#2|))))
-((-4306 ((|#3| |#3| (-635 (-604 |#3|)) (-635 (-1163))) 55)) (-3787 (((-168 |#2|) |#3|) 117)) (-1847 ((|#3| (-168 |#2|)) 44)) (-1605 ((|#2| |#3|) 19)) (-1985 ((|#3| |#2|) 33)))
-(((-592 |#1| |#2| |#3|) (-10 -7 (-15 -1847 (|#3| (-168 |#2|))) (-15 -1605 (|#2| |#3|)) (-15 -1985 (|#3| |#2|)) (-15 -3787 ((-168 |#2|) |#3|)) (-15 -4306 (|#3| |#3| (-635 (-604 |#3|)) (-635 (-1163))))) (-13 (-550) (-841)) (-13 (-429 |#1|) (-992) (-1185)) (-13 (-429 (-168 |#1|)) (-992) (-1185))) (T -592))
-((-4306 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-635 (-1163))) (-4 *2 (-13 (-429 (-168 *5)) (-992) (-1185))) (-4 *5 (-13 (-550) (-841))) (-5 *1 (-592 *5 *6 *2)) (-4 *6 (-13 (-429 *5) (-992) (-1185))))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841))) (-5 *2 (-168 *5)) (-5 *1 (-592 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-992) (-1185))) (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841))) (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185))) (-5 *1 (-592 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-992) (-1185))))) (-1605 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-841))) (-4 *2 (-13 (-429 *4) (-992) (-1185))) (-5 *1 (-592 *4 *2 *3)) (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185))) (-4 *4 (-13 (-550) (-841))) (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185))) (-5 *1 (-592 *4 *5 *2)))))
-(-10 -7 (-15 -1847 (|#3| (-168 |#2|))) (-15 -1605 (|#2| |#3|)) (-15 -1985 (|#3| |#2|)) (-15 -3787 ((-168 |#2|) |#3|)) (-15 -4306 (|#3| |#3| (-635 (-604 |#3|)) (-635 (-1163)))))
-((-2072 (($ (-1 (-112) |#1|) $) 17)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2009 (($ (-1 |#1| |#1|) |#1|) 9)) (-2050 (($ (-1 (-112) |#1|) $) 13)) (-2061 (($ (-1 (-112) |#1|) $) 15)) (-3952 (((-1143 |#1|) $) 18)) (-3940 (((-853) $) NIL)))
-(((-593 |#1|) (-13 (-605 (-853)) (-10 -8 (-15 -3397 ($ (-1 |#1| |#1|) $)) (-15 -2050 ($ (-1 (-112) |#1|) $)) (-15 -2061 ($ (-1 (-112) |#1|) $)) (-15 -2072 ($ (-1 (-112) |#1|) $)) (-15 -2009 ($ (-1 |#1| |#1|) |#1|)) (-15 -3952 ((-1143 |#1|) $)))) (-1200)) (T -593))
-((-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-2050 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-2061 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-2009 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1200)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3397 ($ (-1 |#1| |#1|) $)) (-15 -2050 ($ (-1 (-112) |#1|) $)) (-15 -2061 ($ (-1 (-112) |#1|) $)) (-15 -2072 ($ (-1 (-112) |#1|) $)) (-15 -2009 ($ (-1 |#1| |#1|) |#1|)) (-15 -3952 ((-1143 |#1|) $))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4237 (($ (-762)) NIL (|has| |#1| (-23)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3335 (((-679 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-1395 (($ (-762) |#1|) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3408 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-3212 (((-112) $ (-762)) NIL)) (-2958 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2823 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-3116 (($ $ $) NIL (|has| |#1| (-1039)))) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1796 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1785 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-558) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-717))) (($ $ |#1|) NIL (|has| |#1| (-717)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-594 |#1| |#2|) (-1244 |#1|) (-1200) (-558)) (T -594))
-NIL
-(-1244 |#1|)
-((-3552 (((-1251) $ |#2| |#2|) 36)) (-2192 ((|#2| $) 23)) (-3186 ((|#2| $) 21)) (-3674 (($ (-1 |#3| |#3|) $) 32)) (-3397 (($ (-1 |#3| |#3|) $) 30)) (-3156 ((|#3| $) 26)) (-2830 (($ $ |#3|) 33)) (-2149 (((-112) |#3| $) 17)) (-4318 (((-635 |#3|) $) 15)) (-2276 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-595 |#1| |#2| |#3|) (-10 -8 (-15 -3552 ((-1251) |#1| |#2| |#2|)) (-15 -2830 (|#1| |#1| |#3|)) (-15 -3156 (|#3| |#1|)) (-15 -2192 (|#2| |#1|)) (-15 -3186 (|#2| |#1|)) (-15 -2149 ((-112) |#3| |#1|)) (-15 -4318 ((-635 |#3|) |#1|)) (-15 -2276 (|#3| |#1| |#2|)) (-15 -2276 (|#3| |#1| |#2| |#3|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3397 (|#1| (-1 |#3| |#3|) |#1|))) (-596 |#2| |#3|) (-1087) (-1200)) (T -595))
-NIL
-(-10 -8 (-15 -3552 ((-1251) |#1| |#2| |#2|)) (-15 -2830 (|#1| |#1| |#3|)) (-15 -3156 (|#3| |#1|)) (-15 -2192 (|#2| |#1|)) (-15 -3186 (|#2| |#1|)) (-15 -2149 ((-112) |#3| |#1|)) (-15 -4318 ((-635 |#3|) |#1|)) (-15 -2276 (|#3| |#1| |#2|)) (-15 -2276 (|#3| |#1| |#2| |#3|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3397 (|#1| (-1 |#3| |#3|) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#2| (-1087)))) (-3552 (((-1251) $ |#1| |#1|) 40 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4384)))) (-3457 (($) 7 T CONST)) (-3683 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) 51)) (-2917 (((-635 |#2|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-2192 ((|#1| $) 43 (|has| |#1| (-841)))) (-3486 (((-635 |#2|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383))))) (-3186 ((|#1| $) 44 (|has| |#1| (-841)))) (-3674 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#2| (-1087)))) (-3051 (((-635 |#1|) $) 46)) (-2740 (((-112) |#1| $) 47)) (-1688 (((-1107) $) 21 (|has| |#2| (-1087)))) (-3156 ((|#2| $) 42 (|has| |#1| (-841)))) (-2830 (($ $ |#2|) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1698 (((-762) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4383))) (((-762) |#2| $) 28 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#2| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#2| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-596 |#1| |#2|) (-139) (-1087) (-1200)) (T -596))
-((-4318 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-635 *4)))) (-2740 (*1 *2 *3 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-112)))) (-3051 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-635 *3)))) (-2149 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-596 *4 *3)) (-4 *4 (-1087)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087)) (-4 *2 (-841)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087)) (-4 *2 (-841)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1087)) (-4 *3 (-841)) (-4 *2 (-1200)))) (-2830 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-596 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200)))) (-3552 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200)) (-5 *2 (-1251)))))
-(-13 (-487 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -4318 ((-635 |t#2|) $)) (-15 -2740 ((-112) |t#1| $)) (-15 -3051 ((-635 |t#1|) $)) (IF (|has| |t#2| (-1087)) (IF (|has| $ (-6 -4383)) (-15 -2149 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-841)) (PROGN (-15 -3186 (|t#1| $)) (-15 -2192 (|t#1| $)) (-15 -3156 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4384)) (PROGN (-15 -2830 ($ $ |t#2|)) (-15 -3552 ((-1251) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1087)) ((-605 (-853)) -3994 (|has| |#2| (-1087)) (|has| |#2| (-605 (-853)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-1087) |has| |#2| (-1087)) ((-1200) . T))
-((-3940 (((-853) $) 17) (($ (-129)) 13) (((-129) $) 14)))
-(((-597) (-13 (-605 (-853)) (-488 (-129)))) (T -597))
-NIL
-(-13 (-605 (-853)) (-488 (-129)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL) (($ (-1168)) NIL) (((-1168) $) NIL) (((-1199) $) 14) (($ (-635 (-1199))) 13)) (-1518 (((-635 (-1199)) $) 10)) (-1708 (((-112) $ $) NIL)))
-(((-598) (-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3940 ($ (-635 (-1199)))) (-15 -1518 ((-635 (-1199)) $))))) (T -598))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598)))))
-(-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3940 ($ (-635 (-1199)))) (-15 -1518 ((-635 (-1199)) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3466 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-1644 (((-1246 (-679 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1246 (-679 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3871 (((-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3457 (($) NIL T CONST)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3262 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-4157 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3890 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1398 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2113 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3889 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2943 (($ $ (-911)) NIL)) (-3231 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3324 (((-1159 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2392 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1292 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2706 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3431 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1246 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3248 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-1489 (((-911)) NIL (|has| |#2| (-366 |#1|)))) (-1831 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4337 (($ $ (-911)) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1508 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2728 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2251 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2284 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2818 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-4138 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-4300 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3900 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-1794 (($ $ (-911)) NIL)) (-2815 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1637 (((-1159 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2408 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2889 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1475 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2510 (((-1145) $) NIL)) (-4165 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1323 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1310 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1688 (((-1107) $) NIL)) (-3145 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2276 ((|#1| $ (-558)) NIL (|has| |#2| (-416 |#1|)))) (-2979 (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $) (-1246 $)) NIL (|has| |#2| (-366 |#1|))) (((-1246 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3441 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3175 (((-635 (-942 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-635 (-942 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3072 (($ $ $) NIL)) (-4211 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3940 (((-853) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2743 (((-1246 $)) NIL (|has| |#2| (-416 |#1|)))) (-3817 (((-635 (-1246 |#1|))) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2536 (($ $ $ $) NIL)) (-2667 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2484 (($ (-679 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3467 (($ $ $) NIL)) (-2249 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2835 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2274 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2207 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) 24)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-599 |#1| |#2|) (-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-735 |#1|)) (T -599))
-((-3940 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-599 *3 *2)) (-4 *2 (-735 *3)))))
-(-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-2458 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) 33)) (-1379 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL) (($) NIL)) (-3552 (((-1251) $ (-1145) (-1145)) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-1145) |#1|) 43)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#1| "failed") (-1145) $) 46)) (-3457 (($) NIL T CONST)) (-1989 (($ $ (-1145)) 24)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087))))) (-2375 (((-3 |#1| "failed") (-1145) $) 47) (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (($ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (|has| $ (-6 -4383)))) (-1488 (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (($ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087))))) (-3866 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087))))) (-1681 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) 32)) (-3683 ((|#1| $ (-1145) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-1145)) NIL)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383))) (((-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-1879 (($ $) 48)) (-3229 (($ (-387)) 22) (($ (-387) (-1145)) 21)) (-3179 (((-387) $) 34)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-1145) $) NIL (|has| (-1145) (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383))) (((-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (((-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087))))) (-3186 (((-1145) $) NIL (|has| (-1145) (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1934 (((-635 (-1145)) $) 39)) (-3336 (((-112) (-1145) $) NIL)) (-4194 (((-1145) $) 35)) (-1498 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL)) (-3051 (((-635 (-1145)) $) NIL)) (-2740 (((-112) (-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 ((|#1| $) NIL (|has| (-1145) (-841)))) (-2820 (((-3 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) "failed") (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ $ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ $ (-635 (-293 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 37)) (-2276 ((|#1| $ (-1145) |#1|) NIL) ((|#1| $ (-1145)) 42)) (-1966 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL) (($) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (((-762) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (((-762) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL)) (-3940 (((-853) $) 20)) (-1388 (($ $) 25)) (-2472 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 19)) (-1596 (((-762) $) 41 (|has| $ (-6 -4383)))))
-(((-600 |#1|) (-13 (-363 (-387) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) (-1176 (-1145) |#1|) (-10 -8 (-6 -4383) (-15 -1879 ($ $)))) (-1087)) (T -600))
-((-1879 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1087)))))
-(-13 (-363 (-387) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) (-1176 (-1145) |#1|) (-10 -8 (-6 -4383) (-15 -1879 ($ $))))
-((-3764 (((-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) $) 15)) (-1934 (((-635 |#2|) $) 19)) (-3336 (((-112) |#2| $) 12)))
-(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -1934 ((-635 |#2|) |#1|)) (-15 -3336 ((-112) |#2| |#1|)) (-15 -3764 ((-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|))) (-602 |#2| |#3|) (-1087) (-1087)) (T -601))
-NIL
-(-10 -8 (-15 -1934 ((-635 |#2|) |#1|)) (-15 -3336 ((-112) |#2| |#1|)) (-15 -3764 ((-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 55 (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) 61)) (-3457 (($) 7 T CONST)) (-3188 (($ $) 58 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 46 (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) 62)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 54 (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 56 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 53 (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 52 (|has| $ (-6 -4383)))) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-1934 (((-635 |#1|) $) 63)) (-3336 (((-112) |#1| $) 64)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 39)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 40)) (-1688 (((-1107) $) 21 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 51)) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 41)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) 26 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 25 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 24 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 23 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1966 (($) 49) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 48)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 31 (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 50)) (-3940 (((-853) $) 18 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 42)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-602 |#1| |#2|) (-139) (-1087) (-1087)) (T -602))
-((-3336 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-112)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-5 *2 (-635 *3)))) (-2375 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-2623 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
-(-13 (-228 (-2 (|:| -2176 |t#1|) (|:| -1925 |t#2|))) (-10 -8 (-15 -3336 ((-112) |t#1| $)) (-15 -1934 ((-635 |t#1|) $)) (-15 -2375 ((-3 |t#2| "failed") |t#1| $)) (-15 -2623 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((-102) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) ((-605 (-853)) -3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853)))) ((-150 #0#) . T) ((-606 (-534)) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-487 #0#) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-1087) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) ((-1200) . T))
-((-1922 (((-604 |#2|) |#1|) 15)) (-3715 (((-3 |#1| "failed") (-604 |#2|)) 19)))
-(((-603 |#1| |#2|) (-10 -7 (-15 -1922 ((-604 |#2|) |#1|)) (-15 -3715 ((-3 |#1| "failed") (-604 |#2|)))) (-841) (-841)) (T -603))
-((-3715 (*1 *2 *3) (|partial| -12 (-5 *3 (-604 *4)) (-4 *4 (-841)) (-4 *2 (-841)) (-5 *1 (-603 *2 *4)))) (-1922 (*1 *2 *3) (-12 (-5 *2 (-604 *4)) (-5 *1 (-603 *3 *4)) (-4 *3 (-841)) (-4 *4 (-841)))))
-(-10 -7 (-15 -1922 ((-604 |#2|) |#1|)) (-15 -3715 ((-3 |#1| "failed") (-604 |#2|))))
-((-3929 (((-112) $ $) NIL)) (-1296 (((-3 (-1163) "failed") $) 37)) (-1913 (((-1251) $ (-762)) 26)) (-4145 (((-762) $) 25)) (-2154 (((-114) $) 12)) (-3179 (((-1163) $) 20)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-3390 (($ (-114) (-635 |#1|) (-762)) 30) (($ (-1163)) 31)) (-3557 (((-112) $ (-114)) 18) (((-112) $ (-1163)) 16)) (-2361 (((-762) $) 22)) (-1688 (((-1107) $) NIL)) (-3441 (((-882 (-558)) $) 77 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 84 (|has| |#1| (-606 (-882 (-378))))) (((-534) $) 69 (|has| |#1| (-606 (-534))))) (-3940 (((-853) $) 55)) (-2362 (((-635 |#1|) $) 24)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 41)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 42)))
-(((-604 |#1|) (-13 (-131) (-874 |#1|) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -2154 ((-114) $)) (-15 -2362 ((-635 |#1|) $)) (-15 -2361 ((-762) $)) (-15 -3390 ($ (-114) (-635 |#1|) (-762))) (-15 -3390 ($ (-1163))) (-15 -1296 ((-3 (-1163) "failed") $)) (-15 -3557 ((-112) $ (-114))) (-15 -3557 ((-112) $ (-1163))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|))) (-841)) (T -604))
-((-3179 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-3390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-841)) (-5 *1 (-604 *5)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-1296 (*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))) (-3557 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841)))) (-3557 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841)))))
-(-13 (-131) (-874 |#1|) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -2154 ((-114) $)) (-15 -2362 ((-635 |#1|) $)) (-15 -2361 ((-762) $)) (-15 -3390 ($ (-114) (-635 |#1|) (-762))) (-15 -3390 ($ (-1163))) (-15 -1296 ((-3 (-1163) "failed") $)) (-15 -3557 ((-112) $ (-114))) (-15 -3557 ((-112) $ (-1163))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|)))
-((-3940 ((|#1| $) 6)))
-(((-605 |#1|) (-139) (-1200)) (T -605))
-((-3940 (*1 *2 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1200)))))
-(-13 (-10 -8 (-15 -3940 (|t#1| $))))
-((-3441 ((|#1| $) 6)))
-(((-606 |#1|) (-139) (-1200)) (T -606))
-((-3441 (*1 *2 *1) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1200)))))
-(-13 (-10 -8 (-15 -3441 (|t#1| $))))
-((-2066 (((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)) 15) (((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16)))
-(((-607 |#1| |#2|) (-10 -7 (-15 -2066 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -2066 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -607))
-((-2066 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-1159 (-406 *6))) (-5 *1 (-607 *5 *6)) (-5 *3 (-406 *6)))) (-2066 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-1159 (-406 *5))) (-5 *1 (-607 *4 *5)) (-5 *3 (-406 *5)))))
-(-10 -7 (-15 -2066 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -2066 ((-3 (-1159 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|))))
-((-3940 (($ |#1|) 6)))
-(((-608 |#1|) (-139) (-1200)) (T -608))
-((-3940 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1200)))))
-(-13 (-10 -8 (-15 -3940 ($ |t#1|))))
-((-3929 (((-112) $ $) NIL)) (-3601 (($) 8 T CONST)) (-2708 (($) 9 T CONST)) (-2168 (($ $ $) 21)) (-2143 (($ $) 19)) (-2510 (((-1145) $) NIL)) (-2334 (($ $ $) 22)) (-1688 (((-1107) $) NIL)) (-1556 (($) 7 T CONST)) (-1741 (($ $ $) 23)) (-3940 (((-853) $) 27)) (-2194 (((-112) $ (|[\|\|]| -1556)) 16) (((-112) $ (|[\|\|]| -3601)) 18) (((-112) $ (|[\|\|]| -2708)) 14)) (-2157 (($ $ $) 20)) (-1708 (((-112) $ $) 12)))
-(((-609) (-13 (-957) (-10 -8 (-15 -1556 ($) -2010) (-15 -3601 ($) -2010) (-15 -2708 ($) -2010) (-15 -2194 ((-112) $ (|[\|\|]| -1556))) (-15 -2194 ((-112) $ (|[\|\|]| -3601))) (-15 -2194 ((-112) $ (|[\|\|]| -2708)))))) (T -609))
-((-1556 (*1 *1) (-5 *1 (-609))) (-3601 (*1 *1) (-5 *1 (-609))) (-2708 (*1 *1) (-5 *1 (-609))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1556)) (-5 *2 (-112)) (-5 *1 (-609)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3601)) (-5 *2 (-112)) (-5 *1 (-609)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2708)) (-5 *2 (-112)) (-5 *1 (-609)))))
-(-13 (-957) (-10 -8 (-15 -1556 ($) -2010) (-15 -3601 ($) -2010) (-15 -2708 ($) -2010) (-15 -2194 ((-112) $ (|[\|\|]| -1556))) (-15 -2194 ((-112) $ (|[\|\|]| -3601))) (-15 -2194 ((-112) $ (|[\|\|]| -2708)))))
-((-3441 (($ |#1|) 6)))
-(((-610 |#1|) (-139) (-1200)) (T -610))
-((-3441 (*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1200)))))
-(-13 (-10 -8 (-15 -3441 ($ |t#1|))))
-((-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) 10)))
-(((-611 |#1| |#2|) (-10 -8 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-612 |#2|) (-1039)) (T -611))
-NIL
-(-10 -8 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 36)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-612 |#1|) (-139) (-1039)) (T -612))
-((-3940 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1039)))))
-(-13 (-1039) (-638 |t#1|) (-10 -8 (-15 -3940 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1334 (((-558) $) NIL (|has| |#1| (-839)))) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-4053 (((-112) $) NIL (|has| |#1| (-839)))) (-3999 (((-112) $) NIL)) (-3316 ((|#1| $) 13)) (-2032 (((-112) $) NIL (|has| |#1| (-839)))) (-2142 (($ $ $) NIL (|has| |#1| (-839)))) (-2281 (($ $ $) NIL (|has| |#1| (-839)))) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3327 ((|#3| $) 15)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL)) (-2417 (((-762)) 20)) (-4241 (($ $) NIL (|has| |#1| (-839)))) (-2207 (($) NIL T CONST)) (-2220 (($) 12 T CONST)) (-1757 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1805 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-613 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (-15 -1805 ($ $ |#3|)) (-15 -1805 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3327 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-717) |#2|)) (T -613))
-((-1805 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-717) *4)))) (-1805 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-717) *4)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-613 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-717) *3)))) (-3327 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (-15 -1805 ($ $ |#3|)) (-15 -1805 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3327 (|#3| $))))
-((-3020 ((|#2| |#2| (-1163) (-1163)) 18)))
-(((-614 |#1| |#2|) (-10 -7 (-15 -3020 (|#2| |#2| (-1163) (-1163)))) (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-949) (-29 |#1|))) (T -614))
-((-3020 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-1185) (-949) (-29 *4))))))
-(-10 -7 (-15 -3020 (|#2| |#2| (-1163) (-1163))))
-((-3929 (((-112) $ $) 56)) (-3124 (((-112) $) 52)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1325 ((|#1| $) 49)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2855 (((-2 (|:| -4297 $) (|:| -2477 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) 24)) (-3248 (((-3 $ "failed") $) 75)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2532 (((-558) $) 19)) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) 36)) (-4056 (($ |#1| (-558)) 21)) (-3881 ((|#1| $) 51)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 101 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2861 (((-3 $ "failed") $ $) 79)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1562 (((-762) $) 100 (|has| |#1| (-362)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 99 (|has| |#1| (-362)))) (-3780 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-4263 (((-558) $) 34)) (-3441 (((-406 |#2|) $) 42)) (-3940 (((-853) $) 62) (($ (-558)) 32) (($ $) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 31) (($ |#2|) 22)) (-3143 ((|#1| $ (-558)) 63)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) 29)) (-2671 (((-112) $ $) NIL)) (-2207 (($) 9 T CONST)) (-2220 (($) 12 T CONST)) (-3042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1708 (((-112) $ $) 17)) (-1796 (($ $) 46) (($ $ $) NIL)) (-1785 (($ $ $) 76)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 26) (($ $ $) 44)))
-(((-615 |#1| |#2|) (-13 (-230 |#2|) (-550) (-606 (-406 |#2|)) (-410 |#1|) (-1028 |#2|) (-10 -8 (-15 -3594 ((-112) $)) (-15 -4263 ((-558) $)) (-15 -2532 ((-558) $)) (-15 -3905 ($ $)) (-15 -3881 (|#1| $)) (-15 -1325 (|#1| $)) (-15 -3143 (|#1| $ (-558))) (-15 -4056 ($ |#1| (-558))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -2855 ((-2 (|:| -4297 $) (|:| -2477 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-550) (-1222 |#1|)) (T -615))
-((-3594 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1222 *3)))) (-4263 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1222 *3)))) (-2532 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1222 *3)))) (-3905 (*1 *1 *1) (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))) (-3881 (*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))) (-1325 (*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))) (-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1222 *2)))) (-4056 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1222 *2)))) (-2855 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-550)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -4297 (-615 *4 *5)) (|:| -2477 (-406 *5)))) (-5 *1 (-615 *4 *5)) (-5 *3 (-406 *5)))))
-(-13 (-230 |#2|) (-550) (-606 (-406 |#2|)) (-410 |#1|) (-1028 |#2|) (-10 -8 (-15 -3594 ((-112) $)) (-15 -4263 ((-558) $)) (-15 -2532 ((-558) $)) (-15 -3905 ($ $)) (-15 -3881 (|#1| $)) (-15 -1325 (|#1| $)) (-15 -3143 (|#1| $ (-558))) (-15 -4056 ($ |#1| (-558))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -2855 ((-2 (|:| -4297 $) (|:| -2477 (-406 |#2|))) (-406 |#2|)))) |%noBranch|)))
-((-3055 (((-635 |#6|) (-635 |#4|) (-112)) 46)) (-3201 ((|#6| |#6|) 39)))
-(((-616 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3201 (|#6| |#6|)) (-15 -3055 ((-635 |#6|) (-635 |#4|) (-112)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|) (-1096 |#1| |#2| |#3| |#4|)) (T -616))
-((-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *10)) (-5 *1 (-616 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *10 (-1096 *5 *6 *7 *8)))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-616 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *2 (-1096 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3201 (|#6| |#6|)) (-15 -3055 ((-635 |#6|) (-635 |#4|) (-112))))
-((-2712 (((-112) |#3| (-762) (-635 |#3|)) 23)) (-4274 (((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1159 |#3|)))) "failed") |#3| (-635 (-1159 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3381 (-635 (-2 (|:| |irr| |#4|) (|:| -2074 (-558)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)) 55)))
-(((-617 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2712 ((-112) |#3| (-762) (-635 |#3|))) (-15 -4274 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1159 |#3|)))) "failed") |#3| (-635 (-1159 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3381 (-635 (-2 (|:| |irr| |#4|) (|:| -2074 (-558)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)))) (-841) (-784) (-306) (-939 |#3| |#2| |#1|)) (T -617))
-((-4274 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3381 (-635 (-2 (|:| |irr| *10) (|:| -2074 (-558))))))) (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-841)) (-4 *3 (-306)) (-4 *10 (-939 *3 *9 *8)) (-4 *9 (-784)) (-5 *2 (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3) (|:| |corrfact| (-635 (-1159 *3))))) (-5 *1 (-617 *8 *9 *3 *10)) (-5 *4 (-635 (-1159 *3))))) (-2712 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-762)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-841)) (-4 *7 (-784)) (-5 *2 (-112)) (-5 *1 (-617 *6 *7 *3 *8)) (-4 *8 (-939 *3 *7 *6)))))
-(-10 -7 (-15 -2712 ((-112) |#3| (-762) (-635 |#3|))) (-15 -4274 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1159 |#3|)))) "failed") |#3| (-635 (-1159 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3381 (-635 (-2 (|:| |irr| |#4|) (|:| -2074 (-558)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|))))
-((-3929 (((-112) $ $) NIL)) (-2385 (((-1122) $) 11)) (-2372 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-618) (-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))) (T -618))
-((-2372 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618)))))
-(-13 (-1070) (-10 -8 (-15 -2372 ((-1122) $)) (-15 -2385 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-3883 (($ $) 67)) (-4342 (((-654 |#1| |#2|) $) 52)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 70)) (-3660 (((-635 (-293 |#2|)) $ $) 33)) (-1688 (((-1107) $) NIL)) (-3944 (($ (-654 |#1| |#2|)) 48)) (-3068 (($ $ $) NIL)) (-3072 (($ $ $) NIL)) (-3940 (((-853) $) 58) (((-1261 |#1| |#2|) $) NIL) (((-1266 |#1| |#2|) $) 66)) (-2220 (($) 53 T CONST)) (-2306 (((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $) 31)) (-2085 (((-635 (-654 |#1| |#2|)) (-635 |#1|)) 65)) (-3243 (((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $) 37)) (-1708 (((-112) $ $) 54)) (-1805 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ $ $) 44)))
-(((-619 |#1| |#2| |#3|) (-13 (-471) (-10 -8 (-15 -3944 ($ (-654 |#1| |#2|))) (-15 -4342 ((-654 |#1| |#2|) $)) (-15 -3243 ((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $)) (-15 -3940 ((-1261 |#1| |#2|) $)) (-15 -3940 ((-1266 |#1| |#2|) $)) (-15 -3883 ($ $)) (-15 -2096 ((-635 |#1|) $)) (-15 -2085 ((-635 (-654 |#1| |#2|)) (-635 |#1|))) (-15 -2306 ((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $)) (-15 -3660 ((-635 (-293 |#2|)) $ $)))) (-841) (-13 (-171) (-708 (-406 (-558)))) (-911)) (T -619))
-((-3944 (*1 *1 *2) (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-5 *1 (-619 *3 *4 *5)) (-14 *5 (-911)))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-654 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-883 *3)) (|:| |c| *4)))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-619 *2 *3 *4)) (-4 *2 (-841)) (-4 *3 (-13 (-171) (-708 (-406 (-558))))) (-14 *4 (-911)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-654 *4 *5))) (-5 *1 (-619 *4 *5 *6)) (-4 *5 (-13 (-171) (-708 (-406 (-558))))) (-14 *6 (-911)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-662 *3)) (|:| |c| *4)))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))) (-3660 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-293 *4))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841)) (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))))
-(-13 (-471) (-10 -8 (-15 -3944 ($ (-654 |#1| |#2|))) (-15 -4342 ((-654 |#1| |#2|) $)) (-15 -3243 ((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $)) (-15 -3940 ((-1261 |#1| |#2|) $)) (-15 -3940 ((-1266 |#1| |#2|) $)) (-15 -3883 ($ $)) (-15 -2096 ((-635 |#1|) $)) (-15 -2085 ((-635 (-654 |#1| |#2|)) (-635 |#1|))) (-15 -2306 ((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $)) (-15 -3660 ((-635 (-293 |#2|)) $ $))))
-((-3055 (((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112)) 71) (((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112)) 57)) (-2964 (((-112) (-635 (-771 |#1| (-855 |#2|)))) 23)) (-1387 (((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112)) 70)) (-2804 (((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112)) 56)) (-2205 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|)))) 27)) (-3298 (((-3 (-635 (-771 |#1| (-855 |#2|))) "failed") (-635 (-771 |#1| (-855 |#2|)))) 26)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -2964 ((-112) (-635 (-771 |#1| (-855 |#2|))))) (-15 -3298 ((-3 (-635 (-771 |#1| (-855 |#2|))) "failed") (-635 (-771 |#1| (-855 |#2|))))) (-15 -2205 ((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))))) (-15 -2804 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -1387 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3055 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3055 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112)))) (-450) (-635 (-1163))) (T -620))
-((-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6))))) (-5 *1 (-620 *5 *6)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-620 *5 *6)))) (-1387 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6))))) (-5 *1 (-620 *5 *6)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-620 *5 *6)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))) (-3298 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-635 (-771 *4 (-855 *5)))) (-4 *4 (-450)) (-14 *5 (-635 (-1163))) (-5 *2 (-112)) (-5 *1 (-620 *4 *5)))))
-(-10 -7 (-15 -2964 ((-112) (-635 (-771 |#1| (-855 |#2|))))) (-15 -3298 ((-3 (-635 (-771 |#1| (-855 |#2|))) "failed") (-635 (-771 |#1| (-855 |#2|))))) (-15 -2205 ((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))))) (-15 -2804 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -1387 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3055 ((-635 (-1036 |#1| |#2|)) (-635 (-771 |#1| (-855 |#2|))) (-112))) (-15 -3055 ((-635 (-1133 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|)))) (-635 (-771 |#1| (-855 |#2|))) (-112))))
-((-2277 (($ $) 38)) (-2131 (($ $) 21)) (-2254 (($ $) 37)) (-2109 (($ $) 22)) (-2298 (($ $) 36)) (-2158 (($ $) 23)) (-3348 (($) 48)) (-4342 (($ $) 45)) (-2515 (($ $) 17)) (-3082 (($ $ (-1079 $)) 7) (($ $ (-1163)) 6)) (-3944 (($ $) 46)) (-2067 (($ $) 15)) (-2097 (($ $) 16)) (-2312 (($ $) 35)) (-2170 (($ $) 24)) (-2289 (($ $) 34)) (-2146 (($ $) 25)) (-2265 (($ $) 33)) (-2120 (($ $) 26)) (-4175 (($ $) 44)) (-2209 (($ $) 32)) (-2325 (($ $) 43)) (-2184 (($ $) 31)) (-4197 (($ $) 42)) (-2233 (($ $) 30)) (-2038 (($ $) 41)) (-2244 (($ $) 29)) (-4185 (($ $) 40)) (-2221 (($ $) 28)) (-4164 (($ $) 39)) (-2195 (($ $) 27)) (-3898 (($ $) 19)) (-3315 (($ $) 20)) (-3675 (($ $) 18)) (** (($ $ $) 47)))
-(((-621) (-139)) (T -621))
-((-3315 (*1 *1 *1) (-4 *1 (-621))) (-3898 (*1 *1 *1) (-4 *1 (-621))) (-3675 (*1 *1 *1) (-4 *1 (-621))) (-2515 (*1 *1 *1) (-4 *1 (-621))) (-2097 (*1 *1 *1) (-4 *1 (-621))) (-2067 (*1 *1 *1) (-4 *1 (-621))))
-(-13 (-949) (-1185) (-10 -8 (-15 -3315 ($ $)) (-15 -3898 ($ $)) (-15 -3675 ($ $)) (-15 -2515 ($ $)) (-15 -2097 ($ $)) (-15 -2067 ($ $))))
-(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-949) . T) ((-1185) . T) ((-1188) . T))
-((-2154 (((-114) (-114)) 83)) (-2515 ((|#2| |#2|) 30)) (-3082 ((|#2| |#2| (-1079 |#2|)) 79) ((|#2| |#2| (-1163)) 52)) (-2067 ((|#2| |#2|) 29)) (-2097 ((|#2| |#2|) 31)) (-2480 (((-112) (-114)) 34)) (-3898 ((|#2| |#2|) 26)) (-3315 ((|#2| |#2|) 28)) (-3675 ((|#2| |#2|) 27)))
-(((-622 |#1| |#2|) (-10 -7 (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -3315 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -2515 (|#2| |#2|)) (-15 -2067 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -3082 (|#2| |#2| (-1163))) (-15 -3082 (|#2| |#2| (-1079 |#2|)))) (-13 (-841) (-550)) (-13 (-429 |#1|) (-992) (-1185))) (T -622))
-((-3082 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-992) (-1185))) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-429 *4) (-992) (-1185))))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-2067 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-2515 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-3315 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2)) (-4 *2 (-13 (-429 *3) (-992) (-1185))))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *4)) (-4 *4 (-13 (-429 *3) (-992) (-1185))))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-622 *4 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185))))))
-(-10 -7 (-15 -2480 ((-112) (-114))) (-15 -2154 ((-114) (-114))) (-15 -3315 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -2515 (|#2| |#2|)) (-15 -2067 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -3082 (|#2| |#2| (-1163))) (-15 -3082 (|#2| |#2| (-1079 |#2|))))
-((-2275 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-4315 (((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 68)) (-2080 (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-855 |#1|)) 70) (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-855 |#1|)) 69)) (-3548 (((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-558)))) (-635 (-479 |#1| |#2|))) 108)) (-3618 (((-635 (-479 |#1| |#2|)) (-855 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 83)) (-3953 (((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-558)))) (-635 (-246 |#1| |#2|))) 118)) (-4276 (((-1246 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|))) 58)) (-3443 (((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 41)) (-3147 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 50)) (-4070 (((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 91)))
-(((-623 |#1| |#2|) (-10 -7 (-15 -3548 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-558)))) (-635 (-479 |#1| |#2|)))) (-15 -3953 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-558)))) (-635 (-246 |#1| |#2|)))) (-15 -4315 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2080 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -2080 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -3443 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -4276 ((-1246 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -4070 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -3618 ((-635 (-479 |#1| |#2|)) (-855 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3147 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2275 ((-479 |#1| |#2|) (-246 |#1| |#2|)))) (-635 (-1163)) (-450)) (T -623))
-((-2275 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-479 *4 *5)) (-5 *1 (-623 *4 *5)))) (-3147 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))) (-3618 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-855 *4)) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))) (-4070 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450)) (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1163))) (-5 *1 (-623 *5 *6)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-1246 *6)) (-5 *1 (-623 *5 *6)))) (-3443 (*1 *2 *2) (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1163))) (-4 *4 (-450)) (-5 *1 (-623 *3 *4)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5)) (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6)) (-4 *6 (-450)))) (-2080 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5)) (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6)) (-4 *6 (-450)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-623 *4 *5)))) (-3953 (*1 *2 *3) (-12 (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-558))))) (-5 *1 (-623 *4 *5)) (-5 *3 (-635 (-246 *4 *5))))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |gblist| (-635 (-246 *4 *5))) (|:| |gvlist| (-635 (-558))))) (-5 *1 (-623 *4 *5)))))
-(-10 -7 (-15 -3548 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-558)))) (-635 (-479 |#1| |#2|)))) (-15 -3953 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-558)))) (-635 (-246 |#1| |#2|)))) (-15 -4315 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2080 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -2080 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-855 |#1|))) (-15 -3443 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -4276 ((-1246 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -4070 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -3618 ((-635 (-479 |#1| |#2|)) (-855 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -3147 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2275 ((-479 |#1| |#2|) (-246 |#1| |#2|))))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) NIL)) (-3552 (((-1251) $ (-1145) (-1145)) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 (((-52) $ (-1145) (-52)) 16) (((-52) $ (-1163) (-52)) 17)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 (-52) "failed") (-1145) $) NIL)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087))))) (-2375 (($ (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-3 (-52) "failed") (-1145) $) NIL)) (-1488 (($ (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $ (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (((-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $ (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-3683 (((-52) $ (-1145) (-52)) NIL (|has| $ (-6 -4384)))) (-3620 (((-52) $ (-1145)) NIL)) (-2917 (((-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-635 (-52)) $) NIL (|has| $ (-6 -4383)))) (-1879 (($ $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-1145) $) NIL (|has| (-1145) (-841)))) (-3486 (((-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-635 (-52)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087))))) (-3186 (((-1145) $) NIL (|has| (-1145) (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4384))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1569 (($ (-387)) 9)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087))))) (-1934 (((-635 (-1145)) $) NIL)) (-3336 (((-112) (-1145) $) NIL)) (-1498 (((-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) $) NIL)) (-2650 (($ (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) $) NIL)) (-3051 (((-635 (-1145)) $) NIL)) (-2740 (((-112) (-1145) $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087))))) (-3156 (((-52) $) NIL (|has| (-1145) (-841)))) (-2820 (((-3 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) "failed") (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL)) (-2830 (($ $ (-52)) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (($ $ (-293 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (($ $ (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (($ $ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (($ $ (-635 (-52)) (-635 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-635 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087))))) (-4318 (((-635 (-52)) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 (((-52) $ (-1145)) 14) (((-52) $ (-1145) (-52)) NIL) (((-52) $ (-1163)) 15)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087)))) (((-762) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087)))) (((-762) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-52) (-605 (-853))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 (-52))) (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-624) (-13 (-1176 (-1145) (-52)) (-10 -8 (-15 -1569 ($ (-387))) (-15 -1879 ($ $)) (-15 -2276 ((-52) $ (-1163))) (-15 -4077 ((-52) $ (-1163) (-52)))))) (T -624))
-((-1569 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-624)))) (-1879 (*1 *1 *1) (-5 *1 (-624))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-52)) (-5 *1 (-624)))) (-4077 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1163)) (-5 *1 (-624)))))
-(-13 (-1176 (-1145) (-52)) (-10 -8 (-15 -1569 ($ (-387))) (-15 -1879 ($ $)) (-15 -2276 ((-52) $ (-1163))) (-15 -4077 ((-52) $ (-1163) (-52)))))
-((-1805 (($ $ |#2|) 10)))
-(((-625 |#1| |#2|) (-10 -8 (-15 -1805 (|#1| |#1| |#2|))) (-626 |#2|) (-171)) (T -625))
-NIL
-(-10 -8 (-15 -1805 (|#1| |#1| |#2|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3952 (($ $ $) 29)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-626 |#1|) (-139) (-171)) (T -626))
-((-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171)))) (-1805 (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
-(-13 (-708 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3952 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -1805 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-1045 |#1|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3466 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-1644 (((-1246 (-679 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1246 (-679 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3871 (((-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3457 (($) NIL T CONST)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3262 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-4157 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3890 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1398 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2113 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3889 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2943 (($ $ (-911)) NIL)) (-3231 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3324 (((-1159 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2392 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-1292 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2706 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3431 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1246 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3248 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-1489 (((-911)) NIL (|has| |#2| (-366 |#1|)))) (-1831 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4337 (($ $ (-911)) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1508 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2728 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2251 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2284 (((-679 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2818 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-4138 (((-679 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-4300 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-3900 (((-1159 (-942 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-1794 (($ $ (-911)) NIL)) (-2815 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1637 (((-1159 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2408 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-2889 (((-1159 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1475 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2510 (((-1145) $) NIL)) (-4165 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1323 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1310 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1688 (((-1107) $) NIL)) (-3145 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2276 ((|#1| $ (-558)) NIL (|has| |#2| (-416 |#1|)))) (-2979 (((-679 |#1|) (-1246 $)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-679 |#1|) (-1246 $) (-1246 $)) NIL (|has| |#2| (-366 |#1|))) (((-1246 |#1|) $ (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3441 (($ (-1246 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1246 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3175 (((-635 (-942 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-635 (-942 |#1|)) (-1246 $)) NIL (|has| |#2| (-366 |#1|)))) (-3072 (($ $ $) NIL)) (-4211 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3940 (((-853) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2743 (((-1246 $)) NIL (|has| |#2| (-416 |#1|)))) (-3817 (((-635 (-1246 |#1|))) NIL (-3994 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))))) (-2536 (($ $ $ $) NIL)) (-2667 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2484 (($ (-679 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3467 (($ $ $) NIL)) (-2249 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2835 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2274 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2207 (($) 15 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) 17)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-627 |#1| |#2|) (-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-735 |#1|)) (T -627))
-((-3940 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-627 *3 *2)) (-4 *2 (-735 *3)))))
-(-13 (-735 |#1|) (-605 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
-((-3159 (((-3 (-834 |#2|) "failed") |#2| (-293 |#2|) (-1145)) 81) (((-3 (-834 |#2|) (-2 (|:| |leftHandLimit| (-3 (-834 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-834 |#2|) "failed"))) "failed") |#2| (-293 (-834 |#2|))) 103)) (-4013 (((-3 (-824 |#2|) "failed") |#2| (-293 (-824 |#2|))) 108)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -3159 ((-3 (-834 |#2|) (-2 (|:| |leftHandLimit| (-3 (-834 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-834 |#2|) "failed"))) "failed") |#2| (-293 (-834 |#2|)))) (-15 -4013 ((-3 (-824 |#2|) "failed") |#2| (-293 (-824 |#2|)))) (-15 -3159 ((-3 (-834 |#2|) "failed") |#2| (-293 |#2|) (-1145)))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -628))
-((-3159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1145)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-834 *3)) (-5 *1 (-628 *6 *3)))) (-4013 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-293 (-824 *3))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-824 *3)) (-5 *1 (-628 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-834 *3))) (-4 *3 (-13 (-27) (-1185) (-429 *5))) (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-3 (-834 *3) (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed")) (|:| |rightHandLimit| (-3 (-834 *3) "failed"))) "failed")) (-5 *1 (-628 *5 *3)))))
-(-10 -7 (-15 -3159 ((-3 (-834 |#2|) (-2 (|:| |leftHandLimit| (-3 (-834 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-834 |#2|) "failed"))) "failed") |#2| (-293 (-834 |#2|)))) (-15 -4013 ((-3 (-824 |#2|) "failed") |#2| (-293 (-824 |#2|)))) (-15 -3159 ((-3 (-834 |#2|) "failed") |#2| (-293 |#2|) (-1145))))
-((-3159 (((-3 (-834 (-406 (-942 |#1|))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))) (-1145)) 80) (((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|)))) 20) (((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-834 (-942 |#1|)))) 35)) (-4013 (((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|)))) 23) (((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-824 (-942 |#1|)))) 43)))
-(((-629 |#1|) (-10 -7 (-15 -3159 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-834 (-942 |#1|))))) (-15 -3159 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -4013 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-824 (-942 |#1|))))) (-15 -4013 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -3159 ((-3 (-834 (-406 (-942 |#1|))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))) (-1145)))) (-450)) (T -629))
-((-3159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 (-406 (-942 *6)))) (-5 *5 (-1145)) (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-834 *3)) (-5 *1 (-629 *6)))) (-4013 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-450)) (-5 *2 (-824 *3)) (-5 *1 (-629 *5)))) (-4013 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-824 (-942 *5)))) (-4 *5 (-450)) (-5 *2 (-824 (-406 (-942 *5)))) (-5 *1 (-629 *5)) (-5 *3 (-406 (-942 *5))))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-450)) (-5 *2 (-3 (-834 *3) (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed")) (|:| |rightHandLimit| (-3 (-834 *3) "failed"))) "failed")) (-5 *1 (-629 *5)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-834 (-942 *5)))) (-4 *5 (-450)) (-5 *2 (-3 (-834 (-406 (-942 *5))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 *5))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 *5))) "failed"))) "failed")) (-5 *1 (-629 *5)) (-5 *3 (-406 (-942 *5))))))
-(-10 -7 (-15 -3159 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-834 (-942 |#1|))))) (-15 -3159 ((-3 (-834 (-406 (-942 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-834 (-406 (-942 |#1|))) "failed"))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -4013 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-824 (-942 |#1|))))) (-15 -4013 ((-824 (-406 (-942 |#1|))) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -3159 ((-3 (-834 (-406 (-942 |#1|))) "failed") (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))) (-1145))))
-((-3430 (((-3 (-1246 (-406 |#1|)) "failed") (-1246 |#2|) |#2|) 57 (-2143 (|has| |#1| (-362)))) (((-3 (-1246 |#1|) "failed") (-1246 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-4023 (((-112) (-1246 |#2|)) 30)) (-1917 (((-3 (-1246 |#1|) "failed") (-1246 |#2|)) 33)))
-(((-630 |#1| |#2|) (-10 -7 (-15 -4023 ((-112) (-1246 |#2|))) (-15 -1917 ((-3 (-1246 |#1|) "failed") (-1246 |#2|))) (IF (|has| |#1| (-362)) (-15 -3430 ((-3 (-1246 |#1|) "failed") (-1246 |#2|) |#2|)) (-15 -3430 ((-3 (-1246 (-406 |#1|)) "failed") (-1246 |#2|) |#2|)))) (-550) (-631 |#1|)) (T -630))
-((-3430 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5)) (-2143 (-4 *5 (-362))) (-4 *5 (-550)) (-5 *2 (-1246 (-406 *5))) (-5 *1 (-630 *5 *4)))) (-3430 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5)) (-4 *5 (-362)) (-4 *5 (-550)) (-5 *2 (-1246 *5)) (-5 *1 (-630 *5 *4)))) (-1917 (*1 *2 *3) (|partial| -12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550)) (-5 *2 (-1246 *4)) (-5 *1 (-630 *4 *5)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550)) (-5 *2 (-112)) (-5 *1 (-630 *4 *5)))))
-(-10 -7 (-15 -4023 ((-112) (-1246 |#2|))) (-15 -1917 ((-3 (-1246 |#1|) "failed") (-1246 |#2|))) (IF (|has| |#1| (-362)) (-15 -3430 ((-3 (-1246 |#1|) "failed") (-1246 |#2|) |#2|)) (-15 -3430 ((-3 (-1246 (-406 |#1|)) "failed") (-1246 |#2|) |#2|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-1918 (((-679 |#1|) (-679 $)) 36) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 35)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-631 |#1|) (-139) (-1039)) (T -631))
-((-1918 (*1 *2 *3) (-12 (-5 *3 (-679 *1)) (-4 *1 (-631 *4)) (-4 *4 (-1039)) (-5 *2 (-679 *4)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *1)) (-5 *4 (-1246 *1)) (-4 *1 (-631 *5)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -3702 (-679 *5)) (|:| |vec| (-1246 *5)))))))
-(-13 (-1039) (-10 -8 (-15 -1918 ((-679 |t#1|) (-679 $))) (-15 -1918 ((-2 (|:| -3702 (-679 |t#1|)) (|:| |vec| (-1246 |t#1|))) (-679 $) (-1246 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3073 ((|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|) 17) ((|#2| (-635 |#1|) (-635 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|)) 12)))
-(((-632 |#1| |#2|) (-10 -7 (-15 -3073 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -3073 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -3073 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -3073 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -3073 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -3073 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)))) (-1087) (-1200)) (T -632))
-((-3073 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2)))) (-3073 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *1 (-632 *5 *6)))) (-3073 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2)))) (-3073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1087)) (-4 *5 (-1200)) (-5 *2 (-1 *5 *6)) (-5 *1 (-632 *6 *5)))) (-3073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *6)))))
-(-10 -7 (-15 -3073 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -3073 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -3073 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -3073 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -3073 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -3073 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|))))
-((-3484 (((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 16)) (-3866 ((|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 18)) (-3397 (((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)) 13)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -3484 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3397 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)))) (-1200) (-1200)) (T -633))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-635 *6)) (-5 *1 (-633 *5 *6)))) (-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-633 *5 *2)))) (-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-635 *5)) (-5 *1 (-633 *6 *5)))))
-(-10 -7 (-15 -3484 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -3397 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|))))
-((-3397 (((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)) 13)))
-(((-634 |#1| |#2| |#3|) (-10 -7 (-15 -3397 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)))) (-1200) (-1200) (-1200)) (T -634))
-((-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-635 *8)) (-5 *1 (-634 *6 *7 *8)))))
-(-10 -7 (-15 -3397 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) NIL)) (-1611 ((|#1| $) NIL)) (-2427 (($ $) NIL)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) $) NIL (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3041 (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3648 (($ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-1649 (($ $ $) NIL (|has| $ (-6 -4384)))) (-2851 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4384))) (($ $ "rest" $) NIL (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-2473 (($ $ $) 31 (|has| |#1| (-1087)))) (-2459 (($ $ $) 33 (|has| |#1| (-1087)))) (-2445 (($ $ $) 36 (|has| |#1| (-1087)))) (-2256 (($ (-1 (-112) |#1|) $) NIL)) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1601 ((|#1| $) NIL)) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3168 (($ $) NIL) (($ $ (-762)) NIL)) (-1958 (($ $) NIL (|has| |#1| (-1087)))) (-3188 (($ $) 30 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) NIL)) (-1488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4151 (((-112) $) NIL)) (-4145 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087))) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) NIL)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-2129 (((-112) $) 9)) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1380 (($) 7)) (-1395 (($ (-762) |#1|) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-4150 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3391 (($ $ $) NIL (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2411 (($ |#1|) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1514 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-2650 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-1363 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-1890 (((-112) $) NIL)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) 35) ((|#1| $ (-558) |#1|) NIL)) (-1904 (((-558) $ $) NIL)) (-3738 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-3976 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-1609 (((-112) $) NIL)) (-3070 (($ $) NIL)) (-4132 (($ $) NIL (|has| $ (-6 -4384)))) (-2398 (((-762) $) NIL)) (-4009 (($ $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) 44 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-3829 (($ |#1| $) 10)) (-1651 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2683 (($ $ $) 29) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1529 (($ $ $) 11)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-2555 (((-1145) $) 25 (|has| |#1| (-819))) (((-1145) $ (-112)) 26 (|has| |#1| (-819))) (((-1251) (-813) $) 27 (|has| |#1| (-819))) (((-1251) (-813) $ (-112)) 28 (|has| |#1| (-819)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-635 |#1|) (-13 (-656 |#1|) (-10 -8 (-15 -1380 ($)) (-15 -2129 ((-112) $)) (-15 -3829 ($ |#1| $)) (-15 -1529 ($ $ $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -2473 ($ $ $)) (-15 -2459 ($ $ $)) (-15 -2445 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|))) (-1200)) (T -635))
-((-1380 (*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1200)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))) (-1529 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))) (-2473 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))) (-2459 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))) (-2445 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
-(-13 (-656 |#1|) (-10 -8 (-15 -1380 ($)) (-15 -2129 ((-112) $)) (-15 -3829 ($ |#1| $)) (-15 -1529 ($ $ $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -2473 ($ $ $)) (-15 -2459 ($ $ $)) (-15 -2445 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 11) (($ (-1168)) NIL) (((-1168) $) NIL) ((|#1| $) 8)) (-1708 (((-112) $ $) NIL)))
-(((-636 |#1|) (-13 (-1070) (-605 |#1|)) (-1087)) (T -636))
-NIL
-(-13 (-1070) (-605 |#1|))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3178 (($ |#1| |#1| $) 43)) (-3651 (((-112) $ (-762)) NIL)) (-2256 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-1958 (($ $) 45)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) 51 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 9 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 37)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1498 ((|#1| $) 46)) (-2650 (($ |#1| $) 26) (($ |#1| $ (-762)) 42)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2533 ((|#1| $) 48)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 21)) (-2876 (($) 25)) (-2239 (((-112) $) 49)) (-1858 (((-635 (-2 (|:| -1925 |#1|) (|:| -1698 (-762)))) $) 58)) (-1966 (($) 23) (($ (-635 |#1|)) 18)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) 55 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 19)) (-3441 (((-534) $) 34 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-3940 (((-853) $) 14 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 22)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 60 (|has| |#1| (-1087)))) (-1596 (((-762) $) 16 (|has| $ (-6 -4383)))))
-(((-637 |#1|) (-13 (-685 |#1|) (-10 -8 (-6 -4383) (-15 -2239 ((-112) $)) (-15 -3178 ($ |#1| |#1| $)))) (-1087)) (T -637))
-((-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-637 *3)) (-4 *3 (-1087)))) (-3178 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1087)))))
-(-13 (-685 |#1|) (-10 -8 (-6 -4383) (-15 -2239 ((-112) $)) (-15 -3178 ($ |#1| |#1| $))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23)))
-(((-638 |#1|) (-139) (-1046)) (T -638))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1046)))))
+((-3402 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2684 (*1 *1) (-4 *1 (-543))) (-3617 (*1 *1 *1) (-4 *1 (-543))) (-3368 (*1 *1 *1 *1) (-4 *1 (-543))) (-1383 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3531 (*1 *1 *1 *1) (-4 *1 (-543))) (-1854 (*1 *1 *1 *1) (-4 *1 (-543))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-561))))) (-2937 (*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-561))))) (-1332 (*1 *1) (-4 *1 (-543))) (-1332 (*1 *1 *1) (-4 *1 (-543))) (-4187 (*1 *1 *1) (-4 *1 (-543))) (-4103 (*1 *1 *1) (-4 *1 (-543))) (-3994 (*1 *1 *1) (-4 *1 (-543))) (-3908 (*1 *1 *1) (-4 *1 (-543))) (-3383 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-3420 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-3386 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-1288 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-4305 (*1 *1 *1 *1) (-4 *1 (-543))))
+(-13 (-1209) (-306) (-814) (-232) (-609 (-561)) (-1031 (-561)) (-634 (-561)) (-609 (-534)) (-609 (-885 (-561))) (-879 (-561)) (-142) (-1015) (-146) (-1141) (-10 -8 (-15 -3402 ((-112) $)) (-15 -2736 ((-112) $)) (-6 -4389) (-15 -2684 ($)) (-15 -3617 ($ $)) (-15 -3368 ($ $ $)) (-15 -1383 ((-112) $ $)) (-15 -3531 ($ $ $)) (-15 -1854 ($ $ $)) (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $)) (-15 -1332 ($)) (-15 -1332 ($ $)) (-15 -4187 ($ $)) (-15 -4103 ($ $)) (-15 -3994 ($ $)) (-15 -3908 ($ $)) (-15 -3383 ($ $ $ $)) (-15 -3420 ($ $ $ $)) (-15 -3386 ($ $ $ $)) (-15 -1288 ($ $ $ $)) (-15 -4305 ($ $ $)) (-6 -4388)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-142) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-378)) . T) ((-609 (-534)) . T) ((-609 (-561)) . T) ((-609 (-885 (-561))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-634 (-561)) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-814) . T) ((-842) . T) ((-844) . T) ((-879 (-561)) . T) ((-913) . T) ((-1015) . T) ((-1031 (-561)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) . T) ((-1209) . T))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-3198 (((-914) $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-544) (-838)) (T -544))
+NIL
+(-838)
+((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-3198 (((-914) $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-545) (-838)) (T -545))
+NIL
+(-838)
+((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-3198 (((-914) $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-546) (-838)) (T -546))
+NIL
+(-838)
+((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3024 (((-1258) $ |#1| |#1|) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#2| $ |#1| |#2|) NIL)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) NIL)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) NIL)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) NIL)) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 ((|#1| $) NIL (|has| |#1| (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 ((|#1| $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2017 (((-638 |#1|) $) NIL)) (-2857 (((-112) |#1| $) NIL)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2451 (((-638 |#1|) $) NIL)) (-1390 (((-112) |#1| $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#2| $) NIL (|has| |#1| (-844)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-547 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390))) (-1090) (-1090) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390)))) (T -547))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390)))
+((-4274 (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1162 |#2|) (-1162 |#2|))) 51)))
+(((-548 |#1| |#2|) (-10 -7 (-15 -4274 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1162 |#2|) (-1162 |#2|))))) (-13 (-844) (-553)) (-13 (-27) (-429 |#1|))) (T -548))
+((-4274 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1 (-1162 *3) (-1162 *3))) (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-844) (-553))) (-5 *2 (-582 *3)) (-5 *1 (-548 *6 *3)))))
+(-10 -7 (-15 -4274 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1162 |#2|) (-1162 |#2|)))))
+((-3240 (((-582 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-1314 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2138 (((-582 |#5|) |#5| (-1 |#3| |#3|)) 201)))
+(((-549 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2138 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3240 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1314 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-844) (-553) (-1031 (-561))) (-13 (-27) (-429 |#1|)) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -549))
+((-1314 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-27) (-429 *4))) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-4 *7 (-1229 (-406 *6))) (-5 *1 (-549 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1229 (-406 *7))) (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1229 (-406 *7))) (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))))
+(-10 -7 (-15 -2138 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3240 ((-582 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1314 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2868 (((-112) (-561) (-561)) 10)) (-4272 (((-561) (-561)) 7)) (-2565 (((-561) (-561) (-561)) 8)))
+(((-550) (-10 -7 (-15 -4272 ((-561) (-561))) (-15 -2565 ((-561) (-561) (-561))) (-15 -2868 ((-112) (-561) (-561))))) (T -550))
+((-2868 (*1 *2 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-550)))) (-2565 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))))
+(-10 -7 (-15 -4272 ((-561) (-561))) (-15 -2565 ((-561) (-561) (-561))) (-15 -2868 ((-112) (-561) (-561))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-3691 ((|#1| $) 62)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2978 (($ $) 92)) (-4064 (($ $) 75)) (-2090 ((|#1| $) 63)) (-2249 (((-3 $ "failed") $ $) 19)) (-1665 (($ $) 74)) (-4172 (($ $) 91)) (-4041 (($ $) 76)) (-3009 (($ $) 90)) (-4085 (($ $) 77)) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 70)) (-3938 (((-561) $) 71)) (-3466 (((-3 $ "failed") $) 33)) (-1467 (($ |#1| |#1|) 67)) (-3201 (((-112) $) 61)) (-4067 (($) 102)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 73)) (-2110 (((-112) $) 60)) (-3443 (($ $ $) 108)) (-2986 (($ $ $) 107)) (-4348 (($ $) 99)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-2378 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-561))) 65)) (-3692 ((|#1| $) 64)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1756 (((-3 $ "failed") $ $) 43)) (-3440 (($ $) 100)) (-3021 (($ $) 89)) (-4095 (($ $) 78)) (-2995 (($ $) 88)) (-4073 (($ $) 79)) (-2968 (($ $) 87)) (-4054 (($ $) 80)) (-2536 (((-112) $ |#1|) 59)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-561)) 69)) (-4259 (((-765)) 28)) (-3055 (($ $) 98)) (-4132 (($ $) 86)) (-3168 (((-112) $ $) 40)) (-3031 (($ $) 97)) (-4105 (($ $) 85)) (-3081 (($ $) 96)) (-4149 (($ $) 84)) (-2125 (($ $) 95)) (-4160 (($ $) 83)) (-3066 (($ $) 94)) (-4142 (($ $) 82)) (-3043 (($ $) 93)) (-4117 (($ $) 81)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1782 (((-112) $ $) 105)) (-1762 (((-112) $ $) 104)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 106)) (-1754 (((-112) $ $) 103)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ $) 101) (($ $ (-406 (-561))) 72)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-551 |#1|) (-139) (-13 (-403) (-1190))) (T -551))
+((-2378 (*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-1467 (*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2378 (*1 *1 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2090 (*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-2536 (*1 *2 *1 *3) (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))))
+(-13 (-450) (-844) (-1190) (-995) (-1031 (-561)) (-10 -8 (-6 -1417) (-15 -2378 ($ |t#1| |t#1|)) (-15 -1467 ($ |t#1| |t#1|)) (-15 -2378 ($ |t#1|)) (-15 -2378 ($ (-406 (-561)))) (-15 -3692 (|t#1| $)) (-15 -2090 (|t#1| $)) (-15 -3691 (|t#1| $)) (-15 -3201 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -2536 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-450) . T) ((-491) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-995) . T) ((-1031 (-561)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) . T) ((-1193) . T))
+((-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 9)) (-2851 (($ $) 11)) (-3359 (((-112) $) 18)) (-3466 (((-3 $ "failed") $) 16)) (-3168 (((-112) $ $) 20)))
+(((-552 |#1|) (-10 -8 (-15 -3359 ((-112) |#1|)) (-15 -3168 ((-112) |#1| |#1|)) (-15 -2851 (|#1| |#1|)) (-15 -1769 ((-2 (|:| -3027 |#1|) (|:| -4377 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) (-553)) (T -552))
+NIL
+(-10 -8 (-15 -3359 ((-112) |#1|)) (-15 -3168 ((-112) |#1| |#1|)) (-15 -2851 (|#1| |#1|)) (-15 -1769 ((-2 (|:| -3027 |#1|) (|:| -4377 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ $) 43)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-553) (-139)) (T -553))
+((-1756 (*1 *1 *1 *1) (|partial| -4 *1 (-553))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3027 *1) (|:| -4377 *1) (|:| |associate| *1))) (-4 *1 (-553)))) (-2851 (*1 *1 *1) (-4 *1 (-553))) (-3168 (*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
+(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -1756 ((-3 $ "failed") $ $)) (-15 -1769 ((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $)) (-15 -2851 ($ $)) (-15 -3168 ((-112) $ $)) (-15 -3359 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-3230 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-638 |#2|)) 37)) (-2906 (((-582 |#2|) |#2| (-1166)) 62)) (-3284 (((-3 |#2| "failed") |#2| (-1166)) 151)) (-1916 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) (-607 |#2|) (-638 (-607 |#2|))) 154)) (-3463 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) |#2|) 40)))
+(((-554 |#1| |#2|) (-10 -7 (-15 -3463 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) |#2|)) (-15 -3230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-638 |#2|))) (-15 -3284 ((-3 |#2| "failed") |#2| (-1166))) (-15 -2906 ((-582 |#2|) |#2| (-1166))) (-15 -1916 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) (-607 |#2|) (-638 (-607 |#2|))))) (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -554))
+((-1916 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-638 (-607 *3))) (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *7))) (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-554 *7 *3)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-554 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-3284 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-554 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-3230 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3)))) (-3463 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
+(-10 -7 (-15 -3463 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) |#2|)) (-15 -3230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-638 |#2|))) (-15 -3284 ((-3 |#2| "failed") |#2| (-1166))) (-15 -2906 ((-582 |#2|) |#2| (-1166))) (-15 -1916 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1166) (-607 |#2|) (-638 (-607 |#2|)))))
+((-3422 (((-417 |#1|) |#1|) 18)) (-1657 (((-417 |#1|) |#1|) 33)) (-2683 (((-3 |#1| "failed") |#1|) 44)) (-2057 (((-417 |#1|) |#1|) 51)))
+(((-555 |#1|) (-10 -7 (-15 -1657 ((-417 |#1|) |#1|)) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -2057 ((-417 |#1|) |#1|)) (-15 -2683 ((-3 |#1| "failed") |#1|))) (-543)) (T -555))
+((-2683 (*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-543)))) (-2057 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))) (-3422 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))) (-1657 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -1657 ((-417 |#1|) |#1|)) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -2057 ((-417 |#1|) |#1|)) (-15 -2683 ((-3 |#1| "failed") |#1|)))
+((-2440 (($) 9)) (-1715 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-2017 (((-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-3671 (($ (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1979 (($ (-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2654 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2658 (((-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2315 (((-1258)) 12)))
+(((-556) (-10 -8 (-15 -2440 ($)) (-15 -2315 ((-1258))) (-15 -2017 ((-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1979 ($ (-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3671 ($ (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1715 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2658 ((-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2654 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -556))
+((-2654 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-556)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-556)))) (-1715 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-556)))) (-3671 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-556)))) (-1979 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-556)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-556)))) (-2315 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-556)))) (-2440 (*1 *1) (-5 *1 (-556))))
+(-10 -8 (-15 -2440 ($)) (-15 -2315 ((-1258))) (-15 -2017 ((-638 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1979 ($ (-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3671 ($ (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1715 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2658 ((-638 (-2 (|:| -2252 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2654 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1146 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2290 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-1620 (((-1162 (-406 (-1162 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1162 |#2|)) 32)) (-2456 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) |#2| (-1162 |#2|)) 110)) (-3054 (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 80) (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|)) 52)) (-3253 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-406 (-1162 |#2|))) 87) (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1162 |#2|)) 109)) (-1636 (((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) |#2| (-1162 |#2|)) 111)) (-2292 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))) 128 (|has| |#3| (-649 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|)) 127 (|has| |#3| (-649 |#2|)))) (-1401 ((|#2| (-1162 (-406 (-1162 |#2|))) (-607 |#2|) |#2|) 50)) (-3174 (((-1162 (-406 (-1162 |#2|))) (-1162 |#2|) (-607 |#2|)) 31)))
+(((-557 |#1| |#2| |#3|) (-10 -7 (-15 -3054 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -3054 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -3253 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1162 |#2|))) (-15 -3253 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -2456 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) |#2| (-1162 |#2|))) (-15 -2456 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -1636 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) |#2| (-1162 |#2|))) (-15 -1636 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -1620 ((-1162 (-406 (-1162 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1162 |#2|))) (-15 -1401 (|#2| (-1162 (-406 (-1162 |#2|))) (-607 |#2|) |#2|)) (-15 -3174 ((-1162 (-406 (-1162 |#2|))) (-1162 |#2|) (-607 |#2|))) (IF (|has| |#3| (-649 |#2|)) (PROGN (-15 -2292 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -2292 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))))) |%noBranch|)) (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))) (-13 (-429 |#1|) (-27) (-1190)) (-1090)) (T -557))
+((-2292 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-406 (-1162 *4))) (-4 *4 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))) (-2292 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1162 *4)) (-4 *4 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))) (-3174 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-1162 (-406 (-1162 *6)))) (-5 *1 (-557 *5 *6 *7)) (-5 *3 (-1162 *6)) (-4 *7 (-1090)))) (-1401 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1162 (-406 (-1162 *2)))) (-5 *4 (-607 *2)) (-4 *2 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-557 *5 *2 *6)) (-4 *6 (-1090)))) (-1620 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-1162 (-406 (-1162 *3)))) (-5 *1 (-557 *6 *3 *7)) (-5 *5 (-1162 *3)) (-4 *7 (-1090)))) (-1636 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-5 *5 (-406 (-1162 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090)))) (-1636 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-5 *5 (-1162 *2)) (-4 *2 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090)))) (-2456 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-5 *6 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090)))) (-2456 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-5 *6 (-1162 *3)) (-4 *3 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090)))) (-3253 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))) (-3253 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))) (-3054 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))) (-3054 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))))
+(-10 -7 (-15 -3054 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -3054 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -3253 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1162 |#2|))) (-15 -3253 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -2456 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) |#2| (-1162 |#2|))) (-15 -2456 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -1636 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) |#2| (-1162 |#2|))) (-15 -1636 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)) (-607 |#2|) |#2| (-406 (-1162 |#2|)))) (-15 -1620 ((-1162 (-406 (-1162 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1162 |#2|))) (-15 -1401 (|#2| (-1162 (-406 (-1162 |#2|))) (-607 |#2|) |#2|)) (-15 -3174 ((-1162 (-406 (-1162 |#2|))) (-1162 |#2|) (-607 |#2|))) (IF (|has| |#3| (-649 |#2|)) (PROGN (-15 -2292 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1162 |#2|))) (-15 -2292 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-406 (-1162 |#2|))))) |%noBranch|))
+((-2935 (((-561) (-561) (-765)) 66)) (-3970 (((-561) (-561)) 65)) (-4129 (((-561) (-561)) 64)) (-1286 (((-561) (-561)) 69)) (-3460 (((-561) (-561) (-561)) 49)) (-2059 (((-561) (-561) (-561)) 46)) (-3710 (((-406 (-561)) (-561)) 20)) (-2049 (((-561) (-561)) 21)) (-2760 (((-561) (-561)) 58)) (-1597 (((-561) (-561)) 32)) (-3752 (((-638 (-561)) (-561)) 63)) (-2454 (((-561) (-561) (-561) (-561) (-561)) 44)) (-2806 (((-406 (-561)) (-561)) 41)))
+(((-558) (-10 -7 (-15 -2806 ((-406 (-561)) (-561))) (-15 -2454 ((-561) (-561) (-561) (-561) (-561))) (-15 -3752 ((-638 (-561)) (-561))) (-15 -1597 ((-561) (-561))) (-15 -2760 ((-561) (-561))) (-15 -2049 ((-561) (-561))) (-15 -3710 ((-406 (-561)) (-561))) (-15 -2059 ((-561) (-561) (-561))) (-15 -3460 ((-561) (-561) (-561))) (-15 -1286 ((-561) (-561))) (-15 -4129 ((-561) (-561))) (-15 -3970 ((-561) (-561))) (-15 -2935 ((-561) (-561) (-765))))) (T -558))
+((-2935 (*1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-765)) (-5 *1 (-558)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-4129 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-1286 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-3460 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-2059 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-3710 (*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-3752 (*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))) (-2454 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))))
+(-10 -7 (-15 -2806 ((-406 (-561)) (-561))) (-15 -2454 ((-561) (-561) (-561) (-561) (-561))) (-15 -3752 ((-638 (-561)) (-561))) (-15 -1597 ((-561) (-561))) (-15 -2760 ((-561) (-561))) (-15 -2049 ((-561) (-561))) (-15 -3710 ((-406 (-561)) (-561))) (-15 -2059 ((-561) (-561) (-561))) (-15 -3460 ((-561) (-561) (-561))) (-15 -1286 ((-561) (-561))) (-15 -4129 ((-561) (-561))) (-15 -3970 ((-561) (-561))) (-15 -2935 ((-561) (-561) (-765))))
+((-2581 (((-2 (|:| |answer| |#4|) (|:| -3450 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-559 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2581 ((-2 (|:| |answer| |#4|) (|:| -3450 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -559))
+((-2581 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3450 *3))) (-5 *1 (-559 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))))
+(-10 -7 (-15 -2581 ((-2 (|:| |answer| |#4|) (|:| -3450 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2581 (((-2 (|:| |answer| (-406 |#2|)) (|:| -3450 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -2581 ((-2 (|:| |answer| (-406 |#2|)) (|:| -3450 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -560))
+((-2581 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -3450 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-560 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -2581 ((-2 (|:| |answer| (-406 |#2|)) (|:| -3450 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 25)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 88)) (-2851 (($ $) 89)) (-3359 (((-112) $) NIL)) (-1854 (($ $ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ $ $) 43)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL)) (-3368 (($ $ $) 82)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL)) (-3938 (((-561) $) NIL)) (-1793 (($ $ $) 81)) (-3602 (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 62) (((-682 (-561)) (-682 $)) 58)) (-3466 (((-3 $ "failed") $) 85)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL)) (-3798 (((-112) $) NIL)) (-3354 (((-406 (-561)) $) NIL)) (-1332 (($) 64) (($ $) 65)) (-1774 (($ $ $) 80)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1288 (($ $ $ $) NIL)) (-3531 (($ $ $) 55)) (-3201 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-3113 (((-112) $) 26)) (-3402 (((-112) $) 75)) (-1663 (((-3 $ "failed") $) NIL)) (-2110 (((-112) $) 35)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3386 (($ $ $ $) 44)) (-3443 (($ $ $) 77)) (-2986 (($ $ $) 76)) (-3908 (($ $) NIL)) (-3617 (($ $) 41)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) 54)) (-4305 (($ $ $) NIL)) (-3721 (($) NIL T CONST)) (-4103 (($ $) 31)) (-1714 (((-1110) $) 34)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 119)) (-1623 (($ $ $) 86) (($ (-638 $)) NIL)) (-2101 (($ $) NIL)) (-1657 (((-417 $) $) 105)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL)) (-1756 (((-3 $ "failed") $ $) 84)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2736 (((-112) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 79)) (-3238 (($ $ (-765)) NIL) (($ $) NIL)) (-3994 (($ $) 32)) (-4187 (($ $) 30)) (-4174 (((-561) $) 40) (((-534) $) 52) (((-885 (-561)) $) NIL) (((-378) $) 47) (((-224) $) 49) (((-1148) $) 53)) (-4022 (((-856) $) 38) (($ (-561)) 39) (($ $) NIL) (($ (-561)) 39)) (-4259 (((-765)) NIL)) (-1383 (((-112) $ $) NIL)) (-3599 (($ $ $) NIL)) (-2684 (($) 29)) (-3168 (((-112) $ $) NIL)) (-3383 (($ $ $ $) 42)) (-3749 (($ $) 63)) (-2211 (($) 27 T CONST)) (-2222 (($) 28 T CONST)) (-3677 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1258) (-816) $) 23) (((-1258) (-816) $ (-112)) 24)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 66)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 67)) (-1824 (($ $) 68) (($ $ $) 70)) (-1813 (($ $ $) 69)) (** (($ $ (-914)) NIL) (($ $ (-765)) 74)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 72) (($ $ $) 71)))
+(((-561) (-13 (-543) (-609 (-1148)) (-822) (-10 -8 (-15 -1332 ($ $)) (-6 -4377) (-6 -4382) (-6 -4378) (-6 -4372)))) (T -561))
+((-1332 (*1 *1 *1) (-5 *1 (-561))))
+(-13 (-543) (-609 (-1148)) (-822) (-10 -8 (-15 -1332 ($ $)) (-6 -4377) (-6 -4382) (-6 -4378) (-6 -4372)))
+((-1804 (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763) (-1054)) 108) (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763)) 110)) (-1842 (((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1166)) 172) (((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1148)) 171) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378) (-1054)) 176) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378)) 177) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378)) 178) (((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378))))) 179) (((-1028) (-315 (-378)) (-1084 (-837 (-378)))) 167) (((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378)) 166) (((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378)) 162) (((-1028) (-763)) 155) (((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378) (-1054)) 161)))
+(((-562) (-10 -7 (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378) (-1054))) (-15 -1842 ((-1028) (-763))) (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378) (-1054))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -1842 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1148))) (-15 -1842 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1166))))) (T -562))
+((-1842 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378)))) (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378)))) (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378))))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-1842 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378)))) (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))))
+(-10 -7 (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378) (-1054))) (-15 -1842 ((-1028) (-763))) (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-1084 (-837 (-378))))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378))) (-15 -1842 ((-1028) (-315 (-378)) (-638 (-1084 (-837 (-378)))) (-378) (-378) (-1054))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -1842 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1148))) (-15 -1842 ((-3 (-1028) "failed") (-315 (-378)) (-1082 (-837 (-378))) (-1166))))
+((-2271 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|)) 183)) (-1397 (((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|)) 98)) (-3686 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|) 179)) (-3288 (((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166))) 188)) (-1738 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1166)) 196 (|has| |#3| (-649 |#2|)))))
+(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -1397 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|))) (-15 -3686 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|)) (-15 -2271 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|))) (-15 -3288 ((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)))) (IF (|has| |#3| (-649 |#2|)) (-15 -1738 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1166))) |%noBranch|)) (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))) (-13 (-429 |#1|) (-27) (-1190)) (-1090)) (T -563))
+((-1738 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1166)) (-4 *4 (-13 (-429 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))) (-3288 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-4 *2 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1090)))) (-2271 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1090)))) (-3686 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))) (-1397 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561)))) (-5 *2 (-582 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))))
+(-10 -7 (-15 -1397 ((-582 |#2|) |#2| (-607 |#2|) (-607 |#2|))) (-15 -3686 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|)) (-15 -2271 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-638 |#2|))) (-15 -3288 ((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1166)))) (IF (|has| |#3| (-649 |#2|)) (-15 -1738 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3711 (-638 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1166))) |%noBranch|))
+((-4060 (((-2 (|:| -1357 |#2|) (|:| |nconst| |#2|)) |#2| (-1166)) 63)) (-3843 (((-3 |#2| "failed") |#2| (-1166) (-837 |#2|) (-837 |#2|)) 163 (-12 (|has| |#2| (-1129)) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-879 (-561))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 146 (-12 (|has| |#2| (-624)) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-879 (-561)))))) (-2817 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 147 (-12 (|has| |#2| (-624)) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-879 (-561)))))))
+(((-564 |#1| |#2|) (-10 -7 (-15 -4060 ((-2 (|:| -1357 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (PROGN (IF (|has| |#2| (-624)) (PROGN (-15 -2817 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -3843 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -3843 ((-3 |#2| "failed") |#2| (-1166) (-837 |#2|) (-837 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -564))
+((-3843 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-837 *2)) (-4 *2 (-1129)) (-4 *2 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561))) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *1 (-564 *5 *2)))) (-3843 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561))) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-624)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-2817 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561))) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-624)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561)))) (-5 *2 (-2 (|:| -1357 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
+(-10 -7 (-15 -4060 ((-2 (|:| -1357 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (PROGN (IF (|has| |#2| (-624)) (PROGN (-15 -2817 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -3843 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -3843 ((-3 |#2| "failed") |#2| (-1166) (-837 |#2|) (-837 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2316 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-638 (-406 |#2|))) 41)) (-1842 (((-582 (-406 |#2|)) (-406 |#2|)) 28)) (-3408 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-2158 (((-3 (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48)))
+(((-565 |#1| |#2|) (-10 -7 (-15 -1842 ((-582 (-406 |#2|)) (-406 |#2|))) (-15 -3408 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2158 ((-3 (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -2316 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-638 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-561))) (-1229 |#1|)) (T -565))
+((-2316 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-638 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *5 *6)))) (-2158 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2246 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))) (-3408 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146) (-1031 (-561)))) (-5 *1 (-565 *3 *4)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1229 *4)) (-5 *2 (-582 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))))
+(-10 -7 (-15 -1842 ((-582 (-406 |#2|)) (-406 |#2|))) (-15 -3408 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2158 ((-3 (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -2316 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-638 (-406 |#2|)))))
+((-2646 (((-3 (-561) "failed") |#1|) 14)) (-2382 (((-112) |#1|) 13)) (-1750 (((-561) |#1|) 9)))
+(((-566 |#1|) (-10 -7 (-15 -1750 ((-561) |#1|)) (-15 -2382 ((-112) |#1|)) (-15 -2646 ((-3 (-561) "failed") |#1|))) (-1031 (-561))) (T -566))
+((-2646 (*1 *2 *3) (|partial| -12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))) (-2382 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-561))))) (-1750 (*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))))
+(-10 -7 (-15 -1750 ((-561) |#1|)) (-15 -2382 ((-112) |#1|)) (-15 -2646 ((-3 (-561) "failed") |#1|)))
+((-1406 (((-3 (-2 (|:| |mainpart| (-406 (-945 |#1|))) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 (-945 |#1|))) (|:| |logand| (-406 (-945 |#1|))))))) "failed") (-406 (-945 |#1|)) (-1166) (-638 (-406 (-945 |#1|)))) 48)) (-3573 (((-582 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-1166)) 28)) (-3135 (((-3 (-406 (-945 |#1|)) "failed") (-406 (-945 |#1|)) (-1166)) 23)) (-2152 (((-3 (-2 (|:| -2246 (-406 (-945 |#1|))) (|:| |coeff| (-406 (-945 |#1|)))) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|))) 35)))
+(((-567 |#1|) (-10 -7 (-15 -3573 ((-582 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -3135 ((-3 (-406 (-945 |#1|)) "failed") (-406 (-945 |#1|)) (-1166))) (-15 -1406 ((-3 (-2 (|:| |mainpart| (-406 (-945 |#1|))) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 (-945 |#1|))) (|:| |logand| (-406 (-945 |#1|))))))) "failed") (-406 (-945 |#1|)) (-1166) (-638 (-406 (-945 |#1|))))) (-15 -2152 ((-3 (-2 (|:| -2246 (-406 (-945 |#1|))) (|:| |coeff| (-406 (-945 |#1|)))) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|))))) (-13 (-553) (-1031 (-561)) (-146))) (T -567))
+((-2152 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-1031 (-561)) (-146))) (-5 *2 (-2 (|:| -2246 (-406 (-945 *5))) (|:| |coeff| (-406 (-945 *5))))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-945 *5))))) (-1406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 (-406 (-945 *6)))) (-5 *3 (-406 (-945 *6))) (-4 *6 (-13 (-553) (-1031 (-561)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6)))) (-3135 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-1031 (-561)) (-146))) (-5 *1 (-567 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-1031 (-561)) (-146))) (-5 *2 (-582 (-406 (-945 *5)))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-945 *5))))))
+(-10 -7 (-15 -3573 ((-582 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -3135 ((-3 (-406 (-945 |#1|)) "failed") (-406 (-945 |#1|)) (-1166))) (-15 -1406 ((-3 (-2 (|:| |mainpart| (-406 (-945 |#1|))) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 (-945 |#1|))) (|:| |logand| (-406 (-945 |#1|))))))) "failed") (-406 (-945 |#1|)) (-1166) (-638 (-406 (-945 |#1|))))) (-15 -2152 ((-3 (-2 (|:| -2246 (-406 (-945 |#1|))) (|:| |coeff| (-406 (-945 |#1|)))) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)))))
+((-4011 (((-112) $ $) 58)) (-2800 (((-112) $) 36)) (-3691 ((|#1| $) 30)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) 62)) (-2978 (($ $) 122)) (-4064 (($ $) 102)) (-2090 ((|#1| $) 28)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $) NIL)) (-4172 (($ $) 124)) (-4041 (($ $) 98)) (-3009 (($ $) 126)) (-4085 (($ $) 106)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) 77)) (-3938 (((-561) $) 79)) (-3466 (((-3 $ "failed") $) 61)) (-1467 (($ |#1| |#1|) 26)) (-3201 (((-112) $) 33)) (-4067 (($) 88)) (-3113 (((-112) $) 43)) (-2556 (($ $ (-561)) NIL)) (-2110 (((-112) $) 34)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4348 (($ $) 90)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-2378 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-561))) 76)) (-3692 ((|#1| $) 27)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) 64) (($ (-638 $)) NIL)) (-1756 (((-3 $ "failed") $ $) 63)) (-3440 (($ $) 92)) (-3021 (($ $) 130)) (-4095 (($ $) 104)) (-2995 (($ $) 132)) (-4073 (($ $) 108)) (-2968 (($ $) 128)) (-4054 (($ $) 100)) (-2536 (((-112) $ |#1|) 31)) (-4022 (((-856) $) 84) (($ (-561)) 66) (($ $) NIL) (($ (-561)) 66)) (-4259 (((-765)) 86)) (-3055 (($ $) 144)) (-4132 (($ $) 114)) (-3168 (((-112) $ $) NIL)) (-3031 (($ $) 142)) (-4105 (($ $) 110)) (-3081 (($ $) 140)) (-4149 (($ $) 120)) (-2125 (($ $) 138)) (-4160 (($ $) 118)) (-3066 (($ $) 136)) (-4142 (($ $) 116)) (-3043 (($ $) 134)) (-4117 (($ $) 112)) (-2211 (($) 21 T CONST)) (-2222 (($) 10 T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 37)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 35)) (-1824 (($ $) 41) (($ $ $) 42)) (-1813 (($ $ $) 40)) (** (($ $ (-914)) 54) (($ $ (-765)) NIL) (($ $ $) 94) (($ $ (-406 (-561))) 146)) (* (($ (-914) $) 51) (($ (-765) $) NIL) (($ (-561) $) 50) (($ $ $) 48)))
+(((-568 |#1|) (-551 |#1|) (-13 (-403) (-1190))) (T -568))
+NIL
+(-551 |#1|)
+((-3184 (((-3 (-638 (-1162 (-561))) "failed") (-638 (-1162 (-561))) (-1162 (-561))) 24)))
+(((-569) (-10 -7 (-15 -3184 ((-3 (-638 (-1162 (-561))) "failed") (-638 (-1162 (-561))) (-1162 (-561)))))) (T -569))
+((-3184 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 (-561)))) (-5 *3 (-1162 (-561))) (-5 *1 (-569)))))
+(-10 -7 (-15 -3184 ((-3 (-638 (-1162 (-561))) "failed") (-638 (-1162 (-561))) (-1162 (-561)))))
+((-3736 (((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-1166)) 19)) (-2865 (((-638 (-607 |#2|)) (-638 |#2|) (-1166)) 23)) (-2443 (((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-638 (-607 |#2|))) 11)) (-2548 ((|#2| |#2| (-1166)) 53 (|has| |#1| (-553)))) (-3345 ((|#2| |#2| (-1166)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-450))))) (-3816 (((-607 |#2|) (-607 |#2|) (-638 (-607 |#2|)) (-1166)) 25)) (-2998 (((-607 |#2|) (-638 (-607 |#2|))) 24)) (-2066 (((-582 |#2|) |#2| (-1166) (-1 (-582 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-624)) (|has| |#2| (-1031 (-1166))) (|has| |#1| (-609 (-885 (-561)))) (|has| |#1| (-450)) (|has| |#1| (-879 (-561)))))))
+(((-570 |#1| |#2|) (-10 -7 (-15 -3736 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-1166))) (-15 -2998 ((-607 |#2|) (-638 (-607 |#2|)))) (-15 -3816 ((-607 |#2|) (-607 |#2|) (-638 (-607 |#2|)) (-1166))) (-15 -2443 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-638 (-607 |#2|)))) (-15 -2865 ((-638 (-607 |#2|)) (-638 |#2|) (-1166))) (IF (|has| |#1| (-553)) (-15 -2548 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -3345 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (IF (|has| |#2| (-624)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2066 ((-582 |#2|) |#2| (-1166) (-1 (-582 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-844) (-429 |#1|)) (T -570))
+((-2066 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-582 *3) *3 (-1166))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1166))) (-4 *3 (-283)) (-4 *3 (-624)) (-4 *3 (-1031 *4)) (-4 *3 (-429 *7)) (-5 *4 (-1166)) (-4 *7 (-609 (-885 (-561)))) (-4 *7 (-450)) (-4 *7 (-879 (-561))) (-4 *7 (-844)) (-5 *2 (-582 *3)) (-5 *1 (-570 *7 *3)))) (-3345 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))) (-2548 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-553)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-429 *4)))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-1166)) (-4 *6 (-429 *5)) (-4 *5 (-844)) (-5 *2 (-638 (-607 *6))) (-5 *1 (-570 *5 *6)))) (-2443 (*1 *2 *2 *2) (-12 (-5 *2 (-638 (-607 *4))) (-4 *4 (-429 *3)) (-4 *3 (-844)) (-5 *1 (-570 *3 *4)))) (-3816 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-638 (-607 *6))) (-5 *4 (-1166)) (-5 *2 (-607 *6)) (-4 *6 (-429 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-638 (-607 *5))) (-4 *4 (-844)) (-5 *2 (-607 *5)) (-5 *1 (-570 *4 *5)) (-4 *5 (-429 *4)))) (-3736 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-607 *5))) (-5 *3 (-1166)) (-4 *5 (-429 *4)) (-4 *4 (-844)) (-5 *1 (-570 *4 *5)))))
+(-10 -7 (-15 -3736 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-1166))) (-15 -2998 ((-607 |#2|) (-638 (-607 |#2|)))) (-15 -3816 ((-607 |#2|) (-607 |#2|) (-638 (-607 |#2|)) (-1166))) (-15 -2443 ((-638 (-607 |#2|)) (-638 (-607 |#2|)) (-638 (-607 |#2|)))) (-15 -2865 ((-638 (-607 |#2|)) (-638 |#2|) (-1166))) (IF (|has| |#1| (-553)) (-15 -2548 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -3345 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-885 (-561)))) (IF (|has| |#1| (-879 (-561))) (IF (|has| |#2| (-624)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2066 ((-582 |#2|) |#2| (-1166) (-1 (-582 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3508 (((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-638 |#1|) "failed") (-561) |#1| |#1|)) 172)) (-2545 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-638 (-406 |#2|))) 148)) (-3722 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-638 (-406 |#2|))) 145)) (-3223 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2281 (((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-1640 (((-3 (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 175)) (-1646 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|)) 178)) (-4260 (((-2 (|:| |ir| (-582 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-1976 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-4136 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-638 (-406 |#2|))) 152)) (-2337 (((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|)) 137)) (-4213 (((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|)) 162)) (-3468 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-406 |#2|)) 183)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2281 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4213 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -3508 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-638 |#1|) "failed") (-561) |#1| |#1|))) (-15 -1646 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -3468 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-406 |#2|))) (-15 -2545 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-638 (-406 |#2|)))) (-15 -4136 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-638 (-406 |#2|)))) (-15 -1640 ((-3 (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -3722 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-638 (-406 |#2|)))) (-15 -3223 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2337 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -4260 ((-2 (|:| |ir| (-582 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1976 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -571))
+((-1976 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-571 *5 *3)))) (-4260 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-582 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-2337 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1621 *4) (|:| |sol?| (-112))) (-561) *4)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *1 (-571 *4 *5)))) (-3223 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1229 *4)))) (-3722 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-638 (-406 *7))) (-4 *7 (-1229 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *7)))) (-1640 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2246 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-4136 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1621 *7) (|:| |sol?| (-112))) (-561) *7)) (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-2545 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-3468 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1621 *6) (|:| |sol?| (-112))) (-561) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2246 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-1646 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2246 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-3508 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-638 *6) "failed") (-561) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-4213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1621 *6) (|:| |sol?| (-112))) (-561) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2281 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(-10 -7 (-15 -2281 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4213 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -3508 ((-2 (|:| |answer| (-582 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-638 |#1|) "failed") (-561) |#1| |#1|))) (-15 -1646 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -3468 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-406 |#2|))) (-15 -2545 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-638 (-406 |#2|)))) (-15 -4136 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|) (-638 (-406 |#2|)))) (-15 -1640 ((-3 (-2 (|:| -2246 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -3722 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-638 (-406 |#2|)))) (-15 -3223 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2337 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1621 |#1|) (|:| |sol?| (-112))) (-561) |#1|))) (-15 -4260 ((-2 (|:| |ir| (-582 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1976 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2976 (((-3 |#2| "failed") |#2| (-1166) (-1166)) 10)))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2976 ((-3 |#2| "failed") |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-1129) (-29 |#1|))) (T -572))
+((-2976 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1190) (-952) (-1129) (-29 *4))))))
+(-10 -7 (-15 -2976 ((-3 |#2| "failed") |#2| (-1166) (-1166))))
+((-2569 (((-765) $ (-128)) 13)) (-2623 (((-684 (-129)) $ (-129)) 12)) (-3088 (((-765) $ (-128)) 7)) (-2568 (((-684 (-129)) $) 8)) (-2836 (($ $) 6)))
+(((-573) (-139)) (T -573))
+NIL
+(-13 (-525) (-854))
+(((-172) . T) ((-525) . T) ((-854) . T))
+((-2569 (((-765) $ (-128)) NIL)) (-2623 (((-684 (-129)) $ (-129)) NIL)) (-3088 (((-765) $ (-128)) NIL)) (-2568 (((-684 (-129)) $) NIL)) (-2723 (((-112) $) NIL)) (-3283 (($ (-387)) 14) (($ (-1148)) 16)) (-4022 (((-856) $) NIL)) (-2836 (($ $) NIL)))
+(((-574) (-13 (-573) (-608 (-856)) (-10 -8 (-15 -3283 ($ (-387))) (-15 -3283 ($ (-1148))) (-15 -2723 ((-112) $))))) (T -574))
+((-3283 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574)))))
+(-13 (-573) (-608 (-856)) (-10 -8 (-15 -3283 ($ (-387))) (-15 -3283 ($ (-1148))) (-15 -2723 ((-112) $))))
+((-4011 (((-112) $ $) NIL)) (-3472 (($) 7 T CONST)) (-1764 (((-1148) $) NIL)) (-1555 (($) 6 T CONST)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 14)) (-2585 (($) 8 T CONST)) (-1733 (((-112) $ $) 10)))
+(((-575) (-13 (-1090) (-10 -8 (-15 -1555 ($) -1514) (-15 -3472 ($) -1514) (-15 -2585 ($) -1514)))) (T -575))
+((-1555 (*1 *1) (-5 *1 (-575))) (-3472 (*1 *1) (-5 *1 (-575))) (-2585 (*1 *1) (-5 *1 (-575))))
+(-13 (-1090) (-10 -8 (-15 -1555 ($) -1514) (-15 -3472 ($) -1514) (-15 -2585 ($) -1514)))
+((-4011 (((-112) $ $) NIL)) (-3236 (((-684 $) (-489)) 16)) (-1764 (((-1148) $) NIL)) (-1801 (($ (-1148)) 9)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 31)) (-2105 (((-212 4 (-129)) $) 19)) (-1733 (((-112) $ $) 22)))
+(((-576) (-13 (-1090) (-10 -8 (-15 -1801 ($ (-1148))) (-15 -2105 ((-212 4 (-129)) $)) (-15 -3236 ((-684 $) (-489)))))) (T -576))
+((-1801 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-576)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576)))))
+(-13 (-1090) (-10 -8 (-15 -1801 ($ (-1148))) (-15 -2105 ((-212 4 (-129)) $)) (-15 -3236 ((-684 $) (-489)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $ (-561)) 66)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-2273 (($ (-1162 (-561)) (-561)) 72)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) 58)) (-1395 (($ $) 34)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-4163 (((-765) $) 15)) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2912 (((-561)) 29)) (-2640 (((-561) $) 32)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1416 (($ $ (-561)) 21)) (-1756 (((-3 $ "failed") $ $) 59)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) 16)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 61)) (-1368 (((-1146 (-561)) $) 18)) (-1897 (($ $) 23)) (-4022 (((-856) $) 86) (($ (-561)) 52) (($ $) NIL)) (-4259 (((-765)) 14)) (-3168 (((-112) $ $) NIL)) (-1417 (((-561) $ (-561)) 36)) (-2211 (($) 35 T CONST)) (-2222 (($) 19 T CONST)) (-1733 (((-112) $ $) 39)) (-1824 (($ $) 51) (($ $ $) 37)) (-1813 (($ $ $) 50)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 54) (($ $ $) 55)))
+(((-577 |#1| |#2|) (-862 |#1|) (-561) (-112)) (T -577))
+NIL
+(-862 |#1|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 21)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-4207 (((-1178 (-914) (-765)) (-561)) 47)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 $ "failed") $) 75)) (-3938 (($ $) 74)) (-2257 (($ (-1253 $)) 73)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) 32)) (-1332 (($) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) 49)) (-1803 (((-112) $) NIL)) (-1575 (($ $) NIL) (($ $ (-765)) NIL)) (-2737 (((-112) $) NIL)) (-4163 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3113 (((-112) $) NIL)) (-2052 (($) 37 (|has| $ (-367)))) (-3584 (((-112) $) NIL (|has| $ (-367)))) (-1672 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-1663 (((-3 $ "failed") $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 $) $ (-914)) NIL (|has| $ (-367))) (((-1162 $) $) 83)) (-3198 (((-914) $) 55)) (-2300 (((-1162 $) $) NIL (|has| $ (-367)))) (-2409 (((-3 (-1162 $) "failed") $ $) NIL (|has| $ (-367))) (((-1162 $) $) NIL (|has| $ (-367)))) (-3152 (($ $ (-1162 $)) NIL (|has| $ (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL T CONST)) (-2413 (($ (-914)) 48)) (-1792 (((-112) $) 67)) (-1714 (((-1110) $) NIL)) (-3158 (($) 19 (|has| $ (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 42)) (-1657 (((-417 $) $) NIL)) (-4150 (((-914)) 66) (((-827 (-914))) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-3084 (((-133)) NIL)) (-3238 (($ $ (-765)) NIL) (($ $) NIL)) (-2894 (((-914) $) 65) (((-827 (-914)) $) NIL)) (-3660 (((-1162 $)) 82)) (-1796 (($) 54)) (-2111 (($) 38 (|has| $ (-367)))) (-3969 (((-682 $) (-1253 $)) NIL) (((-1253 $) $) 71)) (-4174 (((-561) $) 28)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) 30) (($ $) NIL) (($ (-406 (-561))) NIL)) (-1760 (((-3 $ "failed") $) NIL) (($ $) 84)) (-4259 (((-765)) 39)) (-3711 (((-1253 $) (-914)) 77) (((-1253 $)) 76)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) 22 T CONST)) (-2222 (($) 18 T CONST)) (-4285 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 26)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 61) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-578 |#1|) (-13 (-348) (-328 $) (-609 (-561))) (-914)) (T -578))
+NIL
+(-13 (-348) (-328 $) (-609 (-561)))
+((-3395 (((-1258) (-1148)) 10)))
+(((-579) (-10 -7 (-15 -3395 ((-1258) (-1148))))) (T -579))
+((-3395 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-579)))))
+(-10 -7 (-15 -3395 ((-1258) (-1148))))
+((-2321 (((-582 |#2|) (-582 |#2|)) 39)) (-3529 (((-638 |#2|) (-582 |#2|)) 41)) (-2505 ((|#2| (-582 |#2|)) 47)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -2321 ((-582 |#2|) (-582 |#2|))) (-15 -3529 ((-638 |#2|) (-582 |#2|))) (-15 -2505 (|#2| (-582 |#2|)))) (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))) (-13 (-29 |#1|) (-1190))) (T -580))
+((-2505 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-13 (-29 *4) (-1190))) (-5 *1 (-580 *4 *2)) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-582 *5)) (-4 *5 (-13 (-29 *4) (-1190))) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-638 *5)) (-5 *1 (-580 *4 *5)))) (-2321 (*1 *2 *2) (-12 (-5 *2 (-582 *4)) (-4 *4 (-13 (-29 *3) (-1190))) (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *1 (-580 *3 *4)))))
+(-10 -7 (-15 -2321 ((-582 |#2|) (-582 |#2|))) (-15 -3529 ((-638 |#2|) (-582 |#2|))) (-15 -2505 (|#2| (-582 |#2|))))
+((-4120 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|)) 30)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -4120 ((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|))) (-15 -4120 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4120 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4120 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -581))
+((-4120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-581 *5 *6)))) (-4120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-581 *5 *2)))) (-4120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2246 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -2246 *6) (|:| |coeff| *6))) (-5 *1 (-581 *5 *6)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-582 *6)) (-5 *1 (-581 *5 *6)))))
+(-10 -7 (-15 -4120 ((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|))) (-15 -4120 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4120 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4120 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 69)) (-3938 ((|#1| $) NIL)) (-2246 ((|#1| $) 26)) (-3242 (((-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1781 (($ |#1| (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) (-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3450 (((-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) $) 27)) (-1764 (((-1148) $) NIL)) (-3041 (($ |#1| |#1|) 33) (($ |#1| (-1166)) 44 (|has| |#1| (-1031 (-1166))))) (-1714 (((-1110) $) NIL)) (-1954 (((-112) $) 30)) (-3238 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1166)) 82 (|has| |#1| (-893 (-1166))))) (-4022 (((-856) $) 96) (($ |#1|) 25)) (-2211 (($) 16 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) 15) (($ $ $) NIL)) (-1813 (($ $ $) 78)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 14) (($ (-406 (-561)) $) 36) (($ $ (-406 (-561))) NIL)))
+(((-582 |#1|) (-13 (-711 (-406 (-561))) (-1031 |#1|) (-10 -8 (-15 -1781 ($ |#1| (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) (-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2246 (|#1| $)) (-15 -3450 ((-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) $)) (-15 -3242 ((-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1954 ((-112) $)) (-15 -3041 ($ |#1| |#1|)) (-15 -3238 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -3238 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -3041 ($ |#1| (-1166))) |%noBranch|))) (-362)) (T -582))
+((-1781 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *2)) (|:| |logand| (-1162 *2))))) (-5 *4 (-638 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-582 *2)))) (-2246 (*1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *3)) (|:| |logand| (-1162 *3))))) (-5 *1 (-582 *3)) (-4 *3 (-362)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-582 *3)) (-4 *3 (-362)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-362)))) (-3041 (*1 *1 *2 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362)))) (-3238 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-582 *2)) (-4 *2 (-362)))) (-3238 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-582 *2)) (-5 *3 (-1166)))) (-3041 (*1 *1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *1 (-582 *2)) (-4 *2 (-1031 *3)) (-4 *2 (-362)))))
+(-13 (-711 (-406 (-561))) (-1031 |#1|) (-10 -8 (-15 -1781 ($ |#1| (-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) (-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2246 (|#1| $)) (-15 -3450 ((-638 (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 |#1|)) (|:| |logand| (-1162 |#1|)))) $)) (-15 -3242 ((-638 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1954 ((-112) $)) (-15 -3041 ($ |#1| |#1|)) (-15 -3238 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -3238 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -3041 ($ |#1| (-1166))) |%noBranch|)))
+((-2896 (((-112) |#1|) 16)) (-2732 (((-3 |#1| "failed") |#1|) 14)) (-1348 (((-2 (|:| -2684 |#1|) (|:| -4196 (-765))) |#1|) 30) (((-3 |#1| "failed") |#1| (-765)) 18)) (-2965 (((-112) |#1| (-765)) 19)) (-3900 ((|#1| |#1|) 31)) (-4281 ((|#1| |#1| (-765)) 33)))
+(((-583 |#1|) (-10 -7 (-15 -2965 ((-112) |#1| (-765))) (-15 -1348 ((-3 |#1| "failed") |#1| (-765))) (-15 -1348 ((-2 (|:| -2684 |#1|) (|:| -4196 (-765))) |#1|)) (-15 -4281 (|#1| |#1| (-765))) (-15 -2896 ((-112) |#1|)) (-15 -2732 ((-3 |#1| "failed") |#1|)) (-15 -3900 (|#1| |#1|))) (-543)) (T -583))
+((-3900 (*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2732 (*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2896 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-4281 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-1348 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2684 *3) (|:| -4196 (-765)))) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-1348 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -2965 ((-112) |#1| (-765))) (-15 -1348 ((-3 |#1| "failed") |#1| (-765))) (-15 -1348 ((-2 (|:| -2684 |#1|) (|:| -4196 (-765))) |#1|)) (-15 -4281 (|#1| |#1| (-765))) (-15 -2896 ((-112) |#1|)) (-15 -2732 ((-3 |#1| "failed") |#1|)) (-15 -3900 (|#1| |#1|)))
+((-3318 (((-1162 |#1|) (-914)) 26)))
+(((-584 |#1|) (-10 -7 (-15 -3318 ((-1162 |#1|) (-914)))) (-348)) (T -584))
+((-3318 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-584 *4)) (-4 *4 (-348)))))
+(-10 -7 (-15 -3318 ((-1162 |#1|) (-914))))
+((-2321 (((-582 (-406 (-945 |#1|))) (-582 (-406 (-945 |#1|)))) 27)) (-1842 (((-3 (-315 |#1|) (-638 (-315 |#1|))) (-406 (-945 |#1|)) (-1166)) 34 (|has| |#1| (-146)))) (-3529 (((-638 (-315 |#1|)) (-582 (-406 (-945 |#1|)))) 19)) (-1654 (((-315 |#1|) (-406 (-945 |#1|)) (-1166)) 32 (|has| |#1| (-146)))) (-2505 (((-315 |#1|) (-582 (-406 (-945 |#1|)))) 21)))
+(((-585 |#1|) (-10 -7 (-15 -2321 ((-582 (-406 (-945 |#1|))) (-582 (-406 (-945 |#1|))))) (-15 -3529 ((-638 (-315 |#1|)) (-582 (-406 (-945 |#1|))))) (-15 -2505 ((-315 |#1|) (-582 (-406 (-945 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -1842 ((-3 (-315 |#1|) (-638 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -1654 ((-315 |#1|) (-406 (-945 |#1|)) (-1166)))) |%noBranch|)) (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (T -585))
+((-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-315 *5)) (-5 *1 (-585 *5)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-3 (-315 *5) (-638 (-315 *5)))) (-5 *1 (-585 *5)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-582 (-406 (-945 *4)))) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-315 *4)) (-5 *1 (-585 *4)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-582 (-406 (-945 *4)))) (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *2 (-638 (-315 *4))) (-5 *1 (-585 *4)))) (-2321 (*1 *2 *2) (-12 (-5 *2 (-582 (-406 (-945 *3)))) (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561)))) (-5 *1 (-585 *3)))))
+(-10 -7 (-15 -2321 ((-582 (-406 (-945 |#1|))) (-582 (-406 (-945 |#1|))))) (-15 -3529 ((-638 (-315 |#1|)) (-582 (-406 (-945 |#1|))))) (-15 -2505 ((-315 |#1|) (-582 (-406 (-945 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -1842 ((-3 (-315 |#1|) (-638 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -1654 ((-315 |#1|) (-406 (-945 |#1|)) (-1166)))) |%noBranch|))
+((-2078 (((-638 (-682 (-561))) (-638 (-561)) (-638 (-898 (-561)))) 45) (((-638 (-682 (-561))) (-638 (-561))) 46) (((-682 (-561)) (-638 (-561)) (-898 (-561))) 41)) (-3596 (((-765) (-638 (-561))) 39)))
+(((-586) (-10 -7 (-15 -3596 ((-765) (-638 (-561)))) (-15 -2078 ((-682 (-561)) (-638 (-561)) (-898 (-561)))) (-15 -2078 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -2078 ((-638 (-682 (-561))) (-638 (-561)) (-638 (-898 (-561))))))) (T -586))
+((-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-561))) (-5 *4 (-638 (-898 (-561)))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-586)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-586)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-561))) (-5 *4 (-898 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-586)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-765)) (-5 *1 (-586)))))
+(-10 -7 (-15 -3596 ((-765) (-638 (-561)))) (-15 -2078 ((-682 (-561)) (-638 (-561)) (-898 (-561)))) (-15 -2078 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -2078 ((-638 (-682 (-561))) (-638 (-561)) (-638 (-898 (-561))))))
+((-4202 (((-638 |#5|) |#5| (-112)) 72)) (-2080 (((-112) |#5| (-638 |#5|)) 30)))
+(((-587 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4202 ((-638 |#5|) |#5| (-112))) (-15 -2080 ((-112) |#5| (-638 |#5|)))) (-13 (-306) (-146)) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -587))
+((-2080 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1099 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-587 *5 *6 *7 *8 *3)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-638 *3)) (-5 *1 (-587 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4202 ((-638 |#5|) |#5| (-112))) (-15 -2080 ((-112) |#5| (-638 |#5|))))
+((-4011 (((-112) $ $) NIL)) (-4306 (((-1125) $) 11)) (-4293 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-588) (-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))) (T -588))
+((-4293 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))))
+(-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))
+((-4011 (((-112) $ $) NIL (|has| (-143) (-1090)))) (-1818 (($ $) 34)) (-2265 (($ $) NIL)) (-1855 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-3814 (((-112) $ $) 51)) (-3791 (((-112) $ $ (-561)) 46)) (-2321 (((-638 $) $ (-143)) 59) (((-638 $) $ (-140)) 60)) (-4268 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-3702 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| (-143) (-844))))) (-1289 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 (((-143) $ (-561) (-143)) 45 (|has| $ (-6 -4391))) (((-143) $ (-1220 (-561)) (-143)) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-1921 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-3358 (($ $ (-1220 (-561)) $) 44)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-1489 (($ (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4390))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4390)))) (-2073 (((-143) $ (-561) (-143)) NIL (|has| $ (-6 -4391)))) (-4344 (((-143) $ (-561)) NIL)) (-3834 (((-112) $ $) 71)) (-4235 (((-561) (-1 (-112) (-143)) $) NIL) (((-561) (-143) $) NIL (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) 48 (|has| (-143) (-1090))) (((-561) $ $ (-561)) 47) (((-561) (-140) $ (-561)) 50)) (-3571 (((-638 (-143)) $) NIL (|has| $ (-6 -4390)))) (-1470 (($ (-765) (-143)) 9)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 28 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| (-143) (-844)))) (-1407 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-1305 (((-638 (-143)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-2780 (((-561) $) 42 (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-143) (-844)))) (-4234 (((-112) $ $ (-143)) 72)) (-3778 (((-765) $ $ (-143)) 69)) (-2065 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-4040 (($ $) 37)) (-2773 (($ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1931 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-1764 (((-1148) $) 38 (|has| (-143) (-1090)))) (-3312 (($ (-143) $ (-561)) NIL) (($ $ $ (-561)) 23)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-561) $) 68) (((-1110) $) NIL (|has| (-143) (-1090)))) (-1433 (((-143) $) NIL (|has| (-561) (-844)))) (-1330 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-1799 (($ $ (-143)) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-2658 (((-638 (-143)) $) NIL)) (-1928 (((-112) $) 12)) (-3170 (($) 10)) (-2277 (((-143) $ (-561) (-143)) NIL) (((-143) $ (-561)) 52) (($ $ (-1220 (-561))) 21) (($ $ $) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-1365 (($ $ $ (-561)) 65 (|has| $ (-6 -4391)))) (-4187 (($ $) 17)) (-4174 (((-534) $) NIL (|has| (-143) (-609 (-534))))) (-4031 (($ (-638 (-143))) NIL)) (-2725 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-638 $)) 66)) (-4022 (($ (-143)) NIL) (((-856) $) 27 (|has| (-143) (-608 (-856))))) (-3715 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1733 (((-112) $ $) 14 (|has| (-143) (-1090)))) (-1773 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1754 (((-112) $ $) 15 (|has| (-143) (-844)))) (-3498 (((-765) $) 13 (|has| $ (-6 -4390)))))
+(((-589 |#1|) (-13 (-1134) (-10 -8 (-15 -1714 ((-561) $)))) (-561)) (T -589))
+((-1714 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-589 *3)) (-14 *3 *2))))
+(-13 (-1134) (-10 -8 (-15 -1714 ((-561) $))))
+((-1647 (((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2| (-1084 |#4|)) 32)))
+(((-590 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1647 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2| (-1084 |#4|))) (-15 -1647 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2|))) (-787) (-844) (-553) (-942 |#3| |#1| |#2|)) (T -590))
+((-1647 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-553)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561)))) (-5 *1 (-590 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) (-1647 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1084 *3)) (-4 *3 (-942 *7 *6 *4)) (-4 *6 (-787)) (-4 *4 (-844)) (-4 *7 (-553)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561)))) (-5 *1 (-590 *6 *4 *7 *3)))))
+(-10 -7 (-15 -1647 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2| (-1084 |#4|))) (-15 -1647 ((-2 (|:| |num| |#4|) (|:| |den| (-561))) |#4| |#2|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 63)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-561)) 54) (($ $ (-561) (-561)) 55)) (-2457 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 60)) (-3421 (($ $) 99)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4096 (((-856) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) (-1019 (-837 (-561))) (-1166) |#1| (-406 (-561))) 223)) (-3406 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 34)) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-3281 (((-112) $) NIL)) (-4163 (((-561) $) 58) (((-561) $ (-561)) 59)) (-3113 (((-112) $) NIL)) (-3244 (($ $ (-914)) 76)) (-2279 (($ (-1 |#1| (-561)) $) 73)) (-2092 (((-112) $) 25)) (-1387 (($ |#1| (-561)) 22) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) 67)) (-3389 (($ (-1019 (-837 (-561))) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 13)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1842 (($ $) 149 (|has| |#1| (-38 (-406 (-561)))))) (-2023 (((-3 $ "failed") $ $ (-112)) 98)) (-2509 (($ $ $) 107)) (-1714 (((-1110) $) NIL)) (-4201 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 15)) (-2763 (((-1019 (-837 (-561))) $) 14)) (-1416 (($ $ (-561)) 45)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-561)))))) (-2277 ((|#1| $ (-561)) 57) (($ $ $) NIL (|has| (-561) (-1102)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-2894 (((-561) $) NIL)) (-1897 (($ $) 46)) (-4022 (((-856) $) NIL) (($ (-561)) 28) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 27 (|has| |#1| (-171)))) (-2634 ((|#1| $ (-561)) 56)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) 37)) (-2262 ((|#1| $) NIL)) (-2146 (($ $) 185 (|has| |#1| (-38 (-406 (-561)))))) (-2575 (($ $) 157 (|has| |#1| (-38 (-406 (-561)))))) (-3775 (($ $) 189 (|has| |#1| (-38 (-406 (-561)))))) (-2510 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-3340 (($ $) 188 (|has| |#1| (-38 (-406 (-561)))))) (-2674 (($ $) 161 (|has| |#1| (-38 (-406 (-561)))))) (-1562 (($ $ (-406 (-561))) 165 (|has| |#1| (-38 (-406 (-561)))))) (-3649 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-561)))))) (-3672 (($ $) 191 (|has| |#1| (-38 (-406 (-561)))))) (-4241 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-2596 (($ $) 190 (|has| |#1| (-38 (-406 (-561)))))) (-2267 (($ $) 163 (|has| |#1| (-38 (-406 (-561)))))) (-2379 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-2204 (($ $) 159 (|has| |#1| (-38 (-406 (-561)))))) (-2387 (($ $) 187 (|has| |#1| (-38 (-406 (-561)))))) (-3678 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-2348 (($ $) 196 (|has| |#1| (-38 (-406 (-561)))))) (-1637 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-2398 (($ $) 193 (|has| |#1| (-38 (-406 (-561)))))) (-3228 (($ $) 167 (|has| |#1| (-38 (-406 (-561)))))) (-2061 (($ $) 200 (|has| |#1| (-38 (-406 (-561)))))) (-2566 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-2355 (($ $) 202 (|has| |#1| (-38 (-406 (-561)))))) (-3176 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-1310 (($ $) 198 (|has| |#1| (-38 (-406 (-561)))))) (-3177 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-2356 (($ $) 195 (|has| |#1| (-38 (-406 (-561)))))) (-3438 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1417 ((|#1| $ (-561)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2211 (($) 29 T CONST)) (-2222 (($) 38 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-1733 (((-112) $ $) 65)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) 84) (($ $ $) 64)) (-1813 (($ $ $) 81)) (** (($ $ (-914)) NIL) (($ $ (-765)) 102)) (* (($ (-914) $) 89) (($ (-765) $) 87) (($ (-561) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-591 |#1|) (-13 (-1231 |#1| (-561)) (-10 -8 (-15 -3389 ($ (-1019 (-837 (-561))) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -2763 ((-1019 (-837 (-561))) $)) (-15 -4201 ((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $)) (-15 -3406 ($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -2092 ((-112) $)) (-15 -2279 ($ (-1 |#1| (-561)) $)) (-15 -2023 ((-3 $ "failed") $ $ (-112))) (-15 -3421 ($ $)) (-15 -2509 ($ $ $)) (-15 -4096 ((-856) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) (-1019 (-837 (-561))) (-1166) |#1| (-406 (-561)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $)) (-15 -3649 ($ $ |#1|)) (-15 -1562 ($ $ (-406 (-561)))) (-15 -4241 ($ $)) (-15 -3672 ($ $)) (-15 -2510 ($ $)) (-15 -3678 ($ $)) (-15 -2575 ($ $)) (-15 -2204 ($ $)) (-15 -2674 ($ $)) (-15 -2267 ($ $)) (-15 -3228 ($ $)) (-15 -3438 ($ $)) (-15 -1637 ($ $)) (-15 -3177 ($ $)) (-15 -2566 ($ $)) (-15 -3176 ($ $)) (-15 -3775 ($ $)) (-15 -2387 ($ $)) (-15 -2146 ($ $)) (-15 -2379 ($ $)) (-15 -3340 ($ $)) (-15 -2596 ($ $)) (-15 -2398 ($ $)) (-15 -2356 ($ $)) (-15 -2348 ($ $)) (-15 -1310 ($ $)) (-15 -2061 ($ $)) (-15 -2355 ($ $))) |%noBranch|))) (-1042)) (T -591))
+((-2092 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-3389 (*1 *1 *2 *3) (-12 (-5 *2 (-1019 (-837 (-561)))) (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *4)))) (-4 *4 (-1042)) (-5 *1 (-591 *4)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-1019 (-837 (-561)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3)))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-2023 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-3421 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-2509 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-4096 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *6)))) (-5 *4 (-1019 (-837 (-561)))) (-5 *5 (-1166)) (-5 *7 (-406 (-561))) (-4 *6 (-1042)) (-5 *2 (-856)) (-5 *1 (-591 *6)))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1562 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1042)))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3672 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2510 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2575 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2204 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3228 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3438 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1637 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3177 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2566 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3176 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3775 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2146 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-3340 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2596 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2348 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-1310 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2061 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(-13 (-1231 |#1| (-561)) (-10 -8 (-15 -3389 ($ (-1019 (-837 (-561))) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -2763 ((-1019 (-837 (-561))) $)) (-15 -4201 ((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $)) (-15 -3406 ($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))))) (-15 -2092 ((-112) $)) (-15 -2279 ($ (-1 |#1| (-561)) $)) (-15 -2023 ((-3 $ "failed") $ $ (-112))) (-15 -3421 ($ $)) (-15 -2509 ($ $ $)) (-15 -4096 ((-856) (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) (-1019 (-837 (-561))) (-1166) |#1| (-406 (-561)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $)) (-15 -3649 ($ $ |#1|)) (-15 -1562 ($ $ (-406 (-561)))) (-15 -4241 ($ $)) (-15 -3672 ($ $)) (-15 -2510 ($ $)) (-15 -3678 ($ $)) (-15 -2575 ($ $)) (-15 -2204 ($ $)) (-15 -2674 ($ $)) (-15 -2267 ($ $)) (-15 -3228 ($ $)) (-15 -3438 ($ $)) (-15 -1637 ($ $)) (-15 -3177 ($ $)) (-15 -2566 ($ $)) (-15 -3176 ($ $)) (-15 -3775 ($ $)) (-15 -2387 ($ $)) (-15 -2146 ($ $)) (-15 -2379 ($ $)) (-15 -3340 ($ $)) (-15 -2596 ($ $)) (-15 -2398 ($ $)) (-15 -2356 ($ $)) (-15 -2348 ($ $)) (-15 -1310 ($ $)) (-15 -2061 ($ $)) (-15 -2355 ($ $))) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-3406 (($ (-1146 |#1|)) 9)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) 42)) (-3281 (((-112) $) 52)) (-4163 (((-765) $) 55) (((-765) $ (-765)) 54)) (-3113 (((-112) $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ $) 44 (|has| |#1| (-553)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-1146 |#1|) $) 23)) (-4259 (((-765)) 51)) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) 10 T CONST)) (-2222 (($) 14 T CONST)) (-1733 (((-112) $ $) 22)) (-1824 (($ $) 30) (($ $ $) 16)) (-1813 (($ $ $) 25)) (** (($ $ (-914)) NIL) (($ $ (-765)) 49)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-561)) 36)))
+(((-592 |#1|) (-13 (-1042) (-10 -8 (-15 -2742 ((-1146 |#1|) $)) (-15 -3406 ($ (-1146 |#1|))) (-15 -3281 ((-112) $)) (-15 -4163 ((-765) $)) (-15 -4163 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-561))) (IF (|has| |#1| (-553)) (-6 (-553)) |%noBranch|))) (-1042)) (T -592))
+((-2742 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3)))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4163 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))))
+(-13 (-1042) (-10 -8 (-15 -2742 ((-1146 |#1|) $)) (-15 -3406 ($ (-1146 |#1|))) (-15 -3281 ((-112) $)) (-15 -4163 ((-765) $)) (-15 -4163 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-561))) (IF (|has| |#1| (-553)) (-6 (-553)) |%noBranch|)))
+((-4120 (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 15)))
+(((-593 |#1| |#2|) (-10 -7 (-15 -4120 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)))) (-1205) (-1205)) (T -593))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6)))))
+(-10 -7 (-15 -4120 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))))
+((-4120 (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1146 |#2|)) 20) (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-596 |#2|)) 19) (((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|)) 18)))
+(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -4120 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4120 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-596 |#2|))) (-15 -4120 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1146 |#2|)))) (-1205) (-1205) (-1205)) (T -594))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1146 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-596 *8)) (-5 *1 (-594 *6 *7 *8)))))
+(-10 -7 (-15 -4120 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4120 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-596 |#2|))) (-15 -4120 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1146 |#2|))))
+((-3290 ((|#3| |#3| (-638 (-607 |#3|)) (-638 (-1166))) 55)) (-2357 (((-168 |#2|) |#3|) 117)) (-2662 ((|#3| (-168 |#2|)) 44)) (-3641 ((|#2| |#3|) 19)) (-2950 ((|#3| |#2|) 33)))
+(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -2662 (|#3| (-168 |#2|))) (-15 -3641 (|#2| |#3|)) (-15 -2950 (|#3| |#2|)) (-15 -2357 ((-168 |#2|) |#3|)) (-15 -3290 (|#3| |#3| (-638 (-607 |#3|)) (-638 (-1166))))) (-13 (-553) (-844)) (-13 (-429 |#1|) (-995) (-1190)) (-13 (-429 (-168 |#1|)) (-995) (-1190))) (T -595))
+((-3290 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-638 (-1166))) (-4 *2 (-13 (-429 (-168 *5)) (-995) (-1190))) (-4 *5 (-13 (-553) (-844))) (-5 *1 (-595 *5 *6 *2)) (-4 *6 (-13 (-429 *5) (-995) (-1190))))) (-2357 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844))) (-5 *2 (-168 *5)) (-5 *1 (-595 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-995) (-1190))) (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))) (-2950 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844))) (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-995) (-1190))))) (-3641 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-844))) (-4 *2 (-13 (-429 *4) (-995) (-1190))) (-5 *1 (-595 *4 *2 *3)) (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190))) (-4 *4 (-13 (-553) (-844))) (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *5 *2)))))
+(-10 -7 (-15 -2662 (|#3| (-168 |#2|))) (-15 -3641 (|#2| |#3|)) (-15 -2950 (|#3| |#2|)) (-15 -2357 ((-168 |#2|) |#3|)) (-15 -3290 (|#3| |#3| (-638 (-607 |#3|)) (-638 (-1166)))))
+((-3556 (($ (-1 (-112) |#1|) $) 17)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ (-1 |#1| |#1|) |#1|) 9)) (-3538 (($ (-1 (-112) |#1|) $) 13)) (-3546 (($ (-1 (-112) |#1|) $) 15)) (-4031 (((-1146 |#1|) $) 18)) (-4022 (((-856) $) NIL)))
+(((-596 |#1|) (-13 (-608 (-856)) (-10 -8 (-15 -4120 ($ (-1 |#1| |#1|) $)) (-15 -3538 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)) (-15 -3556 ($ (-1 (-112) |#1|) $)) (-15 -2097 ($ (-1 |#1| |#1|) |#1|)) (-15 -4031 ((-1146 |#1|) $)))) (-1205)) (T -596))
+((-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-3538 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-2097 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1205)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -4120 ($ (-1 |#1| |#1|) $)) (-15 -3538 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)) (-15 -3556 ($ (-1 (-112) |#1|) $)) (-15 -2097 ($ (-1 |#1| |#1|) |#1|)) (-15 -4031 ((-1146 |#1|) $))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2888 (($ (-765)) NIL (|has| |#1| (-23)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-2802 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-1470 (($ (-765) |#1|) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3216 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-2230 (((-112) $ (-765)) NIL)) (-3617 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1327 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-2307 (($ $ $) NIL (|has| |#1| (-1042)))) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1824 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1813 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-561) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-597 |#1| |#2|) (-1251 |#1|) (-1205) (-561)) (T -597))
+NIL
+(-1251 |#1|)
+((-3024 (((-1258) $ |#2| |#2|) 36)) (-3975 ((|#2| $) 23)) (-2780 ((|#2| $) 21)) (-2065 (($ (-1 |#3| |#3|) $) 32)) (-4120 (($ (-1 |#3| |#3|) $) 30)) (-1433 ((|#3| $) 26)) (-1799 (($ $ |#3|) 33)) (-3703 (((-112) |#3| $) 17)) (-2658 (((-638 |#3|) $) 15)) (-2277 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-598 |#1| |#2| |#3|) (-10 -8 (-15 -3024 ((-1258) |#1| |#2| |#2|)) (-15 -1799 (|#1| |#1| |#3|)) (-15 -1433 (|#3| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -2780 (|#2| |#1|)) (-15 -3703 ((-112) |#3| |#1|)) (-15 -2658 ((-638 |#3|) |#1|)) (-15 -2277 (|#3| |#1| |#2|)) (-15 -2277 (|#3| |#1| |#2| |#3|)) (-15 -2065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4120 (|#1| (-1 |#3| |#3|) |#1|))) (-599 |#2| |#3|) (-1090) (-1205)) (T -598))
+NIL
+(-10 -8 (-15 -3024 ((-1258) |#1| |#2| |#2|)) (-15 -1799 (|#1| |#1| |#3|)) (-15 -1433 (|#3| |#1|)) (-15 -3975 (|#2| |#1|)) (-15 -2780 (|#2| |#1|)) (-15 -3703 ((-112) |#3| |#1|)) (-15 -2658 ((-638 |#3|) |#1|)) (-15 -2277 (|#3| |#1| |#2|)) (-15 -2277 (|#3| |#1| |#2| |#3|)) (-15 -2065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4120 (|#1| (-1 |#3| |#3|) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#2| (-1090)))) (-3024 (((-1258) $ |#1| |#1|) 40 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4391)))) (-1965 (($) 7 T CONST)) (-2073 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) 51)) (-3571 (((-638 |#2|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-3975 ((|#1| $) 43 (|has| |#1| (-844)))) (-1305 (((-638 |#2|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390))))) (-2780 ((|#1| $) 44 (|has| |#1| (-844)))) (-2065 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#2| (-1090)))) (-2451 (((-638 |#1|) $) 46)) (-1390 (((-112) |#1| $) 47)) (-1714 (((-1110) $) 21 (|has| |#2| (-1090)))) (-1433 ((|#2| $) 42 (|has| |#1| (-844)))) (-1799 (($ $ |#2|) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1724 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4390))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#2| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#2| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-599 |#1| |#2|) (-139) (-1090) (-1205)) (T -599))
+((-2658 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-638 *4)))) (-1390 (*1 *2 *3 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-112)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-638 *3)))) (-3703 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090)) (-4 *2 (-844)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090)) (-4 *2 (-844)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1090)) (-4 *3 (-844)) (-4 *2 (-1205)))) (-1799 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205)))) (-3024 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205)) (-5 *2 (-1258)))))
+(-13 (-487 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -2658 ((-638 |t#2|) $)) (-15 -1390 ((-112) |t#1| $)) (-15 -2451 ((-638 |t#1|) $)) (IF (|has| |t#2| (-1090)) (IF (|has| $ (-6 -4390)) (-15 -3703 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -2780 (|t#1| $)) (-15 -3975 (|t#1| $)) (-15 -1433 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4391)) (PROGN (-15 -1799 ($ $ |t#2|)) (-15 -3024 ((-1258) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1090)) ((-608 (-856)) -4007 (|has| |#2| (-1090)) (|has| |#2| (-608 (-856)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-1090) |has| |#2| (-1090)) ((-1205) . T))
+((-4022 (((-856) $) 17) (($ (-129)) 13) (((-129) $) 14)))
+(((-600) (-13 (-608 (-856)) (-488 (-129)))) (T -600))
+NIL
+(-13 (-608 (-856)) (-488 (-129)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1204) $) 14) (($ (-638 (-1204))) 13)) (-4006 (((-638 (-1204)) $) 10)) (-1733 (((-112) $ $) NIL)))
+(((-601) (-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4022 ($ (-638 (-1204)))) (-15 -4006 ((-638 (-1204)) $))))) (T -601))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601)))))
+(-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4022 ($ (-638 (-1204)))) (-15 -4006 ((-638 (-1204)) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3027 (((-3 $ "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-2602 (((-1253 (-682 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1253 (-682 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1533 (((-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1965 (($) NIL T CONST)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2104 (((-3 $ "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2483 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2228 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3689 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3494 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3337 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3928 (($ $ (-914)) NIL)) (-3589 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2392 (((-1162 |#1|) $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-1381 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1659 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2380 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2257 (($ (-1253 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1253 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3466 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-1569 (((-914)) NIL (|has| |#2| (-366 |#1|)))) (-1922 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3203 (($ $ (-914)) NIL)) (-3104 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2008 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3138 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2445 (((-3 $ "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2919 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3618 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1354 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4063 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2502 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3394 (($ $ (-914)) NIL)) (-3847 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2377 (((-1162 |#1|) $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2696 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1539 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3139 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1764 (((-1148) $) NIL)) (-4367 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1446 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3696 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1714 (((-1110) $) NIL)) (-3701 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2277 ((|#1| $ (-561)) NIL (|has| |#2| (-416 |#1|)))) (-3969 (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-416 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1253 $) (-1253 $)) NIL (|has| |#2| (-366 |#1|))) (((-1253 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4174 (($ (-1253 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-2508 (((-638 (-945 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-638 (-945 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3800 (($ $ $) NIL)) (-3053 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4022 (((-856) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3711 (((-1253 $)) NIL (|has| |#2| (-416 |#1|)))) (-1758 (((-638 (-1253 |#1|))) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3392 (($ $ $ $) NIL)) (-2216 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1367 (($ (-682 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-1761 (($ $ $) NIL)) (-2500 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2887 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4326 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2211 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) 24)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-602 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4022 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -602))
+((-4022 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3)))))
+(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4022 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-3974 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) 33)) (-1456 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL) (($) NIL)) (-3024 (((-1258) $ (-1148) (-1148)) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-1148) |#1|) 43)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#1| "failed") (-1148) $) 46)) (-1965 (($) NIL T CONST)) (-2462 (($ $ (-1148)) 24)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090))))) (-3999 (((-3 |#1| "failed") (-1148) $) 47) (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (($ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (|has| $ (-6 -4390)))) (-1489 (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (($ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090))))) (-3185 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090))))) (-2669 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) 32)) (-2073 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-1148)) NIL)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390))) (((-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-1607 (($ $) 48)) (-3333 (($ (-387)) 22) (($ (-387) (-1148)) 21)) (-3269 (((-387) $) 34)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-1148) $) NIL (|has| (-1148) (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390))) (((-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (((-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090))))) (-2780 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2017 (((-638 (-1148)) $) 39)) (-2857 (((-112) (-1148) $) NIL)) (-3647 (((-1148) $) 35)) (-3211 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL)) (-2451 (((-638 (-1148)) $) NIL)) (-1390 (((-112) (-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 ((|#1| $) NIL (|has| (-1148) (-844)))) (-1330 (((-3 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) "failed") (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ $ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ $ (-638 (-293 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 37)) (-2277 ((|#1| $ (-1148) |#1|) NIL) ((|#1| $ (-1148)) 42)) (-3579 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL) (($) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (((-765) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (((-765) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL)) (-4022 (((-856) $) 20)) (-2836 (($ $) 25)) (-3025 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 19)) (-3498 (((-765) $) 41 (|has| $ (-6 -4390)))))
+(((-603 |#1|) (-13 (-363 (-387) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4390) (-15 -1607 ($ $)))) (-1090)) (T -603))
+((-1607 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1090)))))
+(-13 (-363 (-387) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4390) (-15 -1607 ($ $))))
+((-4087 (((-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) $) 15)) (-2017 (((-638 |#2|) $) 19)) (-2857 (((-112) |#2| $) 12)))
+(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -2017 ((-638 |#2|) |#1|)) (-15 -2857 ((-112) |#2| |#1|)) (-15 -4087 ((-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|))) (-605 |#2| |#3|) (-1090) (-1090)) (T -604))
+NIL
+(-10 -8 (-15 -2017 ((-638 |#2|) |#1|)) (-15 -2857 ((-112) |#2| |#1|)) (-15 -4087 ((-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 55 (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) 61)) (-1965 (($) 7 T CONST)) (-1472 (($ $) 58 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 46 (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) 62)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 54 (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 56 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 53 (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 52 (|has| $ (-6 -4390)))) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-2017 (((-638 |#1|) $) 63)) (-2857 (((-112) |#1| $) 64)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 39)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 40)) (-1714 (((-1110) $) 21 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 51)) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 41)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) 26 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 25 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 24 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 23 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-3579 (($) 49) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 48)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 31 (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 50)) (-4022 (((-856) $) 18 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 42)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-605 |#1| |#2|) (-139) (-1090) (-1090)) (T -605))
+((-2857 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-112)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-638 *3)))) (-3999 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-1485 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
+(-13 (-228 (-2 (|:| -2252 |t#1|) (|:| -2654 |t#2|))) (-10 -8 (-15 -2857 ((-112) |t#1| $)) (-15 -2017 ((-638 |t#1|) $)) (-15 -3999 ((-3 |t#2| "failed") |t#1| $)) (-15 -1485 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((-102) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) ((-608 (-856)) -4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856)))) ((-150 #0#) . T) ((-609 (-534)) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-487 #0#) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-1090) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) ((-1205) . T))
+((-4018 (((-607 |#2|) |#1|) 15)) (-2053 (((-3 |#1| "failed") (-607 |#2|)) 19)))
+(((-606 |#1| |#2|) (-10 -7 (-15 -4018 ((-607 |#2|) |#1|)) (-15 -2053 ((-3 |#1| "failed") (-607 |#2|)))) (-844) (-844)) (T -606))
+((-2053 (*1 *2 *3) (|partial| -12 (-5 *3 (-607 *4)) (-4 *4 (-844)) (-4 *2 (-844)) (-5 *1 (-606 *2 *4)))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *1 (-606 *3 *4)) (-4 *3 (-844)) (-4 *4 (-844)))))
+(-10 -7 (-15 -4018 ((-607 |#2|) |#1|)) (-15 -2053 ((-3 |#1| "failed") (-607 |#2|))))
+((-4011 (((-112) $ $) NIL)) (-4347 (((-3 (-1166) "failed") $) 37)) (-3099 (((-1258) $ (-765)) 26)) (-4235 (((-765) $) 25)) (-3479 (((-114) $) 12)) (-3269 (((-1166) $) 20)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-4109 (($ (-114) (-638 |#1|) (-765)) 30) (($ (-1166)) 31)) (-2561 (((-112) $ (-114)) 18) (((-112) $ (-1166)) 16)) (-3061 (((-765) $) 22)) (-1714 (((-1110) $) NIL)) (-4174 (((-885 (-561)) $) 77 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 84 (|has| |#1| (-609 (-885 (-378))))) (((-534) $) 69 (|has| |#1| (-609 (-534))))) (-4022 (((-856) $) 55)) (-1872 (((-638 |#1|) $) 24)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 41)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 42)))
+(((-607 |#1|) (-13 (-131) (-877 |#1|) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -3479 ((-114) $)) (-15 -1872 ((-638 |#1|) $)) (-15 -3061 ((-765) $)) (-15 -4109 ($ (-114) (-638 |#1|) (-765))) (-15 -4109 ($ (-1166))) (-15 -4347 ((-3 (-1166) "failed") $)) (-15 -2561 ((-112) $ (-114))) (-15 -2561 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|))) (-844)) (T -607))
+((-3269 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-4109 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-844)) (-5 *1 (-607 *5)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-4347 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))) (-2561 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844)))) (-2561 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844)))))
+(-13 (-131) (-877 |#1|) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -3479 ((-114) $)) (-15 -1872 ((-638 |#1|) $)) (-15 -3061 ((-765) $)) (-15 -4109 ($ (-114) (-638 |#1|) (-765))) (-15 -4109 ($ (-1166))) (-15 -4347 ((-3 (-1166) "failed") $)) (-15 -2561 ((-112) $ (-114))) (-15 -2561 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|)))
+((-4022 ((|#1| $) 6)))
+(((-608 |#1|) (-139) (-1205)) (T -608))
+((-4022 (*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1205)))))
+(-13 (-10 -8 (-15 -4022 (|t#1| $))))
+((-4174 ((|#1| $) 6)))
+(((-609 |#1|) (-139) (-1205)) (T -609))
+((-4174 (*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1205)))))
+(-13 (-10 -8 (-15 -4174 (|t#1| $))))
+((-1907 (((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)) 15) (((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -1907 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -1907 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561)))) (-1229 |#1|)) (T -610))
+((-1907 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-1162 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6)))) (-1907 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4)) (-5 *2 (-1162 (-406 *5))) (-5 *1 (-610 *4 *5)) (-5 *3 (-406 *5)))))
+(-10 -7 (-15 -1907 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -1907 ((-3 (-1162 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|))))
+((-4022 (($ |#1|) 6)))
+(((-611 |#1|) (-139) (-1205)) (T -611))
+((-4022 (*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1205)))))
+(-13 (-10 -8 (-15 -4022 ($ |t#1|))))
+((-4011 (((-112) $ $) NIL)) (-4365 (($) 8 T CONST)) (-2754 (($) 9 T CONST)) (-2180 (($ $ $) 21)) (-2159 (($ $) 19)) (-1764 (((-1148) $) NIL)) (-2167 (($ $ $) 22)) (-1714 (((-1110) $) NIL)) (-1638 (($) 7 T CONST)) (-2115 (($ $ $) 23)) (-4022 (((-856) $) 27)) (-2201 (((-112) $ (|[\|\|]| -1638)) 16) (((-112) $ (|[\|\|]| -4365)) 18) (((-112) $ (|[\|\|]| -2754)) 14)) (-2170 (($ $ $) 20)) (-1733 (((-112) $ $) 12)))
+(((-612) (-13 (-960) (-10 -8 (-15 -1638 ($) -1514) (-15 -4365 ($) -1514) (-15 -2754 ($) -1514) (-15 -2201 ((-112) $ (|[\|\|]| -1638))) (-15 -2201 ((-112) $ (|[\|\|]| -4365))) (-15 -2201 ((-112) $ (|[\|\|]| -2754)))))) (T -612))
+((-1638 (*1 *1) (-5 *1 (-612))) (-4365 (*1 *1) (-5 *1 (-612))) (-2754 (*1 *1) (-5 *1 (-612))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1638)) (-5 *2 (-112)) (-5 *1 (-612)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4365)) (-5 *2 (-112)) (-5 *1 (-612)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2754)) (-5 *2 (-112)) (-5 *1 (-612)))))
+(-13 (-960) (-10 -8 (-15 -1638 ($) -1514) (-15 -4365 ($) -1514) (-15 -2754 ($) -1514) (-15 -2201 ((-112) $ (|[\|\|]| -1638))) (-15 -2201 ((-112) $ (|[\|\|]| -4365))) (-15 -2201 ((-112) $ (|[\|\|]| -2754)))))
+((-4174 (($ |#1|) 6)))
+(((-613 |#1|) (-139) (-1205)) (T -613))
+((-4174 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1205)))))
+(-13 (-10 -8 (-15 -4174 ($ |t#1|))))
+((-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) 10)))
+(((-614 |#1| |#2|) (-10 -8 (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-615 |#2|) (-1042)) (T -614))
+NIL
+(-10 -8 (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 36)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-615 |#1|) (-139) (-1042)) (T -615))
+((-4022 (*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1042)))))
+(-13 (-1042) (-641 |t#1|) (-10 -8 (-15 -4022 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2666 (((-561) $) NIL (|has| |#1| (-842)))) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3201 (((-112) $) NIL (|has| |#1| (-842)))) (-3113 (((-112) $) NIL)) (-4030 ((|#1| $) 13)) (-2110 (((-112) $) NIL (|has| |#1| (-842)))) (-3443 (($ $ $) NIL (|has| |#1| (-842)))) (-2986 (($ $ $) NIL (|has| |#1| (-842)))) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4045 ((|#3| $) 15)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL)) (-4259 (((-765)) 20)) (-3749 (($ $) NIL (|has| |#1| (-842)))) (-2211 (($) NIL T CONST)) (-2222 (($) 12 T CONST)) (-1782 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1833 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-616 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -1833 ($ $ |#3|)) (-15 -1833 ($ |#1| |#3|)) (-15 -4030 (|#1| $)) (-15 -4045 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -616))
+((-1833 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-1833 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-616 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-616 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-4045 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -1833 ($ $ |#3|)) (-15 -1833 ($ |#1| |#3|)) (-15 -4030 (|#1| $)) (-15 -4045 (|#3| $))))
+((-1746 ((|#2| |#2| (-1166) (-1166)) 18)))
+(((-617 |#1| |#2|) (-10 -7 (-15 -1746 (|#2| |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-952) (-29 |#1|))) (T -617))
+((-1746 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-952) (-29 *4))))))
+(-10 -7 (-15 -1746 (|#2| |#2| (-1166) (-1166))))
+((-4011 (((-112) $ $) 56)) (-2800 (((-112) $) 52)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2744 ((|#1| $) 49)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1301 (((-2 (|:| -2870 $) (|:| -3116 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) 24)) (-3466 (((-3 $ "failed") $) 75)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-4163 (((-561) $) 19)) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) 36)) (-1387 (($ |#1| (-561)) 21)) (-1590 ((|#1| $) 51)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 101 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1756 (((-3 $ "failed") $ $) 79)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3569 (((-765) $) 100 (|has| |#1| (-362)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 99 (|has| |#1| (-362)))) (-3238 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-2894 (((-561) $) 34)) (-4174 (((-406 |#2|) $) 42)) (-4022 (((-856) $) 62) (($ (-561)) 32) (($ $) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 31) (($ |#2|) 22)) (-2634 ((|#1| $ (-561)) 63)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) 29)) (-3168 (((-112) $ $) NIL)) (-2211 (($) 9 T CONST)) (-2222 (($) 12 T CONST)) (-3122 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1733 (((-112) $ $) 17)) (-1824 (($ $) 46) (($ $ $) NIL)) (-1813 (($ $ $) 76)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 26) (($ $ $) 44)))
+(((-618 |#1| |#2|) (-13 (-230 |#2|) (-553) (-609 (-406 |#2|)) (-410 |#1|) (-1031 |#2|) (-10 -8 (-15 -2092 ((-112) $)) (-15 -2894 ((-561) $)) (-15 -4163 ((-561) $)) (-15 -1619 ($ $)) (-15 -1590 (|#1| $)) (-15 -2744 (|#1| $)) (-15 -2634 (|#1| $ (-561))) (-15 -1387 ($ |#1| (-561))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -1301 ((-2 (|:| -2870 $) (|:| -3116 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-553) (-1229 |#1|)) (T -618))
+((-2092 (*1 *2 *1) (-12 (-4 *3 (-553)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-2894 (*1 *2 *1) (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-4163 (*1 *2 *1) (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-1619 (*1 *1 *1) (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-1590 (*1 *2 *1) (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-2744 (*1 *2 *1) (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-553)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2870 (-618 *4 *5)) (|:| -3116 (-406 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5)))))
+(-13 (-230 |#2|) (-553) (-609 (-406 |#2|)) (-410 |#1|) (-1031 |#2|) (-10 -8 (-15 -2092 ((-112) $)) (-15 -2894 ((-561) $)) (-15 -4163 ((-561) $)) (-15 -1619 ($ $)) (-15 -1590 (|#1| $)) (-15 -2744 (|#1| $)) (-15 -2634 (|#1| $ (-561))) (-15 -1387 ($ |#1| (-561))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -1301 ((-2 (|:| -2870 $) (|:| -3116 (-406 |#2|))) (-406 |#2|)))) |%noBranch|)))
+((-3047 (((-638 |#6|) (-638 |#4|) (-112)) 46)) (-3601 ((|#6| |#6|) 39)))
+(((-619 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3601 (|#6| |#6|)) (-15 -3047 ((-638 |#6|) (-638 |#4|) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2| |#3| |#4|)) (T -619))
+((-3047 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *10)) (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *10 (-1099 *5 *6 *7 *8)))) (-3601 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-619 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3601 (|#6| |#6|)) (-15 -3047 ((-638 |#6|) (-638 |#4|) (-112))))
+((-3243 (((-112) |#3| (-765) (-638 |#3|)) 23)) (-3430 (((-3 (-2 (|:| |polfac| (-638 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-638 (-1162 |#3|)))) "failed") |#3| (-638 (-1162 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4282 (-638 (-2 (|:| |irr| |#4|) (|:| -2449 (-561)))))) (-638 |#3|) (-638 |#1|) (-638 |#3|)) 55)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3243 ((-112) |#3| (-765) (-638 |#3|))) (-15 -3430 ((-3 (-2 (|:| |polfac| (-638 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-638 (-1162 |#3|)))) "failed") |#3| (-638 (-1162 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4282 (-638 (-2 (|:| |irr| |#4|) (|:| -2449 (-561)))))) (-638 |#3|) (-638 |#1|) (-638 |#3|)))) (-844) (-787) (-306) (-942 |#3| |#2| |#1|)) (T -620))
+((-3430 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4282 (-638 (-2 (|:| |irr| *10) (|:| -2449 (-561))))))) (-5 *6 (-638 *3)) (-5 *7 (-638 *8)) (-4 *8 (-844)) (-4 *3 (-306)) (-4 *10 (-942 *3 *9 *8)) (-4 *9 (-787)) (-5 *2 (-2 (|:| |polfac| (-638 *10)) (|:| |correct| *3) (|:| |corrfact| (-638 (-1162 *3))))) (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-638 (-1162 *3))))) (-3243 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-765)) (-5 *5 (-638 *3)) (-4 *3 (-306)) (-4 *6 (-844)) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8)) (-4 *8 (-942 *3 *7 *6)))))
+(-10 -7 (-15 -3243 ((-112) |#3| (-765) (-638 |#3|))) (-15 -3430 ((-3 (-2 (|:| |polfac| (-638 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-638 (-1162 |#3|)))) "failed") |#3| (-638 (-1162 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4282 (-638 (-2 (|:| |irr| |#4|) (|:| -2449 (-561)))))) (-638 |#3|) (-638 |#1|) (-638 |#3|))))
+((-4011 (((-112) $ $) NIL)) (-4306 (((-1125) $) 11)) (-4293 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-621) (-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))) (T -621))
+((-4293 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))))
+(-13 (-1073) (-10 -8 (-15 -4293 ((-1125) $)) (-15 -4306 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-2813 (((-638 |#1|) $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-2597 (($ $) 67)) (-4348 (((-657 |#1| |#2|) $) 52)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 70)) (-3429 (((-638 (-293 |#2|)) $ $) 33)) (-1714 (((-1110) $) NIL)) (-3440 (($ (-657 |#1| |#2|)) 48)) (-2260 (($ $ $) NIL)) (-3800 (($ $ $) NIL)) (-4022 (((-856) $) 58) (((-1268 |#1| |#2|) $) NIL) (((-1273 |#1| |#2|) $) 66)) (-2222 (($) 53 T CONST)) (-1806 (((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) 31)) (-3276 (((-638 (-657 |#1| |#2|)) (-638 |#1|)) 65)) (-3126 (((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) 37)) (-1733 (((-112) $ $) 54)) (-1833 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ $ $) 44)))
+(((-622 |#1| |#2| |#3|) (-13 (-471) (-10 -8 (-15 -3440 ($ (-657 |#1| |#2|))) (-15 -4348 ((-657 |#1| |#2|) $)) (-15 -3126 ((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4022 ((-1268 |#1| |#2|) $)) (-15 -4022 ((-1273 |#1| |#2|) $)) (-15 -2597 ($ $)) (-15 -2813 ((-638 |#1|) $)) (-15 -3276 ((-638 (-657 |#1| |#2|)) (-638 |#1|))) (-15 -1806 ((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -3429 ((-638 (-293 |#2|)) $ $)))) (-844) (-13 (-171) (-711 (-406 (-561)))) (-914)) (T -622))
+((-3440 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-5 *1 (-622 *3 *4 *5)) (-14 *5 (-914)))) (-4348 (*1 *2 *1) (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| (-886 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1268 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1273 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-2597 (*1 *1 *1) (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-13 (-171) (-711 (-406 (-561))))) (-14 *4 (-914)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-657 *4 *5))) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-561))))) (-14 *6 (-914)))) (-1806 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| (-665 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))) (-3429 (*1 *2 *1 *1) (-12 (-5 *2 (-638 (-293 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))))
+(-13 (-471) (-10 -8 (-15 -3440 ($ (-657 |#1| |#2|))) (-15 -4348 ((-657 |#1| |#2|) $)) (-15 -3126 ((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4022 ((-1268 |#1| |#2|) $)) (-15 -4022 ((-1273 |#1| |#2|) $)) (-15 -2597 ($ $)) (-15 -2813 ((-638 |#1|) $)) (-15 -3276 ((-638 (-657 |#1| |#2|)) (-638 |#1|))) (-15 -1806 ((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -3429 ((-638 (-293 |#2|)) $ $))))
+((-3047 (((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112)) 71) (((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112)) 57)) (-1628 (((-112) (-638 (-774 |#1| (-858 |#2|)))) 23)) (-2730 (((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112)) 70)) (-3234 (((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112)) 56)) (-4230 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|)))) 27)) (-4003 (((-3 (-638 (-774 |#1| (-858 |#2|))) "failed") (-638 (-774 |#1| (-858 |#2|)))) 26)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -1628 ((-112) (-638 (-774 |#1| (-858 |#2|))))) (-15 -4003 ((-3 (-638 (-774 |#1| (-858 |#2|))) "failed") (-638 (-774 |#1| (-858 |#2|))))) (-15 -4230 ((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))))) (-15 -3234 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2730 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3047 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3047 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112)))) (-450) (-638 (-1166))) (T -623))
+((-3047 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))) (-4003 (*1 *2 *2) (|partial| -12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-638 (-774 *4 (-858 *5)))) (-4 *4 (-450)) (-14 *5 (-638 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5)))))
+(-10 -7 (-15 -1628 ((-112) (-638 (-774 |#1| (-858 |#2|))))) (-15 -4003 ((-3 (-638 (-774 |#1| (-858 |#2|))) "failed") (-638 (-774 |#1| (-858 |#2|))))) (-15 -4230 ((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))))) (-15 -3234 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2730 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3047 ((-638 (-1039 |#1| |#2|)) (-638 (-774 |#1| (-858 |#2|))) (-112))) (-15 -3047 ((-638 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-638 (-774 |#1| (-858 |#2|))) (-112))))
+((-2978 (($ $) 38)) (-4064 (($ $) 21)) (-4172 (($ $) 37)) (-4041 (($ $) 22)) (-3009 (($ $) 36)) (-4085 (($ $) 23)) (-4067 (($) 48)) (-4348 (($ $) 45)) (-1972 (($ $) 17)) (-3041 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6)) (-3440 (($ $) 46)) (-3992 (($ $) 15)) (-4025 (($ $) 16)) (-3021 (($ $) 35)) (-4095 (($ $) 24)) (-2995 (($ $) 34)) (-4073 (($ $) 25)) (-2968 (($ $) 33)) (-4054 (($ $) 26)) (-3055 (($ $) 44)) (-4132 (($ $) 32)) (-3031 (($ $) 43)) (-4105 (($ $) 31)) (-3081 (($ $) 42)) (-4149 (($ $) 30)) (-2125 (($ $) 41)) (-4160 (($ $) 29)) (-3066 (($ $) 40)) (-4142 (($ $) 28)) (-3043 (($ $) 39)) (-4117 (($ $) 27)) (-1534 (($ $) 19)) (-3639 (($ $) 20)) (-3753 (($ $) 18)) (** (($ $ $) 47)))
+(((-624) (-139)) (T -624))
+((-3639 (*1 *1 *1) (-4 *1 (-624))) (-1534 (*1 *1 *1) (-4 *1 (-624))) (-3753 (*1 *1 *1) (-4 *1 (-624))) (-1972 (*1 *1 *1) (-4 *1 (-624))) (-4025 (*1 *1 *1) (-4 *1 (-624))) (-3992 (*1 *1 *1) (-4 *1 (-624))))
+(-13 (-952) (-1190) (-10 -8 (-15 -3639 ($ $)) (-15 -1534 ($ $)) (-15 -3753 ($ $)) (-15 -1972 ($ $)) (-15 -4025 ($ $)) (-15 -3992 ($ $))))
+(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-952) . T) ((-1190) . T) ((-1193) . T))
+((-3479 (((-114) (-114)) 83)) (-1972 ((|#2| |#2|) 30)) (-3041 ((|#2| |#2| (-1082 |#2|)) 79) ((|#2| |#2| (-1166)) 52)) (-3992 ((|#2| |#2|) 29)) (-4025 ((|#2| |#2|) 31)) (-2665 (((-112) (-114)) 34)) (-1534 ((|#2| |#2|) 26)) (-3639 ((|#2| |#2|) 28)) (-3753 ((|#2| |#2|) 27)))
+(((-625 |#1| |#2|) (-10 -7 (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -3639 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -3753 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -3041 (|#2| |#2| (-1166))) (-15 -3041 (|#2| |#2| (-1082 |#2|)))) (-13 (-844) (-553)) (-13 (-429 |#1|) (-995) (-1190))) (T -625))
+((-3041 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-995) (-1190))) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2)))) (-3041 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2)) (-4 *2 (-13 (-429 *4) (-995) (-1190))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-3753 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2)) (-4 *2 (-13 (-429 *3) (-995) (-1190))))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *4)) (-4 *4 (-13 (-429 *3) (-995) (-1190))))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190))))))
+(-10 -7 (-15 -2665 ((-112) (-114))) (-15 -3479 ((-114) (-114))) (-15 -3639 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -3753 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -3041 (|#2| |#2| (-1166))) (-15 -3041 (|#2| |#2| (-1082 |#2|))))
+((-3724 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-3461 (((-638 (-246 |#1| |#2|)) (-638 (-479 |#1| |#2|))) 68)) (-2381 (((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-858 |#1|)) 70) (((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)) (-858 |#1|)) 69)) (-2837 (((-2 (|:| |gblist| (-638 (-246 |#1| |#2|))) (|:| |gvlist| (-638 (-561)))) (-638 (-479 |#1| |#2|))) 108)) (-1535 (((-638 (-479 |#1| |#2|)) (-858 |#1|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|))) 83)) (-3565 (((-2 (|:| |glbase| (-638 (-246 |#1| |#2|))) (|:| |glval| (-638 (-561)))) (-638 (-246 |#1| |#2|))) 118)) (-2006 (((-1253 |#2|) (-479 |#1| |#2|) (-638 (-479 |#1| |#2|))) 58)) (-2308 (((-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|))) 41)) (-1984 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|))) 50)) (-3163 (((-246 |#1| |#2|) (-638 |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|))) 91)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -2837 ((-2 (|:| |gblist| (-638 (-246 |#1| |#2|))) (|:| |gvlist| (-638 (-561)))) (-638 (-479 |#1| |#2|)))) (-15 -3565 ((-2 (|:| |glbase| (-638 (-246 |#1| |#2|))) (|:| |glval| (-638 (-561)))) (-638 (-246 |#1| |#2|)))) (-15 -3461 ((-638 (-246 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -2381 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2381 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2308 ((-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -2006 ((-1253 |#2|) (-479 |#1| |#2|) (-638 (-479 |#1| |#2|)))) (-15 -3163 ((-246 |#1| |#2|) (-638 |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -1535 ((-638 (-479 |#1| |#2|)) (-858 |#1|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -1984 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -3724 ((-479 |#1| |#2|) (-246 |#1| |#2|)))) (-638 (-1166)) (-450)) (T -626))
+((-3724 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-1535 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-858 *4)) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-3163 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-246 *5 *6))) (-4 *6 (-450)) (-5 *2 (-246 *5 *6)) (-14 *5 (-638 (-1166))) (-5 *1 (-626 *5 *6)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-1253 *6)) (-5 *1 (-626 *5 *6)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-638 (-479 *3 *4))) (-14 *3 (-638 (-1166))) (-4 *4 (-450)) (-5 *1 (-626 *3 *4)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-2381 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-638 (-246 *4 *5))) (-5 *1 (-626 *4 *5)))) (-3565 (*1 *2 *3) (-12 (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |glbase| (-638 (-246 *4 *5))) (|:| |glval| (-638 (-561))))) (-5 *1 (-626 *4 *5)) (-5 *3 (-638 (-246 *4 *5))))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |gblist| (-638 (-246 *4 *5))) (|:| |gvlist| (-638 (-561))))) (-5 *1 (-626 *4 *5)))))
+(-10 -7 (-15 -2837 ((-2 (|:| |gblist| (-638 (-246 |#1| |#2|))) (|:| |gvlist| (-638 (-561)))) (-638 (-479 |#1| |#2|)))) (-15 -3565 ((-2 (|:| |glbase| (-638 (-246 |#1| |#2|))) (|:| |glval| (-638 (-561)))) (-638 (-246 |#1| |#2|)))) (-15 -3461 ((-638 (-246 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -2381 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2381 ((-479 |#1| |#2|) (-638 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2308 ((-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -2006 ((-1253 |#2|) (-479 |#1| |#2|) (-638 (-479 |#1| |#2|)))) (-15 -3163 ((-246 |#1| |#2|) (-638 |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -1535 ((-638 (-479 |#1| |#2|)) (-858 |#1|) (-638 (-479 |#1| |#2|)) (-638 (-479 |#1| |#2|)))) (-15 -1984 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-638 (-246 |#1| |#2|)))) (-15 -3724 ((-479 |#1| |#2|) (-246 |#1| |#2|))))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) NIL)) (-3024 (((-1258) $ (-1148) (-1148)) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 (((-52) $ (-1148) (-52)) 16) (((-52) $ (-1166) (-52)) 17)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 (-52) "failed") (-1148) $) NIL)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090))))) (-3999 (($ (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-3 (-52) "failed") (-1148) $) NIL)) (-1489 (($ (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $ (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (((-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $ (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-2073 (((-52) $ (-1148) (-52)) NIL (|has| $ (-6 -4391)))) (-4344 (((-52) $ (-1148)) NIL)) (-3571 (((-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-638 (-52)) $) NIL (|has| $ (-6 -4390)))) (-1607 (($ $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-1148) $) NIL (|has| (-1148) (-844)))) (-1305 (((-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-638 (-52)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090))))) (-2780 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4391))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1571 (($ (-387)) 9)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090))))) (-2017 (((-638 (-1148)) $) NIL)) (-2857 (((-112) (-1148) $) NIL)) (-3211 (((-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) $) NIL)) (-3671 (($ (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) $) NIL)) (-2451 (((-638 (-1148)) $) NIL)) (-1390 (((-112) (-1148) $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090))))) (-1433 (((-52) $) NIL (|has| (-1148) (-844)))) (-1330 (((-3 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) "failed") (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL)) (-1799 (($ $ (-52)) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (($ $ (-293 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (($ $ (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (($ $ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (($ $ (-638 (-52)) (-638 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-638 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090))))) (-2658 (((-638 (-52)) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 (((-52) $ (-1148)) 14) (((-52) $ (-1148) (-52)) NIL) (((-52) $ (-1166)) 15)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090)))) (((-765) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090)))) (((-765) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-52) (-608 (-856))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 (-52))) (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-627) (-13 (-1181 (-1148) (-52)) (-10 -8 (-15 -1571 ($ (-387))) (-15 -1607 ($ $)) (-15 -2277 ((-52) $ (-1166))) (-15 -4167 ((-52) $ (-1166) (-52)))))) (T -627))
+((-1571 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627)))) (-1607 (*1 *1 *1) (-5 *1 (-627))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-52)) (-5 *1 (-627)))) (-4167 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1166)) (-5 *1 (-627)))))
+(-13 (-1181 (-1148) (-52)) (-10 -8 (-15 -1571 ($ (-387))) (-15 -1607 ($ $)) (-15 -2277 ((-52) $ (-1166))) (-15 -4167 ((-52) $ (-1166) (-52)))))
+((-1833 (($ $ |#2|) 10)))
+(((-628 |#1| |#2|) (-10 -8 (-15 -1833 (|#1| |#1| |#2|))) (-629 |#2|) (-171)) (T -628))
+NIL
+(-10 -8 (-15 -1833 (|#1| |#1| |#2|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4031 (($ $ $) 29)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-629 |#1|) (-139) (-171)) (T -629))
+((-4031 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171)))) (-1833 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(-13 (-711 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4031 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -1833 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3027 (((-3 $ "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-2602 (((-1253 (-682 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1253 (-682 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1533 (((-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1965 (($) NIL T CONST)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2104 (((-3 $ "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2483 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2228 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3689 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3494 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3337 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3928 (($ $ (-914)) NIL)) (-3589 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2392 (((-1162 |#1|) $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-1381 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1659 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2380 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2257 (($ (-1253 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1253 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3466 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-1569 (((-914)) NIL (|has| |#2| (-366 |#1|)))) (-1922 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3203 (($ $ (-914)) NIL)) (-3104 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2008 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3138 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2445 (((-3 $ "failed")) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2919 (((-682 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3618 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1354 (((-682 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4063 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2502 (((-1162 (-945 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3394 (($ $ (-914)) NIL)) (-3847 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2377 (((-1162 |#1|) $) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-2696 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1539 (((-1162 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3139 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1764 (((-1148) $) NIL)) (-4367 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1446 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3696 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1714 (((-1110) $) NIL)) (-3701 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2277 ((|#1| $ (-561)) NIL (|has| |#2| (-416 |#1|)))) (-3969 (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-416 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-682 |#1|) (-1253 $) (-1253 $)) NIL (|has| |#2| (-366 |#1|))) (((-1253 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4174 (($ (-1253 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-2508 (((-638 (-945 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-638 (-945 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3800 (($ $ $) NIL)) (-3053 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4022 (((-856) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3711 (((-1253 $)) NIL (|has| |#2| (-416 |#1|)))) (-1758 (((-638 (-1253 |#1|))) NIL (-4007 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-553))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-553)))))) (-3392 (($ $ $ $) NIL)) (-2216 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1367 (($ (-682 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-1761 (($ $ $) NIL)) (-2500 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2887 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4326 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2211 (($) 15 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) 17)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-630 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4022 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -630))
+((-4022 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-630 *3 *2)) (-4 *2 (-738 *3)))))
+(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4022 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|)))
+((-2135 (((-3 (-837 |#2|) "failed") |#2| (-293 |#2|) (-1148)) 81) (((-3 (-837 |#2|) (-2 (|:| |leftHandLimit| (-3 (-837 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-837 |#2|) "failed"))) "failed") |#2| (-293 (-837 |#2|))) 103)) (-3924 (((-3 (-827 |#2|) "failed") |#2| (-293 (-827 |#2|))) 108)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -2135 ((-3 (-837 |#2|) (-2 (|:| |leftHandLimit| (-3 (-837 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-837 |#2|) "failed"))) "failed") |#2| (-293 (-837 |#2|)))) (-15 -3924 ((-3 (-827 |#2|) "failed") |#2| (-293 (-827 |#2|)))) (-15 -2135 ((-3 (-837 |#2|) "failed") |#2| (-293 |#2|) (-1148)))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -631))
+((-2135 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1148)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-837 *3)) (-5 *1 (-631 *6 *3)))) (-3924 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-293 (-827 *3))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-827 *3)) (-5 *1 (-631 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))) (-2135 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-837 *3))) (-4 *3 (-13 (-27) (-1190) (-429 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-3 (-837 *3) (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed")) (|:| |rightHandLimit| (-3 (-837 *3) "failed"))) "failed")) (-5 *1 (-631 *5 *3)))))
+(-10 -7 (-15 -2135 ((-3 (-837 |#2|) (-2 (|:| |leftHandLimit| (-3 (-837 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-837 |#2|) "failed"))) "failed") |#2| (-293 (-837 |#2|)))) (-15 -3924 ((-3 (-827 |#2|) "failed") |#2| (-293 (-827 |#2|)))) (-15 -2135 ((-3 (-837 |#2|) "failed") |#2| (-293 |#2|) (-1148))))
+((-2135 (((-3 (-837 (-406 (-945 |#1|))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))) (-1148)) 80) (((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|)))) 20) (((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-837 (-945 |#1|)))) 35)) (-3924 (((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|)))) 23) (((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-827 (-945 |#1|)))) 43)))
+(((-632 |#1|) (-10 -7 (-15 -2135 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-837 (-945 |#1|))))) (-15 -2135 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -3924 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-827 (-945 |#1|))))) (-15 -3924 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -2135 ((-3 (-837 (-406 (-945 |#1|))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))) (-1148)))) (-450)) (T -632))
+((-2135 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 (-406 (-945 *6)))) (-5 *5 (-1148)) (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-837 *3)) (-5 *1 (-632 *6)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-450)) (-5 *2 (-827 *3)) (-5 *1 (-632 *5)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-827 (-945 *5)))) (-4 *5 (-450)) (-5 *2 (-827 (-406 (-945 *5)))) (-5 *1 (-632 *5)) (-5 *3 (-406 (-945 *5))))) (-2135 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-450)) (-5 *2 (-3 (-837 *3) (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed")) (|:| |rightHandLimit| (-3 (-837 *3) "failed"))) "failed")) (-5 *1 (-632 *5)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-837 (-945 *5)))) (-4 *5 (-450)) (-5 *2 (-3 (-837 (-406 (-945 *5))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 *5))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 *5))) "failed"))) "failed")) (-5 *1 (-632 *5)) (-5 *3 (-406 (-945 *5))))))
+(-10 -7 (-15 -2135 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-837 (-945 |#1|))))) (-15 -2135 ((-3 (-837 (-406 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-837 (-406 (-945 |#1|))) "failed"))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -3924 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-827 (-945 |#1|))))) (-15 -3924 ((-827 (-406 (-945 |#1|))) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -2135 ((-3 (-837 (-406 (-945 |#1|))) "failed") (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))) (-1148))))
+((-3761 (((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|) 57 (-2159 (|has| |#1| (-362)))) (((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-2626 (((-112) (-1253 |#2|)) 30)) (-2605 (((-3 (-1253 |#1|) "failed") (-1253 |#2|)) 33)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -2626 ((-112) (-1253 |#2|))) (-15 -2605 ((-3 (-1253 |#1|) "failed") (-1253 |#2|))) (IF (|has| |#1| (-362)) (-15 -3761 ((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|)) (-15 -3761 ((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|)))) (-553) (-634 |#1|)) (T -633))
+((-3761 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-2159 (-4 *5 (-362))) (-4 *5 (-553)) (-5 *2 (-1253 (-406 *5))) (-5 *1 (-633 *5 *4)))) (-3761 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362)) (-4 *5 (-553)) (-5 *2 (-1253 *5)) (-5 *1 (-633 *5 *4)))) (-2605 (*1 *2 *3) (|partial| -12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553)) (-5 *2 (-1253 *4)) (-5 *1 (-633 *4 *5)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553)) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+(-10 -7 (-15 -2626 ((-112) (-1253 |#2|))) (-15 -2605 ((-3 (-1253 |#1|) "failed") (-1253 |#2|))) (IF (|has| |#1| (-362)) (-15 -3761 ((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|)) (-15 -3761 ((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3602 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 35)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-634 |#1|) (-139) (-1042)) (T -634))
+((-3602 (*1 *2 *3) (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042)) (-5 *2 (-682 *4)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *1)) (-5 *4 (-1253 *1)) (-4 *1 (-634 *5)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -3327 (-682 *5)) (|:| |vec| (-1253 *5)))))))
+(-13 (-1042) (-10 -8 (-15 -3602 ((-682 |t#1|) (-682 $))) (-15 -3602 ((-2 (|:| -3327 (-682 |t#1|)) (|:| |vec| (-1253 |t#1|))) (-682 $) (-1253 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-3778 ((|#2| (-638 |#1|) (-638 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-638 |#1|) (-638 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) |#2|) 17) ((|#2| (-638 |#1|) (-638 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|)) 12)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -3778 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|))) (-15 -3778 (|#2| (-638 |#1|) (-638 |#2|) |#1|)) (-15 -3778 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) |#2|)) (-15 -3778 (|#2| (-638 |#1|) (-638 |#2|) |#1| |#2|)) (-15 -3778 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) (-1 |#2| |#1|))) (-15 -3778 (|#2| (-638 |#1|) (-638 |#2|) |#1| (-1 |#2| |#1|)))) (-1090) (-1205)) (T -635))
+((-3778 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2)))) (-3778 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-638 *5)) (-5 *4 (-638 *6)) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *1 (-635 *5 *6)))) (-3778 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2)))) (-3778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 *5)) (-4 *6 (-1090)) (-4 *5 (-1205)) (-5 *2 (-1 *5 *6)) (-5 *1 (-635 *6 *5)))) (-3778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *6)) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *2 (-1 *6 *5)) (-5 *1 (-635 *5 *6)))))
+(-10 -7 (-15 -3778 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|))) (-15 -3778 (|#2| (-638 |#1|) (-638 |#2|) |#1|)) (-15 -3778 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) |#2|)) (-15 -3778 (|#2| (-638 |#1|) (-638 |#2|) |#1| |#2|)) (-15 -3778 ((-1 |#2| |#1|) (-638 |#1|) (-638 |#2|) (-1 |#2| |#1|))) (-15 -3778 (|#2| (-638 |#1|) (-638 |#2|) |#1| (-1 |#2| |#1|))))
+((-3130 (((-638 |#2|) (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|) 16)) (-3185 ((|#2| (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|) 18)) (-4120 (((-638 |#2|) (-1 |#2| |#1|) (-638 |#1|)) 13)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -3130 ((-638 |#2|) (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -4120 ((-638 |#2|) (-1 |#2| |#1|) (-638 |#1|)))) (-1205) (-1205)) (T -636))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-638 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-638 *6)) (-5 *1 (-636 *5 *6)))) (-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-638 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-636 *5 *2)))) (-3130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-638 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-638 *5)) (-5 *1 (-636 *6 *5)))))
+(-10 -7 (-15 -3130 ((-638 |#2|) (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-638 |#1|) |#2|)) (-15 -4120 ((-638 |#2|) (-1 |#2| |#1|) (-638 |#1|))))
+((-4120 (((-638 |#3|) (-1 |#3| |#1| |#2|) (-638 |#1|) (-638 |#2|)) 13)))
+(((-637 |#1| |#2| |#3|) (-10 -7 (-15 -4120 ((-638 |#3|) (-1 |#3| |#1| |#2|) (-638 |#1|) (-638 |#2|)))) (-1205) (-1205) (-1205)) (T -637))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-638 *6)) (-5 *5 (-638 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-638 *8)) (-5 *1 (-637 *6 *7 *8)))))
+(-10 -7 (-15 -4120 ((-638 |#3|) (-1 |#3| |#1| |#2|) (-638 |#1|) (-638 |#2|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) NIL)) (-2295 ((|#1| $) NIL)) (-3129 (($ $) NIL)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3702 (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-1289 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4391)))) (-1726 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4391))) (($ $ "rest" $) NIL (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-1355 (($ $ $) 31 (|has| |#1| (-1090)))) (-1343 (($ $ $) 33 (|has| |#1| (-1090)))) (-3741 (($ $ $) 36 (|has| |#1| (-1090)))) (-3388 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-2285 ((|#1| $) NIL)) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1445 (($ $) NIL) (($ $ (-765)) NIL)) (-3776 (($ $) NIL (|has| |#1| (-1090)))) (-1472 (($ $) 30 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-3032 (((-112) $) NIL)) (-4235 (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090))) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) NIL)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-2147 (((-112) $) 9)) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1378 (($) 7)) (-1470 (($ (-765) |#1|) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-3092 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1407 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3708 (($ |#1|) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1520 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-3671 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-3312 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-2667 (((-112) $) NIL)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1220 (-561))) NIL) ((|#1| $ (-561)) 35) ((|#1| $ (-561) |#1|) NIL)) (-2004 (((-561) $ $) NIL)) (-2114 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-2849 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-3849 (((-112) $) NIL)) (-3222 (($ $) NIL)) (-4364 (($ $) NIL (|has| $ (-6 -4391)))) (-1624 (((-765) $) NIL)) (-2883 (($ $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) 44 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-3927 (($ |#1| $) 10)) (-4173 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2725 (($ $ $) 29) (($ |#1| $) NIL) (($ (-638 $)) NIL) (($ $ |#1|) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1608 (($ $ $) 11)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3677 (((-1148) $) 25 (|has| |#1| (-822))) (((-1148) $ (-112)) 26 (|has| |#1| (-822))) (((-1258) (-816) $) 27 (|has| |#1| (-822))) (((-1258) (-816) $ (-112)) 28 (|has| |#1| (-822)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-638 |#1|) (-13 (-659 |#1|) (-10 -8 (-15 -1378 ($)) (-15 -2147 ((-112) $)) (-15 -3927 ($ |#1| $)) (-15 -1608 ($ $ $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -1355 ($ $ $)) (-15 -1343 ($ $ $)) (-15 -3741 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|))) (-1205)) (T -638))
+((-1378 (*1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-638 *3)) (-4 *3 (-1205)))) (-3927 (*1 *1 *2 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))) (-1608 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))) (-1355 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))) (-1343 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))) (-3741 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
+(-13 (-659 |#1|) (-10 -8 (-15 -1378 ($)) (-15 -2147 ((-112) $)) (-15 -3927 ($ |#1| $)) (-15 -1608 ($ $ $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -1355 ($ $ $)) (-15 -1343 ($ $ $)) (-15 -3741 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-822)) (-6 (-822)) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 11) (($ (-1171)) NIL) (((-1171) $) NIL) ((|#1| $) 8)) (-1733 (((-112) $ $) NIL)))
+(((-639 |#1|) (-13 (-1073) (-608 |#1|)) (-1090)) (T -639))
+NIL
+(-13 (-1073) (-608 |#1|))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1459 (($ |#1| |#1| $) 43)) (-1630 (((-112) $ (-765)) NIL)) (-3388 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-3776 (($ $) 45)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) 51 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 9 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 37)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3211 ((|#1| $) 46)) (-3671 (($ |#1| $) 26) (($ |#1| $ (-765)) 42)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3522 ((|#1| $) 48)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 21)) (-3170 (($) 25)) (-2560 (((-112) $) 49)) (-4057 (((-638 (-2 (|:| -2654 |#1|) (|:| -1724 (-765)))) $) 58)) (-3579 (($) 23) (($ (-638 |#1|)) 18)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) 55 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 19)) (-4174 (((-534) $) 34 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-4022 (((-856) $) 14 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 22)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 60 (|has| |#1| (-1090)))) (-3498 (((-765) $) 16 (|has| $ (-6 -4390)))))
+(((-640 |#1|) (-13 (-688 |#1|) (-10 -8 (-6 -4390) (-15 -2560 ((-112) $)) (-15 -1459 ($ |#1| |#1| $)))) (-1090)) (T -640))
+((-2560 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1090)))) (-1459 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1090)))))
+(-13 (-688 |#1|) (-10 -8 (-6 -4390) (-15 -2560 ((-112) $)) (-15 -1459 ($ |#1| |#1| $))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23)))
+(((-641 |#1|) (-139) (-1049)) (T -641))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1049)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2507 (((-762) $) 15)) (-2899 (($ $ |#1|) 56)) (-2240 (($ $) 32)) (-1911 (($ $) 31)) (-3302 (((-3 |#1| "failed") $) 48)) (-3226 ((|#1| $) NIL)) (-2252 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-3364 (((-853) $ (-1 (-853) (-853) (-853)) (-1 (-853) (-853) (-853)) (-558)) 46)) (-3572 ((|#1| $ (-558)) 30)) (-1946 ((|#2| $ (-558)) 29)) (-3838 (($ (-1 |#1| |#1|) $) 34)) (-3724 (($ (-1 |#2| |#2|) $) 38)) (-3681 (($) 10)) (-3562 (($ |#1| |#2|) 22)) (-1779 (($ (-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|)))) 23)) (-2571 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 13)) (-1481 (($ |#1| $) 57)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2812 (((-112) $ $) 60)) (-3940 (((-853) $) 19) (($ |#1|) 16)) (-1708 (((-112) $ $) 25)))
-(((-639 |#1| |#2| |#3|) (-13 (-1087) (-1028 |#1|) (-10 -8 (-15 -3364 ((-853) $ (-1 (-853) (-853) (-853)) (-1 (-853) (-853) (-853)) (-558))) (-15 -2571 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $)) (-15 -3562 ($ |#1| |#2|)) (-15 -1779 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))))) (-15 -1946 (|#2| $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -1911 ($ $)) (-15 -2240 ($ $)) (-15 -2507 ((-762) $)) (-15 -3681 ($)) (-15 -2899 ($ $ |#1|)) (-15 -1481 ($ |#1| $)) (-15 -2252 ($ |#1| |#2| $)) (-15 -2252 ($ $ $)) (-15 -2812 ((-112) $ $)) (-15 -3724 ($ (-1 |#2| |#2|) $)) (-15 -3838 ($ (-1 |#1| |#1|) $)))) (-1087) (-23) |#2|) (T -639))
-((-3364 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-853) (-853) (-853))) (-5 *4 (-558)) (-5 *2 (-853)) (-5 *1 (-639 *5 *6 *7)) (-4 *5 (-1087)) (-4 *6 (-23)) (-14 *7 *6))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))) (-3562 (*1 *1 *2 *3) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-639 *3 *4 *5)))) (-1946 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-639 *4 *2 *5)) (-4 *4 (-1087)) (-14 *5 *2))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-1087)) (-5 *1 (-639 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1911 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-2240 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))) (-3681 (*1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-2899 (*1 *1 *1 *2) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-1481 (*1 *1 *2 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-2252 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-2252 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23)) (-14 *4 *3))) (-2812 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-639 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1087) (-1028 |#1|) (-10 -8 (-15 -3364 ((-853) $ (-1 (-853) (-853) (-853)) (-1 (-853) (-853) (-853)) (-558))) (-15 -2571 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $)) (-15 -3562 ($ |#1| |#2|)) (-15 -1779 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))))) (-15 -1946 (|#2| $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -1911 ($ $)) (-15 -2240 ($ $)) (-15 -2507 ((-762) $)) (-15 -3681 ($)) (-15 -2899 ($ $ |#1|)) (-15 -1481 ($ |#1| $)) (-15 -2252 ($ |#1| |#2| $)) (-15 -2252 ($ $ $)) (-15 -2812 ((-112) $ $)) (-15 -3724 ($ (-1 |#2| |#2|) $)) (-15 -3838 ($ (-1 |#1| |#1|) $))))
-((-3186 (((-558) $) 23)) (-1363 (($ |#2| $ (-558)) 21) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) 12)) (-2740 (((-112) (-558) $) 14)) (-2683 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-635 $)) NIL)))
-(((-640 |#1| |#2|) (-10 -8 (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -3186 ((-558) |#1|)) (-15 -3051 ((-635 (-558)) |#1|)) (-15 -2740 ((-112) (-558) |#1|))) (-641 |#2|) (-1200)) (T -640))
-NIL
-(-10 -8 (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2683 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -3186 ((-558) |#1|)) (-15 -3051 ((-635 (-558)) |#1|)) (-15 -2740 ((-112) (-558) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-3188 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 51)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 42 (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2830 (($ $ |#1|) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 70)) (-2683 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-641 |#1|) (-139) (-1200)) (T -641))
-((-1395 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-2683 (*1 *1 *1 *2) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-2683 (*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-2683 (*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-3397 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-3976 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-3976 (*1 *1 *1 *2) (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-1363 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-641 *2)) (-4 *2 (-1200)))) (-1363 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))) (-4077 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1213 (-558))) (|has| *1 (-6 -4384)) (-4 *1 (-641 *2)) (-4 *2 (-1200)))))
-(-13 (-596 (-558) |t#1|) (-150 |t#1|) (-10 -8 (-15 -1395 ($ (-762) |t#1|)) (-15 -2683 ($ $ |t#1|)) (-15 -2683 ($ |t#1| $)) (-15 -2683 ($ $ $)) (-15 -2683 ($ (-635 $))) (-15 -3397 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2276 ($ $ (-1213 (-558)))) (-15 -3976 ($ $ (-558))) (-15 -3976 ($ $ (-1213 (-558)))) (-15 -1363 ($ |t#1| $ (-558))) (-15 -1363 ($ $ $ (-558))) (IF (|has| $ (-6 -4384)) (-15 -4077 (|t#1| $ (-1213 (-558)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-2692 (((-3 |#2| "failed") |#3| |#2| (-1163) |#2| (-635 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) "failed") |#3| |#2| (-1163)) 44)))
-(((-642 |#1| |#2| |#3|) (-10 -7 (-15 -2692 ((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) "failed") |#3| |#2| (-1163))) (-15 -2692 ((-3 |#2| "failed") |#3| |#2| (-1163) |#2| (-635 |#2|)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949)) (-646 |#2|)) (T -642))
-((-2692 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-642 *6 *2 *3)) (-4 *3 (-646 *2)))) (-2692 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1163)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-4 *4 (-13 (-29 *6) (-1185) (-949))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2743 (-635 *4)))) (-5 *1 (-642 *6 *4 *3)) (-4 *3 (-646 *4)))))
-(-10 -7 (-15 -2692 ((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) "failed") |#3| |#2| (-1163))) (-15 -2692 ((-3 |#2| "failed") |#3| |#2| (-1163) |#2| (-635 |#2|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4179 (($ $) NIL (|has| |#1| (-362)))) (-1439 (($ $ $) NIL (|has| |#1| (-362)))) (-1887 (($ $ (-762)) NIL (|has| |#1| (-362)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2163 (($ $ $) NIL (|has| |#1| (-362)))) (-3112 (($ $ $) NIL (|has| |#1| (-362)))) (-3911 (($ $ $) NIL (|has| |#1| (-362)))) (-2678 (($ $ $) NIL (|has| |#1| (-362)))) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-1941 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2754 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450)))) (-3999 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) NIL)) (-4032 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-1303 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-3672 (((-762) $) NIL)) (-1700 (($ $ $) NIL (|has| |#1| (-362)))) (-1539 (($ $ $) NIL (|has| |#1| (-362)))) (-3014 (($ $ $) NIL (|has| |#1| (-362)))) (-2697 (($ $ $) NIL (|has| |#1| (-362)))) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2548 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3868 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2276 ((|#1| $ |#1|) NIL)) (-4100 (($ $ $) NIL (|has| |#1| (-362)))) (-4263 (((-762) $) NIL)) (-3012 ((|#1| $) NIL (|has| |#1| (-450)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) NIL)) (-2417 (((-762)) NIL)) (-2484 ((|#1| $ |#1| |#1|) NIL)) (-3830 (($ $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($) NIL)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-643 |#1|) (-646 |#1|) (-232)) (T -643))
-NIL
-(-646 |#1|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4179 (($ $) NIL (|has| |#1| (-362)))) (-1439 (($ $ $) NIL (|has| |#1| (-362)))) (-1887 (($ $ (-762)) NIL (|has| |#1| (-362)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2163 (($ $ $) NIL (|has| |#1| (-362)))) (-3112 (($ $ $) NIL (|has| |#1| (-362)))) (-3911 (($ $ $) NIL (|has| |#1| (-362)))) (-2678 (($ $ $) NIL (|has| |#1| (-362)))) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-1941 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2754 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450)))) (-3999 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) NIL)) (-4032 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-1303 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-3672 (((-762) $) NIL)) (-1700 (($ $ $) NIL (|has| |#1| (-362)))) (-1539 (($ $ $) NIL (|has| |#1| (-362)))) (-3014 (($ $ $) NIL (|has| |#1| (-362)))) (-2697 (($ $ $) NIL (|has| |#1| (-362)))) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2548 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3868 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2276 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4100 (($ $ $) NIL (|has| |#1| (-362)))) (-4263 (((-762) $) NIL)) (-3012 ((|#1| $) NIL (|has| |#1| (-450)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) NIL)) (-2417 (((-762)) NIL)) (-2484 ((|#1| $ |#1| |#1|) NIL)) (-3830 (($ $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($) NIL)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-644 |#1| |#2|) (-13 (-646 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-638 |#1|) (-10 -8 (-15 -3780 ($ $))))) (T -644))
-NIL
-(-13 (-646 |#1|) (-285 |#2| |#2|))
-((-4179 (($ $) 26)) (-3830 (($ $) 24)) (-3042 (($) 12)))
-(((-645 |#1| |#2|) (-10 -8 (-15 -4179 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3042 (|#1|))) (-646 |#2|) (-1039)) (T -645))
-NIL
-(-10 -8 (-15 -4179 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3042 (|#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4179 (($ $) 81 (|has| |#1| (-362)))) (-1439 (($ $ $) 83 (|has| |#1| (-362)))) (-1887 (($ $ (-762)) 82 (|has| |#1| (-362)))) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2163 (($ $ $) 44 (|has| |#1| (-362)))) (-3112 (($ $ $) 45 (|has| |#1| (-362)))) (-3911 (($ $ $) 47 (|has| |#1| (-362)))) (-2678 (($ $ $) 42 (|has| |#1| (-362)))) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 41 (|has| |#1| (-362)))) (-1941 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2754 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 46 (|has| |#1| (-362)))) (-3302 (((-3 (-558) "failed") $) 74 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 71 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 68)) (-3226 (((-558) $) 73 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 70 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 69)) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3199 (($ $) 54 (|has| |#1| (-450)))) (-3999 (((-112) $) 31)) (-4056 (($ |#1| (-762)) 61)) (-4032 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 56 (|has| |#1| (-550)))) (-1303 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 57 (|has| |#1| (-550)))) (-3672 (((-762) $) 65)) (-1700 (($ $ $) 51 (|has| |#1| (-362)))) (-1539 (($ $ $) 52 (|has| |#1| (-362)))) (-3014 (($ $ $) 40 (|has| |#1| (-362)))) (-2697 (($ $ $) 49 (|has| |#1| (-362)))) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 48 (|has| |#1| (-362)))) (-2548 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-3868 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 53 (|has| |#1| (-362)))) (-3881 ((|#1| $) 64)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-550)))) (-2276 ((|#1| $ |#1|) 86)) (-4100 (($ $ $) 80 (|has| |#1| (-362)))) (-4263 (((-762) $) 66)) (-3012 ((|#1| $) 55 (|has| |#1| (-450)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 72 (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 67)) (-3712 (((-635 |#1|) $) 60)) (-3143 ((|#1| $ (-762)) 62)) (-2417 (((-762)) 28)) (-2484 ((|#1| $ |#1| |#1|) 59)) (-3830 (($ $) 84)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($) 85)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
-(((-646 |#1|) (-139) (-1039)) (T -646))
-((-3042 (*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)))) (-1439 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-1887 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-646 *3)) (-4 *3 (-1039)) (-4 *3 (-362)))) (-4179 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-4100 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(-13 (-843 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -3042 ($)) (-15 -3830 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -1439 ($ $ $)) (-15 -1887 ($ $ (-762))) (-15 -4179 ($ $)) (-15 -4100 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-285 |#1| |#1|) . T) ((-410 |#1|) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-843 |#1|) . T))
-((-2607 (((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-3939 (((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 17)))
-(((-647 |#1| |#2|) (-10 -7 (-15 -3939 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3939 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)))) (-15 -2607 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -647))
-((-2607 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5))))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-643 (-406 *6)))) (-5 *1 (-647 *5 *6)) (-5 *3 (-643 (-406 *6))))))
-(-10 -7 (-15 -3939 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3939 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|)))) (-15 -2607 ((-635 (-643 (-406 |#2|))) (-643 (-406 |#2|))))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4179 (($ $) NIL (|has| |#1| (-362)))) (-1439 (($ $ $) 28 (|has| |#1| (-362)))) (-1887 (($ $ (-762)) 31 (|has| |#1| (-362)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2163 (($ $ $) NIL (|has| |#1| (-362)))) (-3112 (($ $ $) NIL (|has| |#1| (-362)))) (-3911 (($ $ $) NIL (|has| |#1| (-362)))) (-2678 (($ $ $) NIL (|has| |#1| (-362)))) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-1941 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2754 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450)))) (-3999 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) NIL)) (-4032 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-1303 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-3672 (((-762) $) NIL)) (-1700 (($ $ $) NIL (|has| |#1| (-362)))) (-1539 (($ $ $) NIL (|has| |#1| (-362)))) (-3014 (($ $ $) NIL (|has| |#1| (-362)))) (-2697 (($ $ $) NIL (|has| |#1| (-362)))) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2548 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3868 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2276 ((|#1| $ |#1|) 24)) (-4100 (($ $ $) 33 (|has| |#1| (-362)))) (-4263 (((-762) $) NIL)) (-3012 ((|#1| $) NIL (|has| |#1| (-450)))) (-3940 (((-853) $) 20) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) NIL)) (-2417 (((-762)) NIL)) (-2484 ((|#1| $ |#1| |#1|) 23)) (-3830 (($ $) NIL)) (-2207 (($) 21 T CONST)) (-2220 (($) 8 T CONST)) (-3042 (($) NIL)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-648 |#1| |#2|) (-646 |#1|) (-1039) (-1 |#1| |#1|)) (T -648))
-NIL
-(-646 |#1|)
-((-1439 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1887 ((|#2| |#2| (-762) (-1 |#1| |#1|)) 40)) (-4100 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-649 |#1| |#2|) (-10 -7 (-15 -1439 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1887 (|#2| |#2| (-762) (-1 |#1| |#1|))) (-15 -4100 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-646 |#1|)) (T -649))
-((-4100 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4)))) (-1887 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-649 *5 *2)) (-4 *2 (-646 *5)))) (-1439 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4)))))
-(-10 -7 (-15 -1439 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1887 (|#2| |#2| (-762) (-1 |#1| |#1|))) (-15 -4100 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3245 (($ $ $) 9)))
-(((-650 |#1|) (-10 -8 (-15 -3245 (|#1| |#1| |#1|))) (-651)) (T -650))
-NIL
-(-10 -8 (-15 -3245 (|#1| |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3209 (($ $) 10)) (-3245 (($ $ $) 8)) (-1708 (((-112) $ $) 6)) (-3234 (($ $ $) 9)))
-(((-651) (-139)) (T -651))
-((-3209 (*1 *1 *1) (-4 *1 (-651))) (-3234 (*1 *1 *1 *1) (-4 *1 (-651))) (-3245 (*1 *1 *1 *1) (-4 *1 (-651))))
-(-13 (-102) (-10 -8 (-15 -3209 ($ $)) (-15 -3234 ($ $ $)) (-15 -3245 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765) $) 15)) (-1356 (($ $ |#1|) 56)) (-4075 (($ $) 32)) (-2638 (($ $) 31)) (-4017 (((-3 |#1| "failed") $) 48)) (-3938 ((|#1| $) NIL)) (-2948 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-1572 (((-856) $ (-1 (-856) (-856) (-856)) (-1 (-856) (-856) (-856)) (-561)) 46)) (-2740 ((|#1| $ (-561)) 30)) (-2803 ((|#2| $ (-561)) 29)) (-2272 (($ (-1 |#1| |#1|) $) 34)) (-3637 (($ (-1 |#2| |#2|) $) 38)) (-1426 (($) 10)) (-2463 (($ |#1| |#2|) 22)) (-2699 (($ (-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|)))) 23)) (-1743 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|))) $) 13)) (-2693 (($ |#1| $) 57)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2538 (((-112) $ $) 60)) (-4022 (((-856) $) 19) (($ |#1|) 16)) (-1733 (((-112) $ $) 25)))
+(((-642 |#1| |#2| |#3|) (-13 (-1090) (-1031 |#1|) (-10 -8 (-15 -1572 ((-856) $ (-1 (-856) (-856) (-856)) (-1 (-856) (-856) (-856)) (-561))) (-15 -1743 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|))) $)) (-15 -2463 ($ |#1| |#2|)) (-15 -2699 ($ (-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|))))) (-15 -2803 (|#2| $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -2638 ($ $)) (-15 -4075 ($ $)) (-15 -1393 ((-765) $)) (-15 -1426 ($)) (-15 -1356 ($ $ |#1|)) (-15 -2693 ($ |#1| $)) (-15 -2948 ($ |#1| |#2| $)) (-15 -2948 ($ $ $)) (-15 -2538 ((-112) $ $)) (-15 -3637 ($ (-1 |#2| |#2|) $)) (-15 -2272 ($ (-1 |#1| |#1|) $)))) (-1090) (-23) |#2|) (T -642))
+((-1572 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-856) (-856) (-856))) (-5 *4 (-561)) (-5 *2 (-856)) (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1090)) (-4 *6 (-23)) (-14 *7 *6))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 *4)))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-2463 (*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 *4)))) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5)) (-4 *4 (-1090)) (-14 *5 *2))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *2 (-1090)) (-5 *1 (-642 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2638 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-4075 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-1426 (*1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-1356 (*1 *1 *1 *2) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2693 (*1 *1 *2 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2948 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2948 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2538 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-3637 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-642 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1090) (-1031 |#1|) (-10 -8 (-15 -1572 ((-856) $ (-1 (-856) (-856) (-856)) (-1 (-856) (-856) (-856)) (-561))) (-15 -1743 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|))) $)) (-15 -2463 ($ |#1| |#2|)) (-15 -2699 ($ (-638 (-2 (|:| |gen| |#1|) (|:| -3440 |#2|))))) (-15 -2803 (|#2| $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -2638 ($ $)) (-15 -4075 ($ $)) (-15 -1393 ((-765) $)) (-15 -1426 ($)) (-15 -1356 ($ $ |#1|)) (-15 -2693 ($ |#1| $)) (-15 -2948 ($ |#1| |#2| $)) (-15 -2948 ($ $ $)) (-15 -2538 ((-112) $ $)) (-15 -3637 ($ (-1 |#2| |#2|) $)) (-15 -2272 ($ (-1 |#1| |#1|) $))))
+((-2780 (((-561) $) 23)) (-3312 (($ |#2| $ (-561)) 21) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) 12)) (-1390 (((-112) (-561) $) 14)) (-2725 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-638 $)) NIL)))
+(((-643 |#1| |#2|) (-10 -8 (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2725 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -2780 ((-561) |#1|)) (-15 -2451 ((-638 (-561)) |#1|)) (-15 -1390 ((-112) (-561) |#1|))) (-644 |#2|) (-1205)) (T -643))
+NIL
+(-10 -8 (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2725 (|#1| |#1| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -2780 ((-561) |#1|)) (-15 -2451 ((-638 (-561)) |#1|)) (-15 -1390 ((-112) (-561) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 58 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-1472 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 51)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 42 (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1799 (($ $ |#1|) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1220 (-561))) 63)) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 70)) (-2725 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-644 |#1|) (-139) (-1205)) (T -644))
+((-1470 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2725 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-2725 (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-2725 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-4120 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-3312 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-644 *2)) (-4 *2 (-1205)))) (-3312 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))) (-4167 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1220 (-561))) (|has| *1 (-6 -4391)) (-4 *1 (-644 *2)) (-4 *2 (-1205)))))
+(-13 (-599 (-561) |t#1|) (-150 |t#1|) (-10 -8 (-15 -1470 ($ (-765) |t#1|)) (-15 -2725 ($ $ |t#1|)) (-15 -2725 ($ |t#1| $)) (-15 -2725 ($ $ $)) (-15 -2725 ($ (-638 $))) (-15 -4120 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2277 ($ $ (-1220 (-561)))) (-15 -2849 ($ $ (-561))) (-15 -2849 ($ $ (-1220 (-561)))) (-15 -3312 ($ |t#1| $ (-561))) (-15 -3312 ($ $ $ (-561))) (IF (|has| $ (-6 -4391)) (-15 -4167 (|t#1| $ (-1220 (-561)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-3867 (((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-638 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) "failed") |#3| |#2| (-1166)) 44)))
+(((-645 |#1| |#2| |#3|) (-10 -7 (-15 -3867 ((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -3867 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-638 |#2|)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952)) (-649 |#2|)) (T -645))
+((-3867 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-645 *6 *2 *3)) (-4 *3 (-649 *2)))) (-3867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-952))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3711 (-638 *4)))) (-5 *1 (-645 *6 *4 *3)) (-4 *3 (-649 *4)))))
+(-10 -7 (-15 -3867 ((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -3867 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-638 |#2|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2660 (($ $) NIL (|has| |#1| (-362)))) (-1385 (($ $ $) NIL (|has| |#1| (-362)))) (-3817 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3751 (($ $ $) NIL (|has| |#1| (-362)))) (-3836 (($ $ $) NIL (|has| |#1| (-362)))) (-4197 (($ $ $) NIL (|has| |#1| (-362)))) (-2833 (($ $ $) NIL (|has| |#1| (-362)))) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-3306 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450)))) (-3113 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) NIL)) (-1438 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-1500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-2393 (((-765) $) NIL)) (-1550 (($ $ $) NIL (|has| |#1| (-362)))) (-1413 (($ $ $) NIL (|has| |#1| (-362)))) (-1706 (($ $ $) NIL (|has| |#1| (-362)))) (-2411 (($ $ $) NIL (|has| |#1| (-362)))) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1927 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2312 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2277 ((|#1| $ |#1|) NIL)) (-3768 (($ $ $) NIL (|has| |#1| (-362)))) (-2894 (((-765) $) NIL)) (-3609 ((|#1| $) NIL (|has| |#1| (-450)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) NIL)) (-4259 (((-765)) NIL)) (-1367 ((|#1| $ |#1| |#1|) NIL)) (-2438 (($ $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($) NIL)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-646 |#1|) (-649 |#1|) (-232)) (T -646))
+NIL
+(-649 |#1|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2660 (($ $) NIL (|has| |#1| (-362)))) (-1385 (($ $ $) NIL (|has| |#1| (-362)))) (-3817 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3751 (($ $ $) NIL (|has| |#1| (-362)))) (-3836 (($ $ $) NIL (|has| |#1| (-362)))) (-4197 (($ $ $) NIL (|has| |#1| (-362)))) (-2833 (($ $ $) NIL (|has| |#1| (-362)))) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-3306 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450)))) (-3113 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) NIL)) (-1438 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-1500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-2393 (((-765) $) NIL)) (-1550 (($ $ $) NIL (|has| |#1| (-362)))) (-1413 (($ $ $) NIL (|has| |#1| (-362)))) (-1706 (($ $ $) NIL (|has| |#1| (-362)))) (-2411 (($ $ $) NIL (|has| |#1| (-362)))) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1927 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2312 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2277 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3768 (($ $ $) NIL (|has| |#1| (-362)))) (-2894 (((-765) $) NIL)) (-3609 ((|#1| $) NIL (|has| |#1| (-450)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) NIL)) (-4259 (((-765)) NIL)) (-1367 ((|#1| $ |#1| |#1|) NIL)) (-2438 (($ $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($) NIL)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-647 |#1| |#2|) (-13 (-649 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-641 |#1|) (-10 -8 (-15 -3238 ($ $))))) (T -647))
+NIL
+(-13 (-649 |#1|) (-285 |#2| |#2|))
+((-2660 (($ $) 26)) (-2438 (($ $) 24)) (-3122 (($) 12)))
+(((-648 |#1| |#2|) (-10 -8 (-15 -2660 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -3122 (|#1|))) (-649 |#2|) (-1042)) (T -648))
+NIL
+(-10 -8 (-15 -2660 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -3122 (|#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2660 (($ $) 81 (|has| |#1| (-362)))) (-1385 (($ $ $) 83 (|has| |#1| (-362)))) (-3817 (($ $ (-765)) 82 (|has| |#1| (-362)))) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3751 (($ $ $) 44 (|has| |#1| (-362)))) (-3836 (($ $ $) 45 (|has| |#1| (-362)))) (-4197 (($ $ $) 47 (|has| |#1| (-362)))) (-2833 (($ $ $) 42 (|has| |#1| (-362)))) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 41 (|has| |#1| (-362)))) (-3306 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-3500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 46 (|has| |#1| (-362)))) (-4017 (((-3 (-561) "failed") $) 74 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 71 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 68)) (-3938 (((-561) $) 73 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 70 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 69)) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-2401 (($ $) 54 (|has| |#1| (-450)))) (-3113 (((-112) $) 31)) (-1387 (($ |#1| (-765)) 61)) (-1438 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 56 (|has| |#1| (-553)))) (-1500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 57 (|has| |#1| (-553)))) (-2393 (((-765) $) 65)) (-1550 (($ $ $) 51 (|has| |#1| (-362)))) (-1413 (($ $ $) 52 (|has| |#1| (-362)))) (-1706 (($ $ $) 40 (|has| |#1| (-362)))) (-2411 (($ $ $) 49 (|has| |#1| (-362)))) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 48 (|has| |#1| (-362)))) (-1927 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-2312 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 53 (|has| |#1| (-362)))) (-1590 ((|#1| $) 64)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-553)))) (-2277 ((|#1| $ |#1|) 86)) (-3768 (($ $ $) 80 (|has| |#1| (-362)))) (-2894 (((-765) $) 66)) (-3609 ((|#1| $) 55 (|has| |#1| (-450)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 72 (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 67)) (-2742 (((-638 |#1|) $) 60)) (-2634 ((|#1| $ (-765)) 62)) (-4259 (((-765)) 28)) (-1367 ((|#1| $ |#1| |#1|) 59)) (-2438 (($ $) 84)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($) 85)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(((-649 |#1|) (-139) (-1042)) (T -649))
+((-3122 (*1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)))) (-2438 (*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)))) (-1385 (*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-649 *3)) (-4 *3 (-1042)) (-4 *3 (-362)))) (-2660 (*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(-13 (-846 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -3122 ($)) (-15 -2438 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -1385 ($ $ $)) (-15 -3817 ($ $ (-765))) (-15 -2660 ($ $)) (-15 -3768 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-285 |#1| |#1|) . T) ((-410 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-846 |#1|) . T))
+((-2720 (((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-1657 (((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 17)))
+(((-650 |#1| |#2|) (-10 -7 (-15 -1657 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1657 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)))) (-15 -2720 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1229 |#1|)) (T -650))
+((-2720 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4)) (-5 *2 (-638 (-646 (-406 *5)))) (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5))))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4)) (-5 *2 (-638 (-646 (-406 *5)))) (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-5 *2 (-638 (-646 (-406 *6)))) (-5 *1 (-650 *5 *6)) (-5 *3 (-646 (-406 *6))))))
+(-10 -7 (-15 -1657 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1657 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|)))) (-15 -2720 ((-638 (-646 (-406 |#2|))) (-646 (-406 |#2|))))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2660 (($ $) NIL (|has| |#1| (-362)))) (-1385 (($ $ $) 28 (|has| |#1| (-362)))) (-3817 (($ $ (-765)) 31 (|has| |#1| (-362)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3751 (($ $ $) NIL (|has| |#1| (-362)))) (-3836 (($ $ $) NIL (|has| |#1| (-362)))) (-4197 (($ $ $) NIL (|has| |#1| (-362)))) (-2833 (($ $ $) NIL (|has| |#1| (-362)))) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-3306 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450)))) (-3113 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) NIL)) (-1438 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-1500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-2393 (((-765) $) NIL)) (-1550 (($ $ $) NIL (|has| |#1| (-362)))) (-1413 (($ $ $) NIL (|has| |#1| (-362)))) (-1706 (($ $ $) NIL (|has| |#1| (-362)))) (-2411 (($ $ $) NIL (|has| |#1| (-362)))) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1927 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2312 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2277 ((|#1| $ |#1|) 24)) (-3768 (($ $ $) 33 (|has| |#1| (-362)))) (-2894 (((-765) $) NIL)) (-3609 ((|#1| $) NIL (|has| |#1| (-450)))) (-4022 (((-856) $) 20) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) NIL)) (-4259 (((-765)) NIL)) (-1367 ((|#1| $ |#1| |#1|) 23)) (-2438 (($ $) NIL)) (-2211 (($) 21 T CONST)) (-2222 (($) 8 T CONST)) (-3122 (($) NIL)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-651 |#1| |#2|) (-649 |#1|) (-1042) (-1 |#1| |#1|)) (T -651))
+NIL
+(-649 |#1|)
+((-1385 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3817 ((|#2| |#2| (-765) (-1 |#1| |#1|)) 40)) (-3768 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-652 |#1| |#2|) (-10 -7 (-15 -1385 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3817 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -3768 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-649 |#1|)) (T -652))
+((-3768 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2)) (-4 *2 (-649 *4)))) (-3817 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-652 *5 *2)) (-4 *2 (-649 *5)))) (-1385 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2)) (-4 *2 (-649 *4)))))
+(-10 -7 (-15 -1385 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3817 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -3768 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2236 (($ $ $) 9)))
+(((-653 |#1|) (-10 -8 (-15 -2236 (|#1| |#1| |#1|))) (-654)) (T -653))
+NIL
+(-10 -8 (-15 -2236 (|#1| |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-3310 (($ $) 10)) (-2236 (($ $ $) 8)) (-1733 (((-112) $ $) 6)) (-2225 (($ $ $) 9)))
+(((-654) (-139)) (T -654))
+((-3310 (*1 *1 *1) (-4 *1 (-654))) (-2225 (*1 *1 *1 *1) (-4 *1 (-654))) (-2236 (*1 *1 *1 *1) (-4 *1 (-654))))
+(-13 (-102) (-10 -8 (-15 -3310 ($ $)) (-15 -2225 ($ $ $)) (-15 -2236 ($ $ $))))
(((-102) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 15)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3316 ((|#1| $) 21)) (-2142 (($ $ $) NIL (|has| |#1| (-782)))) (-2281 (($ $ $) NIL (|has| |#1| (-782)))) (-2510 (((-1145) $) 46)) (-1688 (((-1107) $) NIL)) (-3327 ((|#3| $) 22)) (-3940 (((-853) $) 42)) (-2207 (($) 10 T CONST)) (-1757 (((-112) $ $) NIL (|has| |#1| (-782)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-782)))) (-1708 (((-112) $ $) 20)) (-1749 (((-112) $ $) NIL (|has| |#1| (-782)))) (-1728 (((-112) $ $) 24 (|has| |#1| (-782)))) (-1805 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1796 (($ $) 17) (($ $ $) NIL)) (-1785 (($ $ $) 27)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-652 |#1| |#2| |#3|) (-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1805 ($ $ |#3|)) (-15 -1805 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3327 (|#3| $)))) (-708 |#2|) (-171) (|SubsetCategory| (-717) |#2|)) (T -652))
-((-1805 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4)) (-4 *2 (|SubsetCategory| (-717) *4)))) (-1805 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-652 *2 *4 *3)) (-4 *2 (-708 *4)) (-4 *3 (|SubsetCategory| (-717) *4)))) (-3316 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-708 *3)) (-5 *1 (-652 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-717) *3)))) (-3327 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4)))))
-(-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1805 ($ $ |#3|)) (-15 -1805 ($ |#1| |#3|)) (-15 -3316 (|#1| $)) (-15 -3327 (|#3| $))))
-((-4328 (((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|)) 33)))
-(((-653 |#1|) (-10 -7 (-15 -4328 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|)))) (-899)) (T -653))
-((-4328 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *4))) (-5 *3 (-1159 *4)) (-4 *4 (-899)) (-5 *1 (-653 *4)))))
-(-10 -7 (-15 -4328 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2096 (((-635 |#1|) $) 82)) (-2368 (($ $ (-762)) 90)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2978 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 48)) (-3302 (((-3 (-662 |#1|) "failed") $) NIL)) (-3226 (((-662 |#1|) $) NIL)) (-3905 (($ $) 89)) (-2987 (((-762) $) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-2345 (($ (-662 |#1|) |#2|) 68)) (-3883 (($ $) 86)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-3422 (((-1270 |#1| |#2|) (-1270 |#1| |#2|) $) 47)) (-2286 (((-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3867 (((-662 |#1|) $) NIL)) (-3881 ((|#2| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1369 (($ $ |#1| $) 30) (($ $ (-635 |#1|) (-635 $)) 32)) (-4263 (((-762) $) 88)) (-3952 (($ $ $) 20) (($ (-662 |#1|) (-662 |#1|)) 77) (($ (-662 |#1|) $) 75) (($ $ (-662 |#1|)) 76)) (-3940 (((-853) $) NIL) (($ |#1|) 74) (((-1261 |#1| |#2|) $) 58) (((-1270 |#1| |#2|) $) 41) (($ (-662 |#1|)) 25)) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-662 |#1|)) NIL)) (-3455 ((|#2| (-1270 |#1| |#2|) $) 43)) (-2207 (($) 23 T CONST)) (-3243 (((-635 (-2 (|:| |k| (-662 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4323 (((-3 $ "failed") (-1261 |#1| |#2|)) 60)) (-1919 (($ (-662 |#1|)) 14)) (-1708 (((-112) $ $) 44)) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $) 66) (($ $ $) NIL)) (-1785 (($ $ $) 29)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-662 |#1|)) NIL)))
-(((-654 |#1| |#2|) (-13 (-373 |#1| |#2|) (-381 |#2| (-662 |#1|)) (-10 -8 (-15 -4323 ((-3 $ "failed") (-1261 |#1| |#2|))) (-15 -3952 ($ (-662 |#1|) (-662 |#1|))) (-15 -3952 ($ (-662 |#1|) $)) (-15 -3952 ($ $ (-662 |#1|))))) (-841) (-171)) (T -654))
-((-4323 (*1 *1 *2) (|partial| -12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *1 (-654 *3 *4)))) (-3952 (*1 *1 *2 *2) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4)) (-4 *4 (-171)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4)) (-4 *4 (-171)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4)) (-4 *4 (-171)))))
-(-13 (-373 |#1| |#2|) (-381 |#2| (-662 |#1|)) (-10 -8 (-15 -4323 ((-3 $ "failed") (-1261 |#1| |#2|))) (-15 -3952 ($ (-662 |#1|) (-662 |#1|))) (-15 -3952 ($ (-662 |#1|) $)) (-15 -3952 ($ $ (-662 |#1|)))))
-((-2878 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-3041 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2256 (($ (-1 (-112) |#2|) $) 27)) (-2240 (($ $) 55)) (-1958 (($ $) 63)) (-2375 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-3866 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-4145 (((-558) |#2| $ (-558)) 60) (((-558) |#2| $) NIL) (((-558) (-1 (-112) |#2|) $) 46)) (-1395 (($ (-762) |#2|) 53)) (-4150 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-3391 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3397 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-2411 (($ |#2|) 15)) (-2650 (($ $ $ (-558)) 35) (($ |#2| $ (-558)) 33)) (-2820 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-3738 (($ $ (-1213 (-558))) 43) (($ $ (-558)) 37)) (-2834 (($ $ $ (-558)) 59)) (-4098 (($ $) 57)) (-1728 (((-112) $ $) 65)))
-(((-655 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| |#2|)) (-15 -3738 (|#1| |#1| (-558))) (-15 -3738 (|#1| |#1| (-1213 (-558)))) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2650 (|#1| |#2| |#1| (-558))) (-15 -2650 (|#1| |#1| |#1| (-558))) (-15 -4150 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2878 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4145 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -4145 ((-558) |#2| |#1|)) (-15 -4145 ((-558) |#2| |#1| (-558))) (-15 -3391 (|#1| |#1| |#1|)) (-15 -2878 ((-112) |#1|)) (-15 -2834 (|#1| |#1| |#1| (-558))) (-15 -2240 (|#1| |#1|)) (-15 -3041 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2820 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1395 (|#1| (-762) |#2|)) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4098 (|#1| |#1|))) (-656 |#2|) (-1200)) (T -655))
-NIL
-(-10 -8 (-15 -2411 (|#1| |#2|)) (-15 -3738 (|#1| |#1| (-558))) (-15 -3738 (|#1| |#1| (-1213 (-558)))) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2650 (|#1| |#2| |#1| (-558))) (-15 -2650 (|#1| |#1| |#1| (-558))) (-15 -4150 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -3391 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2878 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4145 ((-558) (-1 (-112) |#2|) |#1|)) (-15 -4145 ((-558) |#2| |#1|)) (-15 -4145 ((-558) |#2| |#1| (-558))) (-15 -3391 (|#1| |#1| |#1|)) (-15 -2878 ((-112) |#1|)) (-15 -2834 (|#1| |#1| |#1| (-558))) (-15 -2240 (|#1| |#1|)) (-15 -3041 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3866 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2820 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1395 (|#1| (-762) |#2|)) (-15 -3397 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4098 (|#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-1611 ((|#1| $) 65)) (-2427 (($ $) 67)) (-3552 (((-1251) $ (-558) (-558)) 97 (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) 52 (|has| $ (-6 -4384)))) (-2878 (((-112) $) 142 (|has| |#1| (-841))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3041 (($ $) 146 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4384)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4384)))) (-3648 (($ $) 141 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-1649 (($ $ $) 56 (|has| $ (-6 -4384)))) (-2851 ((|#1| $ |#1|) 54 (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) 58 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4384))) (($ $ "rest" $) 55 (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 117 (|has| $ (-6 -4384))) ((|#1| $ (-558) |#1|) 86 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-2256 (($ (-1 (-112) |#1|) $) 129)) (-2072 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4383)))) (-1601 ((|#1| $) 66)) (-3457 (($) 7 T CONST)) (-2240 (($ $) 144 (|has| $ (-6 -4384)))) (-1911 (($ $) 134)) (-3168 (($ $) 73) (($ $ (-762)) 71)) (-1958 (($ $) 131 (|has| |#1| (-1087)))) (-3188 (($ $) 99 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ |#1| $) 130 (|has| |#1| (-1087))) (($ (-1 (-112) |#1|) $) 125)) (-1488 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4383))) (($ |#1| $) 100 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3683 ((|#1| $ (-558) |#1|) 85 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 87)) (-4151 (((-112) $) 83)) (-4145 (((-558) |#1| $ (-558)) 139 (|has| |#1| (-1087))) (((-558) |#1| $) 138 (|has| |#1| (-1087))) (((-558) (-1 (-112) |#1|) $) 137)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-1395 (($ (-762) |#1|) 108)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 95 (|has| (-558) (-841)))) (-2142 (($ $ $) 147 (|has| |#1| (-841)))) (-4150 (($ $ $) 132 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3391 (($ $ $) 140 (|has| |#1| (-841))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 94 (|has| (-558) (-841)))) (-2281 (($ $ $) 148 (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2411 (($ |#1|) 122)) (-3212 (((-112) $ (-762)) 10)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1514 ((|#1| $) 70) (($ $ (-762)) 68)) (-2650 (($ $ $ (-558)) 127) (($ |#1| $ (-558)) 126)) (-1363 (($ $ $ (-558)) 116) (($ |#1| $ (-558)) 115)) (-3051 (((-635 (-558)) $) 92)) (-2740 (((-112) (-558) $) 91)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 76) (($ $ (-762)) 74)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2830 (($ $ |#1|) 96 (|has| $ (-6 -4384)))) (-1890 (((-112) $) 84)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 90)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1213 (-558))) 112) ((|#1| $ (-558)) 89) ((|#1| $ (-558) |#1|) 88)) (-1904 (((-558) $ $) 44)) (-3738 (($ $ (-1213 (-558))) 124) (($ $ (-558)) 123)) (-3976 (($ $ (-1213 (-558))) 114) (($ $ (-558)) 113)) (-1609 (((-112) $) 46)) (-3070 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4384)))) (-2398 (((-762) $) 63)) (-4009 (($ $) 64)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2834 (($ $ $ (-558)) 143 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 107)) (-1651 (($ $ $) 61) (($ $ |#1|) 60)) (-2683 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) 150 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 151 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1749 (((-112) $ $) 149 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 152 (|has| |#1| (-841)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-656 |#1|) (-139) (-1200)) (T -656))
-((-2411 (*1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1200)))))
-(-13 (-1136 |t#1|) (-372 |t#1|) (-281 |t#1|) (-10 -8 (-15 -2411 ($ |t#1|))))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-281 |#1|) . T) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1000 |#1|) . T) ((-1087) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1136 |#1|) . T) ((-1200) . T) ((-1234 |#1|) . T))
-((-2692 (((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|))))) (-635 (-635 |#1|)) (-635 (-1246 |#1|))) 22) (((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|))))) (-679 |#1|) (-635 (-1246 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-635 (-635 |#1|)) (-1246 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|)) 14)) (-1489 (((-762) (-679 |#1|) (-1246 |#1|)) 30)) (-2145 (((-3 (-1246 |#1|) "failed") (-679 |#1|) (-1246 |#1|)) 24)) (-1800 (((-112) (-679 |#1|) (-1246 |#1|)) 27)))
-(((-657 |#1|) (-10 -7 (-15 -2692 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|))) (-15 -2692 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-635 (-635 |#1|)) (-1246 |#1|))) (-15 -2692 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|))))) (-679 |#1|) (-635 (-1246 |#1|)))) (-15 -2692 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|))))) (-635 (-635 |#1|)) (-635 (-1246 |#1|)))) (-15 -2145 ((-3 (-1246 |#1|) "failed") (-679 |#1|) (-1246 |#1|))) (-15 -1800 ((-112) (-679 |#1|) (-1246 |#1|))) (-15 -1489 ((-762) (-679 |#1|) (-1246 |#1|)))) (-362)) (T -657))
-((-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-5 *2 (-762)) (-5 *1 (-657 *5)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-657 *5)))) (-2145 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1246 *4)) (-5 *3 (-679 *4)) (-4 *4 (-362)) (-5 *1 (-657 *4)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2743 (-635 (-1246 *5)))))) (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2743 (-635 (-1246 *5)))))) (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2743 (-635 (-1246 *5))))) (-5 *1 (-657 *5)) (-5 *4 (-1246 *5)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 *5) "failed")) (|:| -2743 (-635 (-1246 *5))))) (-5 *1 (-657 *5)) (-5 *4 (-1246 *5)))))
-(-10 -7 (-15 -2692 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|))) (-15 -2692 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-635 (-635 |#1|)) (-1246 |#1|))) (-15 -2692 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|))))) (-679 |#1|) (-635 (-1246 |#1|)))) (-15 -2692 ((-635 (-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|))))) (-635 (-635 |#1|)) (-635 (-1246 |#1|)))) (-15 -2145 ((-3 (-1246 |#1|) "failed") (-679 |#1|) (-1246 |#1|))) (-15 -1800 ((-112) (-679 |#1|) (-1246 |#1|))) (-15 -1489 ((-762) (-679 |#1|) (-1246 |#1|))))
-((-2692 (((-635 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|)))) |#4| (-635 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|))) |#4| |#3|) 45)) (-1489 (((-762) |#4| |#3|) 17)) (-2145 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1800 (((-112) |#4| |#3|) 13)))
-(((-658 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2692 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|))) |#4| |#3|)) (-15 -2692 ((-635 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -2145 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1800 ((-112) |#4| |#3|)) (-15 -1489 ((-762) |#4| |#3|))) (-362) (-13 (-372 |#1|) (-10 -7 (-6 -4384))) (-13 (-372 |#1|) (-10 -7 (-6 -4384))) (-677 |#1| |#2| |#3|)) (T -658))
-((-1489 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-5 *2 (-762)) (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-1800 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-5 *2 (-112)) (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-2145 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4384)))) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384)))) (-5 *1 (-658 *4 *5 *2 *3)) (-4 *3 (-677 *4 *5 *2)))) (-2692 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-5 *2 (-635 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2743 (-635 *7))))) (-5 *1 (-658 *5 *6 *7 *3)) (-5 *4 (-635 *7)) (-4 *3 (-677 *5 *6 *7)))) (-2692 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))))
-(-10 -7 (-15 -2692 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|))) |#4| |#3|)) (-15 -2692 ((-635 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -2145 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1800 ((-112) |#4| |#3|)) (-15 -1489 ((-762) |#4| |#3|)))
-((-4205 (((-2 (|:| |particular| (-3 (-1246 (-406 |#4|)) "failed")) (|:| -2743 (-635 (-1246 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)) 45)))
-(((-659 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-2 (|:| |particular| (-3 (-1246 (-406 |#4|)) "failed")) (|:| -2743 (-635 (-1246 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)))) (-550) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -659))
-((-4205 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 (-406 *8)) "failed")) (|:| -2743 (-635 (-1246 (-406 *8)))))) (-5 *1 (-659 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4205 ((-2 (|:| |particular| (-3 (-1246 (-406 |#4|)) "failed")) (|:| -2743 (-635 (-1246 (-406 |#4|))))) (-635 |#4|) (-635 |#3|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3466 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-1719 ((|#2| $) NIL)) (-2086 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1644 (((-1246 (-679 |#2|))) NIL) (((-1246 (-679 |#2|)) (-1246 $)) NIL)) (-1693 (((-112) $) NIL)) (-3871 (((-1246 $)) 37)) (-3651 (((-112) $ (-762)) NIL)) (-1866 (($ |#2|) NIL)) (-3457 (($) NIL T CONST)) (-3125 (($ $) NIL (|has| |#2| (-306)))) (-2500 (((-239 |#1| |#2|) $ (-558)) NIL)) (-1873 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (|has| |#2| (-550)))) (-3262 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-4157 (((-679 |#2|)) NIL) (((-679 |#2|) (-1246 $)) NIL)) (-3890 ((|#2| $) NIL)) (-1398 (((-679 |#2|) $) NIL) (((-679 |#2|) $ (-1246 $)) NIL)) (-2113 (((-3 $ "failed") $) NIL (|has| |#2| (-550)))) (-3889 (((-1159 (-942 |#2|))) NIL (|has| |#2| (-362)))) (-2943 (($ $ (-911)) NIL)) (-3231 ((|#2| $) NIL)) (-3324 (((-1159 |#2|) $) NIL (|has| |#2| (-550)))) (-2392 ((|#2|) NIL) ((|#2| (-1246 $)) NIL)) (-1292 (((-1159 |#2|) $) NIL)) (-2706 (((-112)) NIL)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) NIL)) (-3431 (($ (-1246 |#2|)) NIL) (($ (-1246 |#2|) (-1246 $)) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-1489 (((-762) $) NIL (|has| |#2| (-550))) (((-911)) 38)) (-3620 ((|#2| $ (-558) (-558)) NIL)) (-1831 (((-112)) NIL)) (-4337 (($ $ (-911)) NIL)) (-2917 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL)) (-2556 (((-762) $) NIL (|has| |#2| (-550)))) (-3693 (((-635 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-550)))) (-1430 (((-762) $) NIL)) (-1889 (((-112)) NIL)) (-1444 (((-762) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2591 ((|#2| $) NIL (|has| |#2| (-6 (-4385 "*"))))) (-3942 (((-558) $) NIL)) (-1478 (((-558) $) NIL)) (-3486 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4153 (((-558) $) NIL)) (-3508 (((-558) $) NIL)) (-2144 (($ (-635 (-635 |#2|))) NIL)) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3922 (((-635 (-635 |#2|)) $) NIL)) (-1508 (((-112)) NIL)) (-2728 (((-112)) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-3347 (((-3 (-2 (|:| |particular| $) (|:| -2743 (-635 $))) "failed")) NIL (|has| |#2| (-550)))) (-2251 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-2284 (((-679 |#2|)) NIL) (((-679 |#2|) (-1246 $)) NIL)) (-2818 ((|#2| $) NIL)) (-4138 (((-679 |#2|) $) NIL) (((-679 |#2|) $ (-1246 $)) NIL)) (-4300 (((-3 $ "failed") $) NIL (|has| |#2| (-550)))) (-3900 (((-1159 (-942 |#2|))) NIL (|has| |#2| (-362)))) (-1794 (($ $ (-911)) NIL)) (-2815 ((|#2| $) NIL)) (-1637 (((-1159 |#2|) $) NIL (|has| |#2| (-550)))) (-2408 ((|#2|) NIL) ((|#2| (-1246 $)) NIL)) (-2889 (((-1159 |#2|) $) NIL)) (-1475 (((-112)) NIL)) (-2510 (((-1145) $) NIL)) (-4165 (((-112)) NIL)) (-1323 (((-112)) NIL)) (-1310 (((-112)) NIL)) (-3191 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-1688 (((-1107) $) NIL)) (-3145 (((-112)) NIL)) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-3314 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ (-558) (-558) |#2|) NIL) ((|#2| $ (-558) (-558)) 22) ((|#2| $ (-558)) NIL)) (-3780 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-4139 ((|#2| $) NIL)) (-2049 (($ (-635 |#2|)) NIL)) (-1312 (((-112) $) NIL)) (-3439 (((-239 |#1| |#2|) $) NIL)) (-3843 ((|#2| $) NIL (|has| |#2| (-6 (-4385 "*"))))) (-1698 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4098 (($ $) NIL)) (-2979 (((-679 |#2|) (-1246 $)) NIL) (((-1246 |#2|) $) NIL) (((-679 |#2|) (-1246 $) (-1246 $)) NIL) (((-1246 |#2|) $ (-1246 $)) 25)) (-3441 (($ (-1246 |#2|)) NIL) (((-1246 |#2|) $) NIL)) (-3175 (((-635 (-942 |#2|))) NIL) (((-635 (-942 |#2|)) (-1246 $)) NIL)) (-3072 (($ $ $) NIL)) (-4211 (((-112)) NIL)) (-3962 (((-239 |#1| |#2|) $ (-558)) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) NIL) (((-679 |#2|) $) NIL)) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) 36)) (-3817 (((-635 (-1246 |#2|))) NIL (|has| |#2| (-550)))) (-2536 (($ $ $ $) NIL)) (-2667 (((-112)) NIL)) (-2484 (($ (-679 |#2|) $) NIL)) (-2831 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-3551 (((-112) $) NIL)) (-3467 (($ $ $) NIL)) (-2249 (((-112)) NIL)) (-2835 (((-112)) NIL)) (-2274 (((-112)) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#2| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-660 |#1| |#2|) (-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-416 |#2|)) (-911) (-171)) (T -660))
-NIL
-(-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-416 |#2|))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3735 (((-635 (-1122)) $) 10)) (-3940 (((-853) $) 18) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-661) (-13 (-1070) (-10 -8 (-15 -3735 ((-635 (-1122)) $))))) (T -661))
-((-3735 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-661)))))
-(-13 (-1070) (-10 -8 (-15 -3735 ((-635 (-1122)) $))))
-((-3929 (((-112) $ $) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-1540 (($ $) 51)) (-2534 (((-112) $) NIL)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3404 (((-3 $ "failed") (-810 |#1|)) 23)) (-2837 (((-112) (-810 |#1|)) 15)) (-1891 (($ (-810 |#1|)) 24)) (-3923 (((-112) $ $) 29)) (-2958 (((-911) $) 36)) (-1524 (($ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3939 (((-635 $) (-810 |#1|)) 17)) (-3940 (((-853) $) 42) (($ |#1|) 33) (((-810 |#1|) $) 38) (((-667 |#1|) $) 43)) (-2581 (((-59 (-635 $)) (-635 |#1|) (-911)) 56)) (-2752 (((-635 $) (-635 |#1|) (-911)) 59)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 52)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 37)))
-(((-662 |#1|) (-13 (-841) (-1028 |#1|) (-10 -8 (-15 -2534 ((-112) $)) (-15 -1524 ($ $)) (-15 -1540 ($ $)) (-15 -2958 ((-911) $)) (-15 -3923 ((-112) $ $)) (-15 -3940 ((-810 |#1|) $)) (-15 -3940 ((-667 |#1|) $)) (-15 -3939 ((-635 $) (-810 |#1|))) (-15 -2837 ((-112) (-810 |#1|))) (-15 -1891 ($ (-810 |#1|))) (-15 -3404 ((-3 $ "failed") (-810 |#1|))) (-15 -2096 ((-635 |#1|) $)) (-15 -2581 ((-59 (-635 $)) (-635 |#1|) (-911))) (-15 -2752 ((-635 $) (-635 |#1|) (-911))))) (-841)) (T -662))
-((-2534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-1524 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841)))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3923 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-662 *4))) (-5 *1 (-662 *4)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-112)) (-5 *1 (-662 *4)))) (-1891 (*1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))) (-3404 (*1 *1 *2) (|partial| -12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841)))) (-2581 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841)) (-5 *2 (-59 (-635 (-662 *5)))) (-5 *1 (-662 *5)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841)) (-5 *2 (-635 (-662 *5))) (-5 *1 (-662 *5)))))
-(-13 (-841) (-1028 |#1|) (-10 -8 (-15 -2534 ((-112) $)) (-15 -1524 ($ $)) (-15 -1540 ($ $)) (-15 -2958 ((-911) $)) (-15 -3923 ((-112) $ $)) (-15 -3940 ((-810 |#1|) $)) (-15 -3940 ((-667 |#1|) $)) (-15 -3939 ((-635 $) (-810 |#1|))) (-15 -2837 ((-112) (-810 |#1|))) (-15 -1891 ($ (-810 |#1|))) (-15 -3404 ((-3 $ "failed") (-810 |#1|))) (-15 -2096 ((-635 |#1|) $)) (-15 -2581 ((-59 (-635 $)) (-635 |#1|) (-911))) (-15 -2752 ((-635 $) (-635 |#1|) (-911)))))
-((-2426 ((|#2| $) 76)) (-2427 (($ $) 96)) (-3651 (((-112) $ (-762)) 26)) (-3168 (($ $) 85) (($ $ (-762)) 88)) (-4151 (((-112) $) 97)) (-1352 (((-635 $) $) 72)) (-2201 (((-112) $ $) 71)) (-4007 (((-112) $ (-762)) 24)) (-2192 (((-558) $) 46)) (-3186 (((-558) $) 45)) (-3212 (((-112) $ (-762)) 22)) (-3355 (((-112) $) 74)) (-1514 ((|#2| $) 89) (($ $ (-762)) 92)) (-1363 (($ $ $ (-558)) 62) (($ |#2| $ (-558)) 61)) (-3051 (((-635 (-558)) $) 44)) (-2740 (((-112) (-558) $) 42)) (-3156 ((|#2| $) NIL) (($ $ (-762)) 84)) (-2319 (($ $ (-558)) 99)) (-1890 (((-112) $) 98)) (-3314 (((-112) (-1 (-112) |#2|) $) 32)) (-4318 (((-635 |#2|) $) 33)) (-2276 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1213 (-558))) 58) ((|#2| $ (-558)) 40) ((|#2| $ (-558) |#2|) 41)) (-1904 (((-558) $ $) 70)) (-3976 (($ $ (-1213 (-558))) 57) (($ $ (-558)) 51)) (-1609 (((-112) $) 66)) (-3070 (($ $) 81)) (-2398 (((-762) $) 80)) (-4009 (($ $) 79)) (-3952 (($ (-635 |#2|)) 37)) (-1559 (($ $) 100)) (-1384 (((-635 $) $) 69)) (-4171 (((-112) $ $) 68)) (-2831 (((-112) (-1 (-112) |#2|) $) 31)) (-1708 (((-112) $ $) 18)) (-1596 (((-762) $) 29)))
-(((-663 |#1| |#2|) (-10 -8 (-15 -1559 (|#1| |#1|)) (-15 -2319 (|#1| |#1| (-558))) (-15 -4151 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -2276 (|#2| |#1| (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558))) (-15 -4318 ((-635 |#2|) |#1|)) (-15 -2740 ((-112) (-558) |#1|)) (-15 -3051 ((-635 (-558)) |#1|)) (-15 -3186 ((-558) |#1|)) (-15 -2192 ((-558) |#1|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -3976 (|#1| |#1| (-558))) (-15 -3976 (|#1| |#1| (-1213 (-558)))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -3070 (|#1| |#1|)) (-15 -2398 ((-762) |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -1514 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "last")) (-15 -1514 (|#2| |#1|)) (-15 -3168 (|#1| |#1| (-762))) (-15 -2276 (|#1| |#1| "rest")) (-15 -3168 (|#1| |#1|)) (-15 -3156 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "first")) (-15 -3156 (|#2| |#1|)) (-15 -2201 ((-112) |#1| |#1|)) (-15 -4171 ((-112) |#1| |#1|)) (-15 -1904 ((-558) |#1| |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2276 (|#2| |#1| "value")) (-15 -2426 (|#2| |#1|)) (-15 -3355 ((-112) |#1|)) (-15 -1352 ((-635 |#1|) |#1|)) (-15 -1384 ((-635 |#1|) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762)))) (-664 |#2|) (-1200)) (T -663))
-NIL
-(-10 -8 (-15 -1559 (|#1| |#1|)) (-15 -2319 (|#1| |#1| (-558))) (-15 -4151 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -2276 (|#2| |#1| (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558))) (-15 -4318 ((-635 |#2|) |#1|)) (-15 -2740 ((-112) (-558) |#1|)) (-15 -3051 ((-635 (-558)) |#1|)) (-15 -3186 ((-558) |#1|)) (-15 -2192 ((-558) |#1|)) (-15 -3952 (|#1| (-635 |#2|))) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -3976 (|#1| |#1| (-558))) (-15 -3976 (|#1| |#1| (-1213 (-558)))) (-15 -1363 (|#1| |#2| |#1| (-558))) (-15 -1363 (|#1| |#1| |#1| (-558))) (-15 -3070 (|#1| |#1|)) (-15 -2398 ((-762) |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -1514 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "last")) (-15 -1514 (|#2| |#1|)) (-15 -3168 (|#1| |#1| (-762))) (-15 -2276 (|#1| |#1| "rest")) (-15 -3168 (|#1| |#1|)) (-15 -3156 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "first")) (-15 -3156 (|#2| |#1|)) (-15 -2201 ((-112) |#1| |#1|)) (-15 -4171 ((-112) |#1| |#1|)) (-15 -1904 ((-558) |#1| |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2276 (|#2| |#1| "value")) (-15 -2426 (|#2| |#1|)) (-15 -3355 ((-112) |#1|)) (-15 -1352 ((-635 |#1|) |#1|)) (-15 -1384 ((-635 |#1|) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -3314 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762))))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-1611 ((|#1| $) 65)) (-2427 (($ $) 67)) (-3552 (((-1251) $ (-558) (-558)) 97 (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) 52 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-1649 (($ $ $) 56 (|has| $ (-6 -4384)))) (-2851 ((|#1| $ |#1|) 54 (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) 58 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4384))) (($ $ "rest" $) 55 (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 117 (|has| $ (-6 -4384))) ((|#1| $ (-558) |#1|) 86 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 102)) (-1601 ((|#1| $) 66)) (-3457 (($) 7 T CONST)) (-4264 (($ $) 124)) (-3168 (($ $) 73) (($ $ (-762)) 71)) (-3188 (($ $) 99 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#1| $) 100 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 103)) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3683 ((|#1| $ (-558) |#1|) 85 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 87)) (-4151 (((-112) $) 83)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-2463 (((-762) $) 123)) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-1395 (($ (-762) |#1|) 108)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 95 (|has| (-558) (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 94 (|has| (-558) (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3212 (((-112) $ (-762)) 10)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-3964 (($ $) 126)) (-1367 (((-112) $) 127)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1514 ((|#1| $) 70) (($ $ (-762)) 68)) (-1363 (($ $ $ (-558)) 116) (($ |#1| $ (-558)) 115)) (-3051 (((-635 (-558)) $) 92)) (-2740 (((-112) (-558) $) 91)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-1403 ((|#1| $) 125)) (-3156 ((|#1| $) 76) (($ $ (-762)) 74)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2830 (($ $ |#1|) 96 (|has| $ (-6 -4384)))) (-2319 (($ $ (-558)) 122)) (-1890 (((-112) $) 84)) (-2268 (((-112) $) 128)) (-2140 (((-112) $) 129)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 90)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1213 (-558))) 112) ((|#1| $ (-558)) 89) ((|#1| $ (-558) |#1|) 88)) (-1904 (((-558) $ $) 44)) (-3976 (($ $ (-1213 (-558))) 114) (($ $ (-558)) 113)) (-1609 (((-112) $) 46)) (-3070 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4384)))) (-2398 (((-762) $) 63)) (-4009 (($ $) 64)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 107)) (-1651 (($ $ $) 61 (|has| $ (-6 -4384))) (($ $ |#1|) 60 (|has| $ (-6 -4384)))) (-2683 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-1559 (($ $) 121)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-664 |#1|) (-139) (-1200)) (T -664))
-((-1488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-3964 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))) (-4264 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-2319 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-664 *3)) (-4 *3 (-1200)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
-(-13 (-1136 |t#1|) (-10 -8 (-15 -1488 ($ (-1 (-112) |t#1|) $)) (-15 -2072 ($ (-1 (-112) |t#1|) $)) (-15 -2140 ((-112) $)) (-15 -2268 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -3964 ($ $)) (-15 -1403 (|t#1| $)) (-15 -4264 ($ $)) (-15 -2463 ((-762) $)) (-15 -2319 ($ $ (-558))) (-15 -1559 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1136 |#1|) . T) ((-1200) . T) ((-1234 |#1|) . T))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3104 (($ (-762) (-762) (-762)) 33 (|has| |#1| (-1039)))) (-3651 (((-112) $ (-762)) NIL)) (-3540 ((|#1| $ (-762) (-762) (-762) |#1|) 27)) (-3457 (($) NIL T CONST)) (-2252 (($ $ $) 37 (|has| |#1| (-1039)))) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2424 (((-1246 (-762)) $) 9)) (-1332 (($ (-1163) $ $) 22)) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-3144 (($ (-762)) 35 (|has| |#1| (-1039)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-762) (-762) (-762)) 25)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3952 (($ (-635 (-635 (-635 |#1|)))) 44)) (-3940 (($ (-948 (-948 (-948 |#1|)))) 15) (((-948 (-948 (-948 |#1|))) $) 12) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-665 |#1|) (-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1039)) (PROGN (-15 -3104 ($ (-762) (-762) (-762))) (-15 -3144 ($ (-762))) (-15 -2252 ($ $ $))) |%noBranch|) (-15 -3952 ($ (-635 (-635 (-635 |#1|))))) (-15 -2276 (|#1| $ (-762) (-762) (-762))) (-15 -3540 (|#1| $ (-762) (-762) (-762) |#1|)) (-15 -3940 ($ (-948 (-948 (-948 |#1|))))) (-15 -3940 ((-948 (-948 (-948 |#1|))) $)) (-15 -1332 ($ (-1163) $ $)) (-15 -2424 ((-1246 (-762)) $)))) (-1087)) (T -665))
-((-3104 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039)) (-4 *3 (-1087)))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039)) (-4 *3 (-1087)))) (-2252 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1039)) (-4 *2 (-1087)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1087)) (-5 *1 (-665 *3)))) (-2276 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087)))) (-3540 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-4 *3 (-1087)) (-5 *1 (-665 *3)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-5 *1 (-665 *3)) (-4 *3 (-1087)))) (-1332 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-665 *3)) (-4 *3 (-1087)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-1246 (-762))) (-5 *1 (-665 *3)) (-4 *3 (-1087)))))
-(-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1039)) (PROGN (-15 -3104 ($ (-762) (-762) (-762))) (-15 -3144 ($ (-762))) (-15 -2252 ($ $ $))) |%noBranch|) (-15 -3952 ($ (-635 (-635 (-635 |#1|))))) (-15 -2276 (|#1| $ (-762) (-762) (-762))) (-15 -3540 (|#1| $ (-762) (-762) (-762) |#1|)) (-15 -3940 ($ (-948 (-948 (-948 |#1|))))) (-15 -3940 ((-948 (-948 (-948 |#1|))) $)) (-15 -1332 ($ (-1163) $ $)) (-15 -2424 ((-1246 (-762)) $))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-3734 (((-481) $) 10)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 21) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-1122) $) 12)) (-1708 (((-112) $ $) NIL)))
-(((-666) (-13 (-1070) (-10 -8 (-15 -3734 ((-481) $)) (-15 -3190 ((-1122) $))))) (T -666))
-((-3734 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-666)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-666)))))
-(-13 (-1070) (-10 -8 (-15 -3734 ((-481) $)) (-15 -3190 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-2096 (((-635 |#1|) $) 14)) (-1540 (($ $) 18)) (-2534 (((-112) $) 19)) (-3302 (((-3 |#1| "failed") $) 22)) (-3226 ((|#1| $) 20)) (-3168 (($ $) 36)) (-3883 (($ $) 24)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3923 (((-112) $ $) 41)) (-2958 (((-911) $) 38)) (-1524 (($ $) 17)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 ((|#1| $) 35)) (-3940 (((-853) $) 31) (($ |#1|) 23) (((-810 |#1|) $) 27)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 12)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 40)) (* (($ $ $) 34)))
-(((-667 |#1|) (-13 (-841) (-1028 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3940 ((-810 |#1|) $)) (-15 -3156 (|#1| $)) (-15 -1524 ($ $)) (-15 -2958 ((-911) $)) (-15 -3923 ((-112) $ $)) (-15 -3883 ($ $)) (-15 -3168 ($ $)) (-15 -2534 ((-112) $)) (-15 -1540 ($ $)) (-15 -2096 ((-635 |#1|) $)))) (-841)) (T -667))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-3156 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-1524 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-3923 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-3168 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841)))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841)))))
-(-13 (-841) (-1028 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3940 ((-810 |#1|) $)) (-15 -3156 (|#1| $)) (-15 -1524 ($ $)) (-15 -2958 ((-911) $)) (-15 -3923 ((-112) $ $)) (-15 -3883 ($ $)) (-15 -3168 ($ $)) (-15 -2534 ((-112) $)) (-15 -1540 ($ $)) (-15 -2096 ((-635 |#1|) $))))
-((-1726 ((|#1| (-1 |#1| (-762) |#1|) (-762) |#1|) 11)) (-3859 ((|#1| (-1 |#1| |#1|) (-762) |#1|) 9)))
-(((-668 |#1|) (-10 -7 (-15 -3859 (|#1| (-1 |#1| |#1|) (-762) |#1|)) (-15 -1726 (|#1| (-1 |#1| (-762) |#1|) (-762) |#1|))) (-1087)) (T -668))
-((-1726 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-762) *2)) (-5 *4 (-762)) (-4 *2 (-1087)) (-5 *1 (-668 *2)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-762)) (-4 *2 (-1087)) (-5 *1 (-668 *2)))))
-(-10 -7 (-15 -3859 (|#1| (-1 |#1| |#1|) (-762) |#1|)) (-15 -1726 (|#1| (-1 |#1| (-762) |#1|) (-762) |#1|)))
-((-3043 ((|#2| |#1| |#2|) 9)) (-3032 ((|#1| |#1| |#2|) 8)))
-(((-669 |#1| |#2|) (-10 -7 (-15 -3032 (|#1| |#1| |#2|)) (-15 -3043 (|#2| |#1| |#2|))) (-1087) (-1087)) (T -669))
-((-3043 (*1 *2 *3 *2) (-12 (-5 *1 (-669 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-3032 (*1 *2 *2 *3) (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(-10 -7 (-15 -3032 (|#1| |#1| |#2|)) (-15 -3043 (|#2| |#1| |#2|)))
-((-2966 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-670 |#1| |#2| |#3|) (-10 -7 (-15 -2966 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1087) (-1087) (-1087)) (T -670))
-((-2966 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)) (-5 *1 (-670 *5 *6 *2)))))
-(-10 -7 (-15 -2966 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3967 (((-1199) $) 20)) (-3910 (((-635 (-1199)) $) 18)) (-2112 (($ (-635 (-1199)) (-1199)) 13)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 29) (($ (-1168)) NIL) (((-1168) $) NIL) (((-1199) $) 21) (($ (-1105)) 10)) (-1708 (((-112) $ $) NIL)))
-(((-671) (-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3940 ($ (-1105))) (-15 -2112 ($ (-635 (-1199)) (-1199))) (-15 -3910 ((-635 (-1199)) $)) (-15 -3967 ((-1199) $))))) (T -671))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-671)))) (-2112 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1199))) (-5 *3 (-1199)) (-5 *1 (-671)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-671)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-671)))))
-(-13 (-1070) (-605 (-1199)) (-10 -8 (-15 -3940 ($ (-1105))) (-15 -2112 ($ (-635 (-1199)) (-1199))) (-15 -3910 ((-635 (-1199)) $)) (-15 -3967 ((-1199) $))))
-((-1726 (((-1 |#1| (-762) |#1|) (-1 |#1| (-762) |#1|)) 23)) (-2257 (((-1 |#1|) |#1|) 8)) (-1349 ((|#1| |#1|) 16)) (-2063 (((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-558)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3940 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-762)) 20)))
-(((-672 |#1|) (-10 -7 (-15 -2257 ((-1 |#1|) |#1|)) (-15 -3940 ((-1 |#1|) |#1|)) (-15 -2063 (|#1| (-1 |#1| |#1|))) (-15 -2063 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-558))) (-15 -1349 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-762))) (-15 -1726 ((-1 |#1| (-762) |#1|) (-1 |#1| (-762) |#1|)))) (-1087)) (T -672))
-((-1726 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-762) *3)) (-4 *3 (-1087)) (-5 *1 (-672 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *4 (-1087)) (-5 *1 (-672 *4)))) (-1349 (*1 *2 *2) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1087)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-558)) (-5 *2 (-635 *5)) (-5 *1 (-672 *5)) (-4 *5 (-1087)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-672 *2)) (-4 *2 (-1087)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087)))) (-2257 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087)))))
-(-10 -7 (-15 -2257 ((-1 |#1|) |#1|)) (-15 -3940 ((-1 |#1|) |#1|)) (-15 -2063 (|#1| (-1 |#1| |#1|))) (-15 -2063 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-558))) (-15 -1349 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-762))) (-15 -1726 ((-1 |#1| (-762) |#1|) (-1 |#1| (-762) |#1|))))
-((-4242 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2178 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2010 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1306 (((-1 |#2| |#1|) |#2|) 11)))
-(((-673 |#1| |#2|) (-10 -7 (-15 -1306 ((-1 |#2| |#1|) |#2|)) (-15 -2178 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2010 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4242 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1087) (-1087)) (T -673))
-((-4242 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-5 *2 (-1 *5 *4)) (-5 *1 (-673 *4 *5)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1087)) (-5 *2 (-1 *5 *4)) (-5 *1 (-673 *4 *5)) (-4 *4 (-1087)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-5 *2 (-1 *5)) (-5 *1 (-673 *4 *5)))) (-1306 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-673 *4 *3)) (-4 *4 (-1087)) (-4 *3 (-1087)))))
-(-10 -7 (-15 -1306 ((-1 |#2| |#1|) |#2|)) (-15 -2178 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2010 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4242 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2177 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1957 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3122 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1633 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1457 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -1957 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3122 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1633 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1457 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2177 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1087) (-1087) (-1087)) (T -674))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-1 *7 *5)) (-5 *1 (-674 *5 *6 *7)))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-674 *4 *5 *6)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *4 (-1087)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *5 (-1087)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *4 *5 *6)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1087)) (-4 *4 (-1087)) (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *5 *4 *6)))))
-(-10 -7 (-15 -1957 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3122 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1633 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1457 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2177 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3866 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3397 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-675 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3397 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3397 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3866 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1039) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|) (-1039) (-372 |#5|) (-372 |#5|) (-677 |#5| |#6| |#7|)) (T -675))
-((-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1039)) (-4 *2 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2)) (-5 *1 (-675 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-677 *5 *6 *7)) (-4 *10 (-677 *2 *8 *9)))) (-3397 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))))
-(-10 -7 (-15 -3397 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3397 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3866 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-4237 (($ (-762) (-762)) 33)) (-2565 (($ $ $) 56)) (-3295 (($ |#3|) 52) (($ $) 53)) (-2086 (((-112) $) 28)) (-2037 (($ $ (-558) (-558)) 58)) (-4126 (($ $ (-558) (-558)) 59)) (-3311 (($ $ (-558) (-558) (-558) (-558)) 63)) (-3230 (($ $) 54)) (-1693 (((-112) $) 14)) (-1683 (($ $ (-558) (-558) $) 64)) (-4077 ((|#2| $ (-558) (-558) |#2|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) 62)) (-1866 (($ (-762) |#2|) 39)) (-2144 (($ (-635 (-635 |#2|))) 37)) (-3922 (((-635 (-635 |#2|)) $) 57)) (-2709 (($ $ $) 55)) (-2861 (((-3 $ "failed") $ |#2|) 91)) (-2276 ((|#2| $ (-558) (-558)) NIL) ((|#2| $ (-558) (-558) |#2|) NIL) (($ $ (-635 (-558)) (-635 (-558))) 61)) (-2049 (($ (-635 |#2|)) 40) (($ (-635 $)) 42)) (-1312 (((-112) $) 24)) (-3940 (($ |#4|) 47) (((-853) $) NIL)) (-3551 (((-112) $) 30)) (-1805 (($ $ |#2|) 93)) (-1796 (($ $ $) 68) (($ $) 71)) (-1785 (($ $ $) 66)) (** (($ $ (-762)) 80) (($ $ (-558)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-558) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-676 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3940 ((-853) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1805 (|#1| |#1| |#2|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -1683 (|#1| |#1| (-558) (-558) |#1|)) (-15 -3311 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -4126 (|#1| |#1| (-558) (-558))) (-15 -2037 (|#1| |#1| (-558) (-558))) (-15 -4077 (|#1| |#1| (-635 (-558)) (-635 (-558)) |#1|)) (-15 -2276 (|#1| |#1| (-635 (-558)) (-635 (-558)))) (-15 -3922 ((-635 (-635 |#2|)) |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3295 (|#1| |#3|)) (-15 -3940 (|#1| |#4|)) (-15 -2049 (|#1| (-635 |#1|))) (-15 -2049 (|#1| (-635 |#2|))) (-15 -1866 (|#1| (-762) |#2|)) (-15 -2144 (|#1| (-635 (-635 |#2|)))) (-15 -4237 (|#1| (-762) (-762))) (-15 -3551 ((-112) |#1|)) (-15 -2086 ((-112) |#1|)) (-15 -1312 ((-112) |#1|)) (-15 -1693 ((-112) |#1|)) (-15 -4077 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) (-558)))) (-677 |#2| |#3| |#4|) (-1039) (-372 |#2|) (-372 |#2|)) (T -676))
-NIL
-(-10 -8 (-15 -3940 ((-853) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -1805 (|#1| |#1| |#2|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-762))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -1683 (|#1| |#1| (-558) (-558) |#1|)) (-15 -3311 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -4126 (|#1| |#1| (-558) (-558))) (-15 -2037 (|#1| |#1| (-558) (-558))) (-15 -4077 (|#1| |#1| (-635 (-558)) (-635 (-558)) |#1|)) (-15 -2276 (|#1| |#1| (-635 (-558)) (-635 (-558)))) (-15 -3922 ((-635 (-635 |#2|)) |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3295 (|#1| |#3|)) (-15 -3940 (|#1| |#4|)) (-15 -2049 (|#1| (-635 |#1|))) (-15 -2049 (|#1| (-635 |#2|))) (-15 -1866 (|#1| (-762) |#2|)) (-15 -2144 (|#1| (-635 (-635 |#2|)))) (-15 -4237 (|#1| (-762) (-762))) (-15 -3551 ((-112) |#1|)) (-15 -2086 ((-112) |#1|)) (-15 -1312 ((-112) |#1|)) (-15 -1693 ((-112) |#1|)) (-15 -4077 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) (-558))))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-4237 (($ (-762) (-762)) 97)) (-2565 (($ $ $) 87)) (-3295 (($ |#2|) 91) (($ $) 90)) (-2086 (((-112) $) 99)) (-2037 (($ $ (-558) (-558)) 83)) (-4126 (($ $ (-558) (-558)) 82)) (-3311 (($ $ (-558) (-558) (-558) (-558)) 81)) (-3230 (($ $) 89)) (-1693 (((-112) $) 101)) (-3651 (((-112) $ (-762)) 8)) (-1683 (($ $ (-558) (-558) $) 80)) (-4077 ((|#1| $ (-558) (-558) |#1|) 44) (($ $ (-635 (-558)) (-635 (-558)) $) 84)) (-3425 (($ $ (-558) |#2|) 42)) (-3456 (($ $ (-558) |#3|) 41)) (-1866 (($ (-762) |#1|) 95)) (-3457 (($) 7 T CONST)) (-3125 (($ $) 67 (|has| |#1| (-306)))) (-2500 ((|#2| $ (-558)) 46)) (-1489 (((-762) $) 66 (|has| |#1| (-550)))) (-3683 ((|#1| $ (-558) (-558) |#1|) 43)) (-3620 ((|#1| $ (-558) (-558)) 48)) (-2917 (((-635 |#1|) $) 30)) (-2556 (((-762) $) 65 (|has| |#1| (-550)))) (-3693 (((-635 |#3|) $) 64 (|has| |#1| (-550)))) (-1430 (((-762) $) 51)) (-1395 (($ (-762) (-762) |#1|) 57)) (-1444 (((-762) $) 50)) (-4007 (((-112) $ (-762)) 9)) (-2591 ((|#1| $) 62 (|has| |#1| (-6 (-4385 "*"))))) (-3942 (((-558) $) 55)) (-1478 (((-558) $) 53)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4153 (((-558) $) 54)) (-3508 (((-558) $) 52)) (-2144 (($ (-635 (-635 |#1|))) 96)) (-3674 (($ (-1 |#1| |#1|) $) 34)) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3922 (((-635 (-635 |#1|)) $) 86)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-3191 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-2709 (($ $ $) 88)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) 56)) (-2861 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-550)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) (-558)) 49) ((|#1| $ (-558) (-558) |#1|) 47) (($ $ (-635 (-558)) (-635 (-558))) 85)) (-2049 (($ (-635 |#1|)) 94) (($ (-635 $)) 93)) (-1312 (((-112) $) 100)) (-3843 ((|#1| $) 63 (|has| |#1| (-6 (-4385 "*"))))) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3962 ((|#3| $ (-558)) 45)) (-3940 (($ |#3|) 92) (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-3551 (((-112) $) 98)) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1805 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-1796 (($ $ $) 78) (($ $) 77)) (-1785 (($ $ $) 79)) (** (($ $ (-762)) 70) (($ $ (-558)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-558) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-677 |#1| |#2| |#3|) (-139) (-1039) (-372 |t#1|) (-372 |t#1|)) (T -677))
-((-1693 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-1312 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-3551 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-4237 (*1 *1 *2 *2) (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *2)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (-3295 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *2 *4)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3230 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2709 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2565 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-635 (-635 *3))))) (-2276 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4077 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2037 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4126 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3311 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1683 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1785 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1796 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-677 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-677 *3 *2 *4)) (-4 *3 (-1039)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2861 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-550)))) (-1805 (*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-306)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-635 *5)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039)))) (-3191 (*1 *1 *1) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4384) (-6 -4383) (-15 -1693 ((-112) $)) (-15 -1312 ((-112) $)) (-15 -2086 ((-112) $)) (-15 -3551 ((-112) $)) (-15 -4237 ($ (-762) (-762))) (-15 -2144 ($ (-635 (-635 |t#1|)))) (-15 -1866 ($ (-762) |t#1|)) (-15 -2049 ($ (-635 |t#1|))) (-15 -2049 ($ (-635 $))) (-15 -3940 ($ |t#3|)) (-15 -3295 ($ |t#2|)) (-15 -3295 ($ $)) (-15 -3230 ($ $)) (-15 -2709 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3922 ((-635 (-635 |t#1|)) $)) (-15 -2276 ($ $ (-635 (-558)) (-635 (-558)))) (-15 -4077 ($ $ (-635 (-558)) (-635 (-558)) $)) (-15 -2037 ($ $ (-558) (-558))) (-15 -4126 ($ $ (-558) (-558))) (-15 -3311 ($ $ (-558) (-558) (-558) (-558))) (-15 -1683 ($ $ (-558) (-558) $)) (-15 -1785 ($ $ $)) (-15 -1796 ($ $ $)) (-15 -1796 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-558) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-762))) (IF (|has| |t#1| (-550)) (-15 -2861 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1805 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -3125 ($ $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1489 ((-762) $)) (-15 -2556 ((-762) $)) (-15 -3693 ((-635 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4385 "*"))) (PROGN (-15 -3843 (|t#1| $)) (-15 -2591 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -3191 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-57 |#1| |#2| |#3|) . T) ((-1200) . T))
-((-3125 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-1489 (((-762) |#4|) 98 (|has| |#1| (-550)))) (-2556 (((-762) |#4|) 75 (|has| |#1| (-550)))) (-3693 (((-635 |#3|) |#4|) 82 (|has| |#1| (-550)))) (-4240 (((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-2591 ((|#1| |#4|) 34)) (-3489 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-550)))) (-3191 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-3960 ((|#4| |#4|) 67 (|has| |#1| (-550)))) (-2152 ((|#4| |#4| |#1| (-558) (-558)) 42)) (-3827 ((|#4| |#4| (-558) (-558)) 37)) (-1870 ((|#4| |#4| |#1| (-558) (-558)) 47)) (-3843 ((|#1| |#4|) 77)) (-3830 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-550)))))
-(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3843 (|#1| |#4|)) (-15 -2591 (|#1| |#4|)) (-15 -3827 (|#4| |#4| (-558) (-558))) (-15 -2152 (|#4| |#4| |#1| (-558) (-558))) (-15 -1870 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-550)) (PROGN (-15 -1489 ((-762) |#4|)) (-15 -2556 ((-762) |#4|)) (-15 -3693 ((-635 |#3|) |#4|)) (-15 -3960 (|#4| |#4|)) (-15 -3489 ((-3 |#4| "failed") |#4|)) (-15 -3830 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -3125 (|#4| |#4|)) (-15 -4240 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3191 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -678))
-((-3191 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-4240 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-678 *3 *4 *5 *6)) (-4 *6 (-677 *3 *4 *5)))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3489 (*1 *2 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2556 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-1489 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-1870 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6)))) (-2152 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6)))) (-3827 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *1 (-678 *4 *5 *6 *2)) (-4 *2 (-677 *4 *5 *6)))) (-2591 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))))
-(-10 -7 (-15 -3843 (|#1| |#4|)) (-15 -2591 (|#1| |#4|)) (-15 -3827 (|#4| |#4| (-558) (-558))) (-15 -2152 (|#4| |#4| |#1| (-558) (-558))) (-15 -1870 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-550)) (PROGN (-15 -1489 ((-762) |#4|)) (-15 -2556 ((-762) |#4|)) (-15 -3693 ((-635 |#3|) |#4|)) (-15 -3960 (|#4| |#4|)) (-15 -3489 ((-3 |#4| "failed") |#4|)) (-15 -3830 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -3125 (|#4| |#4|)) (-15 -4240 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3191 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4237 (($ (-762) (-762)) 47)) (-2565 (($ $ $) NIL)) (-3295 (($ (-1246 |#1|)) NIL) (($ $) NIL)) (-2086 (((-112) $) NIL)) (-2037 (($ $ (-558) (-558)) 12)) (-4126 (($ $ (-558) (-558)) NIL)) (-3311 (($ $ (-558) (-558) (-558) (-558)) NIL)) (-3230 (($ $) NIL)) (-1693 (((-112) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-1683 (($ $ (-558) (-558) $) NIL)) (-4077 ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558)) $) NIL)) (-3425 (($ $ (-558) (-1246 |#1|)) NIL)) (-3456 (($ $ (-558) (-1246 |#1|)) NIL)) (-1866 (($ (-762) |#1|) 22)) (-3457 (($) NIL T CONST)) (-3125 (($ $) 31 (|has| |#1| (-306)))) (-2500 (((-1246 |#1|) $ (-558)) NIL)) (-1489 (((-762) $) 33 (|has| |#1| (-550)))) (-3683 ((|#1| $ (-558) (-558) |#1|) 51)) (-3620 ((|#1| $ (-558) (-558)) NIL)) (-2917 (((-635 |#1|) $) NIL)) (-2556 (((-762) $) 35 (|has| |#1| (-550)))) (-3693 (((-635 (-1246 |#1|)) $) 38 (|has| |#1| (-550)))) (-1430 (((-762) $) 20)) (-1395 (($ (-762) (-762) |#1|) 16)) (-1444 (((-762) $) 21)) (-4007 (((-112) $ (-762)) NIL)) (-2591 ((|#1| $) 29 (|has| |#1| (-6 (-4385 "*"))))) (-3942 (((-558) $) 9)) (-1478 (((-558) $) 10)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4153 (((-558) $) 11)) (-3508 (((-558) $) 48)) (-2144 (($ (-635 (-635 |#1|))) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3922 (((-635 (-635 |#1|)) $) 60)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-3191 (((-3 $ "failed") $) 45 (|has| |#1| (-362)))) (-2709 (($ $ $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2830 (($ $ |#1|) NIL)) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) (-558)) NIL) ((|#1| $ (-558) (-558) |#1|) NIL) (($ $ (-635 (-558)) (-635 (-558))) NIL)) (-2049 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL) (($ (-1246 |#1|)) 52)) (-1312 (((-112) $) NIL)) (-3843 ((|#1| $) 27 (|has| |#1| (-6 (-4385 "*"))))) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3441 (((-534) $) 64 (|has| |#1| (-606 (-534))))) (-3962 (((-1246 |#1|) $ (-558)) NIL)) (-3940 (($ (-1246 |#1|)) NIL) (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3551 (((-112) $) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $ $) NIL) (($ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) 23) (($ $ (-558)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-558) $) NIL) (((-1246 |#1|) $ (-1246 |#1|)) NIL) (((-1246 |#1|) (-1246 |#1|) $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-679 |#1|) (-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 -2049 ($ (-1246 |#1|))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3191 ((-3 $ "failed") $)) |%noBranch|))) (-1039)) (T -679))
-((-3191 (*1 *1 *1) (|partial| -12 (-5 *1 (-679 *2)) (-4 *2 (-362)) (-4 *2 (-1039)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-679 *3)))))
-(-13 (-677 |#1| (-1246 |#1|) (-1246 |#1|)) (-10 -8 (-15 -2049 ($ (-1246 |#1|))) (IF (|has| |#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3191 ((-3 $ "failed") $)) |%noBranch|)))
-((-4097 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 25)) (-1346 (((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|) 21)) (-1884 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-762)) 26)) (-3165 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 14)) (-1778 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 18) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 16)) (-2972 (((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|)) 20)) (-1677 (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 12)) (** (((-679 |#1|) (-679 |#1|) (-762)) 30)))
-(((-680 |#1|) (-10 -7 (-15 -1677 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3165 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1778 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1778 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2972 ((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|))) (-15 -1346 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -4097 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1884 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-762))) (-15 ** ((-679 |#1|) (-679 |#1|) (-762)))) (-1039)) (T -680))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-680 *4)))) (-1884 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-680 *4)))) (-4097 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-1346 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-2972 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-1778 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-1778 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-3165 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))) (-1677 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
-(-10 -7 (-15 -1677 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3165 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1778 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1778 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2972 ((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|))) (-15 -1346 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -4097 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1884 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-762))) (-15 ** ((-679 |#1|) (-679 |#1|) (-762))))
-((-3302 (((-3 |#1| "failed") $) 17)) (-3226 ((|#1| $) NIL)) (-1789 (($) 7 T CONST)) (-1469 (($ |#1|) 8)) (-3940 (($ |#1|) 15) (((-853) $) 22)) (-2194 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -1789)) 11)) (-4127 ((|#1| $) 14)))
-(((-681 |#1|) (-13 (-1241) (-1028 |#1|) (-605 (-853)) (-10 -8 (-15 -1469 ($ |#1|)) (-15 -2194 ((-112) $ (|[\|\|]| |#1|))) (-15 -2194 ((-112) $ (|[\|\|]| -1789))) (-15 -4127 (|#1| $)) (-15 -1789 ($) -2010))) (-605 (-853))) (T -681))
-((-1469 (*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-605 (-853))) (-5 *2 (-112)) (-5 *1 (-681 *4)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1789)) (-5 *2 (-112)) (-5 *1 (-681 *4)) (-4 *4 (-605 (-853))))) (-4127 (*1 *2 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))) (-1789 (*1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))))
-(-13 (-1241) (-1028 |#1|) (-605 (-853)) (-10 -8 (-15 -1469 ($ |#1|)) (-15 -2194 ((-112) $ (|[\|\|]| |#1|))) (-15 -2194 ((-112) $ (|[\|\|]| -1789))) (-15 -4127 (|#1| $)) (-15 -1789 ($) -2010)))
-((-2522 ((|#2| |#2| |#4|) 25)) (-2287 (((-679 |#2|) |#3| |#4|) 31)) (-3835 (((-679 |#2|) |#2| |#4|) 30)) (-2945 (((-1246 |#2|) |#2| |#4|) 16)) (-1313 ((|#2| |#3| |#4|) 24)) (-2051 (((-679 |#2|) |#3| |#4| (-762) (-762)) 38)) (-2702 (((-679 |#2|) |#2| |#4| (-762)) 37)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2945 ((-1246 |#2|) |#2| |#4|)) (-15 -1313 (|#2| |#3| |#4|)) (-15 -2522 (|#2| |#2| |#4|)) (-15 -3835 ((-679 |#2|) |#2| |#4|)) (-15 -2702 ((-679 |#2|) |#2| |#4| (-762))) (-15 -2287 ((-679 |#2|) |#3| |#4|)) (-15 -2051 ((-679 |#2|) |#3| |#4| (-762) (-762)))) (-1087) (-890 |#1|) (-372 |#2|) (-13 (-372 |#1|) (-10 -7 (-6 -4383)))) (T -682))
-((-2051 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *7 (-890 *6)) (-5 *2 (-679 *7)) (-5 *1 (-682 *6 *7 *3 *4)) (-4 *3 (-372 *7)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4383)))))) (-2287 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *6 (-890 *5)) (-5 *2 (-679 *6)) (-5 *1 (-682 *5 *6 *3 *4)) (-4 *3 (-372 *6)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))) (-2702 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *3 (-890 *6)) (-5 *2 (-679 *3)) (-5 *1 (-682 *6 *3 *7 *4)) (-4 *7 (-372 *3)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4383)))))) (-3835 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-679 *3)) (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))) (-2522 (*1 *2 *2 *3) (-12 (-4 *4 (-1087)) (-4 *2 (-890 *4)) (-5 *1 (-682 *4 *2 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4383)))))) (-1313 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *2 (-890 *5)) (-5 *1 (-682 *5 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))) (-2945 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-1246 *3)) (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))))
-(-10 -7 (-15 -2945 ((-1246 |#2|) |#2| |#4|)) (-15 -1313 (|#2| |#3| |#4|)) (-15 -2522 (|#2| |#2| |#4|)) (-15 -3835 ((-679 |#2|) |#2| |#4|)) (-15 -2702 ((-679 |#2|) |#2| |#4| (-762))) (-15 -2287 ((-679 |#2|) |#3| |#4|)) (-15 -2051 ((-679 |#2|) |#3| |#4| (-762) (-762))))
-((-4247 (((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|)) 20)) (-1515 ((|#1| (-679 |#2|)) 9)) (-3275 (((-679 |#1|) (-679 |#2|)) 18)))
-(((-683 |#1| |#2|) (-10 -7 (-15 -1515 (|#1| (-679 |#2|))) (-15 -3275 ((-679 |#1|) (-679 |#2|))) (-15 -4247 ((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|)))) (-550) (-982 |#1|)) (T -683))
-((-4247 (*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| (-679 *4)) (|:| |den| *4))) (-5 *1 (-683 *4 *5)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550)) (-5 *2 (-679 *4)) (-5 *1 (-683 *4 *5)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-683 *2 *4)))))
-(-10 -7 (-15 -1515 (|#1| (-679 |#2|))) (-15 -3275 ((-679 |#1|) (-679 |#2|))) (-15 -4247 ((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-3409 (((-679 (-689))) NIL) (((-679 (-689)) (-1246 $)) NIL)) (-1719 (((-689) $) NIL)) (-2277 (($ $) NIL (|has| (-689) (-1185)))) (-2131 (($ $) NIL (|has| (-689) (-1185)))) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-689) (-348)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-2018 (($ $) NIL (-3994 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-4110 (((-417 $) $) NIL (-3994 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-3948 (($ $) NIL (-12 (|has| (-689) (-992)) (|has| (-689) (-1185))))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-1599 (((-112) $ $) NIL (|has| (-689) (-306)))) (-2507 (((-762)) NIL (|has| (-689) (-367)))) (-2254 (($ $) NIL (|has| (-689) (-1185)))) (-2109 (($ $) NIL (|has| (-689) (-1185)))) (-2298 (($ $) NIL (|has| (-689) (-1185)))) (-2158 (($ $) NIL (|has| (-689) (-1185)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-689) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-689) (-1028 (-406 (-558)))))) (-3226 (((-558) $) NIL) (((-689) $) NIL) (((-406 (-558)) $) NIL (|has| (-689) (-1028 (-406 (-558)))))) (-3431 (($ (-1246 (-689))) NIL) (($ (-1246 (-689)) (-1246 $)) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-689) (-348)))) (-1709 (($ $ $) NIL (|has| (-689) (-306)))) (-3533 (((-679 (-689)) $) NIL) (((-679 (-689)) $ (-1246 $)) NIL)) (-1918 (((-679 (-689)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-689))) (|:| |vec| (-1246 (-689)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-689) (-631 (-558)))) (((-679 (-558)) (-679 $)) NIL (|has| (-689) (-631 (-558))))) (-3866 (((-3 $ "failed") (-406 (-1159 (-689)))) NIL (|has| (-689) (-362))) (($ (-1159 (-689))) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3963 (((-689) $) 29)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL (|has| (-689) (-543)))) (-2288 (((-112) $) NIL (|has| (-689) (-543)))) (-1673 (((-406 (-558)) $) NIL (|has| (-689) (-543)))) (-1489 (((-911)) NIL)) (-3692 (($) NIL (|has| (-689) (-367)))) (-2881 (($ $ $) NIL (|has| (-689) (-306)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| (-689) (-306)))) (-3567 (($) NIL (|has| (-689) (-348)))) (-3617 (((-112) $) NIL (|has| (-689) (-348)))) (-4362 (($ $) NIL (|has| (-689) (-348))) (($ $ (-762)) NIL (|has| (-689) (-348)))) (-2992 (((-112) $) NIL (-3994 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-2310 (((-2 (|:| |r| (-689)) (|:| |phi| (-689))) $) NIL (-12 (|has| (-689) (-1048)) (|has| (-689) (-1185))))) (-3348 (($) NIL (|has| (-689) (-1185)))) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-689) (-876 (-378)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-689) (-876 (-558))))) (-2532 (((-824 (-911)) $) NIL (|has| (-689) (-348))) (((-911) $) NIL (|has| (-689) (-348)))) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (-12 (|has| (-689) (-992)) (|has| (-689) (-1185))))) (-1423 (((-689) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| (-689) (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-689) (-306)))) (-1715 (((-1159 (-689)) $) NIL (|has| (-689) (-362)))) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3397 (($ (-1 (-689) (-689)) $) NIL)) (-1486 (((-911) $) NIL (|has| (-689) (-367)))) (-4342 (($ $) NIL (|has| (-689) (-1185)))) (-3850 (((-1159 (-689)) $) NIL)) (-1500 (($ (-635 $)) NIL (|has| (-689) (-306))) (($ $ $) NIL (|has| (-689) (-306)))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| (-689) (-362)))) (-1823 (($) NIL (|has| (-689) (-348)) CONST)) (-2349 (($ (-911)) NIL (|has| (-689) (-367)))) (-3464 (($) NIL)) (-3975 (((-689) $) 31)) (-1688 (((-1107) $) NIL)) (-2461 (($) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| (-689) (-306)))) (-1544 (($ (-635 $)) NIL (|has| (-689) (-306))) (($ $ $) NIL (|has| (-689) (-306)))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| (-689) (-348)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-689) (-306)) (|has| (-689) (-899))))) (-3939 (((-417 $) $) NIL (-3994 (-12 (|has| (-689) (-306)) (|has| (-689) (-899))) (|has| (-689) (-362))))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-689) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| (-689) (-306)))) (-2861 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-689)) NIL (|has| (-689) (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-689) (-306)))) (-3944 (($ $) NIL (|has| (-689) (-1185)))) (-1369 (($ $ (-1163) (-689)) NIL (|has| (-689) (-512 (-1163) (-689)))) (($ $ (-635 (-1163)) (-635 (-689))) NIL (|has| (-689) (-512 (-1163) (-689)))) (($ $ (-635 (-293 (-689)))) NIL (|has| (-689) (-308 (-689)))) (($ $ (-293 (-689))) NIL (|has| (-689) (-308 (-689)))) (($ $ (-689) (-689)) NIL (|has| (-689) (-308 (-689)))) (($ $ (-635 (-689)) (-635 (-689))) NIL (|has| (-689) (-308 (-689))))) (-1562 (((-762) $) NIL (|has| (-689) (-306)))) (-2276 (($ $ (-689)) NIL (|has| (-689) (-285 (-689) (-689))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| (-689) (-306)))) (-3789 (((-689)) NIL) (((-689) (-1246 $)) NIL)) (-2551 (((-3 (-762) "failed") $ $) NIL (|has| (-689) (-348))) (((-762) $) NIL (|has| (-689) (-348)))) (-3780 (($ $ (-1 (-689) (-689))) NIL) (($ $ (-1 (-689) (-689)) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-762)) NIL (|has| (-689) (-232))) (($ $) NIL (|has| (-689) (-232)))) (-2355 (((-679 (-689)) (-1246 $) (-1 (-689) (-689))) NIL (|has| (-689) (-362)))) (-2297 (((-1159 (-689))) NIL)) (-2312 (($ $) NIL (|has| (-689) (-1185)))) (-2170 (($ $) NIL (|has| (-689) (-1185)))) (-2933 (($) NIL (|has| (-689) (-348)))) (-2289 (($ $) NIL (|has| (-689) (-1185)))) (-2146 (($ $) NIL (|has| (-689) (-1185)))) (-2265 (($ $) NIL (|has| (-689) (-1185)))) (-2120 (($ $) NIL (|has| (-689) (-1185)))) (-2979 (((-679 (-689)) (-1246 $)) NIL) (((-1246 (-689)) $) NIL) (((-679 (-689)) (-1246 $) (-1246 $)) NIL) (((-1246 (-689)) $ (-1246 $)) NIL)) (-3441 (((-534) $) NIL (|has| (-689) (-606 (-534)))) (((-168 (-224)) $) NIL (|has| (-689) (-1012))) (((-168 (-378)) $) NIL (|has| (-689) (-1012))) (((-882 (-378)) $) NIL (|has| (-689) (-606 (-882 (-378))))) (((-882 (-558)) $) NIL (|has| (-689) (-606 (-882 (-558))))) (($ (-1159 (-689))) NIL) (((-1159 (-689)) $) NIL) (($ (-1246 (-689))) NIL) (((-1246 (-689)) $) NIL)) (-3068 (($ $) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-3994 (-12 (|has| (-689) (-306)) (|has| $ (-144)) (|has| (-689) (-899))) (|has| (-689) (-348))))) (-1436 (($ (-689) (-689)) 12)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-558)) NIL) (($ (-689)) NIL) (($ (-168 (-378))) 13) (($ (-168 (-558))) 19) (($ (-168 (-689))) 28) (($ (-168 (-691))) 25) (((-168 (-378)) $) 33) (($ (-406 (-558))) NIL (-3994 (|has| (-689) (-1028 (-406 (-558)))) (|has| (-689) (-362))))) (-1487 (($ $) NIL (|has| (-689) (-348))) (((-3 $ "failed") $) NIL (-3994 (-12 (|has| (-689) (-306)) (|has| $ (-144)) (|has| (-689) (-899))) (|has| (-689) (-144))))) (-1969 (((-1159 (-689)) $) NIL)) (-2417 (((-762)) NIL)) (-2743 (((-1246 $)) NIL)) (-4175 (($ $) NIL (|has| (-689) (-1185)))) (-2209 (($ $) NIL (|has| (-689) (-1185)))) (-2671 (((-112) $ $) NIL)) (-2325 (($ $) NIL (|has| (-689) (-1185)))) (-2184 (($ $) NIL (|has| (-689) (-1185)))) (-4197 (($ $) NIL (|has| (-689) (-1185)))) (-2233 (($ $) NIL (|has| (-689) (-1185)))) (-2362 (((-689) $) NIL (|has| (-689) (-1185)))) (-2038 (($ $) NIL (|has| (-689) (-1185)))) (-2244 (($ $) NIL (|has| (-689) (-1185)))) (-4185 (($ $) NIL (|has| (-689) (-1185)))) (-2221 (($ $) NIL (|has| (-689) (-1185)))) (-4164 (($ $) NIL (|has| (-689) (-1185)))) (-2195 (($ $) NIL (|has| (-689) (-1185)))) (-4241 (($ $) NIL (|has| (-689) (-1048)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-1 (-689) (-689))) NIL) (($ $ (-1 (-689) (-689)) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-1163)) NIL (|has| (-689) (-890 (-1163)))) (($ $ (-762)) NIL (|has| (-689) (-232))) (($ $) NIL (|has| (-689) (-232)))) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL (|has| (-689) (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ $) NIL (|has| (-689) (-1185))) (($ $ (-406 (-558))) NIL (-12 (|has| (-689) (-992)) (|has| (-689) (-1185)))) (($ $ (-558)) NIL (|has| (-689) (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ (-689) $) NIL) (($ $ (-689)) NIL) (($ (-406 (-558)) $) NIL (|has| (-689) (-362))) (($ $ (-406 (-558))) NIL (|has| (-689) (-362)))))
-(((-684) (-13 (-386) (-165 (-689)) (-10 -8 (-15 -3940 ($ (-168 (-378)))) (-15 -3940 ($ (-168 (-558)))) (-15 -3940 ($ (-168 (-689)))) (-15 -3940 ($ (-168 (-691)))) (-15 -3940 ((-168 (-378)) $))))) (T -684))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-168 (-558))) (-5 *1 (-684)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-168 (-689))) (-5 *1 (-684)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-168 (-691))) (-5 *1 (-684)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684)))))
-(-13 (-386) (-165 (-689)) (-10 -8 (-15 -3940 ($ (-168 (-378)))) (-15 -3940 ($ (-168 (-558)))) (-15 -3940 ($ (-168 (-689)))) (-15 -3940 ($ (-168 (-691)))) (-15 -3940 ((-168 (-378)) $))))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-2256 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-1958 (($ $) 62)) (-3188 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ |#1| $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40) (($ |#1| $ (-762)) 63)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1858 (((-635 (-2 (|:| -1925 |#1|) (|:| -1698 (-762)))) $) 61)) (-1966 (($) 49) (($ (-635 |#1|)) 48)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 50)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-685 |#1|) (-139) (-1087)) (T -685))
-((-2650 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-685 *2)) (-4 *2 (-1087)))) (-1958 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1087)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1087)) (-5 *2 (-635 (-2 (|:| -1925 *3) (|:| -1698 (-762))))))))
-(-13 (-234 |t#1|) (-10 -8 (-15 -2650 ($ |t#1| $ (-762))) (-15 -1958 ($ $)) (-15 -1858 ((-635 (-2 (|:| -1925 |t#1|) (|:| -1698 (-762)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-1840 (((-635 |#1|) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))) (-558)) 47)) (-1519 ((|#1| |#1| (-558)) 46)) (-1544 ((|#1| |#1| |#1| (-558)) 36)) (-3939 (((-635 |#1|) |#1| (-558)) 39)) (-2863 ((|#1| |#1| (-558) |#1| (-558)) 32)) (-2245 (((-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))) |#1| (-558)) 45)))
-(((-686 |#1|) (-10 -7 (-15 -1544 (|#1| |#1| |#1| (-558))) (-15 -1519 (|#1| |#1| (-558))) (-15 -3939 ((-635 |#1|) |#1| (-558))) (-15 -2245 ((-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))) |#1| (-558))) (-15 -1840 ((-635 |#1|) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))) (-558))) (-15 -2863 (|#1| |#1| (-558) |#1| (-558)))) (-1222 (-558))) (T -686))
-((-2863 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| -3939 *5) (|:| -4263 (-558))))) (-5 *4 (-558)) (-4 *5 (-1222 *4)) (-5 *2 (-635 *5)) (-5 *1 (-686 *5)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-635 (-2 (|:| -3939 *3) (|:| -4263 *4)))) (-5 *1 (-686 *3)) (-4 *3 (-1222 *4)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-635 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1222 *4)))) (-1519 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))) (-1544 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))))
-(-10 -7 (-15 -1544 (|#1| |#1| |#1| (-558))) (-15 -1519 (|#1| |#1| (-558))) (-15 -3939 ((-635 |#1|) |#1| (-558))) (-15 -2245 ((-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))) |#1| (-558))) (-15 -1840 ((-635 |#1|) (-635 (-2 (|:| -3939 |#1|) (|:| -4263 (-558)))) (-558))) (-15 -2863 (|#1| |#1| (-558) |#1| (-558))))
-((-3742 (((-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-4050 (((-1120 (-224)) (-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 40) (((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 42) (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 44)) (-3680 (((-1120 (-224)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-635 (-262))) NIL)) (-3264 (((-1120 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262))) 45)))
-(((-687) (-10 -7 (-15 -4050 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -4050 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -4050 ((-1120 (-224)) (-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -3264 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -3680 ((-1120 (-224)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -3742 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -687))
-((-3742 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-933 (-224)) (-224) (-224))) (-5 *1 (-687)))) (-3680 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))) (-3264 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))) (-4050 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-224))) (-5 *5 (-635 (-262))) (-5 *1 (-687)))) (-4050 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-224))) (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))) (-4050 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687)))))
-(-10 -7 (-15 -4050 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -4050 ((-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -4050 ((-1120 (-224)) (-1120 (-224)) (-1 (-933 (-224)) (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -3264 ((-1120 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1081 (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -3680 ((-1120 (-224)) (-315 (-558)) (-315 (-558)) (-315 (-558)) (-1 (-224) (-224)) (-1081 (-224)) (-635 (-262)))) (-15 -3742 ((-1 (-933 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
-((-3939 (((-417 (-1159 |#4|)) (-1159 |#4|)) 73) (((-417 |#4|) |#4|) 220)))
-(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3939 ((-417 |#4|) |#4|)) (-15 -3939 ((-417 (-1159 |#4|)) (-1159 |#4|)))) (-841) (-784) (-348) (-939 |#3| |#2| |#1|)) (T -688))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348)) (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-688 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
-(-10 -7 (-15 -3939 ((-417 |#4|) |#4|)) (-15 -3939 ((-417 (-1159 |#4|)) (-1159 |#4|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 84)) (-1669 (((-558) $) 30)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-4057 (($ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-3948 (($ $) NIL)) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL)) (-3457 (($) NIL T CONST)) (-2676 (($ $) NIL)) (-3302 (((-3 (-558) "failed") $) 73) (((-3 (-406 (-558)) "failed") $) 26) (((-3 (-378) "failed") $) 70)) (-3226 (((-558) $) 75) (((-406 (-558)) $) 67) (((-378) $) 68)) (-1709 (($ $ $) 96)) (-3248 (((-3 $ "failed") $) 87)) (-2881 (($ $ $) 95)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2659 (((-911)) 77) (((-911) (-911)) 76)) (-4053 (((-112) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL)) (-2532 (((-558) $) NIL)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL)) (-1423 (($ $) NIL)) (-2032 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2682 (((-558) (-558)) 81) (((-558)) 82)) (-2142 (($ $ $) NIL) (($) NIL (-12 (-2143 (|has| $ (-6 -4366))) (-2143 (|has| $ (-6 -4374)))))) (-2918 (((-558) (-558)) 79) (((-558)) 80)) (-2281 (($ $ $) NIL) (($) NIL (-12 (-2143 (|has| $ (-6 -4366))) (-2143 (|has| $ (-6 -4374)))))) (-3815 (((-558) $) 16)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 91)) (-4246 (((-911) (-558)) NIL (|has| $ (-6 -4374)))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL)) (-4259 (($ $) NIL)) (-4114 (($ (-558) (-558)) NIL) (($ (-558) (-558) (-911)) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) 92)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1857 (((-558) $) 22)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 94)) (-3035 (((-911)) NIL) (((-911) (-911)) NIL (|has| $ (-6 -4374)))) (-1298 (((-911) (-558)) NIL (|has| $ (-6 -4374)))) (-3441 (((-378) $) NIL) (((-224) $) NIL) (((-882 (-378)) $) NIL)) (-3940 (((-853) $) 52) (($ (-558)) 63) (($ $) NIL) (($ (-406 (-558))) 66) (($ (-558)) 63) (($ (-406 (-558))) 66) (($ (-378)) 60) (((-378) $) 50) (($ (-691)) 55)) (-2417 (((-762)) 103)) (-2243 (($ (-558) (-558) (-911)) 44)) (-2912 (($ $) NIL)) (-1657 (((-911)) NIL) (((-911) (-911)) NIL (|has| $ (-6 -4374)))) (-2636 (((-911)) 35) (((-911) (-911)) 78)) (-2671 (((-112) $ $) NIL)) (-4241 (($ $) NIL)) (-2207 (($) 32 T CONST)) (-2220 (($) 17 T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 83)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 101)) (-1805 (($ $ $) 65)) (-1796 (($ $) 99) (($ $ $) 100)) (-1785 (($ $ $) 98)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ $ (-406 (-558))) 90)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 97) (($ $ $) 88) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-689) (-13 (-403) (-386) (-362) (-1028 (-378)) (-1028 (-406 (-558))) (-146) (-10 -8 (-15 -2659 ((-911) (-911))) (-15 -2659 ((-911))) (-15 -2636 ((-911) (-911))) (-15 -2918 ((-558) (-558))) (-15 -2918 ((-558))) (-15 -2682 ((-558) (-558))) (-15 -2682 ((-558))) (-15 -3940 ((-378) $)) (-15 -3940 ($ (-691))) (-15 -3815 ((-558) $)) (-15 -1857 ((-558) $)) (-15 -2243 ($ (-558) (-558) (-911)))))) (T -689))
-((-1857 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-2659 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-2918 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-2682 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-689)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-691)) (-5 *1 (-689)))) (-2243 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-5 *1 (-689)))))
-(-13 (-403) (-386) (-362) (-1028 (-378)) (-1028 (-406 (-558))) (-146) (-10 -8 (-15 -2659 ((-911) (-911))) (-15 -2659 ((-911))) (-15 -2636 ((-911) (-911))) (-15 -2918 ((-558) (-558))) (-15 -2918 ((-558))) (-15 -2682 ((-558) (-558))) (-15 -2682 ((-558))) (-15 -3940 ((-378) $)) (-15 -3940 ($ (-691))) (-15 -3815 ((-558) $)) (-15 -1857 ((-558) $)) (-15 -2243 ($ (-558) (-558) (-911)))))
-((-4320 (((-679 |#1|) (-679 |#1|) |#1| |#1|) 65)) (-3125 (((-679 |#1|) (-679 |#1|) |#1|) 48)) (-4046 (((-679 |#1|) (-679 |#1|) |#1|) 66)) (-3849 (((-679 |#1|) (-679 |#1|)) 49)) (-4240 (((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|) 64)))
-(((-690 |#1|) (-10 -7 (-15 -3849 ((-679 |#1|) (-679 |#1|))) (-15 -3125 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -4046 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -4320 ((-679 |#1|) (-679 |#1|) |#1| |#1|)) (-15 -4240 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|))) (-306)) (T -690))
-((-4240 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-690 *3)) (-4 *3 (-306)))) (-4320 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))) (-4046 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
-(-10 -7 (-15 -3849 ((-679 |#1|) (-679 |#1|))) (-15 -3125 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -4046 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -4320 ((-679 |#1|) (-679 |#1|) |#1| |#1|)) (-15 -4240 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1997 (($ $ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1502 (($ $ $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL)) (-3277 (($ $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) 27)) (-3226 (((-558) $) 25)) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL)) (-2288 (((-112) $) NIL)) (-1673 (((-406 (-558)) $) NIL)) (-3692 (($ $) NIL) (($) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2283 (($ $ $ $) NIL)) (-4089 (($ $ $) NIL)) (-4053 (((-112) $) NIL)) (-3322 (($ $ $) NIL)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-3999 (((-112) $) NIL)) (-1495 (((-112) $) NIL)) (-2521 (((-3 $ "failed") $) NIL)) (-2032 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3664 (($ $ $ $) NIL)) (-2142 (($ $ $) NIL)) (-3227 (((-911) (-911)) 10) (((-911)) 9)) (-2281 (($ $ $) NIL)) (-1397 (($ $) NIL)) (-2958 (($ $) NIL)) (-1500 (($ (-635 $)) NIL) (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1521 (($ $ $) NIL)) (-1823 (($) NIL T CONST)) (-1610 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3608 (($ $) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4254 (((-112) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL) (($ $ (-762)) NIL)) (-3915 (($ $) NIL)) (-4098 (($ $) NIL)) (-3441 (((-224) $) NIL) (((-378) $) NIL) (((-882 (-558)) $) NIL) (((-534) $) NIL) (((-558) $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) 24) (($ $) NIL) (($ (-558)) 24) (((-315 $) (-315 (-558))) 18)) (-2417 (((-762)) NIL)) (-2626 (((-112) $ $) NIL)) (-3207 (($ $ $) NIL)) (-2636 (($) NIL)) (-2671 (((-112) $ $) NIL)) (-4363 (($ $ $ $) NIL)) (-4241 (($ $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $) NIL) (($ $ (-762)) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
-(((-691) (-13 (-386) (-543) (-10 -8 (-15 -3227 ((-911) (-911))) (-15 -3227 ((-911))) (-15 -3940 ((-315 $) (-315 (-558))))))) (T -691))
-((-3227 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691)))) (-3227 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-315 (-558))) (-5 *2 (-315 (-691))) (-5 *1 (-691)))))
-(-13 (-386) (-543) (-10 -8 (-15 -3227 ((-911) (-911))) (-15 -3227 ((-911))) (-15 -3940 ((-315 $) (-315 (-558))))))
-((-1501 (((-1 |#4| |#2| |#3|) |#1| (-1163) (-1163)) 19)) (-3653 (((-1 |#4| |#2| |#3|) (-1163)) 12)))
-(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3653 ((-1 |#4| |#2| |#3|) (-1163))) (-15 -1501 ((-1 |#4| |#2| |#3|) |#1| (-1163) (-1163)))) (-606 (-534)) (-1200) (-1200) (-1200)) (T -692))
-((-1501 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *3 *5 *6 *7)) (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)) (-4 *7 (-1200)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *4 *5 *6 *7)) (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)) (-4 *7 (-1200)))))
-(-10 -7 (-15 -3653 ((-1 |#4| |#2| |#3|) (-1163))) (-15 -1501 ((-1 |#4| |#2| |#3|) |#1| (-1163) (-1163))))
-((-3929 (((-112) $ $) NIL)) (-1913 (((-1251) $ (-762)) 14)) (-4145 (((-762) $) 12)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 25)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 24)))
-(((-693 |#1|) (-13 (-131) (-488 |#1|)) (-1087)) (T -693))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 15)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4030 ((|#1| $) 21)) (-3443 (($ $ $) NIL (|has| |#1| (-785)))) (-2986 (($ $ $) NIL (|has| |#1| (-785)))) (-1764 (((-1148) $) 46)) (-1714 (((-1110) $) NIL)) (-4045 ((|#3| $) 22)) (-4022 (((-856) $) 42)) (-2211 (($) 10 T CONST)) (-1782 (((-112) $ $) NIL (|has| |#1| (-785)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-785)))) (-1733 (((-112) $ $) 20)) (-1773 (((-112) $ $) NIL (|has| |#1| (-785)))) (-1754 (((-112) $ $) 24 (|has| |#1| (-785)))) (-1833 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1824 (($ $) 17) (($ $ $) NIL)) (-1813 (($ $ $) 27)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-655 |#1| |#2| |#3|) (-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -1833 ($ $ |#3|)) (-15 -1833 ($ |#1| |#3|)) (-15 -4030 (|#1| $)) (-15 -4045 (|#3| $)))) (-711 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -655))
+((-1833 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-1833 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-655 *2 *4 *3)) (-4 *2 (-711 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-655 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-4045 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4)))))
+(-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -1833 ($ $ |#3|)) (-15 -1833 ($ |#1| |#3|)) (-15 -4030 (|#1| $)) (-15 -4045 (|#3| $))))
+((-3071 (((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|)) 33)))
+(((-656 |#1|) (-10 -7 (-15 -3071 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|)))) (-902)) (T -656))
+((-3071 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *4))) (-5 *3 (-1162 *4)) (-4 *4 (-902)) (-5 *1 (-656 *4)))))
+(-10 -7 (-15 -3071 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2813 (((-638 |#1|) $) 82)) (-2733 (($ $ (-765)) 90)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-1852 (((-1277 |#1| |#2|) (-1277 |#1| |#2|) $) 48)) (-4017 (((-3 (-665 |#1|) "failed") $) NIL)) (-3938 (((-665 |#1|) $) NIL)) (-1619 (($ $) 89)) (-2067 (((-765) $) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-3044 (($ (-665 |#1|) |#2|) 68)) (-2597 (($ $) 86)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-3831 (((-1277 |#1| |#2|) (-1277 |#1| |#2|) $) 47)) (-4343 (((-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1578 (((-665 |#1|) $) NIL)) (-1590 ((|#2| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1444 (($ $ |#1| $) 30) (($ $ (-638 |#1|) (-638 $)) 32)) (-2894 (((-765) $) 88)) (-4031 (($ $ $) 20) (($ (-665 |#1|) (-665 |#1|)) 77) (($ (-665 |#1|) $) 75) (($ $ (-665 |#1|)) 76)) (-4022 (((-856) $) NIL) (($ |#1|) 74) (((-1268 |#1| |#2|) $) 58) (((-1277 |#1| |#2|) $) 41) (($ (-665 |#1|)) 25)) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-665 |#1|)) NIL)) (-4188 ((|#2| (-1277 |#1| |#2|) $) 43)) (-2211 (($) 23 T CONST)) (-3126 (((-638 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3314 (((-3 $ "failed") (-1268 |#1| |#2|)) 60)) (-3268 (($ (-665 |#1|)) 14)) (-1733 (((-112) $ $) 44)) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $) 66) (($ $ $) NIL)) (-1813 (($ $ $) 29)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-665 |#1|)) NIL)))
+(((-657 |#1| |#2|) (-13 (-373 |#1| |#2|) (-381 |#2| (-665 |#1|)) (-10 -8 (-15 -3314 ((-3 $ "failed") (-1268 |#1| |#2|))) (-15 -4031 ($ (-665 |#1|) (-665 |#1|))) (-15 -4031 ($ (-665 |#1|) $)) (-15 -4031 ($ $ (-665 |#1|))))) (-844) (-171)) (T -657))
+((-3314 (*1 *1 *2) (|partial| -12 (-5 *2 (-1268 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-657 *3 *4)))) (-4031 (*1 *1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-4031 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-4031 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))))
+(-13 (-373 |#1| |#2|) (-381 |#2| (-665 |#1|)) (-10 -8 (-15 -3314 ((-3 $ "failed") (-1268 |#1| |#2|))) (-15 -4031 ($ (-665 |#1|) (-665 |#1|))) (-15 -4031 ($ (-665 |#1|) $)) (-15 -4031 ($ $ (-665 |#1|)))))
+((-4268 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-3702 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3388 (($ (-1 (-112) |#2|) $) 27)) (-4075 (($ $) 55)) (-3776 (($ $) 63)) (-3999 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-3185 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-4235 (((-561) |#2| $ (-561)) 60) (((-561) |#2| $) NIL) (((-561) (-1 (-112) |#2|) $) 46)) (-1470 (($ (-765) |#2|) 53)) (-3092 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-1407 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4120 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3708 (($ |#2|) 15)) (-3671 (($ $ $ (-561)) 35) (($ |#2| $ (-561)) 33)) (-1330 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-2114 (($ $ (-1220 (-561))) 43) (($ $ (-561)) 37)) (-1365 (($ $ $ (-561)) 59)) (-4187 (($ $) 57)) (-1754 (((-112) $ $) 65)))
+(((-658 |#1| |#2|) (-10 -8 (-15 -3708 (|#1| |#2|)) (-15 -2114 (|#1| |#1| (-561))) (-15 -2114 (|#1| |#1| (-1220 (-561)))) (-15 -3999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3671 (|#1| |#2| |#1| (-561))) (-15 -3671 (|#1| |#1| |#1| (-561))) (-15 -3092 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3388 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3999 (|#1| |#2| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -1407 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4268 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4235 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4235 ((-561) |#2| |#1|)) (-15 -4235 ((-561) |#2| |#1| (-561))) (-15 -1407 (|#1| |#1| |#1|)) (-15 -4268 ((-112) |#1|)) (-15 -1365 (|#1| |#1| |#1| (-561))) (-15 -4075 (|#1| |#1|)) (-15 -3702 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1330 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1470 (|#1| (-765) |#2|)) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4187 (|#1| |#1|))) (-659 |#2|) (-1205)) (T -658))
+NIL
+(-10 -8 (-15 -3708 (|#1| |#2|)) (-15 -2114 (|#1| |#1| (-561))) (-15 -2114 (|#1| |#1| (-1220 (-561)))) (-15 -3999 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3671 (|#1| |#2| |#1| (-561))) (-15 -3671 (|#1| |#1| |#1| (-561))) (-15 -3092 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3388 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3999 (|#1| |#2| |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -1407 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4268 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4235 ((-561) (-1 (-112) |#2|) |#1|)) (-15 -4235 ((-561) |#2| |#1|)) (-15 -4235 ((-561) |#2| |#1| (-561))) (-15 -1407 (|#1| |#1| |#1|)) (-15 -4268 ((-112) |#1|)) (-15 -1365 (|#1| |#1| |#1| (-561))) (-15 -4075 (|#1| |#1|)) (-15 -3702 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3185 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1330 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1470 (|#1| (-765) |#2|)) (-15 -4120 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4187 (|#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-2295 ((|#1| $) 65)) (-3129 (($ $) 67)) (-3024 (((-1258) $ (-561) (-561)) 97 (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) 52 (|has| $ (-6 -4391)))) (-4268 (((-112) $) 142 (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3702 (($ $) 146 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4391)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4391)))) (-1289 (($ $) 141 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-1353 (($ $ $) 56 (|has| $ (-6 -4391)))) (-1726 ((|#1| $ |#1|) 54 (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) 58 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4391))) (($ $ "rest" $) 55 (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 117 (|has| $ (-6 -4391))) ((|#1| $ (-561) |#1|) 86 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-3388 (($ (-1 (-112) |#1|) $) 129)) (-3556 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4390)))) (-2285 ((|#1| $) 66)) (-1965 (($) 7 T CONST)) (-4075 (($ $) 144 (|has| $ (-6 -4391)))) (-2638 (($ $) 134)) (-1445 (($ $) 73) (($ $ (-765)) 71)) (-3776 (($ $) 131 (|has| |#1| (-1090)))) (-1472 (($ $) 99 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ |#1| $) 130 (|has| |#1| (-1090))) (($ (-1 (-112) |#1|) $) 125)) (-1489 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4390))) (($ |#1| $) 100 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2073 ((|#1| $ (-561) |#1|) 85 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 87)) (-3032 (((-112) $) 83)) (-4235 (((-561) |#1| $ (-561)) 139 (|has| |#1| (-1090))) (((-561) |#1| $) 138 (|has| |#1| (-1090))) (((-561) (-1 (-112) |#1|) $) 137)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-1470 (($ (-765) |#1|) 108)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 95 (|has| (-561) (-844)))) (-3443 (($ $ $) 147 (|has| |#1| (-844)))) (-3092 (($ $ $) 132 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-1407 (($ $ $) 140 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 94 (|has| (-561) (-844)))) (-2986 (($ $ $) 148 (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3708 (($ |#1|) 122)) (-2230 (((-112) $ (-765)) 10)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1520 ((|#1| $) 70) (($ $ (-765)) 68)) (-3671 (($ $ $ (-561)) 127) (($ |#1| $ (-561)) 126)) (-3312 (($ $ $ (-561)) 116) (($ |#1| $ (-561)) 115)) (-2451 (((-638 (-561)) $) 92)) (-1390 (((-112) (-561) $) 91)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 76) (($ $ (-765)) 74)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-1799 (($ $ |#1|) 96 (|has| $ (-6 -4391)))) (-2667 (((-112) $) 84)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 90)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1220 (-561))) 112) ((|#1| $ (-561)) 89) ((|#1| $ (-561) |#1|) 88)) (-2004 (((-561) $ $) 44)) (-2114 (($ $ (-1220 (-561))) 124) (($ $ (-561)) 123)) (-2849 (($ $ (-1220 (-561))) 114) (($ $ (-561)) 113)) (-3849 (((-112) $) 46)) (-3222 (($ $) 62)) (-4364 (($ $) 59 (|has| $ (-6 -4391)))) (-1624 (((-765) $) 63)) (-2883 (($ $) 64)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1365 (($ $ $ (-561)) 143 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 107)) (-4173 (($ $ $) 61) (($ $ |#1|) 60)) (-2725 (($ $ $) 78) (($ |#1| $) 77) (($ (-638 $)) 110) (($ $ |#1|) 109)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) 150 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 151 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1773 (((-112) $ $) 149 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 152 (|has| |#1| (-844)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-659 |#1|) (-139) (-1205)) (T -659))
+((-3708 (*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1205)))))
+(-13 (-1139 |t#1|) (-372 |t#1|) (-281 |t#1|) (-10 -8 (-15 -3708 ($ |t#1|))))
+(((-34) . T) ((-102) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-281 |#1|) . T) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1003 |#1|) . T) ((-1090) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1139 |#1|) . T) ((-1205) . T) ((-1241 |#1|) . T))
+((-3867 (((-638 (-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|))))) (-638 (-638 |#1|)) (-638 (-1253 |#1|))) 22) (((-638 (-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|))))) (-682 |#1|) (-638 (-1253 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-638 (-638 |#1|)) (-1253 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)) 14)) (-1569 (((-765) (-682 |#1|) (-1253 |#1|)) 30)) (-2117 (((-3 (-1253 |#1|) "failed") (-682 |#1|) (-1253 |#1|)) 24)) (-3398 (((-112) (-682 |#1|) (-1253 |#1|)) 27)))
+(((-660 |#1|) (-10 -7 (-15 -3867 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))) (-15 -3867 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-638 (-638 |#1|)) (-1253 |#1|))) (-15 -3867 ((-638 (-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|))))) (-682 |#1|) (-638 (-1253 |#1|)))) (-15 -3867 ((-638 (-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|))))) (-638 (-638 |#1|)) (-638 (-1253 |#1|)))) (-15 -2117 ((-3 (-1253 |#1|) "failed") (-682 |#1|) (-1253 |#1|))) (-15 -3398 ((-112) (-682 |#1|) (-1253 |#1|))) (-15 -1569 ((-765) (-682 |#1|) (-1253 |#1|)))) (-362)) (T -660))
+((-1569 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-660 *5)))) (-3398 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-660 *5)))) (-2117 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1253 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *1 (-660 *4)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362)) (-5 *2 (-638 (-2 (|:| |particular| (-3 (-1253 *5) "failed")) (|:| -3711 (-638 (-1253 *5)))))) (-5 *1 (-660 *5)) (-5 *4 (-638 (-1253 *5))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-638 (-2 (|:| |particular| (-3 (-1253 *5) "failed")) (|:| -3711 (-638 (-1253 *5)))))) (-5 *1 (-660 *5)) (-5 *4 (-638 (-1253 *5))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *5) "failed")) (|:| -3711 (-638 (-1253 *5))))) (-5 *1 (-660 *5)) (-5 *4 (-1253 *5)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *5) "failed")) (|:| -3711 (-638 (-1253 *5))))) (-5 *1 (-660 *5)) (-5 *4 (-1253 *5)))))
+(-10 -7 (-15 -3867 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))) (-15 -3867 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-638 (-638 |#1|)) (-1253 |#1|))) (-15 -3867 ((-638 (-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|))))) (-682 |#1|) (-638 (-1253 |#1|)))) (-15 -3867 ((-638 (-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|))))) (-638 (-638 |#1|)) (-638 (-1253 |#1|)))) (-15 -2117 ((-3 (-1253 |#1|) "failed") (-682 |#1|) (-1253 |#1|))) (-15 -3398 ((-112) (-682 |#1|) (-1253 |#1|))) (-15 -1569 ((-765) (-682 |#1|) (-1253 |#1|))))
+((-3867 (((-638 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|)))) |#4| (-638 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|))) |#4| |#3|) 45)) (-1569 (((-765) |#4| |#3|) 17)) (-2117 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3398 (((-112) |#4| |#3|) 13)))
+(((-661 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3867 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|))) |#4| |#3|)) (-15 -3867 ((-638 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|)))) |#4| (-638 |#3|))) (-15 -2117 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3398 ((-112) |#4| |#3|)) (-15 -1569 ((-765) |#4| |#3|))) (-362) (-13 (-372 |#1|) (-10 -7 (-6 -4391))) (-13 (-372 |#1|) (-10 -7 (-6 -4391))) (-680 |#1| |#2| |#3|)) (T -661))
+((-1569 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-5 *2 (-765)) (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))) (-3398 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-5 *2 (-112)) (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))) (-2117 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4391)))) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391)))) (-5 *1 (-661 *4 *5 *2 *3)) (-4 *3 (-680 *4 *5 *2)))) (-3867 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-5 *2 (-638 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3711 (-638 *7))))) (-5 *1 (-661 *5 *6 *7 *3)) (-5 *4 (-638 *7)) (-4 *3 (-680 *5 *6 *7)))) (-3867 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))))
+(-10 -7 (-15 -3867 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|))) |#4| |#3|)) (-15 -3867 ((-638 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|)))) |#4| (-638 |#3|))) (-15 -2117 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3398 ((-112) |#4| |#3|)) (-15 -1569 ((-765) |#4| |#3|)))
+((-1428 (((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -3711 (-638 (-1253 (-406 |#4|))))) (-638 |#4|) (-638 |#3|)) 45)))
+(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1428 ((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -3711 (-638 (-1253 (-406 |#4|))))) (-638 |#4|) (-638 |#3|)))) (-553) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -662))
+((-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *7)) (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 (-406 *8)) "failed")) (|:| -3711 (-638 (-1253 (-406 *8)))))) (-5 *1 (-662 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1428 ((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -3711 (-638 (-1253 (-406 |#4|))))) (-638 |#4|) (-638 |#3|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3027 (((-3 $ "failed")) NIL (|has| |#2| (-553)))) (-1744 ((|#2| $) NIL)) (-1810 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2602 (((-1253 (-682 |#2|))) NIL) (((-1253 (-682 |#2|)) (-1253 $)) NIL)) (-2487 (((-112) $) NIL)) (-1533 (((-1253 $)) 37)) (-1630 (((-112) $ (-765)) NIL)) (-3539 (($ |#2|) NIL)) (-1965 (($) NIL T CONST)) (-1298 (($ $) NIL (|has| |#2| (-306)))) (-3845 (((-239 |#1| |#2|) $ (-561)) NIL)) (-1312 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (|has| |#2| (-553)))) (-2104 (((-3 $ "failed")) NIL (|has| |#2| (-553)))) (-2483 (((-682 |#2|)) NIL) (((-682 |#2|) (-1253 $)) NIL)) (-2228 ((|#2| $) NIL)) (-3689 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1253 $)) NIL)) (-3494 (((-3 $ "failed") $) NIL (|has| |#2| (-553)))) (-3337 (((-1162 (-945 |#2|))) NIL (|has| |#2| (-362)))) (-3928 (($ $ (-914)) NIL)) (-3589 ((|#2| $) NIL)) (-2392 (((-1162 |#2|) $) NIL (|has| |#2| (-553)))) (-1381 ((|#2|) NIL) ((|#2| (-1253 $)) NIL)) (-1659 (((-1162 |#2|) $) NIL)) (-2380 (((-112)) NIL)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) NIL)) (-2257 (($ (-1253 |#2|)) NIL) (($ (-1253 |#2|) (-1253 $)) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1569 (((-765) $) NIL (|has| |#2| (-553))) (((-914)) 38)) (-4344 ((|#2| $ (-561) (-561)) NIL)) (-1922 (((-112)) NIL)) (-3203 (($ $ (-914)) NIL)) (-3571 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL)) (-3370 (((-765) $) NIL (|has| |#2| (-553)))) (-2542 (((-638 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-553)))) (-1513 (((-765) $) NIL)) (-3104 (((-112)) NIL)) (-1526 (((-765) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-2093 ((|#2| $) NIL (|has| |#2| (-6 (-4392 "*"))))) (-3514 (((-561) $) NIL)) (-2804 (((-561) $) NIL)) (-1305 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-3089 (((-561) $) NIL)) (-1709 (((-561) $) NIL)) (-2855 (($ (-638 (-638 |#2|))) NIL)) (-2065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3971 (((-638 (-638 |#2|)) $) NIL)) (-2008 (((-112)) NIL)) (-3138 (((-112)) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-2991 (((-3 (-2 (|:| |particular| $) (|:| -3711 (-638 $))) "failed")) NIL (|has| |#2| (-553)))) (-2445 (((-3 $ "failed")) NIL (|has| |#2| (-553)))) (-2919 (((-682 |#2|)) NIL) (((-682 |#2|) (-1253 $)) NIL)) (-3618 ((|#2| $) NIL)) (-1354 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1253 $)) NIL)) (-4063 (((-3 $ "failed") $) NIL (|has| |#2| (-553)))) (-2502 (((-1162 (-945 |#2|))) NIL (|has| |#2| (-362)))) (-3394 (($ $ (-914)) NIL)) (-3847 ((|#2| $) NIL)) (-2377 (((-1162 |#2|) $) NIL (|has| |#2| (-553)))) (-2696 ((|#2|) NIL) ((|#2| (-1253 $)) NIL)) (-1539 (((-1162 |#2|) $) NIL)) (-3139 (((-112)) NIL)) (-1764 (((-1148) $) NIL)) (-4367 (((-112)) NIL)) (-1446 (((-112)) NIL)) (-3696 (((-112)) NIL)) (-4222 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-1714 (((-1110) $) NIL)) (-3701 (((-112)) NIL)) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553)))) (-2123 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ (-561) (-561) |#2|) NIL) ((|#2| $ (-561) (-561)) 22) ((|#2| $ (-561)) NIL)) (-3238 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1382 ((|#2| $) NIL)) (-2450 (($ (-638 |#2|)) NIL)) (-2182 (((-112) $) NIL)) (-1886 (((-239 |#1| |#2|) $) NIL)) (-2622 ((|#2| $) NIL (|has| |#2| (-6 (-4392 "*"))))) (-1724 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-4187 (($ $) NIL)) (-3969 (((-682 |#2|) (-1253 $)) NIL) (((-1253 |#2|) $) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $ (-1253 $)) 25)) (-4174 (($ (-1253 |#2|)) NIL) (((-1253 |#2|) $) NIL)) (-2508 (((-638 (-945 |#2|))) NIL) (((-638 (-945 |#2|)) (-1253 $)) NIL)) (-3800 (($ $ $) NIL)) (-3053 (((-112)) NIL)) (-2745 (((-239 |#1| |#2|) $ (-561)) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) NIL) (((-682 |#2|) $) NIL)) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) 36)) (-1758 (((-638 (-1253 |#2|))) NIL (|has| |#2| (-553)))) (-3392 (($ $ $ $) NIL)) (-2216 (((-112)) NIL)) (-1367 (($ (-682 |#2|) $) NIL)) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4247 (((-112) $) NIL)) (-1761 (($ $ $) NIL)) (-2500 (((-112)) NIL)) (-2887 (((-112)) NIL)) (-4326 (((-112)) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#2| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-663 |#1| |#2|) (-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-416 |#2|)) (-914) (-171)) (T -663))
+NIL
+(-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-416 |#2|))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4092 (((-638 (-1125)) $) 10)) (-4022 (((-856) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-664) (-13 (-1073) (-10 -8 (-15 -4092 ((-638 (-1125)) $))))) (T -664))
+((-4092 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-664)))))
+(-13 (-1073) (-10 -8 (-15 -4092 ((-638 (-1125)) $))))
+((-4011 (((-112) $ $) NIL)) (-2813 (((-638 |#1|) $) NIL)) (-1621 (($ $) 51)) (-3295 (((-112) $) NIL)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4338 (((-3 $ "failed") (-813 |#1|)) 23)) (-4231 (((-112) (-813 |#1|)) 15)) (-2328 (($ (-813 |#1|)) 24)) (-3535 (((-112) $ $) 29)) (-3617 (((-914) $) 36)) (-1605 (($ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1657 (((-638 $) (-813 |#1|)) 17)) (-4022 (((-856) $) 42) (($ |#1|) 33) (((-813 |#1|) $) 38) (((-670 |#1|) $) 43)) (-3705 (((-59 (-638 $)) (-638 |#1|) (-914)) 56)) (-4238 (((-638 $) (-638 |#1|) (-914)) 59)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 52)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 37)))
+(((-665 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 -3295 ((-112) $)) (-15 -1605 ($ $)) (-15 -1621 ($ $)) (-15 -3617 ((-914) $)) (-15 -3535 ((-112) $ $)) (-15 -4022 ((-813 |#1|) $)) (-15 -4022 ((-670 |#1|) $)) (-15 -1657 ((-638 $) (-813 |#1|))) (-15 -4231 ((-112) (-813 |#1|))) (-15 -2328 ($ (-813 |#1|))) (-15 -4338 ((-3 $ "failed") (-813 |#1|))) (-15 -2813 ((-638 |#1|) $)) (-15 -3705 ((-59 (-638 $)) (-638 |#1|) (-914))) (-15 -4238 ((-638 $) (-638 |#1|) (-914))))) (-844)) (T -665))
+((-3295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-1605 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-1621 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-3535 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-665 *4))) (-5 *1 (-665 *4)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-2328 (*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-4338 (*1 *1 *2) (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844)) (-5 *2 (-59 (-638 (-665 *5)))) (-5 *1 (-665 *5)))) (-4238 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844)) (-5 *2 (-638 (-665 *5))) (-5 *1 (-665 *5)))))
+(-13 (-844) (-1031 |#1|) (-10 -8 (-15 -3295 ((-112) $)) (-15 -1605 ($ $)) (-15 -1621 ($ $)) (-15 -3617 ((-914) $)) (-15 -3535 ((-112) $ $)) (-15 -4022 ((-813 |#1|) $)) (-15 -4022 ((-670 |#1|) $)) (-15 -1657 ((-638 $) (-813 |#1|))) (-15 -4231 ((-112) (-813 |#1|))) (-15 -2328 ($ (-813 |#1|))) (-15 -4338 ((-3 $ "failed") (-813 |#1|))) (-15 -2813 ((-638 |#1|) $)) (-15 -3705 ((-59 (-638 $)) (-638 |#1|) (-914))) (-15 -4238 ((-638 $) (-638 |#1|) (-914)))))
+((-2484 ((|#2| $) 76)) (-3129 (($ $) 96)) (-1630 (((-112) $ (-765)) 26)) (-1445 (($ $) 85) (($ $ (-765)) 88)) (-3032 (((-112) $) 97)) (-1940 (((-638 $) $) 72)) (-2726 (((-112) $ $) 71)) (-3744 (((-112) $ (-765)) 24)) (-3975 (((-561) $) 46)) (-2780 (((-561) $) 45)) (-2230 (((-112) $ (-765)) 22)) (-3067 (((-112) $) 74)) (-1520 ((|#2| $) 89) (($ $ (-765)) 92)) (-3312 (($ $ $ (-561)) 62) (($ |#2| $ (-561)) 61)) (-2451 (((-638 (-561)) $) 44)) (-1390 (((-112) (-561) $) 42)) (-1433 ((|#2| $) NIL) (($ $ (-765)) 84)) (-1416 (($ $ (-561)) 99)) (-2667 (((-112) $) 98)) (-2123 (((-112) (-1 (-112) |#2|) $) 32)) (-2658 (((-638 |#2|) $) 33)) (-2277 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1220 (-561))) 58) ((|#2| $ (-561)) 40) ((|#2| $ (-561) |#2|) 41)) (-2004 (((-561) $ $) 70)) (-2849 (($ $ (-1220 (-561))) 57) (($ $ (-561)) 51)) (-3849 (((-112) $) 66)) (-3222 (($ $) 81)) (-1624 (((-765) $) 80)) (-2883 (($ $) 79)) (-4031 (($ (-638 |#2|)) 37)) (-1897 (($ $) 100)) (-4257 (((-638 $) $) 69)) (-3123 (((-112) $ $) 68)) (-3715 (((-112) (-1 (-112) |#2|) $) 31)) (-1733 (((-112) $ $) 18)) (-3498 (((-765) $) 29)))
+(((-666 |#1| |#2|) (-10 -8 (-15 -1897 (|#1| |#1|)) (-15 -1416 (|#1| |#1| (-561))) (-15 -3032 ((-112) |#1|)) (-15 -2667 ((-112) |#1|)) (-15 -2277 (|#2| |#1| (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561))) (-15 -2658 ((-638 |#2|) |#1|)) (-15 -1390 ((-112) (-561) |#1|)) (-15 -2451 ((-638 (-561)) |#1|)) (-15 -2780 ((-561) |#1|)) (-15 -3975 ((-561) |#1|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -2849 (|#1| |#1| (-561))) (-15 -2849 (|#1| |#1| (-1220 (-561)))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3222 (|#1| |#1|)) (-15 -1624 ((-765) |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -1520 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "last")) (-15 -1520 (|#2| |#1|)) (-15 -1445 (|#1| |#1| (-765))) (-15 -2277 (|#1| |#1| "rest")) (-15 -1445 (|#1| |#1|)) (-15 -1433 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "first")) (-15 -1433 (|#2| |#1|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -3123 ((-112) |#1| |#1|)) (-15 -2004 ((-561) |#1| |#1|)) (-15 -3849 ((-112) |#1|)) (-15 -2277 (|#2| |#1| "value")) (-15 -2484 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -1940 ((-638 |#1|) |#1|)) (-15 -4257 ((-638 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765)))) (-667 |#2|) (-1205)) (T -666))
+NIL
+(-10 -8 (-15 -1897 (|#1| |#1|)) (-15 -1416 (|#1| |#1| (-561))) (-15 -3032 ((-112) |#1|)) (-15 -2667 ((-112) |#1|)) (-15 -2277 (|#2| |#1| (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561))) (-15 -2658 ((-638 |#2|) |#1|)) (-15 -1390 ((-112) (-561) |#1|)) (-15 -2451 ((-638 (-561)) |#1|)) (-15 -2780 ((-561) |#1|)) (-15 -3975 ((-561) |#1|)) (-15 -4031 (|#1| (-638 |#2|))) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -2849 (|#1| |#1| (-561))) (-15 -2849 (|#1| |#1| (-1220 (-561)))) (-15 -3312 (|#1| |#2| |#1| (-561))) (-15 -3312 (|#1| |#1| |#1| (-561))) (-15 -3222 (|#1| |#1|)) (-15 -1624 ((-765) |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -1520 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "last")) (-15 -1520 (|#2| |#1|)) (-15 -1445 (|#1| |#1| (-765))) (-15 -2277 (|#1| |#1| "rest")) (-15 -1445 (|#1| |#1|)) (-15 -1433 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "first")) (-15 -1433 (|#2| |#1|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -3123 ((-112) |#1| |#1|)) (-15 -2004 ((-561) |#1| |#1|)) (-15 -3849 ((-112) |#1|)) (-15 -2277 (|#2| |#1| "value")) (-15 -2484 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -1940 ((-638 |#1|) |#1|)) (-15 -4257 ((-638 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -2123 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765))))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-2295 ((|#1| $) 65)) (-3129 (($ $) 67)) (-3024 (((-1258) $ (-561) (-561)) 97 (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) 52 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-1353 (($ $ $) 56 (|has| $ (-6 -4391)))) (-1726 ((|#1| $ |#1|) 54 (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) 58 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4391))) (($ $ "rest" $) 55 (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 117 (|has| $ (-6 -4391))) ((|#1| $ (-561) |#1|) 86 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 102)) (-2285 ((|#1| $) 66)) (-1965 (($) 7 T CONST)) (-3263 (($ $) 124)) (-1445 (($ $) 73) (($ $ (-765)) 71)) (-1472 (($ $) 99 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#1| $) 100 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 103)) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2073 ((|#1| $ (-561) |#1|) 85 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 87)) (-3032 (((-112) $) 83)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-2678 (((-765) $) 123)) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-1470 (($ (-765) |#1|) 108)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 95 (|has| (-561) (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 94 (|has| (-561) (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2230 (((-112) $ (-765)) 10)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-4176 (($ $) 126)) (-2258 (((-112) $) 127)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1520 ((|#1| $) 70) (($ $ (-765)) 68)) (-3312 (($ $ $ (-561)) 116) (($ |#1| $ (-561)) 115)) (-2451 (((-638 (-561)) $) 92)) (-1390 (((-112) (-561) $) 91)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1616 ((|#1| $) 125)) (-1433 ((|#1| $) 76) (($ $ (-765)) 74)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-1799 (($ $ |#1|) 96 (|has| $ (-6 -4391)))) (-1416 (($ $ (-561)) 122)) (-2667 (((-112) $) 84)) (-2075 (((-112) $) 128)) (-4299 (((-112) $) 129)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 90)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1220 (-561))) 112) ((|#1| $ (-561)) 89) ((|#1| $ (-561) |#1|) 88)) (-2004 (((-561) $ $) 44)) (-2849 (($ $ (-1220 (-561))) 114) (($ $ (-561)) 113)) (-3849 (((-112) $) 46)) (-3222 (($ $) 62)) (-4364 (($ $) 59 (|has| $ (-6 -4391)))) (-1624 (((-765) $) 63)) (-2883 (($ $) 64)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 107)) (-4173 (($ $ $) 61 (|has| $ (-6 -4391))) (($ $ |#1|) 60 (|has| $ (-6 -4391)))) (-2725 (($ $ $) 78) (($ |#1| $) 77) (($ (-638 $)) 110) (($ $ |#1|) 109)) (-1897 (($ $) 121)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-667 |#1|) (-139) (-1205)) (T -667))
+((-1489 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-2075 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-4176 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))) (-3263 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-667 *3)) (-4 *3 (-1205)))) (-1897 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
+(-13 (-1139 |t#1|) (-10 -8 (-15 -1489 ($ (-1 (-112) |t#1|) $)) (-15 -3556 ($ (-1 (-112) |t#1|) $)) (-15 -4299 ((-112) $)) (-15 -2075 ((-112) $)) (-15 -2258 ((-112) $)) (-15 -4176 ($ $)) (-15 -1616 (|t#1| $)) (-15 -3263 ($ $)) (-15 -2678 ((-765) $)) (-15 -1416 ($ $ (-561))) (-15 -1897 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1139 |#1|) . T) ((-1205) . T) ((-1241 |#1|) . T))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3348 (($ (-765) (-765) (-765)) 33 (|has| |#1| (-1042)))) (-1630 (((-112) $ (-765)) NIL)) (-2306 ((|#1| $ (-765) (-765) (-765) |#1|) 27)) (-1965 (($) NIL T CONST)) (-2948 (($ $ $) 37 (|has| |#1| (-1042)))) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3361 (((-1253 (-765)) $) 9)) (-4273 (($ (-1166) $ $) 22)) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-4152 (($ (-765)) 35 (|has| |#1| (-1042)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-765) (-765) (-765)) 25)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4031 (($ (-638 (-638 (-638 |#1|)))) 44)) (-4022 (($ (-951 (-951 (-951 |#1|)))) 15) (((-951 (-951 (-951 |#1|))) $) 12) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-668 |#1|) (-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -3348 ($ (-765) (-765) (-765))) (-15 -4152 ($ (-765))) (-15 -2948 ($ $ $))) |%noBranch|) (-15 -4031 ($ (-638 (-638 (-638 |#1|))))) (-15 -2277 (|#1| $ (-765) (-765) (-765))) (-15 -2306 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4022 ($ (-951 (-951 (-951 |#1|))))) (-15 -4022 ((-951 (-951 (-951 |#1|))) $)) (-15 -4273 ($ (-1166) $ $)) (-15 -3361 ((-1253 (-765)) $)))) (-1090)) (T -668))
+((-3348 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1090)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1090)))) (-2948 (*1 *1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1090)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-638 *3)))) (-4 *3 (-1090)) (-5 *1 (-668 *3)))) (-2277 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090)))) (-2306 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1090)) (-5 *1 (-668 *3)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3)) (-4 *3 (-1090)))) (-4273 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1090)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-1253 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1090)))))
+(-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -3348 ($ (-765) (-765) (-765))) (-15 -4152 ($ (-765))) (-15 -2948 ($ $ $))) |%noBranch|) (-15 -4031 ($ (-638 (-638 (-638 |#1|))))) (-15 -2277 (|#1| $ (-765) (-765) (-765))) (-15 -2306 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4022 ($ (-951 (-951 (-951 |#1|))))) (-15 -4022 ((-951 (-951 (-951 |#1|))) $)) (-15 -4273 ($ (-1166) $ $)) (-15 -3361 ((-1253 (-765)) $))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-3574 (((-481) $) 10)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-1125) $) 12)) (-1733 (((-112) $ $) NIL)))
+(((-669) (-13 (-1073) (-10 -8 (-15 -3574 ((-481) $)) (-15 -3279 ((-1125) $))))) (T -669))
+((-3574 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669)))))
+(-13 (-1073) (-10 -8 (-15 -3574 ((-481) $)) (-15 -3279 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-2813 (((-638 |#1|) $) 14)) (-1621 (($ $) 18)) (-3295 (((-112) $) 19)) (-4017 (((-3 |#1| "failed") $) 22)) (-3938 ((|#1| $) 20)) (-1445 (($ $) 36)) (-2597 (($ $) 24)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3535 (((-112) $ $) 41)) (-3617 (((-914) $) 38)) (-1605 (($ $) 17)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 ((|#1| $) 35)) (-4022 (((-856) $) 31) (($ |#1|) 23) (((-813 |#1|) $) 27)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 12)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 40)) (* (($ $ $) 34)))
+(((-670 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4022 ((-813 |#1|) $)) (-15 -1433 (|#1| $)) (-15 -1605 ($ $)) (-15 -3617 ((-914) $)) (-15 -3535 ((-112) $ $)) (-15 -2597 ($ $)) (-15 -1445 ($ $)) (-15 -3295 ((-112) $)) (-15 -1621 ($ $)) (-15 -2813 ((-638 |#1|) $)))) (-844)) (T -670))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-1433 (*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-1605 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-3535 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-2597 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-1621 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))))
+(-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4022 ((-813 |#1|) $)) (-15 -1433 (|#1| $)) (-15 -1605 ($ $)) (-15 -3617 ((-914) $)) (-15 -3535 ((-112) $ $)) (-15 -2597 ($ $)) (-15 -1445 ($ $)) (-15 -3295 ((-112) $)) (-15 -1621 ($ $)) (-15 -2813 ((-638 |#1|) $))))
+((-3664 ((|#1| (-1 |#1| (-765) |#1|) (-765) |#1|) 11)) (-3367 ((|#1| (-1 |#1| |#1|) (-765) |#1|) 9)))
+(((-671 |#1|) (-10 -7 (-15 -3367 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -3664 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|))) (-1090)) (T -671))
+((-3664 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1090)) (-5 *1 (-671 *2)))) (-3367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1090)) (-5 *1 (-671 *2)))))
+(-10 -7 (-15 -3367 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -3664 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|)))
+((-3747 ((|#2| |#1| |#2|) 9)) (-3735 ((|#1| |#1| |#2|) 8)))
+(((-672 |#1| |#2|) (-10 -7 (-15 -3735 (|#1| |#1| |#2|)) (-15 -3747 (|#2| |#1| |#2|))) (-1090) (-1090)) (T -672))
+((-3747 (*1 *2 *3 *2) (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-3735 (*1 *2 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
+(-10 -7 (-15 -3735 (|#1| |#1| |#2|)) (-15 -3747 (|#2| |#1| |#2|)))
+((-4286 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -4286 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1090) (-1090) (-1090)) (T -673))
+((-4286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)) (-5 *1 (-673 *5 *6 *2)))))
+(-10 -7 (-15 -4286 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-4052 (((-1204) $) 20)) (-3989 (((-638 (-1204)) $) 18)) (-3626 (($ (-638 (-1204)) (-1204)) 13)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 29) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1204) $) 21) (($ (-1108)) 10)) (-1733 (((-112) $ $) NIL)))
+(((-674) (-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4022 ($ (-1108))) (-15 -3626 ($ (-638 (-1204)) (-1204))) (-15 -3989 ((-638 (-1204)) $)) (-15 -4052 ((-1204) $))))) (T -674))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-674)))) (-3626 (*1 *1 *2 *3) (-12 (-5 *2 (-638 (-1204))) (-5 *3 (-1204)) (-5 *1 (-674)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-674)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-674)))))
+(-13 (-1073) (-608 (-1204)) (-10 -8 (-15 -4022 ($ (-1108))) (-15 -3626 ($ (-638 (-1204)) (-1204))) (-15 -3989 ((-638 (-1204)) $)) (-15 -4052 ((-1204) $))))
+((-3664 (((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)) 23)) (-1919 (((-1 |#1|) |#1|) 8)) (-1429 ((|#1| |#1|) 16)) (-3899 (((-638 |#1|) (-1 (-638 |#1|) (-638 |#1|)) (-561)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4022 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-765)) 20)))
+(((-675 |#1|) (-10 -7 (-15 -1919 ((-1 |#1|) |#1|)) (-15 -4022 ((-1 |#1|) |#1|)) (-15 -3899 (|#1| (-1 |#1| |#1|))) (-15 -3899 ((-638 |#1|) (-1 (-638 |#1|) (-638 |#1|)) (-561))) (-15 -1429 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -3664 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)))) (-1090)) (T -675))
+((-3664 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1090)) (-5 *1 (-675 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1090)) (-5 *1 (-675 *4)))) (-1429 (*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1090)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-638 *5) (-638 *5))) (-5 *4 (-561)) (-5 *2 (-638 *5)) (-5 *1 (-675 *5)) (-4 *5 (-1090)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1090)))) (-4022 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090)))) (-1919 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090)))))
+(-10 -7 (-15 -1919 ((-1 |#1|) |#1|)) (-15 -4022 ((-1 |#1|) |#1|)) (-15 -3899 (|#1| (-1 |#1| |#1|))) (-15 -3899 ((-638 |#1|) (-1 (-638 |#1|) (-638 |#1|)) (-561))) (-15 -1429 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -3664 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|))))
+((-2320 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1573 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1514 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1357 (((-1 |#2| |#1|) |#2|) 11)))
+(((-676 |#1| |#2|) (-10 -7 (-15 -1357 ((-1 |#2| |#1|) |#2|)) (-15 -1573 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1514 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2320 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1090) (-1090)) (T -676))
+((-2320 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)) (-4 *4 (-1090)))) (-1573 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5)) (-5 *1 (-676 *4 *5)))) (-1357 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1090)))))
+(-10 -7 (-15 -1357 ((-1 |#2| |#1|) |#2|)) (-15 -1573 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1514 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2320 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2938 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3745 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1421 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2628 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2037 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -3745 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1421 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2037 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2938 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1090) (-1090) (-1090)) (T -677))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-1 *7 *5)) (-5 *1 (-677 *5 *6 *7)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1090)))) (-2628 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1090)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1090)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6)))))
+(-10 -7 (-15 -3745 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1421 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2628 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2037 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2938 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3185 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4120 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-678 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4120 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4120 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3185 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1042) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|) (-1042) (-372 |#5|) (-372 |#5|) (-680 |#5| |#6| |#7|)) (T -678))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2)) (-5 *1 (-678 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-680 *5 *6 *7)) (-4 *10 (-680 *2 *8 *9)))) (-4120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-680 *8 *9 *10)) (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-680 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-680 *8 *9 *10)) (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-680 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))))
+(-10 -7 (-15 -4120 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4120 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3185 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2888 (($ (-765) (-765)) 33)) (-1548 (($ $ $) 56)) (-1820 (($ |#3|) 52) (($ $) 53)) (-1810 (((-112) $) 28)) (-1679 (($ $ (-561) (-561)) 58)) (-3925 (($ $ (-561) (-561)) 59)) (-2839 (($ $ (-561) (-561) (-561) (-561)) 63)) (-1961 (($ $) 54)) (-2487 (((-112) $) 14)) (-4153 (($ $ (-561) (-561) $) 64)) (-4167 ((|#2| $ (-561) (-561) |#2|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) 62)) (-3539 (($ (-765) |#2|) 39)) (-2855 (($ (-638 (-638 |#2|))) 37)) (-3971 (((-638 (-638 |#2|)) $) 57)) (-2488 (($ $ $) 55)) (-1756 (((-3 $ "failed") $ |#2|) 91)) (-2277 ((|#2| $ (-561) (-561)) NIL) ((|#2| $ (-561) (-561) |#2|) NIL) (($ $ (-638 (-561)) (-638 (-561))) 61)) (-2450 (($ (-638 |#2|)) 40) (($ (-638 $)) 42)) (-2182 (((-112) $) 24)) (-4022 (($ |#4|) 47) (((-856) $) NIL)) (-4247 (((-112) $) 30)) (-1833 (($ $ |#2|) 93)) (-1824 (($ $ $) 68) (($ $) 71)) (-1813 (($ $ $) 66)) (** (($ $ (-765)) 80) (($ $ (-561)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-561) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-679 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4022 ((-856) |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1833 (|#1| |#1| |#2|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4153 (|#1| |#1| (-561) (-561) |#1|)) (-15 -2839 (|#1| |#1| (-561) (-561) (-561) (-561))) (-15 -3925 (|#1| |#1| (-561) (-561))) (-15 -1679 (|#1| |#1| (-561) (-561))) (-15 -4167 (|#1| |#1| (-638 (-561)) (-638 (-561)) |#1|)) (-15 -2277 (|#1| |#1| (-638 (-561)) (-638 (-561)))) (-15 -3971 ((-638 (-638 |#2|)) |#1|)) (-15 -1548 (|#1| |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -1820 (|#1| |#3|)) (-15 -4022 (|#1| |#4|)) (-15 -2450 (|#1| (-638 |#1|))) (-15 -2450 (|#1| (-638 |#2|))) (-15 -3539 (|#1| (-765) |#2|)) (-15 -2855 (|#1| (-638 (-638 |#2|)))) (-15 -2888 (|#1| (-765) (-765))) (-15 -4247 ((-112) |#1|)) (-15 -1810 ((-112) |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -2487 ((-112) |#1|)) (-15 -4167 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) (-561)))) (-680 |#2| |#3| |#4|) (-1042) (-372 |#2|) (-372 |#2|)) (T -679))
+NIL
+(-10 -8 (-15 -4022 ((-856) |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -1833 (|#1| |#1| |#2|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4153 (|#1| |#1| (-561) (-561) |#1|)) (-15 -2839 (|#1| |#1| (-561) (-561) (-561) (-561))) (-15 -3925 (|#1| |#1| (-561) (-561))) (-15 -1679 (|#1| |#1| (-561) (-561))) (-15 -4167 (|#1| |#1| (-638 (-561)) (-638 (-561)) |#1|)) (-15 -2277 (|#1| |#1| (-638 (-561)) (-638 (-561)))) (-15 -3971 ((-638 (-638 |#2|)) |#1|)) (-15 -1548 (|#1| |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -1820 (|#1| |#3|)) (-15 -4022 (|#1| |#4|)) (-15 -2450 (|#1| (-638 |#1|))) (-15 -2450 (|#1| (-638 |#2|))) (-15 -3539 (|#1| (-765) |#2|)) (-15 -2855 (|#1| (-638 (-638 |#2|)))) (-15 -2888 (|#1| (-765) (-765))) (-15 -4247 ((-112) |#1|)) (-15 -1810 ((-112) |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -2487 ((-112) |#1|)) (-15 -4167 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) (-561))))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2888 (($ (-765) (-765)) 97)) (-1548 (($ $ $) 87)) (-1820 (($ |#2|) 91) (($ $) 90)) (-1810 (((-112) $) 99)) (-1679 (($ $ (-561) (-561)) 83)) (-3925 (($ $ (-561) (-561)) 82)) (-2839 (($ $ (-561) (-561) (-561) (-561)) 81)) (-1961 (($ $) 89)) (-2487 (((-112) $) 101)) (-1630 (((-112) $ (-765)) 8)) (-4153 (($ $ (-561) (-561) $) 80)) (-4167 ((|#1| $ (-561) (-561) |#1|) 44) (($ $ (-638 (-561)) (-638 (-561)) $) 84)) (-2550 (($ $ (-561) |#2|) 42)) (-2971 (($ $ (-561) |#3|) 41)) (-3539 (($ (-765) |#1|) 95)) (-1965 (($) 7 T CONST)) (-1298 (($ $) 67 (|has| |#1| (-306)))) (-3845 ((|#2| $ (-561)) 46)) (-1569 (((-765) $) 66 (|has| |#1| (-553)))) (-2073 ((|#1| $ (-561) (-561) |#1|) 43)) (-4344 ((|#1| $ (-561) (-561)) 48)) (-3571 (((-638 |#1|) $) 30)) (-3370 (((-765) $) 65 (|has| |#1| (-553)))) (-2542 (((-638 |#3|) $) 64 (|has| |#1| (-553)))) (-1513 (((-765) $) 51)) (-1470 (($ (-765) (-765) |#1|) 57)) (-1526 (((-765) $) 50)) (-3744 (((-112) $ (-765)) 9)) (-2093 ((|#1| $) 62 (|has| |#1| (-6 (-4392 "*"))))) (-3514 (((-561) $) 55)) (-2804 (((-561) $) 53)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3089 (((-561) $) 54)) (-1709 (((-561) $) 52)) (-2855 (($ (-638 (-638 |#1|))) 96)) (-2065 (($ (-1 |#1| |#1|) $) 34)) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3971 (((-638 (-638 |#1|)) $) 86)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-4222 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-2488 (($ $ $) 88)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) 56)) (-1756 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-553)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) (-561)) 49) ((|#1| $ (-561) (-561) |#1|) 47) (($ $ (-638 (-561)) (-638 (-561))) 85)) (-2450 (($ (-638 |#1|)) 94) (($ (-638 $)) 93)) (-2182 (((-112) $) 100)) (-2622 ((|#1| $) 63 (|has| |#1| (-6 (-4392 "*"))))) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-2745 ((|#3| $ (-561)) 45)) (-4022 (($ |#3|) 92) (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-4247 (((-112) $) 98)) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1833 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-1824 (($ $ $) 78) (($ $) 77)) (-1813 (($ $ $) 79)) (** (($ $ (-765)) 70) (($ $ (-561)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-561) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-680 |#1| |#2| |#3|) (-139) (-1042) (-372 |t#1|) (-372 |t#1|)) (T -680))
+((-2487 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2888 (*1 *1 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2855 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4022 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *2)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (-1820 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *2 *4)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (-1820 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1961 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2488 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1548 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-638 (-638 *3))))) (-2277 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4167 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1679 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3925 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2839 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4153 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1813 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1824 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-680 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-680 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1756 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-553)))) (-1833 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (-1298 (*1 *1 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-306)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-638 *5)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042)))) (-4222 (*1 *1 *1) (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4391) (-6 -4390) (-15 -2487 ((-112) $)) (-15 -2182 ((-112) $)) (-15 -1810 ((-112) $)) (-15 -4247 ((-112) $)) (-15 -2888 ($ (-765) (-765))) (-15 -2855 ($ (-638 (-638 |t#1|)))) (-15 -3539 ($ (-765) |t#1|)) (-15 -2450 ($ (-638 |t#1|))) (-15 -2450 ($ (-638 $))) (-15 -4022 ($ |t#3|)) (-15 -1820 ($ |t#2|)) (-15 -1820 ($ $)) (-15 -1961 ($ $)) (-15 -2488 ($ $ $)) (-15 -1548 ($ $ $)) (-15 -3971 ((-638 (-638 |t#1|)) $)) (-15 -2277 ($ $ (-638 (-561)) (-638 (-561)))) (-15 -4167 ($ $ (-638 (-561)) (-638 (-561)) $)) (-15 -1679 ($ $ (-561) (-561))) (-15 -3925 ($ $ (-561) (-561))) (-15 -2839 ($ $ (-561) (-561) (-561) (-561))) (-15 -4153 ($ $ (-561) (-561) $)) (-15 -1813 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -1824 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-561) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-765))) (IF (|has| |t#1| (-553)) (-15 -1756 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1833 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -1298 ($ $)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -1569 ((-765) $)) (-15 -3370 ((-765) $)) (-15 -2542 ((-638 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4392 "*"))) (PROGN (-15 -2622 (|t#1| $)) (-15 -2093 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -4222 ((-3 $ "failed") $)) (-15 ** ($ $ (-561)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-57 |#1| |#2| |#3|) . T) ((-1205) . T))
+((-1298 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-1569 (((-765) |#4|) 98 (|has| |#1| (-553)))) (-3370 (((-765) |#4|) 75 (|has| |#1| (-553)))) (-2542 (((-638 |#3|) |#4|) 82 (|has| |#1| (-553)))) (-4084 (((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-2093 ((|#1| |#4|) 34)) (-3932 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-553)))) (-4222 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-3447 ((|#4| |#4|) 67 (|has| |#1| (-553)))) (-3667 ((|#4| |#4| |#1| (-561) (-561)) 42)) (-3844 ((|#4| |#4| (-561) (-561)) 37)) (-2520 ((|#4| |#4| |#1| (-561) (-561)) 47)) (-2622 ((|#1| |#4|) 77)) (-2438 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-553)))))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2622 (|#1| |#4|)) (-15 -2093 (|#1| |#4|)) (-15 -3844 (|#4| |#4| (-561) (-561))) (-15 -3667 (|#4| |#4| |#1| (-561) (-561))) (-15 -2520 (|#4| |#4| |#1| (-561) (-561))) (IF (|has| |#1| (-553)) (PROGN (-15 -1569 ((-765) |#4|)) (-15 -3370 ((-765) |#4|)) (-15 -2542 ((-638 |#3|) |#4|)) (-15 -3447 (|#4| |#4|)) (-15 -3932 ((-3 |#4| "failed") |#4|)) (-15 -2438 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -1298 (|#4| |#4|)) (-15 -4084 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4222 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -681))
+((-4222 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-4084 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-681 *3 *4 *5 *6)) (-4 *6 (-680 *3 *4 *5)))) (-1298 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-2438 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-3932 (*1 *2 *2) (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-3370 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-1569 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-2520 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-680 *3 *5 *6)))) (-3667 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-680 *3 *5 *6)))) (-3844 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-561)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *1 (-681 *4 *5 *6 *2)) (-4 *2 (-680 *4 *5 *6)))) (-2093 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5)))) (-2622 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5)))))
+(-10 -7 (-15 -2622 (|#1| |#4|)) (-15 -2093 (|#1| |#4|)) (-15 -3844 (|#4| |#4| (-561) (-561))) (-15 -3667 (|#4| |#4| |#1| (-561) (-561))) (-15 -2520 (|#4| |#4| |#1| (-561) (-561))) (IF (|has| |#1| (-553)) (PROGN (-15 -1569 ((-765) |#4|)) (-15 -3370 ((-765) |#4|)) (-15 -2542 ((-638 |#3|) |#4|)) (-15 -3447 (|#4| |#4|)) (-15 -3932 ((-3 |#4| "failed") |#4|)) (-15 -2438 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -1298 (|#4| |#4|)) (-15 -4084 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4222 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2888 (($ (-765) (-765)) 47)) (-1548 (($ $ $) NIL)) (-1820 (($ (-1253 |#1|)) NIL) (($ $) NIL)) (-1810 (((-112) $) NIL)) (-1679 (($ $ (-561) (-561)) 12)) (-3925 (($ $ (-561) (-561)) NIL)) (-2839 (($ $ (-561) (-561) (-561) (-561)) NIL)) (-1961 (($ $) NIL)) (-2487 (((-112) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-4153 (($ $ (-561) (-561) $) NIL)) (-4167 ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561)) $) NIL)) (-2550 (($ $ (-561) (-1253 |#1|)) NIL)) (-2971 (($ $ (-561) (-1253 |#1|)) NIL)) (-3539 (($ (-765) |#1|) 22)) (-1965 (($) NIL T CONST)) (-1298 (($ $) 31 (|has| |#1| (-306)))) (-3845 (((-1253 |#1|) $ (-561)) NIL)) (-1569 (((-765) $) 33 (|has| |#1| (-553)))) (-2073 ((|#1| $ (-561) (-561) |#1|) 51)) (-4344 ((|#1| $ (-561) (-561)) NIL)) (-3571 (((-638 |#1|) $) NIL)) (-3370 (((-765) $) 35 (|has| |#1| (-553)))) (-2542 (((-638 (-1253 |#1|)) $) 38 (|has| |#1| (-553)))) (-1513 (((-765) $) 20)) (-1470 (($ (-765) (-765) |#1|) 16)) (-1526 (((-765) $) 21)) (-3744 (((-112) $ (-765)) NIL)) (-2093 ((|#1| $) 29 (|has| |#1| (-6 (-4392 "*"))))) (-3514 (((-561) $) 9)) (-2804 (((-561) $) 10)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3089 (((-561) $) 11)) (-1709 (((-561) $) 48)) (-2855 (($ (-638 (-638 |#1|))) NIL)) (-2065 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-638 (-638 |#1|)) $) 60)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-4222 (((-3 $ "failed") $) 45 (|has| |#1| (-362)))) (-2488 (($ $ $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1799 (($ $ |#1|) NIL)) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) (-561)) NIL) ((|#1| $ (-561) (-561) |#1|) NIL) (($ $ (-638 (-561)) (-638 (-561))) NIL)) (-2450 (($ (-638 |#1|)) NIL) (($ (-638 $)) NIL) (($ (-1253 |#1|)) 52)) (-2182 (((-112) $) NIL)) (-2622 ((|#1| $) 27 (|has| |#1| (-6 (-4392 "*"))))) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4174 (((-534) $) 64 (|has| |#1| (-609 (-534))))) (-2745 (((-1253 |#1|) $ (-561)) NIL)) (-4022 (($ (-1253 |#1|)) NIL) (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-4247 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $ $) NIL) (($ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) 23) (($ $ (-561)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-561) $) NIL) (((-1253 |#1|) $ (-1253 |#1|)) NIL) (((-1253 |#1|) (-1253 |#1|) $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-682 |#1|) (-13 (-680 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 -2450 ($ (-1253 |#1|))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4222 ((-3 $ "failed") $)) |%noBranch|))) (-1042)) (T -682))
+((-4222 (*1 *1 *1) (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3)))))
+(-13 (-680 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 -2450 ($ (-1253 |#1|))) (IF (|has| |#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4222 ((-3 $ "failed") $)) |%noBranch|)))
+((-2635 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 25)) (-4291 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 21)) (-3644 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765)) 26)) (-1601 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 14)) (-2856 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 18) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 16)) (-4317 (((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|)) 20)) (-2872 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 12)) (** (((-682 |#1|) (-682 |#1|) (-765)) 30)))
+(((-683 |#1|) (-10 -7 (-15 -2872 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1601 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2856 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2856 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -4317 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -4291 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2635 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3644 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765)))) (-1042)) (T -683))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-3644 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-2635 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-4291 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-4317 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2856 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2856 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-1601 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2872 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(-10 -7 (-15 -2872 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -1601 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2856 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2856 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -4317 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -4291 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2635 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3644 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765))))
+((-4017 (((-3 |#1| "failed") $) 17)) (-3938 ((|#1| $) NIL)) (-1876 (($) 7 T CONST)) (-3950 (($ |#1|) 8)) (-4022 (($ |#1|) 15) (((-856) $) 22)) (-2201 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -1876)) 11)) (-4217 ((|#1| $) 14)))
+(((-684 |#1|) (-13 (-1248) (-1031 |#1|) (-608 (-856)) (-10 -8 (-15 -3950 ($ |#1|)) (-15 -2201 ((-112) $ (|[\|\|]| |#1|))) (-15 -2201 ((-112) $ (|[\|\|]| -1876))) (-15 -4217 (|#1| $)) (-15 -1876 ($) -1514))) (-608 (-856))) (T -684))
+((-3950 (*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-856))) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1876)) (-5 *2 (-112)) (-5 *1 (-684 *4)) (-4 *4 (-608 (-856))))) (-4217 (*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))) (-1876 (*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))))
+(-13 (-1248) (-1031 |#1|) (-608 (-856)) (-10 -8 (-15 -3950 ($ |#1|)) (-15 -2201 ((-112) $ (|[\|\|]| |#1|))) (-15 -2201 ((-112) $ (|[\|\|]| -1876))) (-15 -4217 (|#1| $)) (-15 -1876 ($) -1514)))
+((-3019 ((|#2| |#2| |#4|) 25)) (-4026 (((-682 |#2|) |#3| |#4|) 31)) (-3926 (((-682 |#2|) |#2| |#4|) 30)) (-2522 (((-1253 |#2|) |#2| |#4|) 16)) (-3683 ((|#2| |#3| |#4|) 24)) (-2245 (((-682 |#2|) |#3| |#4| (-765) (-765)) 38)) (-4012 (((-682 |#2|) |#2| |#4| (-765)) 37)))
+(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-1253 |#2|) |#2| |#4|)) (-15 -3683 (|#2| |#3| |#4|)) (-15 -3019 (|#2| |#2| |#4|)) (-15 -3926 ((-682 |#2|) |#2| |#4|)) (-15 -4012 ((-682 |#2|) |#2| |#4| (-765))) (-15 -4026 ((-682 |#2|) |#3| |#4|)) (-15 -2245 ((-682 |#2|) |#3| |#4| (-765) (-765)))) (-1090) (-893 |#1|) (-372 |#2|) (-13 (-372 |#1|) (-10 -7 (-6 -4390)))) (T -685))
+((-2245 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *7 (-893 *6)) (-5 *2 (-682 *7)) (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-372 *7)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4390)))))) (-4026 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6)) (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-372 *6)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))) (-4012 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *3 (-893 *6)) (-5 *2 (-682 *3)) (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-372 *3)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4390)))))) (-3926 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))) (-3019 (*1 *2 *2 *3) (-12 (-4 *4 (-1090)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4390)))))) (-3683 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))) (-2522 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-1253 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))))
+(-10 -7 (-15 -2522 ((-1253 |#2|) |#2| |#4|)) (-15 -3683 (|#2| |#3| |#4|)) (-15 -3019 (|#2| |#2| |#4|)) (-15 -3926 ((-682 |#2|) |#2| |#4|)) (-15 -4012 ((-682 |#2|) |#2| |#4| (-765))) (-15 -4026 ((-682 |#2|) |#3| |#4|)) (-15 -2245 ((-682 |#2|) |#3| |#4| (-765) (-765))))
+((-3961 (((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)) 20)) (-4237 ((|#1| (-682 |#2|)) 9)) (-3799 (((-682 |#1|) (-682 |#2|)) 18)))
+(((-686 |#1| |#2|) (-10 -7 (-15 -4237 (|#1| (-682 |#2|))) (-15 -3799 ((-682 |#1|) (-682 |#2|))) (-15 -3961 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)))) (-553) (-985 |#1|)) (T -686))
+((-3961 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4))) (-5 *1 (-686 *4 *5)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553)) (-5 *2 (-682 *4)) (-5 *1 (-686 *4 *5)))) (-4237 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-686 *2 *4)))))
+(-10 -7 (-15 -4237 (|#1| (-682 |#2|))) (-15 -3799 ((-682 |#1|) (-682 |#2|))) (-15 -3961 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2695 (((-682 (-692))) NIL) (((-682 (-692)) (-1253 $)) NIL)) (-1744 (((-692) $) NIL)) (-2978 (($ $) NIL (|has| (-692) (-1190)))) (-4064 (($ $) NIL (|has| (-692) (-1190)))) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-692) (-348)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-1591 (($ $) NIL (-4007 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-3422 (((-417 $) $) NIL (-4007 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-1665 (($ $) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-1671 (((-112) $ $) NIL (|has| (-692) (-306)))) (-1393 (((-765)) NIL (|has| (-692) (-367)))) (-4172 (($ $) NIL (|has| (-692) (-1190)))) (-4041 (($ $) NIL (|has| (-692) (-1190)))) (-3009 (($ $) NIL (|has| (-692) (-1190)))) (-4085 (($ $) NIL (|has| (-692) (-1190)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-692) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-692) (-1031 (-406 (-561)))))) (-3938 (((-561) $) NIL) (((-692) $) NIL) (((-406 (-561)) $) NIL (|has| (-692) (-1031 (-406 (-561)))))) (-2257 (($ (-1253 (-692))) NIL) (($ (-1253 (-692)) (-1253 $)) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-692) (-348)))) (-1793 (($ $ $) NIL (|has| (-692) (-306)))) (-4145 (((-682 (-692)) $) NIL) (((-682 (-692)) $ (-1253 $)) NIL)) (-3602 (((-682 (-692)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-692))) (|:| |vec| (-1253 (-692)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-692) (-634 (-561)))) (((-682 (-561)) (-682 $)) NIL (|has| (-692) (-634 (-561))))) (-3185 (((-3 $ "failed") (-406 (-1162 (-692)))) NIL (|has| (-692) (-362))) (($ (-1162 (-692))) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1673 (((-692) $) 29)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL (|has| (-692) (-543)))) (-3798 (((-112) $) NIL (|has| (-692) (-543)))) (-3354 (((-406 (-561)) $) NIL (|has| (-692) (-543)))) (-1569 (((-914)) NIL)) (-1332 (($) NIL (|has| (-692) (-367)))) (-1774 (($ $ $) NIL (|has| (-692) (-306)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| (-692) (-306)))) (-2022 (($) NIL (|has| (-692) (-348)))) (-1803 (((-112) $) NIL (|has| (-692) (-348)))) (-1575 (($ $) NIL (|has| (-692) (-348))) (($ $ (-765)) NIL (|has| (-692) (-348)))) (-2737 (((-112) $) NIL (-4007 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-3136 (((-2 (|:| |r| (-692)) (|:| |phi| (-692))) $) NIL (-12 (|has| (-692) (-1051)) (|has| (-692) (-1190))))) (-4067 (($) NIL (|has| (-692) (-1190)))) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-692) (-879 (-378)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-692) (-879 (-561))))) (-4163 (((-827 (-914)) $) NIL (|has| (-692) (-348))) (((-914) $) NIL (|has| (-692) (-348)))) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-1672 (((-692) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| (-692) (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-692) (-306)))) (-2692 (((-1162 (-692)) $) NIL (|has| (-692) (-362)))) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-4120 (($ (-1 (-692) (-692)) $) NIL)) (-3198 (((-914) $) NIL (|has| (-692) (-367)))) (-4348 (($ $) NIL (|has| (-692) (-1190)))) (-3174 (((-1162 (-692)) $) NIL)) (-1582 (($ (-638 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| (-692) (-362)))) (-3721 (($) NIL (|has| (-692) (-348)) CONST)) (-2413 (($ (-914)) NIL (|has| (-692) (-367)))) (-2588 (($) NIL)) (-1684 (((-692) $) 31)) (-1714 (((-1110) $) NIL)) (-3158 (($) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| (-692) (-306)))) (-1623 (($ (-638 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| (-692) (-348)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-902))))) (-1657 (((-417 $) $) NIL (-4007 (-12 (|has| (-692) (-306)) (|has| (-692) (-902))) (|has| (-692) (-362))))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-692) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| (-692) (-306)))) (-1756 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-692)) NIL (|has| (-692) (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-692) (-306)))) (-3440 (($ $) NIL (|has| (-692) (-1190)))) (-1444 (($ $ (-1166) (-692)) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-638 (-1166)) (-638 (-692))) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-638 (-293 (-692)))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-293 (-692))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-692) (-692)) NIL (|has| (-692) (-308 (-692)))) (($ $ (-638 (-692)) (-638 (-692))) NIL (|has| (-692) (-308 (-692))))) (-3569 (((-765) $) NIL (|has| (-692) (-306)))) (-2277 (($ $ (-692)) NIL (|has| (-692) (-285 (-692) (-692))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| (-692) (-306)))) (-2553 (((-692)) NIL) (((-692) (-1253 $)) NIL)) (-1913 (((-3 (-765) "failed") $ $) NIL (|has| (-692) (-348))) (((-765) $) NIL (|has| (-692) (-348)))) (-3238 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-2656 (((-682 (-692)) (-1253 $) (-1 (-692) (-692))) NIL (|has| (-692) (-362)))) (-3660 (((-1162 (-692))) NIL)) (-3021 (($ $) NIL (|has| (-692) (-1190)))) (-4095 (($ $) NIL (|has| (-692) (-1190)))) (-1796 (($) NIL (|has| (-692) (-348)))) (-2995 (($ $) NIL (|has| (-692) (-1190)))) (-4073 (($ $) NIL (|has| (-692) (-1190)))) (-2968 (($ $) NIL (|has| (-692) (-1190)))) (-4054 (($ $) NIL (|has| (-692) (-1190)))) (-3969 (((-682 (-692)) (-1253 $)) NIL) (((-1253 (-692)) $) NIL) (((-682 (-692)) (-1253 $) (-1253 $)) NIL) (((-1253 (-692)) $ (-1253 $)) NIL)) (-4174 (((-534) $) NIL (|has| (-692) (-609 (-534)))) (((-168 (-224)) $) NIL (|has| (-692) (-1015))) (((-168 (-378)) $) NIL (|has| (-692) (-1015))) (((-885 (-378)) $) NIL (|has| (-692) (-609 (-885 (-378))))) (((-885 (-561)) $) NIL (|has| (-692) (-609 (-885 (-561))))) (($ (-1162 (-692))) NIL) (((-1162 (-692)) $) NIL) (($ (-1253 (-692))) NIL) (((-1253 (-692)) $) NIL)) (-2260 (($ $) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-4007 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-902))) (|has| (-692) (-348))))) (-1430 (($ (-692) (-692)) 12)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-561)) NIL) (($ (-692)) NIL) (($ (-168 (-378))) 13) (($ (-168 (-561))) 19) (($ (-168 (-692))) 28) (($ (-168 (-694))) 25) (((-168 (-378)) $) 33) (($ (-406 (-561))) NIL (-4007 (|has| (-692) (-1031 (-406 (-561)))) (|has| (-692) (-362))))) (-1760 (($ $) NIL (|has| (-692) (-348))) (((-3 $ "failed") $) NIL (-4007 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-902))) (|has| (-692) (-144))))) (-2485 (((-1162 (-692)) $) NIL)) (-4259 (((-765)) NIL)) (-3711 (((-1253 $)) NIL)) (-3055 (($ $) NIL (|has| (-692) (-1190)))) (-4132 (($ $) NIL (|has| (-692) (-1190)))) (-3168 (((-112) $ $) NIL)) (-3031 (($ $) NIL (|has| (-692) (-1190)))) (-4105 (($ $) NIL (|has| (-692) (-1190)))) (-3081 (($ $) NIL (|has| (-692) (-1190)))) (-4149 (($ $) NIL (|has| (-692) (-1190)))) (-1872 (((-692) $) NIL (|has| (-692) (-1190)))) (-2125 (($ $) NIL (|has| (-692) (-1190)))) (-4160 (($ $) NIL (|has| (-692) (-1190)))) (-3066 (($ $) NIL (|has| (-692) (-1190)))) (-4142 (($ $) NIL (|has| (-692) (-1190)))) (-3043 (($ $) NIL (|has| (-692) (-1190)))) (-4117 (($ $) NIL (|has| (-692) (-1190)))) (-3749 (($ $) NIL (|has| (-692) (-1051)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL (|has| (-692) (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| (-692) (-1190))) (($ $ (-406 (-561))) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190)))) (($ $ (-561)) NIL (|has| (-692) (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ (-692) $) NIL) (($ $ (-692)) NIL) (($ (-406 (-561)) $) NIL (|has| (-692) (-362))) (($ $ (-406 (-561))) NIL (|has| (-692) (-362)))))
+(((-687) (-13 (-386) (-165 (-692)) (-10 -8 (-15 -4022 ($ (-168 (-378)))) (-15 -4022 ($ (-168 (-561)))) (-15 -4022 ($ (-168 (-692)))) (-15 -4022 ($ (-168 (-694)))) (-15 -4022 ((-168 (-378)) $))))) (T -687))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-168 (-561))) (-5 *1 (-687)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-168 (-692))) (-5 *1 (-687)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-168 (-694))) (-5 *1 (-687)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687)))))
+(-13 (-386) (-165 (-692)) (-10 -8 (-15 -4022 ($ (-168 (-378)))) (-15 -4022 ($ (-168 (-561)))) (-15 -4022 ($ (-168 (-692)))) (-15 -4022 ($ (-168 (-694)))) (-15 -4022 ((-168 (-378)) $))))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-3388 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-3776 (($ $) 62)) (-1472 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ |#1| $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-4057 (((-638 (-2 (|:| -2654 |#1|) (|:| -1724 (-765)))) $) 61)) (-3579 (($) 49) (($ (-638 |#1|)) 48)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 50)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-688 |#1|) (-139) (-1090)) (T -688))
+((-3671 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1090)))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1090)))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-688 *3)) (-4 *3 (-1090)) (-5 *2 (-638 (-2 (|:| -2654 *3) (|:| -1724 (-765))))))))
+(-13 (-234 |t#1|) (-10 -8 (-15 -3671 ($ |t#1| $ (-765))) (-15 -3776 ($ $)) (-15 -4057 ((-638 (-2 (|:| -2654 |t#1|) (|:| -1724 (-765)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-3219 (((-638 |#1|) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))) (-561)) 47)) (-3028 ((|#1| |#1| (-561)) 46)) (-1623 ((|#1| |#1| |#1| (-561)) 36)) (-1657 (((-638 |#1|) |#1| (-561)) 39)) (-2655 ((|#1| |#1| (-561) |#1| (-561)) 32)) (-2424 (((-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))) |#1| (-561)) 45)))
+(((-689 |#1|) (-10 -7 (-15 -1623 (|#1| |#1| |#1| (-561))) (-15 -3028 (|#1| |#1| (-561))) (-15 -1657 ((-638 |#1|) |#1| (-561))) (-15 -2424 ((-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))) |#1| (-561))) (-15 -3219 ((-638 |#1|) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))) (-561))) (-15 -2655 (|#1| |#1| (-561) |#1| (-561)))) (-1229 (-561))) (T -689))
+((-2655 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| -1657 *5) (|:| -2894 (-561))))) (-5 *4 (-561)) (-4 *5 (-1229 *4)) (-5 *2 (-638 *5)) (-5 *1 (-689 *5)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-5 *2 (-638 (-2 (|:| -1657 *3) (|:| -2894 *4)))) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-5 *2 (-638 *3)) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))) (-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))) (-1623 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -1623 (|#1| |#1| |#1| (-561))) (-15 -3028 (|#1| |#1| (-561))) (-15 -1657 ((-638 |#1|) |#1| (-561))) (-15 -2424 ((-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))) |#1| (-561))) (-15 -3219 ((-638 |#1|) (-638 (-2 (|:| -1657 |#1|) (|:| -2894 (-561)))) (-561))) (-15 -2655 (|#1| |#1| (-561) |#1| (-561))))
+((-3278 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-2591 (((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 40) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 42) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 44)) (-2810 (((-1123 (-224)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-638 (-262))) NIL)) (-3499 (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262))) 45)))
+(((-690) (-10 -7 (-15 -2591 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2591 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2591 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3499 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2810 ((-1123 (-224)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3278 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -690))
+((-3278 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690)))) (-2810 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-3499 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2591 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-224))) (-5 *5 (-638 (-262))) (-5 *1 (-690)))) (-2591 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-224))) (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2591 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))))
+(-10 -7 (-15 -2591 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2591 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2591 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3499 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1084 (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -2810 ((-1123 (-224)) (-315 (-561)) (-315 (-561)) (-315 (-561)) (-1 (-224) (-224)) (-1084 (-224)) (-638 (-262)))) (-15 -3278 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))
+((-1657 (((-417 (-1162 |#4|)) (-1162 |#4|)) 73) (((-417 |#4|) |#4|) 220)))
+(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-417 |#4|) |#4|)) (-15 -1657 ((-417 (-1162 |#4|)) (-1162 |#4|)))) (-844) (-787) (-348) (-942 |#3| |#2| |#1|)) (T -691))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
+(-10 -7 (-15 -1657 ((-417 |#4|) |#4|)) (-15 -1657 ((-417 (-1162 |#4|)) (-1162 |#4|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 84)) (-2949 (((-561) $) 30)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3411 (($ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1665 (($ $) NIL)) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL)) (-1965 (($) NIL T CONST)) (-2210 (($ $) NIL)) (-4017 (((-3 (-561) "failed") $) 73) (((-3 (-406 (-561)) "failed") $) 26) (((-3 (-378) "failed") $) 70)) (-3938 (((-561) $) 75) (((-406 (-561)) $) 67) (((-378) $) 68)) (-1793 (($ $ $) 96)) (-3466 (((-3 $ "failed") $) 87)) (-1774 (($ $ $) 95)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3322 (((-914)) 77) (((-914) (-914)) 76)) (-3201 (((-112) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL)) (-4163 (((-561) $) NIL)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL)) (-1672 (($ $) NIL)) (-2110 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1991 (((-561) (-561)) 81) (((-561)) 82)) (-3443 (($ $ $) NIL) (($) NIL (-12 (-2159 (|has| $ (-6 -4373))) (-2159 (|has| $ (-6 -4381)))))) (-3299 (((-561) (-561)) 79) (((-561)) 80)) (-2986 (($ $ $) NIL) (($) NIL (-12 (-2159 (|has| $ (-6 -4373))) (-2159 (|has| $ (-6 -4381)))))) (-3923 (((-561) $) 16)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 91)) (-3114 (((-914) (-561)) NIL (|has| $ (-6 -4381)))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL)) (-1388 (($ $) NIL)) (-4205 (($ (-561) (-561)) NIL) (($ (-561) (-561) (-914)) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) 92)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-4196 (((-561) $) 22)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 94)) (-1368 (((-914)) NIL) (((-914) (-914)) NIL (|has| $ (-6 -4381)))) (-3794 (((-914) (-561)) NIL (|has| $ (-6 -4381)))) (-4174 (((-378) $) NIL) (((-224) $) NIL) (((-885 (-378)) $) NIL)) (-4022 (((-856) $) 52) (($ (-561)) 63) (($ $) NIL) (($ (-406 (-561))) 66) (($ (-561)) 63) (($ (-406 (-561))) 66) (($ (-378)) 60) (((-378) $) 50) (($ (-694)) 55)) (-4259 (((-765)) 103)) (-3982 (($ (-561) (-561) (-914)) 44)) (-2432 (($ $) NIL)) (-2342 (((-914)) NIL) (((-914) (-914)) NIL (|has| $ (-6 -4381)))) (-2684 (((-914)) 35) (((-914) (-914)) 78)) (-3168 (((-112) $ $) NIL)) (-3749 (($ $) NIL)) (-2211 (($) 32 T CONST)) (-2222 (($) 17 T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 83)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 101)) (-1833 (($ $ $) 65)) (-1824 (($ $) 99) (($ $ $) 100)) (-1813 (($ $ $) 98)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ $ (-406 (-561))) 90)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 97) (($ $ $) 88) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-692) (-13 (-403) (-386) (-362) (-1031 (-378)) (-1031 (-406 (-561))) (-146) (-10 -8 (-15 -3322 ((-914) (-914))) (-15 -3322 ((-914))) (-15 -2684 ((-914) (-914))) (-15 -3299 ((-561) (-561))) (-15 -3299 ((-561))) (-15 -1991 ((-561) (-561))) (-15 -1991 ((-561))) (-15 -4022 ((-378) $)) (-15 -4022 ($ (-694))) (-15 -3923 ((-561) $)) (-15 -4196 ((-561) $)) (-15 -3982 ($ (-561) (-561) (-914)))))) (T -692))
+((-4196 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-3322 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))) (-2684 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-3299 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-1991 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-692)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-692)))) (-3982 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-5 *1 (-692)))))
+(-13 (-403) (-386) (-362) (-1031 (-378)) (-1031 (-406 (-561))) (-146) (-10 -8 (-15 -3322 ((-914) (-914))) (-15 -3322 ((-914))) (-15 -2684 ((-914) (-914))) (-15 -3299 ((-561) (-561))) (-15 -3299 ((-561))) (-15 -1991 ((-561) (-561))) (-15 -1991 ((-561))) (-15 -4022 ((-378) $)) (-15 -4022 ($ (-694))) (-15 -3923 ((-561) $)) (-15 -4196 ((-561) $)) (-15 -3982 ($ (-561) (-561) (-914)))))
+((-3335 (((-682 |#1|) (-682 |#1|) |#1| |#1|) 65)) (-1298 (((-682 |#1|) (-682 |#1|) |#1|) 48)) (-2618 (((-682 |#1|) (-682 |#1|) |#1|) 66)) (-2467 (((-682 |#1|) (-682 |#1|)) 49)) (-4084 (((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|) 64)))
+(((-693 |#1|) (-10 -7 (-15 -2467 ((-682 |#1|) (-682 |#1|))) (-15 -1298 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2618 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -3335 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -4084 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|))) (-306)) (T -693))
+((-4084 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-693 *3)) (-4 *3 (-306)))) (-3335 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2618 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-1298 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(-10 -7 (-15 -2467 ((-682 |#1|) (-682 |#1|))) (-15 -1298 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2618 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -3335 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -4084 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-1854 (($ $ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL)) (-3368 (($ $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) 27)) (-3938 (((-561) $) 25)) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL)) (-3798 (((-112) $) NIL)) (-3354 (((-406 (-561)) $) NIL)) (-1332 (($ $) NIL) (($) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1288 (($ $ $ $) NIL)) (-3531 (($ $ $) NIL)) (-3201 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-3113 (((-112) $) NIL)) (-3402 (((-112) $) NIL)) (-1663 (((-3 $ "failed") $) NIL)) (-2110 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3386 (($ $ $ $) NIL)) (-3443 (($ $ $) NIL)) (-2038 (((-914) (-914)) 10) (((-914)) 9)) (-2986 (($ $ $) NIL)) (-3908 (($ $) NIL)) (-3617 (($ $) NIL)) (-1582 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-4305 (($ $ $) NIL)) (-3721 (($) NIL T CONST)) (-4103 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ (-638 $)) NIL) (($ $ $) NIL)) (-2101 (($ $) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2736 (((-112) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL) (($ $ (-765)) NIL)) (-3994 (($ $) NIL)) (-4187 (($ $) NIL)) (-4174 (((-224) $) NIL) (((-378) $) NIL) (((-885 (-561)) $) NIL) (((-534) $) NIL) (((-561) $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) 24) (($ $) NIL) (($ (-561)) 24) (((-315 $) (-315 (-561))) 18)) (-4259 (((-765)) NIL)) (-1383 (((-112) $ $) NIL)) (-3599 (($ $ $) NIL)) (-2684 (($) NIL)) (-3168 (((-112) $ $) NIL)) (-3383 (($ $ $ $) NIL)) (-3749 (($ $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $) NIL) (($ $ (-765)) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
+(((-694) (-13 (-386) (-543) (-10 -8 (-15 -2038 ((-914) (-914))) (-15 -2038 ((-914))) (-15 -4022 ((-315 $) (-315 (-561))))))) (T -694))
+((-2038 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694)))) (-2038 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-315 (-561))) (-5 *2 (-315 (-694))) (-5 *1 (-694)))))
+(-13 (-386) (-543) (-10 -8 (-15 -2038 ((-914) (-914))) (-15 -2038 ((-914))) (-15 -4022 ((-315 $) (-315 (-561))))))
+((-3706 (((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)) 19)) (-3064 (((-1 |#4| |#2| |#3|) (-1166)) 12)))
+(((-695 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3064 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -3706 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)))) (-609 (-534)) (-1205) (-1205) (-1205)) (T -695))
+((-3706 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7)) (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)) (-4 *7 (-1205)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7)) (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)) (-4 *7 (-1205)))))
+(-10 -7 (-15 -3064 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -3706 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166))))
+((-4011 (((-112) $ $) NIL)) (-3099 (((-1258) $ (-765)) 14)) (-4235 (((-765) $) 12)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 25)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 24)))
+(((-696 |#1|) (-13 (-131) (-488 |#1|)) (-1090)) (T -696))
NIL
(-13 (-131) (-488 |#1|))
-((-1584 (((-1 (-224) (-224) (-224)) |#1| (-1163) (-1163)) 34) (((-1 (-224) (-224)) |#1| (-1163)) 39)))
-(((-694 |#1|) (-10 -7 (-15 -1584 ((-1 (-224) (-224)) |#1| (-1163))) (-15 -1584 ((-1 (-224) (-224) (-224)) |#1| (-1163) (-1163)))) (-606 (-534))) (T -694))
-((-1584 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-694 *3)) (-4 *3 (-606 (-534))))) (-1584 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-694 *3)) (-4 *3 (-606 (-534))))))
-(-10 -7 (-15 -1584 ((-1 (-224) (-224)) |#1| (-1163))) (-15 -1584 ((-1 (-224) (-224) (-224)) |#1| (-1163) (-1163))))
-((-1341 (((-1163) |#1| (-1163) (-635 (-1163))) 9) (((-1163) |#1| (-1163) (-1163) (-1163)) 12) (((-1163) |#1| (-1163) (-1163)) 11) (((-1163) |#1| (-1163)) 10)))
-(((-695 |#1|) (-10 -7 (-15 -1341 ((-1163) |#1| (-1163))) (-15 -1341 ((-1163) |#1| (-1163) (-1163))) (-15 -1341 ((-1163) |#1| (-1163) (-1163) (-1163))) (-15 -1341 ((-1163) |#1| (-1163) (-635 (-1163))))) (-606 (-534))) (T -695))
-((-1341 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))) (-1341 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))) (-1341 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))) (-1341 (*1 *2 *3 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534))))))
-(-10 -7 (-15 -1341 ((-1163) |#1| (-1163))) (-15 -1341 ((-1163) |#1| (-1163) (-1163))) (-15 -1341 ((-1163) |#1| (-1163) (-1163) (-1163))) (-15 -1341 ((-1163) |#1| (-1163) (-635 (-1163)))))
-((-4140 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-696 |#1| |#2|) (-10 -7 (-15 -4140 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1200) (-1200)) (T -696))
-((-4140 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-696 *3 *4)) (-4 *3 (-1200)) (-4 *4 (-1200)))))
-(-10 -7 (-15 -4140 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2326 (((-1 |#3| |#2|) (-1163)) 11)) (-1501 (((-1 |#3| |#2|) |#1| (-1163)) 21)))
-(((-697 |#1| |#2| |#3|) (-10 -7 (-15 -2326 ((-1 |#3| |#2|) (-1163))) (-15 -1501 ((-1 |#3| |#2|) |#1| (-1163)))) (-606 (-534)) (-1200) (-1200)) (T -697))
-((-1501 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *3 *5 *6)) (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))))
-(-10 -7 (-15 -2326 ((-1 |#3| |#2|) (-1163))) (-15 -1501 ((-1 |#3| |#2|) |#1| (-1163))))
-((-4239 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| |#4|)))) (-635 (-762)) (-1246 (-635 (-1159 |#3|))) |#3|) 61)) (-2617 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-762)) |#3|) 74)) (-2005 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-762)) (-635 (-1159 |#4|)) (-1246 (-635 (-1159 |#3|))) |#3|) 34)))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2005 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-762)) (-635 (-1159 |#4|)) (-1246 (-635 (-1159 |#3|))) |#3|)) (-15 -2617 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-762)) |#3|)) (-15 -4239 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| |#4|)))) (-635 (-762)) (-1246 (-635 (-1159 |#3|))) |#3|))) (-784) (-841) (-306) (-939 |#3| |#1| |#2|)) (T -698))
-((-4239 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-635 (-1159 *13))) (-5 *3 (-1159 *13)) (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13)) (-5 *7 (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| *13))))) (-5 *8 (-635 (-762))) (-5 *9 (-1246 (-635 (-1159 *10)))) (-4 *12 (-841)) (-4 *10 (-306)) (-4 *13 (-939 *10 *11 *12)) (-4 *11 (-784)) (-5 *1 (-698 *11 *12 *10 *13)))) (-2617 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1159 *9))) (-5 *6 (-635 *9)) (-5 *7 (-635 *12)) (-5 *8 (-635 (-762))) (-4 *11 (-841)) (-4 *9 (-306)) (-4 *12 (-939 *9 *10 *11)) (-4 *10 (-784)) (-5 *2 (-635 (-1159 *12))) (-5 *1 (-698 *10 *11 *9 *12)) (-5 *3 (-1159 *12)))) (-2005 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-635 (-1159 *11))) (-5 *3 (-1159 *11)) (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-762))) (-5 *7 (-1246 (-635 (-1159 *8)))) (-4 *10 (-841)) (-4 *8 (-306)) (-4 *11 (-939 *8 *9 *10)) (-4 *9 (-784)) (-5 *1 (-698 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2005 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-762)) (-635 (-1159 |#4|)) (-1246 (-635 (-1159 |#3|))) |#3|)) (-15 -2617 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-762)) |#3|)) (-15 -4239 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-635 |#2|) (-635 (-1159 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| |#4|)))) (-635 (-762)) (-1246 (-635 (-1159 |#3|))) |#3|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3905 (($ $) 42)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-4056 (($ |#1| (-762)) 40)) (-3672 (((-762) $) 44)) (-3881 ((|#1| $) 43)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4263 (((-762) $) 45)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-3143 ((|#1| $ (-762)) 41)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-699 |#1|) (-139) (-1039)) (T -699))
-((-4263 (*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039)))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039)))) (-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039)))) (-4056 (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039)))))
-(-13 (-1039) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4263 ((-762) $)) (-15 -3672 ((-762) $)) (-15 -3881 (|t#1| $)) (-15 -3905 ($ $)) (-15 -3143 (|t#1| $ (-762))) (-15 -4056 ($ |t#1| (-762)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3397 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-700 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3397 (|#6| (-1 |#4| |#1|) |#3|))) (-550) (-1222 |#1|) (-1222 (-406 |#2|)) (-550) (-1222 |#4|) (-1222 (-406 |#5|))) (T -700))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-550)) (-4 *7 (-550)) (-4 *6 (-1222 *5)) (-4 *2 (-1222 (-406 *8))) (-5 *1 (-700 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1222 (-406 *6))) (-4 *8 (-1222 *7)))))
-(-10 -7 (-15 -3397 (|#6| (-1 |#4| |#1|) |#3|)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2200 (((-1145) (-853)) 31)) (-1490 (((-1251) (-1145)) 28)) (-2864 (((-1145) (-853)) 24)) (-1713 (((-1145) (-853)) 25)) (-3940 (((-853) $) NIL) (((-1145) (-853)) 23)) (-1708 (((-112) $ $) NIL)))
-(((-701) (-13 (-1087) (-10 -7 (-15 -3940 ((-1145) (-853))) (-15 -2864 ((-1145) (-853))) (-15 -1713 ((-1145) (-853))) (-15 -2200 ((-1145) (-853))) (-15 -1490 ((-1251) (-1145)))))) (T -701))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-701)))))
-(-13 (-1087) (-10 -7 (-15 -3940 ((-1145) (-853))) (-15 -2864 ((-1145) (-853))) (-15 -1713 ((-1145) (-853))) (-15 -2200 ((-1145) (-853))) (-15 -1490 ((-1251) (-1145)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) NIL)) (-3866 (($ |#1| |#2|) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3142 ((|#2| $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2489 (((-3 $ "failed") $ $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) ((|#1| $) NIL)) (-2417 (((-762)) NIL)) (-2671 (((-112) $ $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-702 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -3142 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3866 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -702))
-((-3142 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-362) (-10 -8 (-15 -3142 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3866 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $))))
-((-3929 (((-112) $ $) 77)) (-3124 (((-112) $) 30)) (-4333 (((-1246 |#1|) $ (-762)) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-1285 (($ (-1159 |#1|)) NIL)) (-3907 (((-1159 $) $ (-1069)) NIL) (((-1159 |#1|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2531 (($ $ $) NIL (|has| |#1| (-550)))) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2507 (((-762)) 46 (|has| |#1| (-367)))) (-2186 (($ $ (-762)) NIL)) (-3291 (($ $ (-762)) NIL)) (-4064 ((|#2| |#2|) 43)) (-2855 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1069) $) NIL)) (-2862 (($ $ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) 33)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3866 (($ |#2|) 41)) (-3248 (((-3 $ "failed") $) 85)) (-3692 (($) 50 (|has| |#1| (-367)))) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-2567 (($ $ $) NIL)) (-3862 (($ $ $) NIL (|has| |#1| (-550)))) (-3343 (((-2 (|:| -3455 |#1|) (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2074 (((-948 $)) 79)) (-2704 (($ $ |#1| (-762) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2532 (((-762) $ $) NIL (|has| |#1| (-550)))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-4068 (($ (-1159 |#1|) (-1069)) NIL) (($ (-1159 $) (-1069)) NIL)) (-4184 (($ $ (-762)) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) 76) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-1069)) NIL) (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3142 ((|#2|) 44)) (-3672 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-762) (-762)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (((-1159 |#1|) $) NIL)) (-2135 (((-3 (-1069) "failed") $) NIL)) (-1486 (((-911) $) NIL (|has| |#1| (-367)))) (-3850 ((|#2| $) 40)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) 28)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-1710 (((-2 (|:| -2263 $) (|:| -1548 $)) $ (-762)) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-1069)) (|:| -1857 (-762))) "failed") $) NIL)) (-1337 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1823 (($) NIL (|has| |#1| (-1138)) CONST)) (-2349 (($ (-911)) NIL (|has| |#1| (-367)))) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4037 (($ $) 78 (|has| |#1| (-348)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#1|) NIL) (($ $ (-635 (-1069)) (-635 |#1|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-550)))) (-2397 (((-3 $ "failed") $ (-762)) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 86 (|has| |#1| (-362)))) (-3789 (($ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-3780 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4263 (((-762) $) 31) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-2076 (((-948 $)) 35)) (-2017 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-550)))) (-3940 (((-853) $) 60) (($ (-558)) NIL) (($ |#1|) 57) (($ (-1069)) NIL) (($ |#2|) 67) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) 62) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) 20 T CONST)) (-3591 (((-1246 |#1|) $) 74)) (-1961 (($ (-1246 |#1|)) 49)) (-2220 (($) 8 T CONST)) (-3042 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2989 (((-1246 |#1|) $) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) 68)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) 71) (($ $ $) NIL)) (-1785 (($ $ $) 32)) (** (($ $ (-911)) NIL) (($ $ (-762)) 80)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 56) (($ $ $) 73) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-703 |#1| |#2|) (-13 (-1222 |#1|) (-608 |#2|) (-10 -8 (-15 -4064 (|#2| |#2|)) (-15 -3142 (|#2|)) (-15 -3866 ($ |#2|)) (-15 -3850 (|#2| $)) (-15 -3591 ((-1246 |#1|) $)) (-15 -1961 ($ (-1246 |#1|))) (-15 -2989 ((-1246 |#1|) $)) (-15 -2074 ((-948 $))) (-15 -2076 ((-948 $))) (IF (|has| |#1| (-348)) (-15 -4037 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1039) (-1222 |#1|)) (T -703))
-((-4064 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3)))) (-3142 (*1 *2) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039)))) (-3866 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3)))) (-3850 (*1 *2 *1) (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039)))) (-3591 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-1961 (*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-2989 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-2074 (*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-2076 (*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4)) (-4 *4 (-1222 *3)))) (-4037 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *2 (-1039)) (-5 *1 (-703 *2 *3)) (-4 *3 (-1222 *2)))))
-(-13 (-1222 |#1|) (-608 |#2|) (-10 -8 (-15 -4064 (|#2| |#2|)) (-15 -3142 (|#2|)) (-15 -3866 ($ |#2|)) (-15 -3850 (|#2| $)) (-15 -3591 ((-1246 |#1|) $)) (-15 -1961 ($ (-1246 |#1|))) (-15 -2989 ((-1246 |#1|) $)) (-15 -2074 ((-948 $))) (-15 -2076 ((-948 $))) (IF (|has| |#1| (-348)) (-15 -4037 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-2349 ((|#1| $) 13)) (-1688 (((-1107) $) NIL)) (-1857 ((|#2| $) 12)) (-3952 (($ |#1| |#2|) 16)) (-3940 (((-853) $) NIL) (($ (-2 (|:| -2349 |#1|) (|:| -1857 |#2|))) 15) (((-2 (|:| -2349 |#1|) (|:| -1857 |#2|)) $) 14)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 11)))
-(((-704 |#1| |#2| |#3|) (-13 (-841) (-488 (-2 (|:| -2349 |#1|) (|:| -1857 |#2|))) (-10 -8 (-15 -1857 (|#2| $)) (-15 -2349 (|#1| $)) (-15 -3952 ($ |#1| |#2|)))) (-841) (-1087) (-1 (-112) (-2 (|:| -2349 |#1|) (|:| -1857 |#2|)) (-2 (|:| -2349 |#1|) (|:| -1857 |#2|)))) (T -704))
-((-1857 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-704 *3 *2 *4)) (-4 *3 (-841)) (-14 *4 (-1 (-112) (-2 (|:| -2349 *3) (|:| -1857 *2)) (-2 (|:| -2349 *3) (|:| -1857 *2)))))) (-2349 (*1 *2 *1) (-12 (-4 *2 (-841)) (-5 *1 (-704 *2 *3 *4)) (-4 *3 (-1087)) (-14 *4 (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *3)) (-2 (|:| -2349 *2) (|:| -1857 *3)))))) (-3952 (*1 *1 *2 *3) (-12 (-5 *1 (-704 *2 *3 *4)) (-4 *2 (-841)) (-4 *3 (-1087)) (-14 *4 (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *3)) (-2 (|:| -2349 *2) (|:| -1857 *3)))))))
-(-13 (-841) (-488 (-2 (|:| -2349 |#1|) (|:| -1857 |#2|))) (-10 -8 (-15 -1857 (|#2| $)) (-15 -2349 (|#1| $)) (-15 -3952 ($ |#1| |#2|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 59)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-3226 ((|#1| $) NIL) (((-114) $) 39)) (-3248 (((-3 $ "failed") $) 90)) (-2381 ((|#2| (-114) |#2|) 82)) (-3999 (((-112) $) NIL)) (-3802 (($ |#1| (-360 (-114))) 14)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3039 (($ $ (-1 |#2| |#2|)) 58)) (-3196 (($ $ (-1 |#2| |#2|)) 44)) (-2276 ((|#2| $ |#2|) 33)) (-4090 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-3940 (((-853) $) 66) (($ (-558)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) 37)) (-3830 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-2207 (($) 21 T CONST)) (-2220 (($) 9 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) 48) (($ $ $) NIL)) (-1785 (($ $ $) 73)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ (-114) (-558)) NIL) (($ $ (-558)) 57)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171)))))
-(((-705 |#1| |#2|) (-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3830 ($ $)) (-15 -3830 ($ $ $)) (-15 -4090 (|#1| |#1|))) |%noBranch|) (-15 -3196 ($ $ (-1 |#2| |#2|))) (-15 -3039 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -2381 (|#2| (-114) |#2|)) (-15 -3802 ($ |#1| (-360 (-114)))))) (-1039) (-638 |#1|)) (T -705))
-((-3830 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3)) (-4 *3 (-638 *2)))) (-3830 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3)) (-4 *3 (-638 *2)))) (-4090 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3)) (-4 *3 (-638 *2)))) (-3196 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4)))) (-3039 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-705 *4 *5)) (-4 *5 (-638 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4)) (-4 *4 (-638 *3)))) (-2381 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1039)) (-5 *1 (-705 *4 *2)) (-4 *2 (-638 *4)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1039)) (-5 *1 (-705 *2 *4)) (-4 *4 (-638 *2)))))
-(-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3830 ($ $)) (-15 -3830 ($ $ $)) (-15 -4090 (|#1| |#1|))) |%noBranch|) (-15 -3196 ($ $ (-1 |#2| |#2|))) (-15 -3039 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -2381 (|#2| (-114) |#2|)) (-15 -3802 ($ |#1| (-360 (-114))))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 33)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3866 (($ |#1| |#2|) 25)) (-3248 (((-3 $ "failed") $) 48)) (-3999 (((-112) $) 35)) (-3142 ((|#2| $) 12)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 49)) (-1688 (((-1107) $) NIL)) (-2489 (((-3 $ "failed") $ $) 47)) (-3940 (((-853) $) 24) (($ (-558)) 19) ((|#1| $) 13)) (-2417 (((-762)) 28)) (-2207 (($) 16 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 38)) (-1796 (($ $) 43) (($ $ $) 37)) (-1785 (($ $ $) 40)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 21) (($ $ $) 20)))
-(((-706 |#1| |#2| |#3| |#4| |#5|) (-13 (-1039) (-10 -8 (-15 -3142 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3866 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3248 ((-3 $ "failed") $)) (-15 -3823 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -706))
-((-3248 (*1 *1 *1) (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3142 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3823 (*1 *1 *1) (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1039) (-10 -8 (-15 -3142 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3866 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3248 ((-3 $ "failed") $)) (-15 -3823 ($ $))))
-((* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-707 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-708 |#2|) (-171)) (T -707))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-708 |#1|) (-139) (-171)) (T -708))
+((-3195 (((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)) 34) (((-1 (-224) (-224)) |#1| (-1166)) 39)))
+(((-697 |#1|) (-10 -7 (-15 -3195 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -3195 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)))) (-609 (-534))) (T -697))
+((-3195 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-534))))) (-3195 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-534))))))
+(-10 -7 (-15 -3195 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -3195 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166))))
+((-1418 (((-1166) |#1| (-1166) (-638 (-1166))) 9) (((-1166) |#1| (-1166) (-1166) (-1166)) 12) (((-1166) |#1| (-1166) (-1166)) 11) (((-1166) |#1| (-1166)) 10)))
+(((-698 |#1|) (-10 -7 (-15 -1418 ((-1166) |#1| (-1166))) (-15 -1418 ((-1166) |#1| (-1166) (-1166))) (-15 -1418 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -1418 ((-1166) |#1| (-1166) (-638 (-1166))))) (-609 (-534))) (T -698))
+((-1418 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))) (-1418 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))) (-1418 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))) (-1418 (*1 *2 *3 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534))))))
+(-10 -7 (-15 -1418 ((-1166) |#1| (-1166))) (-15 -1418 ((-1166) |#1| (-1166) (-1166))) (-15 -1418 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -1418 ((-1166) |#1| (-1166) (-638 (-1166)))))
+((-3613 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-699 |#1| |#2|) (-10 -7 (-15 -3613 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1205) (-1205)) (T -699))
+((-3613 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-699 *3 *4)) (-4 *3 (-1205)) (-4 *4 (-1205)))))
+(-10 -7 (-15 -3613 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2426 (((-1 |#3| |#2|) (-1166)) 11)) (-3706 (((-1 |#3| |#2|) |#1| (-1166)) 21)))
+(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -2426 ((-1 |#3| |#2|) (-1166))) (-15 -3706 ((-1 |#3| |#2|) |#1| (-1166)))) (-609 (-534)) (-1205) (-1205)) (T -700))
+((-3706 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6)) (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))))
+(-10 -7 (-15 -2426 ((-1 |#3| |#2|) (-1166))) (-15 -3706 ((-1 |#3| |#2|) |#1| (-1166))))
+((-4104 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#4|)) (-638 |#3|) (-638 |#4|) (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| |#4|)))) (-638 (-765)) (-1253 (-638 (-1162 |#3|))) |#3|) 61)) (-2435 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#3|)) (-638 |#3|) (-638 |#4|) (-638 (-765)) |#3|) 74)) (-3496 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 |#3|) (-638 (-765)) (-638 (-1162 |#4|)) (-1253 (-638 (-1162 |#3|))) |#3|) 34)))
+(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3496 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 |#3|) (-638 (-765)) (-638 (-1162 |#4|)) (-1253 (-638 (-1162 |#3|))) |#3|)) (-15 -2435 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#3|)) (-638 |#3|) (-638 |#4|) (-638 (-765)) |#3|)) (-15 -4104 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#4|)) (-638 |#3|) (-638 |#4|) (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| |#4|)))) (-638 (-765)) (-1253 (-638 (-1162 |#3|))) |#3|))) (-787) (-844) (-306) (-942 |#3| |#1| |#2|)) (T -701))
+((-4104 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-638 (-1162 *13))) (-5 *3 (-1162 *13)) (-5 *4 (-638 *12)) (-5 *5 (-638 *10)) (-5 *6 (-638 *13)) (-5 *7 (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| *13))))) (-5 *8 (-638 (-765))) (-5 *9 (-1253 (-638 (-1162 *10)))) (-4 *12 (-844)) (-4 *10 (-306)) (-4 *13 (-942 *10 *11 *12)) (-4 *11 (-787)) (-5 *1 (-701 *11 *12 *10 *13)))) (-2435 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-638 *11)) (-5 *5 (-638 (-1162 *9))) (-5 *6 (-638 *9)) (-5 *7 (-638 *12)) (-5 *8 (-638 (-765))) (-4 *11 (-844)) (-4 *9 (-306)) (-4 *12 (-942 *9 *10 *11)) (-4 *10 (-787)) (-5 *2 (-638 (-1162 *12))) (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1162 *12)))) (-3496 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-638 (-1162 *11))) (-5 *3 (-1162 *11)) (-5 *4 (-638 *10)) (-5 *5 (-638 *8)) (-5 *6 (-638 (-765))) (-5 *7 (-1253 (-638 (-1162 *8)))) (-4 *10 (-844)) (-4 *8 (-306)) (-4 *11 (-942 *8 *9 *10)) (-4 *9 (-787)) (-5 *1 (-701 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3496 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 |#3|) (-638 (-765)) (-638 (-1162 |#4|)) (-1253 (-638 (-1162 |#3|))) |#3|)) (-15 -2435 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#3|)) (-638 |#3|) (-638 |#4|) (-638 (-765)) |#3|)) (-15 -4104 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-638 |#2|) (-638 (-1162 |#4|)) (-638 |#3|) (-638 |#4|) (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| |#4|)))) (-638 (-765)) (-1253 (-638 (-1162 |#3|))) |#3|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1619 (($ $) 42)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1387 (($ |#1| (-765)) 40)) (-2393 (((-765) $) 44)) (-1590 ((|#1| $) 43)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2894 (((-765) $) 45)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-2634 ((|#1| $ (-765)) 41)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-702 |#1|) (-139) (-1042)) (T -702))
+((-2894 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))))
+(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2894 ((-765) $)) (-15 -2393 ((-765) $)) (-15 -1590 (|t#1| $)) (-15 -1619 ($ $)) (-15 -2634 (|t#1| $ (-765))) (-15 -1387 ($ |t#1| (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4120 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-703 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4120 (|#6| (-1 |#4| |#1|) |#3|))) (-553) (-1229 |#1|) (-1229 (-406 |#2|)) (-553) (-1229 |#4|) (-1229 (-406 |#5|))) (T -703))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-553)) (-4 *7 (-553)) (-4 *6 (-1229 *5)) (-4 *2 (-1229 (-406 *8))) (-5 *1 (-703 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1229 (-406 *6))) (-4 *8 (-1229 *7)))))
+(-10 -7 (-15 -4120 (|#6| (-1 |#4| |#1|) |#3|)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3076 (((-1148) (-856)) 31)) (-1491 (((-1258) (-1148)) 28)) (-4266 (((-1148) (-856)) 24)) (-3578 (((-1148) (-856)) 25)) (-4022 (((-856) $) NIL) (((-1148) (-856)) 23)) (-1733 (((-112) $ $) NIL)))
+(((-704) (-13 (-1090) (-10 -7 (-15 -4022 ((-1148) (-856))) (-15 -4266 ((-1148) (-856))) (-15 -3578 ((-1148) (-856))) (-15 -3076 ((-1148) (-856))) (-15 -1491 ((-1258) (-1148)))))) (T -704))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-704)))))
+(-13 (-1090) (-10 -7 (-15 -4022 ((-1148) (-856))) (-15 -4266 ((-1148) (-856))) (-15 -3578 ((-1148) (-856))) (-15 -3076 ((-1148) (-856))) (-15 -1491 ((-1258) (-1148)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) NIL)) (-3185 (($ |#1| |#2|) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2912 ((|#2| $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2777 (((-3 $ "failed") $ $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) ((|#1| $) NIL)) (-4259 (((-765)) NIL)) (-3168 (((-112) $ $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-705 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -2912 (|#2| $)) (-15 -4022 (|#1| $)) (-15 -3185 ($ |#1| |#2|)) (-15 -2777 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -705))
+((-2912 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4022 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3185 (*1 *1 *2 *3) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2777 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-362) (-10 -8 (-15 -2912 (|#2| $)) (-15 -4022 (|#1| $)) (-15 -3185 ($ |#1| |#2|)) (-15 -2777 ((-3 $ "failed") $ $))))
+((-4011 (((-112) $ $) 77)) (-2800 (((-112) $) 30)) (-1557 (((-1253 |#1|) $ (-765)) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-4110 (($ (-1162 |#1|)) NIL)) (-1620 (((-1162 $) $ (-1072)) NIL) (((-1162 |#1|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2645 (($ $ $) NIL (|has| |#1| (-553)))) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1393 (((-765)) 46 (|has| |#1| (-367)))) (-3784 (($ $ (-765)) NIL)) (-2239 (($ $ (-765)) NIL)) (-3020 ((|#2| |#2|) 43)) (-1301 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1072) $) NIL)) (-3051 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) 33)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3185 (($ |#2|) 41)) (-3466 (((-3 $ "failed") $) 85)) (-1332 (($) 50 (|has| |#1| (-367)))) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-3293 (($ $ $) NIL)) (-4034 (($ $ $) NIL (|has| |#1| (-553)))) (-3806 (((-2 (|:| -4188 |#1|) (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2449 (((-951 $)) 79)) (-2103 (($ $ |#1| (-765) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4163 (((-765) $ $) NIL (|has| |#1| (-553)))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-1401 (($ (-1162 |#1|) (-1072)) NIL) (($ (-1162 $) (-1072)) NIL)) (-3244 (($ $ (-765)) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) 76) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-1072)) NIL) (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-2912 ((|#2|) 44)) (-2393 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-765) (-765)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3434 (((-1162 |#1|) $) NIL)) (-1358 (((-3 (-1072) "failed") $) NIL)) (-3198 (((-914) $) NIL (|has| |#1| (-367)))) (-3174 ((|#2| $) 40)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) 28)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-3597 (((-2 (|:| -1307 $) (|:| -1693 $)) $ (-765)) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-1072)) (|:| -4196 (-765))) "failed") $) NIL)) (-1842 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3721 (($) NIL (|has| |#1| (-1141)) CONST)) (-2413 (($ (-914)) NIL (|has| |#1| (-367)))) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1530 (($ $) 78 (|has| |#1| (-348)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-638 (-1072)) (-638 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-553)))) (-1853 (((-3 $ "failed") $ (-765)) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 86 (|has| |#1| (-362)))) (-2553 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-3238 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2894 (((-765) $) 31) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-2402 (((-951 $)) 35)) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-553)))) (-4022 (((-856) $) 60) (($ (-561)) NIL) (($ |#1|) 57) (($ (-1072)) NIL) (($ |#2|) 67) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) 62) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) 20 T CONST)) (-4020 (((-1253 |#1|) $) 74)) (-1917 (($ (-1253 |#1|)) 49)) (-2222 (($) 8 T CONST)) (-3122 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3171 (((-1253 |#1|) $) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) 68)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) 71) (($ $ $) NIL)) (-1813 (($ $ $) 32)) (** (($ $ (-914)) NIL) (($ $ (-765)) 80)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 56) (($ $ $) 73) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
+(((-706 |#1| |#2|) (-13 (-1229 |#1|) (-611 |#2|) (-10 -8 (-15 -3020 (|#2| |#2|)) (-15 -2912 (|#2|)) (-15 -3185 ($ |#2|)) (-15 -3174 (|#2| $)) (-15 -4020 ((-1253 |#1|) $)) (-15 -1917 ($ (-1253 |#1|))) (-15 -3171 ((-1253 |#1|) $)) (-15 -2449 ((-951 $))) (-15 -2402 ((-951 $))) (IF (|has| |#1| (-348)) (-15 -1530 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1042) (-1229 |#1|)) (T -706))
+((-3020 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))) (-2912 (*1 *2) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-3185 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-4020 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-1917 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2449 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2402 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-1530 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3)) (-4 *3 (-1229 *2)))))
+(-13 (-1229 |#1|) (-611 |#2|) (-10 -8 (-15 -3020 (|#2| |#2|)) (-15 -2912 (|#2|)) (-15 -3185 ($ |#2|)) (-15 -3174 (|#2| $)) (-15 -4020 ((-1253 |#1|) $)) (-15 -1917 ($ (-1253 |#1|))) (-15 -3171 ((-1253 |#1|) $)) (-15 -2449 ((-951 $))) (-15 -2402 ((-951 $))) (IF (|has| |#1| (-348)) (-15 -1530 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 ((|#1| $) 13)) (-1714 (((-1110) $) NIL)) (-4196 ((|#2| $) 12)) (-4031 (($ |#1| |#2|) 16)) (-4022 (((-856) $) NIL) (($ (-2 (|:| -2413 |#1|) (|:| -4196 |#2|))) 15) (((-2 (|:| -2413 |#1|) (|:| -4196 |#2|)) $) 14)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 11)))
+(((-707 |#1| |#2| |#3|) (-13 (-844) (-488 (-2 (|:| -2413 |#1|) (|:| -4196 |#2|))) (-10 -8 (-15 -4196 (|#2| $)) (-15 -2413 (|#1| $)) (-15 -4031 ($ |#1| |#2|)))) (-844) (-1090) (-1 (-112) (-2 (|:| -2413 |#1|) (|:| -4196 |#2|)) (-2 (|:| -2413 |#1|) (|:| -4196 |#2|)))) (T -707))
+((-4196 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844)) (-14 *4 (-1 (-112) (-2 (|:| -2413 *3) (|:| -4196 *2)) (-2 (|:| -2413 *3) (|:| -4196 *2)))))) (-2413 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1090)) (-14 *4 (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *3)) (-2 (|:| -2413 *2) (|:| -4196 *3)))))) (-4031 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1090)) (-14 *4 (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *3)) (-2 (|:| -2413 *2) (|:| -4196 *3)))))))
+(-13 (-844) (-488 (-2 (|:| -2413 |#1|) (|:| -4196 |#2|))) (-10 -8 (-15 -4196 (|#2| $)) (-15 -2413 (|#1| $)) (-15 -4031 ($ |#1| |#2|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 59)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-3938 ((|#1| $) NIL) (((-114) $) 39)) (-3466 (((-3 $ "failed") $) 90)) (-4300 ((|#2| (-114) |#2|) 82)) (-3113 (((-112) $) NIL)) (-4068 (($ |#1| (-360 (-114))) 14)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3875 (($ $ (-1 |#2| |#2|)) 58)) (-1655 (($ $ (-1 |#2| |#2|)) 44)) (-2277 ((|#2| $ |#2|) 33)) (-2185 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-4022 (((-856) $) 66) (($ (-561)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) 37)) (-2438 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-2211 (($) 21 T CONST)) (-2222 (($) 9 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) 48) (($ $ $) NIL)) (-1813 (($ $ $) 73)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ (-114) (-561)) NIL) (($ $ (-561)) 57)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171)))))
+(((-708 |#1| |#2|) (-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2438 ($ $)) (-15 -2438 ($ $ $)) (-15 -2185 (|#1| |#1|))) |%noBranch|) (-15 -1655 ($ $ (-1 |#2| |#2|))) (-15 -3875 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -4300 (|#2| (-114) |#2|)) (-15 -4068 ($ |#1| (-360 (-114)))))) (-1042) (-641 |#1|)) (T -708))
+((-2438 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2438 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2185 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (-3875 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *5)) (-4 *5 (-641 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)) (-4 *4 (-641 *3)))) (-4300 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2)) (-4 *2 (-641 *4)))) (-4068 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4)) (-4 *4 (-641 *2)))))
+(-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2438 ($ $)) (-15 -2438 ($ $ $)) (-15 -2185 (|#1| |#1|))) |%noBranch|) (-15 -1655 ($ $ (-1 |#2| |#2|))) (-15 -3875 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -4300 (|#2| (-114) |#2|)) (-15 -4068 ($ |#1| (-360 (-114))))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 33)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3185 (($ |#1| |#2|) 25)) (-3466 (((-3 $ "failed") $) 48)) (-3113 (((-112) $) 35)) (-2912 ((|#2| $) 12)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 49)) (-1714 (((-1110) $) NIL)) (-2777 (((-3 $ "failed") $ $) 47)) (-4022 (((-856) $) 24) (($ (-561)) 19) ((|#1| $) 13)) (-4259 (((-765)) 28)) (-2211 (($) 16 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 38)) (-1824 (($ $) 43) (($ $ $) 37)) (-1813 (($ $ $) 40)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 21) (($ $ $) 20)))
+(((-709 |#1| |#2| |#3| |#4| |#5|) (-13 (-1042) (-10 -8 (-15 -2912 (|#2| $)) (-15 -4022 (|#1| $)) (-15 -3185 ($ |#1| |#2|)) (-15 -2777 ((-3 $ "failed") $ $)) (-15 -3466 ((-3 $ "failed") $)) (-15 -1540 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -709))
+((-3466 (*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2912 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4022 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3185 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2777 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1042) (-10 -8 (-15 -2912 (|#2| $)) (-15 -4022 (|#1| $)) (-15 -3185 ($ |#1| |#2|)) (-15 -2777 ((-3 $ "failed") $ $)) (-15 -3466 ((-3 $ "failed") $)) (-15 -1540 ($ $))))
+((* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-710 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-711 |#2|) (-171)) (T -710))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-711 |#1|) (-139) (-171)) (T -711))
NIL
(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-1045 |#1|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3277 (($ |#1|) 17) (($ $ |#1|) 20)) (-2780 (($ |#1|) 18) (($ $ |#1|) 21)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3999 (((-112) $) NIL)) (-3128 (($ |#1| |#1| |#1| |#1|) 8)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 16)) (-1688 (((-1107) $) NIL)) (-1369 ((|#1| $ |#1|) 24) (((-824 |#1|) $ (-824 |#1|)) 32)) (-3068 (($ $ $) NIL)) (-3072 (($ $ $) NIL)) (-3940 (((-853) $) 39)) (-2220 (($) 9 T CONST)) (-1708 (((-112) $ $) 44)) (-1805 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ $ $) 14)))
-(((-709 |#1|) (-13 (-471) (-10 -8 (-15 -3128 ($ |#1| |#1| |#1| |#1|)) (-15 -3277 ($ |#1|)) (-15 -2780 ($ |#1|)) (-15 -3248 ($)) (-15 -3277 ($ $ |#1|)) (-15 -2780 ($ $ |#1|)) (-15 -3248 ($ $)) (-15 -1369 (|#1| $ |#1|)) (-15 -1369 ((-824 |#1|) $ (-824 |#1|))))) (-362)) (T -709))
-((-3128 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-3277 (*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2780 (*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-3248 (*1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-3277 (*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-2780 (*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-3248 (*1 *1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-1369 (*1 *2 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))) (-1369 (*1 *2 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-362)) (-5 *1 (-709 *3)))))
-(-13 (-471) (-10 -8 (-15 -3128 ($ |#1| |#1| |#1| |#1|)) (-15 -3277 ($ |#1|)) (-15 -2780 ($ |#1|)) (-15 -3248 ($)) (-15 -3277 ($ $ |#1|)) (-15 -2780 ($ $ |#1|)) (-15 -3248 ($ $)) (-15 -1369 (|#1| $ |#1|)) (-15 -1369 ((-824 |#1|) $ (-824 |#1|)))))
-((-2943 (($ $ (-911)) 12)) (-1794 (($ $ (-911)) 13)) (** (($ $ (-911)) 10)))
-(((-710 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-911))) (-15 -1794 (|#1| |#1| (-911))) (-15 -2943 (|#1| |#1| (-911)))) (-711)) (T -710))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-911))) (-15 -1794 (|#1| |#1| (-911))) (-15 -2943 (|#1| |#1| (-911))))
-((-3929 (((-112) $ $) 7)) (-2943 (($ $ (-911)) 15)) (-1794 (($ $ (-911)) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)) (** (($ $ (-911)) 13)) (* (($ $ $) 16)))
-(((-711) (-139)) (T -711))
-((* (*1 *1 *1 *1) (-4 *1 (-711))) (-2943 (*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911)))) (-1794 (*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911)))))
-(-13 (-1087) (-10 -8 (-15 * ($ $ $)) (-15 -2943 ($ $ (-911))) (-15 -1794 ($ $ (-911))) (-15 ** ($ $ (-911)))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2943 (($ $ (-911)) NIL) (($ $ (-762)) 17)) (-3999 (((-112) $) 10)) (-1794 (($ $ (-911)) NIL) (($ $ (-762)) 18)) (** (($ $ (-911)) NIL) (($ $ (-762)) 15)))
-(((-712 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-762))) (-15 -1794 (|#1| |#1| (-762))) (-15 -2943 (|#1| |#1| (-762))) (-15 -3999 ((-112) |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 -1794 (|#1| |#1| (-911))) (-15 -2943 (|#1| |#1| (-911)))) (-713)) (T -712))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-762))) (-15 -1794 (|#1| |#1| (-762))) (-15 -2943 (|#1| |#1| (-762))) (-15 -3999 ((-112) |#1|)) (-15 ** (|#1| |#1| (-911))) (-15 -1794 (|#1| |#1| (-911))) (-15 -2943 (|#1| |#1| (-911))))
-((-3929 (((-112) $ $) 7)) (-2113 (((-3 $ "failed") $) 17)) (-2943 (($ $ (-911)) 15) (($ $ (-762)) 22)) (-3248 (((-3 $ "failed") $) 19)) (-3999 (((-112) $) 23)) (-4300 (((-3 $ "failed") $) 18)) (-1794 (($ $ (-911)) 14) (($ $ (-762)) 21)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2220 (($) 24 T CONST)) (-1708 (((-112) $ $) 6)) (** (($ $ (-911)) 13) (($ $ (-762)) 20)) (* (($ $ $) 16)))
-(((-713) (-139)) (T -713))
-((-2220 (*1 *1) (-4 *1 (-713))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112)))) (-2943 (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))) (-1794 (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))) (-3248 (*1 *1 *1) (|partial| -4 *1 (-713))) (-4300 (*1 *1 *1) (|partial| -4 *1 (-713))) (-2113 (*1 *1 *1) (|partial| -4 *1 (-713))))
-(-13 (-711) (-10 -8 (-15 (-2220) ($) -2010) (-15 -3999 ((-112) $)) (-15 -2943 ($ $ (-762))) (-15 -1794 ($ $ (-762))) (-15 ** ($ $ (-762))) (-15 -3248 ((-3 $ "failed") $)) (-15 -4300 ((-3 $ "failed") $)) (-15 -2113 ((-3 $ "failed") $))))
-(((-102) . T) ((-605 (-853)) . T) ((-711) . T) ((-1087) . T))
-((-2507 (((-762)) 35)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3226 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 22)) (-3866 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-3248 (((-3 $ "failed") $) 65)) (-3692 (($) 39)) (-1423 ((|#2| $) 20)) (-2461 (($) 17)) (-3780 (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-2355 (((-679 |#2|) (-1246 $) (-1 |#2| |#2|)) 60)) (-3441 (((-1246 |#2|) $) NIL) (($ (-1246 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1969 ((|#3| $) 32)) (-2743 (((-1246 $)) 29)))
-(((-714 |#1| |#2| |#3|) (-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3692 (|#1|)) (-15 -2507 ((-762))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2355 ((-679 |#2|) (-1246 |#1|) (-1 |#2| |#2|))) (-15 -3866 ((-3 |#1| "failed") (-406 |#3|))) (-15 -3441 (|#1| |#3|)) (-15 -3866 (|#1| |#3|)) (-15 -2461 (|#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3441 (|#3| |#1|)) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -2743 ((-1246 |#1|))) (-15 -1969 (|#3| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|))) (-715 |#2| |#3|) (-171) (-1222 |#2|)) (T -714))
-((-2507 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-762)) (-5 *1 (-714 *3 *4 *5)) (-4 *3 (-715 *4 *5)))))
-(-10 -8 (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3692 (|#1|)) (-15 -2507 ((-762))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -2355 ((-679 |#2|) (-1246 |#1|) (-1 |#2| |#2|))) (-15 -3866 ((-3 |#1| "failed") (-406 |#3|))) (-15 -3441 (|#1| |#3|)) (-15 -3866 (|#1| |#3|)) (-15 -2461 (|#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3441 (|#3| |#1|)) (-15 -3441 (|#1| (-1246 |#2|))) (-15 -3441 ((-1246 |#2|) |#1|)) (-15 -2743 ((-1246 |#1|))) (-15 -1969 (|#3| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3248 ((-3 |#1| "failed") |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-3244 (($ $) 94 (|has| |#1| (-362)))) (-4326 (((-112) $) 96 (|has| |#1| (-362)))) (-3409 (((-679 |#1|) (-1246 $)) 47) (((-679 |#1|)) 62)) (-1719 ((|#1| $) 53)) (-3067 (((-1173 (-911) (-762)) (-558)) 146 (|has| |#1| (-348)))) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 113 (|has| |#1| (-362)))) (-4110 (((-417 $) $) 114 (|has| |#1| (-362)))) (-1599 (((-112) $ $) 104 (|has| |#1| (-362)))) (-2507 (((-762)) 87 (|has| |#1| (-367)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 169 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 167 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 164)) (-3226 (((-558) $) 168 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 166 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 165)) (-3431 (($ (-1246 |#1|) (-1246 $)) 49) (($ (-1246 |#1|)) 65)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1709 (($ $ $) 108 (|has| |#1| (-362)))) (-3533 (((-679 |#1|) $ (-1246 $)) 54) (((-679 |#1|) $) 60)) (-1918 (((-679 (-558)) (-679 $)) 163 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 162 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 161) (((-679 |#1|) (-679 $)) 160)) (-3866 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-3248 (((-3 $ "failed") $) 33)) (-1489 (((-911)) 55)) (-3692 (($) 90 (|has| |#1| (-367)))) (-2881 (($ $ $) 107 (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 102 (|has| |#1| (-362)))) (-3567 (($) 148 (|has| |#1| (-348)))) (-3617 (((-112) $) 149 (|has| |#1| (-348)))) (-4362 (($ $ (-762)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2992 (((-112) $) 115 (|has| |#1| (-362)))) (-2532 (((-911) $) 151 (|has| |#1| (-348))) (((-824 (-911)) $) 137 (|has| |#1| (-348)))) (-3999 (((-112) $) 31)) (-1423 ((|#1| $) 52)) (-2521 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 111 (|has| |#1| (-362)))) (-1715 ((|#2| $) 45 (|has| |#1| (-362)))) (-1486 (((-911) $) 89 (|has| |#1| (-367)))) (-3850 ((|#2| $) 155)) (-1500 (($ (-635 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-2510 (((-1145) $) 9)) (-3823 (($ $) 116 (|has| |#1| (-362)))) (-1823 (($) 142 (|has| |#1| (-348)) CONST)) (-2349 (($ (-911)) 88 (|has| |#1| (-367)))) (-1688 (((-1107) $) 10)) (-2461 (($) 159)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 101 (|has| |#1| (-362)))) (-1544 (($ (-635 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) 145 (|has| |#1| (-348)))) (-3939 (((-417 $) $) 112 (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 109 (|has| |#1| (-362)))) (-2861 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-362)))) (-1562 (((-762) $) 105 (|has| |#1| (-362)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 106 (|has| |#1| (-362)))) (-3789 ((|#1| (-1246 $)) 48) ((|#1|) 61)) (-2551 (((-762) $) 150 (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) 138 (|has| |#1| (-348)))) (-3780 (($ $) 136 (-3994 (-2157 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) 134 (-3994 (-2157 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) 132 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163))) 131 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1163) (-762)) 130 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-762))) 129 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-762)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-2355 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-2297 ((|#2|) 158)) (-2933 (($) 147 (|has| |#1| (-348)))) (-2979 (((-1246 |#1|) $ (-1246 $)) 51) (((-679 |#1|) (-1246 $) (-1246 $)) 50) (((-1246 |#1|) $) 67) (((-679 |#1|) (-1246 $)) 66)) (-3441 (((-1246 |#1|) $) 64) (($ (-1246 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 144 (|has| |#1| (-348)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-558))) 86 (-3994 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-1487 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-1969 ((|#2| $) 46)) (-2417 (((-762)) 28)) (-2743 (((-1246 $)) 68)) (-2671 (((-112) $ $) 95 (|has| |#1| (-362)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $) 135 (-3994 (-2157 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) 133 (-3994 (-2157 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) 128 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163))) 127 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1163) (-762)) 126 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-762))) 125 (-2157 (|has| |#1| (-890 (-1163))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-762)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 120 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 117 (|has| |#1| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-558)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-558))) 118 (|has| |#1| (-362)))))
-(((-715 |#1| |#2|) (-139) (-171) (-1222 |t#1|)) (T -715))
-((-2461 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-715 *2 *3)) (-4 *3 (-1222 *2)))) (-2297 (*1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3)))) (-3866 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3)))) (-3441 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3)))) (-3866 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-715 *3 *4)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-1246 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-715 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1222 *5)) (-5 *2 (-679 *5)))))
-(-13 (-408 |t#1| |t#2|) (-171) (-606 |t#2|) (-410 |t#1|) (-376 |t#1|) (-10 -8 (-15 -2461 ($)) (-15 -2297 (|t#2|)) (-15 -3866 ($ |t#2|)) (-15 -3441 ($ |t#2|)) (-15 -3850 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -3866 ((-3 $ "failed") (-406 |t#2|))) (-15 -2355 ((-679 |t#1|) (-1246 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-102) . T) ((-111 #0# #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3994 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) . T) ((-606 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -3994 (|has| |#1| (-348)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-289) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-306) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-362) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -3994 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| |#2|) . T) ((-408 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-550) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-638 #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-708 |#1|) . T) ((-708 $) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163)))) ((-910) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-348)) ((-1204) -3994 (|has| |#1| (-348)) (|has| |#1| (-362))))
-((-3457 (($) 11)) (-3248 (((-3 $ "failed") $) 13)) (-3999 (((-112) $) 10)) (** (($ $ (-911)) NIL) (($ $ (-762)) 18)))
-(((-716 |#1|) (-10 -8 (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 -3999 ((-112) |#1|)) (-15 -3457 (|#1|)) (-15 ** (|#1| |#1| (-911)))) (-717)) (T -716))
-NIL
-(-10 -8 (-15 -3248 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-762))) (-15 -3999 ((-112) |#1|)) (-15 -3457 (|#1|)) (-15 ** (|#1| |#1| (-911))))
-((-3929 (((-112) $ $) 7)) (-3457 (($) 18 T CONST)) (-3248 (((-3 $ "failed") $) 15)) (-3999 (((-112) $) 17)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2220 (($) 19 T CONST)) (-1708 (((-112) $ $) 6)) (** (($ $ (-911)) 13) (($ $ (-762)) 16)) (* (($ $ $) 14)))
-(((-717) (-139)) (T -717))
-((-2220 (*1 *1) (-4 *1 (-717))) (-3457 (*1 *1) (-4 *1 (-717))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-762)))) (-3248 (*1 *1 *1) (|partial| -4 *1 (-717))))
-(-13 (-1099) (-10 -8 (-15 (-2220) ($) -2010) (-15 -3457 ($) -2010) (-15 -3999 ((-112) $)) (-15 ** ($ $ (-762))) (-15 -3248 ((-3 $ "failed") $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1099) . T) ((-1087) . T))
-((-2782 (((-2 (|:| -2935 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3566 (((-2 (|:| -2935 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2744 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-3353 (((-2 (|:| |poly| |#2|) (|:| -2935 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47)))
-(((-718 |#1| |#2|) (-10 -7 (-15 -3566 ((-2 (|:| -2935 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2782 ((-2 (|:| -2935 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2744 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3353 ((-2 (|:| |poly| |#2|) (|:| -2935 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1222 |#1|)) (T -718))
-((-3353 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2935 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-718 *5 *6)) (-5 *3 (-406 *6)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1222 *5)) (-5 *1 (-718 *5 *2)) (-4 *5 (-362)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2935 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-718 *5 *3)))) (-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2935 *3) (|:| |special| *3))) (-5 *1 (-718 *5 *3)))))
-(-10 -7 (-15 -3566 ((-2 (|:| -2935 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2782 ((-2 (|:| -2935 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2744 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3353 ((-2 (|:| |poly| |#2|) (|:| -2935 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|))))
-((-4039 ((|#7| (-635 |#5|) |#6|) NIL)) (-3397 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-719 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3397 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4039 (|#7| (-635 |#5|) |#6|))) (-841) (-784) (-784) (-1039) (-1039) (-939 |#4| |#2| |#1|) (-939 |#5| |#3| |#1|)) (T -719))
-((-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *9)) (-4 *9 (-1039)) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *8 (-1039)) (-4 *2 (-939 *9 *7 *5)) (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784)) (-4 *4 (-939 *8 *6 *5)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1039)) (-4 *9 (-1039)) (-4 *5 (-841)) (-4 *6 (-784)) (-4 *2 (-939 *9 *7 *5)) (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784)) (-4 *4 (-939 *8 *6 *5)))))
-(-10 -7 (-15 -3397 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4039 (|#7| (-635 |#5|) |#6|)))
-((-3397 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-720 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3397 (|#7| (-1 |#2| |#1|) |#6|))) (-841) (-841) (-784) (-784) (-1039) (-939 |#5| |#3| |#1|) (-939 |#5| |#4| |#2|)) (T -720))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-841)) (-4 *6 (-841)) (-4 *7 (-784)) (-4 *9 (-1039)) (-4 *2 (-939 *9 *8 *6)) (-5 *1 (-720 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-784)) (-4 *4 (-939 *9 *7 *5)))))
-(-10 -7 (-15 -3397 (|#7| (-1 |#2| |#1|) |#6|)))
-((-3939 (((-417 |#4|) |#4|) 41)))
-(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3939 ((-417 |#4|) |#4|))) (-784) (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163))))) (-306) (-939 (-942 |#3|) |#1| |#2|)) (T -721))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163)))))) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-939 (-942 *6) *4 *5)))))
-(-10 -7 (-15 -3939 ((-417 |#4|) |#4|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-855 |#1|)) $) NIL)) (-3907 (((-1159 $) $ (-855 |#1|)) NIL) (((-1159 |#2|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-3244 (($ $) NIL (|has| |#2| (-550)))) (-4326 (((-112) $) NIL (|has| |#2| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-855 |#1|))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2018 (($ $) NIL (|has| |#2| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-855 |#1|) "failed") $) NIL)) (-3226 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-855 |#1|) $) NIL)) (-2862 (($ $ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#2| (-899)))) (-2704 (($ $ |#2| (-529 (-855 |#1|)) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-855 |#1|) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4068 (($ (-1159 |#2|) (-855 |#1|)) NIL) (($ (-1159 $) (-855 |#1|)) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#2| (-529 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-855 |#1|)) NIL)) (-3672 (((-529 (-855 |#1|)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-2142 (($ $ $) NIL (|has| |#2| (-841)))) (-2281 (($ $ $) NIL (|has| |#2| (-841)))) (-2776 (($ (-1 (-529 (-855 |#1|)) (-529 (-855 |#1|))) $) NIL)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-2135 (((-3 (-855 |#1|) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#2| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2510 (((-1145) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-855 |#1|)) (|:| -1857 (-762))) "failed") $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#2| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#2| (-899)))) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-855 |#1|) |#2|) NIL) (($ $ (-635 (-855 |#1|)) (-635 |#2|)) NIL) (($ $ (-855 |#1|) $) NIL) (($ $ (-635 (-855 |#1|)) (-635 $)) NIL)) (-3789 (($ $ (-855 |#1|)) NIL (|has| |#2| (-171)))) (-3780 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-4263 (((-529 (-855 |#1|)) $) NIL) (((-762) $ (-855 |#1|)) NIL) (((-635 (-762)) $ (-635 (-855 |#1|))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-855 |#1|) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-855 |#1|) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-3012 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-855 |#1|)) NIL (|has| |#2| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-855 |#1|)) NIL) (($ $) NIL (|has| |#2| (-550))) (($ (-406 (-558))) NIL (-3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558))))))) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-529 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-855 |#1|)) NIL) (($ $ (-635 (-855 |#1|))) NIL) (($ $ (-855 |#1|) (-762)) NIL) (($ $ (-635 (-855 |#1|)) (-635 (-762))) NIL)) (-1757 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-722 |#1| |#2|) (-939 |#2| (-529 (-855 |#1|)) (-855 |#1|)) (-635 (-1163)) (-1039)) (T -722))
-NIL
-(-939 |#2| (-529 (-855 |#1|)) (-855 |#1|))
-((-3727 (((-2 (|:| -2707 (-942 |#3|)) (|:| -2790 (-942 |#3|))) |#4|) 14)) (-2130 ((|#4| |#4| |#2|) 33)) (-2454 ((|#4| (-406 (-942 |#3|)) |#2|) 64)) (-1375 ((|#4| (-1159 (-942 |#3|)) |#2|) 77)) (-2552 ((|#4| (-1159 |#4|) |#2|) 51)) (-3946 ((|#4| |#4| |#2|) 54)) (-3939 (((-417 |#4|) |#4|) 40)))
-(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3727 ((-2 (|:| -2707 (-942 |#3|)) (|:| -2790 (-942 |#3|))) |#4|)) (-15 -3946 (|#4| |#4| |#2|)) (-15 -2552 (|#4| (-1159 |#4|) |#2|)) (-15 -2130 (|#4| |#4| |#2|)) (-15 -1375 (|#4| (-1159 (-942 |#3|)) |#2|)) (-15 -2454 (|#4| (-406 (-942 |#3|)) |#2|)) (-15 -3939 ((-417 |#4|) |#4|))) (-784) (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)))) (-550) (-939 (-406 (-942 |#3|)) |#1| |#2|)) (T -723))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *6 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-939 (-406 (-942 *6)) *4 *5)))) (-2454 (*1 *2 *3 *4) (-12 (-4 *6 (-550)) (-4 *2 (-939 *3 *5 *4)) (-5 *1 (-723 *5 *4 *6 *2)) (-5 *3 (-406 (-942 *6))) (-4 *5 (-784)) (-4 *4 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))))) (-1375 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 (-942 *6))) (-4 *6 (-550)) (-4 *2 (-939 (-406 (-942 *6)) *5 *4)) (-5 *1 (-723 *5 *4 *6 *2)) (-4 *5 (-784)) (-4 *4 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))))) (-2130 (*1 *2 *2 *3) (-12 (-4 *4 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *5 (-550)) (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-939 (-406 (-942 *6)) *5 *4)) (-5 *1 (-723 *5 *4 *6 *2)) (-4 *5 (-784)) (-4 *4 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *6 (-550)))) (-3946 (*1 *2 *2 *3) (-12 (-4 *4 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *5 (-550)) (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3)))) (-3727 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *6 (-550)) (-5 *2 (-2 (|:| -2707 (-942 *6)) (|:| -2790 (-942 *6)))) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-939 (-406 (-942 *6)) *4 *5)))))
-(-10 -7 (-15 -3727 ((-2 (|:| -2707 (-942 |#3|)) (|:| -2790 (-942 |#3|))) |#4|)) (-15 -3946 (|#4| |#4| |#2|)) (-15 -2552 (|#4| (-1159 |#4|) |#2|)) (-15 -2130 (|#4| |#4| |#2|)) (-15 -1375 (|#4| (-1159 (-942 |#3|)) |#2|)) (-15 -2454 (|#4| (-406 (-942 |#3|)) |#2|)) (-15 -3939 ((-417 |#4|) |#4|)))
-((-3939 (((-417 |#4|) |#4|) 52)))
-(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3939 ((-417 |#4|) |#4|))) (-784) (-841) (-13 (-306) (-146)) (-939 (-406 |#3|) |#1| |#2|)) (T -724))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-939 (-406 *6) *4 *5)))))
-(-10 -7 (-15 -3939 ((-417 |#4|) |#4|)))
-((-3397 (((-726 |#2| |#3|) (-1 |#2| |#1|) (-726 |#1| |#3|)) 18)))
-(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -3397 ((-726 |#2| |#3|) (-1 |#2| |#1|) (-726 |#1| |#3|)))) (-1039) (-1039) (-717)) (T -725))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-726 *5 *7)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *7 (-717)) (-5 *2 (-726 *6 *7)) (-5 *1 (-725 *5 *6 *7)))))
-(-10 -7 (-15 -3397 ((-726 |#2| |#3|) (-1 |#2| |#1|) (-726 |#1| |#3|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 28)) (-3414 (((-635 (-2 (|:| -3455 |#1|) (|:| -2345 |#2|))) $) 29)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2507 (((-762)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3226 ((|#2| $) NIL) ((|#1| $) NIL)) (-3905 (($ $) 79 (|has| |#2| (-841)))) (-3248 (((-3 $ "failed") $) 65)) (-3692 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) 55)) (-4033 (((-635 $) $) 39)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| |#2|) 16)) (-3397 (($ (-1 |#1| |#1|) $) 54)) (-1486 (((-911) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3867 ((|#2| $) 78 (|has| |#2| (-841)))) (-3881 ((|#1| $) 77 (|has| |#2| (-841)))) (-2510 (((-1145) $) NIL)) (-2349 (($ (-911)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 76) (($ (-558)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-635 (-2 (|:| -3455 |#1|) (|:| -2345 |#2|)))) 11)) (-3712 (((-635 |#1|) $) 41)) (-3143 ((|#1| $ |#2|) 87)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-2207 (($) 12 T CONST)) (-2220 (($) 33 T CONST)) (-1708 (((-112) $ $) 80)) (-1796 (($ $) 47) (($ $ $) NIL)) (-1785 (($ $ $) 26)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-726 |#1| |#2|) (-13 (-1039) (-1028 |#2|) (-1028 |#1|) (-10 -8 (-15 -4056 ($ |#1| |#2|)) (-15 -3143 (|#1| $ |#2|)) (-15 -3940 ($ (-635 (-2 (|:| -3455 |#1|) (|:| -2345 |#2|))))) (-15 -3414 ((-635 (-2 (|:| -3455 |#1|) (|:| -2345 |#2|))) $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (-15 -3594 ((-112) $)) (-15 -3712 ((-635 |#1|) $)) (-15 -4033 ((-635 $) $)) (-15 -2987 ((-762) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-841)) (PROGN (-15 -3867 (|#2| $)) (-15 -3881 (|#1| $)) (-15 -3905 ($ $))) |%noBranch|))) (-1039) (-717)) (T -726))
-((-4056 (*1 *1 *2 *3) (-12 (-5 *1 (-726 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-717)))) (-3143 (*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-717)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -3455 *3) (|:| -2345 *4)))) (-4 *3 (-1039)) (-4 *4 (-717)) (-5 *1 (-726 *3 *4)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -3455 *3) (|:| -2345 *4)))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-726 *3 *4)) (-4 *4 (-717)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-635 (-726 *3 *4))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717)))) (-3867 (*1 *2 *1) (-12 (-4 *2 (-717)) (-4 *2 (-841)) (-5 *1 (-726 *3 *2)) (-4 *3 (-1039)))) (-3881 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-841)) (-4 *3 (-717)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-726 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1039)) (-4 *3 (-717)))))
-(-13 (-1039) (-1028 |#2|) (-1028 |#1|) (-10 -8 (-15 -4056 ($ |#1| |#2|)) (-15 -3143 (|#1| $ |#2|)) (-15 -3940 ($ (-635 (-2 (|:| -3455 |#1|) (|:| -2345 |#2|))))) (-15 -3414 ((-635 (-2 (|:| -3455 |#1|) (|:| -2345 |#2|))) $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (-15 -3594 ((-112) $)) (-15 -3712 ((-635 |#1|) $)) (-15 -4033 ((-635 $) $)) (-15 -2987 ((-762) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-841)) (PROGN (-15 -3867 (|#2| $)) (-15 -3881 (|#1| $)) (-15 -3905 ($ $))) |%noBranch|)))
-((-3929 (((-112) $ $) 19)) (-2382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1513 (($ $ $) 72)) (-3204 (((-112) $ $) 73)) (-3651 (((-112) $ (-762)) 8)) (-1607 (($ (-635 |#1|)) 68) (($) 67)) (-2256 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-1958 (($ $) 62)) (-3188 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ |#1| $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-2953 (((-112) $ $) 64)) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22)) (-3490 (($ $ $) 69)) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40) (($ |#1| $ (-762)) 63)) (-1688 (((-1107) $) 21)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1858 (((-635 (-2 (|:| -1925 |#1|) (|:| -1698 (-762)))) $) 61)) (-1780 (($ $ |#1|) 71) (($ $ $) 70)) (-1966 (($) 49) (($ (-635 |#1|)) 48)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 50)) (-3940 (((-853) $) 18)) (-4008 (($ (-635 |#1|)) 66) (($) 65)) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20)) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-727 |#1|) (-139) (-1087)) (T -727))
-NIL
-(-13 (-685 |t#1|) (-1085 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-685 |#1|) . T) ((-1085 |#1|) . T) ((-1087) . T) ((-1200) . T))
-((-3929 (((-112) $ $) NIL)) (-2382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1513 (($ $ $) 79)) (-3204 (((-112) $ $) 83)) (-3651 (((-112) $ (-762)) NIL)) (-1607 (($ (-635 |#1|)) 24) (($) 16)) (-2256 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-1958 (($ $) 71)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) 61 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 65 (|has| $ (-6 -4383))) (($ |#1| $ (-558)) 63) (($ (-1 (-112) |#1|) $ (-558)) 66)) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (($ |#1| $ (-558)) 68) (($ (-1 (-112) |#1|) $ (-558)) 69)) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 32 (|has| $ (-6 -4383)))) (-2953 (((-112) $ $) 82)) (-1855 (($) 14) (($ |#1|) 26) (($ (-635 |#1|)) 21)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) 38)) (-3764 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 75)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-3490 (($ $ $) 77)) (-1498 ((|#1| $) 55)) (-2650 (($ |#1| $) 56) (($ |#1| $ (-762)) 72)) (-1688 (((-1107) $) NIL)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2533 ((|#1| $) 54)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 50)) (-2876 (($) 13)) (-1858 (((-635 (-2 (|:| -1925 |#1|) (|:| -1698 (-762)))) $) 48)) (-1780 (($ $ |#1|) NIL) (($ $ $) 78)) (-1966 (($) 15) (($ (-635 |#1|)) 23)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) 60 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 67)) (-3441 (((-534) $) 36 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 20)) (-3940 (((-853) $) 44)) (-4008 (($ (-635 |#1|)) 25) (($) 17)) (-2472 (($ (-635 |#1|)) 22)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 81)) (-1596 (((-762) $) 59 (|has| $ (-6 -4383)))))
-(((-728 |#1|) (-13 (-727 |#1|) (-10 -8 (-6 -4383) (-6 -4384) (-15 -1855 ($)) (-15 -1855 ($ |#1|)) (-15 -1855 ($ (-635 |#1|))) (-15 -3486 ((-635 |#1|) $)) (-15 -1488 ($ |#1| $ (-558))) (-15 -1488 ($ (-1 (-112) |#1|) $ (-558))) (-15 -2375 ($ |#1| $ (-558))) (-15 -2375 ($ (-1 (-112) |#1|) $ (-558))))) (-1087)) (T -728))
-((-1855 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-1855 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-1855 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-728 *3)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-728 *3)) (-4 *3 (-1087)))) (-1488 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-1488 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087)) (-5 *1 (-728 *4)))) (-2375 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087)))) (-2375 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087)) (-5 *1 (-728 *4)))))
-(-13 (-727 |#1|) (-10 -8 (-6 -4383) (-6 -4384) (-15 -1855 ($)) (-15 -1855 ($ |#1|)) (-15 -1855 ($ (-635 |#1|))) (-15 -3486 ((-635 |#1|) $)) (-15 -1488 ($ |#1| $ (-558))) (-15 -1488 ($ (-1 (-112) |#1|) $ (-558))) (-15 -2375 ($ |#1| $ (-558))) (-15 -2375 ($ (-1 (-112) |#1|) $ (-558)))))
-((-2907 (((-1251) (-1145)) 8)))
-(((-729) (-10 -7 (-15 -2907 ((-1251) (-1145))))) (T -729))
-((-2907 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-729)))))
-(-10 -7 (-15 -2907 ((-1251) (-1145))))
-((-3418 (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 10)))
-(((-730 |#1|) (-10 -7 (-15 -3418 ((-635 |#1|) (-635 |#1|) (-635 |#1|)))) (-841)) (T -730))
-((-3418 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-730 *3)))))
-(-10 -7 (-15 -3418 ((-635 |#1|) (-635 |#1|) (-635 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 |#2|) $) 139)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 132 (|has| |#1| (-550)))) (-3244 (($ $) 131 (|has| |#1| (-550)))) (-4326 (((-112) $) 129 (|has| |#1| (-550)))) (-2277 (($ $) 88 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 71 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) 19)) (-3948 (($ $) 70 (|has| |#1| (-38 (-406 (-558)))))) (-2254 (($ $) 87 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 72 (|has| |#1| (-38 (-406 (-558)))))) (-2298 (($ $) 86 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 73 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) 17 T CONST)) (-3905 (($ $) 123)) (-3248 (((-3 $ "failed") $) 33)) (-2584 (((-942 |#1|) $ (-762)) 101) (((-942 |#1|) $ (-762) (-762)) 100)) (-3459 (((-112) $) 140)) (-3348 (($) 98 (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-762) $ |#2|) 103) (((-762) $ |#2| (-762)) 102)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 69 (|has| |#1| (-38 (-406 (-558)))))) (-3594 (((-112) $) 121)) (-4056 (($ $ (-635 |#2|) (-635 (-529 |#2|))) 138) (($ $ |#2| (-529 |#2|)) 137) (($ |#1| (-529 |#2|)) 122) (($ $ |#2| (-762)) 105) (($ $ (-635 |#2|) (-635 (-762))) 104)) (-3397 (($ (-1 |#1| |#1|) $) 120)) (-4342 (($ $) 95 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) 118)) (-3881 ((|#1| $) 117)) (-2510 (((-1145) $) 9)) (-1337 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) 10)) (-2319 (($ $ (-762)) 106)) (-2861 (((-3 $ "failed") $ $) 133 (|has| |#1| (-550)))) (-3944 (($ $) 96 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (($ $ |#2| $) 114) (($ $ (-635 |#2|) (-635 $)) 113) (($ $ (-635 (-293 $))) 112) (($ $ (-293 $)) 111) (($ $ $ $) 110) (($ $ (-635 $) (-635 $)) 109)) (-3780 (($ $ |#2|) 42) (($ $ (-635 |#2|)) 41) (($ $ |#2| (-762)) 40) (($ $ (-635 |#2|) (-635 (-762))) 39)) (-4263 (((-529 |#2|) $) 119)) (-2312 (($ $) 85 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 74 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 84 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 75 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 83 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 76 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 141)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-550))) (($ (-406 (-558))) 126 (|has| |#1| (-38 (-406 (-558)))))) (-3143 ((|#1| $ (-529 |#2|)) 124) (($ $ |#2| (-762)) 108) (($ $ (-635 |#2|) (-635 (-762))) 107)) (-1487 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-4175 (($ $) 94 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 82 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) 130 (|has| |#1| (-550)))) (-2325 (($ $) 93 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 81 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 92 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 80 (|has| |#1| (-38 (-406 (-558)))))) (-2038 (($ $) 91 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 79 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 90 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 78 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 89 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 77 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ |#2|) 38) (($ $ (-635 |#2|)) 37) (($ $ |#2| (-762)) 36) (($ $ (-635 |#2|) (-635 (-762))) 35)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 68 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 128 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 127 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
-(((-731 |#1| |#2|) (-139) (-1039) (-841)) (T -731))
-((-3143 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-841)))) (-3143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)))) (-2319 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-731 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-841)))) (-4056 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-841)))) (-4056 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)))) (-2532 (*1 *2 *1 *3) (-12 (-4 *1 (-731 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-841)) (-5 *2 (-762)))) (-2532 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-762)) (-4 *1 (-731 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-841)))) (-2584 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)) (-5 *2 (-942 *4)))) (-2584 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-841)) (-5 *2 (-942 *4)))) (-1337 (*1 *1 *1 *2) (-12 (-4 *1 (-731 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841)) (-4 *3 (-38 (-406 (-558)))))))
-(-13 (-890 |t#2|) (-963 |t#1| (-529 |t#2|) |t#2|) (-512 |t#2| $) (-308 $) (-10 -8 (-15 -3143 ($ $ |t#2| (-762))) (-15 -3143 ($ $ (-635 |t#2|) (-635 (-762)))) (-15 -2319 ($ $ (-762))) (-15 -4056 ($ $ |t#2| (-762))) (-15 -4056 ($ $ (-635 |t#2|) (-635 (-762)))) (-15 -2532 ((-762) $ |t#2|)) (-15 -2532 ((-762) $ |t#2| (-762))) (-15 -2584 ((-942 |t#1|) $ (-762))) (-15 -2584 ((-942 |t#1|) $ (-762) (-762))) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $ |t#2|)) (-6 (-992)) (-6 (-1185))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-529 |#2|)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-289) |has| |#1| (-550)) ((-308 $) . T) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-512 |#2| $) . T) ((-512 $ $) . T) ((-550) |has| |#1| (-550)) ((-638 #1#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-890 |#2|) . T) ((-963 |#1| #0# |#2|) . T) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))))
-((-3939 (((-417 (-1159 |#4|)) (-1159 |#4|)) 30) (((-417 |#4|) |#4|) 26)))
-(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3939 ((-417 |#4|) |#4|)) (-15 -3939 ((-417 (-1159 |#4|)) (-1159 |#4|)))) (-841) (-784) (-13 (-306) (-146)) (-939 |#3| |#2| |#1|)) (T -732))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-732 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
-(-10 -7 (-15 -3939 ((-417 |#4|) |#4|)) (-15 -3939 ((-417 (-1159 |#4|)) (-1159 |#4|))))
-((-2295 (((-417 |#4|) |#4| |#2|) 118)) (-2374 (((-417 |#4|) |#4|) NIL)) (-4110 (((-417 (-1159 |#4|)) (-1159 |#4|)) 109) (((-417 |#4|) |#4|) 40)) (-2826 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -3939 (-1159 |#4|)) (|:| -1857 (-558)))))) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 68)) (-2929 (((-1159 |#3|) (-1159 |#3|) (-558)) 136)) (-3011 (((-635 (-762)) (-1159 |#4|) (-635 |#2|) (-762)) 60)) (-3850 (((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-1159 |#3|) (-1159 |#3|) |#4| (-635 |#2|) (-635 (-762)) (-635 |#3|)) 64)) (-3366 (((-2 (|:| |upol| (-1159 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558))))) (|:| |ctpol| |#3|)) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 25)) (-4340 (((-2 (|:| -3936 (-1159 |#4|)) (|:| |polval| (-1159 |#3|))) (-1159 |#4|) (-1159 |#3|) (-558)) 56)) (-1733 (((-558) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558))))) 133)) (-1849 ((|#4| (-558) (-417 |#4|)) 57)) (-1846 (((-112) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558)))) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558))))) NIL)))
-(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4110 ((-417 |#4|) |#4|)) (-15 -4110 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -2374 ((-417 |#4|) |#4|)) (-15 -1733 ((-558) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558)))))) (-15 -2295 ((-417 |#4|) |#4| |#2|)) (-15 -4340 ((-2 (|:| -3936 (-1159 |#4|)) (|:| |polval| (-1159 |#3|))) (-1159 |#4|) (-1159 |#3|) (-558))) (-15 -2826 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -3939 (-1159 |#4|)) (|:| -1857 (-558)))))) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -3366 ((-2 (|:| |upol| (-1159 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558))))) (|:| |ctpol| |#3|)) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -1849 (|#4| (-558) (-417 |#4|))) (-15 -1846 ((-112) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558)))) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558)))))) (-15 -3850 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-1159 |#3|) (-1159 |#3|) |#4| (-635 |#2|) (-635 (-762)) (-635 |#3|))) (-15 -3011 ((-635 (-762)) (-1159 |#4|) (-635 |#2|) (-762))) (-15 -2929 ((-1159 |#3|) (-1159 |#3|) (-558)))) (-784) (-841) (-306) (-939 |#3| |#1| |#2|)) (T -733))
-((-2929 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *6)) (-5 *3 (-558)) (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-3011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-4 *7 (-841)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-4 *8 (-306)) (-5 *2 (-635 (-762))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *5 (-762)))) (-3850 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1159 *11)) (-5 *6 (-635 *10)) (-5 *7 (-635 (-762))) (-5 *8 (-635 *11)) (-4 *10 (-841)) (-4 *11 (-306)) (-4 *9 (-784)) (-4 *5 (-939 *11 *9 *10)) (-5 *2 (-635 (-1159 *5))) (-5 *1 (-733 *9 *10 *11 *5)) (-5 *3 (-1159 *5)))) (-1846 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-2 (|:| -3939 (-1159 *6)) (|:| -1857 (-558))))) (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-939 *7 *5 *6)) (-5 *1 (-733 *5 *6 *7 *2)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-306)))) (-3366 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-841)) (-4 *8 (-306)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-5 *2 (-2 (|:| |upol| (-1159 *8)) (|:| |Lval| (-635 *8)) (|:| |Lfact| (-635 (-2 (|:| -3939 (-1159 *8)) (|:| -1857 (-558))))) (|:| |ctpol| *8))) (-5 *1 (-733 *6 *7 *8 *9)))) (-2826 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-841)) (-4 *8 (-306)) (-4 *6 (-784)) (-4 *9 (-939 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-635 (-2 (|:| -3939 (-1159 *9)) (|:| -1857 (-558))))))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)))) (-4340 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-558)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-306)) (-4 *9 (-939 *8 *6 *7)) (-5 *2 (-2 (|:| -3936 (-1159 *9)) (|:| |polval| (-1159 *8)))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)) (-5 *4 (-1159 *8)))) (-2295 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-733 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3939 (-1159 *6)) (|:| -1857 (-558))))) (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-2374 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5)))) (-4110 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-733 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-4110 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5)))))
-(-10 -7 (-15 -4110 ((-417 |#4|) |#4|)) (-15 -4110 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -2374 ((-417 |#4|) |#4|)) (-15 -1733 ((-558) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558)))))) (-15 -2295 ((-417 |#4|) |#4| |#2|)) (-15 -4340 ((-2 (|:| -3936 (-1159 |#4|)) (|:| |polval| (-1159 |#3|))) (-1159 |#4|) (-1159 |#3|) (-558))) (-15 -2826 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -3939 (-1159 |#4|)) (|:| -1857 (-558)))))) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -3366 ((-2 (|:| |upol| (-1159 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558))))) (|:| |ctpol| |#3|)) (-1159 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -1849 (|#4| (-558) (-417 |#4|))) (-15 -1846 ((-112) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558)))) (-635 (-2 (|:| -3939 (-1159 |#3|)) (|:| -1857 (-558)))))) (-15 -3850 ((-3 (-635 (-1159 |#4|)) "failed") (-1159 |#4|) (-1159 |#3|) (-1159 |#3|) |#4| (-635 |#2|) (-635 (-762)) (-635 |#3|))) (-15 -3011 ((-635 (-762)) (-1159 |#4|) (-635 |#2|) (-762))) (-15 -2929 ((-1159 |#3|) (-1159 |#3|) (-558))))
-((-4337 (($ $ (-911)) 12)))
-(((-734 |#1| |#2|) (-10 -8 (-15 -4337 (|#1| |#1| (-911)))) (-735 |#2|) (-171)) (T -734))
-NIL
-(-10 -8 (-15 -4337 (|#1| |#1| (-911))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2943 (($ $ (-911)) 28)) (-4337 (($ $ (-911)) 33)) (-1794 (($ $ (-911)) 29)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3072 (($ $ $) 25)) (-3940 (((-853) $) 11)) (-2536 (($ $ $ $) 26)) (-3467 (($ $ $) 24)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-735 |#1|) (-139) (-171)) (T -735))
-((-4337 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-735 *3)) (-4 *3 (-171)))))
-(-13 (-752) (-708 |t#1|) (-10 -8 (-15 -4337 ($ $ (-911)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-711) . T) ((-752) . T) ((-1045 |#1|) . T) ((-1087) . T))
-((-3932 (((-1025) (-679 (-224)) (-558) (-112) (-558)) 25)) (-2400 (((-1025) (-679 (-224)) (-558) (-112) (-558)) 24)))
-(((-736) (-10 -7 (-15 -2400 ((-1025) (-679 (-224)) (-558) (-112) (-558))) (-15 -3932 ((-1025) (-679 (-224)) (-558) (-112) (-558))))) (T -736))
-((-3932 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-736)))) (-2400 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-736)))))
-(-10 -7 (-15 -2400 ((-1025) (-679 (-224)) (-558) (-112) (-558))) (-15 -3932 ((-1025) (-679 (-224)) (-558) (-112) (-558))))
-((-1356 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-3338 (((-1025) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-1342 (((-1025) (-224) (-224) (-224) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) 32)))
-(((-737) (-10 -7 (-15 -1342 ((-1025) (-224) (-224) (-224) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -3338 ((-1025) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -1356 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -737))
-((-1356 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1025)) (-5 *1 (-737)))) (-3338 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1025)) (-5 *1 (-737)))) (-1342 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) (-5 *2 (-1025)) (-5 *1 (-737)))))
-(-10 -7 (-15 -1342 ((-1025) (-224) (-224) (-224) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -3338 ((-1025) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -1356 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))
-((-4281 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 34)) (-1897 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 33)) (-2446 (((-1025) (-558) (-679 (-224)) (-558)) 32)) (-3731 (((-1025) (-558) (-679 (-224)) (-558)) 31)) (-2950 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 30)) (-2467 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 29)) (-1706 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558)) 28)) (-2166 (((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558)) 27)) (-3176 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 24)) (-2364 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558)) 23)) (-3328 (((-1025) (-558) (-679 (-224)) (-558)) 22)) (-1923 (((-1025) (-558) (-679 (-224)) (-558)) 21)))
-(((-738) (-10 -7 (-15 -1923 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -3328 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -2364 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3176 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2166 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1706 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2467 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2950 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3731 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -2446 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -1897 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -4281 ((-1025) (-558) (-558) (-679 (-224)) (-558))))) (T -738))
-((-4281 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-1897 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-2446 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-3731 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-2950 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-2467 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-1706 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-2166 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-3176 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-2364 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-3328 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))) (-1923 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-738)))))
-(-10 -7 (-15 -1923 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -3328 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -2364 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3176 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2166 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1706 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2467 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2950 ((-1025) (-558) (-558) (-1145) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3731 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -2446 ((-1025) (-558) (-679 (-224)) (-558))) (-15 -1897 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -4281 ((-1025) (-558) (-558) (-679 (-224)) (-558))))
-((-3452 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3642 (((-1025) (-679 (-224)) (-679 (-224)) (-558) (-558)) 51)) (-3091 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3860 (((-1025) (-224) (-224) (-558) (-558) (-558) (-558)) 46)) (-3180 (((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 45)) (-3410 (((-1025) (-224) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 44)) (-2801 (((-1025) (-224) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 43)) (-1931 (((-1025) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 42)) (-2730 (((-1025) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) 38)) (-3965 (((-1025) (-224) (-224) (-558) (-679 (-224)) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) 37)) (-4181 (((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) 33)) (-1735 (((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) 32)))
-(((-739) (-10 -7 (-15 -1735 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -4181 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -3965 ((-1025) (-224) (-224) (-558) (-679 (-224)) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -2730 ((-1025) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -1931 ((-1025) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2801 ((-1025) (-224) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3410 ((-1025) (-224) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3180 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3860 ((-1025) (-224) (-224) (-558) (-558) (-558) (-558))) (-15 -3091 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -3642 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-558))) (-15 -3452 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))) (T -739))
-((-3452 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-3642 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-739)))) (-3091 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-3860 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-739)))) (-3180 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-3410 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-2801 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-1931 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-2730 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-3965 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-739)))) (-4181 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) (-5 *2 (-1025)) (-5 *1 (-739)))) (-1735 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) (-5 *2 (-1025)) (-5 *1 (-739)))))
-(-10 -7 (-15 -1735 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -4181 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -3965 ((-1025) (-224) (-224) (-558) (-679 (-224)) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -2730 ((-1025) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))) (-15 -1931 ((-1025) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2801 ((-1025) (-224) (-224) (-224) (-224) (-558) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3410 ((-1025) (-224) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3180 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3860 ((-1025) (-224) (-224) (-558) (-558) (-558) (-558))) (-15 -3091 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -3642 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-558))) (-15 -3452 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-224) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))
-((-4019 (((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4108 (((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387)) 69) (((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2264 (((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) 57)) (-1476 (((-1025) (-679 (-224)) (-679 (-224)) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 50)) (-3152 (((-1025) (-224) (-558) (-558) (-1145) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1679 (((-1025) (-224) (-558) (-558) (-224) (-1145) (-224) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3842 (((-1025) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 42)) (-1914 (((-1025) (-224) (-558) (-558) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-740) (-10 -7 (-15 -1914 ((-1025) (-224) (-558) (-558) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3842 ((-1025) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -1679 ((-1025) (-224) (-558) (-558) (-224) (-1145) (-224) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3152 ((-1025) (-224) (-558) (-558) (-1145) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1476 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -2264 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -4108 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -4108 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -4019 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -740))
-((-4019 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-4108 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-4108 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1025)) (-5 *1 (-740)))) (-2264 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1476 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1025)) (-5 *1 (-740)))) (-3152 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1679 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-3842 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))) (-1914 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
-(-10 -7 (-15 -1914 ((-1025) (-224) (-558) (-558) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3842 ((-1025) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -1679 ((-1025) (-224) (-558) (-558) (-224) (-1145) (-224) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3152 ((-1025) (-224) (-558) (-558) (-1145) (-558) (-224) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1476 ((-1025) (-679 (-224)) (-679 (-224)) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -2264 ((-1025) (-224) (-224) (-558) (-224) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -4108 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -4108 ((-1025) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -4019 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-3685 (((-1025) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-665 (-224)) (-558)) 45)) (-2788 (((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-1145) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) 41)) (-3198 (((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 23)))
-(((-741) (-10 -7 (-15 -3198 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2788 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-1145) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -3685 ((-1025) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-665 (-224)) (-558))))) (T -741))
-((-3685 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-665 (-224))) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-741)))) (-2788 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1025)) (-5 *1 (-741)))) (-3198 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-741)))))
-(-10 -7 (-15 -3198 ((-1025) (-558) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2788 ((-1025) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-1145) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -3685 ((-1025) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-665 (-224)) (-558))))
-((-4292 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-679 (-224)) (-224) (-224) (-558)) 35)) (-2988 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-224) (-224) (-558)) 34)) (-3421 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-679 (-224)) (-224) (-224) (-558)) 33)) (-4001 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 29)) (-3580 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 28)) (-1451 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558)) 27)) (-1653 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558)) 24)) (-3101 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558)) 23)) (-1812 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558)) 22)) (-1437 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558)) 21)))
-(((-742) (-10 -7 (-15 -1437 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -1812 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3101 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1653 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1451 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558))) (-15 -3580 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4001 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3421 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-679 (-224)) (-224) (-224) (-558))) (-15 -2988 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-224) (-224) (-558))) (-15 -4292 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-679 (-224)) (-224) (-224) (-558))))) (T -742))
-((-4292 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-2988 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-3421 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224)) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-4001 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-3580 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1451 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1653 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-3101 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1812 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))) (-1437 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-742)))))
-(-10 -7 (-15 -1437 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -1812 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3101 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1653 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1451 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-224) (-558))) (-15 -3580 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4001 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3421 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-679 (-224)) (-224) (-224) (-558))) (-15 -2988 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-224) (-224) (-558))) (-15 -4292 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-679 (-224)) (-224) (-224) (-558))))
-((-3184 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558)) 45)) (-4119 (((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-558)) 44)) (-3751 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558)) 43)) (-1345 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 42)) (-1684 (((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558)) 41)) (-3075 (((-1025) (-1145) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558)) 40)) (-2409 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558) (-558) (-558) (-224) (-679 (-224)) (-558)) 39)) (-3844 (((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558))) 38)) (-3056 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558)) 35)) (-4227 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558)) 34)) (-4094 (((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558)) 33)) (-3884 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 32)) (-3650 (((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558)) 31)) (-4269 (((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-558)) 30)) (-3412 (((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-558) (-558) (-558)) 29)) (-3286 (((-1025) (-558) (-558) (-558) (-224) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-558)) (-558) (-558) (-558)) 28)) (-3917 (((-1025) (-558) (-679 (-224)) (-224) (-558)) 24)) (-4182 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 21)))
-(((-743) (-10 -7 (-15 -4182 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3917 ((-1025) (-558) (-679 (-224)) (-224) (-558))) (-15 -3286 ((-1025) (-558) (-558) (-558) (-224) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-558)) (-558) (-558) (-558))) (-15 -3412 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -4269 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-558))) (-15 -3650 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558))) (-15 -3884 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4094 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558))) (-15 -4227 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558))) (-15 -3056 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3844 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)))) (-15 -2409 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558) (-558) (-558) (-224) (-679 (-224)) (-558))) (-15 -3075 ((-1025) (-1145) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -1684 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1345 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3751 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -4119 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3184 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))))) (T -743))
-((-3184 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-4119 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3751 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-1345 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-1684 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3075 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224)) (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-2409 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224)) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3844 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224)) (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3056 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-4227 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-4094 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3884 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3650 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-4269 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3412 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3286 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-3917 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))) (-4182 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-743)))))
-(-10 -7 (-15 -4182 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3917 ((-1025) (-558) (-679 (-224)) (-224) (-558))) (-15 -3286 ((-1025) (-558) (-558) (-558) (-224) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-558)) (-558) (-558) (-558))) (-15 -3412 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -4269 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558) (-558) (-558))) (-15 -3650 ((-1025) (-558) (-224) (-224) (-679 (-224)) (-558) (-558) (-224) (-558))) (-15 -3884 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4094 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558))) (-15 -4227 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558))) (-15 -3056 ((-1025) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3844 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)))) (-15 -2409 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558) (-558) (-558) (-224) (-679 (-224)) (-558))) (-15 -3075 ((-1025) (-1145) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -1684 ((-1025) (-1145) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1345 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3751 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))) (-15 -4119 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3184 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558) (-679 (-224)) (-679 (-224)) (-558) (-558) (-558))))
-((-1407 (((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-558) (-679 (-224)) (-558)) 63)) (-3497 (((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-112) (-224) (-558) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-558) (-558) (-558) (-558) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2609 (((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-112) (-112) (-558) (-558) (-679 (-224)) (-679 (-558)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-3018 (((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-558) (-558) (-679 (-224)) (-558)) 51)) (-3761 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2271 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3728 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4159 (((-1025) (-558) (-224) (-224) (-558) (-224) (-112) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-744) (-10 -7 (-15 -4159 ((-1025) (-558) (-224) (-224) (-558) (-224) (-112) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3728 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2271 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -3761 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -3018 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-558) (-558) (-679 (-224)) (-558))) (-15 -2609 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-112) (-112) (-558) (-558) (-679 (-224)) (-679 (-558)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3497 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-112) (-224) (-558) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-558) (-558) (-558) (-558) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -1407 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-558) (-679 (-224)) (-558))))) (T -744))
-((-1407 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3497 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-679 (-558))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-2609 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-679 (-224))) (-5 *6 (-112)) (-5 *7 (-679 (-558))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3018 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3761 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1025)) (-5 *1 (-744)))) (-2271 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1025)) (-5 *1 (-744)))) (-3728 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1025)) (-5 *1 (-744)))) (-4159 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))))
-(-10 -7 (-15 -4159 ((-1025) (-558) (-224) (-224) (-558) (-224) (-112) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3728 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2271 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -3761 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -3018 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-558) (-558) (-679 (-224)) (-558))) (-15 -2609 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-224) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-112) (-112) (-112) (-558) (-558) (-679 (-224)) (-679 (-558)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3497 ((-1025) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-558) (-112) (-224) (-558) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-558) (-558) (-558) (-558) (-558) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-558) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -1407 ((-1025) (-558) (-558) (-558) (-224) (-679 (-224)) (-558) (-679 (-224)) (-558))))
-((-2975 (((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558)) 47)) (-4201 (((-1025) (-1145) (-1145) (-558) (-558) (-679 (-168 (-224))) (-558) (-679 (-168 (-224))) (-558) (-558) (-679 (-168 (-224))) (-558)) 46)) (-1909 (((-1025) (-558) (-558) (-558) (-679 (-168 (-224))) (-558)) 45)) (-1563 (((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 40)) (-1647 (((-1025) (-1145) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)) (-558)) 39)) (-3174 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-558)) 36)) (-1896 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558)) 35)) (-1579 (((-1025) (-558) (-558) (-558) (-558) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-224) (-224) (-558)) 34)) (-2817 (((-1025) (-558) (-558) (-558) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-112) (-224) (-112) (-679 (-558)) (-679 (-224)) (-558)) 33)) (-1850 (((-1025) (-558) (-558) (-558) (-558) (-224) (-112) (-112) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-558)) 32)))
-(((-745) (-10 -7 (-15 -1850 ((-1025) (-558) (-558) (-558) (-558) (-224) (-112) (-112) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-558))) (-15 -2817 ((-1025) (-558) (-558) (-558) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-112) (-224) (-112) (-679 (-558)) (-679 (-224)) (-558))) (-15 -1579 ((-1025) (-558) (-558) (-558) (-558) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-224) (-224) (-558))) (-15 -1896 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558))) (-15 -3174 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -1647 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)) (-558))) (-15 -1563 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1909 ((-1025) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -4201 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-168 (-224))) (-558) (-679 (-168 (-224))) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -2975 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))) (T -745))
-((-2975 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-4201 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-1909 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-1563 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-1647 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-3174 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-745)))) (-1896 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-745)))) (-1579 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-635 (-112))) (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *7 (-224)) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-745)))) (-2817 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-679 (-558))) (-5 *5 (-112)) (-5 *7 (-679 (-224))) (-5 *3 (-558)) (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-745)))) (-1850 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-635 (-112))) (-5 *7 (-679 (-224))) (-5 *8 (-679 (-558))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1025)) (-5 *1 (-745)))))
-(-10 -7 (-15 -1850 ((-1025) (-558) (-558) (-558) (-558) (-224) (-112) (-112) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-558))) (-15 -2817 ((-1025) (-558) (-558) (-558) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-679 (-558)) (-112) (-224) (-112) (-679 (-558)) (-679 (-224)) (-558))) (-15 -1579 ((-1025) (-558) (-558) (-558) (-558) (-635 (-112)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-224) (-224) (-558))) (-15 -1896 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558))) (-15 -3174 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -1647 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)) (-558))) (-15 -1563 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -1909 ((-1025) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -4201 ((-1025) (-1145) (-1145) (-558) (-558) (-679 (-168 (-224))) (-558) (-679 (-168 (-224))) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -2975 ((-1025) (-1145) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))
-((-2270 (((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558)) 66)) (-3954 (((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558)) 61)) (-3980 (((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-3261 (((-1025) (-558) (-558) (-558) (-224) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558)) 37)) (-1859 (((-1025) (-558) (-558) (-224) (-224) (-558) (-558) (-679 (-224)) (-558)) 33)) (-3501 (((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558) (-558)) 30)) (-4121 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 29)) (-3716 (((-1025) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 28)) (-3603 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 27)) (-3433 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558)) 26)) (-4082 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 25)) (-4071 (((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 24)) (-3274 (((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558)) 23)) (-2012 (((-1025) (-679 (-224)) (-558) (-558) (-558) (-558)) 22)) (-1668 (((-1025) (-558) (-558) (-679 (-224)) (-558)) 21)))
-(((-746) (-10 -7 (-15 -1668 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -2012 ((-1025) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -3274 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4071 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4082 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -3433 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -3603 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3716 ((-1025) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4121 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3501 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -1859 ((-1025) (-558) (-558) (-224) (-224) (-558) (-558) (-679 (-224)) (-558))) (-15 -3261 ((-1025) (-558) (-558) (-558) (-224) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3980 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -3980 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3954 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2270 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))) (T -746))
-((-2270 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3954 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3980 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3980 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3261 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-1859 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3501 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-4121 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3716 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3603 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3433 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-4082 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-4071 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-3274 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))) (-2012 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-746)))) (-1668 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-746)))))
-(-10 -7 (-15 -1668 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -2012 ((-1025) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -3274 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4071 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4082 ((-1025) (-558) (-558) (-679 (-224)) (-558))) (-15 -3433 ((-1025) (-558) (-558) (-558) (-558) (-679 (-224)) (-558))) (-15 -3603 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3716 ((-1025) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4121 ((-1025) (-558) (-558) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3501 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558) (-558))) (-15 -1859 ((-1025) (-558) (-558) (-224) (-224) (-558) (-558) (-679 (-224)) (-558))) (-15 -3261 ((-1025) (-558) (-558) (-558) (-224) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -3980 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -3980 ((-1025) (-558) (-558) (-224) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3954 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -2270 ((-1025) (-558) (-558) (-558) (-558) (-558) (-112) (-558) (-112) (-558) (-679 (-168 (-224))) (-679 (-168 (-224))) (-558))))
-((-3077 (((-1025) (-558) (-558) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-1357 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558)) 57)) (-3210 (((-1025) (-558) (-679 (-224)) (-112) (-224) (-558) (-558) (-558) (-558) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-4222 (((-1025) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558)) 37)) (-4265 (((-1025) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-558)) 36)) (-3195 (((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558)) 33)) (-3647 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224))) 32)) (-1899 (((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558)) 28)) (-3927 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558)) 27)) (-3158 (((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558)) 26)) (-2893 (((-1025) (-558) (-679 (-168 (-224))) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-558)) 22)))
-(((-747) (-10 -7 (-15 -2893 ((-1025) (-558) (-679 (-168 (-224))) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3158 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -3927 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1899 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558))) (-15 -3647 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)))) (-15 -3195 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4265 ((-1025) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4222 ((-1025) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -3210 ((-1025) (-558) (-679 (-224)) (-112) (-224) (-558) (-558) (-558) (-558) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -1357 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -3077 ((-1025) (-558) (-558) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -747))
-((-3077 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-1357 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3210 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-4222 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-4265 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3195 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3647 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-1899 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3927 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-3158 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-747)))) (-2893 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025)) (-5 *1 (-747)))))
-(-10 -7 (-15 -2893 ((-1025) (-558) (-679 (-168 (-224))) (-558) (-558) (-558) (-558) (-679 (-168 (-224))) (-558))) (-15 -3158 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -3927 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-558))) (-15 -1899 ((-1025) (-679 (-224)) (-558) (-679 (-224)) (-558) (-558) (-558))) (-15 -3647 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-558)) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)))) (-15 -3195 ((-1025) (-558) (-558) (-679 (-224)) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4265 ((-1025) (-558) (-558) (-558) (-224) (-558) (-679 (-224)) (-679 (-224)) (-558))) (-15 -4222 ((-1025) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-558)) (-679 (-224)) (-679 (-558)) (-679 (-558)) (-679 (-224)) (-679 (-224)) (-679 (-558)) (-558))) (-15 -3210 ((-1025) (-558) (-679 (-224)) (-112) (-224) (-558) (-558) (-558) (-558) (-224) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -1357 ((-1025) (-558) (-679 (-224)) (-558) (-679 (-224)) (-679 (-558)) (-558) (-679 (-224)) (-558) (-558) (-558) (-558))) (-15 -3077 ((-1025) (-558) (-558) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-679 (-224)) (-558) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))
-((-3325 (((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-558) (-679 (-224))) 29)) (-4183 (((-1025) (-1145) (-558) (-558) (-679 (-224))) 28)) (-3480 (((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-224))) 27)) (-2749 (((-1025) (-558) (-558) (-558) (-679 (-224))) 21)))
-(((-748) (-10 -7 (-15 -2749 ((-1025) (-558) (-558) (-558) (-679 (-224)))) (-15 -3480 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-224)))) (-15 -4183 ((-1025) (-1145) (-558) (-558) (-679 (-224)))) (-15 -3325 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)))))) (T -748))
-((-3325 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-748)))) (-4183 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-748)))) (-3480 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-748)))) (-2749 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025)) (-5 *1 (-748)))))
-(-10 -7 (-15 -2749 ((-1025) (-558) (-558) (-558) (-679 (-224)))) (-15 -3480 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-679 (-558)) (-558) (-679 (-224)))) (-15 -4183 ((-1025) (-1145) (-558) (-558) (-679 (-224)))) (-15 -3325 ((-1025) (-1145) (-558) (-558) (-679 (-224)) (-558) (-558) (-679 (-224)))))
-((-1308 (((-1025) (-224) (-224) (-224) (-224) (-558)) 62)) (-3913 (((-1025) (-224) (-224) (-224) (-558)) 61)) (-3507 (((-1025) (-224) (-224) (-224) (-558)) 60)) (-2188 (((-1025) (-224) (-224) (-558)) 59)) (-1648 (((-1025) (-224) (-558)) 58)) (-4282 (((-1025) (-224) (-558)) 57)) (-3563 (((-1025) (-224) (-558)) 56)) (-2952 (((-1025) (-224) (-558)) 55)) (-3038 (((-1025) (-224) (-558)) 54)) (-3019 (((-1025) (-224) (-558)) 53)) (-1920 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 52)) (-3810 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 51)) (-2928 (((-1025) (-224) (-558)) 50)) (-2574 (((-1025) (-224) (-558)) 49)) (-2612 (((-1025) (-224) (-558)) 48)) (-3487 (((-1025) (-224) (-558)) 47)) (-1678 (((-1025) (-558) (-224) (-168 (-224)) (-558) (-1145) (-558)) 46)) (-3449 (((-1025) (-1145) (-168 (-224)) (-1145) (-558)) 45)) (-2949 (((-1025) (-1145) (-168 (-224)) (-1145) (-558)) 44)) (-4147 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 43)) (-2042 (((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558)) 42)) (-3265 (((-1025) (-224) (-558)) 39)) (-2359 (((-1025) (-224) (-558)) 38)) (-1865 (((-1025) (-224) (-558)) 37)) (-1751 (((-1025) (-224) (-558)) 36)) (-1816 (((-1025) (-224) (-558)) 35)) (-2756 (((-1025) (-224) (-558)) 34)) (-1725 (((-1025) (-224) (-558)) 33)) (-3937 (((-1025) (-224) (-558)) 32)) (-4250 (((-1025) (-224) (-558)) 31)) (-1477 (((-1025) (-224) (-558)) 30)) (-2396 (((-1025) (-224) (-224) (-224) (-558)) 29)) (-2048 (((-1025) (-224) (-558)) 28)) (-2083 (((-1025) (-224) (-558)) 27)) (-1824 (((-1025) (-224) (-558)) 26)) (-1619 (((-1025) (-224) (-558)) 25)) (-2501 (((-1025) (-224) (-558)) 24)) (-2711 (((-1025) (-168 (-224)) (-558)) 21)))
-(((-749) (-10 -7 (-15 -2711 ((-1025) (-168 (-224)) (-558))) (-15 -2501 ((-1025) (-224) (-558))) (-15 -1619 ((-1025) (-224) (-558))) (-15 -1824 ((-1025) (-224) (-558))) (-15 -2083 ((-1025) (-224) (-558))) (-15 -2048 ((-1025) (-224) (-558))) (-15 -2396 ((-1025) (-224) (-224) (-224) (-558))) (-15 -1477 ((-1025) (-224) (-558))) (-15 -4250 ((-1025) (-224) (-558))) (-15 -3937 ((-1025) (-224) (-558))) (-15 -1725 ((-1025) (-224) (-558))) (-15 -2756 ((-1025) (-224) (-558))) (-15 -1816 ((-1025) (-224) (-558))) (-15 -1751 ((-1025) (-224) (-558))) (-15 -1865 ((-1025) (-224) (-558))) (-15 -2359 ((-1025) (-224) (-558))) (-15 -3265 ((-1025) (-224) (-558))) (-15 -2042 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -4147 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -2949 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -3449 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -1678 ((-1025) (-558) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3487 ((-1025) (-224) (-558))) (-15 -2612 ((-1025) (-224) (-558))) (-15 -2574 ((-1025) (-224) (-558))) (-15 -2928 ((-1025) (-224) (-558))) (-15 -3810 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -1920 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3019 ((-1025) (-224) (-558))) (-15 -3038 ((-1025) (-224) (-558))) (-15 -2952 ((-1025) (-224) (-558))) (-15 -3563 ((-1025) (-224) (-558))) (-15 -4282 ((-1025) (-224) (-558))) (-15 -1648 ((-1025) (-224) (-558))) (-15 -2188 ((-1025) (-224) (-224) (-558))) (-15 -3507 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3913 ((-1025) (-224) (-224) (-224) (-558))) (-15 -1308 ((-1025) (-224) (-224) (-224) (-224) (-558))))) (T -749))
-((-1308 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3913 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3507 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2188 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-4282 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3038 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1920 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3810 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2928 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1678 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-168 (-224))) (-5 *6 (-1145)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3449 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2949 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-4147 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2042 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145)) (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1865 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2396 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2048 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-224))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(-10 -7 (-15 -2711 ((-1025) (-168 (-224)) (-558))) (-15 -2501 ((-1025) (-224) (-558))) (-15 -1619 ((-1025) (-224) (-558))) (-15 -1824 ((-1025) (-224) (-558))) (-15 -2083 ((-1025) (-224) (-558))) (-15 -2048 ((-1025) (-224) (-558))) (-15 -2396 ((-1025) (-224) (-224) (-224) (-558))) (-15 -1477 ((-1025) (-224) (-558))) (-15 -4250 ((-1025) (-224) (-558))) (-15 -3937 ((-1025) (-224) (-558))) (-15 -1725 ((-1025) (-224) (-558))) (-15 -2756 ((-1025) (-224) (-558))) (-15 -1816 ((-1025) (-224) (-558))) (-15 -1751 ((-1025) (-224) (-558))) (-15 -1865 ((-1025) (-224) (-558))) (-15 -2359 ((-1025) (-224) (-558))) (-15 -3265 ((-1025) (-224) (-558))) (-15 -2042 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -4147 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -2949 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -3449 ((-1025) (-1145) (-168 (-224)) (-1145) (-558))) (-15 -1678 ((-1025) (-558) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3487 ((-1025) (-224) (-558))) (-15 -2612 ((-1025) (-224) (-558))) (-15 -2574 ((-1025) (-224) (-558))) (-15 -2928 ((-1025) (-224) (-558))) (-15 -3810 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -1920 ((-1025) (-224) (-168 (-224)) (-558) (-1145) (-558))) (-15 -3019 ((-1025) (-224) (-558))) (-15 -3038 ((-1025) (-224) (-558))) (-15 -2952 ((-1025) (-224) (-558))) (-15 -3563 ((-1025) (-224) (-558))) (-15 -4282 ((-1025) (-224) (-558))) (-15 -1648 ((-1025) (-224) (-558))) (-15 -2188 ((-1025) (-224) (-224) (-558))) (-15 -3507 ((-1025) (-224) (-224) (-224) (-558))) (-15 -3913 ((-1025) (-224) (-224) (-224) (-558))) (-15 -1308 ((-1025) (-224) (-224) (-224) (-224) (-558))))
-((-4061 (((-1251)) 18)) (-2153 (((-1145)) 22)) (-4103 (((-1145)) 21)) (-3800 (((-1091) (-1163) (-679 (-558))) 37) (((-1091) (-1163) (-679 (-224))) 32)) (-3272 (((-112)) 16)) (-1602 (((-1145) (-1145)) 25)))
-(((-750) (-10 -7 (-15 -4103 ((-1145))) (-15 -2153 ((-1145))) (-15 -1602 ((-1145) (-1145))) (-15 -3800 ((-1091) (-1163) (-679 (-224)))) (-15 -3800 ((-1091) (-1163) (-679 (-558)))) (-15 -3272 ((-112))) (-15 -4061 ((-1251))))) (T -750))
-((-4061 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-750)))) (-3272 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-750)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-558))) (-5 *2 (-1091)) (-5 *1 (-750)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-224))) (-5 *2 (-1091)) (-5 *1 (-750)))) (-1602 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))) (-2153 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))) (-4103 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
-(-10 -7 (-15 -4103 ((-1145))) (-15 -2153 ((-1145))) (-15 -1602 ((-1145) (-1145))) (-15 -3800 ((-1091) (-1163) (-679 (-224)))) (-15 -3800 ((-1091) (-1163) (-679 (-558)))) (-15 -3272 ((-112))) (-15 -4061 ((-1251))))
-((-3072 (($ $ $) 10)) (-2536 (($ $ $ $) 9)) (-3467 (($ $ $) 12)))
-(((-751 |#1|) (-10 -8 (-15 -3467 (|#1| |#1| |#1|)) (-15 -3072 (|#1| |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1| |#1|))) (-752)) (T -751))
-NIL
-(-10 -8 (-15 -3467 (|#1| |#1| |#1|)) (-15 -3072 (|#1| |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2943 (($ $ (-911)) 28)) (-1794 (($ $ (-911)) 29)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3072 (($ $ $) 25)) (-3940 (((-853) $) 11)) (-2536 (($ $ $ $) 26)) (-3467 (($ $ $) 24)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 30)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27)))
-(((-752) (-139)) (T -752))
-((-2536 (*1 *1 *1 *1 *1) (-4 *1 (-752))) (-3072 (*1 *1 *1 *1) (-4 *1 (-752))) (-3467 (*1 *1 *1 *1) (-4 *1 (-752))))
-(-13 (-21) (-711) (-10 -8 (-15 -2536 ($ $ $ $)) (-15 -3072 ($ $ $)) (-15 -3467 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-711) . T) ((-1087) . T))
-((-3940 (((-853) $) NIL) (($ (-558)) 10)))
-(((-753 |#1|) (-10 -8 (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-754)) (T -753))
-NIL
-(-10 -8 (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2113 (((-3 $ "failed") $) 40)) (-2943 (($ $ (-911)) 28) (($ $ (-762)) 35)) (-3248 (((-3 $ "failed") $) 38)) (-3999 (((-112) $) 34)) (-4300 (((-3 $ "failed") $) 39)) (-1794 (($ $ (-911)) 29) (($ $ (-762)) 36)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3072 (($ $ $) 25)) (-3940 (((-853) $) 11) (($ (-558)) 31)) (-2417 (((-762)) 32)) (-2536 (($ $ $ $) 26)) (-3467 (($ $ $) 24)) (-2207 (($) 18 T CONST)) (-2220 (($) 33 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 30) (($ $ (-762)) 37)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 27)))
-(((-754) (-139)) (T -754))
-((-2417 (*1 *2) (-12 (-4 *1 (-754)) (-5 *2 (-762)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-754)))))
-(-13 (-752) (-713) (-10 -8 (-15 -2417 ((-762))) (-15 -3940 ($ (-558)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-711) . T) ((-713) . T) ((-752) . T) ((-1087) . T))
-((-3708 (((-635 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 |#1|)))))) (-679 (-168 (-406 (-558)))) |#1|) 33)) (-2516 (((-635 (-168 |#1|)) (-679 (-168 (-406 (-558)))) |#1|) 23)) (-1969 (((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))) (-1163)) 20) (((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558))))) 19)))
-(((-755 |#1|) (-10 -7 (-15 -1969 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))))) (-15 -1969 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))) (-1163))) (-15 -2516 ((-635 (-168 |#1|)) (-679 (-168 (-406 (-558)))) |#1|)) (-15 -3708 ((-635 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 |#1|)))))) (-679 (-168 (-406 (-558)))) |#1|))) (-13 (-362) (-839))) (T -755))
-((-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-635 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 *4))))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-635 (-168 *4))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *4 (-1163)) (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-362) (-839))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))))
-(-10 -7 (-15 -1969 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))))) (-15 -1969 ((-942 (-168 (-406 (-558)))) (-679 (-168 (-406 (-558)))) (-1163))) (-15 -2516 ((-635 (-168 |#1|)) (-679 (-168 (-406 (-558)))) |#1|)) (-15 -3708 ((-635 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 (-168 |#1|)))))) (-679 (-168 (-406 (-558)))) |#1|)))
-((-3537 (((-173 (-558)) |#1|) 25)))
-(((-756 |#1|) (-10 -7 (-15 -3537 ((-173 (-558)) |#1|))) (-403)) (T -756))
-((-3537 (*1 *2 *3) (-12 (-5 *2 (-173 (-558))) (-5 *1 (-756 *3)) (-4 *3 (-403)))))
-(-10 -7 (-15 -3537 ((-173 (-558)) |#1|)))
-((-1700 ((|#1| |#1| |#1|) 24)) (-1539 ((|#1| |#1| |#1|) 23)) (-3014 ((|#1| |#1| |#1|) 32)) (-2697 ((|#1| |#1| |#1|) 28)) (-2548 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3868 (((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|) 22)))
-(((-757 |#1| |#2|) (-10 -7 (-15 -3868 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -1539 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -2548 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2697 (|#1| |#1| |#1|)) (-15 -3014 (|#1| |#1| |#1|))) (-699 |#2|) (-362)) (T -757))
-((-3014 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-2697 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-2548 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-1700 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-1539 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3)))) (-3868 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-757 *3 *4)) (-4 *3 (-699 *4)))))
-(-10 -7 (-15 -3868 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -1539 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -2548 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2697 (|#1| |#1| |#1|)) (-15 -3014 (|#1| |#1| |#1|)))
-((-3025 (((-762) $ (-128)) 13)) (-2432 (((-681 (-129)) $ (-129)) 12)) (-2657 (((-762) $ (-128)) 7)) (-3519 (((-681 (-129)) $) 8)) (-1712 (((-112) $) 15)) (-3376 (((-681 $) |#1| (-944)) 16)) (-1388 (($ $) 6)))
-(((-758 |#1|) (-139) (-1087)) (T -758))
-((-3376 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *3 (-1087)) (-5 *2 (-681 *1)) (-4 *1 (-758 *3)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-758 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
-(-13 (-570) (-10 -8 (-15 -3376 ((-681 $) |t#1| (-944))) (-15 -1712 ((-112) $))))
-(((-172) . T) ((-525) . T) ((-570) . T) ((-851) . T))
-((-2767 (((-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))) (-558)) 59)) (-2999 (((-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558))))) 57)) (-3789 (((-558)) 70)))
-(((-759 |#1| |#2|) (-10 -7 (-15 -3789 ((-558))) (-15 -2999 ((-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))))) (-15 -2767 ((-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))) (-558)))) (-1222 (-558)) (-408 (-558) |#1|)) (T -759))
-((-2767 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1222 *3)) (-5 *2 (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-759 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2999 (*1 *2) (-12 (-4 *3 (-1222 (-558))) (-5 *2 (-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558))))) (-5 *1 (-759 *3 *4)) (-4 *4 (-408 (-558) *3)))) (-3789 (*1 *2) (-12 (-4 *3 (-1222 *2)) (-5 *2 (-558)) (-5 *1 (-759 *3 *4)) (-4 *4 (-408 *2 *3)))))
-(-10 -7 (-15 -3789 ((-558))) (-15 -2999 ((-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))))) (-15 -2767 ((-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-679 (-558)))) (-558))))
-((-3929 (((-112) $ $) NIL)) (-3226 (((-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 20) (($ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-1708 (((-112) $ $) NIL)))
-(((-760) (-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3940 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3940 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3226 ((-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -760))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-760)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-760)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-760)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-760)))))
-(-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3940 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3940 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3226 ((-3 (|:| |nia| (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))
-((-4244 (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|))) 18) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163))) 17)) (-2692 (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|))) 20) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163))) 19)))
-(((-761 |#1|) (-10 -7 (-15 -4244 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -4244 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|))))) (-550)) (T -761))
-((-2692 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5)))))
-(-10 -7 (-15 -4244 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -4244 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-942 |#1|)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2707 (($ $ $) 6)) (-1868 (((-3 $ "failed") $ $) 9)) (-3277 (($ $ (-558)) 7)) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($ $) NIL)) (-2881 (($ $ $) NIL)) (-3999 (((-112) $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1544 (($ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3940 (((-853) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ $ $) NIL)))
-(((-762) (-13 (-784) (-717) (-10 -8 (-15 -2881 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -1544 ($ $ $)) (-15 -3902 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -2861 ((-3 $ "failed") $ $)) (-15 -3277 ($ $ (-558))) (-15 -3692 ($ $)) (-6 (-4385 "*"))))) (T -762))
-((-2881 (*1 *1 *1 *1) (-5 *1 (-762))) (-1709 (*1 *1 *1 *1) (-5 *1 (-762))) (-1544 (*1 *1 *1 *1) (-5 *1 (-762))) (-3902 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2263 (-762)) (|:| -1548 (-762)))) (-5 *1 (-762)))) (-2861 (*1 *1 *1 *1) (|partial| -5 *1 (-762))) (-3277 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-762)))) (-3692 (*1 *1 *1) (-5 *1 (-762))))
-(-13 (-784) (-717) (-10 -8 (-15 -2881 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -1544 ($ $ $)) (-15 -3902 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -2861 ((-3 $ "failed") $ $)) (-15 -3277 ($ $ (-558))) (-15 -3692 ($ $)) (-6 (-4385 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-1048 |#1|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-3368 (($ |#1|) 17) (($ $ |#1|) 20)) (-3917 (($ |#1|) 18) (($ $ |#1|) 21)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3113 (((-112) $) NIL)) (-3549 (($ |#1| |#1| |#1| |#1|) 8)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 16)) (-1714 (((-1110) $) NIL)) (-1444 ((|#1| $ |#1|) 24) (((-827 |#1|) $ (-827 |#1|)) 32)) (-2260 (($ $ $) NIL)) (-3800 (($ $ $) NIL)) (-4022 (((-856) $) 39)) (-2222 (($) 9 T CONST)) (-1733 (((-112) $ $) 44)) (-1833 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ $ $) 14)))
+(((-712 |#1|) (-13 (-471) (-10 -8 (-15 -3549 ($ |#1| |#1| |#1| |#1|)) (-15 -3368 ($ |#1|)) (-15 -3917 ($ |#1|)) (-15 -3466 ($)) (-15 -3368 ($ $ |#1|)) (-15 -3917 ($ $ |#1|)) (-15 -3466 ($ $)) (-15 -1444 (|#1| $ |#1|)) (-15 -1444 ((-827 |#1|) $ (-827 |#1|))))) (-362)) (T -712))
+((-3549 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3368 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3917 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3466 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3466 (*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-1444 (*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-1444 (*1 *2 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3)))))
+(-13 (-471) (-10 -8 (-15 -3549 ($ |#1| |#1| |#1| |#1|)) (-15 -3368 ($ |#1|)) (-15 -3917 ($ |#1|)) (-15 -3466 ($)) (-15 -3368 ($ $ |#1|)) (-15 -3917 ($ $ |#1|)) (-15 -3466 ($ $)) (-15 -1444 (|#1| $ |#1|)) (-15 -1444 ((-827 |#1|) $ (-827 |#1|)))))
+((-3928 (($ $ (-914)) 12)) (-3394 (($ $ (-914)) 13)) (** (($ $ (-914)) 10)))
+(((-713 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-914))) (-15 -3394 (|#1| |#1| (-914))) (-15 -3928 (|#1| |#1| (-914)))) (-714)) (T -713))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-914))) (-15 -3394 (|#1| |#1| (-914))) (-15 -3928 (|#1| |#1| (-914))))
+((-4011 (((-112) $ $) 7)) (-3928 (($ $ (-914)) 15)) (-3394 (($ $ (-914)) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)) (** (($ $ (-914)) 13)) (* (($ $ $) 16)))
+(((-714) (-139)) (T -714))
+((* (*1 *1 *1 *1) (-4 *1 (-714))) (-3928 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914)))) (-3394 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914)))))
+(-13 (-1090) (-10 -8 (-15 * ($ $ $)) (-15 -3928 ($ $ (-914))) (-15 -3394 ($ $ (-914))) (-15 ** ($ $ (-914)))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-3928 (($ $ (-914)) NIL) (($ $ (-765)) 17)) (-3113 (((-112) $) 10)) (-3394 (($ $ (-914)) NIL) (($ $ (-765)) 18)) (** (($ $ (-914)) NIL) (($ $ (-765)) 15)))
+(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -3394 (|#1| |#1| (-765))) (-15 -3928 (|#1| |#1| (-765))) (-15 -3113 ((-112) |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 -3394 (|#1| |#1| (-914))) (-15 -3928 (|#1| |#1| (-914)))) (-716)) (T -715))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -3394 (|#1| |#1| (-765))) (-15 -3928 (|#1| |#1| (-765))) (-15 -3113 ((-112) |#1|)) (-15 ** (|#1| |#1| (-914))) (-15 -3394 (|#1| |#1| (-914))) (-15 -3928 (|#1| |#1| (-914))))
+((-4011 (((-112) $ $) 7)) (-3494 (((-3 $ "failed") $) 17)) (-3928 (($ $ (-914)) 15) (($ $ (-765)) 22)) (-3466 (((-3 $ "failed") $) 19)) (-3113 (((-112) $) 23)) (-4063 (((-3 $ "failed") $) 18)) (-3394 (($ $ (-914)) 14) (($ $ (-765)) 21)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2222 (($) 24 T CONST)) (-1733 (((-112) $ $) 6)) (** (($ $ (-914)) 13) (($ $ (-765)) 20)) (* (($ $ $) 16)))
+(((-716) (-139)) (T -716))
+((-2222 (*1 *1) (-4 *1 (-716))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112)))) (-3928 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-3394 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-3466 (*1 *1 *1) (|partial| -4 *1 (-716))) (-4063 (*1 *1 *1) (|partial| -4 *1 (-716))) (-3494 (*1 *1 *1) (|partial| -4 *1 (-716))))
+(-13 (-714) (-10 -8 (-15 (-2222) ($) -1514) (-15 -3113 ((-112) $)) (-15 -3928 ($ $ (-765))) (-15 -3394 ($ $ (-765))) (-15 ** ($ $ (-765))) (-15 -3466 ((-3 $ "failed") $)) (-15 -4063 ((-3 $ "failed") $)) (-15 -3494 ((-3 $ "failed") $))))
+(((-102) . T) ((-608 (-856)) . T) ((-714) . T) ((-1090) . T))
+((-1393 (((-765)) 35)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3938 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 22)) (-3185 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-3466 (((-3 $ "failed") $) 65)) (-1332 (($) 39)) (-1672 ((|#2| $) 20)) (-3158 (($) 17)) (-3238 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-2656 (((-682 |#2|) (-1253 $) (-1 |#2| |#2|)) 60)) (-4174 (((-1253 |#2|) $) NIL) (($ (-1253 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2485 ((|#3| $) 32)) (-3711 (((-1253 $)) 29)))
+(((-717 |#1| |#2| |#3|) (-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -1332 (|#1|)) (-15 -1393 ((-765))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -2656 ((-682 |#2|) (-1253 |#1|) (-1 |#2| |#2|))) (-15 -3185 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4174 (|#1| |#3|)) (-15 -3185 (|#1| |#3|)) (-15 -3158 (|#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4174 (|#3| |#1|)) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -3711 ((-1253 |#1|))) (-15 -2485 (|#3| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) (-718 |#2| |#3|) (-171) (-1229 |#2|)) (T -717))
+((-1393 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-765)) (-5 *1 (-717 *3 *4 *5)) (-4 *3 (-718 *4 *5)))))
+(-10 -8 (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -1332 (|#1|)) (-15 -1393 ((-765))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -2656 ((-682 |#2|) (-1253 |#1|) (-1 |#2| |#2|))) (-15 -3185 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4174 (|#1| |#3|)) (-15 -3185 (|#1| |#3|)) (-15 -3158 (|#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4174 (|#3| |#1|)) (-15 -4174 (|#1| (-1253 |#2|))) (-15 -4174 ((-1253 |#2|) |#1|)) (-15 -3711 ((-1253 |#1|))) (-15 -2485 (|#3| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-2851 (($ $) 94 (|has| |#1| (-362)))) (-3359 (((-112) $) 96 (|has| |#1| (-362)))) (-2695 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-1744 ((|#1| $) 53)) (-4207 (((-1178 (-914) (-765)) (-561)) 146 (|has| |#1| (-348)))) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 113 (|has| |#1| (-362)))) (-3422 (((-417 $) $) 114 (|has| |#1| (-362)))) (-1671 (((-112) $ $) 104 (|has| |#1| (-362)))) (-1393 (((-765)) 87 (|has| |#1| (-367)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 169 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 167 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 164)) (-3938 (((-561) $) 168 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 166 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 165)) (-2257 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1793 (($ $ $) 108 (|has| |#1| (-362)))) (-4145 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-3602 (((-682 (-561)) (-682 $)) 163 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 162 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-3185 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-3466 (((-3 $ "failed") $) 33)) (-1569 (((-914)) 55)) (-1332 (($) 90 (|has| |#1| (-367)))) (-1774 (($ $ $) 107 (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 102 (|has| |#1| (-362)))) (-2022 (($) 148 (|has| |#1| (-348)))) (-1803 (((-112) $) 149 (|has| |#1| (-348)))) (-1575 (($ $ (-765)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2737 (((-112) $) 115 (|has| |#1| (-362)))) (-4163 (((-914) $) 151 (|has| |#1| (-348))) (((-827 (-914)) $) 137 (|has| |#1| (-348)))) (-3113 (((-112) $) 31)) (-1672 ((|#1| $) 52)) (-1663 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 111 (|has| |#1| (-362)))) (-2692 ((|#2| $) 45 (|has| |#1| (-362)))) (-3198 (((-914) $) 89 (|has| |#1| (-367)))) (-3174 ((|#2| $) 155)) (-1582 (($ (-638 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-1764 (((-1148) $) 9)) (-1540 (($ $) 116 (|has| |#1| (-362)))) (-3721 (($) 142 (|has| |#1| (-348)) CONST)) (-2413 (($ (-914)) 88 (|has| |#1| (-367)))) (-1714 (((-1110) $) 10)) (-3158 (($) 159)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 101 (|has| |#1| (-362)))) (-1623 (($ (-638 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) 145 (|has| |#1| (-348)))) (-1657 (((-417 $) $) 112 (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 109 (|has| |#1| (-362)))) (-1756 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 103 (|has| |#1| (-362)))) (-3569 (((-765) $) 105 (|has| |#1| (-362)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 106 (|has| |#1| (-362)))) (-2553 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-1913 (((-765) $) 150 (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-348)))) (-3238 (($ $) 136 (-4007 (-2170 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) 134 (-4007 (-2170 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) 132 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166))) 131 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 130 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-765))) 129 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-2656 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3660 ((|#2|) 158)) (-1796 (($) 147 (|has| |#1| (-348)))) (-3969 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4174 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 144 (|has| |#1| (-348)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-561))) 86 (-4007 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-1760 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2485 ((|#2| $) 46)) (-4259 (((-765)) 28)) (-3711 (((-1253 $)) 68)) (-3168 (((-112) $ $) 95 (|has| |#1| (-362)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $) 135 (-4007 (-2170 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) 133 (-4007 (-2170 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) 128 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166))) 127 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 126 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-765))) 125 (-2170 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 120 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 117 (|has| |#1| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-561)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-561))) 118 (|has| |#1| (-362)))))
+(((-718 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -718))
+((-3158 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1229 *2)))) (-3660 (*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-3185 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) (-4174 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-3185 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-718 *3 *4)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *5)))))
+(-13 (-408 |t#1| |t#2|) (-171) (-609 |t#2|) (-410 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3158 ($)) (-15 -3660 (|t#2|)) (-15 -3185 ($ |t#2|)) (-15 -4174 ($ |t#2|)) (-15 -3174 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -3185 ((-3 $ "failed") (-406 |t#2|))) (-15 -2656 ((-682 |t#1|) (-1253 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-102) . T) ((-111 #0# #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4007 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) . T) ((-609 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -4007 (|has| |#1| (-348)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-289) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-306) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-362) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4007 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| |#2|) . T) ((-408 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-553) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-641 #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166)))) ((-913) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-348)) ((-1209) -4007 (|has| |#1| (-348)) (|has| |#1| (-362))))
+((-1965 (($) 11)) (-3466 (((-3 $ "failed") $) 13)) (-3113 (((-112) $) 10)) (** (($ $ (-914)) NIL) (($ $ (-765)) 18)))
+(((-719 |#1|) (-10 -8 (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -3113 ((-112) |#1|)) (-15 -1965 (|#1|)) (-15 ** (|#1| |#1| (-914)))) (-720)) (T -719))
+NIL
+(-10 -8 (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -3113 ((-112) |#1|)) (-15 -1965 (|#1|)) (-15 ** (|#1| |#1| (-914))))
+((-4011 (((-112) $ $) 7)) (-1965 (($) 18 T CONST)) (-3466 (((-3 $ "failed") $) 15)) (-3113 (((-112) $) 17)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2222 (($) 19 T CONST)) (-1733 (((-112) $ $) 6)) (** (($ $ (-914)) 13) (($ $ (-765)) 16)) (* (($ $ $) 14)))
+(((-720) (-139)) (T -720))
+((-2222 (*1 *1) (-4 *1 (-720))) (-1965 (*1 *1) (-4 *1 (-720))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765)))) (-3466 (*1 *1 *1) (|partial| -4 *1 (-720))))
+(-13 (-1102) (-10 -8 (-15 (-2222) ($) -1514) (-15 -1965 ($) -1514) (-15 -3113 ((-112) $)) (-15 ** ($ $ (-765))) (-15 -3466 ((-3 $ "failed") $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1102) . T) ((-1090) . T))
+((-2334 (((-2 (|:| -2397 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2321 (((-2 (|:| -2397 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2330 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-2091 (((-2 (|:| |poly| |#2|) (|:| -2397 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47)))
+(((-721 |#1| |#2|) (-10 -7 (-15 -2321 ((-2 (|:| -2397 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2334 ((-2 (|:| -2397 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2330 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -2091 ((-2 (|:| |poly| |#2|) (|:| -2397 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -721))
+((-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2397 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6)))) (-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-721 *5 *2)) (-4 *5 (-362)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2397 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-721 *5 *3)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2397 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3)))))
+(-10 -7 (-15 -2321 ((-2 (|:| -2397 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2334 ((-2 (|:| -2397 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2330 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -2091 ((-2 (|:| |poly| |#2|) (|:| -2397 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|))))
+((-4130 ((|#7| (-638 |#5|) |#6|) NIL)) (-4120 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-722 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4120 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4130 (|#7| (-638 |#5|) |#6|))) (-844) (-787) (-787) (-1042) (-1042) (-942 |#4| |#2| |#1|) (-942 |#5| |#3| |#1|)) (T -722))
+((-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-1042)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-942 *8 *6 *5)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-942 *8 *6 *5)))))
+(-10 -7 (-15 -4120 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4130 (|#7| (-638 |#5|) |#6|)))
+((-4120 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-723 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4120 (|#7| (-1 |#2| |#1|) |#6|))) (-844) (-844) (-787) (-787) (-1042) (-942 |#5| |#3| |#1|) (-942 |#5| |#4| |#2|)) (T -723))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-4 *7 (-787)) (-4 *9 (-1042)) (-4 *2 (-942 *9 *8 *6)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-787)) (-4 *4 (-942 *9 *7 *5)))))
+(-10 -7 (-15 -4120 (|#7| (-1 |#2| |#1|) |#6|)))
+((-1657 (((-417 |#4|) |#4|) 41)))
+(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-417 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166))))) (-306) (-942 (-945 |#3|) |#1| |#2|)) (T -724))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166)))))) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-942 (-945 *6) *4 *5)))))
+(-10 -7 (-15 -1657 ((-417 |#4|) |#4|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-858 |#1|)) $) NIL)) (-1620 (((-1162 $) $ (-858 |#1|)) NIL) (((-1162 |#2|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-2851 (($ $) NIL (|has| |#2| (-553)))) (-3359 (((-112) $) NIL (|has| |#2| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-858 |#1|))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1591 (($ $) NIL (|has| |#2| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-858 |#1|) "failed") $) NIL)) (-3938 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-858 |#1|) $) NIL)) (-3051 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#2| (-902)))) (-2103 (($ $ |#2| (-529 (-858 |#1|)) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1401 (($ (-1162 |#2|) (-858 |#1|)) NIL) (($ (-1162 $) (-858 |#1|)) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#2| (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-858 |#1|)) NIL)) (-2393 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-3443 (($ $ $) NIL (|has| |#2| (-844)))) (-2986 (($ $ $) NIL (|has| |#2| (-844)))) (-3524 (($ (-1 (-529 (-858 |#1|)) (-529 (-858 |#1|))) $) NIL)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-1358 (((-3 (-858 |#1|) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#2| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1764 (((-1148) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -4196 (-765))) "failed") $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#2| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#2| (-902)))) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-638 (-858 |#1|)) (-638 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-638 (-858 |#1|)) (-638 $)) NIL)) (-2553 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-3238 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-2894 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-638 (-765)) $ (-638 (-858 |#1|))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-858 |#1|) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-3609 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ $) NIL (|has| |#2| (-553))) (($ (-406 (-561))) NIL (-4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561))))))) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-858 |#1|)) NIL) (($ $ (-638 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-638 (-858 |#1|)) (-638 (-765))) NIL)) (-1782 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-725 |#1| |#2|) (-942 |#2| (-529 (-858 |#1|)) (-858 |#1|)) (-638 (-1166)) (-1042)) (T -725))
+NIL
+(-942 |#2| (-529 (-858 |#1|)) (-858 |#1|))
+((-2854 (((-2 (|:| -2090 (-945 |#3|)) (|:| -3692 (-945 |#3|))) |#4|) 14)) (-3362 ((|#4| |#4| |#2|) 33)) (-3553 ((|#4| (-406 (-945 |#3|)) |#2|) 64)) (-3725 ((|#4| (-1162 (-945 |#3|)) |#2|) 77)) (-1650 ((|#4| (-1162 |#4|) |#2|) 51)) (-1377 ((|#4| |#4| |#2|) 54)) (-1657 (((-417 |#4|) |#4|) 40)))
+(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2854 ((-2 (|:| -2090 (-945 |#3|)) (|:| -3692 (-945 |#3|))) |#4|)) (-15 -1377 (|#4| |#4| |#2|)) (-15 -1650 (|#4| (-1162 |#4|) |#2|)) (-15 -3362 (|#4| |#4| |#2|)) (-15 -3725 (|#4| (-1162 (-945 |#3|)) |#2|)) (-15 -3553 (|#4| (-406 (-945 |#3|)) |#2|)) (-15 -1657 ((-417 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)))) (-553) (-942 (-406 (-945 |#3|)) |#1| |#2|)) (T -726))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *6 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-942 (-406 (-945 *6)) *4 *5)))) (-3553 (*1 *2 *3 *4) (-12 (-4 *6 (-553)) (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-5 *3 (-406 (-945 *6))) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))))) (-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 (-945 *6))) (-4 *6 (-553)) (-4 *2 (-942 (-406 (-945 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))))) (-3362 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *5 (-553)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3)))) (-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-1162 *2)) (-4 *2 (-942 (-406 (-945 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *6 (-553)))) (-1377 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *5 (-553)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *6 (-553)) (-5 *2 (-2 (|:| -2090 (-945 *6)) (|:| -3692 (-945 *6)))) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-942 (-406 (-945 *6)) *4 *5)))))
+(-10 -7 (-15 -2854 ((-2 (|:| -2090 (-945 |#3|)) (|:| -3692 (-945 |#3|))) |#4|)) (-15 -1377 (|#4| |#4| |#2|)) (-15 -1650 (|#4| (-1162 |#4|) |#2|)) (-15 -3362 (|#4| |#4| |#2|)) (-15 -3725 (|#4| (-1162 (-945 |#3|)) |#2|)) (-15 -3553 (|#4| (-406 (-945 |#3|)) |#2|)) (-15 -1657 ((-417 |#4|) |#4|)))
+((-1657 (((-417 |#4|) |#4|) 52)))
+(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-417 |#4|) |#4|))) (-787) (-844) (-13 (-306) (-146)) (-942 (-406 |#3|) |#1| |#2|)) (T -727))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-942 (-406 *6) *4 *5)))))
+(-10 -7 (-15 -1657 ((-417 |#4|) |#4|)))
+((-4120 (((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)) 18)))
+(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -4120 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)))) (-1042) (-1042) (-720)) (T -728))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *7 (-720)) (-5 *2 (-729 *6 *7)) (-5 *1 (-728 *5 *6 *7)))))
+(-10 -7 (-15 -4120 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 28)) (-2457 (((-638 (-2 (|:| -4188 |#1|) (|:| -3044 |#2|))) $) 29)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1393 (((-765)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3938 ((|#2| $) NIL) ((|#1| $) NIL)) (-1619 (($ $) 79 (|has| |#2| (-844)))) (-3466 (((-3 $ "failed") $) 65)) (-1332 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) 55)) (-3371 (((-638 $) $) 39)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| |#2|) 16)) (-4120 (($ (-1 |#1| |#1|) $) 54)) (-3198 (((-914) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1578 ((|#2| $) 78 (|has| |#2| (-844)))) (-1590 ((|#1| $) 77 (|has| |#2| (-844)))) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 76) (($ (-561)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-638 (-2 (|:| -4188 |#1|) (|:| -3044 |#2|)))) 11)) (-2742 (((-638 |#1|) $) 41)) (-2634 ((|#1| $ |#2|) 87)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2211 (($) 12 T CONST)) (-2222 (($) 33 T CONST)) (-1733 (((-112) $ $) 80)) (-1824 (($ $) 47) (($ $ $) NIL)) (-1813 (($ $ $) 26)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-729 |#1| |#2|) (-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -1387 ($ |#1| |#2|)) (-15 -2634 (|#1| $ |#2|)) (-15 -4022 ($ (-638 (-2 (|:| -4188 |#1|) (|:| -3044 |#2|))))) (-15 -2457 ((-638 (-2 (|:| -4188 |#1|) (|:| -3044 |#2|))) $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (-15 -2092 ((-112) $)) (-15 -2742 ((-638 |#1|) $)) (-15 -3371 ((-638 $) $)) (-15 -2067 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -1578 (|#2| $)) (-15 -1590 (|#1| $)) (-15 -1619 ($ $))) |%noBranch|))) (-1042) (-720)) (T -729))
+((-1387 (*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -4188 *3) (|:| -3044 *4)))) (-4 *3 (-1042)) (-4 *4 (-720)) (-5 *1 (-729 *3 *4)))) (-2457 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -4188 *3) (|:| -3044 *4)))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4)) (-4 *4 (-720)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-2742 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-638 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-1578 (*1 *2 *1) (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2)) (-4 *3 (-1042)))) (-1590 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *3 (-720)))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042)) (-4 *3 (-720)))))
+(-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -1387 ($ |#1| |#2|)) (-15 -2634 (|#1| $ |#2|)) (-15 -4022 ($ (-638 (-2 (|:| -4188 |#1|) (|:| -3044 |#2|))))) (-15 -2457 ((-638 (-2 (|:| -4188 |#1|) (|:| -3044 |#2|))) $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (-15 -2092 ((-112) $)) (-15 -2742 ((-638 |#1|) $)) (-15 -3371 ((-638 $) $)) (-15 -2067 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -1578 (|#2| $)) (-15 -1590 (|#1| $)) (-15 -1619 ($ $))) |%noBranch|)))
+((-4011 (((-112) $ $) 19)) (-2443 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2613 (($ $ $) 72)) (-3903 (((-112) $ $) 73)) (-1630 (((-112) $ (-765)) 8)) (-1627 (($ (-638 |#1|)) 68) (($) 67)) (-3388 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-3776 (($ $) 62)) (-1472 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ |#1| $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-4198 (((-112) $ $) 64)) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22)) (-2579 (($ $ $) 69)) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-1714 (((-1110) $) 21)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-4057 (((-638 (-2 (|:| -2654 |#1|) (|:| -1724 (-765)))) $) 61)) (-4294 (($ $ |#1|) 71) (($ $ $) 70)) (-3579 (($) 49) (($ (-638 |#1|)) 48)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 50)) (-4022 (((-856) $) 18)) (-1710 (($ (-638 |#1|)) 66) (($) 65)) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20)) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-730 |#1|) (-139) (-1090)) (T -730))
+NIL
+(-13 (-688 |t#1|) (-1088 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-688 |#1|) . T) ((-1088 |#1|) . T) ((-1090) . T) ((-1205) . T))
+((-4011 (((-112) $ $) NIL)) (-2443 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2613 (($ $ $) 79)) (-3903 (((-112) $ $) 83)) (-1630 (((-112) $ (-765)) NIL)) (-1627 (($ (-638 |#1|)) 24) (($) 16)) (-3388 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-3776 (($ $) 71)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) 61 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 65 (|has| $ (-6 -4390))) (($ |#1| $ (-561)) 63) (($ (-1 (-112) |#1|) $ (-561)) 66)) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (($ |#1| $ (-561)) 68) (($ (-1 (-112) |#1|) $ (-561)) 69)) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 32 (|has| $ (-6 -4390)))) (-4198 (((-112) $ $) 82)) (-3679 (($) 14) (($ |#1|) 26) (($ (-638 |#1|)) 21)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) 38)) (-4087 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 75)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2579 (($ $ $) 77)) (-3211 ((|#1| $) 55)) (-3671 (($ |#1| $) 56) (($ |#1| $ (-765)) 72)) (-1714 (((-1110) $) NIL)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3522 ((|#1| $) 54)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 50)) (-3170 (($) 13)) (-4057 (((-638 (-2 (|:| -2654 |#1|) (|:| -1724 (-765)))) $) 48)) (-4294 (($ $ |#1|) NIL) (($ $ $) 78)) (-3579 (($) 15) (($ (-638 |#1|)) 23)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) 60 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 67)) (-4174 (((-534) $) 36 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 20)) (-4022 (((-856) $) 44)) (-1710 (($ (-638 |#1|)) 25) (($) 17)) (-3025 (($ (-638 |#1|)) 22)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 81)) (-3498 (((-765) $) 59 (|has| $ (-6 -4390)))))
+(((-731 |#1|) (-13 (-730 |#1|) (-10 -8 (-6 -4390) (-6 -4391) (-15 -3679 ($)) (-15 -3679 ($ |#1|)) (-15 -3679 ($ (-638 |#1|))) (-15 -1305 ((-638 |#1|) $)) (-15 -1489 ($ |#1| $ (-561))) (-15 -1489 ($ (-1 (-112) |#1|) $ (-561))) (-15 -3999 ($ |#1| $ (-561))) (-15 -3999 ($ (-1 (-112) |#1|) $ (-561))))) (-1090)) (T -731))
+((-3679 (*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-3679 (*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-3679 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-731 *3)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-731 *3)) (-4 *3 (-1090)))) (-1489 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-1489 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090)) (-5 *1 (-731 *4)))) (-3999 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090)))) (-3999 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090)) (-5 *1 (-731 *4)))))
+(-13 (-730 |#1|) (-10 -8 (-6 -4390) (-6 -4391) (-15 -3679 ($)) (-15 -3679 ($ |#1|)) (-15 -3679 ($ (-638 |#1|))) (-15 -1305 ((-638 |#1|) $)) (-15 -1489 ($ |#1| $ (-561))) (-15 -1489 ($ (-1 (-112) |#1|) $ (-561))) (-15 -3999 ($ |#1| $ (-561))) (-15 -3999 ($ (-1 (-112) |#1|) $ (-561)))))
+((-2363 (((-1258) (-1148)) 8)))
+(((-732) (-10 -7 (-15 -2363 ((-1258) (-1148))))) (T -732))
+((-2363 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-732)))))
+(-10 -7 (-15 -2363 ((-1258) (-1148))))
+((-3781 (((-638 |#1|) (-638 |#1|) (-638 |#1|)) 10)))
+(((-733 |#1|) (-10 -7 (-15 -3781 ((-638 |#1|) (-638 |#1|) (-638 |#1|)))) (-844)) (T -733))
+((-3781 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3)))))
+(-10 -7 (-15 -3781 ((-638 |#1|) (-638 |#1|) (-638 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 |#2|) $) 139)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 132 (|has| |#1| (-553)))) (-2851 (($ $) 131 (|has| |#1| (-553)))) (-3359 (((-112) $) 129 (|has| |#1| (-553)))) (-2978 (($ $) 88 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 71 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) 19)) (-1665 (($ $) 70 (|has| |#1| (-38 (-406 (-561)))))) (-4172 (($ $) 87 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 72 (|has| |#1| (-38 (-406 (-561)))))) (-3009 (($ $) 86 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 73 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) 17 T CONST)) (-1619 (($ $) 123)) (-3466 (((-3 $ "failed") $) 33)) (-3373 (((-945 |#1|) $ (-765)) 101) (((-945 |#1|) $ (-765) (-765)) 100)) (-3281 (((-112) $) 140)) (-4067 (($) 98 (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-765) $ |#2|) 103) (((-765) $ |#2| (-765)) 102)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 69 (|has| |#1| (-38 (-406 (-561)))))) (-2092 (((-112) $) 121)) (-1387 (($ $ (-638 |#2|) (-638 (-529 |#2|))) 138) (($ $ |#2| (-529 |#2|)) 137) (($ |#1| (-529 |#2|)) 122) (($ $ |#2| (-765)) 105) (($ $ (-638 |#2|) (-638 (-765))) 104)) (-4120 (($ (-1 |#1| |#1|) $) 120)) (-4348 (($ $) 95 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) 118)) (-1590 ((|#1| $) 117)) (-1764 (((-1148) $) 9)) (-1842 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) 10)) (-1416 (($ $ (-765)) 106)) (-1756 (((-3 $ "failed") $ $) 133 (|has| |#1| (-553)))) (-3440 (($ $) 96 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (($ $ |#2| $) 114) (($ $ (-638 |#2|) (-638 $)) 113) (($ $ (-638 (-293 $))) 112) (($ $ (-293 $)) 111) (($ $ $ $) 110) (($ $ (-638 $) (-638 $)) 109)) (-3238 (($ $ |#2|) 42) (($ $ (-638 |#2|)) 41) (($ $ |#2| (-765)) 40) (($ $ (-638 |#2|) (-638 (-765))) 39)) (-2894 (((-529 |#2|) $) 119)) (-3021 (($ $) 85 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 74 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 84 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 75 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 83 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 76 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 141)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-553))) (($ (-406 (-561))) 126 (|has| |#1| (-38 (-406 (-561)))))) (-2634 ((|#1| $ (-529 |#2|)) 124) (($ $ |#2| (-765)) 108) (($ $ (-638 |#2|) (-638 (-765))) 107)) (-1760 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-3055 (($ $) 94 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 82 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) 130 (|has| |#1| (-553)))) (-3031 (($ $) 93 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 81 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 92 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 80 (|has| |#1| (-38 (-406 (-561)))))) (-2125 (($ $) 91 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 79 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 90 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 78 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 89 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 77 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ |#2|) 38) (($ $ (-638 |#2|)) 37) (($ $ |#2| (-765)) 36) (($ $ (-638 |#2|) (-638 (-765))) 35)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 68 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 128 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 127 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
+(((-734 |#1| |#2|) (-139) (-1042) (-844)) (T -734))
+((-2634 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-2634 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-844)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4163 (*1 *2 *1 *3) (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4163 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)))) (-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-945 *4)))) (-3373 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-945 *4)))) (-1842 (*1 *1 *1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)) (-4 *3 (-38 (-406 (-561)))))))
+(-13 (-893 |t#2|) (-966 |t#1| (-529 |t#2|) |t#2|) (-512 |t#2| $) (-308 $) (-10 -8 (-15 -2634 ($ $ |t#2| (-765))) (-15 -2634 ($ $ (-638 |t#2|) (-638 (-765)))) (-15 -1416 ($ $ (-765))) (-15 -1387 ($ $ |t#2| (-765))) (-15 -1387 ($ $ (-638 |t#2|) (-638 (-765)))) (-15 -4163 ((-765) $ |t#2|)) (-15 -4163 ((-765) $ |t#2| (-765))) (-15 -3373 ((-945 |t#1|) $ (-765))) (-15 -3373 ((-945 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $ |t#2|)) (-6 (-995)) (-6 (-1190))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-529 |#2|)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-289) |has| |#1| (-553)) ((-308 $) . T) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-512 |#2| $) . T) ((-512 $ $) . T) ((-553) |has| |#1| (-553)) ((-641 #1#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-893 |#2|) . T) ((-966 |#1| #0# |#2|) . T) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))))
+((-1657 (((-417 (-1162 |#4|)) (-1162 |#4|)) 30) (((-417 |#4|) |#4|) 26)))
+(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-417 |#4|) |#4|)) (-15 -1657 ((-417 (-1162 |#4|)) (-1162 |#4|)))) (-844) (-787) (-13 (-306) (-146)) (-942 |#3| |#2| |#1|)) (T -735))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-735 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
+(-10 -7 (-15 -1657 ((-417 |#4|) |#4|)) (-15 -1657 ((-417 (-1162 |#4|)) (-1162 |#4|))))
+((-1893 (((-417 |#4|) |#4| |#2|) 118)) (-4186 (((-417 |#4|) |#4|) NIL)) (-3422 (((-417 (-1162 |#4|)) (-1162 |#4|)) 109) (((-417 |#4|) |#4|) 40)) (-3193 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-638 (-2 (|:| -1657 (-1162 |#4|)) (|:| -4196 (-561)))))) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|))) 68)) (-2709 (((-1162 |#3|) (-1162 |#3|) (-561)) 136)) (-1932 (((-638 (-765)) (-1162 |#4|) (-638 |#2|) (-765)) 60)) (-3174 (((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-1162 |#3|) (-1162 |#3|) |#4| (-638 |#2|) (-638 (-765)) (-638 |#3|)) 64)) (-2041 (((-2 (|:| |upol| (-1162 |#3|)) (|:| |Lval| (-638 |#3|)) (|:| |Lfact| (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561))))) (|:| |ctpol| |#3|)) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|))) 25)) (-2842 (((-2 (|:| -4158 (-1162 |#4|)) (|:| |polval| (-1162 |#3|))) (-1162 |#4|) (-1162 |#3|) (-561)) 56)) (-3384 (((-561) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561))))) 133)) (-2302 ((|#4| (-561) (-417 |#4|)) 57)) (-4023 (((-112) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561)))) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561))))) NIL)))
+(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3422 ((-417 |#4|) |#4|)) (-15 -3422 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -4186 ((-417 |#4|) |#4|)) (-15 -3384 ((-561) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561)))))) (-15 -1893 ((-417 |#4|) |#4| |#2|)) (-15 -2842 ((-2 (|:| -4158 (-1162 |#4|)) (|:| |polval| (-1162 |#3|))) (-1162 |#4|) (-1162 |#3|) (-561))) (-15 -3193 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-638 (-2 (|:| -1657 (-1162 |#4|)) (|:| -4196 (-561)))))) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -2041 ((-2 (|:| |upol| (-1162 |#3|)) (|:| |Lval| (-638 |#3|)) (|:| |Lfact| (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561))))) (|:| |ctpol| |#3|)) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -2302 (|#4| (-561) (-417 |#4|))) (-15 -4023 ((-112) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561)))) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561)))))) (-15 -3174 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-1162 |#3|) (-1162 |#3|) |#4| (-638 |#2|) (-638 (-765)) (-638 |#3|))) (-15 -1932 ((-638 (-765)) (-1162 |#4|) (-638 |#2|) (-765))) (-15 -2709 ((-1162 |#3|) (-1162 |#3|) (-561)))) (-787) (-844) (-306) (-942 |#3| |#1| |#2|)) (T -736))
+((-2709 (*1 *2 *2 *3) (-12 (-5 *2 (-1162 *6)) (-5 *3 (-561)) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-1932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-4 *7 (-844)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306)) (-5 *2 (-638 (-765))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765)))) (-3174 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1162 *11)) (-5 *6 (-638 *10)) (-5 *7 (-638 (-765))) (-5 *8 (-638 *11)) (-4 *10 (-844)) (-4 *11 (-306)) (-4 *9 (-787)) (-4 *5 (-942 *11 *9 *10)) (-5 *2 (-638 (-1162 *5))) (-5 *1 (-736 *9 *10 *11 *5)) (-5 *3 (-1162 *5)))) (-4023 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-2 (|:| -1657 (-1162 *6)) (|:| -4196 (-561))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-561)) (-5 *4 (-417 *2)) (-4 *2 (-942 *7 *5 *6)) (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-306)))) (-2041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |upol| (-1162 *8)) (|:| |Lval| (-638 *8)) (|:| |Lfact| (-638 (-2 (|:| -1657 (-1162 *8)) (|:| -4196 (-561))))) (|:| |ctpol| *8))) (-5 *1 (-736 *6 *7 *8 *9)))) (-3193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *6 (-787)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-638 (-2 (|:| -1657 (-1162 *9)) (|:| -4196 (-561))))))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)))) (-2842 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-561)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| -4158 (-1162 *9)) (|:| |polval| (-1162 *8)))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)) (-5 *4 (-1162 *8)))) (-1893 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1657 (-1162 *6)) (|:| -4196 (-561))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-4186 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))) (-3422 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-3422 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))))
+(-10 -7 (-15 -3422 ((-417 |#4|) |#4|)) (-15 -3422 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -4186 ((-417 |#4|) |#4|)) (-15 -3384 ((-561) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561)))))) (-15 -1893 ((-417 |#4|) |#4| |#2|)) (-15 -2842 ((-2 (|:| -4158 (-1162 |#4|)) (|:| |polval| (-1162 |#3|))) (-1162 |#4|) (-1162 |#3|) (-561))) (-15 -3193 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-638 (-2 (|:| -1657 (-1162 |#4|)) (|:| -4196 (-561)))))) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -2041 ((-2 (|:| |upol| (-1162 |#3|)) (|:| |Lval| (-638 |#3|)) (|:| |Lfact| (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561))))) (|:| |ctpol| |#3|)) (-1162 |#4|) (-638 |#2|) (-638 (-638 |#3|)))) (-15 -2302 (|#4| (-561) (-417 |#4|))) (-15 -4023 ((-112) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561)))) (-638 (-2 (|:| -1657 (-1162 |#3|)) (|:| -4196 (-561)))))) (-15 -3174 ((-3 (-638 (-1162 |#4|)) "failed") (-1162 |#4|) (-1162 |#3|) (-1162 |#3|) |#4| (-638 |#2|) (-638 (-765)) (-638 |#3|))) (-15 -1932 ((-638 (-765)) (-1162 |#4|) (-638 |#2|) (-765))) (-15 -2709 ((-1162 |#3|) (-1162 |#3|) (-561))))
+((-3203 (($ $ (-914)) 12)))
+(((-737 |#1| |#2|) (-10 -8 (-15 -3203 (|#1| |#1| (-914)))) (-738 |#2|) (-171)) (T -737))
+NIL
+(-10 -8 (-15 -3203 (|#1| |#1| (-914))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3928 (($ $ (-914)) 28)) (-3203 (($ $ (-914)) 33)) (-3394 (($ $ (-914)) 29)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3800 (($ $ $) 25)) (-4022 (((-856) $) 11)) (-3392 (($ $ $ $) 26)) (-1761 (($ $ $) 24)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-738 |#1|) (-139) (-171)) (T -738))
+((-3203 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-738 *3)) (-4 *3 (-171)))))
+(-13 (-755) (-711 |t#1|) (-10 -8 (-15 -3203 ($ $ (-914)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1090) . T))
+((-2014 (((-1028) (-682 (-224)) (-561) (-112) (-561)) 25)) (-2680 (((-1028) (-682 (-224)) (-561) (-112) (-561)) 24)))
+(((-739) (-10 -7 (-15 -2680 ((-1028) (-682 (-224)) (-561) (-112) (-561))) (-15 -2014 ((-1028) (-682 (-224)) (-561) (-112) (-561))))) (T -739))
+((-2014 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739)))) (-2680 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739)))))
+(-10 -7 (-15 -2680 ((-1028) (-682 (-224)) (-561) (-112) (-561))) (-15 -2014 ((-1028) (-682 (-224)) (-561) (-112) (-561))))
+((-2374 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-1399 (((-1028) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-1689 (((-1028) (-224) (-224) (-224) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) 32)))
+(((-740) (-10 -7 (-15 -1689 ((-1028) (-224) (-224) (-224) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -1399 ((-1028) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2374 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -740))
+((-2374 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-1399 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-1689 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) (-5 *2 (-1028)) (-5 *1 (-740)))))
+(-10 -7 (-15 -1689 ((-1028) (-224) (-224) (-224) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -1399 ((-1028) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2374 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))
+((-3773 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 34)) (-3291 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 33)) (-1480 (((-1028) (-561) (-682 (-224)) (-561)) 32)) (-2448 (((-1028) (-561) (-682 (-224)) (-561)) 31)) (-2793 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 30)) (-2668 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 29)) (-2558 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561)) 28)) (-2120 (((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561)) 27)) (-2261 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 24)) (-3245 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561)) 23)) (-2183 (((-1028) (-561) (-682 (-224)) (-561)) 22)) (-2491 (((-1028) (-561) (-682 (-224)) (-561)) 21)))
+(((-741) (-10 -7 (-15 -2491 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -2183 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3245 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2261 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2120 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2558 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2668 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2793 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2448 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -1480 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3291 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -3773 ((-1028) (-561) (-561) (-682 (-224)) (-561))))) (T -741))
+((-3773 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-3291 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-1480 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2448 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2793 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2668 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2558 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2120 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2261 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-3245 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2183 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2491 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))))
+(-10 -7 (-15 -2491 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -2183 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3245 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2261 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2120 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2558 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2668 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2793 ((-1028) (-561) (-561) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2448 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -1480 ((-1028) (-561) (-682 (-224)) (-561))) (-15 -3291 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -3773 ((-1028) (-561) (-561) (-682 (-224)) (-561))))
+((-3629 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2703 (((-1028) (-682 (-224)) (-682 (-224)) (-561) (-561)) 51)) (-3164 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1885 (((-1028) (-224) (-224) (-561) (-561) (-561) (-561)) 46)) (-2907 (((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 45)) (-4214 (((-1028) (-224) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 44)) (-3077 (((-1028) (-224) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 43)) (-3250 (((-1028) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 42)) (-2707 (((-1028) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) 38)) (-3918 (((-1028) (-224) (-224) (-561) (-682 (-224)) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) 37)) (-1815 (((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) 33)) (-1586 (((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) 32)))
+(((-742) (-10 -7 (-15 -1586 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -1815 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -3918 ((-1028) (-224) (-224) (-561) (-682 (-224)) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -2707 ((-1028) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -3250 ((-1028) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3077 ((-1028) (-224) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4214 ((-1028) (-224) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2907 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1885 ((-1028) (-224) (-224) (-561) (-561) (-561) (-561))) (-15 -3164 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -2703 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-561))) (-15 -3629 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))) (T -742))
+((-3629 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2703 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-3164 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-1885 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2907 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-4214 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-3077 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-3250 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2707 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-3918 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-1815 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-1586 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) (-5 *2 (-1028)) (-5 *1 (-742)))))
+(-10 -7 (-15 -1586 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -1815 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -3918 ((-1028) (-224) (-224) (-561) (-682 (-224)) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -2707 ((-1028) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))) (-15 -3250 ((-1028) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3077 ((-1028) (-224) (-224) (-224) (-224) (-561) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -4214 ((-1028) (-224) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2907 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1885 ((-1028) (-224) (-224) (-561) (-561) (-561) (-561))) (-15 -3164 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -2703 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-561))) (-15 -3629 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-224) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))
+((-2139 (((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3787 (((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387)) 69) (((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2168 (((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) 57)) (-2617 (((-1028) (-682 (-224)) (-682 (-224)) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 50)) (-3910 (((-1028) (-224) (-561) (-561) (-1148) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3979 (((-1028) (-224) (-561) (-561) (-224) (-1148) (-224) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 45)) (-4000 (((-1028) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 42)) (-2843 (((-1028) (-224) (-561) (-561) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-743) (-10 -7 (-15 -2843 ((-1028) (-224) (-561) (-561) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -4000 ((-1028) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3979 ((-1028) (-224) (-561) (-561) (-224) (-1148) (-224) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3910 ((-1028) (-224) (-561) (-561) (-1148) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2617 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -2168 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -3787 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -3787 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -2139 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -743))
+((-2139 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3787 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3787 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2168 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2617 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3910 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-3979 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-4000 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2843 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+(-10 -7 (-15 -2843 ((-1028) (-224) (-561) (-561) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -4000 ((-1028) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3979 ((-1028) (-224) (-561) (-561) (-224) (-1148) (-224) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3910 ((-1028) (-224) (-561) (-561) (-1148) (-561) (-224) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2617 ((-1028) (-682 (-224)) (-682 (-224)) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -2168 ((-1028) (-224) (-224) (-561) (-224) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -3787 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -3787 ((-1028) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -2139 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-3254 (((-1028) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-668 (-224)) (-561)) 45)) (-3756 (((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-1148) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) 41)) (-3809 (((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 23)))
+(((-744) (-10 -7 (-15 -3809 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3756 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-1148) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -3254 ((-1028) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-668 (-224)) (-561))))) (T -744))
+((-3254 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))) (-3756 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1028)) (-5 *1 (-744)))) (-3809 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))))
+(-10 -7 (-15 -3809 ((-1028) (-561) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3756 ((-1028) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-1148) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -3254 ((-1028) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-668 (-224)) (-561))))
+((-1982 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-561)) 35)) (-2259 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-224) (-224) (-561)) 34)) (-4356 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-682 (-224)) (-224) (-224) (-561)) 33)) (-1583 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 29)) (-3916 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 28)) (-4349 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561)) 27)) (-4008 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561)) 24)) (-1468 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561)) 23)) (-2715 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561)) 22)) (-3930 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561)) 21)))
+(((-745) (-10 -7 (-15 -3930 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -2715 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1468 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -4008 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -4349 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561))) (-15 -3916 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1583 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4356 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-682 (-224)) (-224) (-224) (-561))) (-15 -2259 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-224) (-224) (-561))) (-15 -1982 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-561))))) (T -745))
+((-1982 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2259 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-4356 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224)) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-1583 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-3916 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-4349 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-4008 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-1468 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2715 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-3930 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))))
+(-10 -7 (-15 -3930 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -2715 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1468 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -4008 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -4349 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-561))) (-15 -3916 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1583 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4356 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-682 (-224)) (-224) (-224) (-561))) (-15 -2259 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-224) (-224) (-561))) (-15 -1982 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-561))))
+((-1408 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561)) 45)) (-2025 (((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-561)) 44)) (-1336 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561)) 43)) (-2647 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 42)) (-3034 (((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561)) 41)) (-2559 (((-1028) (-1148) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561)) 40)) (-1837 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561) (-561) (-561) (-224) (-682 (-224)) (-561)) 39)) (-2084 (((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561))) 38)) (-1868 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561)) 35)) (-2593 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561)) 34)) (-2530 (((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561)) 33)) (-4242 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 32)) (-2030 (((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561)) 31)) (-3235 (((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-561)) 30)) (-1542 (((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-561) (-561) (-561)) 29)) (-4113 (((-1028) (-561) (-561) (-561) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-561)) (-561) (-561) (-561)) 28)) (-1729 (((-1028) (-561) (-682 (-224)) (-224) (-561)) 24)) (-3728 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 21)))
+(((-746) (-10 -7 (-15 -3728 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1729 ((-1028) (-561) (-682 (-224)) (-224) (-561))) (-15 -4113 ((-1028) (-561) (-561) (-561) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-561)) (-561) (-561) (-561))) (-15 -1542 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -3235 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-561))) (-15 -2030 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561))) (-15 -4242 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2530 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561))) (-15 -2593 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561))) (-15 -1868 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2084 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)))) (-15 -1837 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561) (-561) (-561) (-224) (-682 (-224)) (-561))) (-15 -2559 ((-1028) (-1148) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -3034 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2647 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1336 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -2025 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1408 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))))) (T -746))
+((-1408 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2025 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1336 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2647 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3034 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2559 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1837 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224)) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2084 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1868 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2593 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2530 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-4242 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2030 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3235 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1542 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-4113 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-1729 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-3728 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(-10 -7 (-15 -3728 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1729 ((-1028) (-561) (-682 (-224)) (-224) (-561))) (-15 -4113 ((-1028) (-561) (-561) (-561) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-561)) (-561) (-561) (-561))) (-15 -1542 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -3235 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561) (-561) (-561))) (-15 -2030 ((-1028) (-561) (-224) (-224) (-682 (-224)) (-561) (-561) (-224) (-561))) (-15 -4242 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2530 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561))) (-15 -2593 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561))) (-15 -1868 ((-1028) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2084 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)))) (-15 -1837 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561) (-561) (-561) (-224) (-682 (-224)) (-561))) (-15 -2559 ((-1028) (-1148) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -3034 ((-1028) (-1148) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2647 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1336 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))) (-15 -2025 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1408 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561) (-682 (-224)) (-682 (-224)) (-561) (-561) (-561))))
+((-3673 (((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-561) (-682 (-224)) (-561)) 63)) (-3474 (((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-112) (-224) (-561) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-561) (-561) (-561) (-561) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2590 (((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-561) (-561) (-682 (-224)) (-682 (-561)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-2852 (((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-561) (-561) (-682 (-224)) (-561)) 51)) (-4116 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3492 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1335 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2062 (((-1028) (-561) (-224) (-224) (-561) (-224) (-112) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-747) (-10 -7 (-15 -2062 ((-1028) (-561) (-224) (-224) (-561) (-224) (-112) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -1335 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3492 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -4116 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2852 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-561) (-561) (-682 (-224)) (-561))) (-15 -2590 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-561) (-561) (-682 (-224)) (-682 (-561)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3474 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-112) (-224) (-561) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-561) (-561) (-561) (-561) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3673 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-561) (-682 (-224)) (-561))))) (T -747))
+((-3673 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-3474 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-682 (-561))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2590 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-561))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2852 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-4116 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-3492 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-1335 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2062 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
+(-10 -7 (-15 -2062 ((-1028) (-561) (-224) (-224) (-561) (-224) (-112) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -1335 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3492 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -4116 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2852 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-561) (-561) (-682 (-224)) (-561))) (-15 -2590 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-561) (-561) (-682 (-224)) (-682 (-561)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3474 ((-1028) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-561) (-112) (-224) (-561) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-561) (-561) (-561) (-561) (-561) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-561) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3673 ((-1028) (-561) (-561) (-561) (-224) (-682 (-224)) (-561) (-682 (-224)) (-561))))
+((-2756 (((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561)) 47)) (-1817 (((-1028) (-1148) (-1148) (-561) (-561) (-682 (-168 (-224))) (-561) (-682 (-168 (-224))) (-561) (-561) (-682 (-168 (-224))) (-561)) 46)) (-4232 (((-1028) (-561) (-561) (-561) (-682 (-168 (-224))) (-561)) 45)) (-3308 (((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 40)) (-3379 (((-1028) (-1148) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)) (-561)) 39)) (-3895 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-561)) 36)) (-3893 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561)) 35)) (-3833 (((-1028) (-561) (-561) (-561) (-561) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-224) (-224) (-561)) 34)) (-2121 (((-1028) (-561) (-561) (-561) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-112) (-224) (-112) (-682 (-561)) (-682 (-224)) (-561)) 33)) (-4131 (((-1028) (-561) (-561) (-561) (-561) (-224) (-112) (-112) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-561)) 32)))
+(((-748) (-10 -7 (-15 -4131 ((-1028) (-561) (-561) (-561) (-561) (-224) (-112) (-112) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-561))) (-15 -2121 ((-1028) (-561) (-561) (-561) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-112) (-224) (-112) (-682 (-561)) (-682 (-224)) (-561))) (-15 -3833 ((-1028) (-561) (-561) (-561) (-561) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-224) (-224) (-561))) (-15 -3893 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561))) (-15 -3895 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -3379 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)) (-561))) (-15 -3308 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4232 ((-1028) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -1817 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-168 (-224))) (-561) (-682 (-168 (-224))) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -2756 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))) (T -748))
+((-2756 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-1817 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-4232 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-3308 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-3379 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-3895 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-3893 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-3833 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-638 (-112))) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *7 (-224)) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2121 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-682 (-561))) (-5 *5 (-112)) (-5 *7 (-682 (-224))) (-5 *3 (-561)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-4131 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-638 (-112))) (-5 *7 (-682 (-224))) (-5 *8 (-682 (-561))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-748)))))
+(-10 -7 (-15 -4131 ((-1028) (-561) (-561) (-561) (-561) (-224) (-112) (-112) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-561))) (-15 -2121 ((-1028) (-561) (-561) (-561) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-682 (-561)) (-112) (-224) (-112) (-682 (-561)) (-682 (-224)) (-561))) (-15 -3833 ((-1028) (-561) (-561) (-561) (-561) (-638 (-112)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-224) (-224) (-561))) (-15 -3893 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561))) (-15 -3895 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -3379 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)) (-561))) (-15 -3308 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -4232 ((-1028) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -1817 ((-1028) (-1148) (-1148) (-561) (-561) (-682 (-168 (-224))) (-561) (-682 (-168 (-224))) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -2756 ((-1028) (-1148) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))
+((-2578 (((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561)) 66)) (-4369 (((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561)) 61)) (-2493 (((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-2305 (((-1028) (-561) (-561) (-561) (-224) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561)) 37)) (-2630 (((-1028) (-561) (-561) (-224) (-224) (-561) (-561) (-682 (-224)) (-561)) 33)) (-2366 (((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561) (-561)) 30)) (-3199 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 29)) (-3878 (((-1028) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 28)) (-1873 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 27)) (-1648 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561)) 26)) (-2890 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 25)) (-1716 (((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 24)) (-4114 (((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561)) 23)) (-3765 (((-1028) (-682 (-224)) (-561) (-561) (-561) (-561)) 22)) (-4191 (((-1028) (-561) (-561) (-682 (-224)) (-561)) 21)))
+(((-749) (-10 -7 (-15 -4191 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -3765 ((-1028) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -4114 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1716 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2890 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -1648 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -1873 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3878 ((-1028) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3199 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2366 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -2630 ((-1028) (-561) (-561) (-224) (-224) (-561) (-561) (-682 (-224)) (-561))) (-15 -2305 ((-1028) (-561) (-561) (-561) (-224) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2493 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -2493 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -4369 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2578 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))) (T -749))
+((-2578 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4369 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2493 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2493 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2305 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2630 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2366 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3199 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3878 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-1873 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-1648 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2890 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-1716 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4114 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-3765 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-4191 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(-10 -7 (-15 -4191 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -3765 ((-1028) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -4114 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1716 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2890 ((-1028) (-561) (-561) (-682 (-224)) (-561))) (-15 -1648 ((-1028) (-561) (-561) (-561) (-561) (-682 (-224)) (-561))) (-15 -1873 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3878 ((-1028) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -3199 ((-1028) (-561) (-561) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2366 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561) (-561))) (-15 -2630 ((-1028) (-561) (-561) (-224) (-224) (-561) (-561) (-682 (-224)) (-561))) (-15 -2305 ((-1028) (-561) (-561) (-561) (-224) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2493 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -2493 ((-1028) (-561) (-561) (-224) (-561) (-561) (-561) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -4369 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2578 ((-1028) (-561) (-561) (-561) (-561) (-561) (-112) (-561) (-112) (-561) (-682 (-168 (-224))) (-682 (-168 (-224))) (-561))))
+((-4162 (((-1028) (-561) (-561) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-2151 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561)) 57)) (-1888 (((-1028) (-561) (-682 (-224)) (-112) (-224) (-561) (-561) (-561) (-561) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-2405 (((-1028) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561)) 37)) (-1838 (((-1028) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-561)) 36)) (-1858 (((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561)) 33)) (-3533 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224))) 32)) (-1460 (((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561)) 28)) (-3428 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561)) 27)) (-2499 (((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561)) 26)) (-2161 (((-1028) (-561) (-682 (-168 (-224))) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-561)) 22)))
+(((-750) (-10 -7 (-15 -2161 ((-1028) (-561) (-682 (-168 (-224))) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -2499 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -3428 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -1460 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561))) (-15 -3533 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)))) (-15 -1858 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1838 ((-1028) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2405 ((-1028) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -1888 ((-1028) (-561) (-682 (-224)) (-112) (-224) (-561) (-561) (-561) (-561) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2151 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -4162 ((-1028) (-561) (-561) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -750))
+((-4162 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2151 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-1888 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2405 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-1838 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-1858 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-3533 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-1460 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-3428 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2499 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2161 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028)) (-5 *1 (-750)))))
+(-10 -7 (-15 -2161 ((-1028) (-561) (-682 (-168 (-224))) (-561) (-561) (-561) (-561) (-682 (-168 (-224))) (-561))) (-15 -2499 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -3428 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-561))) (-15 -1460 ((-1028) (-682 (-224)) (-561) (-682 (-224)) (-561) (-561) (-561))) (-15 -3533 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-561)) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)))) (-15 -1858 ((-1028) (-561) (-561) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-561))) (-15 -1838 ((-1028) (-561) (-561) (-561) (-224) (-561) (-682 (-224)) (-682 (-224)) (-561))) (-15 -2405 ((-1028) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-561)) (-682 (-224)) (-682 (-561)) (-682 (-561)) (-682 (-224)) (-682 (-224)) (-682 (-561)) (-561))) (-15 -1888 ((-1028) (-561) (-682 (-224)) (-112) (-224) (-561) (-561) (-561) (-561) (-224) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2151 ((-1028) (-561) (-682 (-224)) (-561) (-682 (-224)) (-682 (-561)) (-561) (-682 (-224)) (-561) (-561) (-561) (-561))) (-15 -4162 ((-1028) (-561) (-561) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-682 (-224)) (-561) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))
+((-2993 (((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-561) (-682 (-224))) 29)) (-1466 (((-1028) (-1148) (-561) (-561) (-682 (-224))) 28)) (-2782 (((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-224))) 27)) (-4051 (((-1028) (-561) (-561) (-561) (-682 (-224))) 21)))
+(((-751) (-10 -7 (-15 -4051 ((-1028) (-561) (-561) (-561) (-682 (-224)))) (-15 -2782 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-224)))) (-15 -1466 ((-1028) (-1148) (-561) (-561) (-682 (-224)))) (-15 -2993 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)))))) (T -751))
+((-2993 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-1466 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2782 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-751)))) (-4051 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))))
+(-10 -7 (-15 -4051 ((-1028) (-561) (-561) (-561) (-682 (-224)))) (-15 -2782 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-682 (-561)) (-561) (-682 (-224)))) (-15 -1466 ((-1028) (-1148) (-561) (-561) (-682 (-224)))) (-15 -2993 ((-1028) (-1148) (-561) (-561) (-682 (-224)) (-561) (-561) (-682 (-224)))))
+((-3106 (((-1028) (-224) (-224) (-224) (-224) (-561)) 62)) (-2513 (((-1028) (-224) (-224) (-224) (-561)) 61)) (-1966 (((-1028) (-224) (-224) (-224) (-561)) 60)) (-2032 (((-1028) (-224) (-224) (-561)) 59)) (-1901 (((-1028) (-224) (-561)) 58)) (-2248 (((-1028) (-224) (-561)) 57)) (-4184 (((-1028) (-224) (-561)) 56)) (-3097 (((-1028) (-224) (-561)) 55)) (-4220 (((-1028) (-224) (-561)) 54)) (-3375 (((-1028) (-224) (-561)) 53)) (-1685 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 52)) (-4091 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 51)) (-3623 (((-1028) (-224) (-561)) 50)) (-2789 (((-1028) (-224) (-561)) 49)) (-1964 (((-1028) (-224) (-561)) 48)) (-2873 (((-1028) (-224) (-561)) 47)) (-3173 (((-1028) (-561) (-224) (-168 (-224)) (-561) (-1148) (-561)) 46)) (-3879 (((-1028) (-1148) (-168 (-224)) (-1148) (-561)) 45)) (-3605 (((-1028) (-1148) (-168 (-224)) (-1148) (-561)) 44)) (-3788 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 43)) (-1546 (((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561)) 42)) (-1949 (((-1028) (-224) (-561)) 39)) (-3839 (((-1028) (-224) (-561)) 38)) (-1850 (((-1028) (-224) (-561)) 37)) (-3545 (((-1028) (-224) (-561)) 36)) (-1576 (((-1028) (-224) (-561)) 35)) (-1373 (((-1028) (-224) (-561)) 34)) (-2712 (((-1028) (-224) (-561)) 33)) (-2689 (((-1028) (-224) (-561)) 32)) (-4125 (((-1028) (-224) (-561)) 31)) (-3159 (((-1028) (-224) (-561)) 30)) (-3259 (((-1028) (-224) (-224) (-224) (-561)) 29)) (-3608 (((-1028) (-224) (-561)) 28)) (-1989 (((-1028) (-224) (-561)) 27)) (-2776 (((-1028) (-224) (-561)) 26)) (-3078 (((-1028) (-224) (-561)) 25)) (-3425 (((-1028) (-224) (-561)) 24)) (-2434 (((-1028) (-168 (-224)) (-561)) 21)))
+(((-752) (-10 -7 (-15 -2434 ((-1028) (-168 (-224)) (-561))) (-15 -3425 ((-1028) (-224) (-561))) (-15 -3078 ((-1028) (-224) (-561))) (-15 -2776 ((-1028) (-224) (-561))) (-15 -1989 ((-1028) (-224) (-561))) (-15 -3608 ((-1028) (-224) (-561))) (-15 -3259 ((-1028) (-224) (-224) (-224) (-561))) (-15 -3159 ((-1028) (-224) (-561))) (-15 -4125 ((-1028) (-224) (-561))) (-15 -2689 ((-1028) (-224) (-561))) (-15 -2712 ((-1028) (-224) (-561))) (-15 -1373 ((-1028) (-224) (-561))) (-15 -1576 ((-1028) (-224) (-561))) (-15 -3545 ((-1028) (-224) (-561))) (-15 -1850 ((-1028) (-224) (-561))) (-15 -3839 ((-1028) (-224) (-561))) (-15 -1949 ((-1028) (-224) (-561))) (-15 -1546 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3788 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3605 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -3879 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -3173 ((-1028) (-561) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -2873 ((-1028) (-224) (-561))) (-15 -1964 ((-1028) (-224) (-561))) (-15 -2789 ((-1028) (-224) (-561))) (-15 -3623 ((-1028) (-224) (-561))) (-15 -4091 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -1685 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3375 ((-1028) (-224) (-561))) (-15 -4220 ((-1028) (-224) (-561))) (-15 -3097 ((-1028) (-224) (-561))) (-15 -4184 ((-1028) (-224) (-561))) (-15 -2248 ((-1028) (-224) (-561))) (-15 -1901 ((-1028) (-224) (-561))) (-15 -2032 ((-1028) (-224) (-224) (-561))) (-15 -1966 ((-1028) (-224) (-224) (-224) (-561))) (-15 -2513 ((-1028) (-224) (-224) (-224) (-561))) (-15 -3106 ((-1028) (-224) (-224) (-224) (-224) (-561))))) (T -752))
+((-3106 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2513 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1966 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2032 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1685 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4091 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3173 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-561)) (-5 *5 (-168 (-224))) (-5 *6 (-1148)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3879 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3605 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3788 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1546 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3545 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1373 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3259 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-224))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(-10 -7 (-15 -2434 ((-1028) (-168 (-224)) (-561))) (-15 -3425 ((-1028) (-224) (-561))) (-15 -3078 ((-1028) (-224) (-561))) (-15 -2776 ((-1028) (-224) (-561))) (-15 -1989 ((-1028) (-224) (-561))) (-15 -3608 ((-1028) (-224) (-561))) (-15 -3259 ((-1028) (-224) (-224) (-224) (-561))) (-15 -3159 ((-1028) (-224) (-561))) (-15 -4125 ((-1028) (-224) (-561))) (-15 -2689 ((-1028) (-224) (-561))) (-15 -2712 ((-1028) (-224) (-561))) (-15 -1373 ((-1028) (-224) (-561))) (-15 -1576 ((-1028) (-224) (-561))) (-15 -3545 ((-1028) (-224) (-561))) (-15 -1850 ((-1028) (-224) (-561))) (-15 -3839 ((-1028) (-224) (-561))) (-15 -1949 ((-1028) (-224) (-561))) (-15 -1546 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3788 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3605 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -3879 ((-1028) (-1148) (-168 (-224)) (-1148) (-561))) (-15 -3173 ((-1028) (-561) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -2873 ((-1028) (-224) (-561))) (-15 -1964 ((-1028) (-224) (-561))) (-15 -2789 ((-1028) (-224) (-561))) (-15 -3623 ((-1028) (-224) (-561))) (-15 -4091 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -1685 ((-1028) (-224) (-168 (-224)) (-561) (-1148) (-561))) (-15 -3375 ((-1028) (-224) (-561))) (-15 -4220 ((-1028) (-224) (-561))) (-15 -3097 ((-1028) (-224) (-561))) (-15 -4184 ((-1028) (-224) (-561))) (-15 -2248 ((-1028) (-224) (-561))) (-15 -1901 ((-1028) (-224) (-561))) (-15 -2032 ((-1028) (-224) (-224) (-561))) (-15 -1966 ((-1028) (-224) (-224) (-224) (-561))) (-15 -2513 ((-1028) (-224) (-224) (-224) (-561))) (-15 -3106 ((-1028) (-224) (-224) (-224) (-224) (-561))))
+((-2858 (((-1258)) 18)) (-1749 (((-1148)) 22)) (-3716 (((-1148)) 21)) (-2479 (((-1094) (-1166) (-682 (-561))) 37) (((-1094) (-1166) (-682 (-224))) 32)) (-2685 (((-112)) 16)) (-3754 (((-1148) (-1148)) 25)))
+(((-753) (-10 -7 (-15 -3716 ((-1148))) (-15 -1749 ((-1148))) (-15 -3754 ((-1148) (-1148))) (-15 -2479 ((-1094) (-1166) (-682 (-224)))) (-15 -2479 ((-1094) (-1166) (-682 (-561)))) (-15 -2685 ((-112))) (-15 -2858 ((-1258))))) (T -753))
+((-2858 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-753)))) (-2685 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-561))) (-5 *2 (-1094)) (-5 *1 (-753)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1094)) (-5 *1 (-753)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-1749 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-3716 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(-10 -7 (-15 -3716 ((-1148))) (-15 -1749 ((-1148))) (-15 -3754 ((-1148) (-1148))) (-15 -2479 ((-1094) (-1166) (-682 (-224)))) (-15 -2479 ((-1094) (-1166) (-682 (-561)))) (-15 -2685 ((-112))) (-15 -2858 ((-1258))))
+((-3800 (($ $ $) 10)) (-3392 (($ $ $ $) 9)) (-1761 (($ $ $) 12)))
+(((-754 |#1|) (-10 -8 (-15 -1761 (|#1| |#1| |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| |#1| |#1|))) (-755)) (T -754))
+NIL
+(-10 -8 (-15 -1761 (|#1| |#1| |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3928 (($ $ (-914)) 28)) (-3394 (($ $ (-914)) 29)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3800 (($ $ $) 25)) (-4022 (((-856) $) 11)) (-3392 (($ $ $ $) 26)) (-1761 (($ $ $) 24)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 30)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27)))
+(((-755) (-139)) (T -755))
+((-3392 (*1 *1 *1 *1 *1) (-4 *1 (-755))) (-3800 (*1 *1 *1 *1) (-4 *1 (-755))) (-1761 (*1 *1 *1 *1) (-4 *1 (-755))))
+(-13 (-21) (-714) (-10 -8 (-15 -3392 ($ $ $ $)) (-15 -3800 ($ $ $)) (-15 -1761 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-714) . T) ((-1090) . T))
+((-4022 (((-856) $) NIL) (($ (-561)) 10)))
+(((-756 |#1|) (-10 -8 (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-757)) (T -756))
+NIL
+(-10 -8 (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3494 (((-3 $ "failed") $) 40)) (-3928 (($ $ (-914)) 28) (($ $ (-765)) 35)) (-3466 (((-3 $ "failed") $) 38)) (-3113 (((-112) $) 34)) (-4063 (((-3 $ "failed") $) 39)) (-3394 (($ $ (-914)) 29) (($ $ (-765)) 36)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3800 (($ $ $) 25)) (-4022 (((-856) $) 11) (($ (-561)) 31)) (-4259 (((-765)) 32)) (-3392 (($ $ $ $) 26)) (-1761 (($ $ $) 24)) (-2211 (($) 18 T CONST)) (-2222 (($) 33 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 30) (($ $ (-765)) 37)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 27)))
+(((-757) (-139)) (T -757))
+((-4259 (*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-757)))))
+(-13 (-755) (-716) (-10 -8 (-15 -4259 ((-765))) (-15 -4022 ($ (-561)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-714) . T) ((-716) . T) ((-755) . T) ((-1090) . T))
+((-1340 (((-638 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 |#1|)))))) (-682 (-168 (-406 (-561)))) |#1|) 33)) (-3993 (((-638 (-168 |#1|)) (-682 (-168 (-406 (-561)))) |#1|) 23)) (-2485 (((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))) (-1166)) 20) (((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561))))) 19)))
+(((-758 |#1|) (-10 -7 (-15 -2485 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))))) (-15 -2485 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))) (-1166))) (-15 -3993 ((-638 (-168 |#1|)) (-682 (-168 (-406 (-561)))) |#1|)) (-15 -1340 ((-638 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 |#1|)))))) (-682 (-168 (-406 (-561)))) |#1|))) (-13 (-362) (-842))) (T -758))
+((-1340 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-638 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 *4))))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-638 (-168 *4))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *4 (-1166)) (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *5)) (-4 *5 (-13 (-362) (-842))))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2485 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))))) (-15 -2485 ((-945 (-168 (-406 (-561)))) (-682 (-168 (-406 (-561)))) (-1166))) (-15 -3993 ((-638 (-168 |#1|)) (-682 (-168 (-406 (-561)))) |#1|)) (-15 -1340 ((-638 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 (-168 |#1|)))))) (-682 (-168 (-406 (-561)))) |#1|)))
+((-3144 (((-173 (-561)) |#1|) 25)))
+(((-759 |#1|) (-10 -7 (-15 -3144 ((-173 (-561)) |#1|))) (-403)) (T -759))
+((-3144 (*1 *2 *3) (-12 (-5 *2 (-173 (-561))) (-5 *1 (-759 *3)) (-4 *3 (-403)))))
+(-10 -7 (-15 -3144 ((-173 (-561)) |#1|)))
+((-1550 ((|#1| |#1| |#1|) 24)) (-1413 ((|#1| |#1| |#1|) 23)) (-1706 ((|#1| |#1| |#1|) 32)) (-2411 ((|#1| |#1| |#1|) 28)) (-1927 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2312 (((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|) 22)))
+(((-760 |#1| |#2|) (-10 -7 (-15 -2312 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -1927 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#1|))) (-702 |#2|) (-362)) (T -760))
+((-1706 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2411 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-1927 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-1550 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-1413 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2312 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4)))))
+(-10 -7 (-15 -2312 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -1927 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#1|)))
+((-2569 (((-765) $ (-128)) 13)) (-2623 (((-684 (-129)) $ (-129)) 12)) (-3088 (((-765) $ (-128)) 7)) (-2568 (((-684 (-129)) $) 8)) (-4027 (((-112) $) 15)) (-2825 (((-684 $) |#1| (-947)) 16)) (-2836 (($ $) 6)))
+(((-761 |#1|) (-139) (-1090)) (T -761))
+((-2825 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *3 (-1090)) (-5 *2 (-684 *1)) (-4 *1 (-761 *3)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
+(-13 (-573) (-10 -8 (-15 -2825 ((-684 $) |t#1| (-947))) (-15 -4027 ((-112) $))))
+(((-172) . T) ((-525) . T) ((-573) . T) ((-854) . T))
+((-2529 (((-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))) (-561)) 59)) (-1625 (((-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561))))) 57)) (-2553 (((-561)) 70)))
+(((-762 |#1| |#2|) (-10 -7 (-15 -2553 ((-561))) (-15 -1625 ((-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))))) (-15 -2529 ((-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))) (-561)))) (-1229 (-561)) (-408 (-561) |#1|)) (T -762))
+((-2529 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-762 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1625 (*1 *2) (-12 (-4 *3 (-1229 (-561))) (-5 *2 (-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561))))) (-5 *1 (-762 *3 *4)) (-4 *4 (-408 (-561) *3)))) (-2553 (*1 *2) (-12 (-4 *3 (-1229 *2)) (-5 *2 (-561)) (-5 *1 (-762 *3 *4)) (-4 *4 (-408 *2 *3)))))
+(-10 -7 (-15 -2553 ((-561))) (-15 -1625 ((-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))))) (-15 -2529 ((-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561)) (|:| |basisInv| (-682 (-561)))) (-561))))
+((-4011 (((-112) $ $) NIL)) (-3938 (((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 20) (($ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-1733 (((-112) $ $) NIL)))
+(((-763) (-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4022 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4022 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3938 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -763))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763)))))
+(-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4022 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4022 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3938 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))
+((-3554 (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|))) 18) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166))) 17)) (-3867 (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|))) 20) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166))) 19)))
+(((-764 |#1|) (-10 -7 (-15 -3554 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3554 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|))))) (-553)) (T -764))
+((-3867 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5)))))
+(-10 -7 (-15 -3554 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3554 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-945 |#1|)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2090 (($ $ $) 6)) (-2249 (((-3 $ "failed") $ $) 9)) (-3368 (($ $ (-561)) 7)) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($ $) NIL)) (-1774 (($ $ $) NIL)) (-3113 (((-112) $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1623 (($ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-4022 (((-856) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ $ $) NIL)))
+(((-765) (-13 (-787) (-720) (-10 -8 (-15 -1774 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -1971 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -1756 ((-3 $ "failed") $ $)) (-15 -3368 ($ $ (-561))) (-15 -1332 ($ $)) (-6 (-4392 "*"))))) (T -765))
+((-1774 (*1 *1 *1 *1) (-5 *1 (-765))) (-1793 (*1 *1 *1 *1) (-5 *1 (-765))) (-1623 (*1 *1 *1 *1) (-5 *1 (-765))) (-1971 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1307 (-765)) (|:| -1693 (-765)))) (-5 *1 (-765)))) (-1756 (*1 *1 *1 *1) (|partial| -5 *1 (-765))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-765)))) (-1332 (*1 *1 *1) (-5 *1 (-765))))
+(-13 (-787) (-720) (-10 -8 (-15 -1774 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -1971 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -1756 ((-3 $ "failed") $ $)) (-15 -3368 ($ $ (-561))) (-15 -1332 ($ $)) (-6 (-4392 "*"))))
((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-2692 (((-3 |#2| "failed") |#2| |#2| (-114) (-1163)) 35)))
-(((-763 |#1| |#2|) (-10 -7 (-15 -2692 ((-3 |#2| "failed") |#2| |#2| (-114) (-1163)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949))) (T -763))
-((-2692 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-763 *5 *2)) (-4 *2 (-13 (-29 *5) (-1185) (-949))))))
-(-10 -7 (-15 -2692 ((-3 |#2| "failed") |#2| |#2| (-114) (-1163))))
-((-3940 (((-765) |#1|) 8)))
-(((-764 |#1|) (-10 -7 (-15 -3940 ((-765) |#1|))) (-1200)) (T -764))
-((-3940 (*1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-764 *3)) (-4 *3 (-1200)))))
-(-10 -7 (-15 -3940 ((-765) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 7)) (-1708 (((-112) $ $) 9)))
-(((-765) (-1087)) (T -765))
-NIL
-(-1087)
-((-1423 ((|#2| |#4|) 35)))
-(((-766 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1423 (|#2| |#4|))) (-450) (-1222 |#1|) (-715 |#1| |#2|) (-1222 |#3|)) (T -766))
-((-1423 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-715 *4 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-766 *4 *2 *5 *3)) (-4 *3 (-1222 *5)))))
-(-10 -7 (-15 -1423 (|#2| |#4|)))
-((-3248 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2138 (((-1251) (-1145) (-1145) |#4| |#5|) 33)) (-4221 ((|#4| |#4| |#5|) 72)) (-2033 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|) 76)) (-1355 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|) 16)))
-(((-767 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3248 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4221 (|#4| |#4| |#5|)) (-15 -2033 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -2138 ((-1251) (-1145) (-1145) |#4| |#5|)) (-15 -1355 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -767))
-((-1355 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4)))) (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2138 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1145)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *4 (-1053 *6 *7 *8)) (-5 *2 (-1251)) (-5 *1 (-767 *6 *7 *8 *4 *5)) (-4 *5 (-1059 *6 *7 *8 *4)))) (-2033 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-4221 (*1 *2 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *2 (-1053 *4 *5 *6)) (-5 *1 (-767 *4 *5 *6 *2 *3)) (-4 *3 (-1059 *4 *5 *6 *2)))) (-3248 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3248 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4221 (|#4| |#4| |#5|)) (-15 -2033 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -2138 ((-1251) (-1145) (-1145) |#4| |#5|)) (-15 -1355 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)))
-((-3302 (((-3 (-1159 (-1159 |#1|)) "failed") |#4|) 43)) (-2210 (((-635 |#4|) |#4|) 15)) (-3607 ((|#4| |#4|) 11)))
-(((-768 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2210 ((-635 |#4|) |#4|)) (-15 -3302 ((-3 (-1159 (-1159 |#1|)) "failed") |#4|)) (-15 -3607 (|#4| |#4|))) (-348) (-328 |#1|) (-1222 |#2|) (-1222 |#3|) (-911)) (T -768))
-((-3607 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1222 *4)) (-5 *1 (-768 *3 *4 *5 *2 *6)) (-4 *2 (-1222 *5)) (-14 *6 (-911)))) (-3302 (*1 *2 *3) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5)) (-5 *2 (-1159 (-1159 *4))) (-5 *1 (-768 *4 *5 *6 *3 *7)) (-4 *3 (-1222 *6)) (-14 *7 (-911)))) (-2210 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5)) (-5 *2 (-635 *3)) (-5 *1 (-768 *4 *5 *6 *3 *7)) (-4 *3 (-1222 *6)) (-14 *7 (-911)))))
-(-10 -7 (-15 -2210 ((-635 |#4|) |#4|)) (-15 -3302 ((-3 (-1159 (-1159 |#1|)) "failed") |#4|)) (-15 -3607 (|#4| |#4|)))
-((-3995 (((-2 (|:| |deter| (-635 (-1159 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1159 |#5|) (-635 |#1|) (-635 |#5|)) 53)) (-2141 (((-635 (-762)) |#1|) 13)))
-(((-769 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3995 ((-2 (|:| |deter| (-635 (-1159 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1159 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2141 ((-635 (-762)) |#1|))) (-1222 |#4|) (-784) (-841) (-306) (-939 |#4| |#2| |#3|)) (T -769))
-((-2141 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-635 (-762))) (-5 *1 (-769 *3 *4 *5 *6 *7)) (-4 *3 (-1222 *6)) (-4 *7 (-939 *6 *4 *5)))) (-3995 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1222 *9)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-306)) (-4 *10 (-939 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-635 (-1159 *10))) (|:| |dterm| (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| *10))))) (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10)))) (-5 *1 (-769 *6 *7 *8 *9 *10)) (-5 *3 (-1159 *10)) (-5 *4 (-635 *6)) (-5 *5 (-635 *10)))))
-(-10 -7 (-15 -3995 ((-2 (|:| |deter| (-635 (-1159 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1159 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2141 ((-635 (-762)) |#1|)))
-((-3666 (((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#1|))))) (-679 (-406 (-558))) |#1|) 31)) (-3413 (((-635 |#1|) (-679 (-406 (-558))) |#1|) 21)) (-1969 (((-942 (-406 (-558))) (-679 (-406 (-558))) (-1163)) 18) (((-942 (-406 (-558))) (-679 (-406 (-558)))) 17)))
-(((-770 |#1|) (-10 -7 (-15 -1969 ((-942 (-406 (-558))) (-679 (-406 (-558))))) (-15 -1969 ((-942 (-406 (-558))) (-679 (-406 (-558))) (-1163))) (-15 -3413 ((-635 |#1|) (-679 (-406 (-558))) |#1|)) (-15 -3666 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#1|))))) (-679 (-406 (-558))) |#1|))) (-13 (-362) (-839))) (T -770))
-((-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-635 (-2 (|:| |outval| *4) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 *4)))))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *4 (-1163)) (-5 *2 (-942 (-406 (-558)))) (-5 *1 (-770 *5)) (-4 *5 (-13 (-362) (-839))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-942 (-406 (-558)))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))))
-(-10 -7 (-15 -1969 ((-942 (-406 (-558))) (-679 (-406 (-558))))) (-15 -1969 ((-942 (-406 (-558))) (-679 (-406 (-558))) (-1163))) (-15 -3413 ((-635 |#1|) (-679 (-406 (-558))) |#1|)) (-15 -3666 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-635 (-679 |#1|))))) (-679 (-406 (-558))) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 34)) (-4078 (((-635 |#2|) $) NIL)) (-3907 (((-1159 $) $ |#2|) NIL) (((-1159 |#1|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 |#2|)) NIL)) (-2427 (($ $) 28)) (-3380 (((-112) $ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2531 (($ $ $) 92 (|has| |#1| (-550)))) (-3289 (((-635 $) $ $) 105 (|has| |#1| (-550)))) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-942 (-406 (-558)))) NIL (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))))) (((-3 $ "failed") (-942 (-558))) NIL (-3994 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-38 (-406 (-558)))))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163)))))) (((-3 $ "failed") (-942 |#1|)) NIL (-3994 (-12 (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-38 (-406 (-558))))) (-2143 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-38 (-406 (-558))))) (-2143 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-982 (-558))))))) (((-3 (-1112 |#1| |#2|) "failed") $) 18)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) ((|#2| $) NIL) (($ (-942 (-406 (-558)))) NIL (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))))) (($ (-942 (-558))) NIL (-3994 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-38 (-406 (-558)))))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163)))))) (($ (-942 |#1|)) NIL (-3994 (-12 (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-38 (-406 (-558))))) (-2143 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-38 (-406 (-558))))) (-2143 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-982 (-558))))))) (((-1112 |#1| |#2|) $) NIL)) (-2862 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-550)))) (-3905 (($ $) NIL) (($ $ |#2|) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-1798 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3036 (((-112) $) NIL)) (-3343 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 69)) (-3472 (($ $) 118 (|has| |#1| (-450)))) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-3066 (($ $) NIL (|has| |#1| (-550)))) (-3225 (($ $) NIL (|has| |#1| (-550)))) (-2442 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-3522 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-2704 (($ $ |#1| (-529 |#2|) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4228 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-1595 (($ $ $ $ $) 89 (|has| |#1| (-550)))) (-4346 ((|#2| $) 19)) (-4068 (($ (-1159 |#1|) |#2|) NIL) (($ (-1159 $) |#2|) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-762)) 36) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-4313 (($ $ $) 60)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |#2|) NIL)) (-1953 (((-112) $) NIL)) (-3672 (((-529 |#2|) $) NIL) (((-762) $ |#2|) NIL) (((-635 (-762)) $ (-635 |#2|)) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-3669 (((-762) $) 20)) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2135 (((-3 |#2| "failed") $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-450)))) (-3970 (($ $) NIL (|has| |#1| (-450)))) (-3057 (((-635 $) $) NIL)) (-2311 (($ $) 37)) (-3569 (($ $) NIL (|has| |#1| (-450)))) (-1593 (((-635 $) $) 41)) (-3912 (($ $) 39)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2577 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1630 (-762))) $ $) 81)) (-2996 (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $) 66) (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $ |#2|) NIL)) (-3415 (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $) NIL) (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $ |#2|) NIL)) (-3700 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-2332 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-2510 (((-1145) $) NIL)) (-4069 (($ $ $) 107 (|has| |#1| (-550)))) (-3686 (((-635 $) $) 30)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| |#2|) (|:| -1857 (-762))) "failed") $) NIL)) (-2643 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-1401 (($ $ $) NIL)) (-1823 (($ $) 21)) (-3879 (((-112) $ $) NIL)) (-2857 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-2224 (($ $ $) NIL)) (-3734 (($ $) 23)) (-1688 (((-1107) $) NIL)) (-4117 (((-2 (|:| -1544 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-550)))) (-2525 (((-2 (|:| -1544 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-550)))) (-3837 (((-112) $) 52)) (-3853 ((|#1| $) 55)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 ((|#1| |#1| $) 115 (|has| |#1| (-450))) (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3836 (((-2 (|:| -1544 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-550)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-550)))) (-3682 (($ $ |#1|) 111 (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-3333 (($ $ |#1|) 110 (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-635 |#2|) (-635 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-635 |#2|) (-635 $)) NIL)) (-3789 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-3780 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-4263 (((-529 |#2|) $) NIL) (((-762) $ |#2|) 43) (((-635 (-762)) $ (-635 |#2|)) NIL)) (-2115 (($ $) NIL)) (-4310 (($ $) 33)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534))))) (($ (-942 (-406 (-558)))) NIL (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163))))) (($ (-942 (-558))) NIL (-3994 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-606 (-1163))) (-2143 (|has| |#1| (-38 (-406 (-558)))))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#2| (-606 (-1163)))))) (($ (-942 |#1|)) NIL (|has| |#2| (-606 (-1163)))) (((-1145) $) NIL (-12 (|has| |#1| (-1028 (-558))) (|has| |#2| (-606 (-1163))))) (((-942 |#1|) $) NIL (|has| |#2| (-606 (-1163))))) (-3012 ((|#1| $) 114 (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-942 |#1|) $) NIL (|has| |#2| (-606 (-1163)))) (((-1112 |#1| |#2|) $) 15) (($ (-1112 |#1| |#2|)) 16) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-762)) 44) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) 13 T CONST)) (-1491 (((-3 (-112) "failed") $ $) NIL)) (-2220 (($) 35 T CONST)) (-2494 (($ $ $ $ (-762)) 87 (|has| |#1| (-550)))) (-2350 (($ $ $ (-762)) 86 (|has| |#1| (-550)))) (-3042 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) 54)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) 63)) (-1785 (($ $ $) 73)) (** (($ $ (-911)) NIL) (($ $ (-762)) 61)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 59) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-771 |#1| |#2|) (-13 (-1053 |#1| (-529 |#2|) |#2|) (-605 (-1112 |#1| |#2|)) (-1028 (-1112 |#1| |#2|))) (-1039) (-841)) (T -771))
-NIL
-(-13 (-1053 |#1| (-529 |#2|) |#2|) (-605 (-1112 |#1| |#2|)) (-1028 (-1112 |#1| |#2|)))
-((-3397 (((-773 |#2|) (-1 |#2| |#1|) (-773 |#1|)) 13)))
-(((-772 |#1| |#2|) (-10 -7 (-15 -3397 ((-773 |#2|) (-1 |#2| |#1|) (-773 |#1|)))) (-1039) (-1039)) (T -772))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-773 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-773 *6)) (-5 *1 (-772 *5 *6)))))
-(-10 -7 (-15 -3397 ((-773 |#2|) (-1 |#2| |#1|) (-773 |#1|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 12)) (-4333 (((-1246 |#1|) $ (-762)) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-1285 (($ (-1159 |#1|)) NIL)) (-3907 (((-1159 $) $ (-1069)) NIL) (((-1159 |#1|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1392 (((-635 $) $ $) 39 (|has| |#1| (-550)))) (-2531 (($ $ $) 35 (|has| |#1| (-550)))) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2186 (($ $ (-762)) NIL)) (-3291 (($ $ (-762)) NIL)) (-2855 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL) (((-3 (-1159 |#1|) "failed") $) 10)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1069) $) NIL) (((-1159 |#1|) $) NIL)) (-2862 (($ $ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-2567 (($ $ $) NIL)) (-3862 (($ $ $) 71 (|has| |#1| (-550)))) (-3343 (((-2 (|:| -3455 |#1|) (|:| -2263 $) (|:| -1548 $)) $ $) 70 (|has| |#1| (-550)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-762) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2532 (((-762) $ $) NIL (|has| |#1| (-550)))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-4068 (($ (-1159 |#1|) (-1069)) NIL) (($ (-1159 $) (-1069)) NIL)) (-4184 (($ $ (-762)) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-4313 (($ $ $) 20)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-1069)) NIL) (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3672 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-762) (-762)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (((-1159 |#1|) $) NIL)) (-2135 (((-3 (-1069) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2577 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1630 (-762))) $ $) 26)) (-1694 (($ $ $) 29)) (-1690 (($ $ $) 32)) (-2996 (((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $) 31)) (-2510 (((-1145) $) NIL)) (-4069 (($ $ $) 41 (|has| |#1| (-550)))) (-1710 (((-2 (|:| -2263 $) (|:| -1548 $)) $ (-762)) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-1069)) (|:| -1857 (-762))) "failed") $) NIL)) (-1337 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1823 (($) NIL (|has| |#1| (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4117 (((-2 (|:| -1544 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-550)))) (-2525 (((-2 (|:| -1544 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-550)))) (-3806 (((-2 (|:| -2862 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-550)))) (-2394 (((-2 (|:| -2862 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-550)))) (-3837 (((-112) $) 13)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3232 (($ $ (-762) |#1| $) 19)) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-3836 (((-2 (|:| -1544 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-550)))) (-1933 (((-2 (|:| -2862 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-550)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#1|) NIL) (($ $ (-635 (-1069)) (-635 |#1|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-550)))) (-2397 (((-3 $ "failed") $ (-762)) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3789 (($ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-3780 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4263 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-2017 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-550)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-1069)) NIL) (((-1159 |#1|) $) 7) (($ (-1159 |#1|)) 8) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) 21 T CONST)) (-2220 (($) 24 T CONST)) (-3042 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) 28) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-773 |#1|) (-13 (-1222 |#1|) (-605 (-1159 |#1|)) (-1028 (-1159 |#1|)) (-10 -8 (-15 -3232 ($ $ (-762) |#1| $)) (-15 -4313 ($ $ $)) (-15 -2577 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1630 (-762))) $ $)) (-15 -1694 ($ $ $)) (-15 -2996 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -1690 ($ $ $)) (IF (|has| |#1| (-550)) (PROGN (-15 -1392 ((-635 $) $ $)) (-15 -4069 ($ $ $)) (-15 -3836 ((-2 (|:| -1544 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2525 ((-2 (|:| -1544 $) (|:| |coef1| $)) $ $)) (-15 -4117 ((-2 (|:| -1544 $) (|:| |coef2| $)) $ $)) (-15 -1933 ((-2 (|:| -2862 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2394 ((-2 (|:| -2862 |#1|) (|:| |coef1| $)) $ $)) (-15 -3806 ((-2 (|:| -2862 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1039)) (T -773))
-((-3232 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-762)) (-5 *1 (-773 *3)) (-4 *3 (-1039)))) (-4313 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))) (-2577 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-773 *3)) (|:| |polden| *3) (|:| -1630 (-762)))) (-5 *1 (-773 *3)) (-4 *3 (-1039)))) (-1694 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))) (-2996 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3455 *3) (|:| |gap| (-762)) (|:| -2263 (-773 *3)) (|:| -1548 (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-1039)))) (-1690 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))) (-1392 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-773 *3))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-4069 (*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-550)) (-4 *2 (-1039)))) (-3836 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1544 (-773 *3)) (|:| |coef1| (-773 *3)) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-2525 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1544 (-773 *3)) (|:| |coef1| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-4117 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1544 (-773 *3)) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-1933 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2862 *3) (|:| |coef1| (-773 *3)) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-2394 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2862 *3) (|:| |coef1| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-3806 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2862 *3) (|:| |coef2| (-773 *3)))) (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
-(-13 (-1222 |#1|) (-605 (-1159 |#1|)) (-1028 (-1159 |#1|)) (-10 -8 (-15 -3232 ($ $ (-762) |#1| $)) (-15 -4313 ($ $ $)) (-15 -2577 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1630 (-762))) $ $)) (-15 -1694 ($ $ $)) (-15 -2996 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -1690 ($ $ $)) (IF (|has| |#1| (-550)) (PROGN (-15 -1392 ((-635 $) $ $)) (-15 -4069 ($ $ $)) (-15 -3836 ((-2 (|:| -1544 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2525 ((-2 (|:| -1544 $) (|:| |coef1| $)) $ $)) (-15 -4117 ((-2 (|:| -1544 $) (|:| |coef2| $)) $ $)) (-15 -1933 ((-2 (|:| -2862 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2394 ((-2 (|:| -2862 |#1|) (|:| |coef1| $)) $ $)) (-15 -3806 ((-2 (|:| -2862 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1390 ((|#1| (-762) |#1|) 32 (|has| |#1| (-38 (-406 (-558)))))) (-3326 ((|#1| (-762) |#1|) 22)) (-1714 ((|#1| (-762) |#1|) 34 (|has| |#1| (-38 (-406 (-558)))))))
-(((-774 |#1|) (-10 -7 (-15 -3326 (|#1| (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1714 (|#1| (-762) |#1|)) (-15 -1390 (|#1| (-762) |#1|))) |%noBranch|)) (-171)) (T -774))
-((-1390 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-171)))) (-1714 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-171)))) (-3326 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-171)))))
-(-10 -7 (-15 -3326 (|#1| (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1714 (|#1| (-762) |#1|)) (-15 -1390 (|#1| (-762) |#1|))) |%noBranch|))
-((-3929 (((-112) $ $) 7)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) 85)) (-3055 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-4078 (((-635 |#3|) $) 33)) (-3369 (((-112) $) 26)) (-1852 (((-112) $) 17 (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) 101) (((-112) $) 97)) (-2299 ((|#4| |#4| $) 92)) (-2018 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| $) 126)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) 27)) (-3651 (((-112) $ (-762)) 44)) (-2072 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) 79)) (-3457 (($) 45 T CONST)) (-3614 (((-112) $) 22 (|has| |#1| (-550)))) (-1293 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2211 (((-112) $ $) 23 (|has| |#1| (-550)))) (-3554 (((-112) $) 25 (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1542 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) 36)) (-3226 (($ (-635 |#4|)) 35)) (-3168 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-3188 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2388 ((|#4| |#4| $) 87)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) 105)) (-2497 (((-112) |#4| $) 136)) (-2990 (((-112) |#4| $) 133)) (-3119 (((-112) |#4| $) 137) (((-112) $) 134)) (-2917 (((-635 |#4|) $) 52 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) 104) (((-112) $) 103)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) 43)) (-3486 (((-635 |#4|) $) 53 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 47)) (-2327 (((-635 |#3|) $) 32)) (-3541 (((-112) |#3| $) 31)) (-3212 (((-112) $ (-762)) 42)) (-2510 (((-1145) $) 9)) (-1948 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-4069 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| |#4| $) 127)) (-1514 (((-3 |#4| "failed") $) 83)) (-2681 (((-635 $) |#4| $) 129)) (-2015 (((-3 (-112) (-635 $)) |#4| $) 132)) (-4294 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3490 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3987 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-2367 (((-635 |#4|) $) 107)) (-2643 (((-112) |#4| $) 99) (((-112) $) 95)) (-1401 ((|#4| |#4| $) 90)) (-3879 (((-112) $ $) 110)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) 100) (((-112) $) 96)) (-2224 ((|#4| |#4| $) 91)) (-1688 (((-1107) $) 10)) (-3156 (((-3 |#4| "failed") $) 84)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2562 (((-3 $ "failed") $ |#4|) 78)) (-2319 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3314 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) 38)) (-3711 (((-112) $) 41)) (-2876 (($) 40)) (-4263 (((-762) $) 106)) (-1698 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4383)))) (-4098 (($ $) 39)) (-3441 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 60)) (-3121 (($ $ |#3|) 28)) (-2402 (($ $ |#3|) 30)) (-2004 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-3940 (((-853) $) 11) (((-635 |#4|) $) 37)) (-1435 (((-762) $) 76 (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3745 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2831 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) 81)) (-3337 (((-112) |#4| $) 135)) (-4062 (((-112) |#3| $) 80)) (-1708 (((-112) $ $) 6)) (-1596 (((-762) $) 46 (|has| $ (-6 -4383)))))
-(((-775 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -775))
-NIL
-(-13 (-1059 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1059 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
-((-4024 (((-3 (-378) "failed") (-315 |#1|) (-911)) 62 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-378) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-378) "failed") (-406 (-942 |#1|)) (-911)) 41 (|has| |#1| (-550))) (((-3 (-378) "failed") (-406 (-942 |#1|))) 40 (|has| |#1| (-550))) (((-3 (-378) "failed") (-942 |#1|) (-911)) 31 (|has| |#1| (-1039))) (((-3 (-378) "failed") (-942 |#1|)) 30 (|has| |#1| (-1039)))) (-3438 (((-378) (-315 |#1|) (-911)) 99 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-378) (-315 |#1|)) 94 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-378) (-406 (-942 |#1|)) (-911)) 91 (|has| |#1| (-550))) (((-378) (-406 (-942 |#1|))) 90 (|has| |#1| (-550))) (((-378) (-942 |#1|) (-911)) 86 (|has| |#1| (-1039))) (((-378) (-942 |#1|)) 85 (|has| |#1| (-1039))) (((-378) |#1| (-911)) 76) (((-378) |#1|) 22)) (-3127 (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-911)) 71 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-315 |#1|) (-911)) 63 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))) (-911)) 46 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|)))) 45 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)) (-911)) 39 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-406 (-942 |#1|))) 38 (|has| |#1| (-550))) (((-3 (-168 (-378)) "failed") (-942 |#1|) (-911)) 28 (|has| |#1| (-1039))) (((-3 (-168 (-378)) "failed") (-942 |#1|)) 26 (|has| |#1| (-1039))) (((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-911)) 18 (|has| |#1| (-171))) (((-3 (-168 (-378)) "failed") (-942 (-168 |#1|))) 15 (|has| |#1| (-171)))) (-3872 (((-168 (-378)) (-315 (-168 |#1|)) (-911)) 102 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-315 |#1|) (-911)) 100 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-315 |#1|)) 98 (-12 (|has| |#1| (-550)) (|has| |#1| (-841)))) (((-168 (-378)) (-406 (-942 (-168 |#1|))) (-911)) 93 (|has| |#1| (-550))) (((-168 (-378)) (-406 (-942 (-168 |#1|)))) 92 (|has| |#1| (-550))) (((-168 (-378)) (-406 (-942 |#1|)) (-911)) 89 (|has| |#1| (-550))) (((-168 (-378)) (-406 (-942 |#1|))) 88 (|has| |#1| (-550))) (((-168 (-378)) (-942 |#1|) (-911)) 84 (|has| |#1| (-1039))) (((-168 (-378)) (-942 |#1|)) 83 (|has| |#1| (-1039))) (((-168 (-378)) (-942 (-168 |#1|)) (-911)) 78 (|has| |#1| (-171))) (((-168 (-378)) (-942 (-168 |#1|))) 77 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|) (-911)) 80 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|)) 79 (|has| |#1| (-171))) (((-168 (-378)) |#1| (-911)) 27) (((-168 (-378)) |#1|) 25)))
-(((-776 |#1|) (-10 -7 (-15 -3438 ((-378) |#1|)) (-15 -3438 ((-378) |#1| (-911))) (-15 -3872 ((-168 (-378)) |#1|)) (-15 -3872 ((-168 (-378)) |#1| (-911))) (IF (|has| |#1| (-171)) (PROGN (-15 -3872 ((-168 (-378)) (-168 |#1|))) (-15 -3872 ((-168 (-378)) (-168 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-942 (-168 |#1|)))) (-15 -3872 ((-168 (-378)) (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -3438 ((-378) (-942 |#1|))) (-15 -3438 ((-378) (-942 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-942 |#1|))) (-15 -3872 ((-168 (-378)) (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3438 ((-378) (-406 (-942 |#1|)))) (-15 -3438 ((-378) (-406 (-942 |#1|)) (-911))) (-15 -3872 ((-168 (-378)) (-406 (-942 |#1|)))) (-15 -3872 ((-168 (-378)) (-406 (-942 |#1|)) (-911))) (-15 -3872 ((-168 (-378)) (-406 (-942 (-168 |#1|))))) (-15 -3872 ((-168 (-378)) (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -3438 ((-378) (-315 |#1|))) (-15 -3438 ((-378) (-315 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-315 |#1|))) (-15 -3872 ((-168 (-378)) (-315 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -3872 ((-168 (-378)) (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -4024 ((-3 (-378) "failed") (-942 |#1|))) (-15 -4024 ((-3 (-378) "failed") (-942 |#1|) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 |#1|))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -4024 ((-3 (-378) "failed") (-406 (-942 |#1|)))) (-15 -4024 ((-3 (-378) "failed") (-406 (-942 |#1|)) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -4024 ((-3 (-378) "failed") (-315 |#1|))) (-15 -4024 ((-3 (-378) "failed") (-315 |#1|) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|)) (-606 (-378))) (T -776))
-((-3127 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3127 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3127 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3127 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-4024 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-4024 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-3127 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3127 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3127 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3127 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-4024 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-4024 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-3127 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3127 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-4024 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-4024 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-3127 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3127 (*1 *2 *3) (|partial| -12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039)) (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-911)) (-4 *5 (-171)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-168 (-378))) (-5 *1 (-776 *3)) (-4 *3 (-606 (-378))))) (-3872 (*1 *2 *3) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-776 *3)) (-4 *3 (-606 (-378))))) (-3438 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-378)) (-5 *1 (-776 *3)) (-4 *3 (-606 *2)))) (-3438 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-776 *3)) (-4 *3 (-606 *2)))))
-(-10 -7 (-15 -3438 ((-378) |#1|)) (-15 -3438 ((-378) |#1| (-911))) (-15 -3872 ((-168 (-378)) |#1|)) (-15 -3872 ((-168 (-378)) |#1| (-911))) (IF (|has| |#1| (-171)) (PROGN (-15 -3872 ((-168 (-378)) (-168 |#1|))) (-15 -3872 ((-168 (-378)) (-168 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-942 (-168 |#1|)))) (-15 -3872 ((-168 (-378)) (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -3438 ((-378) (-942 |#1|))) (-15 -3438 ((-378) (-942 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-942 |#1|))) (-15 -3872 ((-168 (-378)) (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -3438 ((-378) (-406 (-942 |#1|)))) (-15 -3438 ((-378) (-406 (-942 |#1|)) (-911))) (-15 -3872 ((-168 (-378)) (-406 (-942 |#1|)))) (-15 -3872 ((-168 (-378)) (-406 (-942 |#1|)) (-911))) (-15 -3872 ((-168 (-378)) (-406 (-942 (-168 |#1|))))) (-15 -3872 ((-168 (-378)) (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -3438 ((-378) (-315 |#1|))) (-15 -3438 ((-378) (-315 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-315 |#1|))) (-15 -3872 ((-168 (-378)) (-315 |#1|) (-911))) (-15 -3872 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -3872 ((-168 (-378)) (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 (-168 |#1|)) (-911)))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -4024 ((-3 (-378) "failed") (-942 |#1|))) (-15 -4024 ((-3 (-378) "failed") (-942 |#1|) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 |#1|))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-942 |#1|) (-911)))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -4024 ((-3 (-378) "failed") (-406 (-942 |#1|)))) (-15 -4024 ((-3 (-378) "failed") (-406 (-942 |#1|)) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 |#1|)) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-406 (-942 (-168 |#1|))) (-911))) (IF (|has| |#1| (-841)) (PROGN (-15 -4024 ((-3 (-378) "failed") (-315 |#1|))) (-15 -4024 ((-3 (-378) "failed") (-315 |#1|) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-911))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -3127 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-911)))) |%noBranch|)) |%noBranch|))
-((-3444 (((-911) (-1145)) 64)) (-3553 (((-3 (-378) "failed") (-1145)) 32)) (-3118 (((-378) (-1145)) 30)) (-3303 (((-911) (-1145)) 53)) (-2219 (((-1145) (-911)) 54)) (-4160 (((-1145) (-911)) 52)))
-(((-777) (-10 -7 (-15 -4160 ((-1145) (-911))) (-15 -3303 ((-911) (-1145))) (-15 -2219 ((-1145) (-911))) (-15 -3444 ((-911) (-1145))) (-15 -3118 ((-378) (-1145))) (-15 -3553 ((-3 (-378) "failed") (-1145))))) (T -777))
-((-3553 (*1 *2 *3) (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))))
-(-10 -7 (-15 -4160 ((-1145) (-911))) (-15 -3303 ((-911) (-1145))) (-15 -2219 ((-1145) (-911))) (-15 -3444 ((-911) (-1145))) (-15 -3118 ((-378) (-1145))) (-15 -3553 ((-3 (-378) "failed") (-1145))))
-((-3929 (((-112) $ $) 7)) (-4176 (((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 15) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)) 13)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)))
-(((-778) (-139)) (T -778))
-((-4131 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025)))))) (-4176 (*1 *2 *3 *2) (-12 (-4 *1 (-778)) (-5 *2 (-1025)) (-5 *3 (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-4131 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025)))))) (-4176 (*1 *2 *3 *2) (-12 (-4 *1 (-778)) (-5 *2 (-1025)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
-(-13 (-1087) (-10 -7 (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4176 ((-1025) (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224))) (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)) (|:| |extra| (-1025))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4176 ((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1025)))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2155 (((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378))) 44) (((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 43)) (-1582 (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 50)) (-3575 (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 41)) (-1769 (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378))) 52) (((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378))) 51)))
-(((-779) (-10 -7 (-15 -1769 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -1769 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -3575 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2155 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2155 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -1582 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))))) (T -779))
-((-1582 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-2155 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378)))) (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-2155 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378)))) (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-3575 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-1769 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))) (-1769 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378))) (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251)) (-5 *1 (-779)))))
-(-10 -7 (-15 -1769 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -1769 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -3575 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2155 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))) (-15 -2155 ((-1251) (-1246 (-378)) (-558) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))) (-378) (-1246 (-378)) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)) (-1246 (-378)))) (-15 -1582 ((-1251) (-1246 (-378)) (-558) (-378) (-378) (-558) (-1 (-1251) (-1246 (-378)) (-1246 (-378)) (-378)))))
-((-3544 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 53)) (-2514 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 31)) (-2694 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 52)) (-1318 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 29)) (-2938 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 51)) (-3918 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558)) 19)) (-4010 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558)) 32)) (-1586 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558)) 30)) (-3949 (((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558)) 28)))
-(((-780) (-10 -7 (-15 -3949 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -1586 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -4010 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -3918 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -1318 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2514 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2938 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2694 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -3544 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))))) (T -780))
-((-3544 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2694 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2938 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-2514 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-1318 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-3918 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-4010 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-1586 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))) (-3949 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558)) (|:| |success| (-112)))) (-5 *1 (-780)) (-5 *5 (-558)))))
-(-10 -7 (-15 -3949 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -1586 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -4010 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558) (-558))) (-15 -3918 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -1318 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2514 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2938 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -2694 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))) (-15 -3544 ((-2 (|:| -2426 (-378)) (|:| -3851 (-378)) (|:| |totalpts| (-558)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-558) (-558))))
-((-2799 (((-1195 |#1|) |#1| (-224) (-558)) 46)))
-(((-781 |#1|) (-10 -7 (-15 -2799 ((-1195 |#1|) |#1| (-224) (-558)))) (-964)) (T -781))
-((-2799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-558)) (-5 *2 (-1195 *3)) (-5 *1 (-781 *3)) (-4 *3 (-964)))))
-(-10 -7 (-15 -2799 ((-1195 |#1|) |#1| (-224) (-558))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 24)) (-1868 (((-3 $ "failed") $ $) 26)) (-3457 (($) 23 T CONST)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 22 T CONST)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-1796 (($ $ $) 28) (($ $) 27)) (-1785 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25) (($ (-558) $) 29)))
-(((-782) (-139)) (T -782))
-NIL
-(-13 (-786) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-841) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 24)) (-3457 (($) 23 T CONST)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 22 T CONST)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-1785 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25)))
-(((-783) (-139)) (T -783))
-NIL
-(-13 (-785) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-785) . T) ((-841) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 24)) (-2707 (($ $ $) 27)) (-1868 (((-3 $ "failed") $ $) 26)) (-3457 (($) 23 T CONST)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 22 T CONST)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-1785 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25)))
-(((-784) (-139)) (T -784))
-((-2707 (*1 *1 *1 *1) (-4 *1 (-784))))
-(-13 (-786) (-10 -8 (-15 -2707 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-841) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-1785 (($ $ $) 20)) (* (($ (-911) $) 21)))
+((-3867 (((-3 |#2| "failed") |#2| |#2| (-114) (-1166)) 35)))
+(((-766 |#1| |#2|) (-10 -7 (-15 -3867 ((-3 |#2| "failed") |#2| |#2| (-114) (-1166)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952))) (T -766))
+((-3867 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-952))))))
+(-10 -7 (-15 -3867 ((-3 |#2| "failed") |#2| |#2| (-114) (-1166))))
+((-4022 (((-768) |#1|) 8)))
+(((-767 |#1|) (-10 -7 (-15 -4022 ((-768) |#1|))) (-1205)) (T -767))
+((-4022 (*1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-767 *3)) (-4 *3 (-1205)))))
+(-10 -7 (-15 -4022 ((-768) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 7)) (-1733 (((-112) $ $) 9)))
+(((-768) (-1090)) (T -768))
+NIL
+(-1090)
+((-1672 ((|#2| |#4|) 35)))
+(((-769 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1672 (|#2| |#4|))) (-450) (-1229 |#1|) (-718 |#1| |#2|) (-1229 |#3|)) (T -769))
+((-1672 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -1672 (|#2| |#4|)))
+((-3466 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1826 (((-1258) (-1148) (-1148) |#4| |#5|) 33)) (-3931 ((|#4| |#4| |#5|) 72)) (-2528 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|) 76)) (-2933 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|) 16)))
+(((-770 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3466 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3931 (|#4| |#4| |#5|)) (-15 -2528 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -1826 ((-1258) (-1148) (-1148) |#4| |#5|)) (-15 -2933 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -770))
+((-2933 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1826 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1258)) (-5 *1 (-770 *6 *7 *8 *4 *5)) (-4 *5 (-1062 *6 *7 *8 *4)))) (-2528 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3931 (*1 *2 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *2 (-1056 *4 *5 *6)) (-5 *1 (-770 *4 *5 *6 *2 *3)) (-4 *3 (-1062 *4 *5 *6 *2)))) (-3466 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3466 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3931 (|#4| |#4| |#5|)) (-15 -2528 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -1826 ((-1258) (-1148) (-1148) |#4| |#5|)) (-15 -2933 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)))
+((-4017 (((-3 (-1162 (-1162 |#1|)) "failed") |#4|) 43)) (-4350 (((-638 |#4|) |#4|) 15)) (-4285 ((|#4| |#4|) 11)))
+(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4350 ((-638 |#4|) |#4|)) (-15 -4017 ((-3 (-1162 (-1162 |#1|)) "failed") |#4|)) (-15 -4285 (|#4| |#4|))) (-348) (-328 |#1|) (-1229 |#2|) (-1229 |#3|) (-914)) (T -771))
+((-4285 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1229 *4)) (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1229 *5)) (-14 *6 (-914)))) (-4017 (*1 *2 *3) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-1162 (-1162 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-914)))) (-4350 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-638 *3)) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-914)))))
+(-10 -7 (-15 -4350 ((-638 |#4|) |#4|)) (-15 -4017 ((-3 (-1162 (-1162 |#1|)) "failed") |#4|)) (-15 -4285 (|#4| |#4|)))
+((-2282 (((-2 (|:| |deter| (-638 (-1162 |#5|))) (|:| |dterm| (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-638 |#1|)) (|:| |nlead| (-638 |#5|))) (-1162 |#5|) (-638 |#1|) (-638 |#5|)) 53)) (-3352 (((-638 (-765)) |#1|) 13)))
+(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2282 ((-2 (|:| |deter| (-638 (-1162 |#5|))) (|:| |dterm| (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-638 |#1|)) (|:| |nlead| (-638 |#5|))) (-1162 |#5|) (-638 |#1|) (-638 |#5|))) (-15 -3352 ((-638 (-765)) |#1|))) (-1229 |#4|) (-787) (-844) (-306) (-942 |#4| |#2| |#3|)) (T -772))
+((-3352 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-638 (-765))) (-5 *1 (-772 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *6)) (-4 *7 (-942 *6 *4 *5)))) (-2282 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1229 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306)) (-4 *10 (-942 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-638 (-1162 *10))) (|:| |dterm| (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| *10))))) (|:| |nfacts| (-638 *6)) (|:| |nlead| (-638 *10)))) (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1162 *10)) (-5 *4 (-638 *6)) (-5 *5 (-638 *10)))))
+(-10 -7 (-15 -2282 ((-2 (|:| |deter| (-638 (-1162 |#5|))) (|:| |dterm| (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-638 |#1|)) (|:| |nlead| (-638 |#5|))) (-1162 |#5|) (-638 |#1|) (-638 |#5|))) (-15 -3352 ((-638 (-765)) |#1|)))
+((-1798 (((-638 (-2 (|:| |outval| |#1|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#1|))))) (-682 (-406 (-561))) |#1|) 31)) (-3929 (((-638 |#1|) (-682 (-406 (-561))) |#1|) 21)) (-2485 (((-945 (-406 (-561))) (-682 (-406 (-561))) (-1166)) 18) (((-945 (-406 (-561))) (-682 (-406 (-561)))) 17)))
+(((-773 |#1|) (-10 -7 (-15 -2485 ((-945 (-406 (-561))) (-682 (-406 (-561))))) (-15 -2485 ((-945 (-406 (-561))) (-682 (-406 (-561))) (-1166))) (-15 -3929 ((-638 |#1|) (-682 (-406 (-561))) |#1|)) (-15 -1798 ((-638 (-2 (|:| |outval| |#1|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#1|))))) (-682 (-406 (-561))) |#1|))) (-13 (-362) (-842))) (T -773))
+((-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-638 (-2 (|:| |outval| *4) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 *4)))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-3929 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *4 (-1166)) (-5 *2 (-945 (-406 (-561)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-362) (-842))))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-945 (-406 (-561)))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))))
+(-10 -7 (-15 -2485 ((-945 (-406 (-561))) (-682 (-406 (-561))))) (-15 -2485 ((-945 (-406 (-561))) (-682 (-406 (-561))) (-1166))) (-15 -3929 ((-638 |#1|) (-682 (-406 (-561))) |#1|)) (-15 -1798 ((-638 (-2 (|:| |outval| |#1|) (|:| |outmult| (-561)) (|:| |outvect| (-638 (-682 |#1|))))) (-682 (-406 (-561))) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 34)) (-1412 (((-638 |#2|) $) NIL)) (-1620 (((-1162 $) $ |#2|) NIL) (((-1162 |#1|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 |#2|)) NIL)) (-3129 (($ $) 28)) (-2619 (((-112) $ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2645 (($ $ $) 92 (|has| |#1| (-553)))) (-3042 (((-638 $) $ $) 105 (|has| |#1| (-553)))) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-945 (-406 (-561)))) NIL (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))))) (((-3 $ "failed") (-945 (-561))) NIL (-4007 (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-38 (-406 (-561)))))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166)))))) (((-3 $ "failed") (-945 |#1|)) NIL (-4007 (-12 (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-38 (-406 (-561))))) (-2159 (|has| |#1| (-38 (-561))))) (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-38 (-406 (-561))))) (-2159 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-985 (-561))))))) (((-3 (-1115 |#1| |#2|) "failed") $) 18)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) ((|#2| $) NIL) (($ (-945 (-406 (-561)))) NIL (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))))) (($ (-945 (-561))) NIL (-4007 (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-38 (-406 (-561)))))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166)))))) (($ (-945 |#1|)) NIL (-4007 (-12 (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-38 (-406 (-561))))) (-2159 (|has| |#1| (-38 (-561))))) (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-38 (-406 (-561))))) (-2159 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-985 (-561))))))) (((-1115 |#1| |#2|) $) NIL)) (-3051 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-553)))) (-1619 (($ $) NIL) (($ $ |#2|) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-2095 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-3048 (((-112) $) NIL)) (-3806 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 69)) (-2895 (($ $) 118 (|has| |#1| (-450)))) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2367 (($ $) NIL (|has| |#1| (-553)))) (-2242 (($ $) NIL (|has| |#1| (-553)))) (-2741 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-1741 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-2103 (($ $ |#1| (-529 |#2|) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-3033 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-3568 (($ $ $ $ $) 89 (|has| |#1| (-553)))) (-2783 ((|#2| $) 19)) (-1401 (($ (-1162 |#1|) |#2|) NIL) (($ (-1162 $) |#2|) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 36) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-4134 (($ $ $) 60)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |#2|) NIL)) (-1509 (((-112) $) NIL)) (-2393 (((-529 |#2|) $) NIL) (((-765) $ |#2|) NIL) (((-638 (-765)) $ (-638 |#2|)) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-4072 (((-765) $) 20)) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (((-3 |#2| "failed") $) NIL)) (-4101 (($ $) NIL (|has| |#1| (-450)))) (-4250 (($ $) NIL (|has| |#1| (-450)))) (-3593 (((-638 $) $) NIL)) (-1942 (($ $) 37)) (-2296 (($ $) NIL (|has| |#1| (-450)))) (-2291 (((-638 $) $) 41)) (-3966 (($ $) 39)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3951 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1364 (-765))) $ $) 81)) (-2313 (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $) 66) (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $ |#2|) NIL)) (-1999 (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $) NIL) (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $ |#2|) NIL)) (-1560 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-1346 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-1764 (((-1148) $) NIL)) (-1631 (($ $ $) 107 (|has| |#1| (-553)))) (-2040 (((-638 $) $) 30)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| |#2|) (|:| -4196 (-765))) "failed") $) NIL)) (-2153 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-1829 (($ $ $) NIL)) (-3721 (($ $) 21)) (-3863 (((-112) $ $) NIL)) (-4033 (((-112) $ $) NIL) (((-112) $ (-638 $)) NIL)) (-4118 (($ $ $) NIL)) (-3574 (($ $) 23)) (-1714 (((-1110) $) NIL)) (-4359 (((-2 (|:| -1623 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-553)))) (-2184 (((-2 (|:| -1623 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-553)))) (-1551 (((-112) $) 52)) (-1561 ((|#1| $) 55)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 ((|#1| |#1| $) 115 (|has| |#1| (-450))) (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-2615 (((-2 (|:| -1623 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-553)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-553)))) (-2686 (($ $ |#1|) 111 (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-1606 (($ $ |#1|) 110 (|has| |#1| (-553))) (($ $ $) NIL (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-638 |#2|) (-638 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-638 |#2|) (-638 $)) NIL)) (-2553 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-3238 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-2894 (((-529 |#2|) $) NIL) (((-765) $ |#2|) 43) (((-638 (-765)) $ (-638 |#2|)) NIL)) (-3695 (($ $) NIL)) (-4368 (($ $) 33)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534))))) (($ (-945 (-406 (-561)))) NIL (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166))))) (($ (-945 (-561))) NIL (-4007 (-12 (|has| |#1| (-38 (-561))) (|has| |#2| (-609 (-1166))) (-2159 (|has| |#1| (-38 (-406 (-561)))))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#2| (-609 (-1166)))))) (($ (-945 |#1|)) NIL (|has| |#2| (-609 (-1166)))) (((-1148) $) NIL (-12 (|has| |#1| (-1031 (-561))) (|has| |#2| (-609 (-1166))))) (((-945 |#1|) $) NIL (|has| |#2| (-609 (-1166))))) (-3609 ((|#1| $) 114 (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-945 |#1|) $) NIL (|has| |#2| (-609 (-1166)))) (((-1115 |#1| |#2|) $) 15) (($ (-1115 |#1| |#2|)) 16) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) 44) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) 13 T CONST)) (-1414 (((-3 (-112) "failed") $ $) NIL)) (-2222 (($) 35 T CONST)) (-1322 (($ $ $ $ (-765)) 87 (|has| |#1| (-553)))) (-2787 (($ $ $ (-765)) 86 (|has| |#1| (-553)))) (-3122 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) 54)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) 63)) (-1813 (($ $ $) 73)) (** (($ $ (-914)) NIL) (($ $ (-765)) 61)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 59) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-774 |#1| |#2|) (-13 (-1056 |#1| (-529 |#2|) |#2|) (-608 (-1115 |#1| |#2|)) (-1031 (-1115 |#1| |#2|))) (-1042) (-844)) (T -774))
+NIL
+(-13 (-1056 |#1| (-529 |#2|) |#2|) (-608 (-1115 |#1| |#2|)) (-1031 (-1115 |#1| |#2|)))
+((-4120 (((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|)) 13)))
+(((-775 |#1| |#2|) (-10 -7 (-15 -4120 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|)))) (-1042) (-1042)) (T -775))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6)))))
+(-10 -7 (-15 -4120 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 12)) (-1557 (((-1253 |#1|) $ (-765)) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-4110 (($ (-1162 |#1|)) NIL)) (-1620 (((-1162 $) $ (-1072)) NIL) (((-1162 |#1|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1563 (((-638 $) $ $) 39 (|has| |#1| (-553)))) (-2645 (($ $ $) 35 (|has| |#1| (-553)))) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3784 (($ $ (-765)) NIL)) (-2239 (($ $ (-765)) NIL)) (-1301 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL) (((-3 (-1162 |#1|) "failed") $) 10)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1072) $) NIL) (((-1162 |#1|) $) NIL)) (-3051 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-3293 (($ $ $) NIL)) (-4034 (($ $ $) 71 (|has| |#1| (-553)))) (-3806 (((-2 (|:| -4188 |#1|) (|:| -1307 $) (|:| -1693 $)) $ $) 70 (|has| |#1| (-553)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-765) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4163 (((-765) $ $) NIL (|has| |#1| (-553)))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-1401 (($ (-1162 |#1|) (-1072)) NIL) (($ (-1162 $) (-1072)) NIL)) (-3244 (($ $ (-765)) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4134 (($ $ $) 20)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-1072)) NIL) (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-2393 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-765) (-765)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3434 (((-1162 |#1|) $) NIL)) (-1358 (((-3 (-1072) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3951 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1364 (-765))) $ $) 26)) (-4226 (($ $ $) 29)) (-2109 (($ $ $) 32)) (-2313 (((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $) 31)) (-1764 (((-1148) $) NIL)) (-1631 (($ $ $) 41 (|has| |#1| (-553)))) (-3597 (((-2 (|:| -1307 $) (|:| -1693 $)) $ (-765)) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-1072)) (|:| -4196 (-765))) "failed") $) NIL)) (-1842 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3721 (($) NIL (|has| |#1| (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-4359 (((-2 (|:| -1623 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-553)))) (-2184 (((-2 (|:| -1623 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-553)))) (-3464 (((-2 (|:| -3051 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-553)))) (-2694 (((-2 (|:| -3051 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-553)))) (-1551 (((-112) $) 13)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3446 (($ $ (-765) |#1| $) 19)) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-2615 (((-2 (|:| -1623 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-553)))) (-1291 (((-2 (|:| -3051 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-553)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-638 (-1072)) (-638 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-553)))) (-1853 (((-3 $ "failed") $ (-765)) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-2553 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-3238 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2894 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-553)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-1072)) NIL) (((-1162 |#1|) $) 7) (($ (-1162 |#1|)) 8) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) 21 T CONST)) (-2222 (($) 24 T CONST)) (-3122 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) 28) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-776 |#1|) (-13 (-1229 |#1|) (-608 (-1162 |#1|)) (-1031 (-1162 |#1|)) (-10 -8 (-15 -3446 ($ $ (-765) |#1| $)) (-15 -4134 ($ $ $)) (-15 -3951 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1364 (-765))) $ $)) (-15 -4226 ($ $ $)) (-15 -2313 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -2109 ($ $ $)) (IF (|has| |#1| (-553)) (PROGN (-15 -1563 ((-638 $) $ $)) (-15 -1631 ($ $ $)) (-15 -2615 ((-2 (|:| -1623 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2184 ((-2 (|:| -1623 $) (|:| |coef1| $)) $ $)) (-15 -4359 ((-2 (|:| -1623 $) (|:| |coef2| $)) $ $)) (-15 -1291 ((-2 (|:| -3051 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2694 ((-2 (|:| -3051 |#1|) (|:| |coef1| $)) $ $)) (-15 -3464 ((-2 (|:| -3051 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1042)) (T -776))
+((-3446 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-776 *3)) (-4 *3 (-1042)))) (-4134 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))) (-3951 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-776 *3)) (|:| |polden| *3) (|:| -1364 (-765)))) (-5 *1 (-776 *3)) (-4 *3 (-1042)))) (-4226 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))) (-2313 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |gap| (-765)) (|:| -1307 (-776 *3)) (|:| -1693 (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-1042)))) (-2109 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))) (-1563 (*1 *2 *1 *1) (-12 (-5 *2 (-638 (-776 *3))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-1631 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-553)) (-4 *2 (-1042)))) (-2615 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1623 (-776 *3)) (|:| |coef1| (-776 *3)) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-2184 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1623 (-776 *3)) (|:| |coef1| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-4359 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1623 (-776 *3)) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-1291 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3051 *3) (|:| |coef1| (-776 *3)) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-2694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3051 *3) (|:| |coef1| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))) (-3464 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3051 *3) (|:| |coef2| (-776 *3)))) (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
+(-13 (-1229 |#1|) (-608 (-1162 |#1|)) (-1031 (-1162 |#1|)) (-10 -8 (-15 -3446 ($ $ (-765) |#1| $)) (-15 -4134 ($ $ $)) (-15 -3951 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1364 (-765))) $ $)) (-15 -4226 ($ $ $)) (-15 -2313 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -2109 ($ $ $)) (IF (|has| |#1| (-553)) (PROGN (-15 -1563 ((-638 $) $ $)) (-15 -1631 ($ $ $)) (-15 -2615 ((-2 (|:| -1623 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2184 ((-2 (|:| -1623 $) (|:| |coef1| $)) $ $)) (-15 -4359 ((-2 (|:| -1623 $) (|:| |coef2| $)) $ $)) (-15 -1291 ((-2 (|:| -3051 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2694 ((-2 (|:| -3051 |#1|) (|:| |coef1| $)) $ $)) (-15 -3464 ((-2 (|:| -3051 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2026 ((|#1| (-765) |#1|) 32 (|has| |#1| (-38 (-406 (-561)))))) (-2526 ((|#1| (-765) |#1|) 22)) (-3120 ((|#1| (-765) |#1|) 34 (|has| |#1| (-38 (-406 (-561)))))))
+(((-777 |#1|) (-10 -7 (-15 -2526 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -3120 (|#1| (-765) |#1|)) (-15 -2026 (|#1| (-765) |#1|))) |%noBranch|)) (-171)) (T -777))
+((-2026 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-171)))) (-3120 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-171)))) (-2526 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171)))))
+(-10 -7 (-15 -2526 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -3120 (|#1| (-765) |#1|)) (-15 -2026 (|#1| (-765) |#1|))) |%noBranch|))
+((-4011 (((-112) $ $) 7)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) 85)) (-3047 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1412 (((-638 |#3|) $) 33)) (-1978 (((-112) $) 26)) (-2701 (((-112) $) 17 (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) 101) (((-112) $) 97)) (-2427 ((|#4| |#4| $) 92)) (-1591 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) 27)) (-1630 (((-112) $ (-765)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) 79)) (-1965 (($) 45 T CONST)) (-2002 (((-112) $) 22 (|has| |#1| (-553)))) (-1951 (((-112) $ $) 24 (|has| |#1| (-553)))) (-2959 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1361 (((-112) $) 25 (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1825 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) 36)) (-3938 (($ (-638 |#4|)) 35)) (-1445 (((-3 $ "failed") $) 82)) (-3320 ((|#4| |#4| $) 89)) (-1472 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3372 ((|#4| |#4| $) 87)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) 105)) (-3871 (((-112) |#4| $) 136)) (-2639 (((-112) |#4| $) 133)) (-1786 (((-112) |#4| $) 137) (((-112) $) 134)) (-3571 (((-638 |#4|) $) 52 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) 104) (((-112) $) 103)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) 43)) (-1305 (((-638 |#4|) $) 53 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 47)) (-2209 (((-638 |#3|) $) 32)) (-2866 (((-112) |#3| $) 31)) (-2230 (((-112) $ (-765)) 42)) (-1764 (((-1148) $) 9)) (-2987 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-1631 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| |#4| $) 127)) (-1520 (((-3 |#4| "failed") $) 83)) (-3316 (((-638 $) |#4| $) 129)) (-4021 (((-3 (-112) (-638 $)) |#4| $) 132)) (-1924 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2579 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-2961 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-1981 (((-638 |#4|) $) 107)) (-2153 (((-112) |#4| $) 99) (((-112) $) 95)) (-1829 ((|#4| |#4| $) 90)) (-3863 (((-112) $ $) 110)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-1714 (((-1110) $) 10)) (-1433 (((-3 |#4| "failed") $) 84)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2916 (((-3 $ "failed") $ |#4|) 78)) (-1416 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-2123 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) 38)) (-1928 (((-112) $) 41)) (-3170 (($) 40)) (-2894 (((-765) $) 106)) (-1724 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4390)))) (-4187 (($ $) 39)) (-4174 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 60)) (-1755 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-2074 (($ $) 88)) (-1967 (($ $ |#3|) 29)) (-4022 (((-856) $) 11) (((-638 |#4|) $) 37)) (-4161 (((-765) $) 76 (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2930 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) 81)) (-2827 (((-112) |#4| $) 135)) (-1751 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3498 (((-765) $) 46 (|has| $ (-6 -4390)))))
+(((-778 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -778))
+NIL
+(-13 (-1062 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
+((-1452 (((-3 (-378) "failed") (-315 |#1|) (-914)) 62 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-378) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-378) "failed") (-406 (-945 |#1|)) (-914)) 41 (|has| |#1| (-553))) (((-3 (-378) "failed") (-406 (-945 |#1|))) 40 (|has| |#1| (-553))) (((-3 (-378) "failed") (-945 |#1|) (-914)) 31 (|has| |#1| (-1042))) (((-3 (-378) "failed") (-945 |#1|)) 30 (|has| |#1| (-1042)))) (-3521 (((-378) (-315 |#1|) (-914)) 99 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-378) (-315 |#1|)) 94 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-378) (-406 (-945 |#1|)) (-914)) 91 (|has| |#1| (-553))) (((-378) (-406 (-945 |#1|))) 90 (|has| |#1| (-553))) (((-378) (-945 |#1|) (-914)) 86 (|has| |#1| (-1042))) (((-378) (-945 |#1|)) 85 (|has| |#1| (-1042))) (((-378) |#1| (-914)) 76) (((-378) |#1|) 22)) (-4094 (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-914)) 71 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-315 |#1|) (-914)) 63 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))) (-914)) 46 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|)))) 45 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)) (-914)) 39 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-406 (-945 |#1|))) 38 (|has| |#1| (-553))) (((-3 (-168 (-378)) "failed") (-945 |#1|) (-914)) 28 (|has| |#1| (-1042))) (((-3 (-168 (-378)) "failed") (-945 |#1|)) 26 (|has| |#1| (-1042))) (((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)) (-914)) 18 (|has| |#1| (-171))) (((-3 (-168 (-378)) "failed") (-945 (-168 |#1|))) 15 (|has| |#1| (-171)))) (-1577 (((-168 (-378)) (-315 (-168 |#1|)) (-914)) 102 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-315 |#1|) (-914)) 100 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-315 |#1|)) 98 (-12 (|has| |#1| (-553)) (|has| |#1| (-844)))) (((-168 (-378)) (-406 (-945 (-168 |#1|))) (-914)) 93 (|has| |#1| (-553))) (((-168 (-378)) (-406 (-945 (-168 |#1|)))) 92 (|has| |#1| (-553))) (((-168 (-378)) (-406 (-945 |#1|)) (-914)) 89 (|has| |#1| (-553))) (((-168 (-378)) (-406 (-945 |#1|))) 88 (|has| |#1| (-553))) (((-168 (-378)) (-945 |#1|) (-914)) 84 (|has| |#1| (-1042))) (((-168 (-378)) (-945 |#1|)) 83 (|has| |#1| (-1042))) (((-168 (-378)) (-945 (-168 |#1|)) (-914)) 78 (|has| |#1| (-171))) (((-168 (-378)) (-945 (-168 |#1|))) 77 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|) (-914)) 80 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|)) 79 (|has| |#1| (-171))) (((-168 (-378)) |#1| (-914)) 27) (((-168 (-378)) |#1|) 25)))
+(((-779 |#1|) (-10 -7 (-15 -3521 ((-378) |#1|)) (-15 -3521 ((-378) |#1| (-914))) (-15 -1577 ((-168 (-378)) |#1|)) (-15 -1577 ((-168 (-378)) |#1| (-914))) (IF (|has| |#1| (-171)) (PROGN (-15 -1577 ((-168 (-378)) (-168 |#1|))) (-15 -1577 ((-168 (-378)) (-168 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-945 (-168 |#1|)))) (-15 -1577 ((-168 (-378)) (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -3521 ((-378) (-945 |#1|))) (-15 -3521 ((-378) (-945 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-945 |#1|))) (-15 -1577 ((-168 (-378)) (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -3521 ((-378) (-406 (-945 |#1|)))) (-15 -3521 ((-378) (-406 (-945 |#1|)) (-914))) (-15 -1577 ((-168 (-378)) (-406 (-945 |#1|)))) (-15 -1577 ((-168 (-378)) (-406 (-945 |#1|)) (-914))) (-15 -1577 ((-168 (-378)) (-406 (-945 (-168 |#1|))))) (-15 -1577 ((-168 (-378)) (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -3521 ((-378) (-315 |#1|))) (-15 -3521 ((-378) (-315 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-315 |#1|))) (-15 -1577 ((-168 (-378)) (-315 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1577 ((-168 (-378)) (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -1452 ((-3 (-378) "failed") (-945 |#1|))) (-15 -1452 ((-3 (-378) "failed") (-945 |#1|) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 |#1|))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1452 ((-3 (-378) "failed") (-406 (-945 |#1|)))) (-15 -1452 ((-3 (-378) "failed") (-406 (-945 |#1|)) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -1452 ((-3 (-378) "failed") (-315 |#1|))) (-15 -1452 ((-3 (-378) "failed") (-315 |#1|) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|)) (-609 (-378))) (T -779))
+((-4094 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-4094 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-4094 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-4094 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-1452 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-4094 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-4094 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-4094 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-4094 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-1452 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-4094 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-4094 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-1452 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-4094 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-4094 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-914)) (-4 *5 (-171)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-168 (-378))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-378))))) (-1577 (*1 *2 *3) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-378))))) (-3521 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-378)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))) (-3521 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))))
+(-10 -7 (-15 -3521 ((-378) |#1|)) (-15 -3521 ((-378) |#1| (-914))) (-15 -1577 ((-168 (-378)) |#1|)) (-15 -1577 ((-168 (-378)) |#1| (-914))) (IF (|has| |#1| (-171)) (PROGN (-15 -1577 ((-168 (-378)) (-168 |#1|))) (-15 -1577 ((-168 (-378)) (-168 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-945 (-168 |#1|)))) (-15 -1577 ((-168 (-378)) (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -3521 ((-378) (-945 |#1|))) (-15 -3521 ((-378) (-945 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-945 |#1|))) (-15 -1577 ((-168 (-378)) (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -3521 ((-378) (-406 (-945 |#1|)))) (-15 -3521 ((-378) (-406 (-945 |#1|)) (-914))) (-15 -1577 ((-168 (-378)) (-406 (-945 |#1|)))) (-15 -1577 ((-168 (-378)) (-406 (-945 |#1|)) (-914))) (-15 -1577 ((-168 (-378)) (-406 (-945 (-168 |#1|))))) (-15 -1577 ((-168 (-378)) (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -3521 ((-378) (-315 |#1|))) (-15 -3521 ((-378) (-315 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-315 |#1|))) (-15 -1577 ((-168 (-378)) (-315 |#1|) (-914))) (-15 -1577 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1577 ((-168 (-378)) (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 (-168 |#1|)) (-914)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -1452 ((-3 (-378) "failed") (-945 |#1|))) (-15 -1452 ((-3 (-378) "failed") (-945 |#1|) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 |#1|))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-945 |#1|) (-914)))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -1452 ((-3 (-378) "failed") (-406 (-945 |#1|)))) (-15 -1452 ((-3 (-378) "failed") (-406 (-945 |#1|)) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 |#1|)) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-406 (-945 (-168 |#1|))) (-914))) (IF (|has| |#1| (-844)) (PROGN (-15 -1452 ((-3 (-378) "failed") (-315 |#1|))) (-15 -1452 ((-3 (-378) "failed") (-315 |#1|) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-914))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -4094 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-914)))) |%noBranch|)) |%noBranch|))
+((-4090 (((-914) (-1148)) 64)) (-1717 (((-3 (-378) "failed") (-1148)) 32)) (-2918 (((-378) (-1148)) 30)) (-3645 (((-914) (-1148)) 53)) (-1880 (((-1148) (-914)) 54)) (-3606 (((-1148) (-914)) 52)))
+(((-780) (-10 -7 (-15 -3606 ((-1148) (-914))) (-15 -3645 ((-914) (-1148))) (-15 -1880 ((-1148) (-914))) (-15 -4090 ((-914) (-1148))) (-15 -2918 ((-378) (-1148))) (-15 -1717 ((-3 (-378) "failed") (-1148))))) (T -780))
+((-1717 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))))
+(-10 -7 (-15 -3606 ((-1148) (-914))) (-15 -3645 ((-914) (-1148))) (-15 -1880 ((-1148) (-914))) (-15 -4090 ((-914) (-1148))) (-15 -2918 ((-378) (-1148))) (-15 -1717 ((-3 (-378) "failed") (-1148))))
+((-4011 (((-112) $ $) 7)) (-1832 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 15) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 13)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)))
+(((-781) (-139)) (T -781))
+((-1804 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-1832 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-1804 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-1832 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
+(-13 (-1090) (-10 -7 (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1832 ((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224))) (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1832 ((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-2275 (((-1258) (-1253 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))) (-378) (-1253 (-378)) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378))) 44) (((-1258) (-1253 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))) (-378) (-1253 (-378)) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378))) 43)) (-1463 (((-1258) (-1253 (-378)) (-561) (-378) (-378) (-561) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378))) 50)) (-1434 (((-1258) (-1253 (-378)) (-561) (-378) (-378) (-378) (-378) (-561) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378))) 41)) (-2113 (((-1258) (-1253 (-378)) (-561) (-378) (-378) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378))) 52) (((-1258) (-1253 (-378)) (-561) (-378) (-378) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378))) 51)))
+(((-782) (-10 -7 (-15 -2113 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))) (-15 -2113 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)))) (-15 -1434 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-378) (-378) (-561) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))) (-15 -2275 ((-1258) (-1253 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))) (-378) (-1253 (-378)) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))) (-15 -2275 ((-1258) (-1253 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))) (-378) (-1253 (-378)) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)))) (-15 -1463 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-561) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))))) (T -782))
+((-1463 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378))) (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258)) (-5 *1 (-782)))) (-2275 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-561)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378)))) (-5 *7 (-1 (-1258) (-1253 *5) (-1253 *5) (-378))) (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258)) (-5 *1 (-782)))) (-2275 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-561)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378)))) (-5 *7 (-1 (-1258) (-1253 *5) (-1253 *5) (-378))) (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258)) (-5 *1 (-782)))) (-1434 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378))) (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258)) (-5 *1 (-782)))) (-2113 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378))) (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258)) (-5 *1 (-782)))) (-2113 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378))) (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258)) (-5 *1 (-782)))))
+(-10 -7 (-15 -2113 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))) (-15 -2113 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)))) (-15 -1434 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-378) (-378) (-561) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))) (-15 -2275 ((-1258) (-1253 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))) (-378) (-1253 (-378)) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))) (-15 -2275 ((-1258) (-1253 (-378)) (-561) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))) (-378) (-1253 (-378)) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)) (-1253 (-378)))) (-15 -1463 ((-1258) (-1253 (-378)) (-561) (-378) (-378) (-561) (-1 (-1258) (-1253 (-378)) (-1253 (-378)) (-378)))))
+((-2746 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 53)) (-4345 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 31)) (-4296 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 52)) (-2519 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 29)) (-2631 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 51)) (-1473 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561)) 19)) (-2358 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561)) 32)) (-4070 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561)) 30)) (-3877 (((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561)) 28)))
+(((-783) (-10 -7 (-15 -3877 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -4070 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -2358 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -1473 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2519 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -4345 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2631 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -4296 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2746 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))))) (T -783))
+((-2746 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-4296 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-2631 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-4345 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-2519 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-1473 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-2358 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-4070 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))) (-3877 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-561)))))
+(-10 -7 (-15 -3877 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -4070 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -2358 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561) (-561))) (-15 -1473 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2519 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -4345 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2631 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -4296 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))) (-15 -2746 ((-2 (|:| -2484 (-378)) (|:| -3941 (-378)) (|:| |totalpts| (-561)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-561) (-561))))
+((-2534 (((-1200 |#1|) |#1| (-224) (-561)) 46)))
+(((-784 |#1|) (-10 -7 (-15 -2534 ((-1200 |#1|) |#1| (-224) (-561)))) (-967)) (T -784))
+((-2534 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-561)) (-5 *2 (-1200 *3)) (-5 *1 (-784 *3)) (-4 *3 (-967)))))
+(-10 -7 (-15 -2534 ((-1200 |#1|) |#1| (-224) (-561))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 24)) (-2249 (((-3 $ "failed") $ $) 26)) (-1965 (($) 23 T CONST)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 22 T CONST)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-1824 (($ $ $) 28) (($ $) 27)) (-1813 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25) (($ (-561) $) 29)))
(((-785) (-139)) (T -785))
NIL
-(-13 (-841) (-25))
-(((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-841) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 24)) (-1868 (((-3 $ "failed") $ $) 26)) (-3457 (($) 23 T CONST)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 22 T CONST)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-1785 (($ $ $) 20)) (* (($ (-911) $) 21) (($ (-762) $) 25)))
+(-13 (-789) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-844) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 24)) (-1965 (($) 23 T CONST)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 22 T CONST)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25)))
(((-786) (-139)) (T -786))
NIL
-(-13 (-783) (-130))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-783) . T) ((-785) . T) ((-841) . T) ((-1087) . T))
-((-3124 (((-112) $) 41)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3226 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 42)) (-3904 (((-3 (-406 (-558)) "failed") $) 78)) (-2288 (((-112) $) 72)) (-1673 (((-406 (-558)) $) 76)) (-1423 ((|#2| $) 26)) (-3397 (($ (-1 |#2| |#2|) $) 23)) (-3823 (($ $) 61)) (-3441 (((-534) $) 67)) (-3068 (($ $) 21)) (-3940 (((-853) $) 56) (($ (-558)) 39) (($ |#2|) 37) (($ (-406 (-558))) NIL)) (-2417 (((-762)) 10)) (-4241 ((|#2| $) 71)) (-1708 (((-112) $ $) 29)) (-1728 (((-112) $ $) 69)) (-1796 (($ $) 31) (($ $ $) NIL)) (-1785 (($ $ $) 30)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-787 |#1| |#2|) (-10 -8 (-15 -1728 ((-112) |#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -4241 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3068 (|#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|))) (-788 |#2|) (-171)) (T -787))
-((-2417 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-787 *3 *4)) (-4 *3 (-788 *4)))))
-(-10 -8 (-15 -1728 ((-112) |#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -4241 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3068 (|#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-2507 (((-762)) 52 (|has| |#1| (-367)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 94 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 91 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 88)) (-3226 (((-558) $) 93 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 90 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 89)) (-3248 (((-3 $ "failed") $) 33)) (-3963 ((|#1| $) 78)) (-3904 (((-3 (-406 (-558)) "failed") $) 65 (|has| |#1| (-543)))) (-2288 (((-112) $) 67 (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) 66 (|has| |#1| (-543)))) (-3692 (($) 55 (|has| |#1| (-367)))) (-3999 (((-112) $) 31)) (-1806 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-1423 ((|#1| $) 70)) (-2142 (($ $ $) 61 (|has| |#1| (-841)))) (-2281 (($ $ $) 60 (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) 80)) (-1486 (((-911) $) 54 (|has| |#1| (-367)))) (-2510 (((-1145) $) 9)) (-3823 (($ $) 64 (|has| |#1| (-362)))) (-2349 (($ (-911)) 53 (|has| |#1| (-367)))) (-2440 ((|#1| $) 75)) (-1792 ((|#1| $) 76)) (-3187 ((|#1| $) 77)) (-4329 ((|#1| $) 71)) (-2491 ((|#1| $) 72)) (-1523 ((|#1| $) 73)) (-2639 ((|#1| $) 74)) (-1688 (((-1107) $) 10)) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 82 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 81 (|has| |#1| (-512 (-1163) |#1|)))) (-2276 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-3441 (((-534) $) 62 (|has| |#1| (-606 (-534))))) (-3068 (($ $) 79)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ (-406 (-558))) 92 (|has| |#1| (-1028 (-406 (-558)))))) (-1487 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-4241 ((|#1| $) 68 (|has| |#1| (-1048)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1757 (((-112) $ $) 58 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 57 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 59 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 56 (|has| |#1| (-841)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-788 |#1|) (-139) (-171)) (T -788))
-((-3068 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-1806 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-1048)))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-3904 (*1 *2 *1) (|partial| -12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-3823 (*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
-(-13 (-38 |t#1|) (-410 |t#1|) (-337 |t#1|) (-10 -8 (-15 -3068 ($ $)) (-15 -3963 (|t#1| $)) (-15 -3187 (|t#1| $)) (-15 -1792 (|t#1| $)) (-15 -2440 (|t#1| $)) (-15 -2639 (|t#1| $)) (-15 -1523 (|t#1| $)) (-15 -2491 (|t#1| $)) (-15 -4329 (|t#1| $)) (-15 -1423 (|t#1| $)) (-15 -1806 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -4241 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -3823 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) . T) ((-717) . T) ((-841) |has| |#1| (-841)) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3397 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#3| (-1 |#4| |#2|) |#1|))) (-788 |#2|) (-171) (-788 |#4|) (-171)) (T -789))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-788 *6)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *4 (-788 *5)))))
-(-10 -7 (-15 -3397 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2507 (((-762)) NIL (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-989 |#1|) "failed") $) 35) (((-3 (-558) "failed") $) NIL (-3994 (|has| (-989 |#1|) (-1028 (-558))) (|has| |#1| (-1028 (-558))))) (((-3 (-406 (-558)) "failed") $) NIL (-3994 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-3226 ((|#1| $) NIL) (((-989 |#1|) $) 33) (((-558) $) NIL (-3994 (|has| (-989 |#1|) (-1028 (-558))) (|has| |#1| (-1028 (-558))))) (((-406 (-558)) $) NIL (-3994 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-3248 (((-3 $ "failed") $) NIL)) (-3963 ((|#1| $) 16)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-543)))) (-2288 (((-112) $) NIL (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) NIL (|has| |#1| (-543)))) (-3692 (($) NIL (|has| |#1| (-367)))) (-3999 (((-112) $) NIL)) (-1806 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-989 |#1|) (-989 |#1|)) 29)) (-1423 ((|#1| $) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-1486 (((-911) $) NIL (|has| |#1| (-367)))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-2349 (($ (-911)) NIL (|has| |#1| (-367)))) (-2440 ((|#1| $) 22)) (-1792 ((|#1| $) 20)) (-3187 ((|#1| $) 18)) (-4329 ((|#1| $) 26)) (-2491 ((|#1| $) 25)) (-1523 ((|#1| $) 24)) (-2639 ((|#1| $) 23)) (-1688 (((-1107) $) NIL)) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-2276 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3068 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-989 |#1|)) 30) (($ (-406 (-558))) NIL (-3994 (|has| (-989 |#1|) (-1028 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-4241 ((|#1| $) NIL (|has| |#1| (-1048)))) (-2207 (($) 8 T CONST)) (-2220 (($) 12 T CONST)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-790 |#1|) (-13 (-788 |#1|) (-410 (-989 |#1|)) (-10 -8 (-15 -1806 ($ (-989 |#1|) (-989 |#1|))))) (-171)) (T -790))
-((-1806 (*1 *1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-790 *3)))))
-(-13 (-788 |#1|) (-410 (-989 |#1|)) (-10 -8 (-15 -1806 ($ (-989 |#1|) (-989 |#1|)))))
-((-3929 (((-112) $ $) 7)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-3599 (((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-1708 (((-112) $ $) 6)))
-(((-791) (-139)) (T -791))
-((-4131 (*1 *2 *3 *4) (-12 (-4 *1 (-791)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)))))) (-3599 (*1 *2 *3) (-12 (-4 *1 (-791)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1025)))))
-(-13 (-1087) (-10 -7 (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3599 ((-1025) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2365 (((-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#3| |#2| (-1163)) 19)))
-(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -2365 ((-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#3| |#2| (-1163)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949)) (-646 |#2|)) (T -792))
-((-2365 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1163)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-4 *4 (-13 (-29 *6) (-1185) (-949))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2743 (-635 *4)))) (-5 *1 (-792 *6 *4 *3)) (-4 *3 (-646 *4)))))
-(-10 -7 (-15 -2365 ((-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#3| |#2| (-1163))))
-((-2692 (((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-635 |#2|)) 28) (((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#2| "failed") |#2| (-114) (-1163)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1163)) 18) (((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-635 |#2|) (-635 (-114)) (-1163)) 24) (((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-635 (-293 |#2|)) (-635 (-114)) (-1163)) 26) (((-3 (-635 (-1246 |#2|)) "failed") (-679 |#2|) (-1163)) 37) (((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-679 |#2|) (-1246 |#2|) (-1163)) 35)))
-(((-793 |#1| |#2|) (-10 -7 (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-679 |#2|) (-1246 |#2|) (-1163))) (-15 -2692 ((-3 (-635 (-1246 |#2|)) "failed") (-679 |#2|) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-635 (-293 |#2|)) (-635 (-114)) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-635 |#2|) (-635 (-114)) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#2| "failed") |#2| (-114) (-1163))) (-15 -2692 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -2692 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-635 |#2|)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949))) (T -793))
-((-2692 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-793 *6 *2)))) (-2692 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-5 *1 (-793 *6 *2)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))))) (-2692 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1163)) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2743 (-635 *3))) *3 "failed")) (-5 *1 (-793 *6 *3)) (-4 *3 (-13 (-29 *6) (-1185) (-949))))) (-2692 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2743 (-635 *7))) *7 "failed")) (-5 *1 (-793 *6 *7)))) (-2692 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114))) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-2 (|:| |particular| (-1246 *7)) (|:| -2743 (-635 (-1246 *7))))) (-5 *1 (-793 *6 *7)))) (-2692 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114))) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-2 (|:| |particular| (-1246 *7)) (|:| -2743 (-635 (-1246 *7))))) (-5 *1 (-793 *6 *7)))) (-2692 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-679 *6)) (-5 *4 (-1163)) (-4 *6 (-13 (-29 *5) (-1185) (-949))) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-1246 *6))) (-5 *1 (-793 *5 *6)))) (-2692 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-679 *7)) (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949))) (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-2 (|:| |particular| (-1246 *7)) (|:| -2743 (-635 (-1246 *7))))) (-5 *1 (-793 *6 *7)) (-5 *4 (-1246 *7)))))
-(-10 -7 (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-679 |#2|) (-1246 |#2|) (-1163))) (-15 -2692 ((-3 (-635 (-1246 |#2|)) "failed") (-679 |#2|) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-635 (-293 |#2|)) (-635 (-114)) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#2|)) (|:| -2743 (-635 (-1246 |#2|)))) "failed") (-635 |#2|) (-635 (-114)) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1163))) (-15 -2692 ((-3 (-2 (|:| |particular| |#2|) (|:| -2743 (-635 |#2|))) |#2| "failed") |#2| (-114) (-1163))) (-15 -2692 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-635 |#2|))) (-15 -2692 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-635 |#2|))))
-((-3357 (($) 9)) (-2984 (((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-1934 (((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-2650 (($ (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) 25)) (-4215 (($ (-635 (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) 23)) (-2003 (((-1251)) 12)))
-(((-794) (-10 -8 (-15 -3357 ($)) (-15 -2003 ((-1251))) (-15 -1934 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -4215 ($ (-635 (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -2650 ($ (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2984 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -794))
-((-2984 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *1 (-794)))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) (-5 *1 (-794)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-5 *1 (-794)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-794)))) (-2003 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-794)))) (-3357 (*1 *1) (-5 *1 (-794))))
-(-10 -8 (-15 -3357 ($)) (-15 -2003 ((-1251))) (-15 -1934 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -4215 ($ (-635 (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -2650 ($ (-2 (|:| -2176 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -1925 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2984 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
-((-1426 ((|#2| |#2| (-1163)) 16)) (-1297 ((|#2| |#2| (-1163)) 51)) (-2511 (((-1 |#2| |#2|) (-1163)) 11)))
-(((-795 |#1| |#2|) (-10 -7 (-15 -1426 (|#2| |#2| (-1163))) (-15 -1297 (|#2| |#2| (-1163))) (-15 -2511 ((-1 |#2| |#2|) (-1163)))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)) (-13 (-29 |#1|) (-1185) (-949))) (T -795))
-((-2511 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-795 *4 *5)) (-4 *5 (-13 (-29 *4) (-1185) (-949))))) (-1297 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949))))) (-1426 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949))))))
-(-10 -7 (-15 -1426 (|#2| |#2| (-1163))) (-15 -1297 (|#2| |#2| (-1163))) (-15 -2511 ((-1 |#2| |#2|) (-1163))))
-((-2692 (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378) (-378)) 116) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378)) 117) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-635 (-378)) (-378)) 119) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-378)) 120) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-378)) 121) (((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378))) 122) (((-1025) (-799) (-1051)) 108) (((-1025) (-799)) 109)) (-4131 (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799) (-1051)) 75) (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799)) 77)))
-(((-796) (-10 -7 (-15 -2692 ((-1025) (-799))) (-15 -2692 ((-1025) (-799) (-1051))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-635 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378) (-378))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799) (-1051))))) (T -796))
-((-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-796)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-796)))) (-2692 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2692 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2692 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2692 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2692 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2692 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-799)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-796)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1025)) (-5 *1 (-796)))))
-(-10 -7 (-15 -2692 ((-1025) (-799))) (-15 -2692 ((-1025) (-799) (-1051))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-635 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378))) (-15 -2692 ((-1025) (-1246 (-315 (-378))) (-378) (-378) (-635 (-378)) (-315 (-378)) (-635 (-378)) (-378) (-378))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-799) (-1051))))
-((-2082 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2743 (-635 |#4|))) (-643 |#4|) |#4|) 35)))
-(((-797 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2743 (-635 |#4|))) (-643 |#4|) |#4|))) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -797))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-797 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2082 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2743 (-635 |#4|))) (-643 |#4|) |#4|)))
-((-4247 (((-2 (|:| -3846 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))) 52)) (-4025 (((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#4| |#2|) 60) (((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#4|) 59) (((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#3| |#2|) 20) (((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#3|) 21)) (-2600 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1955 ((|#2| |#3| (-635 (-406 |#2|))) 94) (((-3 |#2| "failed") |#3| (-406 |#2|)) 91)))
-(((-798 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1955 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -1955 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#3|)) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#3| |#2|)) (-15 -2600 (|#2| |#3| |#1|)) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#4|)) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#4| |#2|)) (-15 -2600 (|#2| |#4| |#1|)) (-15 -4247 ((-2 (|:| -3846 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1028 (-406 (-558)))) (-1222 |#1|) (-646 |#2|) (-646 (-406 |#2|))) (T -798))
-((-4247 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-2 (|:| -3846 *7) (|:| |rh| (-635 (-406 *6))))) (-5 *1 (-798 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6))) (-4 *7 (-646 *6)) (-4 *3 (-646 (-406 *6))))) (-2600 (*1 *2 *3 *4) (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-646 *2)) (-4 *3 (-646 (-406 *2))))) (-4025 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2814 *4) (|:| -2980 *4)))) (-5 *1 (-798 *5 *4 *6 *3)) (-4 *6 (-646 *4)) (-4 *3 (-646 (-406 *4))))) (-4025 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2814 *5) (|:| -2980 *5)))) (-5 *1 (-798 *4 *5 *6 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 (-406 *5))))) (-2600 (*1 *2 *3 *4) (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-406 *2))))) (-4025 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2814 *4) (|:| -2980 *4)))) (-5 *1 (-798 *5 *4 *3 *6)) (-4 *3 (-646 *4)) (-4 *6 (-646 (-406 *4))))) (-4025 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2814 *5) (|:| -2980 *5)))) (-5 *1 (-798 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-406 *5))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1222 *5)) (-5 *1 (-798 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *6 (-646 (-406 *2))))) (-1955 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1222 *5)) (-5 *1 (-798 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *6 (-646 *4)))))
-(-10 -7 (-15 -1955 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -1955 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#3|)) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#3| |#2|)) (-15 -2600 (|#2| |#3| |#1|)) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#4|)) (-15 -4025 ((-635 (-2 (|:| -2814 |#2|) (|:| -2980 |#2|))) |#4| |#2|)) (-15 -2600 (|#2| |#4| |#1|)) (-15 -4247 ((-2 (|:| -3846 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|)))))
-((-3929 (((-112) $ $) NIL)) (-3226 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-1708 (((-112) $ $) NIL)))
-(((-799) (-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3226 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -799))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-799)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-799)))))
-(-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3226 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))
-((-2014 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3846 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1159 |#2|)) (-1 (-417 |#2|) |#2|)) 117)) (-3928 (((-635 (-2 (|:| |poly| |#2|) (|:| -3846 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 46)) (-3249 (((-635 (-2 (|:| |deg| (-762)) (|:| -3846 |#2|))) |#3|) 94)) (-3001 ((|#2| |#3|) 37)) (-3538 (((-635 (-2 (|:| -2010 |#1|) (|:| -3846 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 81)) (-2841 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
-(((-800 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3001 (|#2| |#3|)) (-15 -3249 ((-635 (-2 (|:| |deg| (-762)) (|:| -3846 |#2|))) |#3|)) (-15 -3538 ((-635 (-2 (|:| -2010 |#1|) (|:| -3846 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -3928 ((-635 (-2 (|:| |poly| |#2|) (|:| -3846 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2014 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3846 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1159 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2841 (|#3| |#3| |#2|)) (-15 -2841 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1028 (-406 (-558)))) (-1222 |#1|) (-646 |#2|) (-646 (-406 |#2|))) (T -800))
-((-2841 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *1 (-800 *4 *5 *2 *6)) (-4 *2 (-646 *5)) (-4 *6 (-646 *3)))) (-2841 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-1222 *4)) (-5 *1 (-800 *4 *3 *2 *5)) (-4 *2 (-646 *3)) (-4 *5 (-646 (-406 *3))))) (-2014 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-635 *7) *7 (-1159 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1222 *6)) (-4 *6 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -3846 *3)))) (-5 *1 (-800 *6 *7 *3 *8)) (-4 *3 (-646 *7)) (-4 *8 (-646 (-406 *7))))) (-3928 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3846 *3)))) (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-406 *6))))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2010 *5) (|:| -3846 *3)))) (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-406 *6))))) (-3249 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -3846 *5)))) (-5 *1 (-800 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-406 *5))))) (-3001 (*1 *2 *3) (-12 (-4 *2 (-1222 *4)) (-5 *1 (-800 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-406 *2))))))
-(-10 -7 (-15 -3001 (|#2| |#3|)) (-15 -3249 ((-635 (-2 (|:| |deg| (-762)) (|:| -3846 |#2|))) |#3|)) (-15 -3538 ((-635 (-2 (|:| -2010 |#1|) (|:| -3846 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -3928 ((-635 (-2 (|:| |poly| |#2|) (|:| -3846 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2014 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3846 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1159 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2841 (|#3| |#3| |#2|)) (-15 -2841 (|#3| |#3| (-406 |#2|))))
-((-3254 (((-2 (|:| -2743 (-635 (-406 |#2|))) (|:| -3702 (-679 |#1|))) (-644 |#2| (-406 |#2|)) (-635 (-406 |#2|))) 122) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2743 (-635 (-406 |#2|)))) (-644 |#2| (-406 |#2|)) (-406 |#2|)) 121) (((-2 (|:| -2743 (-635 (-406 |#2|))) (|:| -3702 (-679 |#1|))) (-643 (-406 |#2|)) (-635 (-406 |#2|))) 116) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2743 (-635 (-406 |#2|)))) (-643 (-406 |#2|)) (-406 |#2|)) 114)) (-1327 ((|#2| (-644 |#2| (-406 |#2|))) 80) ((|#2| (-643 (-406 |#2|))) 83)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -3254 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2743 (-635 (-406 |#2|)))) (-643 (-406 |#2|)) (-406 |#2|))) (-15 -3254 ((-2 (|:| -2743 (-635 (-406 |#2|))) (|:| -3702 (-679 |#1|))) (-643 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -3254 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2743 (-635 (-406 |#2|)))) (-644 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -3254 ((-2 (|:| -2743 (-635 (-406 |#2|))) (|:| -3702 (-679 |#1|))) (-644 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -1327 (|#2| (-643 (-406 |#2|)))) (-15 -1327 (|#2| (-644 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -801))
-((-1327 (*1 *2 *3) (-12 (-5 *3 (-644 *2 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-801 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-643 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-801 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| -2743 (-635 (-406 *6))) (|:| -3702 (-679 *5)))) (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-801 *5 *6)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| -2743 (-635 (-406 *6))) (|:| -3702 (-679 *5)))) (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-801 *5 *6)))))
-(-10 -7 (-15 -3254 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2743 (-635 (-406 |#2|)))) (-643 (-406 |#2|)) (-406 |#2|))) (-15 -3254 ((-2 (|:| -2743 (-635 (-406 |#2|))) (|:| -3702 (-679 |#1|))) (-643 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -3254 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -2743 (-635 (-406 |#2|)))) (-644 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -3254 ((-2 (|:| -2743 (-635 (-406 |#2|))) (|:| -3702 (-679 |#1|))) (-644 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -1327 (|#2| (-643 (-406 |#2|)))) (-15 -1327 (|#2| (-644 |#2| (-406 |#2|)))))
-((-4357 (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) |#5| |#4|) 48)))
-(((-802 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4357 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) |#5| |#4|))) (-362) (-646 |#1|) (-1222 |#1|) (-715 |#1| |#3|) (-646 |#4|)) (T -802))
-((-4357 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1222 *5)) (-4 *4 (-715 *5 *7)) (-5 *2 (-2 (|:| -3702 (-679 *6)) (|:| |vec| (-1246 *5)))) (-5 *1 (-802 *5 *6 *7 *4 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 *4)))))
-(-10 -7 (-15 -4357 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) |#5| |#4|)))
-((-2014 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3846 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 47)) (-4301 (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-643 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38) (((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 39) (((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36) (((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 37)) (-3928 (((-635 (-2 (|:| |poly| |#2|) (|:| -3846 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 83)))
-(((-803 |#1| |#2|) (-10 -7 (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2014 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3846 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3928 ((-635 (-2 (|:| |poly| |#2|) (|:| -3846 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)))) (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))) (-1222 |#1|)) (T -803))
-((-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-644 *5 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-643 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5)))) (-3928 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3846 (-644 *6 (-406 *6)))))) (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))) (-2014 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *6)) (|:| -3846 (-644 *6 (-406 *6)))))) (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))))
-(-10 -7 (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2014 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3846 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3928 ((-635 (-2 (|:| |poly| |#2|) (|:| -3846 (-644 |#2| (-406 |#2|))))) (-644 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)))) (-15 -4301 ((-635 (-406 |#2|)) (-643 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)))) (-15 -4301 ((-635 (-406 |#2|)) (-644 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|))
-((-3351 (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) (-679 |#2|) (-1246 |#1|)) 85) (((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)) (|:| -3846 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1246 |#1|)) 15)) (-4244 (((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-679 |#2|) (-1246 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2743 (-635 |#1|))) |#2| |#1|)) 92)) (-2692 (((-3 (-2 (|:| |particular| (-1246 |#1|)) (|:| -2743 (-679 |#1|))) "failed") (-679 |#1|) (-1246 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2743 (-635 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -3351 ((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)) (|:| -3846 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1246 |#1|))) (-15 -3351 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) (-679 |#2|) (-1246 |#1|))) (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#1|)) (|:| -2743 (-679 |#1|))) "failed") (-679 |#1|) (-1246 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2743 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -4244 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-679 |#2|) (-1246 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2743 (-635 |#1|))) |#2| |#1|)))) (-362) (-646 |#1|)) (T -804))
-((-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2743 (-635 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1246 *6) "failed")) (|:| -2743 (-635 (-1246 *6))))) (-5 *1 (-804 *6 *7)) (-5 *4 (-1246 *6)))) (-2692 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2743 (-635 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-1246 *6)) (|:| -2743 (-679 *6)))) (-5 *1 (-804 *6 *7)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *6)))) (-3351 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-646 *5)) (-5 *2 (-2 (|:| -3702 (-679 *6)) (|:| |vec| (-1246 *5)))) (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-679 *5)) (|:| |eqs| (-635 (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5)) (|:| -3846 *6) (|:| |rh| *5)))))) (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *6 (-646 *5)))))
-(-10 -7 (-15 -3351 ((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)) (|:| -3846 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1246 |#1|))) (-15 -3351 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#1|))) (-679 |#2|) (-1246 |#1|))) (-15 -2692 ((-3 (-2 (|:| |particular| (-1246 |#1|)) (|:| -2743 (-679 |#1|))) "failed") (-679 |#1|) (-1246 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2743 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -4244 ((-2 (|:| |particular| (-3 (-1246 |#1|) "failed")) (|:| -2743 (-635 (-1246 |#1|)))) (-679 |#2|) (-1246 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2743 (-635 |#1|))) |#2| |#1|))))
-((-2118 (((-679 |#1|) (-635 |#1|) (-762)) 13) (((-679 |#1|) (-635 |#1|)) 14)) (-2868 (((-3 (-1246 |#1|) "failed") |#2| |#1| (-635 |#1|)) 34)) (-2145 (((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)) 42)))
-(((-805 |#1| |#2|) (-10 -7 (-15 -2118 ((-679 |#1|) (-635 |#1|))) (-15 -2118 ((-679 |#1|) (-635 |#1|) (-762))) (-15 -2868 ((-3 (-1246 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -2145 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)))) (-362) (-646 |#1|)) (T -805))
-((-2145 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-805 *2 *3)) (-4 *3 (-646 *2)))) (-2868 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1246 *4)) (-5 *1 (-805 *4 *3)) (-4 *3 (-646 *4)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-362)) (-5 *2 (-679 *5)) (-5 *1 (-805 *5 *6)) (-4 *6 (-646 *5)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-679 *4)) (-5 *1 (-805 *4 *5)) (-4 *5 (-646 *4)))))
-(-10 -7 (-15 -2118 ((-679 |#1|) (-635 |#1|))) (-15 -2118 ((-679 |#1|) (-635 |#1|) (-762))) (-15 -2868 ((-3 (-1246 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -2145 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-3124 (((-112) $) NIL (|has| |#2| (-130)))) (-1441 (($ (-911)) NIL (|has| |#2| (-1039)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2707 (($ $ $) NIL (|has| |#2| (-784)))) (-1868 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3651 (((-112) $ (-762)) NIL)) (-2507 (((-762)) NIL (|has| |#2| (-367)))) (-1334 (((-558) $) NIL (|has| |#2| (-839)))) (-4077 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1087)))) (-3226 (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) ((|#2| $) NIL (|has| |#2| (-1087)))) (-1918 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#2| (-1039)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#2| (-1039))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1039)))) (-3248 (((-3 $ "failed") $) NIL (|has| |#2| (-717)))) (-3692 (($) NIL (|has| |#2| (-367)))) (-3683 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ (-558)) NIL)) (-4053 (((-112) $) NIL (|has| |#2| (-839)))) (-2917 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL (|has| |#2| (-717)))) (-2032 (((-112) $) NIL (|has| |#2| (-839)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-3486 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-1486 (((-911) $) NIL (|has| |#2| (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#2| (-1087)))) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-2349 (($ (-911)) NIL (|has| |#2| (-367)))) (-1688 (((-1107) $) NIL (|has| |#2| (-1087)))) (-3156 ((|#2| $) NIL (|has| (-558) (-841)))) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ (-558) |#2|) NIL) ((|#2| $ (-558)) NIL)) (-2823 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-3982 (($ (-1246 |#2|)) NIL)) (-2887 (((-133)) NIL (|has| |#2| (-362)))) (-3780 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1698 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-1246 |#2|) $) NIL) (($ (-558)) NIL (-3994 (-12 (|has| |#2| (-1028 (-558))) (|has| |#2| (-1087))) (|has| |#2| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#2| (-1028 (-406 (-558)))) (|has| |#2| (-1087)))) (($ |#2|) NIL (|has| |#2| (-1087))) (((-853) $) NIL (|has| |#2| (-605 (-853))))) (-2417 (((-762)) NIL (|has| |#2| (-1039)))) (-2831 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4241 (($ $) NIL (|has| |#2| (-839)))) (-2207 (($) NIL (|has| |#2| (-130)) CONST)) (-2220 (($) NIL (|has| |#2| (-717)) CONST)) (-3042 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#2| (-890 (-1163))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1757 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1737 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1708 (((-112) $ $) NIL (|has| |#2| (-1087)))) (-1749 (((-112) $ $) NIL (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1728 (((-112) $ $) 11 (-3994 (|has| |#2| (-784)) (|has| |#2| (-839))))) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1785 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-762)) NIL (|has| |#2| (-717))) (($ $ (-911)) NIL (|has| |#2| (-717)))) (* (($ (-558) $) NIL (|has| |#2| (-1039))) (($ $ $) NIL (|has| |#2| (-717))) (($ $ |#2|) NIL (|has| |#2| (-717))) (($ |#2| $) NIL (|has| |#2| (-717))) (($ (-762) $) NIL (|has| |#2| (-130))) (($ (-911) $) NIL (|has| |#2| (-25)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-806 |#1| |#2| |#3|) (-237 |#1| |#2|) (-762) (-784) (-1 (-112) (-1246 |#2|) (-1246 |#2|))) (T -806))
+(-13 (-788) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-788) . T) ((-844) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 24)) (-2090 (($ $ $) 27)) (-2249 (((-3 $ "failed") $ $) 26)) (-1965 (($) 23 T CONST)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 22 T CONST)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25)))
+(((-787) (-139)) (T -787))
+((-2090 (*1 *1 *1 *1) (-4 *1 (-787))))
+(-13 (-789) (-10 -8 (-15 -2090 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-844) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-914) $) 21)))
+(((-788) (-139)) (T -788))
+NIL
+(-13 (-844) (-25))
+(((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-844) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 24)) (-2249 (((-3 $ "failed") $ $) 26)) (-1965 (($) 23 T CONST)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 22 T CONST)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-914) $) 21) (($ (-765) $) 25)))
+(((-789) (-139)) (T -789))
+NIL
+(-13 (-786) (-130))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-786) . T) ((-788) . T) ((-844) . T) ((-1090) . T))
+((-2800 (((-112) $) 41)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3938 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 42)) (-2937 (((-3 (-406 (-561)) "failed") $) 78)) (-3798 (((-112) $) 72)) (-3354 (((-406 (-561)) $) 76)) (-1672 ((|#2| $) 26)) (-4120 (($ (-1 |#2| |#2|) $) 23)) (-1540 (($ $) 61)) (-4174 (((-534) $) 67)) (-2260 (($ $) 21)) (-4022 (((-856) $) 56) (($ (-561)) 39) (($ |#2|) 37) (($ (-406 (-561))) NIL)) (-4259 (((-765)) 10)) (-3749 ((|#2| $) 71)) (-1733 (((-112) $ $) 29)) (-1754 (((-112) $ $) 69)) (-1824 (($ $) 31) (($ $ $) NIL)) (-1813 (($ $ $) 30)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-790 |#1| |#2|) (-10 -8 (-15 -1754 ((-112) |#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3749 (|#2| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -2800 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-791 |#2|) (-171)) (T -790))
+((-4259 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-790 *3 *4)) (-4 *3 (-791 *4)))))
+(-10 -8 (-15 -1754 ((-112) |#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3749 (|#2| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -2800 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1393 (((-765)) 52 (|has| |#1| (-367)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 94 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 91 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 88)) (-3938 (((-561) $) 93 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 90 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 89)) (-3466 (((-3 $ "failed") $) 33)) (-1673 ((|#1| $) 78)) (-2937 (((-3 (-406 (-561)) "failed") $) 65 (|has| |#1| (-543)))) (-3798 (((-112) $) 67 (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) 66 (|has| |#1| (-543)))) (-1332 (($) 55 (|has| |#1| (-367)))) (-3113 (((-112) $) 31)) (-3953 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-1672 ((|#1| $) 70)) (-3443 (($ $ $) 61 (|has| |#1| (-844)))) (-2986 (($ $ $) 60 (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) 80)) (-3198 (((-914) $) 54 (|has| |#1| (-367)))) (-1764 (((-1148) $) 9)) (-1540 (($ $) 64 (|has| |#1| (-362)))) (-2413 (($ (-914)) 53 (|has| |#1| (-367)))) (-4277 ((|#1| $) 75)) (-1410 ((|#1| $) 76)) (-4358 ((|#1| $) 77)) (-2900 ((|#1| $) 71)) (-2957 ((|#1| $) 72)) (-3233 ((|#1| $) 73)) (-1840 ((|#1| $) 74)) (-1714 (((-1110) $) 10)) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 82 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 81 (|has| |#1| (-512 (-1166) |#1|)))) (-2277 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-4174 (((-534) $) 62 (|has| |#1| (-609 (-534))))) (-2260 (($ $) 79)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ (-406 (-561))) 92 (|has| |#1| (-1031 (-406 (-561)))))) (-1760 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-3749 ((|#1| $) 68 (|has| |#1| (-1051)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1782 (((-112) $ $) 58 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 57 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 59 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 56 (|has| |#1| (-844)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-791 |#1|) (-139) (-171)) (T -791))
+((-2260 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-2957 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3953 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-2937 (*1 *2 *1) (|partial| -12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(-13 (-38 |t#1|) (-410 |t#1|) (-337 |t#1|) (-10 -8 (-15 -2260 ($ $)) (-15 -1673 (|t#1| $)) (-15 -4358 (|t#1| $)) (-15 -1410 (|t#1| $)) (-15 -4277 (|t#1| $)) (-15 -1840 (|t#1| $)) (-15 -3233 (|t#1| $)) (-15 -2957 (|t#1| $)) (-15 -2900 (|t#1| $)) (-15 -1672 (|t#1| $)) (-15 -3953 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3749 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1540 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4120 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-792 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#3| (-1 |#4| |#2|) |#1|))) (-791 |#2|) (-171) (-791 |#4|) (-171)) (T -792))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-791 *6)) (-5 *1 (-792 *4 *5 *2 *6)) (-4 *4 (-791 *5)))))
+(-10 -7 (-15 -4120 (|#3| (-1 |#4| |#2|) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1393 (((-765)) NIL (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-992 |#1|) "failed") $) 35) (((-3 (-561) "failed") $) NIL (-4007 (|has| (-992 |#1|) (-1031 (-561))) (|has| |#1| (-1031 (-561))))) (((-3 (-406 (-561)) "failed") $) NIL (-4007 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-3938 ((|#1| $) NIL) (((-992 |#1|) $) 33) (((-561) $) NIL (-4007 (|has| (-992 |#1|) (-1031 (-561))) (|has| |#1| (-1031 (-561))))) (((-406 (-561)) $) NIL (-4007 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-3466 (((-3 $ "failed") $) NIL)) (-1673 ((|#1| $) 16)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-543)))) (-3798 (((-112) $) NIL (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) NIL (|has| |#1| (-543)))) (-1332 (($) NIL (|has| |#1| (-367)))) (-3113 (((-112) $) NIL)) (-3953 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-992 |#1|) (-992 |#1|)) 29)) (-1672 ((|#1| $) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3198 (((-914) $) NIL (|has| |#1| (-367)))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-2413 (($ (-914)) NIL (|has| |#1| (-367)))) (-4277 ((|#1| $) 22)) (-1410 ((|#1| $) 20)) (-4358 ((|#1| $) 18)) (-2900 ((|#1| $) 26)) (-2957 ((|#1| $) 25)) (-3233 ((|#1| $) 24)) (-1840 ((|#1| $) 23)) (-1714 (((-1110) $) NIL)) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-2277 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-2260 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-992 |#1|)) 30) (($ (-406 (-561))) NIL (-4007 (|has| (-992 |#1|) (-1031 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-3749 ((|#1| $) NIL (|has| |#1| (-1051)))) (-2211 (($) 8 T CONST)) (-2222 (($) 12 T CONST)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-793 |#1|) (-13 (-791 |#1|) (-410 (-992 |#1|)) (-10 -8 (-15 -3953 ($ (-992 |#1|) (-992 |#1|))))) (-171)) (T -793))
+((-3953 (*1 *1 *2 *2) (-12 (-5 *2 (-992 *3)) (-4 *3 (-171)) (-5 *1 (-793 *3)))))
+(-13 (-791 |#1|) (-410 (-992 |#1|)) (-10 -8 (-15 -3953 ($ (-992 |#1|) (-992 |#1|)))))
+((-4011 (((-112) $ $) 7)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-3210 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-1733 (((-112) $ $) 6)))
+(((-794) (-139)) (T -794))
+((-1804 (*1 *2 *3 *4) (-12 (-4 *1 (-794)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)))))) (-3210 (*1 *2 *3) (-12 (-4 *1 (-794)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1028)))))
+(-13 (-1090) (-10 -7 (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3210 ((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-1736 (((-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#3| |#2| (-1166)) 19)))
+(((-795 |#1| |#2| |#3|) (-10 -7 (-15 -1736 ((-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#3| |#2| (-1166)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952)) (-649 |#2|)) (T -795))
+((-1736 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-952))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3711 (-638 *4)))) (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-649 *4)))))
+(-10 -7 (-15 -1736 ((-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#3| |#2| (-1166))))
+((-3867 (((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-638 |#2|)) 28) (((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#2| "failed") |#2| (-114) (-1166)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1166)) 18) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-638 |#2|) (-638 (-114)) (-1166)) 24) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-638 (-293 |#2|)) (-638 (-114)) (-1166)) 26) (((-3 (-638 (-1253 |#2|)) "failed") (-682 |#2|) (-1166)) 37) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166)) 35)))
+(((-796 |#1| |#2|) (-10 -7 (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166))) (-15 -3867 ((-3 (-638 (-1253 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-638 (-293 |#2|)) (-638 (-114)) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-638 |#2|) (-638 (-114)) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#2| "failed") |#2| (-114) (-1166))) (-15 -3867 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -3867 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-638 |#2|)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952))) (T -796))
+((-3867 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-638 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-796 *6 *2)))) (-3867 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-638 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-5 *1 (-796 *6 *2)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))))) (-3867 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3711 (-638 *3))) *3 "failed")) (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-952))))) (-3867 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3711 (-638 *7))) *7 "failed")) (-5 *1 (-796 *6 *7)))) (-3867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -3711 (-638 (-1253 *7))))) (-5 *1 (-796 *6 *7)))) (-3867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -3711 (-638 (-1253 *7))))) (-5 *1 (-796 *6 *7)))) (-3867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166)) (-4 *6 (-13 (-29 *5) (-1190) (-952))) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-1253 *6))) (-5 *1 (-796 *5 *6)))) (-3867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952))) (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -3711 (-638 (-1253 *7))))) (-5 *1 (-796 *6 *7)) (-5 *4 (-1253 *7)))))
+(-10 -7 (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166))) (-15 -3867 ((-3 (-638 (-1253 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-638 (-293 |#2|)) (-638 (-114)) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -3711 (-638 (-1253 |#2|)))) "failed") (-638 |#2|) (-638 (-114)) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1166))) (-15 -3867 ((-3 (-2 (|:| |particular| |#2|) (|:| -3711 (-638 |#2|))) |#2| "failed") |#2| (-114) (-1166))) (-15 -3867 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-638 |#2|))) (-15 -3867 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-638 |#2|))))
+((-3046 (($) 9)) (-3329 (((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-2017 (((-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-3671 (($ (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) 25)) (-3277 (($ (-638 (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) 23)) (-2399 (((-1258)) 12)))
+(((-797) (-10 -8 (-15 -3046 ($)) (-15 -2399 ((-1258))) (-15 -2017 ((-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -3277 ($ (-638 (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -3671 ($ (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -3329 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -797))
+((-3329 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *1 (-797)))) (-3671 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) (-5 *1 (-797)))) (-3277 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-5 *1 (-797)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-797)))) (-2399 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-797)))) (-3046 (*1 *1) (-5 *1 (-797))))
+(-10 -8 (-15 -3046 ($)) (-15 -2399 ((-1258))) (-15 -2017 ((-638 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -3277 ($ (-638 (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -3671 ($ (-2 (|:| -2252 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2654 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -3329 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+((-2549 ((|#2| |#2| (-1166)) 16)) (-3154 ((|#2| |#2| (-1166)) 51)) (-1558 (((-1 |#2| |#2|) (-1166)) 11)))
+(((-798 |#1| |#2|) (-10 -7 (-15 -2549 (|#2| |#2| (-1166))) (-15 -3154 (|#2| |#2| (-1166))) (-15 -1558 ((-1 |#2| |#2|) (-1166)))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)) (-13 (-29 |#1|) (-1190) (-952))) (T -798))
+((-1558 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-798 *4 *5)) (-4 *5 (-13 (-29 *4) (-1190) (-952))))) (-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952))))) (-2549 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952))))))
+(-10 -7 (-15 -2549 (|#2| |#2| (-1166))) (-15 -3154 (|#2| |#2| (-1166))) (-15 -1558 ((-1 |#2| |#2|) (-1166))))
+((-3867 (((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378) (-378)) 116) (((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378)) 117) (((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-638 (-378)) (-378)) 119) (((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-378)) 120) (((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-378)) 121) (((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378))) 122) (((-1028) (-802) (-1054)) 108) (((-1028) (-802)) 109)) (-1804 (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802) (-1054)) 75) (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802)) 77)))
+(((-799) (-10 -7 (-15 -3867 ((-1028) (-802))) (-15 -3867 ((-1028) (-802) (-1054))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-638 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378) (-378))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802) (-1054))))) (T -799))
+((-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-799)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-799)))) (-3867 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1253 (-315 *4))) (-5 *5 (-638 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3867 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1253 (-315 *4))) (-5 *5 (-638 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3867 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1253 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3867 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1253 (-315 *4))) (-5 *5 (-638 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3867 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1253 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3867 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1253 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799)))))
+(-10 -7 (-15 -3867 ((-1028) (-802))) (-15 -3867 ((-1028) (-802) (-1054))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-638 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378))) (-15 -3867 ((-1028) (-1253 (-315 (-378))) (-378) (-378) (-638 (-378)) (-315 (-378)) (-638 (-378)) (-378) (-378))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-802) (-1054))))
+((-3507 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3711 (-638 |#4|))) (-646 |#4|) |#4|) 35)))
+(((-800 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3507 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3711 (-638 |#4|))) (-646 |#4|) |#4|))) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -800))
+((-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-646 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-800 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3507 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3711 (-638 |#4|))) (-646 |#4|) |#4|)))
+((-3961 (((-2 (|:| -3360 |#3|) (|:| |rh| (-638 (-406 |#2|)))) |#4| (-638 (-406 |#2|))) 52)) (-2087 (((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#4| |#2|) 60) (((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#4|) 59) (((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#3| |#2|) 20) (((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#3|) 21)) (-2200 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2772 ((|#2| |#3| (-638 (-406 |#2|))) 94) (((-3 |#2| "failed") |#3| (-406 |#2|)) 91)))
+(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2772 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2772 (|#2| |#3| (-638 (-406 |#2|)))) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#3|)) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#3| |#2|)) (-15 -2200 (|#2| |#3| |#1|)) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#4|)) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#4| |#2|)) (-15 -2200 (|#2| |#4| |#1|)) (-15 -3961 ((-2 (|:| -3360 |#3|) (|:| |rh| (-638 (-406 |#2|)))) |#4| (-638 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-406 (-561)))) (-1229 |#1|) (-649 |#2|) (-649 (-406 |#2|))) (T -801))
+((-3961 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-5 *2 (-2 (|:| -3360 *7) (|:| |rh| (-638 (-406 *6))))) (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-638 (-406 *6))) (-4 *7 (-649 *6)) (-4 *3 (-649 (-406 *6))))) (-2200 (*1 *2 *3 *4) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-649 *2)) (-4 *3 (-649 (-406 *2))))) (-2087 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *4 (-1229 *5)) (-5 *2 (-638 (-2 (|:| -2262 *4) (|:| -3675 *4)))) (-5 *1 (-801 *5 *4 *6 *3)) (-4 *6 (-649 *4)) (-4 *3 (-649 (-406 *4))))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4)) (-5 *2 (-638 (-2 (|:| -2262 *5) (|:| -3675 *5)))) (-5 *1 (-801 *4 *5 *6 *3)) (-4 *6 (-649 *5)) (-4 *3 (-649 (-406 *5))))) (-2200 (*1 *2 *3 *4) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *5 (-649 (-406 *2))))) (-2087 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *4 (-1229 *5)) (-5 *2 (-638 (-2 (|:| -2262 *4) (|:| -3675 *4)))) (-5 *1 (-801 *5 *4 *3 *6)) (-4 *3 (-649 *4)) (-4 *6 (-649 (-406 *4))))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4)) (-5 *2 (-638 (-2 (|:| -2262 *5) (|:| -3675 *5)))) (-5 *1 (-801 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-649 (-406 *5))))) (-2772 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *6 (-649 (-406 *2))))) (-2772 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *6 (-649 *4)))))
+(-10 -7 (-15 -2772 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2772 (|#2| |#3| (-638 (-406 |#2|)))) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#3|)) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#3| |#2|)) (-15 -2200 (|#2| |#3| |#1|)) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#4|)) (-15 -2087 ((-638 (-2 (|:| -2262 |#2|) (|:| -3675 |#2|))) |#4| |#2|)) (-15 -2200 (|#2| |#4| |#1|)) (-15 -3961 ((-2 (|:| -3360 |#3|) (|:| |rh| (-638 (-406 |#2|)))) |#4| (-638 (-406 |#2|)))))
+((-4011 (((-112) $ $) NIL)) (-3938 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-1733 (((-112) $ $) NIL)))
+(((-802) (-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3938 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -802))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802)))))
+(-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3938 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))
+((-4360 (((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3360 |#3|))) |#3| (-1 (-638 |#2|) |#2| (-1162 |#2|)) (-1 (-417 |#2|) |#2|)) 117)) (-1881 (((-638 (-2 (|:| |poly| |#2|) (|:| -3360 |#3|))) |#3| (-1 (-638 |#1|) |#2|)) 46)) (-3192 (((-638 (-2 (|:| |deg| (-765)) (|:| -3360 |#2|))) |#3|) 94)) (-2039 ((|#2| |#3|) 37)) (-2752 (((-638 (-2 (|:| -1514 |#1|) (|:| -3360 |#3|))) |#3| (-1 (-638 |#1|) |#2|)) 81)) (-2539 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2039 (|#2| |#3|)) (-15 -3192 ((-638 (-2 (|:| |deg| (-765)) (|:| -3360 |#2|))) |#3|)) (-15 -2752 ((-638 (-2 (|:| -1514 |#1|) (|:| -3360 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -1881 ((-638 (-2 (|:| |poly| |#2|) (|:| -3360 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -4360 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3360 |#3|))) |#3| (-1 (-638 |#2|) |#2| (-1162 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2539 (|#3| |#3| |#2|)) (-15 -2539 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-406 (-561)))) (-1229 |#1|) (-649 |#2|) (-649 (-406 |#2|))) (T -803))
+((-2539 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-649 *5)) (-4 *6 (-649 *3)))) (-2539 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-1229 *4)) (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-649 *3)) (-4 *5 (-649 (-406 *3))))) (-4360 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-638 *7) *7 (-1162 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-5 *2 (-638 (-2 (|:| |frac| (-406 *7)) (|:| -3360 *3)))) (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-649 *7)) (-4 *8 (-649 (-406 *7))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3360 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6)) (-4 *7 (-649 (-406 *6))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-5 *2 (-638 (-2 (|:| -1514 *5) (|:| -3360 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6)) (-4 *7 (-649 (-406 *6))))) (-3192 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4)) (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -3360 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-649 (-406 *5))))) (-2039 (*1 *2 *3) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2)) (-4 *5 (-649 (-406 *2))))))
+(-10 -7 (-15 -2039 (|#2| |#3|)) (-15 -3192 ((-638 (-2 (|:| |deg| (-765)) (|:| -3360 |#2|))) |#3|)) (-15 -2752 ((-638 (-2 (|:| -1514 |#1|) (|:| -3360 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -1881 ((-638 (-2 (|:| |poly| |#2|) (|:| -3360 |#3|))) |#3| (-1 (-638 |#1|) |#2|))) (-15 -4360 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3360 |#3|))) |#3| (-1 (-638 |#2|) |#2| (-1162 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2539 (|#3| |#3| |#2|)) (-15 -2539 (|#3| |#3| (-406 |#2|))))
+((-2721 (((-2 (|:| -3711 (-638 (-406 |#2|))) (|:| -3327 (-682 |#1|))) (-647 |#2| (-406 |#2|)) (-638 (-406 |#2|))) 122) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3711 (-638 (-406 |#2|)))) (-647 |#2| (-406 |#2|)) (-406 |#2|)) 121) (((-2 (|:| -3711 (-638 (-406 |#2|))) (|:| -3327 (-682 |#1|))) (-646 (-406 |#2|)) (-638 (-406 |#2|))) 116) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3711 (-638 (-406 |#2|)))) (-646 (-406 |#2|)) (-406 |#2|)) 114)) (-1531 ((|#2| (-647 |#2| (-406 |#2|))) 80) ((|#2| (-646 (-406 |#2|))) 83)))
+(((-804 |#1| |#2|) (-10 -7 (-15 -2721 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3711 (-638 (-406 |#2|)))) (-646 (-406 |#2|)) (-406 |#2|))) (-15 -2721 ((-2 (|:| -3711 (-638 (-406 |#2|))) (|:| -3327 (-682 |#1|))) (-646 (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -2721 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3711 (-638 (-406 |#2|)))) (-647 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -2721 ((-2 (|:| -3711 (-638 (-406 |#2|))) (|:| -3327 (-682 |#1|))) (-647 |#2| (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -1531 (|#2| (-646 (-406 |#2|)))) (-15 -1531 (|#2| (-647 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1229 |#1|)) (T -804))
+((-1531 (*1 *2 *3) (-12 (-5 *3 (-647 *2 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-646 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| -3711 (-638 (-406 *6))) (|:| -3327 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6))))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-804 *5 *6)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| -3711 (-638 (-406 *6))) (|:| -3327 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6))))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-804 *5 *6)))))
+(-10 -7 (-15 -2721 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3711 (-638 (-406 |#2|)))) (-646 (-406 |#2|)) (-406 |#2|))) (-15 -2721 ((-2 (|:| -3711 (-638 (-406 |#2|))) (|:| -3327 (-682 |#1|))) (-646 (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -2721 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3711 (-638 (-406 |#2|)))) (-647 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -2721 ((-2 (|:| -3711 (-638 (-406 |#2|))) (|:| -3327 (-682 |#1|))) (-647 |#2| (-406 |#2|)) (-638 (-406 |#2|)))) (-15 -1531 (|#2| (-646 (-406 |#2|)))) (-15 -1531 (|#2| (-647 |#2| (-406 |#2|)))))
+((-1419 (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|) 48)))
+(((-805 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1419 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|))) (-362) (-649 |#1|) (-1229 |#1|) (-718 |#1| |#3|) (-649 |#4|)) (T -805))
+((-1419 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1229 *5)) (-4 *4 (-718 *5 *7)) (-5 *2 (-2 (|:| -3327 (-682 *6)) (|:| |vec| (-1253 *5)))) (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-649 *5)) (-4 *3 (-649 *4)))))
+(-10 -7 (-15 -1419 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|)))
+((-4360 (((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3360 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 47)) (-3737 (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-646 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38) (((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 39) (((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36) (((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 37)) (-1881 (((-638 (-2 (|:| |poly| |#2|) (|:| -3360 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|)) 83)))
+(((-806 |#1| |#2|) (-10 -7 (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -4360 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3360 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1881 ((-638 (-2 (|:| |poly| |#2|) (|:| -3360 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)))) (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))) (-1229 |#1|)) (T -806))
+((-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-647 *5 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-646 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3360 (-647 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))) (-4360 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-5 *2 (-638 (-2 (|:| |frac| (-406 *6)) (|:| -3360 (-647 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))) (-3737 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 *7 (-406 *7))) (-5 *4 (-1 (-638 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *7 (-1229 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-3737 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-646 (-406 *7))) (-5 *4 (-1 (-638 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *7 (-1229 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-638 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))))
+(-10 -7 (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -4360 ((-638 (-2 (|:| |frac| (-406 |#2|)) (|:| -3360 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1881 ((-638 (-2 (|:| |poly| |#2|) (|:| -3360 (-647 |#2| (-406 |#2|))))) (-647 |#2| (-406 |#2|)) (-1 (-638 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)))) (-15 -3737 ((-638 (-406 |#2|)) (-646 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)))) (-15 -3737 ((-638 (-406 |#2|)) (-647 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|))
+((-3837 (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|)) 85) (((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3360 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|)) 15)) (-3554 (((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3711 (-638 |#1|))) |#2| |#1|)) 92)) (-3867 (((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -3711 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3711 (-638 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -3837 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3360 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|))) (-15 -3837 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|))) (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -3711 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3711 (-638 |#1|))) "failed") |#2| |#1|))) (-15 -3554 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3711 (-638 |#1|))) |#2| |#1|)))) (-362) (-649 |#1|)) (T -807))
+((-3554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3711 (-638 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-649 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *6) "failed")) (|:| -3711 (-638 (-1253 *6))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1253 *6)))) (-3867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3711 (-638 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-649 *6)) (-5 *2 (-2 (|:| |particular| (-1253 *6)) (|:| -3711 (-682 *6)))) (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *6)))) (-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-649 *5)) (-5 *2 (-2 (|:| -3327 (-682 *6)) (|:| |vec| (-1253 *5)))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *5)))) (-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-682 *5)) (|:| |eqs| (-638 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5)) (|:| -3360 *6) (|:| |rh| *5)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *6 (-649 *5)))))
+(-10 -7 (-15 -3837 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3360 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|))) (-15 -3837 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|))) (-15 -3867 ((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -3711 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3711 (-638 |#1|))) "failed") |#2| |#1|))) (-15 -3554 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -3711 (-638 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3711 (-638 |#1|))) |#2| |#1|))))
+((-3797 (((-682 |#1|) (-638 |#1|) (-765)) 13) (((-682 |#1|) (-638 |#1|)) 14)) (-2603 (((-3 (-1253 |#1|) "failed") |#2| |#1| (-638 |#1|)) 34)) (-2117 (((-3 |#1| "failed") |#2| |#1| (-638 |#1|) (-1 |#1| |#1|)) 42)))
+(((-808 |#1| |#2|) (-10 -7 (-15 -3797 ((-682 |#1|) (-638 |#1|))) (-15 -3797 ((-682 |#1|) (-638 |#1|) (-765))) (-15 -2603 ((-3 (-1253 |#1|) "failed") |#2| |#1| (-638 |#1|))) (-15 -2117 ((-3 |#1| "failed") |#2| |#1| (-638 |#1|) (-1 |#1| |#1|)))) (-362) (-649 |#1|)) (T -808))
+((-2117 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-638 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-808 *2 *3)) (-4 *3 (-649 *2)))) (-2603 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-1253 *4)) (-5 *1 (-808 *4 *3)) (-4 *3 (-649 *4)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-682 *5)) (-5 *1 (-808 *5 *6)) (-4 *6 (-649 *5)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)) (-5 *1 (-808 *4 *5)) (-4 *5 (-649 *4)))))
+(-10 -7 (-15 -3797 ((-682 |#1|) (-638 |#1|))) (-15 -3797 ((-682 |#1|) (-638 |#1|) (-765))) (-15 -2603 ((-3 (-1253 |#1|) "failed") |#2| |#1| (-638 |#1|))) (-15 -2117 ((-3 |#1| "failed") |#2| |#1| (-638 |#1|) (-1 |#1| |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-2800 (((-112) $) NIL (|has| |#2| (-130)))) (-2923 (($ (-914)) NIL (|has| |#2| (-1042)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-2090 (($ $ $) NIL (|has| |#2| (-787)))) (-2249 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1630 (((-112) $ (-765)) NIL)) (-1393 (((-765)) NIL (|has| |#2| (-367)))) (-2666 (((-561) $) NIL (|has| |#2| (-842)))) (-4167 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1090)))) (-3938 (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) ((|#2| $) NIL (|has| |#2| (-1090)))) (-3602 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#2| (-1042)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3466 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-1332 (($) NIL (|has| |#2| (-367)))) (-2073 ((|#2| $ (-561) |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ (-561)) NIL)) (-3201 (((-112) $) NIL (|has| |#2| (-842)))) (-3571 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL (|has| |#2| (-720)))) (-2110 (((-112) $) NIL (|has| |#2| (-842)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1305 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-3198 (((-914) $) NIL (|has| |#2| (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#2| (-1090)))) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-2413 (($ (-914)) NIL (|has| |#2| (-367)))) (-1714 (((-1110) $) NIL (|has| |#2| (-1090)))) (-1433 ((|#2| $) NIL (|has| (-561) (-844)))) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ (-561) |#2|) NIL) ((|#2| $ (-561)) NIL)) (-1327 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1690 (($ (-1253 |#2|)) NIL)) (-3084 (((-133)) NIL (|has| |#2| (-362)))) (-3238 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1724 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-1253 |#2|) $) NIL) (($ (-561)) NIL (-4007 (-12 (|has| |#2| (-1031 (-561))) (|has| |#2| (-1090))) (|has| |#2| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#2| (-1031 (-406 (-561)))) (|has| |#2| (-1090)))) (($ |#2|) NIL (|has| |#2| (-1090))) (((-856) $) NIL (|has| |#2| (-608 (-856))))) (-4259 (((-765)) NIL (|has| |#2| (-1042)))) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-3749 (($ $) NIL (|has| |#2| (-842)))) (-2211 (($) NIL (|has| |#2| (-130)) CONST)) (-2222 (($) NIL (|has| |#2| (-720)) CONST)) (-3122 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-1782 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1762 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1733 (((-112) $ $) NIL (|has| |#2| (-1090)))) (-1773 (((-112) $ $) NIL (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1754 (((-112) $ $) 11 (-4007 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-1813 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-914)) NIL (|has| |#2| (-720)))) (* (($ (-561) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-914) $) NIL (|has| |#2| (-25)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-809 |#1| |#2| |#3|) (-237 |#1| |#2|) (-765) (-787) (-1 (-112) (-1253 |#2|) (-1253 |#2|))) (T -809))
NIL
(-237 |#1| |#2|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3880 (((-635 (-762)) $) NIL) (((-635 (-762)) $ (-1163)) NIL)) (-4173 (((-762) $) NIL) (((-762) $ (-1163)) NIL)) (-4078 (((-635 (-809 (-1163))) $) NIL)) (-3907 (((-1159 $) $ (-809 (-1163))) NIL) (((-1159 |#1|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-809 (-1163)))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1507 (($ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-809 (-1163)) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL) (((-3 (-1112 |#1| (-1163)) "failed") $) NIL)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-809 (-1163)) $) NIL) (((-1163) $) NIL) (((-1112 |#1| (-1163)) $) NIL)) (-2862 (($ $ $ (-809 (-1163))) NIL (|has| |#1| (-171)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ (-809 (-1163))) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-529 (-809 (-1163))) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-809 (-1163)) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-809 (-1163)) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2532 (((-762) $ (-1163)) NIL) (((-762) $) NIL)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4068 (($ (-1159 |#1|) (-809 (-1163))) NIL) (($ (-1159 $) (-809 (-1163))) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-529 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-809 (-1163))) NIL)) (-3672 (((-529 (-809 (-1163))) $) NIL) (((-762) $ (-809 (-1163))) NIL) (((-635 (-762)) $ (-635 (-809 (-1163)))) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-529 (-809 (-1163))) (-529 (-809 (-1163)))) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3102 (((-1 $ (-762)) (-1163)) NIL) (((-1 $ (-762)) $) NIL (|has| |#1| (-232)))) (-2135 (((-3 (-809 (-1163)) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-3630 (((-809 (-1163)) $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-3448 (((-112) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-809 (-1163))) (|:| -1857 (-762))) "failed") $) NIL)) (-4116 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-809 (-1163)) |#1|) NIL) (($ $ (-635 (-809 (-1163))) (-635 |#1|)) NIL) (($ $ (-809 (-1163)) $) NIL) (($ $ (-635 (-809 (-1163))) (-635 $)) NIL) (($ $ (-1163) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-3789 (($ $ (-809 (-1163))) NIL (|has| |#1| (-171)))) (-3780 (($ $ (-809 (-1163))) NIL) (($ $ (-635 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3481 (((-635 (-1163)) $) NIL)) (-4263 (((-529 (-809 (-1163))) $) NIL) (((-762) $ (-809 (-1163))) NIL) (((-635 (-762)) $ (-635 (-809 (-1163)))) NIL) (((-762) $ (-1163)) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-809 (-1163)) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-809 (-1163)) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-809 (-1163)) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-809 (-1163))) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-809 (-1163))) NIL) (($ (-1163)) NIL) (($ (-1112 |#1| (-1163))) NIL) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-529 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-809 (-1163))) NIL) (($ $ (-635 (-809 (-1163)))) NIL) (($ $ (-809 (-1163)) (-762)) NIL) (($ $ (-635 (-809 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-807 |#1|) (-13 (-252 |#1| (-1163) (-809 (-1163)) (-529 (-809 (-1163)))) (-1028 (-1112 |#1| (-1163)))) (-1039)) (T -807))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3874 (((-638 (-765)) $) NIL) (((-638 (-765)) $ (-1166)) NIL)) (-3643 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-1412 (((-638 (-812 (-1166))) $) NIL)) (-1620 (((-1162 $) $ (-812 (-1166))) NIL) (((-1162 |#1|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-812 (-1166)))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3414 (($ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-812 (-1166)) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL) (((-3 (-1115 |#1| (-1166)) "failed") $) NIL)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-812 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-3051 (($ $ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-529 (-812 (-1166))) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4163 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1401 (($ (-1162 |#1|) (-812 (-1166))) NIL) (($ (-1162 $) (-812 (-1166))) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-812 (-1166))) NIL)) (-2393 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-638 (-765)) $ (-638 (-812 (-1166)))) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-529 (-812 (-1166))) (-529 (-812 (-1166)))) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3904 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-1358 (((-3 (-812 (-1166)) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-3726 (((-812 (-1166)) $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-2205 (((-112) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-812 (-1166))) (|:| -4196 (-765))) "failed") $) NIL)) (-3591 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-812 (-1166)) |#1|) NIL) (($ $ (-638 (-812 (-1166))) (-638 |#1|)) NIL) (($ $ (-812 (-1166)) $) NIL) (($ $ (-638 (-812 (-1166))) (-638 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-232)))) (-2553 (($ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-3238 (($ $ (-812 (-1166))) NIL) (($ $ (-638 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2884 (((-638 (-1166)) $) NIL)) (-2894 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-638 (-765)) $ (-638 (-812 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-812 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-812 (-1166))) NIL) (($ $ (-638 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-638 (-812 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-810 |#1|) (-13 (-252 |#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) (-1031 (-1115 |#1| (-1166)))) (-1042)) (T -810))
NIL
-(-13 (-252 |#1| (-1163) (-809 (-1163)) (-529 (-809 (-1163)))) (-1028 (-1112 |#1| (-1163))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-3244 (($ $) NIL (|has| |#2| (-362)))) (-4326 (((-112) $) NIL (|has| |#2| (-362)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#2| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#2| (-362)))) (-1599 (((-112) $ $) NIL (|has| |#2| (-362)))) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) NIL (|has| |#2| (-362)))) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL (|has| |#2| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-2992 (((-112) $) NIL (|has| |#2| (-362)))) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-1500 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 20 (|has| |#2| (-362)))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-3939 (((-417 $) $) NIL (|has| |#2| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#2| (-362)))) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-1562 (((-762) $) NIL (|has| |#2| (-362)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#2| (-362)))) (-3780 (($ $ (-762)) NIL) (($ $) 13)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-558))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-2417 (((-762)) NIL)) (-2671 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) 15 (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL) (($ $ (-558)) 18 (|has| |#2| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-558)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-558))) NIL (|has| |#2| (-362)))))
-(((-808 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1087) (-890 |#1|) |#1|) (T -808))
+(-13 (-252 |#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) (-1031 (-1115 |#1| (-1166))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-2851 (($ $) NIL (|has| |#2| (-362)))) (-3359 (((-112) $) NIL (|has| |#2| (-362)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#2| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#2| (-362)))) (-1671 (((-112) $ $) NIL (|has| |#2| (-362)))) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) NIL (|has| |#2| (-362)))) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL (|has| |#2| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#2| (-362)))) (-2737 (((-112) $) NIL (|has| |#2| (-362)))) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-1582 (($ (-638 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 20 (|has| |#2| (-362)))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-1657 (((-417 $) $) NIL (|has| |#2| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#2| (-362)))) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-3569 (((-765) $) NIL (|has| |#2| (-362)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-362)))) (-3238 (($ $ (-765)) NIL) (($ $) 13)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-561))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-4259 (((-765)) NIL)) (-3168 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) 15 (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL) (($ $ (-561)) 18 (|has| |#2| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-561)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-561))) NIL (|has| |#2| (-362)))))
+(((-811 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1090) (-893 |#1|) |#1|) (T -811))
NIL
(-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-4173 (((-762) $) NIL)) (-2317 ((|#1| $) 10)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-2532 (((-762) $) 11)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3102 (($ |#1| (-762)) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3780 (($ $) NIL) (($ $ (-762)) NIL)) (-3940 (((-853) $) NIL) (($ |#1|) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)))
-(((-809 |#1|) (-265 |#1|) (-841)) (T -809))
+((-4011 (((-112) $ $) NIL)) (-3643 (((-765) $) NIL)) (-2389 ((|#1| $) 10)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-4163 (((-765) $) 11)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3904 (($ |#1| (-765)) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3238 (($ $) NIL) (($ $ (-765)) NIL)) (-4022 (((-856) $) NIL) (($ |#1|) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-812 |#1|) (-265 |#1|) (-844)) (T -812))
NIL
(-265 |#1|)
-((-3929 (((-112) $ $) NIL)) (-2096 (((-635 |#1|) $) 29)) (-2507 (((-762) $) NIL)) (-3457 (($) NIL T CONST)) (-2978 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-3168 (($ $) 31)) (-3248 (((-3 $ "failed") $) NIL)) (-1892 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3999 (((-112) $) NIL)) (-3572 ((|#1| $ (-558)) NIL)) (-1946 (((-762) $ (-558)) NIL)) (-3883 (($ $) 35)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3422 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3923 (((-112) $ $) 33)) (-2958 (((-762) $) 25)) (-2510 (((-1145) $) NIL)) (-1612 (($ $ $) NIL)) (-3263 (($ $ $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 ((|#1| $) 30)) (-3381 (((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-762)))) $) NIL)) (-2869 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3940 (((-853) $) NIL) (($ |#1|) NIL)) (-2220 (($) 15 T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 34)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ |#1| (-762)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-810 |#1|) (-13 (-837) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -3156 (|#1| $)) (-15 -3168 ($ $)) (-15 -3883 ($ $)) (-15 -3923 ((-112) $ $)) (-15 -3263 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -3422 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $ $)) (-15 -3422 ((-3 $ "failed") $ |#1|)) (-15 -2978 ((-3 $ "failed") $ |#1|)) (-15 -2869 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1892 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2507 ((-762) $)) (-15 -1946 ((-762) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3381 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-762)))) $)) (-15 -2958 ((-762) $)) (-15 -2096 ((-635 |#1|) $)))) (-841)) (T -810))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3156 (*1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3168 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3923 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-3263 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-1612 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3422 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-2978 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3422 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-2978 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-2869 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-810 *3)) (|:| |rm| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-1892 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-810 *3)) (|:| |mm| (-810 *3)) (|:| |rm| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-1946 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-810 *4)) (-4 *4 (-841)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-810 *2)) (-4 *2 (-841)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 (-762))))) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-810 *3)) (-4 *3 (-841)))))
-(-13 (-837) (-1028 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-762))) (-15 -3156 (|#1| $)) (-15 -3168 ($ $)) (-15 -3883 ($ $)) (-15 -3923 ((-112) $ $)) (-15 -3263 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -3422 ((-3 $ "failed") $ $)) (-15 -2978 ((-3 $ "failed") $ $)) (-15 -3422 ((-3 $ "failed") $ |#1|)) (-15 -2978 ((-3 $ "failed") $ |#1|)) (-15 -2869 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1892 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2507 ((-762) $)) (-15 -1946 ((-762) $ (-558))) (-15 -3572 (|#1| $ (-558))) (-15 -3381 ((-635 (-2 (|:| |gen| |#1|) (|:| -3944 (-762)))) $)) (-15 -2958 ((-762) $)) (-15 -2096 ((-635 |#1|) $))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-1334 (((-558) $) 54)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-4053 (((-112) $) 52)) (-3999 (((-112) $) 31)) (-2032 (((-112) $) 53)) (-2142 (($ $ $) 51)) (-2281 (($ $ $) 50)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ $) 43)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-4241 (($ $) 55)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1757 (((-112) $ $) 48)) (-1737 (((-112) $ $) 47)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 49)) (-1728 (((-112) $ $) 46)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-811) (-139)) (T -811))
-NIL
-(-13 (-550) (-839))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-1652 (($ (-1107)) 7)) (-4290 (((-112) $ (-1145) (-1107)) 15)) (-2783 (((-813) $) 12)) (-3224 (((-813) $) 11)) (-2595 (((-1251) $) 9)) (-1613 (((-112) $ (-1107)) 16)))
-(((-812) (-10 -8 (-15 -1652 ($ (-1107))) (-15 -2595 ((-1251) $)) (-15 -3224 ((-813) $)) (-15 -2783 ((-813) $)) (-15 -4290 ((-112) $ (-1145) (-1107))) (-15 -1613 ((-112) $ (-1107))))) (T -812))
-((-1613 (*1 *2 *1 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))) (-4290 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-812)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-812)))))
-(-10 -8 (-15 -1652 ($ (-1107))) (-15 -2595 ((-1251) $)) (-15 -3224 ((-813) $)) (-15 -2783 ((-813) $)) (-15 -4290 ((-112) $ (-1145) (-1107))) (-15 -1613 ((-112) $ (-1107))))
-((-1511 (((-1251) $ (-814)) 12)) (-1616 (((-1251) $ (-1163)) 32)) (-1290 (((-1251) $ (-1145) (-1145)) 34)) (-2439 (((-1251) $ (-1145)) 33)) (-1541 (((-1251) $) 19)) (-1646 (((-1251) $ (-558)) 28)) (-1861 (((-1251) $ (-224)) 30)) (-3349 (((-1251) $) 18)) (-4359 (((-1251) $) 26)) (-2622 (((-1251) $) 25)) (-3171 (((-1251) $) 23)) (-2727 (((-1251) $) 24)) (-3676 (((-1251) $) 22)) (-4016 (((-1251) $) 21)) (-3140 (((-1251) $) 20)) (-2594 (((-1251) $) 16)) (-2441 (((-1251) $) 17)) (-3874 (((-1251) $) 15)) (-3111 (((-1251) $) 14)) (-1786 (((-1251) $) 13)) (-2304 (($ (-1145) (-814)) 9)) (-4308 (($ (-1145) (-1145) (-814)) 8)) (-4123 (((-1163) $) 51)) (-4343 (((-1163) $) 55)) (-4243 (((-2 (|:| |cd| (-1145)) (|:| -3179 (-1145))) $) 54)) (-3961 (((-1145) $) 52)) (-2324 (((-1251) $) 41)) (-1665 (((-558) $) 49)) (-2369 (((-224) $) 50)) (-2589 (((-1251) $) 40)) (-4040 (((-1251) $) 48)) (-1893 (((-1251) $) 47)) (-3616 (((-1251) $) 45)) (-2648 (((-1251) $) 46)) (-3246 (((-1251) $) 44)) (-2248 (((-1251) $) 43)) (-2089 (((-1251) $) 42)) (-1566 (((-1251) $) 38)) (-1968 (((-1251) $) 39)) (-2088 (((-1251) $) 37)) (-3468 (((-1251) $) 36)) (-2547 (((-1251) $) 35)) (-2705 (((-1251) $) 11)))
-(((-813) (-10 -8 (-15 -4308 ($ (-1145) (-1145) (-814))) (-15 -2304 ($ (-1145) (-814))) (-15 -2705 ((-1251) $)) (-15 -1511 ((-1251) $ (-814))) (-15 -1786 ((-1251) $)) (-15 -3111 ((-1251) $)) (-15 -3874 ((-1251) $)) (-15 -2594 ((-1251) $)) (-15 -2441 ((-1251) $)) (-15 -3349 ((-1251) $)) (-15 -1541 ((-1251) $)) (-15 -3140 ((-1251) $)) (-15 -4016 ((-1251) $)) (-15 -3676 ((-1251) $)) (-15 -3171 ((-1251) $)) (-15 -2727 ((-1251) $)) (-15 -2622 ((-1251) $)) (-15 -4359 ((-1251) $)) (-15 -1646 ((-1251) $ (-558))) (-15 -1861 ((-1251) $ (-224))) (-15 -1616 ((-1251) $ (-1163))) (-15 -2439 ((-1251) $ (-1145))) (-15 -1290 ((-1251) $ (-1145) (-1145))) (-15 -2547 ((-1251) $)) (-15 -3468 ((-1251) $)) (-15 -2088 ((-1251) $)) (-15 -1566 ((-1251) $)) (-15 -1968 ((-1251) $)) (-15 -2589 ((-1251) $)) (-15 -2324 ((-1251) $)) (-15 -2089 ((-1251) $)) (-15 -2248 ((-1251) $)) (-15 -3246 ((-1251) $)) (-15 -3616 ((-1251) $)) (-15 -2648 ((-1251) $)) (-15 -1893 ((-1251) $)) (-15 -4040 ((-1251) $)) (-15 -1665 ((-558) $)) (-15 -2369 ((-224) $)) (-15 -4123 ((-1163) $)) (-15 -3961 ((-1145) $)) (-15 -4243 ((-2 (|:| |cd| (-1145)) (|:| -3179 (-1145))) $)) (-15 -4343 ((-1163) $)))) (T -813))
-((-4343 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1145)) (|:| -3179 (-1145)))) (-5 *1 (-813)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-813)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-813)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-813)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-1290 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2439 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-1616 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-1861 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-1646 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-4359 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-1511 (*1 *2 *1 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1251)) (-5 *1 (-813)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))) (-2304 (*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))) (-4308 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))))
-(-10 -8 (-15 -4308 ($ (-1145) (-1145) (-814))) (-15 -2304 ($ (-1145) (-814))) (-15 -2705 ((-1251) $)) (-15 -1511 ((-1251) $ (-814))) (-15 -1786 ((-1251) $)) (-15 -3111 ((-1251) $)) (-15 -3874 ((-1251) $)) (-15 -2594 ((-1251) $)) (-15 -2441 ((-1251) $)) (-15 -3349 ((-1251) $)) (-15 -1541 ((-1251) $)) (-15 -3140 ((-1251) $)) (-15 -4016 ((-1251) $)) (-15 -3676 ((-1251) $)) (-15 -3171 ((-1251) $)) (-15 -2727 ((-1251) $)) (-15 -2622 ((-1251) $)) (-15 -4359 ((-1251) $)) (-15 -1646 ((-1251) $ (-558))) (-15 -1861 ((-1251) $ (-224))) (-15 -1616 ((-1251) $ (-1163))) (-15 -2439 ((-1251) $ (-1145))) (-15 -1290 ((-1251) $ (-1145) (-1145))) (-15 -2547 ((-1251) $)) (-15 -3468 ((-1251) $)) (-15 -2088 ((-1251) $)) (-15 -1566 ((-1251) $)) (-15 -1968 ((-1251) $)) (-15 -2589 ((-1251) $)) (-15 -2324 ((-1251) $)) (-15 -2089 ((-1251) $)) (-15 -2248 ((-1251) $)) (-15 -3246 ((-1251) $)) (-15 -3616 ((-1251) $)) (-15 -2648 ((-1251) $)) (-15 -1893 ((-1251) $)) (-15 -4040 ((-1251) $)) (-15 -1665 ((-558) $)) (-15 -2369 ((-224) $)) (-15 -4123 ((-1163) $)) (-15 -3961 ((-1145) $)) (-15 -4243 ((-2 (|:| |cd| (-1145)) (|:| -3179 (-1145))) $)) (-15 -4343 ((-1163) $)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 10)) (-2134 (($) 13)) (-1801 (($) 11)) (-2150 (($) 14)) (-3332 (($) 12)) (-1708 (((-112) $ $) 8)))
-(((-814) (-13 (-1087) (-10 -8 (-15 -1801 ($)) (-15 -2134 ($)) (-15 -2150 ($)) (-15 -3332 ($))))) (T -814))
-((-1801 (*1 *1) (-5 *1 (-814))) (-2134 (*1 *1) (-5 *1 (-814))) (-2150 (*1 *1) (-5 *1 (-814))) (-3332 (*1 *1) (-5 *1 (-814))))
-(-13 (-1087) (-10 -8 (-15 -1801 ($)) (-15 -2134 ($)) (-15 -2150 ($)) (-15 -3332 ($))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 21) (($ (-1163)) 17)) (-1385 (((-112) $) 10)) (-1594 (((-112) $) 9)) (-2133 (((-112) $) 11)) (-2629 (((-112) $) 8)) (-1708 (((-112) $ $) 19)))
-(((-815) (-13 (-1087) (-10 -8 (-15 -3940 ($ (-1163))) (-15 -2629 ((-112) $)) (-15 -1594 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -2133 ((-112) $))))) (T -815))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-815)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
-(-13 (-1087) (-10 -8 (-15 -3940 ($ (-1163))) (-15 -2629 ((-112) $)) (-15 -1594 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -2133 ((-112) $))))
-((-3929 (((-112) $ $) NIL)) (-1908 (($ (-815) (-635 (-1163))) 24)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3602 (((-815) $) 25)) (-2520 (((-635 (-1163)) $) 26)) (-3940 (((-853) $) 23)) (-1708 (((-112) $ $) NIL)))
-(((-816) (-13 (-1087) (-10 -8 (-15 -3602 ((-815) $)) (-15 -2520 ((-635 (-1163)) $)) (-15 -1908 ($ (-815) (-635 (-1163))))))) (T -816))
-((-3602 (*1 *2 *1) (-12 (-5 *2 (-815)) (-5 *1 (-816)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-816)))) (-1908 (*1 *1 *2 *3) (-12 (-5 *2 (-815)) (-5 *3 (-635 (-1163))) (-5 *1 (-816)))))
-(-13 (-1087) (-10 -8 (-15 -3602 ((-815) $)) (-15 -2520 ((-635 (-1163)) $)) (-15 -1908 ($ (-815) (-635 (-1163))))))
-((-2555 (((-1251) (-813) (-315 |#1|) (-112)) 23) (((-1251) (-813) (-315 |#1|)) 79) (((-1145) (-315 |#1|) (-112)) 78) (((-1145) (-315 |#1|)) 77)))
-(((-817 |#1|) (-10 -7 (-15 -2555 ((-1145) (-315 |#1|))) (-15 -2555 ((-1145) (-315 |#1|) (-112))) (-15 -2555 ((-1251) (-813) (-315 |#1|))) (-15 -2555 ((-1251) (-813) (-315 |#1|) (-112)))) (-13 (-819) (-841) (-1039))) (T -817))
-((-2555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251)) (-5 *1 (-817 *6)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251)) (-5 *1 (-817 *5)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1145)) (-5 *1 (-817 *5)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-819) (-841) (-1039))) (-5 *2 (-1145)) (-5 *1 (-817 *4)))))
-(-10 -7 (-15 -2555 ((-1145) (-315 |#1|))) (-15 -2555 ((-1145) (-315 |#1|) (-112))) (-15 -2555 ((-1251) (-813) (-315 |#1|))) (-15 -2555 ((-1251) (-813) (-315 |#1|) (-112))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2502 ((|#1| $) 10)) (-2314 (($ |#1|) 9)) (-3999 (((-112) $) NIL)) (-4056 (($ |#2| (-762)) NIL)) (-3672 (((-762) $) NIL)) (-3881 ((|#2| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3780 (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-4263 (((-762) $) NIL)) (-3940 (((-853) $) 17) (($ (-558)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-3143 ((|#2| $ (-762)) NIL)) (-2417 (((-762)) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-818 |#1| |#2|) (-13 (-699 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2314 ($ |#1|)) (-15 -2502 (|#1| $)))) (-699 |#2|) (-1039)) (T -818))
-((-2314 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-818 *2 *3)) (-4 *2 (-699 *3)))) (-2502 (*1 *2 *1) (-12 (-4 *2 (-699 *3)) (-5 *1 (-818 *2 *3)) (-4 *3 (-1039)))))
-(-13 (-699 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2314 ($ |#1|)) (-15 -2502 (|#1| $))))
-((-2555 (((-1251) (-813) $ (-112)) 9) (((-1251) (-813) $) 8) (((-1145) $ (-112)) 7) (((-1145) $) 6)))
-(((-819) (-139)) (T -819))
-((-2555 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *4 (-112)) (-5 *2 (-1251)))) (-2555 (*1 *2 *3 *1) (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *2 (-1251)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-819)) (-5 *3 (-112)) (-5 *2 (-1145)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-1145)))))
-(-13 (-10 -8 (-15 -2555 ((-1145) $)) (-15 -2555 ((-1145) $ (-112))) (-15 -2555 ((-1251) (-813) $)) (-15 -2555 ((-1251) (-813) $ (-112)))))
-((-2291 (((-311) (-1145) (-1145)) 12)) (-2902 (((-112) (-1145) (-1145)) 33)) (-2069 (((-112) (-1145)) 32)) (-2806 (((-52) (-1145)) 25)) (-2903 (((-52) (-1145)) 23)) (-3595 (((-52) (-813)) 17)) (-1691 (((-635 (-1145)) (-1145)) 28)) (-1460 (((-635 (-1145))) 27)))
-(((-820) (-10 -7 (-15 -3595 ((-52) (-813))) (-15 -2903 ((-52) (-1145))) (-15 -2806 ((-52) (-1145))) (-15 -1460 ((-635 (-1145)))) (-15 -1691 ((-635 (-1145)) (-1145))) (-15 -2069 ((-112) (-1145))) (-15 -2902 ((-112) (-1145) (-1145))) (-15 -2291 ((-311) (-1145) (-1145))))) (T -820))
-((-2291 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-820)))) (-2902 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))) (-1691 (*1 *2 *3) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)) (-5 *3 (-1145)))) (-1460 (*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-52)) (-5 *1 (-820)))))
-(-10 -7 (-15 -3595 ((-52) (-813))) (-15 -2903 ((-52) (-1145))) (-15 -2806 ((-52) (-1145))) (-15 -1460 ((-635 (-1145)))) (-15 -1691 ((-635 (-1145)) (-1145))) (-15 -2069 ((-112) (-1145))) (-15 -2902 ((-112) (-1145) (-1145))) (-15 -2291 ((-311) (-1145) (-1145))))
-((-3929 (((-112) $ $) 19)) (-2382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1513 (($ $ $) 72)) (-3204 (((-112) $ $) 73)) (-3651 (((-112) $ (-762)) 8)) (-1607 (($ (-635 |#1|)) 68) (($) 67)) (-2256 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-1958 (($ $) 62)) (-3188 (($ $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ |#1| $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-2953 (((-112) $ $) 64)) (-4007 (((-112) $ (-762)) 9)) (-2142 ((|#1| $) 78)) (-4150 (($ $ $) 81)) (-3391 (($ $ $) 80)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2281 ((|#1| $) 79)) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22)) (-3490 (($ $ $) 69)) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40) (($ |#1| $ (-762)) 63)) (-1688 (((-1107) $) 21)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1858 (((-635 (-2 (|:| -1925 |#1|) (|:| -1698 (-762)))) $) 61)) (-1780 (($ $ |#1|) 71) (($ $ $) 70)) (-1966 (($) 49) (($ (-635 |#1|)) 48)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 50)) (-3940 (((-853) $) 18)) (-4008 (($ (-635 |#1|)) 66) (($) 65)) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20)) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-821 |#1|) (-139) (-841)) (T -821))
-((-2142 (*1 *2 *1) (-12 (-4 *1 (-821 *2)) (-4 *2 (-841)))))
-(-13 (-727 |t#1|) (-958 |t#1|) (-10 -8 (-15 -2142 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-685 |#1|) . T) ((-727 |#1|) . T) ((-958 |#1|) . T) ((-1085 |#1|) . T) ((-1087) . T) ((-1200) . T))
-((-3096 (((-1251) (-1107) (-1107)) 47)) (-2348 (((-1251) (-812) (-52)) 44)) (-1838 (((-52) (-812)) 16)))
-(((-822) (-10 -7 (-15 -1838 ((-52) (-812))) (-15 -2348 ((-1251) (-812) (-52))) (-15 -3096 ((-1251) (-1107) (-1107))))) (T -822))
-((-3096 (*1 *2 *3 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-1251)) (-5 *1 (-822)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-52)) (-5 *2 (-1251)) (-5 *1 (-822)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-52)) (-5 *1 (-822)))))
-(-10 -7 (-15 -1838 ((-52) (-812))) (-15 -2348 ((-1251) (-812) (-52))) (-15 -3096 ((-1251) (-1107) (-1107))))
-((-3397 (((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|) (-824 |#2|)) 12) (((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|)) 13)))
-(((-823 |#1| |#2|) (-10 -7 (-15 -3397 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|))) (-15 -3397 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|) (-824 |#2|)))) (-1087) (-1087)) (T -823))
-((-3397 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-823 *5 *6)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-824 *6)) (-5 *1 (-823 *5 *6)))))
-(-10 -7 (-15 -3397 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|))) (-15 -3397 ((-824 |#2|) (-1 |#2| |#1|) (-824 |#1|) (-824 |#2|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-21)))) (-1868 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1334 (((-558) $) NIL (|has| |#1| (-839)))) (-3457 (($) NIL (|has| |#1| (-21)) CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 15)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 9)) (-3248 (((-3 $ "failed") $) 40 (|has| |#1| (-839)))) (-3904 (((-3 (-406 (-558)) "failed") $) 49 (|has| |#1| (-543)))) (-2288 (((-112) $) 43 (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) 46 (|has| |#1| (-543)))) (-4053 (((-112) $) NIL (|has| |#1| (-839)))) (-3999 (((-112) $) NIL (|has| |#1| (-839)))) (-2032 (((-112) $) NIL (|has| |#1| (-839)))) (-2142 (($ $ $) NIL (|has| |#1| (-839)))) (-2281 (($ $ $) NIL (|has| |#1| (-839)))) (-2510 (((-1145) $) NIL)) (-3359 (($) 13)) (-3221 (((-112) $) 12)) (-1688 (((-1107) $) NIL)) (-1825 (((-112) $) 11)) (-3940 (((-853) $) 18) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 8) (($ (-558)) NIL (-3994 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))))) (-2417 (((-762)) 34 (|has| |#1| (-839)))) (-4241 (($ $) NIL (|has| |#1| (-839)))) (-2207 (($) 22 (|has| |#1| (-21)) CONST)) (-2220 (($) 31 (|has| |#1| (-839)) CONST)) (-1757 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1708 (((-112) $ $) 20)) (-1749 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1728 (((-112) $ $) 42 (|has| |#1| (-839)))) (-1796 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1785 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-911)) NIL (|has| |#1| (-839))) (($ $ (-762)) NIL (|has| |#1| (-839)))) (* (($ $ $) 37 (|has| |#1| (-839))) (($ (-558) $) 25 (|has| |#1| (-21))) (($ (-762) $) NIL (|has| |#1| (-21))) (($ (-911) $) NIL (|has| |#1| (-21)))))
-(((-824 |#1|) (-13 (-1087) (-410 |#1|) (-10 -8 (-15 -3359 ($)) (-15 -1825 ((-112) $)) (-15 -3221 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|))) (-1087)) (T -824))
-((-3359 (*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1087)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-3904 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))))
-(-13 (-1087) (-410 |#1|) (-10 -8 (-15 -3359 ($)) (-15 -1825 ((-112) $)) (-15 -3221 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|)))
-((-3940 (((-853) $) 11)))
-(((-825 |#1| |#2|) (-10 -8 (-15 -3940 ((-853) |#1|))) (-826 |#2|) (-1087)) (T -825))
-NIL
-(-10 -8 (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3179 ((|#1| $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1405 (((-55) $) 13)) (-1708 (((-112) $ $) 6)))
-(((-826 |#1|) (-139) (-1087)) (T -826))
-((-3179 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1087)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1087)) (-5 *2 (-55)))))
-(-13 (-1087) (-10 -8 (-15 -3179 (|t#1| $)) (-15 -1405 ((-55) $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3226 ((|#1| $) NIL) (((-114) $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2381 ((|#1| (-114) |#1|) NIL)) (-3999 (((-112) $) NIL)) (-3802 (($ |#1| (-360 (-114))) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3039 (($ $ (-1 |#1| |#1|)) NIL)) (-3196 (($ $ (-1 |#1| |#1|)) NIL)) (-2276 ((|#1| $ |#1|) NIL)) (-4090 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-3830 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ (-114) (-558)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-827 |#1|) (-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3830 ($ $)) (-15 -3830 ($ $ $)) (-15 -4090 (|#1| |#1|))) |%noBranch|) (-15 -3196 ($ $ (-1 |#1| |#1|))) (-15 -3039 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -2381 (|#1| (-114) |#1|)) (-15 -3802 ($ |#1| (-360 (-114)))))) (-1039)) (T -827))
-((-3830 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))) (-3830 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))) (-4090 (*1 *2 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))) (-3196 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))) (-3039 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-5 *1 (-827 *4)) (-4 *4 (-1039)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-827 *3)) (-4 *3 (-1039)))) (-2381 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-827 *2)) (-4 *2 (-1039)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-5 *1 (-827 *2)) (-4 *2 (-1039)))))
-(-13 (-1039) (-1028 |#1|) (-1028 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -3830 ($ $)) (-15 -3830 ($ $ $)) (-15 -4090 (|#1| |#1|))) |%noBranch|) (-15 -3196 ($ $ (-1 |#1| |#1|))) (-15 -3039 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-558))) (-15 ** ($ $ (-558))) (-15 -2381 (|#1| (-114) |#1|)) (-15 -3802 ($ |#1| (-360 (-114))))))
-((-4312 (((-213 (-500)) (-1145)) 9)))
-(((-828) (-10 -7 (-15 -4312 ((-213 (-500)) (-1145))))) (T -828))
-((-4312 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-213 (-500))) (-5 *1 (-828)))))
-(-10 -7 (-15 -4312 ((-213 (-500)) (-1145))))
-((-3929 (((-112) $ $) NIL)) (-2751 (((-1105) $) 10)) (-3179 (((-504) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3952 (($ (-504) (-1105)) 8)) (-3940 (((-853) $) 26)) (-1405 (((-55) $) 19)) (-1708 (((-112) $ $) 12)))
-(((-829) (-13 (-826 (-504)) (-10 -8 (-15 -2751 ((-1105) $)) (-15 -3952 ($ (-504) (-1105)))))) (T -829))
-((-2751 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-829)))) (-3952 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-829)))))
-(-13 (-826 (-504)) (-10 -8 (-15 -2751 ((-1105) $)) (-15 -3952 ($ (-504) (-1105)))))
-((-3929 (((-112) $ $) 7)) (-3671 (((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 14) (((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 13)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 16) (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 15)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)))
-(((-830) (-139)) (T -830))
-((-4131 (*1 *2 *3 *4) (-12 (-4 *1 (-830)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)))))) (-4131 (*1 *2 *3 *4) (-12 (-4 *1 (-830)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)))))) (-3671 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *3 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) (-5 *2 (-1025)))) (-3671 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *2 (-1025)))))
-(-13 (-1087) (-10 -7 (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -3671 ((-1025) (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -3671 ((-1025) (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2900 (((-1025) (-635 (-315 (-378))) (-635 (-378))) 147) (((-1025) (-315 (-378)) (-635 (-378))) 145) (((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-834 (-378)))) 144) (((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-315 (-378))) (-635 (-834 (-378)))) 143) (((-1025) (-832)) 117) (((-1025) (-832) (-1051)) 116)) (-4131 (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832) (-1051)) 82) (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832)) 84)) (-1420 (((-1025) (-635 (-315 (-378))) (-635 (-378))) 148) (((-1025) (-832)) 133)))
-(((-831) (-10 -7 (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832) (-1051))) (-15 -2900 ((-1025) (-832) (-1051))) (-15 -2900 ((-1025) (-832))) (-15 -1420 ((-1025) (-832))) (-15 -2900 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-315 (-378))) (-635 (-834 (-378))))) (-15 -2900 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-834 (-378))))) (-15 -2900 ((-1025) (-315 (-378)) (-635 (-378)))) (-15 -2900 ((-1025) (-635 (-315 (-378))) (-635 (-378)))) (-15 -1420 ((-1025) (-635 (-315 (-378))) (-635 (-378)))))) (T -831))
-((-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2900 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378))) (-5 *5 (-635 (-834 (-378)))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2900 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-635 (-378))) (-5 *5 (-635 (-834 (-378)))) (-5 *6 (-635 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1025)) (-5 *1 (-831)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-831)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-831)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-831)))))
-(-10 -7 (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-832) (-1051))) (-15 -2900 ((-1025) (-832) (-1051))) (-15 -2900 ((-1025) (-832))) (-15 -1420 ((-1025) (-832))) (-15 -2900 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-315 (-378))) (-635 (-834 (-378))))) (-15 -2900 ((-1025) (-315 (-378)) (-635 (-378)) (-635 (-834 (-378))) (-635 (-834 (-378))))) (-15 -2900 ((-1025) (-315 (-378)) (-635 (-378)))) (-15 -2900 ((-1025) (-635 (-315 (-378))) (-635 (-378)))) (-15 -1420 ((-1025) (-635 (-315 (-378))) (-635 (-378)))))
-((-3929 (((-112) $ $) NIL)) (-3226 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) $) 21)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 20) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) 14) (($ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))))) 18)) (-1708 (((-112) $ $) NIL)))
-(((-832) (-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -3940 ($ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -3940 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))))) (-15 -3226 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) $))))) (T -832))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (-5 *1 (-832)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))) (-5 *1 (-832)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))))) (-5 *1 (-832)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224))))))) (-5 *1 (-832)))))
-(-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224))))))) (-15 -3940 ($ (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) (-15 -3940 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))))) (-15 -3226 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224))) (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224)))) (|:| |ub| (-635 (-834 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))) $))))
-((-3397 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|) (-834 |#2|)) 13) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 14)))
-(((-833 |#1| |#2|) (-10 -7 (-15 -3397 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3397 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|) (-834 |#2|)))) (-1087) (-1087)) (T -833))
-((-3397 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-833 *5 *6)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))))
-(-10 -7 (-15 -3397 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3397 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|) (-834 |#2|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-21)))) (-1842 (((-1107) $) 24)) (-1868 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1334 (((-558) $) NIL (|has| |#1| (-839)))) (-3457 (($) NIL (|has| |#1| (-21)) CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 16)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 9)) (-3248 (((-3 $ "failed") $) 47 (|has| |#1| (-839)))) (-3904 (((-3 (-406 (-558)) "failed") $) 54 (|has| |#1| (-543)))) (-2288 (((-112) $) 49 (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) 52 (|has| |#1| (-543)))) (-4053 (((-112) $) NIL (|has| |#1| (-839)))) (-3564 (($) 13)) (-3999 (((-112) $) NIL (|has| |#1| (-839)))) (-2032 (((-112) $) NIL (|has| |#1| (-839)))) (-3576 (($) 14)) (-2142 (($ $ $) NIL (|has| |#1| (-839)))) (-2281 (($ $ $) NIL (|has| |#1| (-839)))) (-2510 (((-1145) $) NIL)) (-3221 (((-112) $) 12)) (-1688 (((-1107) $) NIL)) (-1825 (((-112) $) 11)) (-3940 (((-853) $) 22) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 8) (($ (-558)) NIL (-3994 (|has| |#1| (-839)) (|has| |#1| (-1028 (-558)))))) (-2417 (((-762)) 41 (|has| |#1| (-839)))) (-4241 (($ $) NIL (|has| |#1| (-839)))) (-2207 (($) 29 (|has| |#1| (-21)) CONST)) (-2220 (($) 38 (|has| |#1| (-839)) CONST)) (-1757 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1708 (((-112) $ $) 27)) (-1749 (((-112) $ $) NIL (|has| |#1| (-839)))) (-1728 (((-112) $ $) 48 (|has| |#1| (-839)))) (-1796 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1785 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-911)) NIL (|has| |#1| (-839))) (($ $ (-762)) NIL (|has| |#1| (-839)))) (* (($ $ $) 44 (|has| |#1| (-839))) (($ (-558) $) 32 (|has| |#1| (-21))) (($ (-762) $) NIL (|has| |#1| (-21))) (($ (-911) $) NIL (|has| |#1| (-21)))))
-(((-834 |#1|) (-13 (-1087) (-410 |#1|) (-10 -8 (-15 -3564 ($)) (-15 -3576 ($)) (-15 -1825 ((-112) $)) (-15 -3221 ((-112) $)) (-15 -1842 ((-1107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|))) (-1087)) (T -834))
-((-3564 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))) (-3576 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))) (-3904 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087)))))
-(-13 (-1087) (-410 |#1|) (-10 -8 (-15 -3564 ($)) (-15 -3576 ($)) (-15 -1825 ((-112) $)) (-15 -3221 ((-112) $)) (-15 -1842 ((-1107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|)))
-((-3929 (((-112) $ $) 7)) (-2507 (((-762)) 22)) (-3692 (($) 25)) (-2142 (($ $ $) 13) (($) 21 T CONST)) (-2281 (($ $ $) 14) (($) 20 T CONST)) (-1486 (((-911) $) 24)) (-2510 (((-1145) $) 9)) (-2349 (($ (-911)) 23)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)))
-(((-835) (-139)) (T -835))
-((-2142 (*1 *1) (-4 *1 (-835))) (-2281 (*1 *1) (-4 *1 (-835))))
-(-13 (-841) (-367) (-10 -8 (-15 -2142 ($) -2010) (-15 -2281 ($) -2010)))
-(((-102) . T) ((-605 (-853)) . T) ((-367) . T) ((-841) . T) ((-1087) . T))
-((-2247 (((-112) (-1246 |#2|) (-1246 |#2|)) 17)) (-2341 (((-112) (-1246 |#2|) (-1246 |#2|)) 18)) (-1399 (((-112) (-1246 |#2|) (-1246 |#2|)) 14)))
-(((-836 |#1| |#2|) (-10 -7 (-15 -1399 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -2247 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -2341 ((-112) (-1246 |#2|) (-1246 |#2|)))) (-762) (-783)) (T -836))
-((-2341 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))) (-2247 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))) (-1399 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
-(-10 -7 (-15 -1399 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -2247 ((-112) (-1246 |#2|) (-1246 |#2|))) (-15 -2341 ((-112) (-1246 |#2|) (-1246 |#2|))))
-((-3929 (((-112) $ $) 7)) (-3457 (($) 23 T CONST)) (-3248 (((-3 $ "failed") $) 26)) (-3999 (((-112) $) 24)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2220 (($) 22 T CONST)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (** (($ $ (-911)) 21) (($ $ (-762)) 25)) (* (($ $ $) 20)))
-(((-837) (-139)) (T -837))
-NIL
-(-13 (-848) (-717))
-(((-102) . T) ((-605 (-853)) . T) ((-717) . T) ((-848) . T) ((-841) . T) ((-1099) . T) ((-1087) . T))
-((-1334 (((-558) $) 17)) (-4053 (((-112) $) 10)) (-2032 (((-112) $) 11)) (-4241 (($ $) 19)))
-(((-838 |#1|) (-10 -8 (-15 -4241 (|#1| |#1|)) (-15 -1334 ((-558) |#1|)) (-15 -2032 ((-112) |#1|)) (-15 -4053 ((-112) |#1|))) (-839)) (T -838))
-NIL
-(-10 -8 (-15 -4241 (|#1| |#1|)) (-15 -1334 ((-558) |#1|)) (-15 -2032 ((-112) |#1|)) (-15 -4053 ((-112) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 24)) (-1868 (((-3 $ "failed") $ $) 26)) (-1334 (((-558) $) 34)) (-3457 (($) 23 T CONST)) (-3248 (((-3 $ "failed") $) 39)) (-4053 (((-112) $) 36)) (-3999 (((-112) $) 41)) (-2032 (((-112) $) 35)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 43)) (-2417 (((-762)) 44)) (-4241 (($ $) 33)) (-2207 (($) 22 T CONST)) (-2220 (($) 42 T CONST)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (-1796 (($ $ $) 28) (($ $) 27)) (-1785 (($ $ $) 20)) (** (($ $ (-762)) 40) (($ $ (-911)) 37)) (* (($ (-911) $) 21) (($ (-762) $) 25) (($ (-558) $) 29) (($ $ $) 38)))
-(((-839) (-139)) (T -839))
-((-4053 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-558)))) (-4241 (*1 *1 *1) (-4 *1 (-839))))
-(-13 (-782) (-1039) (-717) (-10 -8 (-15 -4053 ((-112) $)) (-15 -2032 ((-112) $)) (-15 -1334 ((-558) $)) (-15 -4241 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-841) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-2142 (($ $ $) 10)) (-2281 (($ $ $) 9)) (-1757 (((-112) $ $) 12)) (-1737 (((-112) $ $) 11)) (-1749 (((-112) $ $) 13)))
-(((-840 |#1|) (-10 -8 (-15 -2142 (|#1| |#1| |#1|)) (-15 -2281 (|#1| |#1| |#1|)) (-15 -1749 ((-112) |#1| |#1|)) (-15 -1757 ((-112) |#1| |#1|)) (-15 -1737 ((-112) |#1| |#1|))) (-841)) (T -840))
-NIL
-(-10 -8 (-15 -2142 (|#1| |#1| |#1|)) (-15 -2281 (|#1| |#1| |#1|)) (-15 -1749 ((-112) |#1| |#1|)) (-15 -1757 ((-112) |#1| |#1|)) (-15 -1737 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)))
-(((-841) (-139)) (T -841))
-((-1728 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-1737 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-1757 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112)))) (-2281 (*1 *1 *1 *1) (-4 *1 (-841))) (-2142 (*1 *1 *1 *1) (-4 *1 (-841))))
-(-13 (-1087) (-10 -8 (-15 -1728 ((-112) $ $)) (-15 -1737 ((-112) $ $)) (-15 -1757 ((-112) $ $)) (-15 -1749 ((-112) $ $)) (-15 -2281 ($ $ $)) (-15 -2142 ($ $ $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2163 (($ $ $) 45)) (-3112 (($ $ $) 44)) (-3911 (($ $ $) 42)) (-2678 (($ $ $) 51)) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 46)) (-1941 (((-3 $ "failed") $ $) 49)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3199 (($ $) 35)) (-1700 (($ $ $) 39)) (-1539 (($ $ $) 38)) (-3014 (($ $ $) 47)) (-2697 (($ $ $) 53)) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 41)) (-2548 (((-3 $ "failed") $ $) 48)) (-2861 (((-3 $ "failed") $ |#2|) 28)) (-3012 ((|#2| $) 32)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ |#2|) 12)) (-3712 (((-635 |#2|) $) 18)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-842 |#1| |#2|) (-10 -8 (-15 -3014 (|#1| |#1| |#1|)) (-15 -3555 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2461 |#1|)) |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1|)) (-15 -1941 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2163 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -2208 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2461 |#1|)) |#1| |#1|)) (-15 -2697 (|#1| |#1| |#1|)) (-15 -2548 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -1539 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3712 ((-635 |#2|) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -3940 ((-853) |#1|))) (-843 |#2|) (-1039)) (T -842))
-NIL
-(-10 -8 (-15 -3014 (|#1| |#1| |#1|)) (-15 -3555 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2461 |#1|)) |#1| |#1|)) (-15 -2678 (|#1| |#1| |#1|)) (-15 -1941 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2163 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -2208 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2461 |#1|)) |#1| |#1|)) (-15 -2697 (|#1| |#1| |#1|)) (-15 -2548 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -1539 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -2861 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3712 ((-635 |#2|) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2163 (($ $ $) 44 (|has| |#1| (-362)))) (-3112 (($ $ $) 45 (|has| |#1| (-362)))) (-3911 (($ $ $) 47 (|has| |#1| (-362)))) (-2678 (($ $ $) 42 (|has| |#1| (-362)))) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 41 (|has| |#1| (-362)))) (-1941 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2754 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 46 (|has| |#1| (-362)))) (-3302 (((-3 (-558) "failed") $) 74 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 71 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 68)) (-3226 (((-558) $) 73 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 70 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 69)) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3199 (($ $) 54 (|has| |#1| (-450)))) (-3999 (((-112) $) 31)) (-4056 (($ |#1| (-762)) 61)) (-4032 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 56 (|has| |#1| (-550)))) (-1303 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 57 (|has| |#1| (-550)))) (-3672 (((-762) $) 65)) (-1700 (($ $ $) 51 (|has| |#1| (-362)))) (-1539 (($ $ $) 52 (|has| |#1| (-362)))) (-3014 (($ $ $) 40 (|has| |#1| (-362)))) (-2697 (($ $ $) 49 (|has| |#1| (-362)))) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 48 (|has| |#1| (-362)))) (-2548 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-3868 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 53 (|has| |#1| (-362)))) (-3881 ((|#1| $) 64)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-550)))) (-4263 (((-762) $) 66)) (-3012 ((|#1| $) 55 (|has| |#1| (-450)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 72 (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) 67)) (-3712 (((-635 |#1|) $) 60)) (-3143 ((|#1| $ (-762)) 62)) (-2417 (((-762)) 28)) (-2484 ((|#1| $ |#1| |#1|) 59)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
-(((-843 |#1|) (-139) (-1039)) (T -843))
-((-4263 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-4056 (*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-635 *3)))) (-2484 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)))) (-2861 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-1303 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3)))) (-4032 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450)))) (-3199 (*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450)))) (-3868 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3)))) (-1539 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-1700 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2548 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2697 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2208 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2461 *1))) (-4 *1 (-843 *3)))) (-3911 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2754 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3)))) (-3112 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2163 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-1941 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-2678 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-3555 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2461 *1))) (-4 *1 (-843 *3)))) (-3014 (*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(-13 (-1039) (-111 |t#1| |t#1|) (-410 |t#1|) (-10 -8 (-15 -4263 ((-762) $)) (-15 -3672 ((-762) $)) (-15 -3881 (|t#1| $)) (-15 -3905 ($ $)) (-15 -3143 (|t#1| $ (-762))) (-15 -4056 ($ |t#1| (-762))) (-15 -3712 ((-635 |t#1|) $)) (-15 -2484 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -2861 ((-3 $ "failed") $ |t#1|)) (-15 -1303 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -4032 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3012 (|t#1| $)) (-15 -3199 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -3868 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -1539 ($ $ $)) (-15 -1700 ($ $ $)) (-15 -2548 ((-3 $ "failed") $ $)) (-15 -2697 ($ $ $)) (-15 -2208 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $)) (-15 -3911 ($ $ $)) (-15 -2754 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -3112 ($ $ $)) (-15 -2163 ($ $ $)) (-15 -1941 ((-3 $ "failed") $ $)) (-15 -2678 ($ $ $)) (-15 -3555 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $)) (-15 -3014 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 #0=(-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-410 |#1|) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1028 #0#) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-2296 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2754 (((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-4032 (((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-550)))) (-1303 (((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-550)))) (-3868 (((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-2484 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
-(((-844 |#1| |#2|) (-10 -7 (-15 -2296 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2484 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-550)) (PROGN (-15 -1303 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4032 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3868 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2754 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1039) (-843 |#1|)) (T -844))
-((-2754 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-3868 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-4032 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-1303 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3)) (-4 *3 (-843 *5)))) (-2484 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1039)) (-5 *1 (-844 *2 *3)) (-4 *3 (-843 *2)))) (-2296 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1039)) (-5 *1 (-844 *5 *2)) (-4 *2 (-843 *5)))))
-(-10 -7 (-15 -2296 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2484 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-550)) (PROGN (-15 -1303 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4032 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3868 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2754 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2163 (($ $ $) NIL (|has| |#1| (-362)))) (-3112 (($ $ $) NIL (|has| |#1| (-362)))) (-3911 (($ $ $) NIL (|has| |#1| (-362)))) (-2678 (($ $ $) NIL (|has| |#1| (-362)))) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-1941 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2754 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 32 (|has| |#1| (-362)))) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450)))) (-3364 (((-853) $ (-853)) NIL)) (-3999 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) NIL)) (-4032 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 28 (|has| |#1| (-550)))) (-1303 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 26 (|has| |#1| (-550)))) (-3672 (((-762) $) NIL)) (-1700 (($ $ $) NIL (|has| |#1| (-362)))) (-1539 (($ $ $) NIL (|has| |#1| (-362)))) (-3014 (($ $ $) NIL (|has| |#1| (-362)))) (-2697 (($ $ $) NIL (|has| |#1| (-362)))) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2548 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3868 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 30 (|has| |#1| (-362)))) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-4263 (((-762) $) NIL)) (-3012 ((|#1| $) NIL (|has| |#1| (-450)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-1028 (-406 (-558))))) (($ |#1|) NIL)) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) NIL)) (-2417 (((-762)) NIL)) (-2484 ((|#1| $ |#1| |#1|) 15)) (-2207 (($) NIL T CONST)) (-2220 (($) 20 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) 19) (($ $ (-762)) 22)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-845 |#1| |#2| |#3|) (-13 (-843 |#1|) (-10 -8 (-15 -3364 ((-853) $ (-853))))) (-1039) (-99 |#1|) (-1 |#1| |#1|)) (T -845))
-((-3364 (*1 *2 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-845 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-843 |#1|) (-10 -8 (-15 -3364 ((-853) $ (-853)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-2163 (($ $ $) NIL (|has| |#2| (-362)))) (-3112 (($ $ $) NIL (|has| |#2| (-362)))) (-3911 (($ $ $) NIL (|has| |#2| (-362)))) (-2678 (($ $ $) NIL (|has| |#2| (-362)))) (-3555 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#2| (-362)))) (-1941 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-2754 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#2| (-362)))) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) NIL)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#2| (-450)))) (-3999 (((-112) $) NIL)) (-4056 (($ |#2| (-762)) 16)) (-4032 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#2| (-550)))) (-1303 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#2| (-550)))) (-3672 (((-762) $) NIL)) (-1700 (($ $ $) NIL (|has| |#2| (-362)))) (-1539 (($ $ $) NIL (|has| |#2| (-362)))) (-3014 (($ $ $) NIL (|has| |#2| (-362)))) (-2697 (($ $ $) NIL (|has| |#2| (-362)))) (-2208 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#2| (-362)))) (-2548 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3868 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#2| (-362)))) (-3881 ((|#2| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-4263 (((-762) $) NIL)) (-3012 ((|#2| $) NIL (|has| |#2| (-450)))) (-3940 (((-853) $) 23) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) NIL) (($ (-1242 |#1|)) 18)) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-762)) NIL)) (-2417 (((-762)) NIL)) (-2484 ((|#2| $ |#2| |#2|) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) 13 T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-846 |#1| |#2| |#3| |#4|) (-13 (-843 |#2|) (-608 (-1242 |#1|))) (-1163) (-1039) (-99 |#2|) (-1 |#2| |#2|)) (T -846))
-NIL
-(-13 (-843 |#2|) (-608 (-1242 |#1|)))
-((-3283 ((|#1| (-762) |#1|) 35 (|has| |#1| (-38 (-406 (-558)))))) (-2043 ((|#1| (-762) (-762) |#1|) 27) ((|#1| (-762) |#1|) 20)) (-2993 ((|#1| (-762) |#1|) 31)) (-2290 ((|#1| (-762) |#1|) 29)) (-1947 ((|#1| (-762) |#1|) 28)))
-(((-847 |#1|) (-10 -7 (-15 -1947 (|#1| (-762) |#1|)) (-15 -2290 (|#1| (-762) |#1|)) (-15 -2993 (|#1| (-762) |#1|)) (-15 -2043 (|#1| (-762) |#1|)) (-15 -2043 (|#1| (-762) (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -3283 (|#1| (-762) |#1|)) |%noBranch|)) (-171)) (T -847))
-((-3283 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-171)))) (-2043 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-2043 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-2993 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-2290 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))) (-1947 (*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))))
-(-10 -7 (-15 -1947 (|#1| (-762) |#1|)) (-15 -2290 (|#1| (-762) |#1|)) (-15 -2993 (|#1| (-762) |#1|)) (-15 -2043 (|#1| (-762) |#1|)) (-15 -2043 (|#1| (-762) (-762) |#1|)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -3283 (|#1| (-762) |#1|)) |%noBranch|))
-((-3929 (((-112) $ $) 7)) (-2142 (($ $ $) 13)) (-2281 (($ $ $) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1757 (((-112) $ $) 16)) (-1737 (((-112) $ $) 17)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 15)) (-1728 (((-112) $ $) 18)) (** (($ $ (-911)) 21)) (* (($ $ $) 20)))
-(((-848) (-139)) (T -848))
-NIL
-(-13 (-841) (-1099))
-(((-102) . T) ((-605 (-853)) . T) ((-841) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2426 (((-558) $) 12)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 18) (($ (-558)) 11)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 8)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 9)))
-(((-849) (-13 (-841) (-10 -8 (-15 -3940 ($ (-558))) (-15 -2426 ((-558) $))))) (T -849))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-849)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-849)))))
-(-13 (-841) (-10 -8 (-15 -3940 ($ (-558))) (-15 -2426 ((-558) $))))
-((-3025 (((-762) $ (-128)) 18)))
-(((-850 |#1|) (-10 -8 (-15 -3025 ((-762) |#1| (-128)))) (-851)) (T -850))
-NIL
-(-10 -8 (-15 -3025 ((-762) |#1| (-128))))
-((-3025 (((-762) $ (-128)) 7)) (-2432 (((-681 (-129)) $ (-129)) 8)) (-1388 (($ $) 6)))
+((-4011 (((-112) $ $) NIL)) (-2813 (((-638 |#1|) $) 29)) (-1393 (((-765) $) NIL)) (-1965 (($) NIL T CONST)) (-1852 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-1445 (($ $) 31)) (-3466 (((-3 $ "failed") $) NIL)) (-3002 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3113 (((-112) $) NIL)) (-2740 ((|#1| $ (-561)) NIL)) (-2803 (((-765) $ (-561)) NIL)) (-2597 (($ $) 35)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3831 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3535 (((-112) $ $) 33)) (-3617 (((-765) $) 25)) (-1764 (((-1148) $) NIL)) (-2343 (($ $ $) NIL)) (-3685 (($ $ $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 ((|#1| $) 30)) (-4282 (((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-765)))) $) NIL)) (-1763 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4022 (((-856) $) NIL) (($ |#1|) NIL)) (-2222 (($) 15 T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 34)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-813 |#1|) (-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -1433 (|#1| $)) (-15 -1445 ($ $)) (-15 -2597 ($ $)) (-15 -3535 ((-112) $ $)) (-15 -3685 ($ $ $)) (-15 -2343 ($ $ $)) (-15 -3831 ((-3 $ "failed") $ $)) (-15 -1852 ((-3 $ "failed") $ $)) (-15 -3831 ((-3 $ "failed") $ |#1|)) (-15 -1852 ((-3 $ "failed") $ |#1|)) (-15 -1763 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3002 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1393 ((-765) $)) (-15 -2803 ((-765) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -4282 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-765)))) $)) (-15 -3617 ((-765) $)) (-15 -2813 ((-638 |#1|) $)))) (-844)) (T -813))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1433 (*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2597 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-3535 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-3685 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2343 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-3831 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1852 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-3831 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1852 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-1763 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-3002 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 (-765))))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844)))))
+(-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -1433 (|#1| $)) (-15 -1445 ($ $)) (-15 -2597 ($ $)) (-15 -3535 ((-112) $ $)) (-15 -3685 ($ $ $)) (-15 -2343 ($ $ $)) (-15 -3831 ((-3 $ "failed") $ $)) (-15 -1852 ((-3 $ "failed") $ $)) (-15 -3831 ((-3 $ "failed") $ |#1|)) (-15 -1852 ((-3 $ "failed") $ |#1|)) (-15 -1763 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3002 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1393 ((-765) $)) (-15 -2803 ((-765) $ (-561))) (-15 -2740 (|#1| $ (-561))) (-15 -4282 ((-638 (-2 (|:| |gen| |#1|) (|:| -3440 (-765)))) $)) (-15 -3617 ((-765) $)) (-15 -2813 ((-638 |#1|) $))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-2666 (((-561) $) 54)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3201 (((-112) $) 52)) (-3113 (((-112) $) 31)) (-2110 (((-112) $) 53)) (-3443 (($ $ $) 51)) (-2986 (($ $ $) 50)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ $) 43)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-3749 (($ $) 55)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1782 (((-112) $ $) 48)) (-1762 (((-112) $ $) 47)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 49)) (-1754 (((-112) $ $) 46)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-814) (-139)) (T -814))
+NIL
+(-13 (-553) (-842))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4225 (($ (-1110)) 7)) (-3258 (((-112) $ (-1148) (-1110)) 15)) (-2142 (((-816) $) 12)) (-3802 (((-816) $) 11)) (-2477 (((-1258) $) 9)) (-2034 (((-112) $ (-1110)) 16)))
+(((-815) (-10 -8 (-15 -4225 ($ (-1110))) (-15 -2477 ((-1258) $)) (-15 -3802 ((-816) $)) (-15 -2142 ((-816) $)) (-15 -3258 ((-112) $ (-1148) (-1110))) (-15 -2034 ((-112) $ (-1110))))) (T -815))
+((-2034 (*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))) (-3258 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-815)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-815)))))
+(-10 -8 (-15 -4225 ($ (-1110))) (-15 -2477 ((-1258) $)) (-15 -3802 ((-816) $)) (-15 -2142 ((-816) $)) (-15 -3258 ((-112) $ (-1148) (-1110))) (-15 -2034 ((-112) $ (-1110))))
+((-1386 (((-1258) $ (-817)) 12)) (-3801 (((-1258) $ (-1166)) 32)) (-2516 (((-1258) $ (-1148) (-1148)) 34)) (-1589 (((-1258) $ (-1148)) 33)) (-3007 (((-1258) $) 19)) (-3642 (((-1258) $ (-561)) 28)) (-2365 (((-1258) $ (-224)) 30)) (-1666 (((-1258) $) 18)) (-2010 (((-1258) $) 26)) (-2582 (((-1258) $) 25)) (-2859 (((-1258) $) 23)) (-1565 (((-1258) $) 24)) (-3324 (((-1258) $) 22)) (-1334 (((-1258) $) 21)) (-3435 (((-1258) $) 20)) (-1899 (((-1258) $) 16)) (-2951 (((-1258) $) 17)) (-2229 (((-1258) $) 15)) (-4195 (((-1258) $) 14)) (-2081 (((-1258) $) 13)) (-2928 (($ (-1148) (-817)) 9)) (-1694 (($ (-1148) (-1148) (-817)) 8)) (-1374 (((-1166) $) 51)) (-3862 (((-1166) $) 55)) (-2050 (((-2 (|:| |cd| (-1148)) (|:| -3269 (-1148))) $) 54)) (-2944 (((-1148) $) 52)) (-3512 (((-1258) $) 41)) (-3488 (((-561) $) 49)) (-2925 (((-224) $) 50)) (-3808 (((-1258) $) 40)) (-1554 (((-1258) $) 48)) (-2863 (((-1258) $) 47)) (-3325 (((-1258) $) 45)) (-2600 (((-1258) $) 46)) (-3661 (((-1258) $) 44)) (-3151 (((-1258) $) 43)) (-2966 (((-1258) $) 42)) (-2994 (((-1258) $) 38)) (-4298 (((-1258) $) 39)) (-4159 (((-1258) $) 37)) (-1507 (((-1258) $) 36)) (-1338 (((-1258) $) 35)) (-3996 (((-1258) $) 11)))
+(((-816) (-10 -8 (-15 -1694 ($ (-1148) (-1148) (-817))) (-15 -2928 ($ (-1148) (-817))) (-15 -3996 ((-1258) $)) (-15 -1386 ((-1258) $ (-817))) (-15 -2081 ((-1258) $)) (-15 -4195 ((-1258) $)) (-15 -2229 ((-1258) $)) (-15 -1899 ((-1258) $)) (-15 -2951 ((-1258) $)) (-15 -1666 ((-1258) $)) (-15 -3007 ((-1258) $)) (-15 -3435 ((-1258) $)) (-15 -1334 ((-1258) $)) (-15 -3324 ((-1258) $)) (-15 -2859 ((-1258) $)) (-15 -1565 ((-1258) $)) (-15 -2582 ((-1258) $)) (-15 -2010 ((-1258) $)) (-15 -3642 ((-1258) $ (-561))) (-15 -2365 ((-1258) $ (-224))) (-15 -3801 ((-1258) $ (-1166))) (-15 -1589 ((-1258) $ (-1148))) (-15 -2516 ((-1258) $ (-1148) (-1148))) (-15 -1338 ((-1258) $)) (-15 -1507 ((-1258) $)) (-15 -4159 ((-1258) $)) (-15 -2994 ((-1258) $)) (-15 -4298 ((-1258) $)) (-15 -3808 ((-1258) $)) (-15 -3512 ((-1258) $)) (-15 -2966 ((-1258) $)) (-15 -3151 ((-1258) $)) (-15 -3661 ((-1258) $)) (-15 -3325 ((-1258) $)) (-15 -2600 ((-1258) $)) (-15 -2863 ((-1258) $)) (-15 -1554 ((-1258) $)) (-15 -3488 ((-561) $)) (-15 -2925 ((-224) $)) (-15 -1374 ((-1166) $)) (-15 -2944 ((-1148) $)) (-15 -2050 ((-2 (|:| |cd| (-1148)) (|:| -3269 (-1148))) $)) (-15 -3862 ((-1166) $)))) (T -816))
+((-3862 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3269 (-1148)))) (-5 *1 (-816)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-816)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-816)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-816)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2516 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-816)))) (-1589 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-816)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-816)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1258)) (-5 *1 (-816)))) (-3642 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-816)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-4195 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-1386 (*1 *2 *1 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1258)) (-5 *1 (-816)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))) (-2928 (*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))) (-1694 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))))
+(-10 -8 (-15 -1694 ($ (-1148) (-1148) (-817))) (-15 -2928 ($ (-1148) (-817))) (-15 -3996 ((-1258) $)) (-15 -1386 ((-1258) $ (-817))) (-15 -2081 ((-1258) $)) (-15 -4195 ((-1258) $)) (-15 -2229 ((-1258) $)) (-15 -1899 ((-1258) $)) (-15 -2951 ((-1258) $)) (-15 -1666 ((-1258) $)) (-15 -3007 ((-1258) $)) (-15 -3435 ((-1258) $)) (-15 -1334 ((-1258) $)) (-15 -3324 ((-1258) $)) (-15 -2859 ((-1258) $)) (-15 -1565 ((-1258) $)) (-15 -2582 ((-1258) $)) (-15 -2010 ((-1258) $)) (-15 -3642 ((-1258) $ (-561))) (-15 -2365 ((-1258) $ (-224))) (-15 -3801 ((-1258) $ (-1166))) (-15 -1589 ((-1258) $ (-1148))) (-15 -2516 ((-1258) $ (-1148) (-1148))) (-15 -1338 ((-1258) $)) (-15 -1507 ((-1258) $)) (-15 -4159 ((-1258) $)) (-15 -2994 ((-1258) $)) (-15 -4298 ((-1258) $)) (-15 -3808 ((-1258) $)) (-15 -3512 ((-1258) $)) (-15 -2966 ((-1258) $)) (-15 -3151 ((-1258) $)) (-15 -3661 ((-1258) $)) (-15 -3325 ((-1258) $)) (-15 -2600 ((-1258) $)) (-15 -2863 ((-1258) $)) (-15 -1554 ((-1258) $)) (-15 -3488 ((-561) $)) (-15 -2925 ((-224) $)) (-15 -1374 ((-1166) $)) (-15 -2944 ((-1148) $)) (-15 -2050 ((-2 (|:| |cd| (-1148)) (|:| -3269 (-1148))) $)) (-15 -3862 ((-1166) $)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 10)) (-2765 (($) 13)) (-1930 (($) 11)) (-3344 (($) 14)) (-1720 (($) 12)) (-1733 (((-112) $ $) 8)))
+(((-817) (-13 (-1090) (-10 -8 (-15 -1930 ($)) (-15 -2765 ($)) (-15 -3344 ($)) (-15 -1720 ($))))) (T -817))
+((-1930 (*1 *1) (-5 *1 (-817))) (-2765 (*1 *1) (-5 *1 (-817))) (-3344 (*1 *1) (-5 *1 (-817))) (-1720 (*1 *1) (-5 *1 (-817))))
+(-13 (-1090) (-10 -8 (-15 -1930 ($)) (-15 -2765 ($)) (-15 -3344 ($)) (-15 -1720 ($))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 21) (($ (-1166)) 17)) (-3165 (((-112) $) 10)) (-3896 (((-112) $) 9)) (-3229 (((-112) $) 11)) (-2213 (((-112) $) 8)) (-1733 (((-112) $ $) 19)))
+(((-818) (-13 (-1090) (-10 -8 (-15 -4022 ($ (-1166))) (-15 -2213 ((-112) $)) (-15 -3896 ((-112) $)) (-15 -3165 ((-112) $)) (-15 -3229 ((-112) $))))) (T -818))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-818)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
+(-13 (-1090) (-10 -8 (-15 -4022 ($ (-1166))) (-15 -2213 ((-112) $)) (-15 -3896 ((-112) $)) (-15 -3165 ((-112) $)) (-15 -3229 ((-112) $))))
+((-4011 (((-112) $ $) NIL)) (-2681 (($ (-818) (-638 (-1166))) 24)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2325 (((-818) $) 25)) (-1869 (((-638 (-1166)) $) 26)) (-4022 (((-856) $) 23)) (-1733 (((-112) $ $) NIL)))
+(((-819) (-13 (-1090) (-10 -8 (-15 -2325 ((-818) $)) (-15 -1869 ((-638 (-1166)) $)) (-15 -2681 ($ (-818) (-638 (-1166))))))) (T -819))
+((-2325 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-819)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-819)))) (-2681 (*1 *1 *2 *3) (-12 (-5 *2 (-818)) (-5 *3 (-638 (-1166))) (-5 *1 (-819)))))
+(-13 (-1090) (-10 -8 (-15 -2325 ((-818) $)) (-15 -1869 ((-638 (-1166)) $)) (-15 -2681 ($ (-818) (-638 (-1166))))))
+((-3677 (((-1258) (-816) (-315 |#1|) (-112)) 23) (((-1258) (-816) (-315 |#1|)) 79) (((-1148) (-315 |#1|) (-112)) 78) (((-1148) (-315 |#1|)) 77)))
+(((-820 |#1|) (-10 -7 (-15 -3677 ((-1148) (-315 |#1|))) (-15 -3677 ((-1148) (-315 |#1|) (-112))) (-15 -3677 ((-1258) (-816) (-315 |#1|))) (-15 -3677 ((-1258) (-816) (-315 |#1|) (-112)))) (-13 (-822) (-844) (-1042))) (T -820))
+((-3677 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-816)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-822) (-844) (-1042))) (-5 *2 (-1258)) (-5 *1 (-820 *6)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1258)) (-5 *1 (-820 *5)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-820 *5)))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-822) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-820 *4)))))
+(-10 -7 (-15 -3677 ((-1148) (-315 |#1|))) (-15 -3677 ((-1148) (-315 |#1|) (-112))) (-15 -3677 ((-1258) (-816) (-315 |#1|))) (-15 -3677 ((-1258) (-816) (-315 |#1|) (-112))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1938 ((|#1| $) 10)) (-2375 (($ |#1|) 9)) (-3113 (((-112) $) NIL)) (-1387 (($ |#2| (-765)) NIL)) (-2393 (((-765) $) NIL)) (-1590 ((|#2| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3238 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2894 (((-765) $) NIL)) (-4022 (((-856) $) 17) (($ (-561)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-2634 ((|#2| $ (-765)) NIL)) (-4259 (((-765)) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-821 |#1| |#2|) (-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2375 ($ |#1|)) (-15 -1938 (|#1| $)))) (-702 |#2|) (-1042)) (T -821))
+((-2375 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-821 *2 *3)) (-4 *2 (-702 *3)))) (-1938 (*1 *2 *1) (-12 (-4 *2 (-702 *3)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1042)))))
+(-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2375 ($ |#1|)) (-15 -1938 (|#1| $))))
+((-3677 (((-1258) (-816) $ (-112)) 9) (((-1258) (-816) $) 8) (((-1148) $ (-112)) 7) (((-1148) $) 6)))
+(((-822) (-139)) (T -822))
+((-3677 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *4 (-112)) (-5 *2 (-1258)))) (-3677 (*1 *2 *3 *1) (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *2 (-1258)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-112)) (-5 *2 (-1148)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-822)) (-5 *2 (-1148)))))
+(-13 (-10 -8 (-15 -3677 ((-1148) $)) (-15 -3677 ((-1148) $ (-112))) (-15 -3677 ((-1258) (-816) $)) (-15 -3677 ((-1258) (-816) $ (-112)))))
+((-1447 (((-311) (-1148) (-1148)) 12)) (-2670 (((-112) (-1148) (-1148)) 33)) (-2241 (((-112) (-1148)) 32)) (-3393 (((-52) (-1148)) 25)) (-3423 (((-52) (-1148)) 23)) (-2821 (((-52) (-816)) 17)) (-1777 (((-638 (-1148)) (-1148)) 28)) (-3385 (((-638 (-1148))) 27)))
+(((-823) (-10 -7 (-15 -2821 ((-52) (-816))) (-15 -3423 ((-52) (-1148))) (-15 -3393 ((-52) (-1148))) (-15 -3385 ((-638 (-1148)))) (-15 -1777 ((-638 (-1148)) (-1148))) (-15 -2241 ((-112) (-1148))) (-15 -2670 ((-112) (-1148) (-1148))) (-15 -1447 ((-311) (-1148) (-1148))))) (T -823))
+((-1447 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-823)))) (-2670 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-1777 (*1 *2 *3) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148)))) (-3385 (*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-823)))))
+(-10 -7 (-15 -2821 ((-52) (-816))) (-15 -3423 ((-52) (-1148))) (-15 -3393 ((-52) (-1148))) (-15 -3385 ((-638 (-1148)))) (-15 -1777 ((-638 (-1148)) (-1148))) (-15 -2241 ((-112) (-1148))) (-15 -2670 ((-112) (-1148) (-1148))) (-15 -1447 ((-311) (-1148) (-1148))))
+((-4011 (((-112) $ $) 19)) (-2443 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2613 (($ $ $) 72)) (-3903 (((-112) $ $) 73)) (-1630 (((-112) $ (-765)) 8)) (-1627 (($ (-638 |#1|)) 68) (($) 67)) (-3388 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-3776 (($ $) 62)) (-1472 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ |#1| $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-4198 (((-112) $ $) 64)) (-3744 (((-112) $ (-765)) 9)) (-3443 ((|#1| $) 78)) (-3092 (($ $ $) 81)) (-1407 (($ $ $) 80)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2986 ((|#1| $) 79)) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22)) (-2579 (($ $ $) 69)) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-1714 (((-1110) $) 21)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-4057 (((-638 (-2 (|:| -2654 |#1|) (|:| -1724 (-765)))) $) 61)) (-4294 (($ $ |#1|) 71) (($ $ $) 70)) (-3579 (($) 49) (($ (-638 |#1|)) 48)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 50)) (-4022 (((-856) $) 18)) (-1710 (($ (-638 |#1|)) 66) (($) 65)) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20)) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-824 |#1|) (-139) (-844)) (T -824))
+((-3443 (*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844)))))
+(-13 (-730 |t#1|) (-961 |t#1|) (-10 -8 (-15 -3443 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-688 |#1|) . T) ((-730 |#1|) . T) ((-961 |#1|) . T) ((-1088 |#1|) . T) ((-1090) . T) ((-1205) . T))
+((-3576 (((-1258) (-1110) (-1110)) 47)) (-3246 (((-1258) (-815) (-52)) 44)) (-2116 (((-52) (-815)) 16)))
+(((-825) (-10 -7 (-15 -2116 ((-52) (-815))) (-15 -3246 ((-1258) (-815) (-52))) (-15 -3576 ((-1258) (-1110) (-1110))))) (T -825))
+((-3576 (*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1258)) (-5 *1 (-825)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-815)) (-5 *4 (-52)) (-5 *2 (-1258)) (-5 *1 (-825)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-815)) (-5 *2 (-52)) (-5 *1 (-825)))))
+(-10 -7 (-15 -2116 ((-52) (-815))) (-15 -3246 ((-1258) (-815) (-52))) (-15 -3576 ((-1258) (-1110) (-1110))))
+((-4120 (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|)) 12) (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)) 13)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -4120 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))) (-15 -4120 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|)))) (-1090) (-1090)) (T -826))
+((-4120 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-827 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-826 *5 *6)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6)))))
+(-10 -7 (-15 -4120 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))) (-15 -4120 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-21)))) (-2249 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2666 (((-561) $) NIL (|has| |#1| (-842)))) (-1965 (($) NIL (|has| |#1| (-21)) CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 15)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 9)) (-3466 (((-3 $ "failed") $) 40 (|has| |#1| (-842)))) (-2937 (((-3 (-406 (-561)) "failed") $) 49 (|has| |#1| (-543)))) (-3798 (((-112) $) 43 (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) 46 (|has| |#1| (-543)))) (-3201 (((-112) $) NIL (|has| |#1| (-842)))) (-3113 (((-112) $) NIL (|has| |#1| (-842)))) (-2110 (((-112) $) NIL (|has| |#1| (-842)))) (-3443 (($ $ $) NIL (|has| |#1| (-842)))) (-2986 (($ $ $) NIL (|has| |#1| (-842)))) (-1764 (((-1148) $) NIL)) (-4079 (($) 13)) (-3220 (((-112) $) 12)) (-1714 (((-1110) $) NIL)) (-1347 (((-112) $) 11)) (-4022 (((-856) $) 18) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 8) (($ (-561)) NIL (-4007 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))))) (-4259 (((-765)) 34 (|has| |#1| (-842)))) (-3749 (($ $) NIL (|has| |#1| (-842)))) (-2211 (($) 22 (|has| |#1| (-21)) CONST)) (-2222 (($) 31 (|has| |#1| (-842)) CONST)) (-1782 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1733 (((-112) $ $) 20)) (-1773 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1754 (((-112) $ $) 42 (|has| |#1| (-842)))) (-1824 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1813 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-914)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 37 (|has| |#1| (-842))) (($ (-561) $) 25 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-914) $) NIL (|has| |#1| (-21)))))
+(((-827 |#1|) (-13 (-1090) (-410 |#1|) (-10 -8 (-15 -4079 ($)) (-15 -1347 ((-112) $)) (-15 -3220 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|))) (-1090)) (T -827))
+((-4079 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1090)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-2937 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))))
+(-13 (-1090) (-410 |#1|) (-10 -8 (-15 -4079 ($)) (-15 -1347 ((-112) $)) (-15 -3220 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|)))
+((-4022 (((-856) $) 11)))
+(((-828 |#1| |#2|) (-10 -8 (-15 -4022 ((-856) |#1|))) (-829 |#2|) (-1090)) (T -828))
+NIL
+(-10 -8 (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-3269 ((|#1| $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-4013 (((-55) $) 13)) (-1733 (((-112) $ $) 6)))
+(((-829 |#1|) (-139) (-1090)) (T -829))
+((-3269 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1090)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1090)) (-5 *2 (-55)))))
+(-13 (-1090) (-10 -8 (-15 -3269 (|t#1| $)) (-15 -4013 ((-55) $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3938 ((|#1| $) NIL) (((-114) $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-4300 ((|#1| (-114) |#1|) NIL)) (-3113 (((-112) $) NIL)) (-4068 (($ |#1| (-360 (-114))) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3875 (($ $ (-1 |#1| |#1|)) NIL)) (-1655 (($ $ (-1 |#1| |#1|)) NIL)) (-2277 ((|#1| $ |#1|) NIL)) (-2185 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2438 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ (-114) (-561)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-830 |#1|) (-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2438 ($ $)) (-15 -2438 ($ $ $)) (-15 -2185 (|#1| |#1|))) |%noBranch|) (-15 -1655 ($ $ (-1 |#1| |#1|))) (-15 -3875 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -4300 (|#1| (-114) |#1|)) (-15 -4068 ($ |#1| (-360 (-114)))))) (-1042)) (T -830))
+((-2438 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2438 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2185 (*1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))) (-3875 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-5 *1 (-830 *4)) (-4 *4 (-1042)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-830 *3)) (-4 *3 (-1042)))) (-4300 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-830 *2)) (-4 *2 (-1042)))) (-4068 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-5 *1 (-830 *2)) (-4 *2 (-1042)))))
+(-13 (-1042) (-1031 |#1|) (-1031 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2438 ($ $)) (-15 -2438 ($ $ $)) (-15 -2185 (|#1| |#1|))) |%noBranch|) (-15 -1655 ($ $ (-1 |#1| |#1|))) (-15 -3875 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-561))) (-15 ** ($ $ (-561))) (-15 -4300 (|#1| (-114) |#1|)) (-15 -4068 ($ |#1| (-360 (-114))))))
+((-2515 (((-213 (-500)) (-1148)) 9)))
+(((-831) (-10 -7 (-15 -2515 ((-213 (-500)) (-1148))))) (T -831))
+((-2515 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831)))))
+(-10 -7 (-15 -2515 ((-213 (-500)) (-1148))))
+((-4011 (((-112) $ $) NIL)) (-2807 (((-1108) $) 10)) (-3269 (((-504) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4031 (($ (-504) (-1108)) 8)) (-4022 (((-856) $) 26)) (-4013 (((-55) $) 19)) (-1733 (((-112) $ $) 12)))
+(((-832) (-13 (-829 (-504)) (-10 -8 (-15 -2807 ((-1108) $)) (-15 -4031 ($ (-504) (-1108)))))) (T -832))
+((-2807 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-832)))) (-4031 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-832)))))
+(-13 (-829 (-504)) (-10 -8 (-15 -2807 ((-1108) $)) (-15 -4031 ($ (-504) (-1108)))))
+((-4011 (((-112) $ $) 7)) (-3919 (((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 14) (((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 13)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 16) (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 15)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)))
+(((-833) (-139)) (T -833))
+((-1804 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)))))) (-1804 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)))))) (-3919 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) (-5 *2 (-1028)))) (-3919 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *2 (-1028)))))
+(-13 (-1090) (-10 -7 (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -3919 ((-1028) (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -3919 ((-1028) (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-2882 (((-1028) (-638 (-315 (-378))) (-638 (-378))) 147) (((-1028) (-315 (-378)) (-638 (-378))) 145) (((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-837 (-378)))) 144) (((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-315 (-378))) (-638 (-837 (-378)))) 143) (((-1028) (-835)) 117) (((-1028) (-835) (-1054)) 116)) (-1804 (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835) (-1054)) 82) (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835)) 84)) (-1904 (((-1028) (-638 (-315 (-378))) (-638 (-378))) 148) (((-1028) (-835)) 133)))
+(((-834) (-10 -7 (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835) (-1054))) (-15 -2882 ((-1028) (-835) (-1054))) (-15 -2882 ((-1028) (-835))) (-15 -1904 ((-1028) (-835))) (-15 -2882 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-315 (-378))) (-638 (-837 (-378))))) (-15 -2882 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-837 (-378))))) (-15 -2882 ((-1028) (-315 (-378)) (-638 (-378)))) (-15 -2882 ((-1028) (-638 (-315 (-378))) (-638 (-378)))) (-15 -1904 ((-1028) (-638 (-315 (-378))) (-638 (-378)))))) (T -834))
+((-1904 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2882 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378))) (-5 *5 (-638 (-837 (-378)))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2882 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-638 (-378))) (-5 *5 (-638 (-837 (-378)))) (-5 *6 (-638 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-834)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-834)))))
+(-10 -7 (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-835) (-1054))) (-15 -2882 ((-1028) (-835) (-1054))) (-15 -2882 ((-1028) (-835))) (-15 -1904 ((-1028) (-835))) (-15 -2882 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-315 (-378))) (-638 (-837 (-378))))) (-15 -2882 ((-1028) (-315 (-378)) (-638 (-378)) (-638 (-837 (-378))) (-638 (-837 (-378))))) (-15 -2882 ((-1028) (-315 (-378)) (-638 (-378)))) (-15 -2882 ((-1028) (-638 (-315 (-378))) (-638 (-378)))) (-15 -1904 ((-1028) (-638 (-315 (-378))) (-638 (-378)))))
+((-4011 (((-112) $ $) NIL)) (-3938 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) $) 21)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 20) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) 14) (($ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))))) 18)) (-1733 (((-112) $ $) NIL)))
+(((-835) (-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -4022 ($ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -4022 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))))) (-15 -3938 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) $))))) (T -835))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (-5 *1 (-835)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))) (-5 *1 (-835)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))))) (-5 *1 (-835)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224))))))) (-5 *1 (-835)))))
+(-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224))))))) (-15 -4022 ($ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) (-15 -4022 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))))) (-15 -3938 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224))) (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224)))) (|:| |ub| (-638 (-837 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))) $))))
+((-4120 (((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|) (-837 |#2|)) 13) (((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|)) 14)))
+(((-836 |#1| |#2|) (-10 -7 (-15 -4120 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|))) (-15 -4120 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|) (-837 |#2|)))) (-1090) (-1090)) (T -836))
+((-4120 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-837 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-836 *5 *6)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-837 *6)) (-5 *1 (-836 *5 *6)))))
+(-10 -7 (-15 -4120 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|))) (-15 -4120 ((-837 |#2|) (-1 |#2| |#1|) (-837 |#1|) (-837 |#2|) (-837 |#2|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-21)))) (-4059 (((-1110) $) 24)) (-2249 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2666 (((-561) $) NIL (|has| |#1| (-842)))) (-1965 (($) NIL (|has| |#1| (-21)) CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 16)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 9)) (-3466 (((-3 $ "failed") $) 47 (|has| |#1| (-842)))) (-2937 (((-3 (-406 (-561)) "failed") $) 54 (|has| |#1| (-543)))) (-3798 (((-112) $) 49 (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) 52 (|has| |#1| (-543)))) (-3201 (((-112) $) NIL (|has| |#1| (-842)))) (-3603 (($) 13)) (-3113 (((-112) $) NIL (|has| |#1| (-842)))) (-2110 (((-112) $) NIL (|has| |#1| (-842)))) (-3614 (($) 14)) (-3443 (($ $ $) NIL (|has| |#1| (-842)))) (-2986 (($ $ $) NIL (|has| |#1| (-842)))) (-1764 (((-1148) $) NIL)) (-3220 (((-112) $) 12)) (-1714 (((-1110) $) NIL)) (-1347 (((-112) $) 11)) (-4022 (((-856) $) 22) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 8) (($ (-561)) NIL (-4007 (|has| |#1| (-842)) (|has| |#1| (-1031 (-561)))))) (-4259 (((-765)) 41 (|has| |#1| (-842)))) (-3749 (($ $) NIL (|has| |#1| (-842)))) (-2211 (($) 29 (|has| |#1| (-21)) CONST)) (-2222 (($) 38 (|has| |#1| (-842)) CONST)) (-1782 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1733 (((-112) $ $) 27)) (-1773 (((-112) $ $) NIL (|has| |#1| (-842)))) (-1754 (((-112) $ $) 48 (|has| |#1| (-842)))) (-1824 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1813 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-914)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 44 (|has| |#1| (-842))) (($ (-561) $) 32 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-914) $) NIL (|has| |#1| (-21)))))
+(((-837 |#1|) (-13 (-1090) (-410 |#1|) (-10 -8 (-15 -3603 ($)) (-15 -3614 ($)) (-15 -1347 ((-112) $)) (-15 -3220 ((-112) $)) (-15 -4059 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|))) (-1090)) (T -837))
+((-3603 (*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))) (-3614 (*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))) (-2937 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090)))))
+(-13 (-1090) (-410 |#1|) (-10 -8 (-15 -3603 ($)) (-15 -3614 ($)) (-15 -1347 ((-112) $)) (-15 -3220 ((-112) $)) (-15 -4059 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|)))
+((-4011 (((-112) $ $) 7)) (-1393 (((-765)) 22)) (-1332 (($) 25)) (-3443 (($ $ $) 13) (($) 21 T CONST)) (-2986 (($ $ $) 14) (($) 20 T CONST)) (-3198 (((-914) $) 24)) (-1764 (((-1148) $) 9)) (-2413 (($ (-914)) 23)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)))
+(((-838) (-139)) (T -838))
+((-3443 (*1 *1) (-4 *1 (-838))) (-2986 (*1 *1) (-4 *1 (-838))))
+(-13 (-844) (-367) (-10 -8 (-15 -3443 ($) -1514) (-15 -2986 ($) -1514)))
+(((-102) . T) ((-608 (-856)) . T) ((-367) . T) ((-844) . T) ((-1090) . T))
+((-2346 (((-112) (-1253 |#2|) (-1253 |#2|)) 17)) (-4028 (((-112) (-1253 |#2|) (-1253 |#2|)) 18)) (-1649 (((-112) (-1253 |#2|) (-1253 |#2|)) 14)))
+(((-839 |#1| |#2|) (-10 -7 (-15 -1649 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2346 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -4028 ((-112) (-1253 |#2|) (-1253 |#2|)))) (-765) (-786)) (T -839))
+((-4028 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-2346 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-1649 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
+(-10 -7 (-15 -1649 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2346 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -4028 ((-112) (-1253 |#2|) (-1253 |#2|))))
+((-4011 (((-112) $ $) 7)) (-1965 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 26)) (-3113 (((-112) $) 24)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2222 (($) 22 T CONST)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (** (($ $ (-914)) 21) (($ $ (-765)) 25)) (* (($ $ $) 20)))
+(((-840) (-139)) (T -840))
+NIL
+(-13 (-851) (-720))
+(((-102) . T) ((-608 (-856)) . T) ((-720) . T) ((-851) . T) ((-844) . T) ((-1102) . T) ((-1090) . T))
+((-2666 (((-561) $) 17)) (-3201 (((-112) $) 10)) (-2110 (((-112) $) 11)) (-3749 (($ $) 19)))
+(((-841 |#1|) (-10 -8 (-15 -3749 (|#1| |#1|)) (-15 -2666 ((-561) |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -3201 ((-112) |#1|))) (-842)) (T -841))
+NIL
+(-10 -8 (-15 -3749 (|#1| |#1|)) (-15 -2666 ((-561) |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -3201 ((-112) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 24)) (-2249 (((-3 $ "failed") $ $) 26)) (-2666 (((-561) $) 34)) (-1965 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 39)) (-3201 (((-112) $) 36)) (-3113 (((-112) $) 41)) (-2110 (((-112) $) 35)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 43)) (-4259 (((-765)) 44)) (-3749 (($ $) 33)) (-2211 (($) 22 T CONST)) (-2222 (($) 42 T CONST)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (-1824 (($ $ $) 28) (($ $) 27)) (-1813 (($ $ $) 20)) (** (($ $ (-765)) 40) (($ $ (-914)) 37)) (* (($ (-914) $) 21) (($ (-765) $) 25) (($ (-561) $) 29) (($ $ $) 38)))
+(((-842) (-139)) (T -842))
+((-3201 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-561)))) (-3749 (*1 *1 *1) (-4 *1 (-842))))
+(-13 (-785) (-1042) (-720) (-10 -8 (-15 -3201 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -2666 ((-561) $)) (-15 -3749 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-844) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-3443 (($ $ $) 10)) (-2986 (($ $ $) 9)) (-1782 (((-112) $ $) 12)) (-1762 (((-112) $ $) 11)) (-1773 (((-112) $ $) 13)))
+(((-843 |#1|) (-10 -8 (-15 -3443 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1| |#1|)) (-15 -1773 ((-112) |#1| |#1|)) (-15 -1782 ((-112) |#1| |#1|)) (-15 -1762 ((-112) |#1| |#1|))) (-844)) (T -843))
+NIL
+(-10 -8 (-15 -3443 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1| |#1|)) (-15 -1773 ((-112) |#1| |#1|)) (-15 -1782 ((-112) |#1| |#1|)) (-15 -1762 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)))
+(((-844) (-139)) (T -844))
+((-1754 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1762 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1782 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1773 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2986 (*1 *1 *1 *1) (-4 *1 (-844))) (-3443 (*1 *1 *1 *1) (-4 *1 (-844))))
+(-13 (-1090) (-10 -8 (-15 -1754 ((-112) $ $)) (-15 -1762 ((-112) $ $)) (-15 -1782 ((-112) $ $)) (-15 -1773 ((-112) $ $)) (-15 -2986 ($ $ $)) (-15 -3443 ($ $ $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-3751 (($ $ $) 45)) (-3836 (($ $ $) 44)) (-4197 (($ $ $) 42)) (-2833 (($ $ $) 51)) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 46)) (-3306 (((-3 $ "failed") $ $) 49)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2401 (($ $) 35)) (-1550 (($ $ $) 39)) (-1413 (($ $ $) 38)) (-1706 (($ $ $) 47)) (-2411 (($ $ $) 53)) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 41)) (-1927 (((-3 $ "failed") $ $) 48)) (-1756 (((-3 $ "failed") $ |#2|) 28)) (-3609 ((|#2| $) 32)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ |#2|) 12)) (-2742 (((-638 |#2|) $) 18)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-845 |#1| |#2|) (-10 -8 (-15 -1706 (|#1| |#1| |#1|)) (-15 -4083 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3158 |#1|)) |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|)) (-15 -3306 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -1843 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3158 |#1|)) |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -1927 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2742 ((-638 |#2|) |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -4022 ((-856) |#1|))) (-846 |#2|) (-1042)) (T -845))
+NIL
+(-10 -8 (-15 -1706 (|#1| |#1| |#1|)) (-15 -4083 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3158 |#1|)) |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|)) (-15 -3306 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -1843 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3158 |#1|)) |#1| |#1|)) (-15 -2411 (|#1| |#1| |#1|)) (-15 -1927 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -1756 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2742 ((-638 |#2|) |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3751 (($ $ $) 44 (|has| |#1| (-362)))) (-3836 (($ $ $) 45 (|has| |#1| (-362)))) (-4197 (($ $ $) 47 (|has| |#1| (-362)))) (-2833 (($ $ $) 42 (|has| |#1| (-362)))) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 41 (|has| |#1| (-362)))) (-3306 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-3500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 46 (|has| |#1| (-362)))) (-4017 (((-3 (-561) "failed") $) 74 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 71 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 68)) (-3938 (((-561) $) 73 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 70 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 69)) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-2401 (($ $) 54 (|has| |#1| (-450)))) (-3113 (((-112) $) 31)) (-1387 (($ |#1| (-765)) 61)) (-1438 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 56 (|has| |#1| (-553)))) (-1500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 57 (|has| |#1| (-553)))) (-2393 (((-765) $) 65)) (-1550 (($ $ $) 51 (|has| |#1| (-362)))) (-1413 (($ $ $) 52 (|has| |#1| (-362)))) (-1706 (($ $ $) 40 (|has| |#1| (-362)))) (-2411 (($ $ $) 49 (|has| |#1| (-362)))) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 48 (|has| |#1| (-362)))) (-1927 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-2312 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 53 (|has| |#1| (-362)))) (-1590 ((|#1| $) 64)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-553)))) (-2894 (((-765) $) 66)) (-3609 ((|#1| $) 55 (|has| |#1| (-450)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 72 (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) 67)) (-2742 (((-638 |#1|) $) 60)) (-2634 ((|#1| $ (-765)) 62)) (-4259 (((-765)) 28)) (-1367 ((|#1| $ |#1| |#1|) 59)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(((-846 |#1|) (-139) (-1042)) (T -846))
+((-2894 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-638 *3)))) (-1367 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-1756 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-1500 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3)))) (-1438 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-2401 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-2312 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3)))) (-1413 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1550 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1927 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2411 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1843 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3158 *1))) (-4 *1 (-846 *3)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-3500 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-3751 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-3306 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2833 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-4083 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3158 *1))) (-4 *1 (-846 *3)))) (-1706 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(-13 (-1042) (-111 |t#1| |t#1|) (-410 |t#1|) (-10 -8 (-15 -2894 ((-765) $)) (-15 -2393 ((-765) $)) (-15 -1590 (|t#1| $)) (-15 -1619 ($ $)) (-15 -2634 (|t#1| $ (-765))) (-15 -1387 ($ |t#1| (-765))) (-15 -2742 ((-638 |t#1|) $)) (-15 -1367 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -1756 ((-3 $ "failed") $ |t#1|)) (-15 -1500 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -1438 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3609 (|t#1| $)) (-15 -2401 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -2312 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -1413 ($ $ $)) (-15 -1550 ($ $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -2411 ($ $ $)) (-15 -1843 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $)) (-15 -4197 ($ $ $)) (-15 -3500 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -3836 ($ $ $)) (-15 -3751 ($ $ $)) (-15 -3306 ((-3 $ "failed") $ $)) (-15 -2833 ($ $ $)) (-15 -4083 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $)) (-15 -1706 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #0=(-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-410 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #0#) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-2996 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3500 (((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-1438 (((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-553)))) (-1500 (((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-553)))) (-2312 (((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-1367 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31)))
+(((-847 |#1| |#2|) (-10 -7 (-15 -2996 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1367 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-553)) (PROGN (-15 -1500 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1438 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2312 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3500 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1042) (-846 |#1|)) (T -847))
+((-3500 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2312 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-1438 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-1500 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-1367 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042)) (-5 *1 (-847 *2 *3)) (-4 *3 (-846 *2)))) (-2996 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042)) (-5 *1 (-847 *5 *2)) (-4 *2 (-846 *5)))))
+(-10 -7 (-15 -2996 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1367 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-553)) (PROGN (-15 -1500 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1438 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2312 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3500 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3751 (($ $ $) NIL (|has| |#1| (-362)))) (-3836 (($ $ $) NIL (|has| |#1| (-362)))) (-4197 (($ $ $) NIL (|has| |#1| (-362)))) (-2833 (($ $ $) NIL (|has| |#1| (-362)))) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-3306 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 32 (|has| |#1| (-362)))) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450)))) (-1572 (((-856) $ (-856)) NIL)) (-3113 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) NIL)) (-1438 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 28 (|has| |#1| (-553)))) (-1500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 26 (|has| |#1| (-553)))) (-2393 (((-765) $) NIL)) (-1550 (($ $ $) NIL (|has| |#1| (-362)))) (-1413 (($ $ $) NIL (|has| |#1| (-362)))) (-1706 (($ $ $) NIL (|has| |#1| (-362)))) (-2411 (($ $ $) NIL (|has| |#1| (-362)))) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1927 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2312 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 30 (|has| |#1| (-362)))) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2894 (((-765) $) NIL)) (-3609 ((|#1| $) NIL (|has| |#1| (-450)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-1031 (-406 (-561))))) (($ |#1|) NIL)) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) NIL)) (-4259 (((-765)) NIL)) (-1367 ((|#1| $ |#1| |#1|) 15)) (-2211 (($) NIL T CONST)) (-2222 (($) 20 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) 19) (($ $ (-765)) 22)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-848 |#1| |#2| |#3|) (-13 (-846 |#1|) (-10 -8 (-15 -1572 ((-856) $ (-856))))) (-1042) (-99 |#1|) (-1 |#1| |#1|)) (T -848))
+((-1572 (*1 *2 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-846 |#1|) (-10 -8 (-15 -1572 ((-856) $ (-856)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3751 (($ $ $) NIL (|has| |#2| (-362)))) (-3836 (($ $ $) NIL (|has| |#2| (-362)))) (-4197 (($ $ $) NIL (|has| |#2| (-362)))) (-2833 (($ $ $) NIL (|has| |#2| (-362)))) (-4083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#2| (-362)))) (-3306 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-362)))) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) NIL)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#2| (-450)))) (-3113 (((-112) $) NIL)) (-1387 (($ |#2| (-765)) 16)) (-1438 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-553)))) (-1500 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-553)))) (-2393 (((-765) $) NIL)) (-1550 (($ $ $) NIL (|has| |#2| (-362)))) (-1413 (($ $ $) NIL (|has| |#2| (-362)))) (-1706 (($ $ $) NIL (|has| |#2| (-362)))) (-2411 (($ $ $) NIL (|has| |#2| (-362)))) (-1843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#2| (-362)))) (-1927 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-2312 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-362)))) (-1590 ((|#2| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553)))) (-2894 (((-765) $) NIL)) (-3609 ((|#2| $) NIL (|has| |#2| (-450)))) (-4022 (((-856) $) 23) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) NIL) (($ (-1249 |#1|)) 18)) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-765)) NIL)) (-4259 (((-765)) NIL)) (-1367 ((|#2| $ |#2| |#2|) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) 13 T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-849 |#1| |#2| |#3| |#4|) (-13 (-846 |#2|) (-611 (-1249 |#1|))) (-1166) (-1042) (-99 |#2|) (-1 |#2| |#2|)) (T -849))
+NIL
+(-13 (-846 |#2|) (-611 (-1249 |#1|)))
+((-4346 ((|#1| (-765) |#1|) 35 (|has| |#1| (-38 (-406 (-561)))))) (-3110 ((|#1| (-765) (-765) |#1|) 27) ((|#1| (-765) |#1|) 20)) (-4304 ((|#1| (-765) |#1|) 31)) (-2475 ((|#1| (-765) |#1|) 29)) (-1476 ((|#1| (-765) |#1|) 28)))
+(((-850 |#1|) (-10 -7 (-15 -1476 (|#1| (-765) |#1|)) (-15 -2475 (|#1| (-765) |#1|)) (-15 -4304 (|#1| (-765) |#1|)) (-15 -3110 (|#1| (-765) |#1|)) (-15 -3110 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -4346 (|#1| (-765) |#1|)) |%noBranch|)) (-171)) (T -850))
+((-4346 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-171)))) (-3110 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-3110 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-4304 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-2475 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-1476 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
+(-10 -7 (-15 -1476 (|#1| (-765) |#1|)) (-15 -2475 (|#1| (-765) |#1|)) (-15 -4304 (|#1| (-765) |#1|)) (-15 -3110 (|#1| (-765) |#1|)) (-15 -3110 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -4346 (|#1| (-765) |#1|)) |%noBranch|))
+((-4011 (((-112) $ $) 7)) (-3443 (($ $ $) 13)) (-2986 (($ $ $) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1782 (((-112) $ $) 16)) (-1762 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 15)) (-1754 (((-112) $ $) 18)) (** (($ $ (-914)) 21)) (* (($ $ $) 20)))
(((-851) (-139)) (T -851))
-((-2432 (*1 *2 *1 *3) (-12 (-4 *1 (-851)) (-5 *2 (-681 (-129))) (-5 *3 (-129)))) (-3025 (*1 *2 *1 *3) (-12 (-4 *1 (-851)) (-5 *3 (-128)) (-5 *2 (-762)))))
-(-13 (-172) (-10 -8 (-15 -2432 ((-681 (-129)) $ (-129))) (-15 -3025 ((-762) $ (-128)))))
+NIL
+(-13 (-844) (-1102))
+(((-102) . T) ((-608 (-856)) . T) ((-844) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2484 (((-561) $) 12)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 18) (($ (-561)) 11)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 8)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 9)))
+(((-852) (-13 (-844) (-10 -8 (-15 -4022 ($ (-561))) (-15 -2484 ((-561) $))))) (T -852))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-852)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-852)))))
+(-13 (-844) (-10 -8 (-15 -4022 ($ (-561))) (-15 -2484 ((-561) $))))
+((-2569 (((-765) $ (-128)) 18)))
+(((-853 |#1|) (-10 -8 (-15 -2569 ((-765) |#1| (-128)))) (-854)) (T -853))
+NIL
+(-10 -8 (-15 -2569 ((-765) |#1| (-128))))
+((-2569 (((-765) $ (-128)) 7)) (-2623 (((-684 (-129)) $ (-129)) 8)) (-2836 (($ $) 6)))
+(((-854) (-139)) (T -854))
+((-2623 (*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *2 (-684 (-129))) (-5 *3 (-129)))) (-2569 (*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *3 (-128)) (-5 *2 (-765)))))
+(-13 (-172) (-10 -8 (-15 -2623 ((-684 (-129)) $ (-129))) (-15 -2569 ((-765) $ (-128)))))
(((-172) . T))
-((-3025 (((-762) $ (-128)) NIL)) (-2432 (((-681 (-129)) $ (-129)) 21)) (-3725 (($ (-387)) 12) (($ (-1145)) 14)) (-2513 (((-112) $) 18)) (-3940 (((-853) $) 25)) (-1388 (($ $) 22)))
-(((-852) (-13 (-851) (-605 (-853)) (-10 -8 (-15 -3725 ($ (-387))) (-15 -3725 ($ (-1145))) (-15 -2513 ((-112) $))))) (T -852))
-((-3725 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-852)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-852)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852)))))
-(-13 (-851) (-605 (-853)) (-10 -8 (-15 -3725 ($ (-387))) (-15 -3725 ($ (-1145))) (-15 -2513 ((-112) $))))
-((-3929 (((-112) $ $) NIL) (($ $ $) 77)) (-1964 (($ $ $) 114)) (-3592 (((-558) $) 31) (((-558)) 36)) (-1622 (($ (-558)) 45)) (-2465 (($ $ $) 46) (($ (-635 $)) 76)) (-3136 (($ $ (-635 $)) 74)) (-3921 (((-558) $) 34)) (-3371 (($ $ $) 65)) (-2757 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2102 (((-558) $) 33)) (-2356 (($ $ $) 64)) (-3503 (($ $) 104)) (-3973 (($ $ $) 118)) (-1629 (($ (-635 $)) 53)) (-2969 (($ $ (-635 $)) 71)) (-2512 (($ (-558) (-558)) 47)) (-4350 (($ $) 115) (($ $ $) 116)) (-1540 (($ $ (-558)) 41) (($ $) 44)) (-1709 (($ $ $) 89)) (-2316 (($ $ $) 121)) (-3891 (($ $) 105)) (-2881 (($ $ $) 90)) (-2576 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3130 (((-1251) $) 10)) (-4144 (($ $) 108) (($ $ (-762)) 111)) (-3825 (($ $ $) 67)) (-1810 (($ $ $) 66)) (-2663 (($ $ (-635 $)) 100)) (-1393 (($ $ $) 103)) (-4180 (($ (-635 $)) 51)) (-2058 (($ $) 62) (($ (-635 $)) 63)) (-3502 (($ $ $) 112)) (-3777 (($ $) 106)) (-3663 (($ $ $) 117)) (-3364 (($ (-558)) 21) (($ (-1163)) 23) (($ (-1145)) 30) (($ (-224)) 25)) (-2168 (($ $ $) 93)) (-2143 (($ $) 94)) (-3582 (((-1251) (-1145)) 15)) (-3763 (($ (-1145)) 14)) (-2144 (($ (-635 (-635 $))) 50)) (-1524 (($ $ (-558)) 40) (($ $) 43)) (-2510 (((-1145) $) NIL)) (-1696 (($ $ $) 120)) (-1426 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-1381 (((-112) $) 98)) (-3059 (($ $ (-635 $)) 101) (($ $ $ $) 102)) (-4045 (($ (-558)) 37)) (-2361 (((-558) $) 32) (((-558)) 35)) (-3054 (($ $ $) 38) (($ (-635 $)) 75)) (-1688 (((-1107) $) NIL)) (-2861 (($ $ $) 91)) (-2876 (($) 13)) (-2276 (($ $ (-635 $)) 99)) (-2698 (((-1145) (-1145)) 8)) (-2823 (($ $) 107) (($ $ (-762)) 110)) (-2869 (($ $ $) 88)) (-3780 (($ $ (-762)) 126)) (-2661 (($ (-635 $)) 52)) (-3940 (((-853) $) 19)) (-2814 (($ $ (-558)) 39) (($ $) 42)) (-1654 (($ $) 60) (($ (-635 $)) 61)) (-4008 (($ $) 58) (($ (-635 $)) 59)) (-2638 (($ $) 113)) (-3655 (($ (-635 $)) 57)) (-3207 (($ $ $) 97)) (-4196 (($ $ $) 119)) (-2157 (($ $ $) 92)) (-3746 (($ $ $) 95) (($ $) 96)) (-1757 (($ $ $) 81)) (-1737 (($ $ $) 79)) (-1708 (((-112) $ $) 16) (($ $ $) 17)) (-1749 (($ $ $) 80)) (-1728 (($ $ $) 78)) (-1805 (($ $ $) 86)) (-1796 (($ $ $) 83) (($ $) 84)) (-1785 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-853) (-13 (-1087) (-10 -8 (-15 -3130 ((-1251) $)) (-15 -3763 ($ (-1145))) (-15 -3582 ((-1251) (-1145))) (-15 -3364 ($ (-558))) (-15 -3364 ($ (-1163))) (-15 -3364 ($ (-1145))) (-15 -3364 ($ (-224))) (-15 -2876 ($)) (-15 -2698 ((-1145) (-1145))) (-15 -3592 ((-558) $)) (-15 -2361 ((-558) $)) (-15 -3592 ((-558))) (-15 -2361 ((-558))) (-15 -2102 ((-558) $)) (-15 -3921 ((-558) $)) (-15 -4045 ($ (-558))) (-15 -1622 ($ (-558))) (-15 -2512 ($ (-558) (-558))) (-15 -1524 ($ $ (-558))) (-15 -1540 ($ $ (-558))) (-15 -2814 ($ $ (-558))) (-15 -1524 ($ $)) (-15 -1540 ($ $)) (-15 -2814 ($ $)) (-15 -3054 ($ $ $)) (-15 -2465 ($ $ $)) (-15 -3054 ($ (-635 $))) (-15 -2465 ($ (-635 $))) (-15 -2663 ($ $ (-635 $))) (-15 -3059 ($ $ (-635 $))) (-15 -3059 ($ $ $ $)) (-15 -1393 ($ $ $)) (-15 -1381 ((-112) $)) (-15 -2276 ($ $ (-635 $))) (-15 -3503 ($ $)) (-15 -1696 ($ $ $)) (-15 -2638 ($ $)) (-15 -2144 ($ (-635 (-635 $)))) (-15 -1964 ($ $ $)) (-15 -4350 ($ $)) (-15 -4350 ($ $ $)) (-15 -3663 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -4196 ($ $ $)) (-15 -2316 ($ $ $)) (-15 -3780 ($ $ (-762))) (-15 -3207 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3371 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -3825 ($ $ $)) (-15 -2969 ($ $ (-635 $))) (-15 -3136 ($ $ (-635 $))) (-15 -3891 ($ $)) (-15 -2823 ($ $)) (-15 -2823 ($ $ (-762))) (-15 -4144 ($ $)) (-15 -4144 ($ $ (-762))) (-15 -3777 ($ $)) (-15 -3502 ($ $ $)) (-15 -2757 ($ $)) (-15 -2757 ($ $ $)) (-15 -2757 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -1426 ($ $)) (-15 -1426 ($ $ $)) (-15 -1426 ($ $ $ $)) (-15 -4008 ($ $)) (-15 -4008 ($ (-635 $))) (-15 -1654 ($ $)) (-15 -1654 ($ (-635 $))) (-15 -2058 ($ $)) (-15 -2058 ($ (-635 $))) (-15 -4180 ($ (-635 $))) (-15 -2661 ($ (-635 $))) (-15 -1629 ($ (-635 $))) (-15 -3655 ($ (-635 $))) (-15 -1708 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -1728 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -1749 ($ $ $)) (-15 -1757 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1796 ($ $ $)) (-15 -1796 ($ $)) (-15 * ($ $ $)) (-15 -1805 ($ $ $)) (-15 ** ($ $ $)) (-15 -2869 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -2157 ($ $ $)) (-15 -2168 ($ $ $)) (-15 -2143 ($ $)) (-15 -3746 ($ $ $)) (-15 -3746 ($ $))))) (T -853))
-((-3130 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-853)))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-853)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-853)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-853)))) (-2876 (*1 *1) (-5 *1 (-853))) (-2698 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3592 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-2361 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-4045 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-1622 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-2512 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-1524 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))) (-1524 (*1 *1 *1) (-5 *1 (-853))) (-1540 (*1 *1 *1) (-5 *1 (-853))) (-2814 (*1 *1 *1) (-5 *1 (-853))) (-3054 (*1 *1 *1 *1) (-5 *1 (-853))) (-2465 (*1 *1 *1 *1) (-5 *1 (-853))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3059 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-1393 (*1 *1 *1 *1) (-5 *1 (-853))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3503 (*1 *1 *1) (-5 *1 (-853))) (-1696 (*1 *1 *1 *1) (-5 *1 (-853))) (-2638 (*1 *1 *1) (-5 *1 (-853))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-853)))) (-1964 (*1 *1 *1 *1) (-5 *1 (-853))) (-4350 (*1 *1 *1) (-5 *1 (-853))) (-4350 (*1 *1 *1 *1) (-5 *1 (-853))) (-3663 (*1 *1 *1 *1) (-5 *1 (-853))) (-3973 (*1 *1 *1 *1) (-5 *1 (-853))) (-4196 (*1 *1 *1 *1) (-5 *1 (-853))) (-2316 (*1 *1 *1 *1) (-5 *1 (-853))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853)))) (-3207 (*1 *1 *1 *1) (-5 *1 (-853))) (-2356 (*1 *1 *1 *1) (-5 *1 (-853))) (-3371 (*1 *1 *1 *1) (-5 *1 (-853))) (-1810 (*1 *1 *1 *1) (-5 *1 (-853))) (-3825 (*1 *1 *1 *1) (-5 *1 (-853))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3891 (*1 *1 *1) (-5 *1 (-853))) (-2823 (*1 *1 *1) (-5 *1 (-853))) (-2823 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853)))) (-4144 (*1 *1 *1) (-5 *1 (-853))) (-4144 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853)))) (-3777 (*1 *1 *1) (-5 *1 (-853))) (-3502 (*1 *1 *1 *1) (-5 *1 (-853))) (-2757 (*1 *1 *1) (-5 *1 (-853))) (-2757 (*1 *1 *1 *1) (-5 *1 (-853))) (-2757 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-2576 (*1 *1 *1) (-5 *1 (-853))) (-2576 (*1 *1 *1 *1) (-5 *1 (-853))) (-2576 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-1426 (*1 *1 *1) (-5 *1 (-853))) (-1426 (*1 *1 *1 *1) (-5 *1 (-853))) (-1426 (*1 *1 *1 *1 *1) (-5 *1 (-853))) (-4008 (*1 *1 *1) (-5 *1 (-853))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-1654 (*1 *1 *1) (-5 *1 (-853))) (-1654 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-2058 (*1 *1 *1) (-5 *1 (-853))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-4180 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-2661 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-1629 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))) (-1708 (*1 *1 *1 *1) (-5 *1 (-853))) (-3929 (*1 *1 *1 *1) (-5 *1 (-853))) (-1728 (*1 *1 *1 *1) (-5 *1 (-853))) (-1737 (*1 *1 *1 *1) (-5 *1 (-853))) (-1749 (*1 *1 *1 *1) (-5 *1 (-853))) (-1757 (*1 *1 *1 *1) (-5 *1 (-853))) (-1785 (*1 *1 *1 *1) (-5 *1 (-853))) (-1796 (*1 *1 *1 *1) (-5 *1 (-853))) (-1796 (*1 *1 *1) (-5 *1 (-853))) (* (*1 *1 *1 *1) (-5 *1 (-853))) (-1805 (*1 *1 *1 *1) (-5 *1 (-853))) (** (*1 *1 *1 *1) (-5 *1 (-853))) (-2869 (*1 *1 *1 *1) (-5 *1 (-853))) (-1709 (*1 *1 *1 *1) (-5 *1 (-853))) (-2881 (*1 *1 *1 *1) (-5 *1 (-853))) (-2861 (*1 *1 *1 *1) (-5 *1 (-853))) (-2157 (*1 *1 *1 *1) (-5 *1 (-853))) (-2168 (*1 *1 *1 *1) (-5 *1 (-853))) (-2143 (*1 *1 *1) (-5 *1 (-853))) (-3746 (*1 *1 *1 *1) (-5 *1 (-853))) (-3746 (*1 *1 *1) (-5 *1 (-853))))
-(-13 (-1087) (-10 -8 (-15 -3130 ((-1251) $)) (-15 -3763 ($ (-1145))) (-15 -3582 ((-1251) (-1145))) (-15 -3364 ($ (-558))) (-15 -3364 ($ (-1163))) (-15 -3364 ($ (-1145))) (-15 -3364 ($ (-224))) (-15 -2876 ($)) (-15 -2698 ((-1145) (-1145))) (-15 -3592 ((-558) $)) (-15 -2361 ((-558) $)) (-15 -3592 ((-558))) (-15 -2361 ((-558))) (-15 -2102 ((-558) $)) (-15 -3921 ((-558) $)) (-15 -4045 ($ (-558))) (-15 -1622 ($ (-558))) (-15 -2512 ($ (-558) (-558))) (-15 -1524 ($ $ (-558))) (-15 -1540 ($ $ (-558))) (-15 -2814 ($ $ (-558))) (-15 -1524 ($ $)) (-15 -1540 ($ $)) (-15 -2814 ($ $)) (-15 -3054 ($ $ $)) (-15 -2465 ($ $ $)) (-15 -3054 ($ (-635 $))) (-15 -2465 ($ (-635 $))) (-15 -2663 ($ $ (-635 $))) (-15 -3059 ($ $ (-635 $))) (-15 -3059 ($ $ $ $)) (-15 -1393 ($ $ $)) (-15 -1381 ((-112) $)) (-15 -2276 ($ $ (-635 $))) (-15 -3503 ($ $)) (-15 -1696 ($ $ $)) (-15 -2638 ($ $)) (-15 -2144 ($ (-635 (-635 $)))) (-15 -1964 ($ $ $)) (-15 -4350 ($ $)) (-15 -4350 ($ $ $)) (-15 -3663 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -4196 ($ $ $)) (-15 -2316 ($ $ $)) (-15 -3780 ($ $ (-762))) (-15 -3207 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3371 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -3825 ($ $ $)) (-15 -2969 ($ $ (-635 $))) (-15 -3136 ($ $ (-635 $))) (-15 -3891 ($ $)) (-15 -2823 ($ $)) (-15 -2823 ($ $ (-762))) (-15 -4144 ($ $)) (-15 -4144 ($ $ (-762))) (-15 -3777 ($ $)) (-15 -3502 ($ $ $)) (-15 -2757 ($ $)) (-15 -2757 ($ $ $)) (-15 -2757 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -1426 ($ $)) (-15 -1426 ($ $ $)) (-15 -1426 ($ $ $ $)) (-15 -4008 ($ $)) (-15 -4008 ($ (-635 $))) (-15 -1654 ($ $)) (-15 -1654 ($ (-635 $))) (-15 -2058 ($ $)) (-15 -2058 ($ (-635 $))) (-15 -4180 ($ (-635 $))) (-15 -2661 ($ (-635 $))) (-15 -1629 ($ (-635 $))) (-15 -3655 ($ (-635 $))) (-15 -1708 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -1728 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -1749 ($ $ $)) (-15 -1757 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1796 ($ $ $)) (-15 -1796 ($ $)) (-15 * ($ $ $)) (-15 -1805 ($ $ $)) (-15 ** ($ $ $)) (-15 -2869 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -2157 ($ $ $)) (-15 -2168 ($ $ $)) (-15 -2143 ($ $)) (-15 -3746 ($ $ $)) (-15 -3746 ($ $))))
-((-2452 (((-1251) (-635 (-52))) 24)) (-2770 (((-1251) (-1145) (-853)) 14) (((-1251) (-853)) 9) (((-1251) (-1145)) 11)))
-(((-854) (-10 -7 (-15 -2770 ((-1251) (-1145))) (-15 -2770 ((-1251) (-853))) (-15 -2770 ((-1251) (-1145) (-853))) (-15 -2452 ((-1251) (-635 (-52)))))) (T -854))
-((-2452 (*1 *2 *3) (-12 (-5 *3 (-635 (-52))) (-5 *2 (-1251)) (-5 *1 (-854)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-854)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-854)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-854)))))
-(-10 -7 (-15 -2770 ((-1251) (-1145))) (-15 -2770 ((-1251) (-853))) (-15 -2770 ((-1251) (-1145) (-853))) (-15 -2452 ((-1251) (-635 (-52)))))
-((-3929 (((-112) $ $) NIL)) (-2317 (((-3 $ "failed") (-1163)) 33)) (-2507 (((-762)) 31)) (-3692 (($) NIL)) (-2142 (($ $ $) NIL) (($) NIL T CONST)) (-2281 (($ $ $) NIL) (($) NIL T CONST)) (-1486 (((-911) $) 29)) (-2510 (((-1145) $) 39)) (-2349 (($ (-911)) 28)) (-1688 (((-1107) $) NIL)) (-3441 (((-1163) $) 13) (((-534) $) 19) (((-882 (-378)) $) 26) (((-882 (-558)) $) 22)) (-3940 (((-853) $) 16)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 36)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 35)))
-(((-855 |#1|) (-13 (-835) (-606 (-1163)) (-606 (-534)) (-606 (-882 (-378))) (-606 (-882 (-558))) (-10 -8 (-15 -2317 ((-3 $ "failed") (-1163))))) (-635 (-1163))) (T -855))
-((-2317 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-855 *3)) (-14 *3 (-635 *2)))))
-(-13 (-835) (-606 (-1163)) (-606 (-534)) (-606 (-882 (-378))) (-606 (-882 (-558))) (-10 -8 (-15 -2317 ((-3 $ "failed") (-1163)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-942 |#1|)) NIL) (((-942 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-2417 (((-762)) NIL)) (-3458 (((-1251) (-762)) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1805 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-856 |#1| |#2| |#3| |#4|) (-13 (-1039) (-488 (-942 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1805 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3458 ((-1251) (-762))))) (-1039) (-635 (-1163)) (-635 (-762)) (-762)) (T -856))
-((-1805 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-856 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-762))) (-14 *5 (-762)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-856 *4 *5 *6 *7)) (-4 *4 (-1039)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 *3)) (-14 *7 *3))))
-(-13 (-1039) (-488 (-942 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1805 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3458 ((-1251) (-762)))))
-((-3812 (((-3 (-173 |#3|) "failed") (-762) (-762) |#2| |#2|) 31)) (-1956 (((-3 (-406 |#3|) "failed") (-762) (-762) |#2| |#2|) 24)))
-(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -1956 ((-3 (-406 |#3|) "failed") (-762) (-762) |#2| |#2|)) (-15 -3812 ((-3 (-173 |#3|) "failed") (-762) (-762) |#2| |#2|))) (-362) (-1237 |#1|) (-1222 |#1|)) (T -857))
-((-3812 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5)))) (-1956 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5)))))
-(-10 -7 (-15 -1956 ((-3 (-406 |#3|) "failed") (-762) (-762) |#2| |#2|)) (-15 -3812 ((-3 (-173 |#3|) "failed") (-762) (-762) |#2| |#2|)))
-((-1956 (((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) 26)))
-(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -1956 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (-15 -1956 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|)))) (-362) (-1163) |#1|) (T -858))
-((-1956 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5))) (-5 *1 (-858 *5 *6 *7)))) (-1956 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5))) (-5 *1 (-858 *5 *6 *7)))))
-(-10 -7 (-15 -1956 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (-15 -1956 ((-3 (-406 (-1219 |#2| |#1|)) "failed") (-762) (-762) (-1238 |#1| |#2| |#3|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-3948 (($ $ (-558)) 63)) (-1599 (((-112) $ $) 60)) (-3457 (($) 17 T CONST)) (-4350 (($ (-1159 (-558)) (-558)) 62)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2202 (($ $) 65)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-2532 (((-762) $) 70)) (-3999 (((-112) $) 31)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-3142 (((-558)) 67)) (-3511 (((-558) $) 66)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2319 (($ $ (-558)) 69)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3035 (((-1143 (-558)) $) 71)) (-1559 (($ $) 68)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-1422 (((-558) $ (-558)) 64)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-859 |#1|) (-139) (-558)) (T -859))
-((-3035 (*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-1143 (-558))))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-762)))) (-2319 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-1559 (*1 *1 *1) (-4 *1 (-859 *2))) (-3142 (*1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-2202 (*1 *1 *1) (-4 *1 (-859 *2))) (-1422 (*1 *2 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))) (-4350 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *3 (-558)) (-4 *1 (-859 *4)))))
-(-13 (-306) (-146) (-10 -8 (-15 -3035 ((-1143 (-558)) $)) (-15 -2532 ((-762) $)) (-15 -2319 ($ $ (-558))) (-15 -1559 ($ $)) (-15 -3142 ((-558))) (-15 -3511 ((-558) $)) (-15 -2202 ($ $)) (-15 -1422 ((-558) $ (-558))) (-15 -3948 ($ $ (-558))) (-15 -4350 ($ (-1159 (-558)) (-558)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $ (-558)) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-4350 (($ (-1159 (-558)) (-558)) NIL)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2202 (($ $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2532 (((-762) $) NIL)) (-3999 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3142 (((-558)) NIL)) (-3511 (((-558) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2319 (($ $ (-558)) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3035 (((-1143 (-558)) $) NIL)) (-1559 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL)) (-2417 (((-762)) NIL)) (-2671 (((-112) $ $) NIL)) (-1422 (((-558) $ (-558)) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
-(((-860 |#1|) (-859 |#1|) (-558)) (T -860))
-NIL
-(-859 |#1|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 (((-860 |#1|) $) NIL (|has| (-860 |#1|) (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| (-860 |#1|) (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-860 |#1|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| (-860 |#1|) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-860 |#1|) (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| (-860 |#1|) (-1028 (-558))))) (-3226 (((-860 |#1|) $) NIL) (((-1163) $) NIL (|has| (-860 |#1|) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-860 |#1|) (-1028 (-558)))) (((-558) $) NIL (|has| (-860 |#1|) (-1028 (-558))))) (-1685 (($ $) NIL) (($ (-558) $) NIL)) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-860 |#1|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-860 |#1|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-860 |#1|))) (|:| |vec| (-1246 (-860 |#1|)))) (-679 $) (-1246 $)) NIL) (((-679 (-860 |#1|)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-860 |#1|) (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| (-860 |#1|) (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-860 |#1|) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-860 |#1|) (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 (((-860 |#1|) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| (-860 |#1|) (-1138)))) (-2032 (((-112) $) NIL (|has| (-860 |#1|) (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| (-860 |#1|) (-841)))) (-2281 (($ $ $) NIL (|has| (-860 |#1|) (-841)))) (-3397 (($ (-1 (-860 |#1|) (-860 |#1|)) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-860 |#1|) (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| (-860 |#1|) (-306)))) (-4259 (((-860 |#1|) $) NIL (|has| (-860 |#1|) (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-860 |#1|) (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 (-860 |#1|)) (-635 (-860 |#1|))) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-860 |#1|) (-860 |#1|)) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-293 (-860 |#1|))) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-635 (-293 (-860 |#1|)))) NIL (|has| (-860 |#1|) (-308 (-860 |#1|)))) (($ $ (-635 (-1163)) (-635 (-860 |#1|))) NIL (|has| (-860 |#1|) (-512 (-1163) (-860 |#1|)))) (($ $ (-1163) (-860 |#1|)) NIL (|has| (-860 |#1|) (-512 (-1163) (-860 |#1|))))) (-1562 (((-762) $) NIL)) (-2276 (($ $ (-860 |#1|)) NIL (|has| (-860 |#1|) (-285 (-860 |#1|) (-860 |#1|))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| (-860 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-860 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1 (-860 |#1|) (-860 |#1|)) (-762)) NIL) (($ $ (-1 (-860 |#1|) (-860 |#1|))) NIL)) (-4218 (($ $) NIL)) (-3327 (((-860 |#1|) $) NIL)) (-3441 (((-882 (-558)) $) NIL (|has| (-860 |#1|) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-860 |#1|) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-860 |#1|) (-606 (-534)))) (((-378) $) NIL (|has| (-860 |#1|) (-1012))) (((-224) $) NIL (|has| (-860 |#1|) (-1012)))) (-3537 (((-173 (-406 (-558))) $) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-860 |#1|) (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL) (($ (-860 |#1|)) NIL) (($ (-1163)) NIL (|has| (-860 |#1|) (-1028 (-1163))))) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-860 |#1|) (-899))) (|has| (-860 |#1|) (-144))))) (-2417 (((-762)) NIL)) (-2912 (((-860 |#1|) $) NIL (|has| (-860 |#1|) (-543)))) (-2671 (((-112) $ $) NIL)) (-1422 (((-406 (-558)) $ (-558)) NIL)) (-4241 (($ $) NIL (|has| (-860 |#1|) (-811)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $) NIL (|has| (-860 |#1|) (-232))) (($ $ (-762)) NIL (|has| (-860 |#1|) (-232))) (($ $ (-1163)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-860 |#1|) (-890 (-1163)))) (($ $ (-1 (-860 |#1|) (-860 |#1|)) (-762)) NIL) (($ $ (-1 (-860 |#1|) (-860 |#1|))) NIL)) (-1757 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-860 |#1|) (-841)))) (-1805 (($ $ $) NIL) (($ (-860 |#1|) (-860 |#1|)) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-860 |#1|) $) NIL) (($ $ (-860 |#1|)) NIL)))
-(((-861 |#1|) (-13 (-982 (-860 |#1|)) (-10 -8 (-15 -1422 ((-406 (-558)) $ (-558))) (-15 -3537 ((-173 (-406 (-558))) $)) (-15 -1685 ($ $)) (-15 -1685 ($ (-558) $)))) (-558)) (T -861))
-((-1422 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-861 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-861 *3)) (-14 *3 (-558)))) (-1685 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-14 *2 (-558)))) (-1685 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-861 *3)) (-14 *3 *2))))
-(-13 (-982 (-860 |#1|)) (-10 -8 (-15 -1422 ((-406 (-558)) $ (-558))) (-15 -3537 ((-173 (-406 (-558))) $)) (-15 -1685 ($ $)) (-15 -1685 ($ (-558) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 ((|#2| $) NIL (|has| |#2| (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| |#2| (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (|has| |#2| (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558))))) (-3226 ((|#2| $) NIL) (((-1163) $) NIL (|has| |#2| (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-558)))) (((-558) $) NIL (|has| |#2| (-1028 (-558))))) (-1685 (($ $) 31) (($ (-558) $) 32)) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) 53)) (-3692 (($) NIL (|has| |#2| (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) NIL (|has| |#2| (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| |#2| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| |#2| (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 ((|#2| $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| |#2| (-1138)))) (-2032 (((-112) $) NIL (|has| |#2| (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| |#2| (-841)))) (-2281 (($ $ $) NIL (|has| |#2| (-841)))) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 49)) (-1823 (($) NIL (|has| |#2| (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| |#2| (-306)))) (-4259 ((|#2| $) NIL (|has| |#2| (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 |#2|) (-635 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-293 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-293 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-1163)) (-635 |#2|)) NIL (|has| |#2| (-512 (-1163) |#2|))) (($ $ (-1163) |#2|) NIL (|has| |#2| (-512 (-1163) |#2|)))) (-1562 (((-762) $) NIL)) (-2276 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) NIL (|has| |#2| (-232))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4218 (($ $) NIL)) (-3327 ((|#2| $) NIL)) (-3441 (((-882 (-558)) $) NIL (|has| |#2| (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| |#2| (-606 (-882 (-378))))) (((-534) $) NIL (|has| |#2| (-606 (-534)))) (((-378) $) NIL (|has| |#2| (-1012))) (((-224) $) NIL (|has| |#2| (-1012)))) (-3537 (((-173 (-406 (-558))) $) 68)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-3940 (((-853) $) 86) (($ (-558)) 19) (($ $) NIL) (($ (-406 (-558))) 24) (($ |#2|) 18) (($ (-1163)) NIL (|has| |#2| (-1028 (-1163))))) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2417 (((-762)) NIL)) (-2912 ((|#2| $) NIL (|has| |#2| (-543)))) (-2671 (((-112) $ $) NIL)) (-1422 (((-406 (-558)) $ (-558)) 60)) (-4241 (($ $) NIL (|has| |#2| (-811)))) (-2207 (($) 14 T CONST)) (-2220 (($) 16 T CONST)) (-3042 (($ $) NIL (|has| |#2| (-232))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1708 (((-112) $ $) 35)) (-1749 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1805 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1796 (($ $) 39) (($ $ $) 41)) (-1785 (($ $ $) 37)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) 50)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 42) (($ $ $) 44) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-862 |#1| |#2|) (-13 (-982 |#2|) (-10 -8 (-15 -1422 ((-406 (-558)) $ (-558))) (-15 -3537 ((-173 (-406 (-558))) $)) (-15 -1685 ($ $)) (-15 -1685 ($ (-558) $)))) (-558) (-859 |#1|)) (T -862))
-((-1422 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-558))) (-5 *1 (-862 *4 *5)) (-5 *3 (-558)) (-4 *5 (-859 *4)))) (-3537 (*1 *2 *1) (-12 (-14 *3 (-558)) (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-862 *3 *4)) (-4 *4 (-859 *3)))) (-1685 (*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-862 *2 *3)) (-4 *3 (-859 *2)))) (-1685 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-862 *3 *4)) (-4 *4 (-859 *3)))))
-(-13 (-982 |#2|) (-10 -8 (-15 -1422 ((-406 (-558)) $ (-558))) (-15 -3537 ((-173 (-406 (-558))) $)) (-15 -1685 ($ $)) (-15 -1685 ($ (-558) $))))
-((-3929 (((-112) $ $) NIL (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))) (-1601 ((|#2| $) 12)) (-2384 (($ |#1| |#2|) 9)) (-2510 (((-1145) $) NIL (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))) (-1688 (((-1107) $) NIL (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#1| $) 11)) (-3952 (($ |#1| |#2|) 10)) (-3940 (((-853) $) 18 (-3994 (-12 (|has| |#1| (-605 (-853))) (|has| |#2| (-605 (-853)))) (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087)))))) (-1708 (((-112) $ $) 22 (-12 (|has| |#1| (-1087)) (|has| |#2| (-1087))))))
-(((-863 |#1| |#2|) (-13 (-1200) (-10 -8 (IF (|has| |#1| (-605 (-853))) (IF (|has| |#2| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1087)) (IF (|has| |#2| (-1087)) (-6 (-1087)) |%noBranch|) |%noBranch|) (-15 -2384 ($ |#1| |#2|)) (-15 -3952 ($ |#1| |#2|)) (-15 -3156 (|#1| $)) (-15 -1601 (|#2| $)))) (-1200) (-1200)) (T -863))
-((-2384 (*1 *1 *2 *3) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200)))) (-3952 (*1 *1 *2 *3) (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200)))) (-3156 (*1 *2 *1) (-12 (-4 *2 (-1200)) (-5 *1 (-863 *2 *3)) (-4 *3 (-1200)))) (-1601 (*1 *2 *1) (-12 (-4 *2 (-1200)) (-5 *1 (-863 *3 *2)) (-4 *3 (-1200)))))
-(-13 (-1200) (-10 -8 (IF (|has| |#1| (-605 (-853))) (IF (|has| |#2| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1087)) (IF (|has| |#2| (-1087)) (-6 (-1087)) |%noBranch|) |%noBranch|) (-15 -2384 ($ |#1| |#2|)) (-15 -3952 ($ |#1| |#2|)) (-15 -3156 (|#1| $)) (-15 -1601 (|#2| $))))
-((-3929 (((-112) $ $) NIL)) (-4026 (((-558) $) 15)) (-2731 (($ (-156)) 11)) (-3045 (($ (-156)) 12)) (-2510 (((-1145) $) NIL)) (-2433 (((-156) $) 13)) (-1688 (((-1107) $) NIL)) (-1470 (($ (-156)) 9)) (-3258 (($ (-156)) 8)) (-3940 (((-853) $) 23) (($ (-156)) 16)) (-3875 (($ (-156)) 10)) (-1708 (((-112) $ $) NIL)))
-(((-864) (-13 (-1087) (-10 -8 (-15 -3258 ($ (-156))) (-15 -1470 ($ (-156))) (-15 -3875 ($ (-156))) (-15 -2731 ($ (-156))) (-15 -3045 ($ (-156))) (-15 -2433 ((-156) $)) (-15 -4026 ((-558) $)) (-15 -3940 ($ (-156)))))) (T -864))
-((-3258 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-2731 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-3045 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-864)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-864)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
-(-13 (-1087) (-10 -8 (-15 -3258 ($ (-156))) (-15 -1470 ($ (-156))) (-15 -3875 ($ (-156))) (-15 -2731 ($ (-156))) (-15 -3045 ($ (-156))) (-15 -2433 ((-156) $)) (-15 -4026 ((-558) $)) (-15 -3940 ($ (-156)))))
-((-3940 (((-315 (-558)) (-406 (-942 (-48)))) 23) (((-315 (-558)) (-942 (-48))) 18)))
-(((-865) (-10 -7 (-15 -3940 ((-315 (-558)) (-942 (-48)))) (-15 -3940 ((-315 (-558)) (-406 (-942 (-48))))))) (T -865))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 (-48)))) (-5 *2 (-315 (-558))) (-5 *1 (-865)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-942 (-48))) (-5 *2 (-315 (-558))) (-5 *1 (-865)))))
-(-10 -7 (-15 -3940 ((-315 (-558)) (-942 (-48)))) (-15 -3940 ((-315 (-558)) (-406 (-942 (-48))))))
-((-3397 (((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)) 14)))
-(((-866 |#1| |#2|) (-10 -7 (-15 -3397 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) (-1200) (-1200)) (T -866))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6)))))
-(-10 -7 (-15 -3397 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|))))
-((-3588 (($ |#1| |#1|) 8)) (-4041 ((|#1| $ (-762)) 10)))
-(((-867 |#1|) (-10 -8 (-15 -3588 ($ |#1| |#1|)) (-15 -4041 (|#1| $ (-762)))) (-1200)) (T -867))
-((-4041 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-867 *2)) (-4 *2 (-1200)))) (-3588 (*1 *1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1200)))))
-(-10 -8 (-15 -3588 ($ |#1| |#1|)) (-15 -4041 (|#1| $ (-762))))
-((-3397 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 14)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -3397 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1200) (-1200)) (T -868))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-869 *6)) (-5 *1 (-868 *5 *6)))))
-(-10 -7 (-15 -3397 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|))))
-((-3588 (($ |#1| |#1| |#1|) 8)) (-4041 ((|#1| $ (-762)) 10)))
-(((-869 |#1|) (-10 -8 (-15 -3588 ($ |#1| |#1| |#1|)) (-15 -4041 (|#1| $ (-762)))) (-1200)) (T -869))
-((-4041 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-869 *2)) (-4 *2 (-1200)))) (-3588 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-1200)))))
-(-10 -8 (-15 -3588 ($ |#1| |#1| |#1|)) (-15 -4041 (|#1| $ (-762))))
-((-3737 (((-635 (-1168)) (-1145)) 9)))
-(((-870) (-10 -7 (-15 -3737 ((-635 (-1168)) (-1145))))) (T -870))
-((-3737 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-870)))))
-(-10 -7 (-15 -3737 ((-635 (-1168)) (-1145))))
-((-3397 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14)))
-(((-871 |#1| |#2|) (-10 -7 (-15 -3397 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1200) (-1200)) (T -871))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))))
-(-10 -7 (-15 -3397 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))
-((-2105 (($ |#1| |#1| |#1|) 8)) (-4041 ((|#1| $ (-762)) 10)))
-(((-872 |#1|) (-10 -8 (-15 -2105 ($ |#1| |#1| |#1|)) (-15 -4041 (|#1| $ (-762)))) (-1200)) (T -872))
-((-4041 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-872 *2)) (-4 *2 (-1200)))) (-2105 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1200)))))
-(-10 -8 (-15 -2105 ($ |#1| |#1| |#1|)) (-15 -4041 (|#1| $ (-762))))
-((-3024 (((-1143 (-635 (-558))) (-635 (-558)) (-1143 (-635 (-558)))) 30)) (-1300 (((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558))) 26)) (-1978 (((-1143 (-635 (-558))) (-635 (-558))) 39) (((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558))) 38)) (-1743 (((-1143 (-635 (-558))) (-558)) 40)) (-3759 (((-1143 (-635 (-558))) (-558) (-558)) 22) (((-1143 (-635 (-558))) (-558)) 16) (((-1143 (-635 (-558))) (-558) (-558) (-558)) 12)) (-2523 (((-1143 (-635 (-558))) (-1143 (-635 (-558)))) 24)) (-3068 (((-635 (-558)) (-635 (-558))) 23)))
-(((-873) (-10 -7 (-15 -3759 ((-1143 (-635 (-558))) (-558) (-558) (-558))) (-15 -3759 ((-1143 (-635 (-558))) (-558))) (-15 -3759 ((-1143 (-635 (-558))) (-558) (-558))) (-15 -3068 ((-635 (-558)) (-635 (-558)))) (-15 -2523 ((-1143 (-635 (-558))) (-1143 (-635 (-558))))) (-15 -1300 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -3024 ((-1143 (-635 (-558))) (-635 (-558)) (-1143 (-635 (-558))))) (-15 -1978 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -1978 ((-1143 (-635 (-558))) (-635 (-558)))) (-15 -1743 ((-1143 (-635 (-558))) (-558))))) (T -873))
-((-1743 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))) (-1978 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-635 (-558))))) (-1978 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-635 (-558))))) (-3024 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *3 (-635 (-558))) (-5 *1 (-873)))) (-1300 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-635 (-558))))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-873)))) (-3759 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))) (-3759 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))))
-(-10 -7 (-15 -3759 ((-1143 (-635 (-558))) (-558) (-558) (-558))) (-15 -3759 ((-1143 (-635 (-558))) (-558))) (-15 -3759 ((-1143 (-635 (-558))) (-558) (-558))) (-15 -3068 ((-635 (-558)) (-635 (-558)))) (-15 -2523 ((-1143 (-635 (-558))) (-1143 (-635 (-558))))) (-15 -1300 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -3024 ((-1143 (-635 (-558))) (-635 (-558)) (-1143 (-635 (-558))))) (-15 -1978 ((-1143 (-635 (-558))) (-635 (-558)) (-635 (-558)))) (-15 -1978 ((-1143 (-635 (-558))) (-635 (-558)))) (-15 -1743 ((-1143 (-635 (-558))) (-558))))
-((-3441 (((-882 (-378)) $) 9 (|has| |#1| (-606 (-882 (-378))))) (((-882 (-558)) $) 8 (|has| |#1| (-606 (-882 (-558)))))))
-(((-874 |#1|) (-139) (-1200)) (T -874))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-606 (-882 (-558)))) (-6 (-606 (-882 (-558)))) |%noBranch|) (IF (|has| |t#1| (-606 (-882 (-378)))) (-6 (-606 (-882 (-378)))) |%noBranch|)))
-(((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))))
-((-3929 (((-112) $ $) NIL)) (-1395 (($) 14)) (-3228 (($ (-879 |#1| |#2|) (-879 |#1| |#3|)) 27)) (-1576 (((-879 |#1| |#3|) $) 16)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2994 (((-112) $) 22)) (-4198 (($) 19)) (-3940 (((-853) $) 30)) (-1666 (((-879 |#1| |#2|) $) 15)) (-1708 (((-112) $ $) 25)))
-(((-875 |#1| |#2| |#3|) (-13 (-1087) (-10 -8 (-15 -2994 ((-112) $)) (-15 -4198 ($)) (-15 -1395 ($)) (-15 -3228 ($ (-879 |#1| |#2|) (-879 |#1| |#3|))) (-15 -1666 ((-879 |#1| |#2|) $)) (-15 -1576 ((-879 |#1| |#3|) $)))) (-1087) (-1087) (-656 |#2|)) (T -875))
-((-2994 (*1 *2 *1) (-12 (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-875 *3 *4 *5)) (-4 *3 (-1087)) (-4 *5 (-656 *4)))) (-4198 (*1 *1) (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087)) (-4 *4 (-656 *3)))) (-1395 (*1 *1) (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087)) (-4 *4 (-656 *3)))) (-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-879 *4 *5)) (-5 *3 (-879 *4 *6)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-656 *5)) (-5 *1 (-875 *4 *5 *6)))) (-1666 (*1 *2 *1) (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *4)) (-5 *1 (-875 *3 *4 *5)) (-4 *3 (-1087)) (-4 *5 (-656 *4)))) (-1576 (*1 *2 *1) (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *5)) (-5 *1 (-875 *3 *4 *5)) (-4 *3 (-1087)) (-4 *5 (-656 *4)))))
-(-13 (-1087) (-10 -8 (-15 -2994 ((-112) $)) (-15 -4198 ($)) (-15 -1395 ($)) (-15 -3228 ($ (-879 |#1| |#2|) (-879 |#1| |#3|))) (-15 -1666 ((-879 |#1| |#2|) $)) (-15 -1576 ((-879 |#1| |#3|) $))))
-((-3929 (((-112) $ $) 7)) (-3193 (((-879 |#1| $) $ (-882 |#1|) (-879 |#1| $)) 13)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)))
-(((-876 |#1|) (-139) (-1087)) (T -876))
-((-3193 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-879 *4 *1)) (-5 *3 (-882 *4)) (-4 *1 (-876 *4)) (-4 *4 (-1087)))))
-(-13 (-1087) (-10 -8 (-15 -3193 ((-879 |t#1| $) $ (-882 |t#1|) (-879 |t#1| $)))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3557 (((-112) (-635 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-3206 (((-879 |#1| |#2|) |#2| |#3|) 42 (-12 (-2143 (|has| |#2| (-1028 (-1163)))) (-2143 (|has| |#2| (-1039))))) (((-635 (-293 (-942 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1039)) (-2143 (|has| |#2| (-1028 (-1163)))))) (((-635 (-293 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1028 (-1163)))) (((-875 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|) 20)))
-(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -3557 ((-112) |#2| |#3|)) (-15 -3557 ((-112) (-635 |#2|) |#3|)) (-15 -3206 ((-875 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1028 (-1163))) (-15 -3206 ((-635 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1039)) (-15 -3206 ((-635 (-293 (-942 |#2|))) |#2| |#3|)) (-15 -3206 ((-879 |#1| |#2|) |#2| |#3|))))) (-1087) (-876 |#1|) (-606 (-882 |#1|))) (T -877))
-((-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-879 *5 *3)) (-5 *1 (-877 *5 *3 *4)) (-2143 (-4 *3 (-1028 (-1163)))) (-2143 (-4 *3 (-1039))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 (-942 *3)))) (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-1039)) (-2143 (-4 *3 (-1028 (-1163)))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 *3))) (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-1028 (-1163))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-4 *6 (-876 *5)) (-5 *2 (-875 *5 *6 (-635 *6))) (-5 *1 (-877 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-606 (-882 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-4 *6 (-876 *5)) (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-877 *5 *6 *4)) (-4 *4 (-606 (-882 *5))))) (-3557 (*1 *2 *3 *4) (-12 (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))))
-(-10 -7 (-15 -3557 ((-112) |#2| |#3|)) (-15 -3557 ((-112) (-635 |#2|) |#3|)) (-15 -3206 ((-875 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1028 (-1163))) (-15 -3206 ((-635 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1039)) (-15 -3206 ((-635 (-293 (-942 |#2|))) |#2| |#3|)) (-15 -3206 ((-879 |#1| |#2|) |#2| |#3|)))))
-((-3397 (((-879 |#1| |#3|) (-1 |#3| |#2|) (-879 |#1| |#2|)) 22)))
-(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -3397 ((-879 |#1| |#3|) (-1 |#3| |#2|) (-879 |#1| |#2|)))) (-1087) (-1087) (-1087)) (T -878))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-879 *5 *6)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-879 *5 *7)) (-5 *1 (-878 *5 *6 *7)))))
-(-10 -7 (-15 -3397 ((-879 |#1| |#3|) (-1 |#3| |#2|) (-879 |#1| |#2|))))
-((-3929 (((-112) $ $) NIL)) (-2382 (($ $ $) 39)) (-3416 (((-3 (-112) "failed") $ (-882 |#1|)) 36)) (-1395 (($) 12)) (-2510 (((-1145) $) NIL)) (-2882 (($ (-882 |#1|) |#2| $) 20)) (-1688 (((-1107) $) NIL)) (-3279 (((-3 |#2| "failed") (-882 |#1|) $) 50)) (-2994 (((-112) $) 15)) (-4198 (($) 13)) (-4017 (((-635 (-2 (|:| -2176 (-1163)) (|:| -1925 |#2|))) $) 25)) (-3952 (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 |#2|)))) 23)) (-3940 (((-853) $) 44)) (-2401 (($ (-882 |#1|) |#2| $ |#2|) 48)) (-4066 (($ (-882 |#1|) |#2| $) 47)) (-1708 (((-112) $ $) 41)))
-(((-879 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -2994 ((-112) $)) (-15 -4198 ($)) (-15 -1395 ($)) (-15 -2382 ($ $ $)) (-15 -3279 ((-3 |#2| "failed") (-882 |#1|) $)) (-15 -4066 ($ (-882 |#1|) |#2| $)) (-15 -2882 ($ (-882 |#1|) |#2| $)) (-15 -2401 ($ (-882 |#1|) |#2| $ |#2|)) (-15 -4017 ((-635 (-2 (|:| -2176 (-1163)) (|:| -1925 |#2|))) $)) (-15 -3952 ($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 |#2|))))) (-15 -3416 ((-3 (-112) "failed") $ (-882 |#1|))))) (-1087) (-1087)) (T -879))
-((-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4198 (*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-1395 (*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3279 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-4 *2 (-1087)) (-5 *1 (-879 *4 *2)))) (-4066 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1087)))) (-2882 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1087)))) (-2401 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1087)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 *4)))) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 *4)))) (-4 *4 (-1087)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)))) (-3416 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-879 *4 *5)) (-4 *5 (-1087)))))
-(-13 (-1087) (-10 -8 (-15 -2994 ((-112) $)) (-15 -4198 ($)) (-15 -1395 ($)) (-15 -2382 ($ $ $)) (-15 -3279 ((-3 |#2| "failed") (-882 |#1|) $)) (-15 -4066 ($ (-882 |#1|) |#2| $)) (-15 -2882 ($ (-882 |#1|) |#2| $)) (-15 -2401 ($ (-882 |#1|) |#2| $ |#2|)) (-15 -4017 ((-635 (-2 (|:| -2176 (-1163)) (|:| -1925 |#2|))) $)) (-15 -3952 ($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 |#2|))))) (-15 -3416 ((-3 (-112) "failed") $ (-882 |#1|)))))
-((-4316 (((-882 |#1|) (-882 |#1|) (-635 (-1163)) (-1 (-112) (-635 |#2|))) 32) (((-882 |#1|) (-882 |#1|) (-635 (-1 (-112) |#2|))) 43) (((-882 |#1|) (-882 |#1|) (-1 (-112) |#2|)) 35)) (-3416 (((-112) (-635 |#2|) (-882 |#1|)) 40) (((-112) |#2| (-882 |#1|)) 36)) (-3547 (((-1 (-112) |#2|) (-882 |#1|)) 16)) (-1695 (((-635 |#2|) (-882 |#1|)) 24)) (-2386 (((-882 |#1|) (-882 |#1|) |#2|) 20)))
-(((-880 |#1| |#2|) (-10 -7 (-15 -4316 ((-882 |#1|) (-882 |#1|) (-1 (-112) |#2|))) (-15 -4316 ((-882 |#1|) (-882 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -4316 ((-882 |#1|) (-882 |#1|) (-635 (-1163)) (-1 (-112) (-635 |#2|)))) (-15 -3547 ((-1 (-112) |#2|) (-882 |#1|))) (-15 -3416 ((-112) |#2| (-882 |#1|))) (-15 -3416 ((-112) (-635 |#2|) (-882 |#1|))) (-15 -2386 ((-882 |#1|) (-882 |#1|) |#2|)) (-15 -1695 ((-635 |#2|) (-882 |#1|)))) (-1087) (-1200)) (T -880))
-((-1695 (*1 *2 *3) (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-635 *5)) (-5 *1 (-880 *4 *5)) (-4 *5 (-1200)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1200)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3)) (-4 *3 (-1200)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-880 *4 *5)) (-4 *5 (-1200)))) (-4316 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-882 *5)) (-5 *3 (-635 (-1163))) (-5 *4 (-1 (-112) (-635 *6))) (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *1 (-880 *5 *6)))) (-4316 (*1 *2 *2 *3) (-12 (-5 *2 (-882 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1087)) (-4 *5 (-1200)) (-5 *1 (-880 *4 *5)))) (-4316 (*1 *2 *2 *3) (-12 (-5 *2 (-882 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1087)) (-4 *5 (-1200)) (-5 *1 (-880 *4 *5)))))
-(-10 -7 (-15 -4316 ((-882 |#1|) (-882 |#1|) (-1 (-112) |#2|))) (-15 -4316 ((-882 |#1|) (-882 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -4316 ((-882 |#1|) (-882 |#1|) (-635 (-1163)) (-1 (-112) (-635 |#2|)))) (-15 -3547 ((-1 (-112) |#2|) (-882 |#1|))) (-15 -3416 ((-112) |#2| (-882 |#1|))) (-15 -3416 ((-112) (-635 |#2|) (-882 |#1|))) (-15 -2386 ((-882 |#1|) (-882 |#1|) |#2|)) (-15 -1695 ((-635 |#2|) (-882 |#1|))))
-((-3397 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 19)))
-(((-881 |#1| |#2|) (-10 -7 (-15 -3397 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1087) (-1087)) (T -881))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6)))))
-(-10 -7 (-15 -3397 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|))))
-((-3929 (((-112) $ $) NIL)) (-2116 (($ $ (-635 (-52))) 62)) (-4078 (((-635 $) $) 116)) (-1686 (((-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))) $) 23)) (-2848 (((-112) $) 29)) (-3550 (($ $ (-635 (-1163)) (-52)) 24)) (-2309 (($ $ (-635 (-52))) 61)) (-3302 (((-3 |#1| "failed") $) 59) (((-3 (-1163) "failed") $) 138)) (-3226 ((|#1| $) 56) (((-1163) $) NIL)) (-2931 (($ $) 106)) (-1833 (((-112) $) 44)) (-4060 (((-635 (-52)) $) 42)) (-2959 (($ (-1163) (-112) (-112) (-112)) 63)) (-1471 (((-3 (-635 $) "failed") (-635 $)) 70)) (-1454 (((-112) $) 47)) (-3584 (((-112) $) 46)) (-2510 (((-1145) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) 33)) (-2305 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-3633 (((-3 (-2 (|:| |val| $) (|:| -1857 $)) "failed") $) 81)) (-4195 (((-3 (-635 $) "failed") $) 32)) (-1962 (((-3 (-635 $) "failed") $ (-114)) 105) (((-3 (-2 (|:| -2314 (-114)) (|:| |arg| (-635 $))) "failed") $) 93)) (-1910 (((-3 (-635 $) "failed") $) 34)) (-3637 (((-3 (-2 (|:| |val| $) (|:| -1857 (-762))) "failed") $) 37)) (-2810 (((-112) $) 28)) (-1688 (((-1107) $) NIL)) (-1926 (((-112) $) 20)) (-3114 (((-112) $) 43)) (-2378 (((-635 (-52)) $) 109)) (-4034 (((-112) $) 45)) (-2276 (($ (-114) (-635 $)) 90)) (-3752 (((-762) $) 27)) (-4098 (($ $) 60)) (-3441 (($ (-635 $)) 57)) (-3000 (((-112) $) 25)) (-3940 (((-853) $) 51) (($ |#1|) 18) (($ (-1163)) 64)) (-2386 (($ $ (-52)) 108)) (-2207 (($) 89 T CONST)) (-2220 (($) 71 T CONST)) (-1708 (((-112) $ $) 77)) (-1805 (($ $ $) 98)) (-1785 (($ $ $) 102)) (** (($ $ (-762)) 97) (($ $ $) 52)) (* (($ $ $) 103)))
-(((-882 |#1|) (-13 (-1087) (-1028 |#1|) (-1028 (-1163)) (-10 -8 (-15 0 ($) -2010) (-15 1 ($) -2010) (-15 -4195 ((-3 (-635 $) "failed") $)) (-15 -2819 ((-3 (-635 $) "failed") $)) (-15 -1962 ((-3 (-635 $) "failed") $ (-114))) (-15 -1962 ((-3 (-2 (|:| -2314 (-114)) (|:| |arg| (-635 $))) "failed") $)) (-15 -3637 ((-3 (-2 (|:| |val| $) (|:| -1857 (-762))) "failed") $)) (-15 -2305 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1910 ((-3 (-635 $) "failed") $)) (-15 -3633 ((-3 (-2 (|:| |val| $) (|:| -1857 $)) "failed") $)) (-15 -2276 ($ (-114) (-635 $))) (-15 -1785 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ $)) (-15 -1805 ($ $ $)) (-15 -3752 ((-762) $)) (-15 -3441 ($ (-635 $))) (-15 -4098 ($ $)) (-15 -2810 ((-112) $)) (-15 -1833 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -3000 ((-112) $)) (-15 -4034 ((-112) $)) (-15 -3584 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -3114 ((-112) $)) (-15 -4060 ((-635 (-52)) $)) (-15 -2309 ($ $ (-635 (-52)))) (-15 -2116 ($ $ (-635 (-52)))) (-15 -2959 ($ (-1163) (-112) (-112) (-112))) (-15 -3550 ($ $ (-635 (-1163)) (-52))) (-15 -1686 ((-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))) $)) (-15 -1926 ((-112) $)) (-15 -2931 ($ $)) (-15 -2386 ($ $ (-52))) (-15 -2378 ((-635 (-52)) $)) (-15 -4078 ((-635 $) $)) (-15 -1471 ((-3 (-635 $) "failed") (-635 $))))) (-1087)) (T -882))
-((-2207 (*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-2220 (*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-4195 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2819 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1962 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-882 *4))) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-1962 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2314 (-114)) (|:| |arg| (-635 (-882 *3))))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3637 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1857 (-762)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2305 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-882 *3)) (|:| |den| (-882 *3)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1910 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3633 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1857 (-882 *3)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2276 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 (-882 *4))) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-1785 (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-1805 (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-4098 (*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2959 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-112)) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-3550 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-52)) (-5 *1 (-882 *4)) (-4 *4 (-1087)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52)))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2931 (*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))) (-1471 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(-13 (-1087) (-1028 |#1|) (-1028 (-1163)) (-10 -8 (-15 (-2207) ($) -2010) (-15 (-2220) ($) -2010) (-15 -4195 ((-3 (-635 $) "failed") $)) (-15 -2819 ((-3 (-635 $) "failed") $)) (-15 -1962 ((-3 (-635 $) "failed") $ (-114))) (-15 -1962 ((-3 (-2 (|:| -2314 (-114)) (|:| |arg| (-635 $))) "failed") $)) (-15 -3637 ((-3 (-2 (|:| |val| $) (|:| -1857 (-762))) "failed") $)) (-15 -2305 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1910 ((-3 (-635 $) "failed") $)) (-15 -3633 ((-3 (-2 (|:| |val| $) (|:| -1857 $)) "failed") $)) (-15 -2276 ($ (-114) (-635 $))) (-15 -1785 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762))) (-15 ** ($ $ $)) (-15 -1805 ($ $ $)) (-15 -3752 ((-762) $)) (-15 -3441 ($ (-635 $))) (-15 -4098 ($ $)) (-15 -2810 ((-112) $)) (-15 -1833 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -3000 ((-112) $)) (-15 -4034 ((-112) $)) (-15 -3584 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -3114 ((-112) $)) (-15 -4060 ((-635 (-52)) $)) (-15 -2309 ($ $ (-635 (-52)))) (-15 -2116 ($ $ (-635 (-52)))) (-15 -2959 ($ (-1163) (-112) (-112) (-112))) (-15 -3550 ($ $ (-635 (-1163)) (-52))) (-15 -1686 ((-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))) $)) (-15 -1926 ((-112) $)) (-15 -2931 ($ $)) (-15 -2386 ($ $ (-52))) (-15 -2378 ((-635 (-52)) $)) (-15 -4078 ((-635 $) $)) (-15 -1471 ((-3 (-635 $) "failed") (-635 $)))))
-((-3929 (((-112) $ $) NIL)) (-2096 (((-635 |#1|) $) 16)) (-2534 (((-112) $) 38)) (-3302 (((-3 (-662 |#1|) "failed") $) 43)) (-3226 (((-662 |#1|) $) 41)) (-3168 (($ $) 18)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2958 (((-762) $) 46)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-662 |#1|) $) 17)) (-3940 (((-853) $) 37) (($ (-662 |#1|)) 21) (((-810 |#1|) $) 27) (($ |#1|) 20)) (-2220 (($) 8 T CONST)) (-3243 (((-635 (-662 |#1|)) $) 23)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 11)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 49)))
-(((-883 |#1|) (-13 (-841) (-1028 (-662 |#1|)) (-10 -8 (-15 1 ($) -2010) (-15 -3940 ((-810 |#1|) $)) (-15 -3940 ($ |#1|)) (-15 -3156 ((-662 |#1|) $)) (-15 -2958 ((-762) $)) (-15 -3243 ((-635 (-662 |#1|)) $)) (-15 -3168 ($ $)) (-15 -2534 ((-112) $)) (-15 -2096 ((-635 |#1|) $)))) (-841)) (T -883))
-((-2220 (*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-3940 (*1 *1 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-662 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-635 (-662 *3))) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-3168 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-841)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841)))))
-(-13 (-841) (-1028 (-662 |#1|)) (-10 -8 (-15 (-2220) ($) -2010) (-15 -3940 ((-810 |#1|) $)) (-15 -3940 ($ |#1|)) (-15 -3156 ((-662 |#1|) $)) (-15 -2958 ((-762) $)) (-15 -3243 ((-635 (-662 |#1|)) $)) (-15 -3168 ($ $)) (-15 -2534 ((-112) $)) (-15 -2096 ((-635 |#1|) $))))
-((-2771 ((|#1| |#1| |#1|) 19)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -2771 (|#1| |#1| |#1|))) (-1222 |#2|) (-1039)) (T -884))
-((-2771 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-884 *2 *3)) (-4 *2 (-1222 *3)))))
-(-10 -7 (-15 -2771 (|#1| |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-4131 (((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 14)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2429 (((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 13)) (-1708 (((-112) $ $) 6)))
-(((-885) (-139)) (T -885))
-((-4131 (*1 *2 *3 *4) (-12 (-4 *1 (-885)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145)))))) (-2429 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *3 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *2 (-1025)))))
-(-13 (-1087) (-10 -7 (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))) (-1051) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))) (-15 -2429 ((-1025) (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2619 ((|#1| |#1| (-762)) 24)) (-2190 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3353 (((-3 (-2 (|:| -1524 |#1|) (|:| -1540 |#1|)) "failed") |#1| (-762) (-762)) 27) (((-635 |#1|) |#1|) 29)))
-(((-886 |#1| |#2|) (-10 -7 (-15 -3353 ((-635 |#1|) |#1|)) (-15 -3353 ((-3 (-2 (|:| -1524 |#1|) (|:| -1540 |#1|)) "failed") |#1| (-762) (-762))) (-15 -2190 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2619 (|#1| |#1| (-762)))) (-1222 |#2|) (-362)) (T -886))
-((-2619 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-5 *1 (-886 *2 *4)) (-4 *2 (-1222 *4)))) (-2190 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-886 *2 *3)) (-4 *2 (-1222 *3)))) (-3353 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-762)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1524 *3) (|:| -1540 *3))) (-5 *1 (-886 *3 *5)) (-4 *3 (-1222 *5)))) (-3353 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -3353 ((-635 |#1|) |#1|)) (-15 -3353 ((-3 (-2 (|:| -1524 |#1|) (|:| -1540 |#1|)) "failed") |#1| (-762) (-762))) (-15 -2190 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2619 (|#1| |#1| (-762))))
-((-2692 (((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145)) 96) (((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145) (-224)) 91) (((-1025) (-888) (-1051)) 83) (((-1025) (-888)) 84)) (-4131 (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888) (-1051)) 59) (((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888)) 61)))
-(((-887) (-10 -7 (-15 -2692 ((-1025) (-888))) (-15 -2692 ((-1025) (-888) (-1051))) (-15 -2692 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145) (-224))) (-15 -2692 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888) (-1051))))) (T -887))
-((-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-888)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-887)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145))))) (-5 *1 (-887)))) (-2692 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145)) (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1025)) (-5 *1 (-887)))) (-2692 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145)) (-5 *8 (-224)) (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1025)) (-5 *1 (-887)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-888)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-887)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1025)) (-5 *1 (-887)))))
-(-10 -7 (-15 -2692 ((-1025) (-888))) (-15 -2692 ((-1025) (-888) (-1051))) (-15 -2692 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145) (-224))) (-15 -2692 ((-1025) (-378) (-378) (-378) (-378) (-762) (-762) (-635 (-315 (-378))) (-635 (-635 (-315 (-378)))) (-1145))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888))) (-15 -4131 ((-2 (|:| -4131 (-378)) (|:| -3179 (-1145)) (|:| |explanations| (-635 (-1145)))) (-888) (-1051))))
-((-3929 (((-112) $ $) NIL)) (-3226 (((-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))) $) 19)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 21) (($ (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) 18)) (-1708 (((-112) $ $) NIL)))
-(((-888) (-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))) (-15 -3226 ((-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))) $))))) (T -888))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *1 (-888)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224)))) (-5 *1 (-888)))))
-(-13 (-1087) (-10 -8 (-15 -3940 ($ (-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))))) (-15 -3226 ((-2 (|:| |pde| (-635 (-315 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-762)) (|:| |boundaryType| (-558)) (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224)))))) (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145)) (|:| |tol| (-224))) $))))
-((-3780 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) 10) (($ $ |#2| (-762)) 12) (($ $ (-635 |#2|) (-635 (-762))) 15)) (-3042 (($ $ |#2|) 16) (($ $ (-635 |#2|)) 18) (($ $ |#2| (-762)) 19) (($ $ (-635 |#2|) (-635 (-762))) 21)))
-(((-889 |#1| |#2|) (-10 -8 (-15 -3042 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -3042 (|#1| |#1| |#2| (-762))) (-15 -3042 (|#1| |#1| (-635 |#2|))) (-15 -3042 (|#1| |#1| |#2|)) (-15 -3780 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -3780 (|#1| |#1| |#2| (-762))) (-15 -3780 (|#1| |#1| (-635 |#2|))) (-15 -3780 (|#1| |#1| |#2|))) (-890 |#2|) (-1087)) (T -889))
-NIL
-(-10 -8 (-15 -3042 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -3042 (|#1| |#1| |#2| (-762))) (-15 -3042 (|#1| |#1| (-635 |#2|))) (-15 -3042 (|#1| |#1| |#2|)) (-15 -3780 (|#1| |#1| (-635 |#2|) (-635 (-762)))) (-15 -3780 (|#1| |#1| |#2| (-762))) (-15 -3780 (|#1| |#1| (-635 |#2|))) (-15 -3780 (|#1| |#1| |#2|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3780 (($ $ |#1|) 42) (($ $ (-635 |#1|)) 41) (($ $ |#1| (-762)) 40) (($ $ (-635 |#1|) (-635 (-762))) 39)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ |#1|) 38) (($ $ (-635 |#1|)) 37) (($ $ |#1| (-762)) 36) (($ $ (-635 |#1|) (-635 (-762))) 35)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-890 |#1|) (-139) (-1087)) (T -890))
-((-3780 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087)))) (-3780 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-3780 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4)) (-4 *4 (-1087)))) (-3042 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4)) (-4 *4 (-1087)))))
-(-13 (-1039) (-10 -8 (-15 -3780 ($ $ |t#1|)) (-15 -3780 ($ $ (-635 |t#1|))) (-15 -3780 ($ $ |t#1| (-762))) (-15 -3780 ($ $ (-635 |t#1|) (-635 (-762)))) (-15 -3042 ($ $ |t#1|)) (-15 -3042 ($ $ (-635 |t#1|))) (-15 -3042 ($ $ |t#1| (-762))) (-15 -3042 ($ $ (-635 |t#1|) (-635 (-762))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) 26)) (-3651 (((-112) $ (-762)) NIL)) (-3083 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-2228 (($ $ $) NIL (|has| $ (-6 -4384)))) (-2793 (($ $ $) NIL (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) (($ $ "left" $) NIL (|has| $ (-6 -4384))) (($ $ "right" $) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-1540 (($ $) 25)) (-2172 (($ |#1|) 12) (($ $ $) 17)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-1524 (($ $) 23)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) 20)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1904 (((-558) $ $) NIL)) (-1609 (((-112) $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-1186 |#1|) $) 9) (((-853) $) 29 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 21 (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-891 |#1|) (-13 (-119 |#1|) (-605 (-1186 |#1|)) (-10 -8 (-15 -2172 ($ |#1|)) (-15 -2172 ($ $ $)))) (-1087)) (T -891))
-((-2172 (*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087)))) (-2172 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087)))))
-(-13 (-119 |#1|) (-605 (-1186 |#1|)) (-10 -8 (-15 -2172 ($ |#1|)) (-15 -2172 ($ $ $))))
-((-4006 ((|#2| (-1129 |#1| |#2|)) 41)))
-(((-892 |#1| |#2|) (-10 -7 (-15 -4006 (|#2| (-1129 |#1| |#2|)))) (-911) (-13 (-1039) (-10 -7 (-6 (-4385 "*"))))) (T -892))
-((-4006 (*1 *2 *3) (-12 (-5 *3 (-1129 *4 *2)) (-14 *4 (-911)) (-4 *2 (-13 (-1039) (-10 -7 (-6 (-4385 "*"))))) (-5 *1 (-892 *4 *2)))))
-(-10 -7 (-15 -4006 (|#2| (-1129 |#1| |#2|))))
-((-3929 (((-112) $ $) 7)) (-3457 (($) 18 T CONST)) (-3248 (((-3 $ "failed") $) 15)) (-3280 (((-1089 |#1|) $ |#1|) 32)) (-3999 (((-112) $) 17)) (-2142 (($ $ $) 30 (-3994 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-2281 (($ $ $) 29 (-3994 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-2510 (((-1145) $) 9)) (-3823 (($ $) 24)) (-1688 (((-1107) $) 10)) (-1369 ((|#1| $ |#1|) 34)) (-2276 ((|#1| $ |#1|) 33)) (-2599 (($ (-635 (-635 |#1|))) 35)) (-1421 (($ (-635 |#1|)) 36)) (-3068 (($ $ $) 21)) (-3072 (($ $ $) 20)) (-3940 (((-853) $) 11)) (-2220 (($) 19 T CONST)) (-1757 (((-112) $ $) 27 (-3994 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-1737 (((-112) $ $) 26 (-3994 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 28 (-3994 (|has| |#1| (-841)) (|has| |#1| (-367))))) (-1728 (((-112) $ $) 31)) (-1805 (($ $ $) 23)) (** (($ $ (-911)) 13) (($ $ (-762)) 16) (($ $ (-558)) 22)) (* (($ $ $) 14)))
-(((-893 |#1|) (-139) (-1087)) (T -893))
-((-1421 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-893 *3)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-4 *1 (-893 *3)))) (-1369 (*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087)))) (-2276 (*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087)))) (-3280 (*1 *2 *1 *3) (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-1089 *3)))) (-1728 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
-(-13 (-471) (-10 -8 (-15 -1421 ($ (-635 |t#1|))) (-15 -2599 ($ (-635 (-635 |t#1|)))) (-15 -1369 (|t#1| $ |t#1|)) (-15 -2276 (|t#1| $ |t#1|)) (-15 -3280 ((-1089 |t#1|) $ |t#1|)) (-15 -1728 ((-112) $ $)) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-841)) |%noBranch|)))
-(((-102) . T) ((-605 (-853)) . T) ((-471) . T) ((-717) . T) ((-841) -3994 (|has| |#1| (-841)) (|has| |#1| (-367))) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-1465 (((-635 (-635 (-762))) $) 107)) (-2850 (((-635 (-762)) (-895 |#1|) $) 129)) (-2726 (((-635 (-762)) (-895 |#1|) $) 130)) (-3504 (((-635 (-895 |#1|)) $) 97)) (-3692 (((-895 |#1|) $ (-558)) 102) (((-895 |#1|) $) 103)) (-2225 (($ (-635 (-895 |#1|))) 109)) (-2532 (((-762) $) 104)) (-2675 (((-1089 (-1089 |#1|)) $) 127)) (-3280 (((-1089 |#1|) $ |#1|) 120) (((-1089 (-1089 |#1|)) $ (-1089 |#1|)) 138) (((-1089 (-635 |#1|)) $ (-635 |#1|)) 141)) (-1814 (((-1089 |#1|) $) 100)) (-3764 (((-112) (-895 |#1|) $) 91)) (-2510 (((-1145) $) NIL)) (-1283 (((-1251) $) 94) (((-1251) $ (-558) (-558)) 142)) (-1688 (((-1107) $) NIL)) (-2272 (((-635 (-895 |#1|)) $) 95)) (-2276 (((-895 |#1|) $ (-762)) 98)) (-4263 (((-762) $) 105)) (-3940 (((-853) $) 118) (((-635 (-895 |#1|)) $) 23) (($ (-635 (-895 |#1|))) 108)) (-2636 (((-635 |#1|) $) 106)) (-1708 (((-112) $ $) 135)) (-1749 (((-112) $ $) 133)) (-1728 (((-112) $ $) 132)))
-(((-894 |#1|) (-13 (-1087) (-10 -8 (-15 -3940 ((-635 (-895 |#1|)) $)) (-15 -2272 ((-635 (-895 |#1|)) $)) (-15 -2276 ((-895 |#1|) $ (-762))) (-15 -3692 ((-895 |#1|) $ (-558))) (-15 -3692 ((-895 |#1|) $)) (-15 -2532 ((-762) $)) (-15 -4263 ((-762) $)) (-15 -2636 ((-635 |#1|) $)) (-15 -3504 ((-635 (-895 |#1|)) $)) (-15 -1465 ((-635 (-635 (-762))) $)) (-15 -3940 ($ (-635 (-895 |#1|)))) (-15 -2225 ($ (-635 (-895 |#1|)))) (-15 -3280 ((-1089 |#1|) $ |#1|)) (-15 -2675 ((-1089 (-1089 |#1|)) $)) (-15 -3280 ((-1089 (-1089 |#1|)) $ (-1089 |#1|))) (-15 -3280 ((-1089 (-635 |#1|)) $ (-635 |#1|))) (-15 -3764 ((-112) (-895 |#1|) $)) (-15 -2850 ((-635 (-762)) (-895 |#1|) $)) (-15 -2726 ((-635 (-762)) (-895 |#1|) $)) (-15 -1814 ((-1089 |#1|) $)) (-15 -1728 ((-112) $ $)) (-15 -1749 ((-112) $ $)) (-15 -1283 ((-1251) $)) (-15 -1283 ((-1251) $ (-558) (-558))))) (-1087)) (T -894))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4)) (-4 *4 (-1087)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4)) (-4 *4 (-1087)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-762)))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3)))) (-2225 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3)))) (-3280 (*1 *2 *1 *3) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-1089 (-1089 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-3280 (*1 *2 *1 *3) (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-1089 *4))) (-5 *1 (-894 *4)) (-5 *3 (-1089 *4)))) (-3280 (*1 *2 *1 *3) (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-635 *4))) (-5 *1 (-894 *4)) (-5 *3 (-635 *4)))) (-3764 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-894 *4)))) (-2850 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762))) (-5 *1 (-894 *4)))) (-2726 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762))) (-5 *1 (-894 *4)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-1728 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-1749 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))) (-1283 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-894 *4)) (-4 *4 (-1087)))))
-(-13 (-1087) (-10 -8 (-15 -3940 ((-635 (-895 |#1|)) $)) (-15 -2272 ((-635 (-895 |#1|)) $)) (-15 -2276 ((-895 |#1|) $ (-762))) (-15 -3692 ((-895 |#1|) $ (-558))) (-15 -3692 ((-895 |#1|) $)) (-15 -2532 ((-762) $)) (-15 -4263 ((-762) $)) (-15 -2636 ((-635 |#1|) $)) (-15 -3504 ((-635 (-895 |#1|)) $)) (-15 -1465 ((-635 (-635 (-762))) $)) (-15 -3940 ($ (-635 (-895 |#1|)))) (-15 -2225 ($ (-635 (-895 |#1|)))) (-15 -3280 ((-1089 |#1|) $ |#1|)) (-15 -2675 ((-1089 (-1089 |#1|)) $)) (-15 -3280 ((-1089 (-1089 |#1|)) $ (-1089 |#1|))) (-15 -3280 ((-1089 (-635 |#1|)) $ (-635 |#1|))) (-15 -3764 ((-112) (-895 |#1|) $)) (-15 -2850 ((-635 (-762)) (-895 |#1|) $)) (-15 -2726 ((-635 (-762)) (-895 |#1|) $)) (-15 -1814 ((-1089 |#1|) $)) (-15 -1728 ((-112) $ $)) (-15 -1749 ((-112) $ $)) (-15 -1283 ((-1251) $)) (-15 -1283 ((-1251) $ (-558) (-558)))))
-((-3929 (((-112) $ $) NIL)) (-3648 (((-635 $) (-635 $)) 77)) (-1334 (((-558) $) 60)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-2532 (((-762) $) 58)) (-3280 (((-1089 |#1|) $ |#1|) 49)) (-3999 (((-112) $) NIL)) (-1495 (((-112) $) 63)) (-4052 (((-762) $) 61)) (-1814 (((-1089 |#1|) $) 42)) (-2142 (($ $ $) NIL (-3994 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-2281 (($ $ $) NIL (-3994 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-4080 (((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $) 37)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 93)) (-1688 (((-1107) $) NIL)) (-3129 (((-1089 |#1|) $) 100 (|has| |#1| (-367)))) (-4254 (((-112) $) 59)) (-1369 ((|#1| $ |#1|) 47)) (-2276 ((|#1| $ |#1|) 94)) (-4263 (((-762) $) 44)) (-2599 (($ (-635 (-635 |#1|))) 85)) (-3986 (((-961) $) 53)) (-1421 (($ (-635 |#1|)) 22)) (-3068 (($ $ $) NIL)) (-3072 (($ $ $) NIL)) (-2640 (($ (-635 (-635 |#1|))) 39)) (-3105 (($ (-635 (-635 |#1|))) 88)) (-2633 (($ (-635 |#1|)) 96)) (-3940 (((-853) $) 84) (($ (-635 (-635 |#1|))) 66) (($ (-635 |#1|)) 67)) (-2220 (($) 17 T CONST)) (-1757 (((-112) $ $) NIL (-3994 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-1737 (((-112) $ $) NIL (-3994 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-1708 (((-112) $ $) 45)) (-1749 (((-112) $ $) NIL (-3994 (|has| |#1| (-367)) (|has| |#1| (-841))))) (-1728 (((-112) $ $) 65)) (-1805 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ $ $) 23)))
-(((-895 |#1|) (-13 (-893 |#1|) (-10 -8 (-15 -4080 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -2640 ($ (-635 (-635 |#1|)))) (-15 -3940 ($ (-635 (-635 |#1|)))) (-15 -3940 ($ (-635 |#1|))) (-15 -3105 ($ (-635 (-635 |#1|)))) (-15 -4263 ((-762) $)) (-15 -1814 ((-1089 |#1|) $)) (-15 -3986 ((-961) $)) (-15 -2532 ((-762) $)) (-15 -4052 ((-762) $)) (-15 -1334 ((-558) $)) (-15 -4254 ((-112) $)) (-15 -1495 ((-112) $)) (-15 -3648 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3129 ((-1089 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -2633 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -2633 ($ (-635 |#1|))) |%noBranch|)))) (-1087)) (T -895))
-((-4080 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3)))) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-961)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1087)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367)) (-4 *3 (-1087)))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
-(-13 (-893 |#1|) (-10 -8 (-15 -4080 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -2640 ($ (-635 (-635 |#1|)))) (-15 -3940 ($ (-635 (-635 |#1|)))) (-15 -3940 ($ (-635 |#1|))) (-15 -3105 ($ (-635 (-635 |#1|)))) (-15 -4263 ((-762) $)) (-15 -1814 ((-1089 |#1|) $)) (-15 -3986 ((-961) $)) (-15 -2532 ((-762) $)) (-15 -4052 ((-762) $)) (-15 -1334 ((-558) $)) (-15 -4254 ((-112) $)) (-15 -1495 ((-112) $)) (-15 -3648 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3129 ((-1089 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -2633 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -2633 ($ (-635 |#1|))) |%noBranch|))))
-((-3779 (((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|)) 127)) (-3268 ((|#1|) 76)) (-2108 (((-417 (-1159 |#4|)) (-1159 |#4|)) 136)) (-4065 (((-417 (-1159 |#4|)) (-635 |#3|) (-1159 |#4|)) 68)) (-4161 (((-417 (-1159 |#4|)) (-1159 |#4|)) 146)) (-1906 (((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|) |#3|) 91)))
-(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3779 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|))) (-15 -4161 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -2108 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -3268 (|#1|)) (-15 -1906 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|) |#3|)) (-15 -4065 ((-417 (-1159 |#4|)) (-635 |#3|) (-1159 |#4|)))) (-899) (-784) (-841) (-939 |#1| |#2| |#3|)) (T -896))
-((-4065 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *7)) (-4 *7 (-841)) (-4 *5 (-899)) (-4 *6 (-784)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-417 (-1159 *8))) (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-1159 *8)))) (-1906 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7)) (-4 *7 (-939 *5 *6 *4)) (-4 *5 (-899)) (-4 *6 (-784)) (-4 *4 (-841)) (-5 *1 (-896 *5 *6 *4 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899)) (-5 *1 (-896 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))) (-2108 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7))) (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7)))) (-3779 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-896 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3779 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|))) (-15 -4161 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -2108 ((-417 (-1159 |#4|)) (-1159 |#4|))) (-15 -3268 (|#1|)) (-15 -1906 ((-3 (-635 (-1159 |#4|)) "failed") (-635 (-1159 |#4|)) (-1159 |#4|) |#3|)) (-15 -4065 ((-417 (-1159 |#4|)) (-635 |#3|) (-1159 |#4|))))
-((-3779 (((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|)) 36)) (-3268 ((|#1|) 53)) (-2108 (((-417 (-1159 |#2|)) (-1159 |#2|)) 101)) (-4065 (((-417 (-1159 |#2|)) (-1159 |#2|)) 89)) (-4161 (((-417 (-1159 |#2|)) (-1159 |#2|)) 112)))
-(((-897 |#1| |#2|) (-10 -7 (-15 -3779 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|))) (-15 -4161 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -2108 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -3268 (|#1|)) (-15 -4065 ((-417 (-1159 |#2|)) (-1159 |#2|)))) (-899) (-1222 |#1|)) (T -897))
-((-4065 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5))) (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))) (-3268 (*1 *2) (-12 (-4 *2 (-899)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1222 *2)))) (-2108 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5))) (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5))) (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))) (-3779 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-899)) (-5 *1 (-897 *4 *5)))))
-(-10 -7 (-15 -3779 ((-3 (-635 (-1159 |#2|)) "failed") (-635 (-1159 |#2|)) (-1159 |#2|))) (-15 -4161 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -2108 ((-417 (-1159 |#2|)) (-1159 |#2|))) (-15 -3268 (|#1|)) (-15 -4065 ((-417 (-1159 |#2|)) (-1159 |#2|))))
-((-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 41)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 18)) (-1487 (((-3 $ "failed") $) 35)))
-(((-898 |#1|) (-10 -8 (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)))) (-899)) (T -898))
-NIL
-(-10 -8 (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-2418 (((-417 (-1159 $)) (-1159 $)) 61)) (-2018 (($ $) 52)) (-4110 (((-417 $) $) 53)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 58)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-2992 (((-112) $) 54)) (-3999 (((-112) $) 31)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-2321 (((-417 (-1159 $)) (-1159 $)) 59)) (-2796 (((-417 (-1159 $)) (-1159 $)) 60)) (-3939 (((-417 $) $) 51)) (-2861 (((-3 $ "failed") $ $) 43)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 57 (|has| $ (-144)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-1487 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-899) (-139)) (T -899))
-((-4021 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-899)))) (-2418 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))) (-2796 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))) (-2321 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))) (-1671 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1159 *1))) (-5 *3 (-1159 *1)) (-4 *1 (-899)))) (-4277 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-144)) (-4 *1 (-899)) (-5 *2 (-1246 *1)))) (-1487 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-899)))))
-(-13 (-1204) (-10 -8 (-15 -2418 ((-417 (-1159 $)) (-1159 $))) (-15 -2796 ((-417 (-1159 $)) (-1159 $))) (-15 -2321 ((-417 (-1159 $)) (-1159 $))) (-15 -4021 ((-1159 $) (-1159 $) (-1159 $))) (-15 -1671 ((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $))) (IF (|has| $ (-144)) (PROGN (-15 -4277 ((-3 (-1246 $) "failed") (-679 $))) (-15 -1487 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1606 (((-112) $) NIL)) (-4091 (((-762)) NIL)) (-1719 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-3067 (((-1173 (-911) (-762)) (-558)) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 $ "failed") $) NIL)) (-3226 (($ $) NIL)) (-3431 (($ (-1246 $)) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-3567 (($) NIL)) (-3617 (((-112) $) NIL)) (-4362 (($ $) NIL) (($ $ (-762)) NIL)) (-2992 (((-112) $) NIL)) (-2532 (((-824 (-911)) $) NIL) (((-911) $) NIL)) (-3999 (((-112) $) NIL)) (-2942 (($) NIL (|has| $ (-367)))) (-3235 (((-112) $) NIL (|has| $ (-367)))) (-1423 (($ $ (-911)) NIL (|has| $ (-367))) (($ $) NIL)) (-2521 (((-3 $ "failed") $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1715 (((-1159 $) $ (-911)) NIL (|has| $ (-367))) (((-1159 $) $) NIL)) (-1486 (((-911) $) NIL)) (-1937 (((-1159 $) $) NIL (|has| $ (-367)))) (-3811 (((-3 (-1159 $) "failed") $ $) NIL (|has| $ (-367))) (((-1159 $) $) NIL (|has| $ (-367)))) (-3635 (($ $ (-1159 $)) NIL (|has| $ (-367)))) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL T CONST)) (-2349 (($ (-911)) NIL)) (-3743 (((-112) $) NIL)) (-1688 (((-1107) $) NIL)) (-2461 (($) NIL (|has| $ (-367)))) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL)) (-3939 (((-417 $) $) NIL)) (-3670 (((-911)) NIL) (((-824 (-911))) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2551 (((-3 (-762) "failed") $ $) NIL) (((-762) $) NIL)) (-2887 (((-133)) NIL)) (-3780 (($ $ (-762)) NIL) (($ $) NIL)) (-4263 (((-911) $) NIL) (((-824 (-911)) $) NIL)) (-2297 (((-1159 $)) NIL)) (-2933 (($) NIL)) (-3703 (($) NIL (|has| $ (-367)))) (-2979 (((-679 $) (-1246 $)) NIL) (((-1246 $) $) NIL)) (-3441 (((-558) $) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL)) (-1487 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2417 (((-762)) NIL)) (-2743 (((-1246 $) (-911)) NIL) (((-1246 $)) NIL)) (-2671 (((-112) $ $) NIL)) (-4062 (((-112) $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3607 (($ $ (-762)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-900 |#1|) (-13 (-348) (-328 $) (-606 (-558))) (-911)) (T -900))
-NIL
-(-13 (-348) (-328 $) (-606 (-558)))
-((-2824 (((-3 (-2 (|:| -2532 (-762)) (|:| -1341 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 79)) (-2803 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-2532 (((-3 (-762) "failed") (-335 |#2| |#3| |#4| |#5|)) 15)))
-(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2532 ((-3 (-762) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -2803 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -2824 ((-3 (-2 (|:| -2532 (-762)) (|:| -1341 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-841) (-550) (-1028 (-558))) (-429 |#1|) (-1222 |#2|) (-1222 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -901))
-((-2824 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-2 (|:| -2532 (-762)) (|:| -1341 *8))) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-112)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-2532 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-762)) (-5 *1 (-901 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2532 ((-3 (-762) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -2803 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -2824 ((-3 (-2 (|:| -2532 (-762)) (|:| -1341 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|))))
-((-2824 (((-3 (-2 (|:| -2532 (-762)) (|:| -1341 |#3|)) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|)) 56)) (-2803 (((-112) (-335 (-406 (-558)) |#1| |#2| |#3|)) 16)) (-2532 (((-3 (-762) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|)) 14)))
-(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -2532 ((-3 (-762) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -2803 ((-112) (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -2824 ((-3 (-2 (|:| -2532 (-762)) (|:| -1341 |#3|)) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|)))) (-1222 (-406 (-558))) (-1222 (-406 |#1|)) (-341 (-406 (-558)) |#1| |#2|)) (T -902))
-((-2824 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6)) (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-2 (|:| -2532 (-762)) (|:| -1341 *6))) (-5 *1 (-902 *4 *5 *6)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6)) (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-902 *4 *5 *6)))) (-2532 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6)) (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-762)) (-5 *1 (-902 *4 *5 *6)))))
-(-10 -7 (-15 -2532 ((-3 (-762) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -2803 ((-112) (-335 (-406 (-558)) |#1| |#2| |#3|))) (-15 -2824 ((-3 (-2 (|:| -2532 (-762)) (|:| -1341 |#3|)) "failed") (-335 (-406 (-558)) |#1| |#2| |#3|))))
-((-1319 ((|#2| |#2|) 26)) (-2670 (((-558) (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) 15)) (-3785 (((-911) (-558)) 35)) (-1992 (((-558) |#2|) 42)) (-3202 (((-558) |#2|) 21) (((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|) 20)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -3785 ((-911) (-558))) (-15 -3202 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3202 ((-558) |#2|)) (-15 -2670 ((-558) (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -1992 ((-558) |#2|)) (-15 -1319 (|#2| |#2|))) (-1222 (-406 (-558))) (-1222 (-406 |#1|))) (T -903))
-((-1319 (*1 *2 *2) (-12 (-4 *3 (-1222 (-406 (-558)))) (-5 *1 (-903 *3 *2)) (-4 *2 (-1222 (-406 *3))))) (-1992 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1222 (-406 *4))))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1222 (-406 *4))))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1222 (-406 *4))))) (-3202 (*1 *2 *3) (-12 (-4 *3 (-1222 (-406 (-558)))) (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-903 *3 *4)) (-4 *4 (-1222 (-406 *3))))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1222 (-406 *3))) (-5 *2 (-911)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1222 (-406 *4))))))
-(-10 -7 (-15 -3785 ((-911) (-558))) (-15 -3202 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3202 ((-558) |#2|)) (-15 -2670 ((-558) (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -1992 ((-558) |#2|)) (-15 -1319 (|#2| |#2|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 ((|#1| $) 81)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-1709 (($ $ $) NIL)) (-3248 (((-3 $ "failed") $) 75)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4030 (($ |#1| (-417 |#1|)) 73)) (-2794 (((-1159 |#1|) |#1| |#1|) 41)) (-2052 (($ $) 49)) (-3999 (((-112) $) NIL)) (-1836 (((-558) $) 78)) (-3040 (($ $ (-558)) 80)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2447 ((|#1| $) 77)) (-2872 (((-417 |#1|) $) 76)) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) 74)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-2545 (($ $) 39)) (-3940 (((-853) $) 99) (($ (-558)) 54) (($ $) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-417 |#1|))) 67)) (-2417 (((-762)) 52)) (-2671 (((-112) $ $) NIL)) (-2207 (($) 23 T CONST)) (-2220 (($) 12 T CONST)) (-1708 (((-112) $ $) 68)) (-1805 (($ $ $) NIL)) (-1796 (($ $) 88) (($ $ $) NIL)) (-1785 (($ $ $) 38)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 90) (($ $ $) 37) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-904 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -3940 ((-406 |#1|) $)) (-15 -3940 ($ (-406 (-417 |#1|)))) (-15 -2545 ($ $)) (-15 -2872 ((-417 |#1|) $)) (-15 -2447 (|#1| $)) (-15 -3040 ($ $ (-558))) (-15 -1836 ((-558) $)) (-15 -2794 ((-1159 |#1|) |#1| |#1|)) (-15 -2052 ($ $)) (-15 -4030 ($ |#1| (-417 |#1|))) (-15 -1669 (|#1| $)))) (-306)) (T -904))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-904 *3)))) (-2545 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-2447 (*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))) (-3040 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-2794 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))) (-2052 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))) (-4030 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-904 *2)))) (-1669 (*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
-(-13 (-362) (-38 |#1|) (-10 -8 (-15 -3940 ((-406 |#1|) $)) (-15 -3940 ($ (-406 (-417 |#1|)))) (-15 -2545 ($ $)) (-15 -2872 ((-417 |#1|) $)) (-15 -2447 (|#1| $)) (-15 -3040 ($ $ (-558))) (-15 -1836 ((-558) $)) (-15 -2794 ((-1159 |#1|) |#1| |#1|)) (-15 -2052 ($ $)) (-15 -4030 ($ |#1| (-417 |#1|))) (-15 -1669 (|#1| $))))
-((-4030 (((-52) (-942 |#1|) (-417 (-942 |#1|)) (-1163)) 17) (((-52) (-406 (-942 |#1|)) (-1163)) 18)))
-(((-905 |#1|) (-10 -7 (-15 -4030 ((-52) (-406 (-942 |#1|)) (-1163))) (-15 -4030 ((-52) (-942 |#1|) (-417 (-942 |#1|)) (-1163)))) (-13 (-306) (-146))) (T -905))
-((-4030 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-942 *6))) (-5 *5 (-1163)) (-5 *3 (-942 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *6)))) (-4030 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *5)))))
-(-10 -7 (-15 -4030 ((-52) (-406 (-942 |#1|)) (-1163))) (-15 -4030 ((-52) (-942 |#1|) (-417 (-942 |#1|)) (-1163))))
-((-1445 ((|#4| (-635 |#4|)) 121) (((-1159 |#4|) (-1159 |#4|) (-1159 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-1544 (((-1159 |#4|) (-635 (-1159 |#4|))) 114) (((-1159 |#4|) (-1159 |#4|) (-1159 |#4|)) 49) ((|#4| (-635 |#4|)) 54) ((|#4| |#4| |#4|) 84)))
-(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1544 (|#4| |#4| |#4|)) (-15 -1544 (|#4| (-635 |#4|))) (-15 -1544 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -1544 ((-1159 |#4|) (-635 (-1159 |#4|)))) (-15 -1445 (|#4| |#4| |#4|)) (-15 -1445 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -1445 (|#4| (-635 |#4|)))) (-784) (-841) (-306) (-939 |#3| |#1| |#2|)) (T -906))
-((-1445 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5)) (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)))) (-1445 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1445 (*1 *2 *2 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-635 (-1159 *7))) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-1159 *7)) (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))) (-1544 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5)) (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)))) (-1544 (*1 *2 *2 *2) (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4)))))
-(-10 -7 (-15 -1544 (|#4| |#4| |#4|)) (-15 -1544 (|#4| (-635 |#4|))) (-15 -1544 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -1544 ((-1159 |#4|) (-635 (-1159 |#4|)))) (-15 -1445 (|#4| |#4| |#4|)) (-15 -1445 ((-1159 |#4|) (-1159 |#4|) (-1159 |#4|))) (-15 -1445 (|#4| (-635 |#4|))))
-((-4255 (((-894 (-558)) (-961)) 23) (((-894 (-558)) (-635 (-558))) 20)) (-2807 (((-894 (-558)) (-635 (-558))) 48) (((-894 (-558)) (-911)) 49)) (-3600 (((-894 (-558))) 24)) (-2874 (((-894 (-558))) 38) (((-894 (-558)) (-635 (-558))) 37)) (-2998 (((-894 (-558))) 36) (((-894 (-558)) (-635 (-558))) 35)) (-2721 (((-894 (-558))) 34) (((-894 (-558)) (-635 (-558))) 33)) (-1617 (((-894 (-558))) 32) (((-894 (-558)) (-635 (-558))) 31)) (-4349 (((-894 (-558))) 30) (((-894 (-558)) (-635 (-558))) 29)) (-3065 (((-894 (-558))) 40) (((-894 (-558)) (-635 (-558))) 39)) (-1826 (((-894 (-558)) (-635 (-558))) 52) (((-894 (-558)) (-911)) 53)) (-3287 (((-894 (-558)) (-635 (-558))) 50) (((-894 (-558)) (-911)) 51)) (-4354 (((-894 (-558)) (-635 (-558))) 46) (((-894 (-558)) (-911)) 47)) (-2977 (((-894 (-558)) (-635 (-911))) 43)))
-(((-907) (-10 -7 (-15 -2807 ((-894 (-558)) (-911))) (-15 -2807 ((-894 (-558)) (-635 (-558)))) (-15 -4354 ((-894 (-558)) (-911))) (-15 -4354 ((-894 (-558)) (-635 (-558)))) (-15 -2977 ((-894 (-558)) (-635 (-911)))) (-15 -3287 ((-894 (-558)) (-911))) (-15 -3287 ((-894 (-558)) (-635 (-558)))) (-15 -1826 ((-894 (-558)) (-911))) (-15 -1826 ((-894 (-558)) (-635 (-558)))) (-15 -4349 ((-894 (-558)) (-635 (-558)))) (-15 -4349 ((-894 (-558)))) (-15 -1617 ((-894 (-558)) (-635 (-558)))) (-15 -1617 ((-894 (-558)))) (-15 -2721 ((-894 (-558)) (-635 (-558)))) (-15 -2721 ((-894 (-558)))) (-15 -2998 ((-894 (-558)) (-635 (-558)))) (-15 -2998 ((-894 (-558)))) (-15 -2874 ((-894 (-558)) (-635 (-558)))) (-15 -2874 ((-894 (-558)))) (-15 -3065 ((-894 (-558)) (-635 (-558)))) (-15 -3065 ((-894 (-558)))) (-15 -3600 ((-894 (-558)))) (-15 -4255 ((-894 (-558)) (-635 (-558)))) (-15 -4255 ((-894 (-558)) (-961))))) (T -907))
-((-4255 (*1 *2 *3) (-12 (-5 *3 (-961)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3600 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3065 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2874 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2998 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2721 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-1617 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-4349 (*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-635 (-911))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(-10 -7 (-15 -2807 ((-894 (-558)) (-911))) (-15 -2807 ((-894 (-558)) (-635 (-558)))) (-15 -4354 ((-894 (-558)) (-911))) (-15 -4354 ((-894 (-558)) (-635 (-558)))) (-15 -2977 ((-894 (-558)) (-635 (-911)))) (-15 -3287 ((-894 (-558)) (-911))) (-15 -3287 ((-894 (-558)) (-635 (-558)))) (-15 -1826 ((-894 (-558)) (-911))) (-15 -1826 ((-894 (-558)) (-635 (-558)))) (-15 -4349 ((-894 (-558)) (-635 (-558)))) (-15 -4349 ((-894 (-558)))) (-15 -1617 ((-894 (-558)) (-635 (-558)))) (-15 -1617 ((-894 (-558)))) (-15 -2721 ((-894 (-558)) (-635 (-558)))) (-15 -2721 ((-894 (-558)))) (-15 -2998 ((-894 (-558)) (-635 (-558)))) (-15 -2998 ((-894 (-558)))) (-15 -2874 ((-894 (-558)) (-635 (-558)))) (-15 -2874 ((-894 (-558)))) (-15 -3065 ((-894 (-558)) (-635 (-558)))) (-15 -3065 ((-894 (-558)))) (-15 -3600 ((-894 (-558)))) (-15 -4255 ((-894 (-558)) (-635 (-558)))) (-15 -4255 ((-894 (-558)) (-961))))
-((-3432 (((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163))) 12)) (-1973 (((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163))) 11)))
-(((-908 |#1|) (-10 -7 (-15 -1973 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -3432 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163))))) (-450)) (T -908))
-((-3432 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450)) (-5 *1 (-908 *4)))) (-1973 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450)) (-5 *1 (-908 *4)))))
-(-10 -7 (-15 -1973 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -3432 ((-635 (-942 |#1|)) (-635 (-942 |#1|)) (-635 (-1163)))))
-((-3940 (((-315 |#1|) (-475)) 16)))
-(((-909 |#1|) (-10 -7 (-15 -3940 ((-315 |#1|) (-475)))) (-13 (-841) (-550))) (T -909))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-909 *4)) (-4 *4 (-13 (-841) (-550))))))
-(-10 -7 (-15 -3940 ((-315 |#1|) (-475))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-3999 (((-112) $) 31)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-910) (-139)) (T -910))
-((-3238 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-2 (|:| -3455 (-635 *1)) (|:| -2461 *1))) (-5 *3 (-635 *1)))) (-3831 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-910)))))
-(-13 (-450) (-10 -8 (-15 -3238 ((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $))) (-15 -3831 ((-3 (-635 $) "failed") (-635 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1544 (($ $ $) NIL)) (-3940 (((-853) $) NIL)) (-2220 (($) NIL T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ $ $) NIL)))
-(((-911) (-13 (-785) (-717) (-10 -8 (-15 -1544 ($ $ $)) (-6 (-4385 "*"))))) (T -911))
-((-1544 (*1 *1 *1 *1) (-5 *1 (-911))))
-(-13 (-785) (-717) (-10 -8 (-15 -1544 ($ $ $)) (-6 (-4385 "*"))))
+((-2569 (((-765) $ (-128)) NIL)) (-2623 (((-684 (-129)) $ (-129)) 21)) (-3303 (($ (-387)) 12) (($ (-1148)) 14)) (-2723 (((-112) $) 18)) (-4022 (((-856) $) 25)) (-2836 (($ $) 22)))
+(((-855) (-13 (-854) (-608 (-856)) (-10 -8 (-15 -3303 ($ (-387))) (-15 -3303 ($ (-1148))) (-15 -2723 ((-112) $))))) (T -855))
+((-3303 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-855)))) (-3303 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-855)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855)))))
+(-13 (-854) (-608 (-856)) (-10 -8 (-15 -3303 ($ (-387))) (-15 -3303 ($ (-1148))) (-15 -2723 ((-112) $))))
+((-4011 (((-112) $ $) NIL) (($ $ $) 77)) (-2914 (($ $ $) 114)) (-3691 (((-561) $) 31) (((-561)) 36)) (-2287 (($ (-561)) 45)) (-4361 (($ $ $) 46) (($ (-638 $)) 76)) (-2517 (($ $ (-638 $)) 74)) (-4200 (((-561) $) 34)) (-3459 (($ $ $) 65)) (-1647 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2880 (((-561) $) 33)) (-1313 (($ $ $) 64)) (-3595 (($ $) 104)) (-2627 (($ $ $) 118)) (-1618 (($ (-638 $)) 53)) (-3627 (($ $ (-638 $)) 71)) (-3121 (($ (-561) (-561)) 47)) (-2273 (($ $) 115) (($ $ $) 116)) (-1621 (($ $ (-561)) 41) (($ $) 44)) (-1793 (($ $ $) 89)) (-1957 (($ $ $) 121)) (-3944 (($ $) 105)) (-1774 (($ $ $) 90)) (-2255 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3225 (((-1258) $) 10)) (-4233 (($ $) 108) (($ $ (-765)) 111)) (-1352 (($ $ $) 67)) (-1351 (($ $ $) 66)) (-2107 (($ $ (-638 $)) 100)) (-3125 (($ $ $) 103)) (-3326 (($ (-638 $)) 51)) (-1890 (($ $) 62) (($ (-638 $)) 63)) (-2194 (($ $ $) 112)) (-2082 (($ $) 106)) (-3782 (($ $ $) 117)) (-1572 (($ (-561)) 21) (($ (-1166)) 23) (($ (-1148)) 30) (($ (-224)) 25)) (-2180 (($ $ $) 93)) (-2159 (($ $) 94)) (-3650 (((-1258) (-1148)) 15)) (-3865 (($ (-1148)) 14)) (-2855 (($ (-638 (-638 $))) 50)) (-1605 (($ $ (-561)) 40) (($ $) 43)) (-1764 (((-1148) $) NIL)) (-1784 (($ $ $) 120)) (-2549 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3897 (((-112) $) 98)) (-4048 (($ $ (-638 $)) 101) (($ $ $ $) 102)) (-3826 (($ (-561)) 37)) (-3061 (((-561) $) 32) (((-561)) 35)) (-4203 (($ $ $) 38) (($ (-638 $)) 75)) (-1714 (((-1110) $) NIL)) (-1756 (($ $ $) 91)) (-3170 (($) 13)) (-2277 (($ $ (-638 $)) 99)) (-4155 (((-1148) (-1148)) 8)) (-1327 (($ $) 107) (($ $ (-765)) 110)) (-1763 (($ $ $) 88)) (-3238 (($ $ (-765)) 126)) (-2177 (($ (-638 $)) 52)) (-4022 (((-856) $) 19)) (-2262 (($ $ (-561)) 39) (($ $) 42)) (-2606 (($ $) 60) (($ (-638 $)) 61)) (-1710 (($ $) 58) (($ (-638 $)) 59)) (-3300 (($ $) 113)) (-1874 (($ (-638 $)) 57)) (-3599 (($ $ $) 97)) (-4236 (($ $ $) 119)) (-2170 (($ $ $) 92)) (-3848 (($ $ $) 95) (($ $) 96)) (-1782 (($ $ $) 81)) (-1762 (($ $ $) 79)) (-1733 (((-112) $ $) 16) (($ $ $) 17)) (-1773 (($ $ $) 80)) (-1754 (($ $ $) 78)) (-1833 (($ $ $) 86)) (-1824 (($ $ $) 83) (($ $) 84)) (-1813 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-856) (-13 (-1090) (-10 -8 (-15 -3225 ((-1258) $)) (-15 -3865 ($ (-1148))) (-15 -3650 ((-1258) (-1148))) (-15 -1572 ($ (-561))) (-15 -1572 ($ (-1166))) (-15 -1572 ($ (-1148))) (-15 -1572 ($ (-224))) (-15 -3170 ($)) (-15 -4155 ((-1148) (-1148))) (-15 -3691 ((-561) $)) (-15 -3061 ((-561) $)) (-15 -3691 ((-561))) (-15 -3061 ((-561))) (-15 -2880 ((-561) $)) (-15 -4200 ((-561) $)) (-15 -3826 ($ (-561))) (-15 -2287 ($ (-561))) (-15 -3121 ($ (-561) (-561))) (-15 -1605 ($ $ (-561))) (-15 -1621 ($ $ (-561))) (-15 -2262 ($ $ (-561))) (-15 -1605 ($ $)) (-15 -1621 ($ $)) (-15 -2262 ($ $)) (-15 -4203 ($ $ $)) (-15 -4361 ($ $ $)) (-15 -4203 ($ (-638 $))) (-15 -4361 ($ (-638 $))) (-15 -2107 ($ $ (-638 $))) (-15 -4048 ($ $ (-638 $))) (-15 -4048 ($ $ $ $)) (-15 -3125 ($ $ $)) (-15 -3897 ((-112) $)) (-15 -2277 ($ $ (-638 $))) (-15 -3595 ($ $)) (-15 -1784 ($ $ $)) (-15 -3300 ($ $)) (-15 -2855 ($ (-638 (-638 $)))) (-15 -2914 ($ $ $)) (-15 -2273 ($ $)) (-15 -2273 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -2627 ($ $ $)) (-15 -4236 ($ $ $)) (-15 -1957 ($ $ $)) (-15 -3238 ($ $ (-765))) (-15 -3599 ($ $ $)) (-15 -1313 ($ $ $)) (-15 -3459 ($ $ $)) (-15 -1351 ($ $ $)) (-15 -1352 ($ $ $)) (-15 -3627 ($ $ (-638 $))) (-15 -2517 ($ $ (-638 $))) (-15 -3944 ($ $)) (-15 -1327 ($ $)) (-15 -1327 ($ $ (-765))) (-15 -4233 ($ $)) (-15 -4233 ($ $ (-765))) (-15 -2082 ($ $)) (-15 -2194 ($ $ $)) (-15 -1647 ($ $)) (-15 -1647 ($ $ $)) (-15 -1647 ($ $ $ $)) (-15 -2255 ($ $)) (-15 -2255 ($ $ $)) (-15 -2255 ($ $ $ $)) (-15 -2549 ($ $)) (-15 -2549 ($ $ $)) (-15 -2549 ($ $ $ $)) (-15 -1710 ($ $)) (-15 -1710 ($ (-638 $))) (-15 -2606 ($ $)) (-15 -2606 ($ (-638 $))) (-15 -1890 ($ $)) (-15 -1890 ($ (-638 $))) (-15 -3326 ($ (-638 $))) (-15 -2177 ($ (-638 $))) (-15 -1618 ($ (-638 $))) (-15 -1874 ($ (-638 $))) (-15 -1733 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -1754 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1782 ($ $ $)) (-15 -1813 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -1824 ($ $)) (-15 * ($ $ $)) (-15 -1833 ($ $ $)) (-15 ** ($ $ $)) (-15 -1763 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -1774 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -2170 ($ $ $)) (-15 -2180 ($ $ $)) (-15 -2159 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $))))) (T -856))
+((-3225 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-856)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-856)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-856)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-856)))) (-3170 (*1 *1) (-5 *1 (-856))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3691 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3061 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3826 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-2287 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-3121 (*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-2262 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))) (-1605 (*1 *1 *1) (-5 *1 (-856))) (-1621 (*1 *1 *1) (-5 *1 (-856))) (-2262 (*1 *1 *1) (-5 *1 (-856))) (-4203 (*1 *1 *1 *1) (-5 *1 (-856))) (-4361 (*1 *1 *1 *1) (-5 *1 (-856))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-4048 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-4048 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-3125 (*1 *1 *1 *1) (-5 *1 (-856))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-3595 (*1 *1 *1) (-5 *1 (-856))) (-1784 (*1 *1 *1 *1) (-5 *1 (-856))) (-3300 (*1 *1 *1) (-5 *1 (-856))) (-2855 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-856)))) (-2914 (*1 *1 *1 *1) (-5 *1 (-856))) (-2273 (*1 *1 *1) (-5 *1 (-856))) (-2273 (*1 *1 *1 *1) (-5 *1 (-856))) (-3782 (*1 *1 *1 *1) (-5 *1 (-856))) (-2627 (*1 *1 *1 *1) (-5 *1 (-856))) (-4236 (*1 *1 *1 *1) (-5 *1 (-856))) (-1957 (*1 *1 *1 *1) (-5 *1 (-856))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856)))) (-3599 (*1 *1 *1 *1) (-5 *1 (-856))) (-1313 (*1 *1 *1 *1) (-5 *1 (-856))) (-3459 (*1 *1 *1 *1) (-5 *1 (-856))) (-1351 (*1 *1 *1 *1) (-5 *1 (-856))) (-1352 (*1 *1 *1 *1) (-5 *1 (-856))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-3944 (*1 *1 *1) (-5 *1 (-856))) (-1327 (*1 *1 *1) (-5 *1 (-856))) (-1327 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856)))) (-4233 (*1 *1 *1) (-5 *1 (-856))) (-4233 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856)))) (-2082 (*1 *1 *1) (-5 *1 (-856))) (-2194 (*1 *1 *1 *1) (-5 *1 (-856))) (-1647 (*1 *1 *1) (-5 *1 (-856))) (-1647 (*1 *1 *1 *1) (-5 *1 (-856))) (-1647 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-2255 (*1 *1 *1) (-5 *1 (-856))) (-2255 (*1 *1 *1 *1) (-5 *1 (-856))) (-2255 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-2549 (*1 *1 *1) (-5 *1 (-856))) (-2549 (*1 *1 *1 *1) (-5 *1 (-856))) (-2549 (*1 *1 *1 *1 *1) (-5 *1 (-856))) (-1710 (*1 *1 *1) (-5 *1 (-856))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2606 (*1 *1 *1) (-5 *1 (-856))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1890 (*1 *1 *1) (-5 *1 (-856))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))) (-1733 (*1 *1 *1 *1) (-5 *1 (-856))) (-4011 (*1 *1 *1 *1) (-5 *1 (-856))) (-1754 (*1 *1 *1 *1) (-5 *1 (-856))) (-1762 (*1 *1 *1 *1) (-5 *1 (-856))) (-1773 (*1 *1 *1 *1) (-5 *1 (-856))) (-1782 (*1 *1 *1 *1) (-5 *1 (-856))) (-1813 (*1 *1 *1 *1) (-5 *1 (-856))) (-1824 (*1 *1 *1 *1) (-5 *1 (-856))) (-1824 (*1 *1 *1) (-5 *1 (-856))) (* (*1 *1 *1 *1) (-5 *1 (-856))) (-1833 (*1 *1 *1 *1) (-5 *1 (-856))) (** (*1 *1 *1 *1) (-5 *1 (-856))) (-1763 (*1 *1 *1 *1) (-5 *1 (-856))) (-1793 (*1 *1 *1 *1) (-5 *1 (-856))) (-1774 (*1 *1 *1 *1) (-5 *1 (-856))) (-1756 (*1 *1 *1 *1) (-5 *1 (-856))) (-2170 (*1 *1 *1 *1) (-5 *1 (-856))) (-2180 (*1 *1 *1 *1) (-5 *1 (-856))) (-2159 (*1 *1 *1) (-5 *1 (-856))) (-3848 (*1 *1 *1 *1) (-5 *1 (-856))) (-3848 (*1 *1 *1) (-5 *1 (-856))))
+(-13 (-1090) (-10 -8 (-15 -3225 ((-1258) $)) (-15 -3865 ($ (-1148))) (-15 -3650 ((-1258) (-1148))) (-15 -1572 ($ (-561))) (-15 -1572 ($ (-1166))) (-15 -1572 ($ (-1148))) (-15 -1572 ($ (-224))) (-15 -3170 ($)) (-15 -4155 ((-1148) (-1148))) (-15 -3691 ((-561) $)) (-15 -3061 ((-561) $)) (-15 -3691 ((-561))) (-15 -3061 ((-561))) (-15 -2880 ((-561) $)) (-15 -4200 ((-561) $)) (-15 -3826 ($ (-561))) (-15 -2287 ($ (-561))) (-15 -3121 ($ (-561) (-561))) (-15 -1605 ($ $ (-561))) (-15 -1621 ($ $ (-561))) (-15 -2262 ($ $ (-561))) (-15 -1605 ($ $)) (-15 -1621 ($ $)) (-15 -2262 ($ $)) (-15 -4203 ($ $ $)) (-15 -4361 ($ $ $)) (-15 -4203 ($ (-638 $))) (-15 -4361 ($ (-638 $))) (-15 -2107 ($ $ (-638 $))) (-15 -4048 ($ $ (-638 $))) (-15 -4048 ($ $ $ $)) (-15 -3125 ($ $ $)) (-15 -3897 ((-112) $)) (-15 -2277 ($ $ (-638 $))) (-15 -3595 ($ $)) (-15 -1784 ($ $ $)) (-15 -3300 ($ $)) (-15 -2855 ($ (-638 (-638 $)))) (-15 -2914 ($ $ $)) (-15 -2273 ($ $)) (-15 -2273 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -2627 ($ $ $)) (-15 -4236 ($ $ $)) (-15 -1957 ($ $ $)) (-15 -3238 ($ $ (-765))) (-15 -3599 ($ $ $)) (-15 -1313 ($ $ $)) (-15 -3459 ($ $ $)) (-15 -1351 ($ $ $)) (-15 -1352 ($ $ $)) (-15 -3627 ($ $ (-638 $))) (-15 -2517 ($ $ (-638 $))) (-15 -3944 ($ $)) (-15 -1327 ($ $)) (-15 -1327 ($ $ (-765))) (-15 -4233 ($ $)) (-15 -4233 ($ $ (-765))) (-15 -2082 ($ $)) (-15 -2194 ($ $ $)) (-15 -1647 ($ $)) (-15 -1647 ($ $ $)) (-15 -1647 ($ $ $ $)) (-15 -2255 ($ $)) (-15 -2255 ($ $ $)) (-15 -2255 ($ $ $ $)) (-15 -2549 ($ $)) (-15 -2549 ($ $ $)) (-15 -2549 ($ $ $ $)) (-15 -1710 ($ $)) (-15 -1710 ($ (-638 $))) (-15 -2606 ($ $)) (-15 -2606 ($ (-638 $))) (-15 -1890 ($ $)) (-15 -1890 ($ (-638 $))) (-15 -3326 ($ (-638 $))) (-15 -2177 ($ (-638 $))) (-15 -1618 ($ (-638 $))) (-15 -1874 ($ (-638 $))) (-15 -1733 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -1754 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1782 ($ $ $)) (-15 -1813 ($ $ $)) (-15 -1824 ($ $ $)) (-15 -1824 ($ $)) (-15 * ($ $ $)) (-15 -1833 ($ $ $)) (-15 ** ($ $ $)) (-15 -1763 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -1774 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -2170 ($ $ $)) (-15 -2180 ($ $ $)) (-15 -2159 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $))))
+((-1920 (((-1258) (-638 (-52))) 24)) (-3472 (((-1258) (-1148) (-856)) 14) (((-1258) (-856)) 9) (((-1258) (-1148)) 11)))
+(((-857) (-10 -7 (-15 -3472 ((-1258) (-1148))) (-15 -3472 ((-1258) (-856))) (-15 -3472 ((-1258) (-1148) (-856))) (-15 -1920 ((-1258) (-638 (-52)))))) (T -857))
+((-1920 (*1 *2 *3) (-12 (-5 *3 (-638 (-52))) (-5 *2 (-1258)) (-5 *1 (-857)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1258)) (-5 *1 (-857)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-857)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-857)))))
+(-10 -7 (-15 -3472 ((-1258) (-1148))) (-15 -3472 ((-1258) (-856))) (-15 -3472 ((-1258) (-1148) (-856))) (-15 -1920 ((-1258) (-638 (-52)))))
+((-4011 (((-112) $ $) NIL)) (-2389 (((-3 $ "failed") (-1166)) 33)) (-1393 (((-765)) 31)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-3198 (((-914) $) 29)) (-1764 (((-1148) $) 39)) (-2413 (($ (-914)) 28)) (-1714 (((-1110) $) NIL)) (-4174 (((-1166) $) 13) (((-534) $) 19) (((-885 (-378)) $) 26) (((-885 (-561)) $) 22)) (-4022 (((-856) $) 16)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 36)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 35)))
+(((-858 |#1|) (-13 (-838) (-609 (-1166)) (-609 (-534)) (-609 (-885 (-378))) (-609 (-885 (-561))) (-10 -8 (-15 -2389 ((-3 $ "failed") (-1166))))) (-638 (-1166))) (T -858))
+((-2389 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-638 *2)))))
+(-13 (-838) (-609 (-1166)) (-609 (-534)) (-609 (-885 (-378))) (-609 (-885 (-561))) (-10 -8 (-15 -2389 ((-3 $ "failed") (-1166)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-945 |#1|)) NIL) (((-945 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-4259 (((-765)) NIL)) (-3636 (((-1258) (-765)) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1833 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-859 |#1| |#2| |#3| |#4|) (-13 (-1042) (-488 (-945 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1833 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3636 ((-1258) (-765))))) (-1042) (-638 (-1166)) (-638 (-765)) (-765)) (T -859))
+((-1833 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-765))) (-14 *5 (-765)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *4 (-1042)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 *3)) (-14 *7 *3))))
+(-13 (-1042) (-488 (-945 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1833 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3636 ((-1258) (-765)))))
+((-4240 (((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|) 31)) (-4335 (((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|) 24)))
+(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -4335 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -4240 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|))) (-362) (-1244 |#1|) (-1229 |#1|)) (T -860))
+((-4240 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1244 *5)) (-4 *6 (-1229 *5)))) (-4335 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1244 *5)) (-4 *6 (-1229 *5)))))
+(-10 -7 (-15 -4335 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -4240 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|)))
+((-4335 (((-3 (-406 (-1226 |#2| |#1|)) "failed") (-765) (-765) (-1245 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1226 |#2| |#1|)) "failed") (-765) (-765) (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|)) 26)))
+(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -4335 ((-3 (-406 (-1226 |#2| |#1|)) "failed") (-765) (-765) (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|))) (-15 -4335 ((-3 (-406 (-1226 |#2| |#1|)) "failed") (-765) (-765) (-1245 |#1| |#2| |#3|)))) (-362) (-1166) |#1|) (T -861))
+((-4335 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1245 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1226 *6 *5))) (-5 *1 (-861 *5 *6 *7)))) (-4335 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1245 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1226 *6 *5))) (-5 *1 (-861 *5 *6 *7)))))
+(-10 -7 (-15 -4335 ((-3 (-406 (-1226 |#2| |#1|)) "failed") (-765) (-765) (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|))) (-15 -4335 ((-3 (-406 (-1226 |#2| |#1|)) "failed") (-765) (-765) (-1245 |#1| |#2| |#3|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1665 (($ $ (-561)) 63)) (-1671 (((-112) $ $) 60)) (-1965 (($) 17 T CONST)) (-2273 (($ (-1162 (-561)) (-561)) 62)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1395 (($ $) 65)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-4163 (((-765) $) 70)) (-3113 (((-112) $) 31)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-2912 (((-561)) 67)) (-2640 (((-561) $) 66)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1416 (($ $ (-561)) 69)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-1368 (((-1146 (-561)) $) 71)) (-1897 (($ $) 68)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-1417 (((-561) $ (-561)) 64)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-862 |#1|) (-139) (-561)) (T -862))
+((-1368 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-1146 (-561))))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-765)))) (-1416 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-1897 (*1 *1 *1) (-4 *1 (-862 *2))) (-2912 (*1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-1395 (*1 *1 *1) (-4 *1 (-862 *2))) (-1417 (*1 *2 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-1665 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))) (-2273 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *3 (-561)) (-4 *1 (-862 *4)))))
+(-13 (-306) (-146) (-10 -8 (-15 -1368 ((-1146 (-561)) $)) (-15 -4163 ((-765) $)) (-15 -1416 ($ $ (-561))) (-15 -1897 ($ $)) (-15 -2912 ((-561))) (-15 -2640 ((-561) $)) (-15 -1395 ($ $)) (-15 -1417 ((-561) $ (-561))) (-15 -1665 ($ $ (-561))) (-15 -2273 ($ (-1162 (-561)) (-561)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $ (-561)) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-2273 (($ (-1162 (-561)) (-561)) NIL)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1395 (($ $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-4163 (((-765) $) NIL)) (-3113 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2912 (((-561)) NIL)) (-2640 (((-561) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1416 (($ $ (-561)) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1368 (((-1146 (-561)) $) NIL)) (-1897 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL)) (-4259 (((-765)) NIL)) (-3168 (((-112) $ $) NIL)) (-1417 (((-561) $ (-561)) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
+(((-863 |#1|) (-862 |#1|) (-561)) (T -863))
+NIL
+(-862 |#1|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 (((-863 |#1|) $) NIL (|has| (-863 |#1|) (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| (-863 |#1|) (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-863 |#1|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| (-863 |#1|) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-863 |#1|) (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| (-863 |#1|) (-1031 (-561))))) (-3938 (((-863 |#1|) $) NIL) (((-1166) $) NIL (|has| (-863 |#1|) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-863 |#1|) (-1031 (-561)))) (((-561) $) NIL (|has| (-863 |#1|) (-1031 (-561))))) (-2911 (($ $) NIL) (($ (-561) $) NIL)) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-863 |#1|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-863 |#1|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-863 |#1|))) (|:| |vec| (-1253 (-863 |#1|)))) (-682 $) (-1253 $)) NIL) (((-682 (-863 |#1|)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-863 |#1|) (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| (-863 |#1|) (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-863 |#1|) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-863 |#1|) (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 (((-863 |#1|) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-1141)))) (-2110 (((-112) $) NIL (|has| (-863 |#1|) (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| (-863 |#1|) (-844)))) (-2986 (($ $ $) NIL (|has| (-863 |#1|) (-844)))) (-4120 (($ (-1 (-863 |#1|) (-863 |#1|)) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-863 |#1|) (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| (-863 |#1|) (-306)))) (-1388 (((-863 |#1|) $) NIL (|has| (-863 |#1|) (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-863 |#1|) (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 (-863 |#1|)) (-638 (-863 |#1|))) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-863 |#1|) (-863 |#1|)) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-293 (-863 |#1|))) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-638 (-293 (-863 |#1|)))) NIL (|has| (-863 |#1|) (-308 (-863 |#1|)))) (($ $ (-638 (-1166)) (-638 (-863 |#1|))) NIL (|has| (-863 |#1|) (-512 (-1166) (-863 |#1|)))) (($ $ (-1166) (-863 |#1|)) NIL (|has| (-863 |#1|) (-512 (-1166) (-863 |#1|))))) (-3569 (((-765) $) NIL)) (-2277 (($ $ (-863 |#1|)) NIL (|has| (-863 |#1|) (-285 (-863 |#1|) (-863 |#1|))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| (-863 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-863 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1 (-863 |#1|) (-863 |#1|)) (-765)) NIL) (($ $ (-1 (-863 |#1|) (-863 |#1|))) NIL)) (-2861 (($ $) NIL)) (-4045 (((-863 |#1|) $) NIL)) (-4174 (((-885 (-561)) $) NIL (|has| (-863 |#1|) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-863 |#1|) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-863 |#1|) (-609 (-534)))) (((-378) $) NIL (|has| (-863 |#1|) (-1015))) (((-224) $) NIL (|has| (-863 |#1|) (-1015)))) (-3144 (((-173 (-406 (-561))) $) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-863 |#1|) (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL) (($ (-863 |#1|)) NIL) (($ (-1166)) NIL (|has| (-863 |#1|) (-1031 (-1166))))) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-863 |#1|) (-902))) (|has| (-863 |#1|) (-144))))) (-4259 (((-765)) NIL)) (-2432 (((-863 |#1|) $) NIL (|has| (-863 |#1|) (-543)))) (-3168 (((-112) $ $) NIL)) (-1417 (((-406 (-561)) $ (-561)) NIL)) (-3749 (($ $) NIL (|has| (-863 |#1|) (-814)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $) NIL (|has| (-863 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-863 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-863 |#1|) (-893 (-1166)))) (($ $ (-1 (-863 |#1|) (-863 |#1|)) (-765)) NIL) (($ $ (-1 (-863 |#1|) (-863 |#1|))) NIL)) (-1782 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-863 |#1|) (-844)))) (-1833 (($ $ $) NIL) (($ (-863 |#1|) (-863 |#1|)) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-863 |#1|) $) NIL) (($ $ (-863 |#1|)) NIL)))
+(((-864 |#1|) (-13 (-985 (-863 |#1|)) (-10 -8 (-15 -1417 ((-406 (-561)) $ (-561))) (-15 -3144 ((-173 (-406 (-561))) $)) (-15 -2911 ($ $)) (-15 -2911 ($ (-561) $)))) (-561)) (T -864))
+((-1417 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-864 *4)) (-14 *4 *3) (-5 *3 (-561)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-864 *3)) (-14 *3 (-561)))) (-2911 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-561)))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-864 *3)) (-14 *3 *2))))
+(-13 (-985 (-863 |#1|)) (-10 -8 (-15 -1417 ((-406 (-561)) $ (-561))) (-15 -3144 ((-173 (-406 (-561))) $)) (-15 -2911 ($ $)) (-15 -2911 ($ (-561) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 ((|#2| $) NIL (|has| |#2| (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| |#2| (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (|has| |#2| (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561))))) (-3938 ((|#2| $) NIL) (((-1166) $) NIL (|has| |#2| (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-561)))) (((-561) $) NIL (|has| |#2| (-1031 (-561))))) (-2911 (($ $) 31) (($ (-561) $) 32)) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) 53)) (-1332 (($) NIL (|has| |#2| (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) NIL (|has| |#2| (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| |#2| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| |#2| (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 ((|#2| $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-2110 (((-112) $) NIL (|has| |#2| (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| |#2| (-844)))) (-2986 (($ $ $) NIL (|has| |#2| (-844)))) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 49)) (-3721 (($) NIL (|has| |#2| (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| |#2| (-306)))) (-1388 ((|#2| $) NIL (|has| |#2| (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 |#2|) (-638 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-293 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-638 (-293 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-638 (-1166)) (-638 |#2|)) NIL (|has| |#2| (-512 (-1166) |#2|))) (($ $ (-1166) |#2|) NIL (|has| |#2| (-512 (-1166) |#2|)))) (-3569 (((-765) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2861 (($ $) NIL)) (-4045 ((|#2| $) NIL)) (-4174 (((-885 (-561)) $) NIL (|has| |#2| (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| |#2| (-609 (-885 (-378))))) (((-534) $) NIL (|has| |#2| (-609 (-534)))) (((-378) $) NIL (|has| |#2| (-1015))) (((-224) $) NIL (|has| |#2| (-1015)))) (-3144 (((-173 (-406 (-561))) $) 68)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-4022 (((-856) $) 86) (($ (-561)) 19) (($ $) NIL) (($ (-406 (-561))) 24) (($ |#2|) 18) (($ (-1166)) NIL (|has| |#2| (-1031 (-1166))))) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-4259 (((-765)) NIL)) (-2432 ((|#2| $) NIL (|has| |#2| (-543)))) (-3168 (((-112) $ $) NIL)) (-1417 (((-406 (-561)) $ (-561)) 60)) (-3749 (($ $) NIL (|has| |#2| (-814)))) (-2211 (($) 14 T CONST)) (-2222 (($) 16 T CONST)) (-3122 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1733 (((-112) $ $) 35)) (-1773 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1833 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1824 (($ $) 39) (($ $ $) 41)) (-1813 (($ $ $) 37)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) 50)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 42) (($ $ $) 44) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-865 |#1| |#2|) (-13 (-985 |#2|) (-10 -8 (-15 -1417 ((-406 (-561)) $ (-561))) (-15 -3144 ((-173 (-406 (-561))) $)) (-15 -2911 ($ $)) (-15 -2911 ($ (-561) $)))) (-561) (-862 |#1|)) (T -865))
+((-1417 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-561))) (-5 *1 (-865 *4 *5)) (-5 *3 (-561)) (-4 *5 (-862 *4)))) (-3144 (*1 *2 *1) (-12 (-14 *3 (-561)) (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-865 *3 *4)) (-4 *4 (-862 *3)))) (-2911 (*1 *1 *1) (-12 (-14 *2 (-561)) (-5 *1 (-865 *2 *3)) (-4 *3 (-862 *2)))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-14 *3 *2) (-5 *1 (-865 *3 *4)) (-4 *4 (-862 *3)))))
+(-13 (-985 |#2|) (-10 -8 (-15 -1417 ((-406 (-561)) $ (-561))) (-15 -3144 ((-173 (-406 (-561))) $)) (-15 -2911 ($ $)) (-15 -2911 ($ (-561) $))))
+((-4011 (((-112) $ $) NIL (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))) (-2285 ((|#2| $) 12)) (-2446 (($ |#1| |#2|) 9)) (-1764 (((-1148) $) NIL (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))) (-1714 (((-1110) $) NIL (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#1| $) 11)) (-4031 (($ |#1| |#2|) 10)) (-4022 (((-856) $) 18 (-4007 (-12 (|has| |#1| (-608 (-856))) (|has| |#2| (-608 (-856)))) (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090)))))) (-1733 (((-112) $ $) 22 (-12 (|has| |#1| (-1090)) (|has| |#2| (-1090))))))
+(((-866 |#1| |#2|) (-13 (-1205) (-10 -8 (IF (|has| |#1| (-608 (-856))) (IF (|has| |#2| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1090)) (IF (|has| |#2| (-1090)) (-6 (-1090)) |%noBranch|) |%noBranch|) (-15 -2446 ($ |#1| |#2|)) (-15 -4031 ($ |#1| |#2|)) (-15 -1433 (|#1| $)) (-15 -2285 (|#2| $)))) (-1205) (-1205)) (T -866))
+((-2446 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205)))) (-4031 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205)))) (-1433 (*1 *2 *1) (-12 (-4 *2 (-1205)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1205)))) (-2285 (*1 *2 *1) (-12 (-4 *2 (-1205)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1205)))))
+(-13 (-1205) (-10 -8 (IF (|has| |#1| (-608 (-856))) (IF (|has| |#2| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1090)) (IF (|has| |#2| (-1090)) (-6 (-1090)) |%noBranch|) |%noBranch|) (-15 -2446 ($ |#1| |#2|)) (-15 -4031 ($ |#1| |#2|)) (-15 -1433 (|#1| $)) (-15 -2285 (|#2| $))))
+((-4011 (((-112) $ $) NIL)) (-2489 (((-561) $) 15)) (-4366 (($ (-156)) 11)) (-2001 (($ (-156)) 12)) (-1764 (((-1148) $) NIL)) (-4177 (((-156) $) 13)) (-1714 (((-1110) $) NIL)) (-2164 (($ (-156)) 9)) (-3946 (($ (-156)) 8)) (-4022 (((-856) $) 23) (($ (-156)) 16)) (-3958 (($ (-156)) 10)) (-1733 (((-112) $ $) NIL)))
+(((-867) (-13 (-1090) (-10 -8 (-15 -3946 ($ (-156))) (-15 -2164 ($ (-156))) (-15 -3958 ($ (-156))) (-15 -4366 ($ (-156))) (-15 -2001 ($ (-156))) (-15 -4177 ((-156) $)) (-15 -2489 ((-561) $)) (-15 -4022 ($ (-156)))))) (T -867))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-4366 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2001 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-867)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(-13 (-1090) (-10 -8 (-15 -3946 ($ (-156))) (-15 -2164 ($ (-156))) (-15 -3958 ($ (-156))) (-15 -4366 ($ (-156))) (-15 -2001 ($ (-156))) (-15 -4177 ((-156) $)) (-15 -2489 ((-561) $)) (-15 -4022 ($ (-156)))))
+((-4022 (((-315 (-561)) (-406 (-945 (-48)))) 23) (((-315 (-561)) (-945 (-48))) 18)))
+(((-868) (-10 -7 (-15 -4022 ((-315 (-561)) (-945 (-48)))) (-15 -4022 ((-315 (-561)) (-406 (-945 (-48))))))) (T -868))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 (-48)))) (-5 *2 (-315 (-561))) (-5 *1 (-868)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-945 (-48))) (-5 *2 (-315 (-561))) (-5 *1 (-868)))))
+(-10 -7 (-15 -4022 ((-315 (-561)) (-945 (-48)))) (-15 -4022 ((-315 (-561)) (-406 (-945 (-48))))))
+((-4120 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 14)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -4120 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1205) (-1205)) (T -869))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6)))))
+(-10 -7 (-15 -4120 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|))))
+((-3851 (($ |#1| |#1|) 8)) (-3504 ((|#1| $ (-765)) 10)))
+(((-870 |#1|) (-10 -8 (-15 -3851 ($ |#1| |#1|)) (-15 -3504 (|#1| $ (-765)))) (-1205)) (T -870))
+((-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1205)))) (-3851 (*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1205)))))
+(-10 -8 (-15 -3851 ($ |#1| |#1|)) (-15 -3504 (|#1| $ (-765))))
+((-4120 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14)))
+(((-871 |#1| |#2|) (-10 -7 (-15 -4120 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1205) (-1205)) (T -871))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))))
+(-10 -7 (-15 -4120 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))
+((-3851 (($ |#1| |#1| |#1|) 8)) (-3504 ((|#1| $ (-765)) 10)))
+(((-872 |#1|) (-10 -8 (-15 -3851 ($ |#1| |#1| |#1|)) (-15 -3504 (|#1| $ (-765)))) (-1205)) (T -872))
+((-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1205)))) (-3851 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1205)))))
+(-10 -8 (-15 -3851 ($ |#1| |#1| |#1|)) (-15 -3504 (|#1| $ (-765))))
+((-3439 (((-638 (-1171)) (-1148)) 9)))
+(((-873) (-10 -7 (-15 -3439 ((-638 (-1171)) (-1148))))) (T -873))
+((-3439 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-873)))))
+(-10 -7 (-15 -3439 ((-638 (-1171)) (-1148))))
+((-4120 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14)))
+(((-874 |#1| |#2|) (-10 -7 (-15 -4120 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1205) (-1205)) (T -874))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))))
+(-10 -7 (-15 -4120 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
+((-3939 (($ |#1| |#1| |#1|) 8)) (-3504 ((|#1| $ (-765)) 10)))
+(((-875 |#1|) (-10 -8 (-15 -3939 ($ |#1| |#1| |#1|)) (-15 -3504 (|#1| $ (-765)))) (-1205)) (T -875))
+((-3504 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1205)))) (-3939 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1205)))))
+(-10 -8 (-15 -3939 ($ |#1| |#1| |#1|)) (-15 -3504 (|#1| $ (-765))))
+((-3945 (((-1146 (-638 (-561))) (-638 (-561)) (-1146 (-638 (-561)))) 30)) (-2339 (((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561))) 26)) (-3497 (((-1146 (-638 (-561))) (-638 (-561))) 39) (((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561))) 38)) (-3417 (((-1146 (-638 (-561))) (-561)) 40)) (-1841 (((-1146 (-638 (-561))) (-561) (-561)) 22) (((-1146 (-638 (-561))) (-561)) 16) (((-1146 (-638 (-561))) (-561) (-561) (-561)) 12)) (-3730 (((-1146 (-638 (-561))) (-1146 (-638 (-561)))) 24)) (-2260 (((-638 (-561)) (-638 (-561))) 23)))
+(((-876) (-10 -7 (-15 -1841 ((-1146 (-638 (-561))) (-561) (-561) (-561))) (-15 -1841 ((-1146 (-638 (-561))) (-561))) (-15 -1841 ((-1146 (-638 (-561))) (-561) (-561))) (-15 -2260 ((-638 (-561)) (-638 (-561)))) (-15 -3730 ((-1146 (-638 (-561))) (-1146 (-638 (-561))))) (-15 -2339 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -3945 ((-1146 (-638 (-561))) (-638 (-561)) (-1146 (-638 (-561))))) (-15 -3497 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -3497 ((-1146 (-638 (-561))) (-638 (-561)))) (-15 -3417 ((-1146 (-638 (-561))) (-561))))) (T -876))
+((-3417 (*1 *2 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))) (-3497 (*1 *2 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-638 (-561))))) (-3497 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-638 (-561))))) (-3945 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *3 (-638 (-561))) (-5 *1 (-876)))) (-2339 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-638 (-561))))) (-3730 (*1 *2 *2) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-876)))) (-1841 (*1 *2 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))) (-1841 (*1 *2 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))) (-1841 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))))
+(-10 -7 (-15 -1841 ((-1146 (-638 (-561))) (-561) (-561) (-561))) (-15 -1841 ((-1146 (-638 (-561))) (-561))) (-15 -1841 ((-1146 (-638 (-561))) (-561) (-561))) (-15 -2260 ((-638 (-561)) (-638 (-561)))) (-15 -3730 ((-1146 (-638 (-561))) (-1146 (-638 (-561))))) (-15 -2339 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -3945 ((-1146 (-638 (-561))) (-638 (-561)) (-1146 (-638 (-561))))) (-15 -3497 ((-1146 (-638 (-561))) (-638 (-561)) (-638 (-561)))) (-15 -3497 ((-1146 (-638 (-561))) (-638 (-561)))) (-15 -3417 ((-1146 (-638 (-561))) (-561))))
+((-4174 (((-885 (-378)) $) 9 (|has| |#1| (-609 (-885 (-378))))) (((-885 (-561)) $) 8 (|has| |#1| (-609 (-885 (-561)))))))
+(((-877 |#1|) (-139) (-1205)) (T -877))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-609 (-885 (-561)))) (-6 (-609 (-885 (-561)))) |%noBranch|) (IF (|has| |t#1| (-609 (-885 (-378)))) (-6 (-609 (-885 (-378)))) |%noBranch|)))
+(((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))))
+((-4011 (((-112) $ $) NIL)) (-1470 (($) 14)) (-2412 (($ (-882 |#1| |#2|) (-882 |#1| |#3|)) 27)) (-3141 (((-882 |#1| |#3|) $) 16)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4099 (((-112) $) 22)) (-4223 (($) 19)) (-4022 (((-856) $) 30)) (-3444 (((-882 |#1| |#2|) $) 15)) (-1733 (((-112) $ $) 25)))
+(((-878 |#1| |#2| |#3|) (-13 (-1090) (-10 -8 (-15 -4099 ((-112) $)) (-15 -4223 ($)) (-15 -1470 ($)) (-15 -2412 ($ (-882 |#1| |#2|) (-882 |#1| |#3|))) (-15 -3444 ((-882 |#1| |#2|) $)) (-15 -3141 ((-882 |#1| |#3|) $)))) (-1090) (-1090) (-659 |#2|)) (T -878))
+((-4099 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-659 *4)))) (-4223 (*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-659 *3)))) (-1470 (*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-659 *3)))) (-2412 (*1 *1 *2 *3) (-12 (-5 *2 (-882 *4 *5)) (-5 *3 (-882 *4 *6)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6)))) (-3444 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *4)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-659 *4)))) (-3141 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *5)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-659 *4)))))
+(-13 (-1090) (-10 -8 (-15 -4099 ((-112) $)) (-15 -4223 ($)) (-15 -1470 ($)) (-15 -2412 ($ (-882 |#1| |#2|) (-882 |#1| |#3|))) (-15 -3444 ((-882 |#1| |#2|) $)) (-15 -3141 ((-882 |#1| |#3|) $))))
+((-4011 (((-112) $ $) 7)) (-3631 (((-882 |#1| $) $ (-885 |#1|) (-882 |#1| $)) 13)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)))
+(((-879 |#1|) (-139) (-1090)) (T -879))
+((-3631 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-882 *4 *1)) (-5 *3 (-885 *4)) (-4 *1 (-879 *4)) (-4 *4 (-1090)))))
+(-13 (-1090) (-10 -8 (-15 -3631 ((-882 |t#1| $) $ (-885 |t#1|) (-882 |t#1| $)))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-2561 (((-112) (-638 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-2172 (((-882 |#1| |#2|) |#2| |#3|) 42 (-12 (-2159 (|has| |#2| (-1031 (-1166)))) (-2159 (|has| |#2| (-1042))))) (((-638 (-293 (-945 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1042)) (-2159 (|has| |#2| (-1031 (-1166)))))) (((-638 (-293 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1031 (-1166)))) (((-878 |#1| |#2| (-638 |#2|)) (-638 |#2|) |#3|) 20)))
+(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -2561 ((-112) |#2| |#3|)) (-15 -2561 ((-112) (-638 |#2|) |#3|)) (-15 -2172 ((-878 |#1| |#2| (-638 |#2|)) (-638 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2172 ((-638 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -2172 ((-638 (-293 (-945 |#2|))) |#2| |#3|)) (-15 -2172 ((-882 |#1| |#2|) |#2| |#3|))))) (-1090) (-879 |#1|) (-609 (-885 |#1|))) (T -880))
+((-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-882 *5 *3)) (-5 *1 (-880 *5 *3 *4)) (-2159 (-4 *3 (-1031 (-1166)))) (-2159 (-4 *3 (-1042))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 (-945 *3)))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1042)) (-2159 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 *3))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-638 *6))) (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-638 *6)) (-4 *4 (-609 (-885 *5))))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-885 *5))))) (-2561 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))))
+(-10 -7 (-15 -2561 ((-112) |#2| |#3|)) (-15 -2561 ((-112) (-638 |#2|) |#3|)) (-15 -2172 ((-878 |#1| |#2| (-638 |#2|)) (-638 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2172 ((-638 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -2172 ((-638 (-293 (-945 |#2|))) |#2| |#3|)) (-15 -2172 ((-882 |#1| |#2|) |#2| |#3|)))))
+((-4120 (((-882 |#1| |#3|) (-1 |#3| |#2|) (-882 |#1| |#2|)) 22)))
+(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -4120 ((-882 |#1| |#3|) (-1 |#3| |#2|) (-882 |#1| |#2|)))) (-1090) (-1090) (-1090)) (T -881))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-882 *5 *6)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-882 *5 *7)) (-5 *1 (-881 *5 *6 *7)))))
+(-10 -7 (-15 -4120 ((-882 |#1| |#3|) (-1 |#3| |#2|) (-882 |#1| |#2|))))
+((-4011 (((-112) $ $) NIL)) (-2443 (($ $ $) 39)) (-1400 (((-3 (-112) "failed") $ (-885 |#1|)) 36)) (-1470 (($) 12)) (-1764 (((-1148) $) NIL)) (-2102 (($ (-885 |#1|) |#2| $) 20)) (-1714 (((-1110) $) NIL)) (-2624 (((-3 |#2| "failed") (-885 |#1|) $) 50)) (-4099 (((-112) $) 15)) (-4223 (($) 13)) (-1721 (((-638 (-2 (|:| -2252 (-1166)) (|:| -2654 |#2|))) $) 25)) (-4031 (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 |#2|)))) 23)) (-4022 (((-856) $) 44)) (-4243 (($ (-885 |#1|) |#2| $ |#2|) 48)) (-1905 (($ (-885 |#1|) |#2| $) 47)) (-1733 (((-112) $ $) 41)))
+(((-882 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -4099 ((-112) $)) (-15 -4223 ($)) (-15 -1470 ($)) (-15 -2443 ($ $ $)) (-15 -2624 ((-3 |#2| "failed") (-885 |#1|) $)) (-15 -1905 ($ (-885 |#1|) |#2| $)) (-15 -2102 ($ (-885 |#1|) |#2| $)) (-15 -4243 ($ (-885 |#1|) |#2| $ |#2|)) (-15 -1721 ((-638 (-2 (|:| -2252 (-1166)) (|:| -2654 |#2|))) $)) (-15 -4031 ($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 |#2|))))) (-15 -1400 ((-3 (-112) "failed") $ (-885 |#1|))))) (-1090) (-1090)) (T -882))
+((-4099 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4223 (*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1470 (*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-2443 (*1 *1 *1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-2624 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-4 *2 (-1090)) (-5 *1 (-882 *4 *2)))) (-1905 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1090)))) (-2102 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1090)))) (-4243 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1090)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 *4)))) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 *4)))) (-4 *4 (-1090)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)))) (-1400 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1090)))))
+(-13 (-1090) (-10 -8 (-15 -4099 ((-112) $)) (-15 -4223 ($)) (-15 -1470 ($)) (-15 -2443 ($ $ $)) (-15 -2624 ((-3 |#2| "failed") (-885 |#1|) $)) (-15 -1905 ($ (-885 |#1|) |#2| $)) (-15 -2102 ($ (-885 |#1|) |#2| $)) (-15 -4243 ($ (-885 |#1|) |#2| $ |#2|)) (-15 -1721 ((-638 (-2 (|:| -2252 (-1166)) (|:| -2654 |#2|))) $)) (-15 -4031 ($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 |#2|))))) (-15 -1400 ((-3 (-112) "failed") $ (-885 |#1|)))))
+((-3183 (((-885 |#1|) (-885 |#1|) (-638 (-1166)) (-1 (-112) (-638 |#2|))) 32) (((-885 |#1|) (-885 |#1|) (-638 (-1 (-112) |#2|))) 43) (((-885 |#1|) (-885 |#1|) (-1 (-112) |#2|)) 35)) (-1400 (((-112) (-638 |#2|) (-885 |#1|)) 40) (((-112) |#2| (-885 |#1|)) 36)) (-3648 (((-1 (-112) |#2|) (-885 |#1|)) 16)) (-3976 (((-638 |#2|) (-885 |#1|)) 24)) (-1878 (((-885 |#1|) (-885 |#1|) |#2|) 20)))
+(((-883 |#1| |#2|) (-10 -7 (-15 -3183 ((-885 |#1|) (-885 |#1|) (-1 (-112) |#2|))) (-15 -3183 ((-885 |#1|) (-885 |#1|) (-638 (-1 (-112) |#2|)))) (-15 -3183 ((-885 |#1|) (-885 |#1|) (-638 (-1166)) (-1 (-112) (-638 |#2|)))) (-15 -3648 ((-1 (-112) |#2|) (-885 |#1|))) (-15 -1400 ((-112) |#2| (-885 |#1|))) (-15 -1400 ((-112) (-638 |#2|) (-885 |#1|))) (-15 -1878 ((-885 |#1|) (-885 |#1|) |#2|)) (-15 -3976 ((-638 |#2|) (-885 |#1|)))) (-1090) (-1205)) (T -883))
+((-3976 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-638 *5)) (-5 *1 (-883 *4 *5)) (-4 *5 (-1205)))) (-1878 (*1 *2 *2 *3) (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1205)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3)) (-4 *3 (-1205)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-883 *4 *5)) (-4 *5 (-1205)))) (-3183 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-885 *5)) (-5 *3 (-638 (-1166))) (-5 *4 (-1 (-112) (-638 *6))) (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *1 (-883 *5 *6)))) (-3183 (*1 *2 *2 *3) (-12 (-5 *2 (-885 *4)) (-5 *3 (-638 (-1 (-112) *5))) (-4 *4 (-1090)) (-4 *5 (-1205)) (-5 *1 (-883 *4 *5)))) (-3183 (*1 *2 *2 *3) (-12 (-5 *2 (-885 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1090)) (-4 *5 (-1205)) (-5 *1 (-883 *4 *5)))))
+(-10 -7 (-15 -3183 ((-885 |#1|) (-885 |#1|) (-1 (-112) |#2|))) (-15 -3183 ((-885 |#1|) (-885 |#1|) (-638 (-1 (-112) |#2|)))) (-15 -3183 ((-885 |#1|) (-885 |#1|) (-638 (-1166)) (-1 (-112) (-638 |#2|)))) (-15 -3648 ((-1 (-112) |#2|) (-885 |#1|))) (-15 -1400 ((-112) |#2| (-885 |#1|))) (-15 -1400 ((-112) (-638 |#2|) (-885 |#1|))) (-15 -1878 ((-885 |#1|) (-885 |#1|) |#2|)) (-15 -3976 ((-638 |#2|) (-885 |#1|))))
+((-4120 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 19)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -4120 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1090) (-1090)) (T -884))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))))
+(-10 -7 (-15 -4120 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
+((-4011 (((-112) $ $) NIL)) (-3309 (($ $ (-638 (-52))) 62)) (-1412 (((-638 $) $) 116)) (-1691 (((-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))) $) 23)) (-3997 (((-112) $) 29)) (-4265 (($ $ (-638 (-1166)) (-52)) 24)) (-1316 (($ $ (-638 (-52))) 61)) (-4017 (((-3 |#1| "failed") $) 59) (((-3 (-1166) "failed") $) 138)) (-3938 ((|#1| $) 56) (((-1166) $) NIL)) (-3251 (($ $) 106)) (-3069 (((-112) $) 44)) (-1442 (((-638 (-52)) $) 42)) (-2952 (($ (-1166) (-112) (-112) (-112)) 63)) (-3973 (((-3 (-638 $) "failed") (-638 $)) 70)) (-1992 (((-112) $) 47)) (-1955 (((-112) $) 46)) (-1764 (((-1148) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) 33)) (-3003 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-3772 (((-3 (-2 (|:| |val| $) (|:| -4196 $)) "failed") $) 81)) (-1664 (((-3 (-638 $) "failed") $) 32)) (-3519 (((-3 (-638 $) "failed") $ (-114)) 105) (((-3 (-2 (|:| -2375 (-114)) (|:| |arg| (-638 $))) "failed") $) 93)) (-1828 (((-3 (-638 $) "failed") $) 34)) (-3431 (((-3 (-2 (|:| |val| $) (|:| -4196 (-765))) "failed") $) 37)) (-2319 (((-112) $) 28)) (-1714 (((-1110) $) NIL)) (-2717 (((-112) $) 20)) (-2011 (((-112) $) 43)) (-2130 (((-638 (-52)) $) 109)) (-2143 (((-112) $) 45)) (-2277 (($ (-114) (-638 $)) 90)) (-1404 (((-765) $) 27)) (-4187 (($ $) 60)) (-4174 (($ (-638 $)) 57)) (-3330 (((-112) $) 25)) (-4022 (((-856) $) 51) (($ |#1|) 18) (($ (-1166)) 64)) (-1878 (($ $ (-52)) 108)) (-2211 (($) 89 T CONST)) (-2222 (($) 71 T CONST)) (-1733 (((-112) $ $) 77)) (-1833 (($ $ $) 98)) (-1813 (($ $ $) 102)) (** (($ $ (-765)) 97) (($ $ $) 52)) (* (($ $ $) 103)))
+(((-885 |#1|) (-13 (-1090) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 0 ($) -1514) (-15 1 ($) -1514) (-15 -1664 ((-3 (-638 $) "failed") $)) (-15 -3638 ((-3 (-638 $) "failed") $)) (-15 -3519 ((-3 (-638 $) "failed") $ (-114))) (-15 -3519 ((-3 (-2 (|:| -2375 (-114)) (|:| |arg| (-638 $))) "failed") $)) (-15 -3431 ((-3 (-2 (|:| |val| $) (|:| -4196 (-765))) "failed") $)) (-15 -3003 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1828 ((-3 (-638 $) "failed") $)) (-15 -3772 ((-3 (-2 (|:| |val| $) (|:| -4196 $)) "failed") $)) (-15 -2277 ($ (-114) (-638 $))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -1833 ($ $ $)) (-15 -1404 ((-765) $)) (-15 -4174 ($ (-638 $))) (-15 -4187 ($ $)) (-15 -2319 ((-112) $)) (-15 -3069 ((-112) $)) (-15 -3997 ((-112) $)) (-15 -3330 ((-112) $)) (-15 -2143 ((-112) $)) (-15 -1955 ((-112) $)) (-15 -1992 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -1442 ((-638 (-52)) $)) (-15 -1316 ($ $ (-638 (-52)))) (-15 -3309 ($ $ (-638 (-52)))) (-15 -2952 ($ (-1166) (-112) (-112) (-112))) (-15 -4265 ($ $ (-638 (-1166)) (-52))) (-15 -1691 ((-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))) $)) (-15 -2717 ((-112) $)) (-15 -3251 ($ $)) (-15 -1878 ($ $ (-52))) (-15 -2130 ((-638 (-52)) $)) (-15 -1412 ((-638 $) $)) (-15 -3973 ((-3 (-638 $) "failed") (-638 $))))) (-1090)) (T -885))
+((-2211 (*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-2222 (*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-1664 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3638 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3519 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-885 *4))) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-3519 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2375 (-114)) (|:| |arg| (-638 (-885 *3))))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3431 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4196 (-765)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3003 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-885 *3)) (|:| |den| (-885 *3)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1828 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3772 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4196 (-885 *3)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2277 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 (-885 *4))) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-1813 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-1833 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-4187 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3309 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2952 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-4265 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-52)) (-5 *1 (-885 *4)) (-4 *4 (-1090)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52)))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3251 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))) (-1878 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))) (-3973 (*1 *2 *2) (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(-13 (-1090) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 (-2211) ($) -1514) (-15 (-2222) ($) -1514) (-15 -1664 ((-3 (-638 $) "failed") $)) (-15 -3638 ((-3 (-638 $) "failed") $)) (-15 -3519 ((-3 (-638 $) "failed") $ (-114))) (-15 -3519 ((-3 (-2 (|:| -2375 (-114)) (|:| |arg| (-638 $))) "failed") $)) (-15 -3431 ((-3 (-2 (|:| |val| $) (|:| -4196 (-765))) "failed") $)) (-15 -3003 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1828 ((-3 (-638 $) "failed") $)) (-15 -3772 ((-3 (-2 (|:| |val| $) (|:| -4196 $)) "failed") $)) (-15 -2277 ($ (-114) (-638 $))) (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -1833 ($ $ $)) (-15 -1404 ((-765) $)) (-15 -4174 ($ (-638 $))) (-15 -4187 ($ $)) (-15 -2319 ((-112) $)) (-15 -3069 ((-112) $)) (-15 -3997 ((-112) $)) (-15 -3330 ((-112) $)) (-15 -2143 ((-112) $)) (-15 -1955 ((-112) $)) (-15 -1992 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -1442 ((-638 (-52)) $)) (-15 -1316 ($ $ (-638 (-52)))) (-15 -3309 ($ $ (-638 (-52)))) (-15 -2952 ($ (-1166) (-112) (-112) (-112))) (-15 -4265 ($ $ (-638 (-1166)) (-52))) (-15 -1691 ((-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))) $)) (-15 -2717 ((-112) $)) (-15 -3251 ($ $)) (-15 -1878 ($ $ (-52))) (-15 -2130 ((-638 (-52)) $)) (-15 -1412 ((-638 $) $)) (-15 -3973 ((-3 (-638 $) "failed") (-638 $)))))
+((-4011 (((-112) $ $) NIL)) (-2813 (((-638 |#1|) $) 16)) (-3295 (((-112) $) 38)) (-4017 (((-3 (-665 |#1|) "failed") $) 43)) (-3938 (((-665 |#1|) $) 41)) (-1445 (($ $) 18)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3617 (((-765) $) 46)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-665 |#1|) $) 17)) (-4022 (((-856) $) 37) (($ (-665 |#1|)) 21) (((-813 |#1|) $) 27) (($ |#1|) 20)) (-2222 (($) 8 T CONST)) (-3126 (((-638 (-665 |#1|)) $) 23)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 11)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 49)))
+(((-886 |#1|) (-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 1 ($) -1514) (-15 -4022 ((-813 |#1|) $)) (-15 -4022 ($ |#1|)) (-15 -1433 ((-665 |#1|) $)) (-15 -3617 ((-765) $)) (-15 -3126 ((-638 (-665 |#1|)) $)) (-15 -1445 ($ $)) (-15 -3295 ((-112) $)) (-15 -2813 ((-638 |#1|) $)))) (-844)) (T -886))
+((-2222 (*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4022 (*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-638 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
+(-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 (-2222) ($) -1514) (-15 -4022 ((-813 |#1|) $)) (-15 -4022 ($ |#1|)) (-15 -1433 ((-665 |#1|) $)) (-15 -3617 ((-765) $)) (-15 -3126 ((-638 (-665 |#1|)) $)) (-15 -1445 ($ $)) (-15 -3295 ((-112) $)) (-15 -2813 ((-638 |#1|) $))))
+((-2127 ((|#1| |#1| |#1|) 19)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -2127 (|#1| |#1| |#1|))) (-1229 |#2|) (-1042)) (T -887))
+((-2127 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -2127 (|#1| |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-1804 (((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 14)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2904 (((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 13)) (-1733 (((-112) $ $) 6)))
+(((-888) (-139)) (T -888))
+((-1804 (*1 *2 *3 *4) (-12 (-4 *1 (-888)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148)))))) (-2904 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *3 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-1028)))))
+(-13 (-1090) (-10 -7 (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -2904 ((-1028) (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-2973 ((|#1| |#1| (-765)) 24)) (-1502 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2091 (((-3 (-2 (|:| -1605 |#1|) (|:| -1621 |#1|)) "failed") |#1| (-765) (-765)) 27) (((-638 |#1|) |#1|) 29)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -2091 ((-638 |#1|) |#1|)) (-15 -2091 ((-3 (-2 (|:| -1605 |#1|) (|:| -1621 |#1|)) "failed") |#1| (-765) (-765))) (-15 -1502 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2973 (|#1| |#1| (-765)))) (-1229 |#2|) (-362)) (T -889))
+((-2973 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4)) (-4 *2 (-1229 *4)))) (-1502 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1229 *3)))) (-2091 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1605 *3) (|:| -1621 *3))) (-5 *1 (-889 *3 *5)) (-4 *3 (-1229 *5)))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -2091 ((-638 |#1|) |#1|)) (-15 -2091 ((-3 (-2 (|:| -1605 |#1|) (|:| -1621 |#1|)) "failed") |#1| (-765) (-765))) (-15 -1502 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2973 (|#1| |#1| (-765))))
+((-3867 (((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148)) 96) (((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148) (-224)) 91) (((-1028) (-891) (-1054)) 83) (((-1028) (-891)) 84)) (-1804 (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891) (-1054)) 59) (((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891)) 61)))
+(((-890) (-10 -7 (-15 -3867 ((-1028) (-891))) (-15 -3867 ((-1028) (-891) (-1054))) (-15 -3867 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148) (-224))) (-15 -3867 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891) (-1054))))) (T -890))
+((-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-890)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148))))) (-5 *1 (-890)))) (-3867 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148)) (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3867 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148)) (-5 *8 (-224)) (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890)))))
+(-10 -7 (-15 -3867 ((-1028) (-891))) (-15 -3867 ((-1028) (-891) (-1054))) (-15 -3867 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148) (-224))) (-15 -3867 ((-1028) (-378) (-378) (-378) (-378) (-765) (-765) (-638 (-315 (-378))) (-638 (-638 (-315 (-378)))) (-1148))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891))) (-15 -1804 ((-2 (|:| -1804 (-378)) (|:| -3269 (-1148)) (|:| |explanations| (-638 (-1148)))) (-891) (-1054))))
+((-4011 (((-112) $ $) NIL)) (-3938 (((-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $) 19)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 21) (($ (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 18)) (-1733 (((-112) $ $) NIL)))
+(((-891) (-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3938 ((-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $))))) (T -891))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891)))))
+(-13 (-1090) (-10 -8 (-15 -4022 ($ (-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3938 ((-2 (|:| |pde| (-638 (-315 (-224)))) (|:| |constraints| (-638 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-561)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $))))
+((-3238 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) 10) (($ $ |#2| (-765)) 12) (($ $ (-638 |#2|) (-638 (-765))) 15)) (-3122 (($ $ |#2|) 16) (($ $ (-638 |#2|)) 18) (($ $ |#2| (-765)) 19) (($ $ (-638 |#2|) (-638 (-765))) 21)))
+(((-892 |#1| |#2|) (-10 -8 (-15 -3122 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3122 (|#1| |#1| |#2| (-765))) (-15 -3122 (|#1| |#1| (-638 |#2|))) (-15 -3122 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3238 (|#1| |#1| |#2| (-765))) (-15 -3238 (|#1| |#1| (-638 |#2|))) (-15 -3238 (|#1| |#1| |#2|))) (-893 |#2|) (-1090)) (T -892))
+NIL
+(-10 -8 (-15 -3122 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3122 (|#1| |#1| |#2| (-765))) (-15 -3122 (|#1| |#1| (-638 |#2|))) (-15 -3122 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| (-638 |#2|) (-638 (-765)))) (-15 -3238 (|#1| |#1| |#2| (-765))) (-15 -3238 (|#1| |#1| (-638 |#2|))) (-15 -3238 (|#1| |#1| |#2|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3238 (($ $ |#1|) 42) (($ $ (-638 |#1|)) 41) (($ $ |#1| (-765)) 40) (($ $ (-638 |#1|) (-638 (-765))) 39)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ |#1|) 38) (($ $ (-638 |#1|)) 37) (($ $ |#1| (-765)) 36) (($ $ (-638 |#1|) (-638 (-765))) 35)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-893 |#1|) (-139) (-1090)) (T -893))
+((-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090)))) (-3238 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3238 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1090)))) (-3122 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090)))) (-3122 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090)))) (-3122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1090)))))
+(-13 (-1042) (-10 -8 (-15 -3238 ($ $ |t#1|)) (-15 -3238 ($ $ (-638 |t#1|))) (-15 -3238 ($ $ |t#1| (-765))) (-15 -3238 ($ $ (-638 |t#1|) (-638 (-765)))) (-15 -3122 ($ $ |t#1|)) (-15 -3122 ($ $ (-638 |t#1|))) (-15 -3122 ($ $ |t#1| (-765))) (-15 -3122 ($ $ (-638 |t#1|) (-638 (-765))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) 26)) (-1630 (((-112) $ (-765)) NIL)) (-1969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-1974 (($ $ $) NIL (|has| $ (-6 -4391)))) (-1983 (($ $ $) NIL (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) (($ $ "left" $) NIL (|has| $ (-6 -4391))) (($ $ "right" $) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-1621 (($ $) 25)) (-1686 (($ |#1|) 12) (($ $ $) 17)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1605 (($ $) 23)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) 20)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2004 (((-561) $ $) NIL)) (-3849 (((-112) $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-1191 |#1|) $) 9) (((-856) $) 29 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 21 (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-894 |#1|) (-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -1686 ($ |#1|)) (-15 -1686 ($ $ $)))) (-1090)) (T -894))
+((-1686 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090)))) (-1686 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090)))))
+(-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -1686 ($ |#1|)) (-15 -1686 ($ $ $))))
+((-1914 ((|#2| (-1132 |#1| |#2|)) 41)))
+(((-895 |#1| |#2|) (-10 -7 (-15 -1914 (|#2| (-1132 |#1| |#2|)))) (-914) (-13 (-1042) (-10 -7 (-6 (-4392 "*"))))) (T -895))
+((-1914 (*1 *2 *3) (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-914)) (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4392 "*"))))) (-5 *1 (-895 *4 *2)))))
+(-10 -7 (-15 -1914 (|#2| (-1132 |#1| |#2|))))
+((-4011 (((-112) $ $) 7)) (-1965 (($) 18 T CONST)) (-3466 (((-3 $ "failed") $) 15)) (-1508 (((-1092 |#1|) $ |#1|) 32)) (-3113 (((-112) $) 17)) (-3443 (($ $ $) 30 (-4007 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-2986 (($ $ $) 29 (-4007 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1764 (((-1148) $) 9)) (-1540 (($ $) 24)) (-1714 (((-1110) $) 10)) (-1444 ((|#1| $ |#1|) 34)) (-2277 ((|#1| $ |#1|) 33)) (-2288 (($ (-638 (-638 |#1|))) 35)) (-1759 (($ (-638 |#1|)) 36)) (-2260 (($ $ $) 21)) (-3800 (($ $ $) 20)) (-4022 (((-856) $) 11)) (-2222 (($) 19 T CONST)) (-1782 (((-112) $ $) 27 (-4007 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1762 (((-112) $ $) 26 (-4007 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 28 (-4007 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-1754 (((-112) $ $) 31)) (-1833 (($ $ $) 23)) (** (($ $ (-914)) 13) (($ $ (-765)) 16) (($ $ (-561)) 22)) (* (($ $ $) 14)))
+(((-896 |#1|) (-139) (-1090)) (T -896))
+((-1759 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-896 *3)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-4 *1 (-896 *3)))) (-1444 (*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090)))) (-2277 (*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090)))) (-1508 (*1 *2 *1 *3) (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-1092 *3)))) (-1754 (*1 *2 *1 *1) (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
+(-13 (-471) (-10 -8 (-15 -1759 ($ (-638 |t#1|))) (-15 -2288 ($ (-638 (-638 |t#1|)))) (-15 -1444 (|t#1| $ |t#1|)) (-15 -2277 (|t#1| $ |t#1|)) (-15 -1508 ((-1092 |t#1|) $ |t#1|)) (-15 -1754 ((-112) $ $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-844)) |%noBranch|)))
+(((-102) . T) ((-608 (-856)) . T) ((-471) . T) ((-720) . T) ((-844) -4007 (|has| |#1| (-844)) (|has| |#1| (-367))) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-1492 (((-638 (-638 (-765))) $) 107)) (-2169 (((-638 (-765)) (-898 |#1|) $) 129)) (-1910 (((-638 (-765)) (-898 |#1|) $) 130)) (-3856 (((-638 (-898 |#1|)) $) 97)) (-1332 (((-898 |#1|) $ (-561)) 102) (((-898 |#1|) $) 103)) (-3670 (($ (-638 (-898 |#1|))) 109)) (-4163 (((-765) $) 104)) (-2607 (((-1092 (-1092 |#1|)) $) 127)) (-1508 (((-1092 |#1|) $ |#1|) 120) (((-1092 (-1092 |#1|)) $ (-1092 |#1|)) 138) (((-1092 (-638 |#1|)) $ (-638 |#1|)) 141)) (-3985 (((-1092 |#1|) $) 100)) (-4087 (((-112) (-898 |#1|) $) 91)) (-1764 (((-1148) $) NIL)) (-3448 (((-1258) $) 94) (((-1258) $ (-561) (-561)) 142)) (-1714 (((-1110) $) NIL)) (-3227 (((-638 (-898 |#1|)) $) 95)) (-2277 (((-898 |#1|) $ (-765)) 98)) (-2894 (((-765) $) 105)) (-4022 (((-856) $) 118) (((-638 (-898 |#1|)) $) 23) (($ (-638 (-898 |#1|))) 108)) (-2684 (((-638 |#1|) $) 106)) (-1733 (((-112) $ $) 135)) (-1773 (((-112) $ $) 133)) (-1754 (((-112) $ $) 132)))
+(((-897 |#1|) (-13 (-1090) (-10 -8 (-15 -4022 ((-638 (-898 |#1|)) $)) (-15 -3227 ((-638 (-898 |#1|)) $)) (-15 -2277 ((-898 |#1|) $ (-765))) (-15 -1332 ((-898 |#1|) $ (-561))) (-15 -1332 ((-898 |#1|) $)) (-15 -4163 ((-765) $)) (-15 -2894 ((-765) $)) (-15 -2684 ((-638 |#1|) $)) (-15 -3856 ((-638 (-898 |#1|)) $)) (-15 -1492 ((-638 (-638 (-765))) $)) (-15 -4022 ($ (-638 (-898 |#1|)))) (-15 -3670 ($ (-638 (-898 |#1|)))) (-15 -1508 ((-1092 |#1|) $ |#1|)) (-15 -2607 ((-1092 (-1092 |#1|)) $)) (-15 -1508 ((-1092 (-1092 |#1|)) $ (-1092 |#1|))) (-15 -1508 ((-1092 (-638 |#1|)) $ (-638 |#1|))) (-15 -4087 ((-112) (-898 |#1|) $)) (-15 -2169 ((-638 (-765)) (-898 |#1|) $)) (-15 -1910 ((-638 (-765)) (-898 |#1|) $)) (-15 -3985 ((-1092 |#1|) $)) (-15 -1754 ((-112) $ $)) (-15 -1773 ((-112) $ $)) (-15 -3448 ((-1258) $)) (-15 -3448 ((-1258) $ (-561) (-561))))) (-1090)) (T -897))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4)) (-4 *4 (-1090)))) (-1332 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4)) (-4 *4 (-1090)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-898 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-765)))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3)))) (-1508 (*1 *2 *1 *3) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1092 (-1092 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1508 (*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-897 *4)) (-5 *3 (-1092 *4)))) (-1508 (*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-638 *4))) (-5 *1 (-897 *4)) (-5 *3 (-638 *4)))) (-4087 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-897 *4)))) (-2169 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765))) (-5 *1 (-897 *4)))) (-1910 (*1 *2 *3 *1) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765))) (-5 *1 (-897 *4)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1754 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-1773 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))) (-3448 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-897 *4)) (-4 *4 (-1090)))))
+(-13 (-1090) (-10 -8 (-15 -4022 ((-638 (-898 |#1|)) $)) (-15 -3227 ((-638 (-898 |#1|)) $)) (-15 -2277 ((-898 |#1|) $ (-765))) (-15 -1332 ((-898 |#1|) $ (-561))) (-15 -1332 ((-898 |#1|) $)) (-15 -4163 ((-765) $)) (-15 -2894 ((-765) $)) (-15 -2684 ((-638 |#1|) $)) (-15 -3856 ((-638 (-898 |#1|)) $)) (-15 -1492 ((-638 (-638 (-765))) $)) (-15 -4022 ($ (-638 (-898 |#1|)))) (-15 -3670 ($ (-638 (-898 |#1|)))) (-15 -1508 ((-1092 |#1|) $ |#1|)) (-15 -2607 ((-1092 (-1092 |#1|)) $)) (-15 -1508 ((-1092 (-1092 |#1|)) $ (-1092 |#1|))) (-15 -1508 ((-1092 (-638 |#1|)) $ (-638 |#1|))) (-15 -4087 ((-112) (-898 |#1|) $)) (-15 -2169 ((-638 (-765)) (-898 |#1|) $)) (-15 -1910 ((-638 (-765)) (-898 |#1|) $)) (-15 -3985 ((-1092 |#1|) $)) (-15 -1754 ((-112) $ $)) (-15 -1773 ((-112) $ $)) (-15 -3448 ((-1258) $)) (-15 -3448 ((-1258) $ (-561) (-561)))))
+((-4011 (((-112) $ $) NIL)) (-1289 (((-638 $) (-638 $)) 77)) (-2666 (((-561) $) 60)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-4163 (((-765) $) 58)) (-1508 (((-1092 |#1|) $ |#1|) 49)) (-3113 (((-112) $) NIL)) (-3402 (((-112) $) 63)) (-1462 (((-765) $) 61)) (-3985 (((-1092 |#1|) $) 42)) (-3443 (($ $ $) NIL (-4007 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-2986 (($ $ $) NIL (-4007 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-1547 (((-2 (|:| |preimage| (-638 |#1|)) (|:| |image| (-638 |#1|))) $) 37)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 93)) (-1714 (((-1110) $) NIL)) (-2350 (((-1092 |#1|) $) 100 (|has| |#1| (-367)))) (-2736 (((-112) $) 59)) (-1444 ((|#1| $ |#1|) 47)) (-2277 ((|#1| $ |#1|) 94)) (-2894 (((-765) $) 44)) (-2288 (($ (-638 (-638 |#1|))) 85)) (-1311 (((-964) $) 53)) (-1759 (($ (-638 |#1|)) 22)) (-2260 (($ $ $) NIL)) (-3800 (($ $ $) NIL)) (-2641 (($ (-638 (-638 |#1|))) 39)) (-1923 (($ (-638 (-638 |#1|))) 88)) (-1440 (($ (-638 |#1|)) 96)) (-4022 (((-856) $) 84) (($ (-638 (-638 |#1|))) 66) (($ (-638 |#1|)) 67)) (-2222 (($) 17 T CONST)) (-1782 (((-112) $ $) NIL (-4007 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-1762 (((-112) $ $) NIL (-4007 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-1733 (((-112) $ $) 45)) (-1773 (((-112) $ $) NIL (-4007 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-1754 (((-112) $ $) 65)) (-1833 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ $ $) 23)))
+(((-898 |#1|) (-13 (-896 |#1|) (-10 -8 (-15 -1547 ((-2 (|:| |preimage| (-638 |#1|)) (|:| |image| (-638 |#1|))) $)) (-15 -2641 ($ (-638 (-638 |#1|)))) (-15 -4022 ($ (-638 (-638 |#1|)))) (-15 -4022 ($ (-638 |#1|))) (-15 -1923 ($ (-638 (-638 |#1|)))) (-15 -2894 ((-765) $)) (-15 -3985 ((-1092 |#1|) $)) (-15 -1311 ((-964) $)) (-15 -4163 ((-765) $)) (-15 -1462 ((-765) $)) (-15 -2666 ((-561) $)) (-15 -2736 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -1289 ((-638 $) (-638 $))) (IF (|has| |#1| (-367)) (-15 -2350 ((-1092 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -1440 ($ (-638 |#1|))) (IF (|has| |#1| (-367)) (-15 -1440 ($ (-638 |#1|))) |%noBranch|)))) (-1090)) (T -898))
+((-1547 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-638 *3)) (|:| |image| (-638 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-1289 (*1 *2 *2) (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1090)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-367)) (-4 *3 (-1090)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
+(-13 (-896 |#1|) (-10 -8 (-15 -1547 ((-2 (|:| |preimage| (-638 |#1|)) (|:| |image| (-638 |#1|))) $)) (-15 -2641 ($ (-638 (-638 |#1|)))) (-15 -4022 ($ (-638 (-638 |#1|)))) (-15 -4022 ($ (-638 |#1|))) (-15 -1923 ($ (-638 (-638 |#1|)))) (-15 -2894 ((-765) $)) (-15 -3985 ((-1092 |#1|) $)) (-15 -1311 ((-964) $)) (-15 -4163 ((-765) $)) (-15 -1462 ((-765) $)) (-15 -2666 ((-561) $)) (-15 -2736 ((-112) $)) (-15 -3402 ((-112) $)) (-15 -1289 ((-638 $) (-638 $))) (IF (|has| |#1| (-367)) (-15 -2350 ((-1092 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -1440 ($ (-638 |#1|))) (IF (|has| |#1| (-367)) (-15 -1440 ($ (-638 |#1|))) |%noBranch|))))
+((-2430 (((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|)) 127)) (-4314 ((|#1|) 76)) (-1946 (((-417 (-1162 |#4|)) (-1162 |#4|)) 136)) (-2564 (((-417 (-1162 |#4|)) (-638 |#3|) (-1162 |#4|)) 68)) (-1431 (((-417 (-1162 |#4|)) (-1162 |#4|)) 146)) (-1366 (((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|) |#3|) 91)))
+(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2430 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|))) (-15 -1431 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -1946 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -4314 (|#1|)) (-15 -1366 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|) |#3|)) (-15 -2564 ((-417 (-1162 |#4|)) (-638 |#3|) (-1162 |#4|)))) (-902) (-787) (-844) (-942 |#1| |#2| |#3|)) (T -899))
+((-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *7)) (-4 *7 (-844)) (-4 *5 (-902)) (-4 *6 (-787)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-417 (-1162 *8))) (-5 *1 (-899 *5 *6 *7 *8)) (-5 *4 (-1162 *8)))) (-1366 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7)) (-4 *7 (-942 *5 *6 *4)) (-4 *5 (-902)) (-4 *6 (-787)) (-4 *4 (-844)) (-5 *1 (-899 *5 *6 *4 *7)))) (-4314 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-1431 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7))) (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7)))) (-2430 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-899 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2430 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|))) (-15 -1431 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -1946 ((-417 (-1162 |#4|)) (-1162 |#4|))) (-15 -4314 (|#1|)) (-15 -1366 ((-3 (-638 (-1162 |#4|)) "failed") (-638 (-1162 |#4|)) (-1162 |#4|) |#3|)) (-15 -2564 ((-417 (-1162 |#4|)) (-638 |#3|) (-1162 |#4|))))
+((-2430 (((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|)) 36)) (-4314 ((|#1|) 53)) (-1946 (((-417 (-1162 |#2|)) (-1162 |#2|)) 101)) (-2564 (((-417 (-1162 |#2|)) (-1162 |#2|)) 89)) (-1431 (((-417 (-1162 |#2|)) (-1162 |#2|)) 112)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -2430 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|))) (-15 -1431 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -1946 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -4314 (|#1|)) (-15 -2564 ((-417 (-1162 |#2|)) (-1162 |#2|)))) (-902) (-1229 |#1|)) (T -900))
+((-2564 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-1229 *4)) (-5 *2 (-417 (-1162 *5))) (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))) (-4314 (*1 *2) (-12 (-4 *2 (-902)) (-5 *1 (-900 *2 *3)) (-4 *3 (-1229 *2)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-1229 *4)) (-5 *2 (-417 (-1162 *5))) (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))) (-1431 (*1 *2 *3) (-12 (-4 *4 (-902)) (-4 *5 (-1229 *4)) (-5 *2 (-417 (-1162 *5))) (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))) (-2430 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-902)) (-5 *1 (-900 *4 *5)))))
+(-10 -7 (-15 -2430 ((-3 (-638 (-1162 |#2|)) "failed") (-638 (-1162 |#2|)) (-1162 |#2|))) (-15 -1431 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -1946 ((-417 (-1162 |#2|)) (-1162 |#2|))) (-15 -4314 (|#1|)) (-15 -2564 ((-417 (-1162 |#2|)) (-1162 |#2|))))
+((-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 41)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 18)) (-1760 (((-3 $ "failed") $) 35)))
+(((-901 |#1|) (-10 -8 (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|)))) (-902)) (T -901))
+NIL
+(-10 -8 (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-4046 (((-417 (-1162 $)) (-1162 $)) 61)) (-1591 (($ $) 52)) (-3422 (((-417 $) $) 53)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 58)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-2737 (((-112) $) 54)) (-3113 (((-112) $) 31)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-3396 (((-417 (-1162 $)) (-1162 $)) 59)) (-3449 (((-417 (-1162 $)) (-1162 $)) 60)) (-1657 (((-417 $) $) 51)) (-1756 (((-3 $ "failed") $ $) 43)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 57 (|has| $ (-144)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-1760 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-902) (-139)) (T -902))
+((-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-902)))) (-4046 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))) (-3449 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))) (-3396 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))) (-3184 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-638 (-1162 *1))) (-5 *3 (-1162 *1)) (-4 *1 (-902)))) (-3552 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-902)) (-5 *2 (-1253 *1)))) (-1760 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-902)))))
+(-13 (-1209) (-10 -8 (-15 -4046 ((-417 (-1162 $)) (-1162 $))) (-15 -3449 ((-417 (-1162 $)) (-1162 $))) (-15 -3396 ((-417 (-1162 $)) (-1162 $))) (-15 -2064 ((-1162 $) (-1162 $) (-1162 $))) (-15 -3184 ((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $))) (IF (|has| $ (-144)) (PROGN (-15 -3552 ((-3 (-1253 $) "failed") (-682 $))) (-15 -1760 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-3356 (((-112) $) NIL)) (-2368 (((-765)) NIL)) (-1744 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-4207 (((-1178 (-914) (-765)) (-561)) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 $ "failed") $) NIL)) (-3938 (($ $) NIL)) (-2257 (($ (-1253 $)) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2022 (($) NIL)) (-1803 (((-112) $) NIL)) (-1575 (($ $) NIL) (($ $ (-765)) NIL)) (-2737 (((-112) $) NIL)) (-4163 (((-827 (-914)) $) NIL) (((-914) $) NIL)) (-3113 (((-112) $) NIL)) (-2052 (($) NIL (|has| $ (-367)))) (-3584 (((-112) $) NIL (|has| $ (-367)))) (-1672 (($ $ (-914)) NIL (|has| $ (-367))) (($ $) NIL)) (-1663 (((-3 $ "failed") $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2692 (((-1162 $) $ (-914)) NIL (|has| $ (-367))) (((-1162 $) $) NIL)) (-3198 (((-914) $) NIL)) (-2300 (((-1162 $) $) NIL (|has| $ (-367)))) (-2409 (((-3 (-1162 $) "failed") $ $) NIL (|has| $ (-367))) (((-1162 $) $) NIL (|has| $ (-367)))) (-3152 (($ $ (-1162 $)) NIL (|has| $ (-367)))) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL T CONST)) (-2413 (($ (-914)) NIL)) (-1792 (((-112) $) NIL)) (-1714 (((-1110) $) NIL)) (-3158 (($) NIL (|has| $ (-367)))) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL)) (-1657 (((-417 $) $) NIL)) (-4150 (((-914)) NIL) (((-827 (-914))) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-1913 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-3084 (((-133)) NIL)) (-3238 (($ $ (-765)) NIL) (($ $) NIL)) (-2894 (((-914) $) NIL) (((-827 (-914)) $) NIL)) (-3660 (((-1162 $)) NIL)) (-1796 (($) NIL)) (-2111 (($) NIL (|has| $ (-367)))) (-3969 (((-682 $) (-1253 $)) NIL) (((-1253 $) $) NIL)) (-4174 (((-561) $) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL)) (-1760 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4259 (((-765)) NIL)) (-3711 (((-1253 $) (-914)) NIL) (((-1253 $)) NIL)) (-3168 (((-112) $ $) NIL)) (-1751 (((-112) $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-4285 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-903 |#1|) (-13 (-348) (-328 $) (-609 (-561))) (-914)) (T -903))
+NIL
+(-13 (-348) (-328 $) (-609 (-561)))
+((-3881 (((-3 (-2 (|:| -4163 (-765)) (|:| -1418 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 79)) (-3541 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-4163 (((-3 (-765) "failed") (-335 |#2| |#3| |#4| |#5|)) 15)))
+(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4163 ((-3 (-765) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3541 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3881 ((-3 (-2 (|:| -4163 (-765)) (|:| -1418 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-844) (-553) (-1031 (-561))) (-429 |#1|) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -904))
+((-3881 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-2 (|:| -4163 (-765)) (|:| -1418 *8))) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-112)) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-4163 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-765)) (-5 *1 (-904 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4163 ((-3 (-765) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3541 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3881 ((-3 (-2 (|:| -4163 (-765)) (|:| -1418 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|))))
+((-3881 (((-3 (-2 (|:| -4163 (-765)) (|:| -1418 |#3|)) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|)) 56)) (-3541 (((-112) (-335 (-406 (-561)) |#1| |#2| |#3|)) 16)) (-4163 (((-3 (-765) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|)) 14)))
+(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -4163 ((-3 (-765) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -3541 ((-112) (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -3881 ((-3 (-2 (|:| -4163 (-765)) (|:| -1418 |#3|)) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|)))) (-1229 (-406 (-561))) (-1229 (-406 |#1|)) (-341 (-406 (-561)) |#1| |#2|)) (T -905))
+((-3881 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-561)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-2 (|:| -4163 (-765)) (|:| -1418 *6))) (-5 *1 (-905 *4 *5 *6)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-561)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-905 *4 *5 *6)))) (-4163 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-561)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-765)) (-5 *1 (-905 *4 *5 *6)))))
+(-10 -7 (-15 -4163 ((-3 (-765) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -3541 ((-112) (-335 (-406 (-561)) |#1| |#2| |#3|))) (-15 -3881 ((-3 (-2 (|:| -4163 (-765)) (|:| -1418 |#3|)) "failed") (-335 (-406 (-561)) |#1| |#2| |#3|))))
+((-2970 ((|#2| |#2|) 26)) (-3455 (((-561) (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))))) 15)) (-2178 (((-914) (-561)) 35)) (-2940 (((-561) |#2|) 42)) (-3418 (((-561) |#2|) 21) (((-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))) |#1|) 20)))
+(((-906 |#1| |#2|) (-10 -7 (-15 -2178 ((-914) (-561))) (-15 -3418 ((-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))) |#1|)) (-15 -3418 ((-561) |#2|)) (-15 -3455 ((-561) (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))))) (-15 -2940 ((-561) |#2|)) (-15 -2970 (|#2| |#2|))) (-1229 (-406 (-561))) (-1229 (-406 |#1|))) (T -906))
+((-2970 (*1 *2 *2) (-12 (-4 *3 (-1229 (-406 (-561)))) (-5 *1 (-906 *3 *2)) (-4 *2 (-1229 (-406 *3))))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))))) (-4 *4 (-1229 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4))))) (-3418 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-3418 (*1 *2 *3) (-12 (-4 *3 (-1229 (-406 (-561)))) (-5 *2 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))) (-5 *1 (-906 *3 *4)) (-4 *4 (-1229 (-406 *3))))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-561)) (-4 *4 (-1229 (-406 *3))) (-5 *2 (-914)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4))))))
+(-10 -7 (-15 -2178 ((-914) (-561))) (-15 -3418 ((-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))) |#1|)) (-15 -3418 ((-561) |#2|)) (-15 -3455 ((-561) (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))))) (-15 -2940 ((-561) |#2|)) (-15 -2970 (|#2| |#2|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 ((|#1| $) 81)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-1793 (($ $ $) NIL)) (-3466 (((-3 $ "failed") $) 75)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1794 (($ |#1| (-417 |#1|)) 73)) (-3914 (((-1162 |#1|) |#1| |#1|) 41)) (-3960 (($ $) 49)) (-3113 (((-112) $) NIL)) (-1698 (((-561) $) 78)) (-3907 (($ $ (-561)) 80)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3169 ((|#1| $) 77)) (-2573 (((-417 |#1|) $) 76)) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) 74)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3131 (($ $) 39)) (-4022 (((-856) $) 99) (($ (-561)) 54) (($ $) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-417 |#1|))) 67)) (-4259 (((-765)) 52)) (-3168 (((-112) $ $) NIL)) (-2211 (($) 23 T CONST)) (-2222 (($) 12 T CONST)) (-1733 (((-112) $ $) 68)) (-1833 (($ $ $) NIL)) (-1824 (($ $) 88) (($ $ $) NIL)) (-1813 (($ $ $) 38)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 90) (($ $ $) 37) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-907 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -4022 ((-406 |#1|) $)) (-15 -4022 ($ (-406 (-417 |#1|)))) (-15 -3131 ($ $)) (-15 -2573 ((-417 |#1|) $)) (-15 -3169 (|#1| $)) (-15 -3907 ($ $ (-561))) (-15 -1698 ((-561) $)) (-15 -3914 ((-1162 |#1|) |#1| |#1|)) (-15 -3960 ($ $)) (-15 -1794 ($ |#1| (-417 |#1|))) (-15 -2949 (|#1| $)))) (-306)) (T -907))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3)))) (-3131 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3169 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3914 (*1 *2 *3 *3) (-12 (-5 *2 (-1162 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-1794 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2)))) (-2949 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
+(-13 (-362) (-38 |#1|) (-10 -8 (-15 -4022 ((-406 |#1|) $)) (-15 -4022 ($ (-406 (-417 |#1|)))) (-15 -3131 ($ $)) (-15 -2573 ((-417 |#1|) $)) (-15 -3169 (|#1| $)) (-15 -3907 ($ $ (-561))) (-15 -1698 ((-561) $)) (-15 -3914 ((-1162 |#1|) |#1| |#1|)) (-15 -3960 ($ $)) (-15 -1794 ($ |#1| (-417 |#1|))) (-15 -2949 (|#1| $))))
+((-1794 (((-52) (-945 |#1|) (-417 (-945 |#1|)) (-1166)) 17) (((-52) (-406 (-945 |#1|)) (-1166)) 18)))
+(((-908 |#1|) (-10 -7 (-15 -1794 ((-52) (-406 (-945 |#1|)) (-1166))) (-15 -1794 ((-52) (-945 |#1|) (-417 (-945 |#1|)) (-1166)))) (-13 (-306) (-146))) (T -908))
+((-1794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-945 *6))) (-5 *5 (-1166)) (-5 *3 (-945 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *6)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *5)))))
+(-10 -7 (-15 -1794 ((-52) (-406 (-945 |#1|)) (-1166))) (-15 -1794 ((-52) (-945 |#1|) (-417 (-945 |#1|)) (-1166))))
+((-1292 ((|#4| (-638 |#4|)) 121) (((-1162 |#4|) (-1162 |#4|) (-1162 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-1623 (((-1162 |#4|) (-638 (-1162 |#4|))) 114) (((-1162 |#4|) (-1162 |#4|) (-1162 |#4|)) 49) ((|#4| (-638 |#4|)) 54) ((|#4| |#4| |#4|) 84)))
+(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1623 (|#4| |#4| |#4|)) (-15 -1623 (|#4| (-638 |#4|))) (-15 -1623 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1623 ((-1162 |#4|) (-638 (-1162 |#4|)))) (-15 -1292 (|#4| |#4| |#4|)) (-15 -1292 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1292 (|#4| (-638 |#4|)))) (-787) (-844) (-306) (-942 |#3| |#1| |#2|)) (T -909))
+((-1292 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-1292 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1292 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-638 (-1162 *7))) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-1162 *7)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-1623 (*1 *2 *2 *2) (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-1623 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4)))))
+(-10 -7 (-15 -1623 (|#4| |#4| |#4|)) (-15 -1623 (|#4| (-638 |#4|))) (-15 -1623 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1623 ((-1162 |#4|) (-638 (-1162 |#4|)))) (-15 -1292 (|#4| |#4| |#4|)) (-15 -1292 ((-1162 |#4|) (-1162 |#4|) (-1162 |#4|))) (-15 -1292 (|#4| (-638 |#4|))))
+((-4256 (((-897 (-561)) (-964)) 23) (((-897 (-561)) (-638 (-561))) 20)) (-1875 (((-897 (-561)) (-638 (-561))) 48) (((-897 (-561)) (-914)) 49)) (-1718 (((-897 (-561))) 24)) (-2719 (((-897 (-561))) 38) (((-897 (-561)) (-638 (-561))) 37)) (-3746 (((-897 (-561))) 36) (((-897 (-561)) (-638 (-561))) 35)) (-4156 (((-897 (-561))) 34) (((-897 (-561)) (-638 (-561))) 33)) (-3432 (((-897 (-561))) 32) (((-897 (-561)) (-638 (-561))) 31)) (-2173 (((-897 (-561))) 30) (((-897 (-561)) (-638 (-561))) 29)) (-3688 (((-897 (-561))) 40) (((-897 (-561)) (-638 (-561))) 39)) (-1478 (((-897 (-561)) (-638 (-561))) 52) (((-897 (-561)) (-914)) 53)) (-2845 (((-897 (-561)) (-638 (-561))) 50) (((-897 (-561)) (-914)) 51)) (-2929 (((-897 (-561)) (-638 (-561))) 46) (((-897 (-561)) (-914)) 47)) (-3380 (((-897 (-561)) (-638 (-914))) 43)))
+(((-910) (-10 -7 (-15 -1875 ((-897 (-561)) (-914))) (-15 -1875 ((-897 (-561)) (-638 (-561)))) (-15 -2929 ((-897 (-561)) (-914))) (-15 -2929 ((-897 (-561)) (-638 (-561)))) (-15 -3380 ((-897 (-561)) (-638 (-914)))) (-15 -2845 ((-897 (-561)) (-914))) (-15 -2845 ((-897 (-561)) (-638 (-561)))) (-15 -1478 ((-897 (-561)) (-914))) (-15 -1478 ((-897 (-561)) (-638 (-561)))) (-15 -2173 ((-897 (-561)) (-638 (-561)))) (-15 -2173 ((-897 (-561)))) (-15 -3432 ((-897 (-561)) (-638 (-561)))) (-15 -3432 ((-897 (-561)))) (-15 -4156 ((-897 (-561)) (-638 (-561)))) (-15 -4156 ((-897 (-561)))) (-15 -3746 ((-897 (-561)) (-638 (-561)))) (-15 -3746 ((-897 (-561)))) (-15 -2719 ((-897 (-561)) (-638 (-561)))) (-15 -2719 ((-897 (-561)))) (-15 -3688 ((-897 (-561)) (-638 (-561)))) (-15 -3688 ((-897 (-561)))) (-15 -1718 ((-897 (-561)))) (-15 -4256 ((-897 (-561)) (-638 (-561)))) (-15 -4256 ((-897 (-561)) (-964))))) (T -910))
+((-4256 (*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1718 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3688 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2719 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3746 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-4156 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3432 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2173 (*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-638 (-914))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(-10 -7 (-15 -1875 ((-897 (-561)) (-914))) (-15 -1875 ((-897 (-561)) (-638 (-561)))) (-15 -2929 ((-897 (-561)) (-914))) (-15 -2929 ((-897 (-561)) (-638 (-561)))) (-15 -3380 ((-897 (-561)) (-638 (-914)))) (-15 -2845 ((-897 (-561)) (-914))) (-15 -2845 ((-897 (-561)) (-638 (-561)))) (-15 -1478 ((-897 (-561)) (-914))) (-15 -1478 ((-897 (-561)) (-638 (-561)))) (-15 -2173 ((-897 (-561)) (-638 (-561)))) (-15 -2173 ((-897 (-561)))) (-15 -3432 ((-897 (-561)) (-638 (-561)))) (-15 -3432 ((-897 (-561)))) (-15 -4156 ((-897 (-561)) (-638 (-561)))) (-15 -4156 ((-897 (-561)))) (-15 -3746 ((-897 (-561)) (-638 (-561)))) (-15 -3746 ((-897 (-561)))) (-15 -2719 ((-897 (-561)) (-638 (-561)))) (-15 -2719 ((-897 (-561)))) (-15 -3688 ((-897 (-561)) (-638 (-561)))) (-15 -3688 ((-897 (-561)))) (-15 -1718 ((-897 (-561)))) (-15 -4256 ((-897 (-561)) (-638 (-561)))) (-15 -4256 ((-897 (-561)) (-964))))
+((-2044 (((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166))) 12)) (-1682 (((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166))) 11)))
+(((-911 |#1|) (-10 -7 (-15 -1682 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -2044 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166))))) (-450)) (T -911))
+((-2044 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4)))))
+(-10 -7 (-15 -1682 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -2044 ((-638 (-945 |#1|)) (-638 (-945 |#1|)) (-638 (-1166)))))
+((-4022 (((-315 |#1|) (-475)) 16)))
+(((-912 |#1|) (-10 -7 (-15 -4022 ((-315 |#1|) (-475)))) (-13 (-844) (-553))) (T -912))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-912 *4)) (-4 *4 (-13 (-844) (-553))))))
+(-10 -7 (-15 -4022 ((-315 |#1|) (-475))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-3113 (((-112) $) 31)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-913) (-139)) (T -913))
+((-2371 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-2 (|:| -4188 (-638 *1)) (|:| -3158 *1))) (-5 *3 (-638 *1)))) (-2118 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-913)))))
+(-13 (-450) (-10 -8 (-15 -2371 ((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $))) (-15 -2118 ((-3 (-638 $) "failed") (-638 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1623 (($ $ $) NIL)) (-4022 (((-856) $) NIL)) (-2222 (($) NIL T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ $ $) NIL)))
+(((-914) (-13 (-788) (-720) (-10 -8 (-15 -1623 ($ $ $)) (-6 (-4392 "*"))))) (T -914))
+((-1623 (*1 *1 *1 *1) (-5 *1 (-914))))
+(-13 (-788) (-720) (-10 -8 (-15 -1623 ($ $ $)) (-6 (-4392 "*"))))
((|NonNegativeInteger|) (< 0 |#1|))
-((-3194 ((|#2| (-635 |#1|) (-635 |#1|)) 24)))
-(((-912 |#1| |#2|) (-10 -7 (-15 -3194 (|#2| (-635 |#1|) (-635 |#1|)))) (-362) (-1222 |#1|)) (T -912))
-((-3194 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1222 *4)) (-5 *1 (-912 *4 *2)))))
-(-10 -7 (-15 -3194 (|#2| (-635 |#1|) (-635 |#1|))))
-((-2859 (((-1159 |#2|) (-635 |#2|) (-635 |#2|)) 17) (((-1219 |#1| |#2|) (-1219 |#1| |#2|) (-635 |#2|) (-635 |#2|)) 13)))
-(((-913 |#1| |#2|) (-10 -7 (-15 -2859 ((-1219 |#1| |#2|) (-1219 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -2859 ((-1159 |#2|) (-635 |#2|) (-635 |#2|)))) (-1163) (-362)) (T -913))
-((-2859 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1159 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-1163)))) (-2859 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1219 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1163)) (-4 *5 (-362)) (-5 *1 (-913 *4 *5)))))
-(-10 -7 (-15 -2859 ((-1219 |#1| |#2|) (-1219 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -2859 ((-1159 |#2|) (-635 |#2|) (-635 |#2|))))
-((-3411 (((-558) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145)) 139)) (-3385 ((|#4| |#4|) 155)) (-1938 (((-635 (-406 (-942 |#1|))) (-635 (-1163))) 119)) (-3895 (((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-635 (-635 |#4|)) (-762) (-762) (-558)) 75)) (-2596 (((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-635 |#4|)) 59)) (-2764 (((-679 |#4|) (-679 |#4|) (-635 |#4|)) 55)) (-2930 (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145)) 151)) (-2747 (((-558) (-679 |#4|) (-911) (-1145)) 133) (((-558) (-679 |#4|) (-635 (-1163)) (-911) (-1145)) 132) (((-558) (-679 |#4|) (-635 |#4|) (-911) (-1145)) 131) (((-558) (-679 |#4|) (-1145)) 128) (((-558) (-679 |#4|) (-635 (-1163)) (-1145)) 127) (((-558) (-679 |#4|) (-635 |#4|) (-1145)) 126) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-911)) 125) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)) (-911)) 124) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|) (-911)) 123) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|)) 121) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163))) 120) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|)) 116)) (-1343 ((|#4| (-942 |#1|)) 68)) (-2649 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 152)) (-3417 (((-635 (-635 (-558))) (-558) (-558)) 130)) (-2968 (((-635 (-635 |#4|)) (-635 (-635 |#4|))) 88)) (-2030 (((-762) (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|))))) 86)) (-4293 (((-762) (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|))))) 85)) (-2084 (((-112) (-635 (-942 |#1|))) 17) (((-112) (-635 |#4|)) 13)) (-2259 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|)) 71)) (-2575 (((-635 |#4|) |#4|) 49)) (-3217 (((-635 (-406 (-942 |#1|))) (-635 |#4|)) 115) (((-679 (-406 (-942 |#1|))) (-679 |#4|)) 56) (((-406 (-942 |#1|)) |#4|) 112)) (-2436 (((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))))))) (|:| |rgsz| (-558))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-762) (-1145) (-558)) 93)) (-3941 (((-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))) (-679 |#4|) (-762)) 84)) (-3833 (((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-679 |#4|) (-762)) 102)) (-1867 (((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| -3702 (-679 (-406 (-942 |#1|)))) (|:| |vec| (-635 (-406 (-942 |#1|)))) (|:| -1489 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) 48)))
-(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|) (-911))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)) (-911))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-911))) (-15 -2747 ((-558) (-679 |#4|) (-635 |#4|) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-635 (-1163)) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-635 |#4|) (-911) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-635 (-1163)) (-911) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-911) (-1145))) (-15 -3411 ((-558) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2930 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2436 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))))))) (|:| |rgsz| (-558))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-762) (-1145) (-558))) (-15 -3217 ((-406 (-942 |#1|)) |#4|)) (-15 -3217 ((-679 (-406 (-942 |#1|))) (-679 |#4|))) (-15 -3217 ((-635 (-406 (-942 |#1|))) (-635 |#4|))) (-15 -1938 ((-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -1343 (|#4| (-942 |#1|))) (-15 -2259 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3941 ((-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))) (-679 |#4|) (-762))) (-15 -2596 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-635 |#4|))) (-15 -1867 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| -3702 (-679 (-406 (-942 |#1|)))) (|:| |vec| (-635 (-406 (-942 |#1|)))) (|:| -1489 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (-15 -2575 ((-635 |#4|) |#4|)) (-15 -4293 ((-762) (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -2030 ((-762) (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -2968 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3417 ((-635 (-635 (-558))) (-558) (-558))) (-15 -2649 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3833 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-679 |#4|) (-762))) (-15 -2764 ((-679 |#4|) (-679 |#4|) (-635 |#4|))) (-15 -3895 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-635 (-635 |#4|)) (-762) (-762) (-558))) (-15 -3385 (|#4| |#4|)) (-15 -2084 ((-112) (-635 |#4|))) (-15 -2084 ((-112) (-635 (-942 |#1|))))) (-13 (-306) (-146)) (-13 (-841) (-606 (-1163))) (-784) (-939 |#1| |#3| |#2|)) (T -914))
-((-2084 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163)))) (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-939 *3 *5 *4)))) (-3895 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-5 *4 (-679 *12)) (-5 *5 (-635 (-406 (-942 *9)))) (-5 *6 (-635 (-635 *12))) (-5 *7 (-762)) (-5 *8 (-558)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-939 *9 *11 *10)) (-4 *10 (-13 (-841) (-606 (-1163)))) (-4 *11 (-784)) (-5 *2 (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12)) (|:| |wcond| (-635 (-942 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *9)))) (|:| -2743 (-635 (-1246 (-406 (-942 *9))))))))) (-5 *1 (-914 *9 *10 *11 *12)))) (-2764 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *7)) (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-762)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (-5 *1 (-914 *5 *6 *7 *8)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *5 *6 *7 *8)))) (-3417 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-635 (-558)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *6 *5)))) (-2968 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-939 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163)))) (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *6)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762)) (-5 *1 (-914 *4 *5 *6 *7)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762)) (-5 *1 (-914 *4 *5 *6 *7)))) (-2575 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 *3)) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-939 *4 *6 *5)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3702 (-679 (-406 (-942 *4)))) (|:| |vec| (-635 (-406 (-942 *4)))) (|:| -1489 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2743 (-635 (-1246 (-406 (-942 *4))))))) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-2596 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2743 (-635 (-1246 (-406 (-942 *4))))))) (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-939 *4 *6 *5)) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 *8))))) (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-762)))) (-2259 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-4 *7 (-939 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7)))) (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-939 *4 *6 *5)) (-5 *1 (-914 *4 *5 *6 *2)) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-679 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7)))) (-3217 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-406 (-942 *4))) (-5 *1 (-914 *4 *5 *6 *3)) (-4 *3 (-939 *4 *6 *5)))) (-2436 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-679 *11)) (-5 *4 (-635 (-406 (-942 *8)))) (-5 *5 (-762)) (-5 *6 (-1145)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-939 *8 *10 *9)) (-4 *9 (-13 (-841) (-606 (-1163)))) (-4 *10 (-784)) (-5 *2 (-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11)) (|:| |wcond| (-635 (-942 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *8)))) (|:| -2743 (-635 (-1246 (-406 (-942 *8)))))))))) (|:| |rgsz| (-558)))) (-5 *1 (-914 *8 *9 *10 *11)) (-5 *7 (-558)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-942 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2743 (-635 (-1246 (-406 (-942 *4)))))))))) (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2743 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *4 (-1145)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-939 *5 *7 *6)) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *5 *6 *7 *8)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-911)) (-5 *5 (-1145)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *6 *7 *8 *9)))) (-2747 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 (-1163))) (-5 *5 (-911)) (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *7 *8 *9 *10)))) (-2747 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 *10)) (-5 *5 (-911)) (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *7 *8 *9 *10)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-1145)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *5 *6 *7 *8)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-1145)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *6 *7 *8 *9)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1145)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *6 *7 *8 *9)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-911)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2743 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *1 (-914 *5 *6 *7 *8)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-911)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-942 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *6)))) (|:| -2743 (-635 (-1246 (-406 (-942 *6)))))))))) (-5 *1 (-914 *6 *7 *8 *9)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *5 (-911)) (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-942 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *6)))) (|:| -2743 (-635 (-1246 (-406 (-942 *6)))))))))) (-5 *1 (-914 *6 *7 *8 *9)) (-5 *4 (-635 *9)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-942 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *4)))) (|:| -2743 (-635 (-1246 (-406 (-942 *4)))))))))) (-5 *1 (-914 *4 *5 *6 *7)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-635 (-1163))) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2743 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *1 (-914 *5 *6 *7 *8)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-942 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 *5)))) (|:| -2743 (-635 (-1246 (-406 (-942 *5)))))))))) (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
-(-10 -7 (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 |#4|) (-911))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-635 (-1163)) (-911))) (-15 -2747 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-679 |#4|) (-911))) (-15 -2747 ((-558) (-679 |#4|) (-635 |#4|) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-635 (-1163)) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-635 |#4|) (-911) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-635 (-1163)) (-911) (-1145))) (-15 -2747 ((-558) (-679 |#4|) (-911) (-1145))) (-15 -3411 ((-558) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2930 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|))))))))) (-1145))) (-15 -2436 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))))))) (|:| |rgsz| (-558))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-762) (-1145) (-558))) (-15 -3217 ((-406 (-942 |#1|)) |#4|)) (-15 -3217 ((-679 (-406 (-942 |#1|))) (-679 |#4|))) (-15 -3217 ((-635 (-406 (-942 |#1|))) (-635 |#4|))) (-15 -1938 ((-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -1343 (|#4| (-942 |#1|))) (-15 -2259 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3941 ((-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))) (-679 |#4|) (-762))) (-15 -2596 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-635 |#4|))) (-15 -1867 ((-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))) (-2 (|:| -3702 (-679 (-406 (-942 |#1|)))) (|:| |vec| (-635 (-406 (-942 |#1|)))) (|:| -1489 (-762)) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (-15 -2575 ((-635 |#4|) |#4|)) (-15 -4293 ((-762) (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -2030 ((-762) (-635 (-2 (|:| -1489 (-762)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -2968 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3417 ((-635 (-635 (-558))) (-558) (-558))) (-15 -2649 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3833 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558))))) (-679 |#4|) (-762))) (-15 -2764 ((-679 |#4|) (-679 |#4|) (-635 |#4|))) (-15 -3895 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-942 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1246 (-406 (-942 |#1|)))) (|:| -2743 (-635 (-1246 (-406 (-942 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))) (-679 |#4|) (-635 (-406 (-942 |#1|))) (-635 (-635 |#4|)) (-762) (-762) (-558))) (-15 -3385 (|#4| |#4|)) (-15 -2084 ((-112) (-635 |#4|))) (-15 -2084 ((-112) (-635 (-942 |#1|)))))
-((-3638 (((-917) |#1| (-1163)) 17) (((-917) |#1| (-1163) (-1081 (-224))) 21)) (-1655 (((-917) |#1| |#1| (-1163) (-1081 (-224))) 19) (((-917) |#1| (-1163) (-1081 (-224))) 15)))
-(((-915 |#1|) (-10 -7 (-15 -1655 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -1655 ((-917) |#1| |#1| (-1163) (-1081 (-224)))) (-15 -3638 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -3638 ((-917) |#1| (-1163)))) (-606 (-534))) (T -915))
-((-3638 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))) (-1655 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))) (-1655 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917)) (-5 *1 (-915 *3)) (-4 *3 (-606 (-534))))))
-(-10 -7 (-15 -1655 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -1655 ((-917) |#1| |#1| (-1163) (-1081 (-224)))) (-15 -3638 ((-917) |#1| (-1163) (-1081 (-224)))) (-15 -3638 ((-917) |#1| (-1163))))
-((-3093 (($ $ (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 69)) (-3665 (((-1081 (-224)) $) 40)) (-3654 (((-1081 (-224)) $) 39)) (-3643 (((-1081 (-224)) $) 38)) (-2455 (((-635 (-635 (-224))) $) 43)) (-3699 (((-1081 (-224)) $) 41)) (-2280 (((-558) (-558)) 32)) (-1484 (((-558) (-558)) 28)) (-2618 (((-558) (-558)) 30)) (-1429 (((-112) (-112)) 35)) (-2498 (((-558)) 31)) (-3250 (($ $ (-1081 (-224))) 72) (($ $) 73)) (-1543 (($ (-1 (-933 (-224)) (-224)) (-1081 (-224))) 77) (($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 78)) (-1655 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 81) (($ $ (-1081 (-224))) 75)) (-4067 (((-558)) 36)) (-2666 (((-558)) 27)) (-3004 (((-558)) 29)) (-3305 (((-635 (-635 (-933 (-224)))) $) 93)) (-1351 (((-112) (-112)) 37)) (-3940 (((-853) $) 92)) (-4361 (((-112)) 34)))
-(((-916) (-13 (-964) (-10 -8 (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ $ (-1081 (-224)))) (-15 -3093 ($ $ (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -3250 ($ $ (-1081 (-224)))) (-15 -3250 ($ $)) (-15 -3699 ((-1081 (-224)) $)) (-15 -2455 ((-635 (-635 (-224))) $)) (-15 -2666 ((-558))) (-15 -1484 ((-558) (-558))) (-15 -3004 ((-558))) (-15 -2618 ((-558) (-558))) (-15 -2498 ((-558))) (-15 -2280 ((-558) (-558))) (-15 -4361 ((-112))) (-15 -1429 ((-112) (-112))) (-15 -4067 ((-558))) (-15 -1351 ((-112) (-112)))))) (T -916))
-((-1543 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-1543 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-1655 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-1655 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-916)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-3093 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-3250 (*1 *1 *1) (-5 *1 (-916))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-916)))) (-2666 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-3004 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-2498 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-2280 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-4361 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))) (-4067 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))) (-1351 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
-(-13 (-964) (-10 -8 (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ $ (-1081 (-224)))) (-15 -3093 ($ $ (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -3250 ($ $ (-1081 (-224)))) (-15 -3250 ($ $)) (-15 -3699 ((-1081 (-224)) $)) (-15 -2455 ((-635 (-635 (-224))) $)) (-15 -2666 ((-558))) (-15 -1484 ((-558) (-558))) (-15 -3004 ((-558))) (-15 -2618 ((-558) (-558))) (-15 -2498 ((-558))) (-15 -2280 ((-558) (-558))) (-15 -4361 ((-112))) (-15 -1429 ((-112) (-112))) (-15 -4067 ((-558))) (-15 -1351 ((-112) (-112)))))
-((-3093 (($ $ (-1081 (-224))) 69) (($ $ (-1081 (-224)) (-1081 (-224))) 70)) (-3654 (((-1081 (-224)) $) 44)) (-3643 (((-1081 (-224)) $) 43)) (-3699 (((-1081 (-224)) $) 45)) (-2985 (((-558) (-558)) 37)) (-2679 (((-558) (-558)) 33)) (-2761 (((-558) (-558)) 35)) (-2703 (((-112) (-112)) 39)) (-4271 (((-558)) 36)) (-3250 (($ $ (-1081 (-224))) 73) (($ $) 74)) (-1543 (($ (-1 (-933 (-224)) (-224)) (-1081 (-224))) 83) (($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 84)) (-3638 (($ (-1 (-224) (-224)) (-1081 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-1655 (($ (-1 (-224) (-224)) (-1081 (-224))) 78) (($ (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224))) 79) (($ (-635 (-1 (-224) (-224))) (-1081 (-224))) 86) (($ (-635 (-1 (-224) (-224))) (-1081 (-224)) (-1081 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224))) 81) (($ $ (-1081 (-224))) 75)) (-1738 (((-112) $) 40)) (-2603 (((-558)) 41)) (-1717 (((-558)) 32)) (-1720 (((-558)) 34)) (-3305 (((-635 (-635 (-933 (-224)))) $) 23)) (-3029 (((-112) (-112)) 42)) (-3940 (((-853) $) 105)) (-2791 (((-112)) 38)))
-(((-917) (-13 (-945) (-10 -8 (-15 -1655 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)))) (-15 -1655 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -3638 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -3638 ($ (-1 (-224) (-224)))) (-15 -1655 ($ $ (-1081 (-224)))) (-15 -1738 ((-112) $)) (-15 -3093 ($ $ (-1081 (-224)))) (-15 -3093 ($ $ (-1081 (-224)) (-1081 (-224)))) (-15 -3250 ($ $ (-1081 (-224)))) (-15 -3250 ($ $)) (-15 -3699 ((-1081 (-224)) $)) (-15 -1717 ((-558))) (-15 -2679 ((-558) (-558))) (-15 -1720 ((-558))) (-15 -2761 ((-558) (-558))) (-15 -4271 ((-558))) (-15 -2985 ((-558) (-558))) (-15 -2791 ((-112))) (-15 -2703 ((-112) (-112))) (-15 -2603 ((-558))) (-15 -3029 ((-112) (-112)))))) (T -917))
-((-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-1655 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-1655 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-1655 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-1655 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-1543 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-1543 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-3638 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224))) (-5 *1 (-917)))) (-3638 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-917)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917)))) (-3093 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-3093 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-3250 (*1 *1 *1) (-5 *1 (-917))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))) (-1717 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-2679 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-1720 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-4271 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-2985 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-2791 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))) (-2603 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
-(-13 (-945) (-10 -8 (-15 -1655 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)))) (-15 -1655 ($ (-635 (-1 (-224) (-224))) (-1081 (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)))) (-15 -1655 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)))) (-15 -1543 ($ (-1 (-933 (-224)) (-224)) (-1081 (-224)) (-1081 (-224)) (-1081 (-224)))) (-15 -3638 ($ (-1 (-224) (-224)) (-1081 (-224)))) (-15 -3638 ($ (-1 (-224) (-224)))) (-15 -1655 ($ $ (-1081 (-224)))) (-15 -1738 ((-112) $)) (-15 -3093 ($ $ (-1081 (-224)))) (-15 -3093 ($ $ (-1081 (-224)) (-1081 (-224)))) (-15 -3250 ($ $ (-1081 (-224)))) (-15 -3250 ($ $)) (-15 -3699 ((-1081 (-224)) $)) (-15 -1717 ((-558))) (-15 -2679 ((-558) (-558))) (-15 -1720 ((-558))) (-15 -2761 ((-558) (-558))) (-15 -4271 ((-558))) (-15 -2985 ((-558) (-558))) (-15 -2791 ((-112))) (-15 -2703 ((-112) (-112))) (-15 -2603 ((-558))) (-15 -3029 ((-112) (-112)))))
-((-4190 (((-635 (-1081 (-224))) (-635 (-635 (-933 (-224))))) 24)))
-(((-918) (-10 -7 (-15 -4190 ((-635 (-1081 (-224))) (-635 (-635 (-933 (-224)))))))) (T -918))
-((-4190 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-635 (-1081 (-224)))) (-5 *1 (-918)))))
-(-10 -7 (-15 -4190 ((-635 (-1081 (-224))) (-635 (-635 (-933 (-224)))))))
-((-3668 ((|#2| |#2|) 26)) (-4224 ((|#2| |#2|) 27)) (-2010 ((|#2| |#2|) 25)) (-3869 ((|#2| |#2| (-1145)) 24)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2| (-1145))) (-15 -2010 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -4224 (|#2| |#2|))) (-841) (-429 |#1|)) (T -919))
-((-4224 (*1 *2 *2) (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3)))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3)))) (-2010 (*1 *2 *2) (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-841)) (-5 *1 (-919 *4 *2)) (-4 *2 (-429 *4)))))
-(-10 -7 (-15 -3869 (|#2| |#2| (-1145))) (-15 -2010 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -4224 (|#2| |#2|)))
-((-3668 (((-315 (-558)) (-1163)) 16)) (-4224 (((-315 (-558)) (-1163)) 14)) (-2010 (((-315 (-558)) (-1163)) 12)) (-3869 (((-315 (-558)) (-1163) (-1145)) 19)))
-(((-920) (-10 -7 (-15 -3869 ((-315 (-558)) (-1163) (-1145))) (-15 -2010 ((-315 (-558)) (-1163))) (-15 -3668 ((-315 (-558)) (-1163))) (-15 -4224 ((-315 (-558)) (-1163))))) (T -920))
-((-4224 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-1145)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))))
-(-10 -7 (-15 -3869 ((-315 (-558)) (-1163) (-1145))) (-15 -2010 ((-315 (-558)) (-1163))) (-15 -3668 ((-315 (-558)) (-1163))) (-15 -4224 ((-315 (-558)) (-1163))))
-((-3193 (((-879 |#1| |#3|) |#2| (-882 |#1|) (-879 |#1| |#3|)) 25)) (-3984 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-921 |#1| |#2| |#3|) (-10 -7 (-15 -3984 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3193 ((-879 |#1| |#3|) |#2| (-882 |#1|) (-879 |#1| |#3|)))) (-1087) (-876 |#1|) (-13 (-1087) (-1028 |#2|))) (T -921))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-13 (-1087) (-1028 *3))) (-4 *3 (-876 *5)) (-5 *1 (-921 *5 *3 *6)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1087) (-1028 *5))) (-4 *5 (-876 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-921 *4 *5 *6)))))
-(-10 -7 (-15 -3984 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3193 ((-879 |#1| |#3|) |#2| (-882 |#1|) (-879 |#1| |#3|))))
-((-3193 (((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)) 30)))
-(((-922 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-1087) (-13 (-550) (-841) (-876 |#1|)) (-13 (-429 |#2|) (-606 (-882 |#1|)) (-876 |#1|) (-1028 (-604 $)))) (T -922))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-13 (-429 *6) (-606 *4) (-876 *5) (-1028 (-604 $)))) (-5 *4 (-882 *5)) (-4 *6 (-13 (-550) (-841) (-876 *5))) (-5 *1 (-922 *5 *6 *3)))))
-(-10 -7 (-15 -3193 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))))
-((-3193 (((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|)) 13)))
-(((-923 |#1|) (-10 -7 (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|)))) (-543)) (T -923))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 (-558) *3)) (-5 *4 (-882 (-558))) (-4 *3 (-543)) (-5 *1 (-923 *3)))))
-(-10 -7 (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))))
-((-3193 (((-879 |#1| |#2|) (-604 |#2|) (-882 |#1|) (-879 |#1| |#2|)) 54)))
-(((-924 |#1| |#2|) (-10 -7 (-15 -3193 ((-879 |#1| |#2|) (-604 |#2|) (-882 |#1|) (-879 |#1| |#2|)))) (-1087) (-13 (-841) (-1028 (-604 $)) (-606 (-882 |#1|)) (-876 |#1|))) (T -924))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *6)) (-5 *3 (-604 *6)) (-4 *5 (-1087)) (-4 *6 (-13 (-841) (-1028 (-604 $)) (-606 *4) (-876 *5))) (-5 *4 (-882 *5)) (-5 *1 (-924 *5 *6)))))
-(-10 -7 (-15 -3193 ((-879 |#1| |#2|) (-604 |#2|) (-882 |#1|) (-879 |#1| |#2|))))
-((-3193 (((-875 |#1| |#2| |#3|) |#3| (-882 |#1|) (-875 |#1| |#2| |#3|)) 15)))
-(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-875 |#1| |#2| |#3|) |#3| (-882 |#1|) (-875 |#1| |#2| |#3|)))) (-1087) (-876 |#1|) (-656 |#2|)) (T -925))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-875 *5 *6 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-4 *6 (-876 *5)) (-4 *3 (-656 *6)) (-5 *1 (-925 *5 *6 *3)))))
-(-10 -7 (-15 -3193 ((-875 |#1| |#2| |#3|) |#3| (-882 |#1|) (-875 |#1| |#2| |#3|))))
-((-3193 (((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|)) 17 (|has| |#3| (-876 |#1|))) (((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|) (-1 (-879 |#1| |#5|) |#3| (-882 |#1|) (-879 |#1| |#5|))) 16)))
-(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3193 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|) (-1 (-879 |#1| |#5|) |#3| (-882 |#1|) (-879 |#1| |#5|)))) (IF (|has| |#3| (-876 |#1|)) (-15 -3193 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|))) |%noBranch|)) (-1087) (-784) (-841) (-13 (-1039) (-841) (-876 |#1|)) (-13 (-939 |#4| |#2| |#3|) (-606 (-882 |#1|)))) (T -926))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-13 (-939 *8 *6 *7) (-606 *4))) (-5 *4 (-882 *5)) (-4 *7 (-876 *5)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-13 (-1039) (-841) (-876 *5))) (-5 *1 (-926 *5 *6 *7 *8 *3)))) (-3193 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-879 *6 *3) *8 (-882 *6) (-879 *6 *3))) (-4 *8 (-841)) (-5 *2 (-879 *6 *3)) (-5 *4 (-882 *6)) (-4 *6 (-1087)) (-4 *3 (-13 (-939 *9 *7 *8) (-606 *4))) (-4 *7 (-784)) (-4 *9 (-13 (-1039) (-841) (-876 *6))) (-5 *1 (-926 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3193 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|) (-1 (-879 |#1| |#5|) |#3| (-882 |#1|) (-879 |#1| |#5|)))) (IF (|has| |#3| (-876 |#1|)) (-15 -3193 ((-879 |#1| |#5|) |#5| (-882 |#1|) (-879 |#1| |#5|))) |%noBranch|))
-((-4316 ((|#2| |#2| (-635 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -4316 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4316 (|#2| |#2| (-635 (-1 (-112) |#3|))))) (-841) (-429 |#1|) (-1200)) (T -927))
-((-4316 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1200)) (-4 *4 (-841)) (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4)))) (-4316 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1200)) (-4 *4 (-841)) (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4)))))
-(-10 -7 (-15 -4316 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4316 (|#2| |#2| (-635 (-1 (-112) |#3|)))))
-((-4316 (((-315 (-558)) (-1163) (-635 (-1 (-112) |#1|))) 18) (((-315 (-558)) (-1163) (-1 (-112) |#1|)) 15)))
-(((-928 |#1|) (-10 -7 (-15 -4316 ((-315 (-558)) (-1163) (-1 (-112) |#1|))) (-15 -4316 ((-315 (-558)) (-1163) (-635 (-1 (-112) |#1|))))) (-1200)) (T -928))
-((-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1200)) (-5 *2 (-315 (-558))) (-5 *1 (-928 *5)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1200)) (-5 *2 (-315 (-558))) (-5 *1 (-928 *5)))))
-(-10 -7 (-15 -4316 ((-315 (-558)) (-1163) (-1 (-112) |#1|))) (-15 -4316 ((-315 (-558)) (-1163) (-635 (-1 (-112) |#1|)))))
-((-3193 (((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)) 25)))
-(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-1087) (-13 (-550) (-876 |#1|) (-606 (-882 |#1|))) (-982 |#2|)) (T -929))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-982 *6)) (-4 *6 (-13 (-550) (-876 *5) (-606 *4))) (-5 *4 (-882 *5)) (-5 *1 (-929 *5 *6 *3)))))
-(-10 -7 (-15 -3193 ((-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))))
-((-3193 (((-879 |#1| (-1163)) (-1163) (-882 |#1|) (-879 |#1| (-1163))) 17)))
-(((-930 |#1|) (-10 -7 (-15 -3193 ((-879 |#1| (-1163)) (-1163) (-882 |#1|) (-879 |#1| (-1163))))) (-1087)) (T -930))
-((-3193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-879 *5 (-1163))) (-5 *3 (-1163)) (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-5 *1 (-930 *5)))))
-(-10 -7 (-15 -3193 ((-879 |#1| (-1163)) (-1163) (-882 |#1|) (-879 |#1| (-1163)))))
-((-3474 (((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) 33)) (-3193 (((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-1 |#3| (-635 |#3|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))) 32)))
-(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-1 |#3| (-635 |#3|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-15 -3474 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|))))) (-1087) (-13 (-1039) (-841)) (-13 (-1039) (-606 (-882 |#1|)) (-1028 |#2|))) (T -931))
-((-3474 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-882 *6))) (-5 *5 (-1 (-879 *6 *8) *8 (-882 *6) (-879 *6 *8))) (-4 *6 (-1087)) (-4 *8 (-13 (-1039) (-606 (-882 *6)) (-1028 *7))) (-5 *2 (-879 *6 *8)) (-4 *7 (-13 (-1039) (-841))) (-5 *1 (-931 *6 *7 *8)))) (-3193 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-635 (-882 *7))) (-5 *5 (-1 *9 (-635 *9))) (-5 *6 (-1 (-879 *7 *9) *9 (-882 *7) (-879 *7 *9))) (-4 *7 (-1087)) (-4 *9 (-13 (-1039) (-606 (-882 *7)) (-1028 *8))) (-5 *2 (-879 *7 *9)) (-5 *3 (-635 *9)) (-4 *8 (-13 (-1039) (-841))) (-5 *1 (-931 *7 *8 *9)))))
-(-10 -7 (-15 -3193 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-1 |#3| (-635 |#3|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))) (-15 -3474 ((-879 |#1| |#3|) (-635 |#3|) (-635 (-882 |#1|)) (-879 |#1| |#3|) (-1 (-879 |#1| |#3|) |#3| (-882 |#1|) (-879 |#1| |#3|)))))
-((-3901 (((-1159 (-406 (-558))) (-558)) 62)) (-3977 (((-1159 (-558)) (-558)) 65)) (-3498 (((-1159 (-558)) (-558)) 59)) (-2719 (((-558) (-1159 (-558))) 54)) (-3861 (((-1159 (-406 (-558))) (-558)) 48)) (-3326 (((-1159 (-558)) (-558)) 37)) (-2290 (((-1159 (-558)) (-558)) 67)) (-1947 (((-1159 (-558)) (-558)) 66)) (-1386 (((-1159 (-406 (-558))) (-558)) 50)))
-(((-932) (-10 -7 (-15 -1386 ((-1159 (-406 (-558))) (-558))) (-15 -1947 ((-1159 (-558)) (-558))) (-15 -2290 ((-1159 (-558)) (-558))) (-15 -3326 ((-1159 (-558)) (-558))) (-15 -3861 ((-1159 (-406 (-558))) (-558))) (-15 -2719 ((-558) (-1159 (-558)))) (-15 -3498 ((-1159 (-558)) (-558))) (-15 -3977 ((-1159 (-558)) (-558))) (-15 -3901 ((-1159 (-406 (-558))) (-558))))) (T -932))
-((-3901 (*1 *2 *3) (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))) (-3977 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-3498 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-558)) (-5 *1 (-932)))) (-3861 (*1 *2 *3) (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))) (-3326 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-2290 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-1947 (*1 *2 *3) (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))) (-1386 (*1 *2 *3) (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(-10 -7 (-15 -1386 ((-1159 (-406 (-558))) (-558))) (-15 -1947 ((-1159 (-558)) (-558))) (-15 -2290 ((-1159 (-558)) (-558))) (-15 -3326 ((-1159 (-558)) (-558))) (-15 -3861 ((-1159 (-406 (-558))) (-558))) (-15 -2719 ((-558) (-1159 (-558)))) (-15 -3498 ((-1159 (-558)) (-558))) (-15 -3977 ((-1159 (-558)) (-558))) (-15 -3901 ((-1159 (-406 (-558))) (-558))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4237 (($ (-762)) NIL (|has| |#1| (-23)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) |#1|) 11 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2064 (($ (-635 |#1|)) 13)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3335 (((-679 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-1395 (($ (-762) |#1|) 8)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 10 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3408 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-3212 (((-112) $ (-762)) NIL)) (-2958 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-2319 (($ $ (-635 |#1|)) 26)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 20) (($ $ (-1213 (-558))) NIL)) (-2823 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-2887 (((-911) $) 16)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-3116 (($ $ $) 24)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534)))) (($ (-635 |#1|)) 17)) (-3952 (($ (-635 |#1|)) NIL)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1796 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1785 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-558) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-717))) (($ $ |#1|) NIL (|has| |#1| (-717)))) (-1596 (((-762) $) 14 (|has| $ (-6 -4383)))))
-(((-933 |#1|) (-970 |#1|) (-1039)) (T -933))
-NIL
-(-970 |#1|)
-((-3816 (((-479 |#1| |#2|) (-942 |#2|)) 20)) (-2449 (((-246 |#1| |#2|) (-942 |#2|)) 33)) (-4351 (((-942 |#2|) (-479 |#1| |#2|)) 25)) (-4321 (((-246 |#1| |#2|) (-479 |#1| |#2|)) 55)) (-2462 (((-942 |#2|) (-246 |#1| |#2|)) 30)) (-1400 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 46)))
-(((-934 |#1| |#2|) (-10 -7 (-15 -1400 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -4321 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3816 ((-479 |#1| |#2|) (-942 |#2|))) (-15 -4351 ((-942 |#2|) (-479 |#1| |#2|))) (-15 -2462 ((-942 |#2|) (-246 |#1| |#2|))) (-15 -2449 ((-246 |#1| |#2|) (-942 |#2|)))) (-635 (-1163)) (-1039)) (T -934))
-((-2449 (*1 *2 *3) (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-246 *4 *5)) (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-479 *4 *5)) (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-246 *4 *5)) (-5 *1 (-934 *4 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039)) (-5 *2 (-479 *4 *5)) (-5 *1 (-934 *4 *5)))))
-(-10 -7 (-15 -1400 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -4321 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3816 ((-479 |#1| |#2|) (-942 |#2|))) (-15 -4351 ((-942 |#2|) (-479 |#1| |#2|))) (-15 -2462 ((-942 |#2|) (-246 |#1| |#2|))) (-15 -2449 ((-246 |#1| |#2|) (-942 |#2|))))
-((-1799 (((-635 |#2|) |#2| |#2|) 10)) (-2464 (((-762) (-635 |#1|)) 37 (|has| |#1| (-839)))) (-1674 (((-635 |#2|) |#2|) 11)) (-3372 (((-762) (-635 |#1|) (-558) (-558)) 39 (|has| |#1| (-839)))) (-2715 ((|#1| |#2|) 32 (|has| |#1| (-839)))))
-(((-935 |#1| |#2|) (-10 -7 (-15 -1799 ((-635 |#2|) |#2| |#2|)) (-15 -1674 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-839)) (PROGN (-15 -2715 (|#1| |#2|)) (-15 -2464 ((-762) (-635 |#1|))) (-15 -3372 ((-762) (-635 |#1|) (-558) (-558)))) |%noBranch|)) (-362) (-1222 |#1|)) (T -935))
-((-3372 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-558)) (-4 *5 (-839)) (-4 *5 (-362)) (-5 *2 (-762)) (-5 *1 (-935 *5 *6)) (-4 *6 (-1222 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-839)) (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-935 *4 *5)) (-4 *5 (-1222 *4)))) (-2715 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-839)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1222 *2)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3)) (-4 *3 (-1222 *4)))) (-1799 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -1799 ((-635 |#2|) |#2| |#2|)) (-15 -1674 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-839)) (PROGN (-15 -2715 (|#1| |#2|)) (-15 -2464 ((-762) (-635 |#1|))) (-15 -3372 ((-762) (-635 |#1|) (-558) (-558)))) |%noBranch|))
-((-3397 (((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|)) 19)))
-(((-936 |#1| |#2|) (-10 -7 (-15 -3397 ((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|)))) (-1039) (-1039)) (T -936))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-942 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-942 *6)) (-5 *1 (-936 *5 *6)))))
-(-10 -7 (-15 -3397 ((-942 |#2|) (-1 |#2| |#1|) (-942 |#1|))))
-((-3907 (((-1219 |#1| (-942 |#2|)) (-942 |#2|) (-1242 |#1|)) 18)))
-(((-937 |#1| |#2|) (-10 -7 (-15 -3907 ((-1219 |#1| (-942 |#2|)) (-942 |#2|) (-1242 |#1|)))) (-1163) (-1039)) (T -937))
-((-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1242 *5)) (-14 *5 (-1163)) (-4 *6 (-1039)) (-5 *2 (-1219 *5 (-942 *6))) (-5 *1 (-937 *5 *6)) (-5 *3 (-942 *6)))))
-(-10 -7 (-15 -3907 ((-1219 |#1| (-942 |#2|)) (-942 |#2|) (-1242 |#1|))))
-((-2909 (((-762) $) 71) (((-762) $ (-635 |#4|)) 74)) (-2018 (($ $) 172)) (-4110 (((-417 $) $) 164)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 115)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3226 ((|#2| $) NIL) (((-406 (-558)) $) NIL) (((-558) $) NIL) ((|#4| $) 59)) (-2862 (($ $ $ |#4|) 76)) (-1918 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 105) (((-679 |#2|) (-679 $)) 98)) (-3199 (($ $) 179) (($ $ |#4|) 182)) (-3894 (((-635 $) $) 63)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 198) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 191)) (-4033 (((-635 $) $) 28)) (-4056 (($ |#2| |#3|) NIL) (($ $ |#4| (-762)) NIL) (($ $ (-635 |#4|) (-635 (-762))) 57)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |#4|) 161)) (-2819 (((-3 (-635 $) "failed") $) 42)) (-4195 (((-3 (-635 $) "failed") $) 31)) (-3637 (((-3 (-2 (|:| |var| |#4|) (|:| -1857 (-762))) "failed") $) 47)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 108)) (-2321 (((-417 (-1159 $)) (-1159 $)) 121)) (-2796 (((-417 (-1159 $)) (-1159 $)) 119)) (-3939 (((-417 $) $) 139)) (-1369 (($ $ (-635 (-293 $))) 21) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL)) (-3789 (($ $ |#4|) 78)) (-3441 (((-882 (-378)) $) 212) (((-882 (-558)) $) 205) (((-534) $) 220)) (-3012 ((|#2| $) NIL) (($ $ |#4|) 174)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 153)) (-3143 ((|#2| $ |#3|) NIL) (($ $ |#4| (-762)) 52) (($ $ (-635 |#4|) (-635 (-762))) 55)) (-1487 (((-3 $ "failed") $) 155)) (-1728 (((-112) $ $) 185)))
-(((-938 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -2796 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2321 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -4277 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -3199 (|#1| |#1| |#4|)) (-15 -3012 (|#1| |#1| |#4|)) (-15 -3789 (|#1| |#1| |#4|)) (-15 -2862 (|#1| |#1| |#1| |#4|)) (-15 -3894 ((-635 |#1|) |#1|)) (-15 -2909 ((-762) |#1| (-635 |#4|))) (-15 -2909 ((-762) |#1|)) (-15 -3637 ((-3 (-2 (|:| |var| |#4|) (|:| -1857 (-762))) "failed") |#1|)) (-15 -2819 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4195 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4056 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -4056 (|#1| |#1| |#4| (-762))) (-15 -3447 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1| |#4|)) (-15 -4033 ((-635 |#1|) |#1|)) (-15 -3143 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -3143 (|#1| |#1| |#4| (-762))) (-15 -1918 ((-679 |#2|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3302 ((-3 |#4| "failed") |#1|)) (-15 -3226 (|#4| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#4| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#4| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4056 (|#1| |#2| |#3|)) (-15 -3143 (|#2| |#1| |#3|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -3199 (|#1| |#1|))) (-939 |#2| |#3| |#4|) (-1039) (-784) (-841)) (T -938))
-NIL
-(-10 -8 (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -1487 ((-3 |#1| "failed") |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -2796 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2321 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -4277 ((-3 (-1246 |#1|) "failed") (-679 |#1|))) (-15 -3199 (|#1| |#1| |#4|)) (-15 -3012 (|#1| |#1| |#4|)) (-15 -3789 (|#1| |#1| |#4|)) (-15 -2862 (|#1| |#1| |#1| |#4|)) (-15 -3894 ((-635 |#1|) |#1|)) (-15 -2909 ((-762) |#1| (-635 |#4|))) (-15 -2909 ((-762) |#1|)) (-15 -3637 ((-3 (-2 (|:| |var| |#4|) (|:| -1857 (-762))) "failed") |#1|)) (-15 -2819 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4195 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4056 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -4056 (|#1| |#1| |#4| (-762))) (-15 -3447 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1| |#4|)) (-15 -4033 ((-635 |#1|) |#1|)) (-15 -3143 (|#1| |#1| (-635 |#4|) (-635 (-762)))) (-15 -3143 (|#1| |#1| |#4| (-762))) (-15 -1918 ((-679 |#2|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3302 ((-3 |#4| "failed") |#1|)) (-15 -3226 (|#4| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#4| |#1|)) (-15 -1369 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -1369 (|#1| |#1| |#4| |#2|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4056 (|#1| |#2| |#3|)) (-15 -3143 (|#2| |#1| |#3|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -3199 (|#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 |#3|) $) 110)) (-3907 (((-1159 $) $ |#3|) 125) (((-1159 |#1|) $) 124)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-3244 (($ $) 88 (|has| |#1| (-550)))) (-4326 (((-112) $) 90 (|has| |#1| (-550)))) (-2909 (((-762) $) 112) (((-762) $ (-635 |#3|)) 111)) (-1868 (((-3 $ "failed") $ $) 19)) (-2418 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-2018 (($ $) 98 (|has| |#1| (-450)))) (-4110 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) 136)) (-3226 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) ((|#3| $) 137)) (-2862 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-3905 (($ $) 154)) (-1918 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-3248 (((-3 $ "failed") $) 33)) (-3199 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3894 (((-635 $) $) 109)) (-2992 (((-112) $) 96 (|has| |#1| (-899)))) (-2704 (($ $ |#1| |#2| $) 172)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| |#3| (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| |#3| (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3999 (((-112) $) 31)) (-2987 (((-762) $) 169)) (-4068 (($ (-1159 |#1|) |#3|) 117) (($ (-1159 $) |#3|) 116)) (-4033 (((-635 $) $) 126)) (-3594 (((-112) $) 152)) (-4056 (($ |#1| |#2|) 153) (($ $ |#3| (-762)) 119) (($ $ (-635 |#3|) (-635 (-762))) 118)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |#3|) 120)) (-3672 ((|#2| $) 170) (((-762) $ |#3|) 122) (((-635 (-762)) $ (-635 |#3|)) 121)) (-2142 (($ $ $) 79 (|has| |#1| (-841)))) (-2281 (($ $ $) 78 (|has| |#1| (-841)))) (-2776 (($ (-1 |#2| |#2|) $) 171)) (-3397 (($ (-1 |#1| |#1|) $) 151)) (-2135 (((-3 |#3| "failed") $) 123)) (-3867 (($ $) 149)) (-3881 ((|#1| $) 148)) (-1500 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-2510 (((-1145) $) 9)) (-2819 (((-3 (-635 $) "failed") $) 114)) (-4195 (((-3 (-635 $) "failed") $) 115)) (-3637 (((-3 (-2 (|:| |var| |#3|) (|:| -1857 (-762))) "failed") $) 113)) (-1688 (((-1107) $) 10)) (-3837 (((-112) $) 166)) (-3853 ((|#1| $) 167)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-1544 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-3939 (((-417 $) $) 99 (|has| |#1| (-899)))) (-2861 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-3789 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3780 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-762)) 40) (($ $ (-635 |#3|) (-635 (-762))) 39)) (-4263 ((|#2| $) 150) (((-762) $ |#3|) 130) (((-635 (-762)) $ (-635 |#3|)) 129)) (-3441 (((-882 (-378)) $) 82 (-12 (|has| |#3| (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| |#3| (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| |#3| (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2157 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-550))) (($ (-406 (-558))) 72 (-3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))))) (-3712 (((-635 |#1|) $) 168)) (-3143 ((|#1| $ |#2|) 155) (($ $ |#3| (-762)) 128) (($ $ (-635 |#3|) (-635 (-762))) 127)) (-1487 (((-3 $ "failed") $) 73 (-3994 (-2157 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) 28)) (-1664 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-2671 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-762)) 36) (($ $ (-635 |#3|) (-635 (-762))) 35)) (-1757 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1805 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-939 |#1| |#2| |#3|) (-139) (-1039) (-784) (-841)) (T -939))
-((-3199 (*1 *1 *1) (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-4263 (*1 *2 *1 *3) (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-762)))) (-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762))))) (-3143 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *2 (-841)))) (-3143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)))) (-4033 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-3907 (*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-1159 *1)) (-4 *1 (-939 *4 *5 *3)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-1159 *3)))) (-2135 (*1 *2 *1) (|partial| -12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-3672 (*1 *2 *1 *3) (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-762)))) (-3672 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762))))) (-3447 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-939 *4 *5 *3)))) (-4056 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *2 (-841)))) (-4056 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)))) (-4068 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *4)) (-4 *4 (-1039)) (-4 *1 (-939 *4 *5 *3)) (-4 *5 (-784)) (-4 *3 (-841)))) (-4068 (*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)))) (-4195 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-2819 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-3637 (*1 *2 *1) (|partial| -12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| |var| *5) (|:| -1857 (-762)))))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-762)))) (-2909 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *5)))) (-3894 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5)))) (-2862 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-171)))) (-3789 (*1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-171)))) (-3012 (*1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-450)))) (-3199 (*1 *1 *1 *2) (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *3 (-450)))) (-2018 (*1 *1 *1) (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-4110 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-417 *1)) (-4 *1 (-939 *3 *4 *5)))))
-(-13 (-890 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-512 |t#3| |t#1|) (-512 |t#3| $) (-1028 |t#3|) (-376 |t#1|) (-10 -8 (-15 -4263 ((-762) $ |t#3|)) (-15 -4263 ((-635 (-762)) $ (-635 |t#3|))) (-15 -3143 ($ $ |t#3| (-762))) (-15 -3143 ($ $ (-635 |t#3|) (-635 (-762)))) (-15 -4033 ((-635 $) $)) (-15 -3907 ((-1159 $) $ |t#3|)) (-15 -3907 ((-1159 |t#1|) $)) (-15 -2135 ((-3 |t#3| "failed") $)) (-15 -3672 ((-762) $ |t#3|)) (-15 -3672 ((-635 (-762)) $ (-635 |t#3|))) (-15 -3447 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |t#3|)) (-15 -4056 ($ $ |t#3| (-762))) (-15 -4056 ($ $ (-635 |t#3|) (-635 (-762)))) (-15 -4068 ($ (-1159 |t#1|) |t#3|)) (-15 -4068 ($ (-1159 $) |t#3|)) (-15 -4195 ((-3 (-635 $) "failed") $)) (-15 -2819 ((-3 (-635 $) "failed") $)) (-15 -3637 ((-3 (-2 (|:| |var| |t#3|) (|:| -1857 (-762))) "failed") $)) (-15 -2909 ((-762) $)) (-15 -2909 ((-762) $ (-635 |t#3|))) (-15 -4078 ((-635 |t#3|) $)) (-15 -3894 ((-635 $) $)) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (IF (|has| |t#3| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-606 (-882 (-558)))) (IF (|has| |t#3| (-606 (-882 (-558)))) (-6 (-606 (-882 (-558)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-606 (-882 (-378)))) (IF (|has| |t#3| (-606 (-882 (-378)))) (-6 (-606 (-882 (-378)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-876 (-558))) (IF (|has| |t#3| (-876 (-558))) (-6 (-876 (-558))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-876 (-378))) (IF (|has| |t#3| (-876 (-378))) (-6 (-876 (-378))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2862 ($ $ $ |t#3|)) (-15 -3789 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-6 (-450)) (-15 -3012 ($ $ |t#3|)) (-15 -3199 ($ $)) (-15 -3199 ($ $ |t#3|)) (-15 -4110 ((-417 $) $)) (-15 -2018 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4381)) (-6 -4381) |%noBranch|) (IF (|has| |t#1| (-899)) (-6 (-899)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 |#3|) . T) ((-608 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) ((-289) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3994 (|has| |#1| (-899)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-550) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 |#3|) . T) ((-876 (-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) ((-899) |has| |#1| (-899)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1028 |#3|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) |has| |#1| (-899)))
-((-4078 (((-635 |#2|) |#5|) 36)) (-3907 (((-1159 |#5|) |#5| |#2| (-1159 |#5|)) 23) (((-406 (-1159 |#5|)) |#5| |#2|) 16)) (-4068 ((|#5| (-406 (-1159 |#5|)) |#2|) 30)) (-2135 (((-3 |#2| "failed") |#5|) 65)) (-2819 (((-3 (-635 |#5|) "failed") |#5|) 59)) (-3633 (((-3 (-2 (|:| |val| |#5|) (|:| -1857 (-558))) "failed") |#5|) 47)) (-4195 (((-3 (-635 |#5|) "failed") |#5|) 61)) (-3637 (((-3 (-2 (|:| |var| |#2|) (|:| -1857 (-558))) "failed") |#5|) 51)))
-(((-940 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4078 ((-635 |#2|) |#5|)) (-15 -2135 ((-3 |#2| "failed") |#5|)) (-15 -3907 ((-406 (-1159 |#5|)) |#5| |#2|)) (-15 -4068 (|#5| (-406 (-1159 |#5|)) |#2|)) (-15 -3907 ((-1159 |#5|) |#5| |#2| (-1159 |#5|))) (-15 -4195 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -2819 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3637 ((-3 (-2 (|:| |var| |#2|) (|:| -1857 (-558))) "failed") |#5|)) (-15 -3633 ((-3 (-2 (|:| |val| |#5|) (|:| -1857 (-558))) "failed") |#5|))) (-784) (-841) (-1039) (-939 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -3316 (|#4| $)) (-15 -3327 (|#4| $))))) (T -940))
-((-3633 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1857 (-558)))) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))) (-3637 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1857 (-558)))) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))) (-2819 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))) (-4195 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))) (-3907 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))) (-4 *7 (-939 *6 *5 *4)) (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039)) (-5 *1 (-940 *5 *4 *6 *7 *3)))) (-4068 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1159 *2))) (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039)) (-4 *2 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))) (-5 *1 (-940 *5 *4 *6 *7 *2)) (-4 *7 (-939 *6 *5 *4)))) (-3907 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-406 (-1159 *3))) (-5 *1 (-940 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))) (-2135 (*1 *2 *3) (|partial| -12 (-4 *4 (-784)) (-4 *5 (-1039)) (-4 *6 (-939 *5 *4 *2)) (-4 *2 (-841)) (-5 *1 (-940 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *6)) (-15 -3316 (*6 $)) (-15 -3327 (*6 $))))))) (-4078 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *5)) (-5 *1 (-940 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))))
-(-10 -7 (-15 -4078 ((-635 |#2|) |#5|)) (-15 -2135 ((-3 |#2| "failed") |#5|)) (-15 -3907 ((-406 (-1159 |#5|)) |#5| |#2|)) (-15 -4068 (|#5| (-406 (-1159 |#5|)) |#2|)) (-15 -3907 ((-1159 |#5|) |#5| |#2| (-1159 |#5|))) (-15 -4195 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -2819 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3637 ((-3 (-2 (|:| |var| |#2|) (|:| -1857 (-558))) "failed") |#5|)) (-15 -3633 ((-3 (-2 (|:| |val| |#5|) (|:| -1857 (-558))) "failed") |#5|)))
-((-3397 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
-(((-941 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3397 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-784) (-841) (-1039) (-939 |#3| |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -1785 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762)))))) (T -941))
-((-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-841)) (-4 *8 (-1039)) (-4 *6 (-784)) (-4 *2 (-13 (-1087) (-10 -8 (-15 -1785 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762)))))) (-5 *1 (-941 *6 *7 *8 *5 *2)) (-4 *5 (-939 *8 *6 *7)))))
-(-10 -7 (-15 -3397 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1163)) $) 16)) (-3907 (((-1159 $) $ (-1163)) 21) (((-1159 |#1|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-1163))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 8) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1163) "failed") $) NIL)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1163) $) NIL)) (-2862 (($ $ $ (-1163)) NIL (|has| |#1| (-171)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1163)) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-529 (-1163)) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1163) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1163) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4068 (($ (-1159 |#1|) (-1163)) NIL) (($ (-1159 $) (-1163)) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-1163)) NIL)) (-3672 (((-529 (-1163)) $) NIL) (((-762) $ (-1163)) NIL) (((-635 (-762)) $ (-635 (-1163))) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-529 (-1163)) (-529 (-1163))) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2135 (((-3 (-1163) "failed") $) 19)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-1163)) (|:| -1857 (-762))) "failed") $) NIL)) (-1337 (($ $ (-1163)) 29 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1163) |#1|) NIL) (($ $ (-635 (-1163)) (-635 |#1|)) NIL) (($ $ (-1163) $) NIL) (($ $ (-635 (-1163)) (-635 $)) NIL)) (-3789 (($ $ (-1163)) NIL (|has| |#1| (-171)))) (-3780 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-4263 (((-529 (-1163)) $) NIL) (((-762) $ (-1163)) NIL) (((-635 (-762)) $ (-635 (-1163))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-1163) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1163) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1163) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1163)) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) 25) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-1163)) 27) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-942 |#1|) (-13 (-939 |#1| (-529 (-1163)) (-1163)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1163))) |%noBranch|))) (-1039)) (T -942))
-((-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-942 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))))
-(-13 (-939 |#1| (-529 (-1163)) (-1163)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1163))) |%noBranch|)))
-((-1503 (((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) |#3| (-762)) 38)) (-2610 (((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) (-406 (-558)) (-762)) 34)) (-2720 (((-2 (|:| -1857 (-762)) (|:| -3455 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-762)) 54)) (-2689 (((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) |#5| (-762)) 64 (|has| |#3| (-450)))))
-(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1503 ((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) |#3| (-762))) (-15 -2610 ((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) (-406 (-558)) (-762))) (IF (|has| |#3| (-450)) (-15 -2689 ((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) |#5| (-762))) |%noBranch|) (-15 -2720 ((-2 (|:| -1857 (-762)) (|:| -3455 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-762)))) (-784) (-841) (-550) (-939 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -3316 (|#4| $)) (-15 -3327 (|#4| $))))) (T -943))
-((-2720 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550)) (-4 *3 (-939 *7 *5 *6)) (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *3) (|:| |radicand| (-635 *3)))) (-5 *1 (-943 *5 *6 *7 *3 *8)) (-5 *4 (-762)) (-4 *8 (-13 (-362) (-10 -8 (-15 -3940 ($ *3)) (-15 -3316 (*3 $)) (-15 -3327 (*3 $))))))) (-2689 (*1 *2 *3 *4) (-12 (-4 *7 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550)) (-4 *8 (-939 *7 *5 *6)) (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *3) (|:| |radicand| *3))) (-5 *1 (-943 *5 *6 *7 *8 *3)) (-5 *4 (-762)) (-4 *3 (-13 (-362) (-10 -8 (-15 -3940 ($ *8)) (-15 -3316 (*8 $)) (-15 -3327 (*8 $))))))) (-2610 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-558))) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550)) (-4 *8 (-939 *7 *5 *6)) (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *9) (|:| |radicand| *9))) (-5 *1 (-943 *5 *6 *7 *8 *9)) (-5 *4 (-762)) (-4 *9 (-13 (-362) (-10 -8 (-15 -3940 ($ *8)) (-15 -3316 (*8 $)) (-15 -3327 (*8 $))))))) (-1503 (*1 *2 *3 *4) (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-550)) (-4 *7 (-939 *3 *5 *6)) (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *8) (|:| |radicand| *8))) (-5 *1 (-943 *5 *6 *3 *7 *8)) (-5 *4 (-762)) (-4 *8 (-13 (-362) (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))))
-(-10 -7 (-15 -1503 ((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) |#3| (-762))) (-15 -2610 ((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) (-406 (-558)) (-762))) (IF (|has| |#3| (-450)) (-15 -2689 ((-2 (|:| -1857 (-762)) (|:| -3455 |#5|) (|:| |radicand| |#5|)) |#5| (-762))) |%noBranch|) (-15 -2720 ((-2 (|:| -1857 (-762)) (|:| -3455 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-762))))
-((-3929 (((-112) $ $) NIL)) (-3252 (($ (-1107)) 8)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 14) (((-1107) $) 11)) (-1708 (((-112) $ $) 10)))
-(((-944) (-13 (-1087) (-605 (-1107)) (-10 -8 (-15 -3252 ($ (-1107)))))) (T -944))
-((-3252 (*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-944)))))
-(-13 (-1087) (-605 (-1107)) (-10 -8 (-15 -3252 ($ (-1107)))))
-((-3654 (((-1081 (-224)) $) 8)) (-3643 (((-1081 (-224)) $) 9)) (-3305 (((-635 (-635 (-933 (-224)))) $) 10)) (-3940 (((-853) $) 6)))
-(((-945) (-139)) (T -945))
-((-3305 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-635 (-635 (-933 (-224))))))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224))))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224))))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3305 ((-635 (-635 (-933 (-224)))) $)) (-15 -3643 ((-1081 (-224)) $)) (-15 -3654 ((-1081 (-224)) $))))
-(((-605 (-853)) . T))
-((-3956 (((-3 (-679 |#1|) "failed") |#2| (-911)) 15)))
-(((-946 |#1| |#2|) (-10 -7 (-15 -3956 ((-3 (-679 |#1|) "failed") |#2| (-911)))) (-550) (-646 |#1|)) (T -946))
-((-3956 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-911)) (-4 *5 (-550)) (-5 *2 (-679 *5)) (-5 *1 (-946 *5 *3)) (-4 *3 (-646 *5)))))
-(-10 -7 (-15 -3956 ((-3 (-679 |#1|) "failed") |#2| (-911))))
-((-3484 (((-948 |#2|) (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|) 16)) (-3866 ((|#2| (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|) 18)) (-3397 (((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)) 13)))
-(((-947 |#1| |#2|) (-10 -7 (-15 -3484 ((-948 |#2|) (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3397 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) (-1200) (-1200)) (T -947))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-948 *6)) (-5 *1 (-947 *5 *6)))) (-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-948 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-947 *5 *2)))) (-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-948 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-948 *5)) (-5 *1 (-947 *6 *5)))))
-(-10 -7 (-15 -3484 ((-948 |#2|) (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-948 |#1|) |#2|)) (-15 -3397 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) |#1|) 16 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 15 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 13)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-1395 (($ (-762) |#1|) 12)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) 10 (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) 17 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) 11)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) 14) (($ $ (-1213 (-558))) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) NIL)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1596 (((-762) $) 8 (|has| $ (-6 -4383)))))
-(((-948 |#1|) (-19 |#1|) (-1200)) (T -948))
+((-3426 ((|#2| (-638 |#1|) (-638 |#1|)) 24)))
+(((-915 |#1| |#2|) (-10 -7 (-15 -3426 (|#2| (-638 |#1|) (-638 |#1|)))) (-362) (-1229 |#1|)) (T -915))
+((-3426 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-4 *2 (-1229 *4)) (-5 *1 (-915 *4 *2)))))
+(-10 -7 (-15 -3426 (|#2| (-638 |#1|) (-638 |#1|))))
+((-2514 (((-1162 |#2|) (-638 |#2|) (-638 |#2|)) 17) (((-1226 |#1| |#2|) (-1226 |#1| |#2|) (-638 |#2|) (-638 |#2|)) 13)))
+(((-916 |#1| |#2|) (-10 -7 (-15 -2514 ((-1226 |#1| |#2|) (-1226 |#1| |#2|) (-638 |#2|) (-638 |#2|))) (-15 -2514 ((-1162 |#2|) (-638 |#2|) (-638 |#2|)))) (-1166) (-362)) (T -916))
+((-2514 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *5)) (-4 *5 (-362)) (-5 *2 (-1162 *5)) (-5 *1 (-916 *4 *5)) (-14 *4 (-1166)))) (-2514 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1226 *4 *5)) (-5 *3 (-638 *5)) (-14 *4 (-1166)) (-4 *5 (-362)) (-5 *1 (-916 *4 *5)))))
+(-10 -7 (-15 -2514 ((-1226 |#1| |#2|) (-1226 |#1| |#2|) (-638 |#2|) (-638 |#2|))) (-15 -2514 ((-1162 |#2|) (-638 |#2|) (-638 |#2|))))
+((-3866 (((-561) (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-1148)) 139)) (-4061 ((|#4| |#4|) 155)) (-2171 (((-638 (-406 (-945 |#1|))) (-638 (-1166))) 119)) (-3527 (((-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-638 (-638 |#4|)) (-765) (-765) (-561)) 75)) (-3963 (((-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-638 |#4|)) 59)) (-4039 (((-682 |#4|) (-682 |#4|) (-638 |#4|)) 55)) (-1552 (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-1148)) 151)) (-3526 (((-561) (-682 |#4|) (-914) (-1148)) 133) (((-561) (-682 |#4|) (-638 (-1166)) (-914) (-1148)) 132) (((-561) (-682 |#4|) (-638 |#4|) (-914) (-1148)) 131) (((-561) (-682 |#4|) (-1148)) 128) (((-561) (-682 |#4|) (-638 (-1166)) (-1148)) 127) (((-561) (-682 |#4|) (-638 |#4|) (-1148)) 126) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-914)) 125) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)) (-914)) 124) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|) (-914)) 123) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|)) 121) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166))) 120) (((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|)) 116)) (-2421 ((|#4| (-945 |#1|)) 68)) (-2162 (((-112) (-638 |#4|) (-638 (-638 |#4|))) 152)) (-4140 (((-638 (-638 (-561))) (-561) (-561)) 130)) (-3810 (((-638 (-638 |#4|)) (-638 (-638 |#4|))) 88)) (-3943 (((-765) (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|))))) 86)) (-3477 (((-765) (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|))))) 85)) (-1712 (((-112) (-638 (-945 |#1|))) 17) (((-112) (-638 |#4|)) 13)) (-1453 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-638 |#4|)) (|:| |n0| (-638 |#4|))) (-638 |#4|) (-638 |#4|)) 71)) (-1287 (((-638 |#4|) |#4|) 49)) (-3301 (((-638 (-406 (-945 |#1|))) (-638 |#4|)) 115) (((-682 (-406 (-945 |#1|))) (-682 |#4|)) 56) (((-406 (-945 |#1|)) |#4|) 112)) (-2013 (((-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))))))) (|:| |rgsz| (-561))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-765) (-1148) (-561)) 93)) (-1488 (((-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))) (-682 |#4|) (-765)) 84)) (-3616 (((-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-682 |#4|) (-765)) 102)) (-2077 (((-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-2 (|:| -3327 (-682 (-406 (-945 |#1|)))) (|:| |vec| (-638 (-406 (-945 |#1|)))) (|:| -1569 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) 48)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|) (-914))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)) (-914))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-914))) (-15 -3526 ((-561) (-682 |#4|) (-638 |#4|) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-638 (-1166)) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-638 |#4|) (-914) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-638 (-1166)) (-914) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-914) (-1148))) (-15 -3866 ((-561) (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-1148))) (-15 -1552 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-1148))) (-15 -2013 ((-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))))))) (|:| |rgsz| (-561))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-765) (-1148) (-561))) (-15 -3301 ((-406 (-945 |#1|)) |#4|)) (-15 -3301 ((-682 (-406 (-945 |#1|))) (-682 |#4|))) (-15 -3301 ((-638 (-406 (-945 |#1|))) (-638 |#4|))) (-15 -2171 ((-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -2421 (|#4| (-945 |#1|))) (-15 -1453 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-638 |#4|)) (|:| |n0| (-638 |#4|))) (-638 |#4|) (-638 |#4|))) (-15 -1488 ((-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))) (-682 |#4|) (-765))) (-15 -3963 ((-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-638 |#4|))) (-15 -2077 ((-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-2 (|:| -3327 (-682 (-406 (-945 |#1|)))) (|:| |vec| (-638 (-406 (-945 |#1|)))) (|:| -1569 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (-15 -1287 ((-638 |#4|) |#4|)) (-15 -3477 ((-765) (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3943 ((-765) (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3810 ((-638 (-638 |#4|)) (-638 (-638 |#4|)))) (-15 -4140 ((-638 (-638 (-561))) (-561) (-561))) (-15 -2162 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -3616 ((-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-682 |#4|) (-765))) (-15 -4039 ((-682 |#4|) (-682 |#4|) (-638 |#4|))) (-15 -3527 ((-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-638 (-638 |#4|)) (-765) (-765) (-561))) (-15 -4061 (|#4| |#4|)) (-15 -1712 ((-112) (-638 |#4|))) (-15 -1712 ((-112) (-638 (-945 |#1|))))) (-13 (-306) (-146)) (-13 (-844) (-609 (-1166))) (-787) (-942 |#1| |#3| |#2|)) (T -917))
+((-1712 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-942 *3 *5 *4)))) (-3527 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-5 *4 (-682 *12)) (-5 *5 (-638 (-406 (-945 *9)))) (-5 *6 (-638 (-638 *12))) (-5 *7 (-765)) (-5 *8 (-561)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-942 *9 *11 *10)) (-4 *10 (-13 (-844) (-609 (-1166)))) (-4 *11 (-787)) (-5 *2 (-2 (|:| |eqzro| (-638 *12)) (|:| |neqzro| (-638 *12)) (|:| |wcond| (-638 (-945 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *9)))) (|:| -3711 (-638 (-1253 (-406 (-945 *9))))))))) (-5 *1 (-917 *9 *10 *11 *12)))) (-4039 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *7)) (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |det| *8) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-2162 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *5 *6 *7 *8)))) (-4140 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-638 (-561)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *6 *5)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-638 (-638 *6))) (-4 *6 (-942 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| *7) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| *7) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-1287 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3327 (-682 (-406 (-945 *4)))) (|:| |vec| (-638 (-406 (-945 *4)))) (|:| -1569 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-2 (|:| |partsol| (-1253 (-406 (-945 *4)))) (|:| -3711 (-638 (-1253 (-406 (-945 *4))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-3963 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1253 (-406 (-945 *4)))) (|:| -3711 (-638 (-1253 (-406 (-945 *4))))))) (-5 *3 (-638 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-942 *4 *6 *5)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| *8) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 *8))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765)))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-4 *7 (-942 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-638 *7)) (|:| |n0| (-638 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-942 *4 *6 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-682 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-406 (-945 *4))) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5)))) (-2013 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-682 *11)) (-5 *4 (-638 (-406 (-945 *8)))) (-5 *5 (-765)) (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-942 *8 *10 *9)) (-4 *9 (-13 (-844) (-609 (-1166)))) (-4 *10 (-787)) (-5 *2 (-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 *11)) (|:| |neqzro| (-638 *11)) (|:| |wcond| (-638 (-945 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *8)))) (|:| -3711 (-638 (-1253 (-406 (-945 *8)))))))))) (|:| |rgsz| (-561)))) (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-561)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7)) (|:| |wcond| (-638 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *4)))) (|:| -3711 (-638 (-1253 (-406 (-945 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *5)))) (|:| -3711 (-638 (-1253 (-406 (-945 *5)))))))))) (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-942 *5 *7 *6)) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-914)) (-5 *5 (-1148)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3526 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 (-1166))) (-5 *5 (-914)) (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *7 *8 *9 *10)))) (-3526 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 *10)) (-5 *5 (-914)) (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *7 *8 *9 *10)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-1148)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 *9)) (-5 *5 (-1148)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-914)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *5)))) (|:| -3711 (-638 (-1253 (-406 (-945 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-914)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9)) (|:| |wcond| (-638 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *6)))) (|:| -3711 (-638 (-1253 (-406 (-945 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *5 (-914)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9)) (|:| |wcond| (-638 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *6)))) (|:| -3711 (-638 (-1253 (-406 (-945 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-638 *9)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7)) (|:| |wcond| (-638 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *4)))) (|:| -3711 (-638 (-1253 (-406 (-945 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-638 (-1166))) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *5)))) (|:| -3711 (-638 (-1253 (-406 (-945 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-638 (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8)) (|:| |wcond| (-638 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 *5)))) (|:| -3711 (-638 (-1253 (-406 (-945 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
+(-10 -7 (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 |#4|) (-914))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-638 (-1166)) (-914))) (-15 -3526 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-682 |#4|) (-914))) (-15 -3526 ((-561) (-682 |#4|) (-638 |#4|) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-638 (-1166)) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-638 |#4|) (-914) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-638 (-1166)) (-914) (-1148))) (-15 -3526 ((-561) (-682 |#4|) (-914) (-1148))) (-15 -3866 ((-561) (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-1148))) (-15 -1552 ((-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|))))))))) (-1148))) (-15 -2013 ((-2 (|:| |rgl| (-638 (-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))))))) (|:| |rgsz| (-561))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-765) (-1148) (-561))) (-15 -3301 ((-406 (-945 |#1|)) |#4|)) (-15 -3301 ((-682 (-406 (-945 |#1|))) (-682 |#4|))) (-15 -3301 ((-638 (-406 (-945 |#1|))) (-638 |#4|))) (-15 -2171 ((-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -2421 (|#4| (-945 |#1|))) (-15 -1453 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-638 |#4|)) (|:| |n0| (-638 |#4|))) (-638 |#4|) (-638 |#4|))) (-15 -1488 ((-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))) (-682 |#4|) (-765))) (-15 -3963 ((-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-638 |#4|))) (-15 -2077 ((-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))) (-2 (|:| -3327 (-682 (-406 (-945 |#1|)))) (|:| |vec| (-638 (-406 (-945 |#1|)))) (|:| -1569 (-765)) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (-15 -1287 ((-638 |#4|) |#4|)) (-15 -3477 ((-765) (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3943 ((-765) (-638 (-2 (|:| -1569 (-765)) (|:| |eqns| (-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))) (|:| |fgb| (-638 |#4|)))))) (-15 -3810 ((-638 (-638 |#4|)) (-638 (-638 |#4|)))) (-15 -4140 ((-638 (-638 (-561))) (-561) (-561))) (-15 -2162 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -3616 ((-638 (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561))))) (-682 |#4|) (-765))) (-15 -4039 ((-682 |#4|) (-682 |#4|) (-638 |#4|))) (-15 -3527 ((-2 (|:| |eqzro| (-638 |#4|)) (|:| |neqzro| (-638 |#4|)) (|:| |wcond| (-638 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-945 |#1|)))) (|:| -3711 (-638 (-1253 (-406 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))) (-682 |#4|) (-638 (-406 (-945 |#1|))) (-638 (-638 |#4|)) (-765) (-765) (-561))) (-15 -4061 (|#4| |#4|)) (-15 -1712 ((-112) (-638 |#4|))) (-15 -1712 ((-112) (-638 (-945 |#1|)))))
+((-1835 (((-920) |#1| (-1166)) 17) (((-920) |#1| (-1166) (-1084 (-224))) 21)) (-4253 (((-920) |#1| |#1| (-1166) (-1084 (-224))) 19) (((-920) |#1| (-1166) (-1084 (-224))) 15)))
+(((-918 |#1|) (-10 -7 (-15 -4253 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -4253 ((-920) |#1| |#1| (-1166) (-1084 (-224)))) (-15 -1835 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -1835 ((-920) |#1| (-1166)))) (-609 (-534))) (T -918))
+((-1835 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))) (-1835 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))) (-4253 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))) (-4253 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920)) (-5 *1 (-918 *3)) (-4 *3 (-609 (-534))))))
+(-10 -7 (-15 -4253 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -4253 ((-920) |#1| |#1| (-1166) (-1084 (-224)))) (-15 -1835 ((-920) |#1| (-1166) (-1084 (-224)))) (-15 -1835 ((-920) |#1| (-1166))))
+((-1891 (($ $ (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 69)) (-2056 (((-1084 (-224)) $) 40)) (-2046 (((-1084 (-224)) $) 39)) (-4370 (((-1084 (-224)) $) 38)) (-3124 (((-638 (-638 (-224))) $) 43)) (-2060 (((-1084 (-224)) $) 41)) (-1592 (((-561) (-561)) 32)) (-3720 (((-561) (-561)) 28)) (-3180 (((-561) (-561)) 30)) (-1831 (((-112) (-112)) 35)) (-2570 (((-561)) 31)) (-1883 (($ $ (-1084 (-224))) 72) (($ $) 73)) (-3570 (($ (-1 (-936 (-224)) (-224)) (-1084 (-224))) 77) (($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 78)) (-4253 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 81) (($ $ (-1084 (-224))) 75)) (-3215 (((-561)) 36)) (-2344 (((-561)) 27)) (-3302 (((-561)) 29)) (-3980 (((-638 (-638 (-936 (-224)))) $) 93)) (-1925 (((-112) (-112)) 37)) (-4022 (((-856) $) 92)) (-2826 (((-112)) 34)))
+(((-919) (-13 (-967) (-10 -8 (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ $ (-1084 (-224)))) (-15 -1891 ($ $ (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -1883 ($ $ (-1084 (-224)))) (-15 -1883 ($ $)) (-15 -2060 ((-1084 (-224)) $)) (-15 -3124 ((-638 (-638 (-224))) $)) (-15 -2344 ((-561))) (-15 -3720 ((-561) (-561))) (-15 -3302 ((-561))) (-15 -3180 ((-561) (-561))) (-15 -2570 ((-561))) (-15 -1592 ((-561) (-561))) (-15 -2826 ((-112))) (-15 -1831 ((-112) (-112))) (-15 -3215 ((-561))) (-15 -1925 ((-112) (-112)))))) (T -919))
+((-3570 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-3570 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-4253 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-4253 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-919)))) (-4253 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-1891 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-1883 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-1883 (*1 *1 *1) (-5 *1 (-919))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-919)))) (-2344 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-3720 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-3302 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-2570 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-2826 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))) (-3215 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
+(-13 (-967) (-10 -8 (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ $ (-1084 (-224)))) (-15 -1891 ($ $ (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -1883 ($ $ (-1084 (-224)))) (-15 -1883 ($ $)) (-15 -2060 ((-1084 (-224)) $)) (-15 -3124 ((-638 (-638 (-224))) $)) (-15 -2344 ((-561))) (-15 -3720 ((-561) (-561))) (-15 -3302 ((-561))) (-15 -3180 ((-561) (-561))) (-15 -2570 ((-561))) (-15 -1592 ((-561) (-561))) (-15 -2826 ((-112))) (-15 -1831 ((-112) (-112))) (-15 -3215 ((-561))) (-15 -1925 ((-112) (-112)))))
+((-1891 (($ $ (-1084 (-224))) 69) (($ $ (-1084 (-224)) (-1084 (-224))) 70)) (-2046 (((-1084 (-224)) $) 44)) (-4370 (((-1084 (-224)) $) 43)) (-2060 (((-1084 (-224)) $) 45)) (-1947 (((-561) (-561)) 37)) (-1303 (((-561) (-561)) 33)) (-3693 (((-561) (-561)) 35)) (-2525 (((-112) (-112)) 39)) (-1454 (((-561)) 36)) (-1883 (($ $ (-1084 (-224))) 73) (($ $) 74)) (-3570 (($ (-1 (-936 (-224)) (-224)) (-1084 (-224))) 83) (($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 84)) (-1835 (($ (-1 (-224) (-224)) (-1084 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-4253 (($ (-1 (-224) (-224)) (-1084 (-224))) 78) (($ (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224))) 79) (($ (-638 (-1 (-224) (-224))) (-1084 (-224))) 86) (($ (-638 (-1 (-224) (-224))) (-1084 (-224)) (-1084 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224))) 81) (($ $ (-1084 (-224))) 75)) (-2197 (((-112) $) 40)) (-3413 (((-561)) 41)) (-3655 (((-561)) 32)) (-3873 (((-561)) 34)) (-3980 (((-638 (-638 (-936 (-224)))) $) 23)) (-3111 (((-112) (-112)) 42)) (-4022 (((-856) $) 105)) (-2492 (((-112)) 38)))
+(((-920) (-13 (-948) (-10 -8 (-15 -4253 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)))) (-15 -4253 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -1835 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -1835 ($ (-1 (-224) (-224)))) (-15 -4253 ($ $ (-1084 (-224)))) (-15 -2197 ((-112) $)) (-15 -1891 ($ $ (-1084 (-224)))) (-15 -1891 ($ $ (-1084 (-224)) (-1084 (-224)))) (-15 -1883 ($ $ (-1084 (-224)))) (-15 -1883 ($ $)) (-15 -2060 ((-1084 (-224)) $)) (-15 -3655 ((-561))) (-15 -1303 ((-561) (-561))) (-15 -3873 ((-561))) (-15 -3693 ((-561) (-561))) (-15 -1454 ((-561))) (-15 -1947 ((-561) (-561))) (-15 -2492 ((-112))) (-15 -2525 ((-112) (-112))) (-15 -3413 ((-561))) (-15 -3111 ((-112) (-112)))))) (T -920))
+((-4253 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-4253 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-4253 (*1 *1 *2 *3) (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-4253 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-4253 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-4253 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-3570 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-3570 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224))) (-5 *1 (-920)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-920)))) (-4253 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-1891 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-1891 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-1883 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-1883 (*1 *1 *1) (-5 *1 (-920))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))) (-3655 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-1303 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-3873 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-1454 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-2492 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-2525 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-3413 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(-13 (-948) (-10 -8 (-15 -4253 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)))) (-15 -4253 ($ (-638 (-1 (-224) (-224))) (-1084 (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)))) (-15 -4253 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)))) (-15 -3570 ($ (-1 (-936 (-224)) (-224)) (-1084 (-224)) (-1084 (-224)) (-1084 (-224)))) (-15 -1835 ($ (-1 (-224) (-224)) (-1084 (-224)))) (-15 -1835 ($ (-1 (-224) (-224)))) (-15 -4253 ($ $ (-1084 (-224)))) (-15 -2197 ((-112) $)) (-15 -1891 ($ $ (-1084 (-224)))) (-15 -1891 ($ $ (-1084 (-224)) (-1084 (-224)))) (-15 -1883 ($ $ (-1084 (-224)))) (-15 -1883 ($ $)) (-15 -2060 ((-1084 (-224)) $)) (-15 -3655 ((-561))) (-15 -1303 ((-561) (-561))) (-15 -3873 ((-561))) (-15 -3693 ((-561) (-561))) (-15 -1454 ((-561))) (-15 -1947 ((-561) (-561))) (-15 -2492 ((-112))) (-15 -2525 ((-112) (-112))) (-15 -3413 ((-561))) (-15 -3111 ((-112) (-112)))))
+((-3818 (((-638 (-1084 (-224))) (-638 (-638 (-936 (-224))))) 24)))
+(((-921) (-10 -7 (-15 -3818 ((-638 (-1084 (-224))) (-638 (-638 (-936 (-224)))))))) (T -921))
+((-3818 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-638 (-1084 (-224)))) (-5 *1 (-921)))))
+(-10 -7 (-15 -3818 ((-638 (-1084 (-224))) (-638 (-638 (-936 (-224)))))))
+((-3767 ((|#2| |#2|) 26)) (-3105 ((|#2| |#2|) 27)) (-1514 ((|#2| |#2|) 25)) (-3954 ((|#2| |#2| (-1148)) 24)))
+(((-922 |#1| |#2|) (-10 -7 (-15 -3954 (|#2| |#2| (-1148))) (-15 -1514 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3105 (|#2| |#2|))) (-844) (-429 |#1|)) (T -922))
+((-3105 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3)))) (-1514 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3)))) (-3954 (*1 *2 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-922 *4 *2)) (-4 *2 (-429 *4)))))
+(-10 -7 (-15 -3954 (|#2| |#2| (-1148))) (-15 -1514 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)))
+((-3767 (((-315 (-561)) (-1166)) 16)) (-3105 (((-315 (-561)) (-1166)) 14)) (-1514 (((-315 (-561)) (-1166)) 12)) (-3954 (((-315 (-561)) (-1166) (-1148)) 19)))
+(((-923) (-10 -7 (-15 -3954 ((-315 (-561)) (-1166) (-1148))) (-15 -1514 ((-315 (-561)) (-1166))) (-15 -3767 ((-315 (-561)) (-1166))) (-15 -3105 ((-315 (-561)) (-1166))))) (T -923))
+((-3105 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))))
+(-10 -7 (-15 -3954 ((-315 (-561)) (-1166) (-1148))) (-15 -1514 ((-315 (-561)) (-1166))) (-15 -3767 ((-315 (-561)) (-1166))) (-15 -3105 ((-315 (-561)) (-1166))))
+((-3631 (((-882 |#1| |#3|) |#2| (-885 |#1|) (-882 |#1| |#3|)) 25)) (-2071 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-924 |#1| |#2| |#3|) (-10 -7 (-15 -2071 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3631 ((-882 |#1| |#3|) |#2| (-885 |#1|) (-882 |#1| |#3|)))) (-1090) (-879 |#1|) (-13 (-1090) (-1031 |#2|))) (T -924))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-13 (-1090) (-1031 *3))) (-4 *3 (-879 *5)) (-5 *1 (-924 *5 *3 *6)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1090) (-1031 *5))) (-4 *5 (-879 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-924 *4 *5 *6)))))
+(-10 -7 (-15 -2071 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3631 ((-882 |#1| |#3|) |#2| (-885 |#1|) (-882 |#1| |#3|))))
+((-3631 (((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)) 30)))
+(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -3631 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-1090) (-13 (-553) (-844) (-879 |#1|)) (-13 (-429 |#2|) (-609 (-885 |#1|)) (-879 |#1|) (-1031 (-607 $)))) (T -925))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-429 *6) (-609 *4) (-879 *5) (-1031 (-607 $)))) (-5 *4 (-885 *5)) (-4 *6 (-13 (-553) (-844) (-879 *5))) (-5 *1 (-925 *5 *6 *3)))))
+(-10 -7 (-15 -3631 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))))
+((-3631 (((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|)) 13)))
+(((-926 |#1|) (-10 -7 (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|)))) (-543)) (T -926))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 (-561) *3)) (-5 *4 (-885 (-561))) (-4 *3 (-543)) (-5 *1 (-926 *3)))))
+(-10 -7 (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))))
+((-3631 (((-882 |#1| |#2|) (-607 |#2|) (-885 |#1|) (-882 |#1| |#2|)) 54)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -3631 ((-882 |#1| |#2|) (-607 |#2|) (-885 |#1|) (-882 |#1| |#2|)))) (-1090) (-13 (-844) (-1031 (-607 $)) (-609 (-885 |#1|)) (-879 |#1|))) (T -927))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6)) (-5 *3 (-607 *6)) (-4 *5 (-1090)) (-4 *6 (-13 (-844) (-1031 (-607 $)) (-609 *4) (-879 *5))) (-5 *4 (-885 *5)) (-5 *1 (-927 *5 *6)))))
+(-10 -7 (-15 -3631 ((-882 |#1| |#2|) (-607 |#2|) (-885 |#1|) (-882 |#1| |#2|))))
+((-3631 (((-878 |#1| |#2| |#3|) |#3| (-885 |#1|) (-878 |#1| |#2| |#3|)) 15)))
+(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3631 ((-878 |#1| |#2| |#3|) |#3| (-885 |#1|) (-878 |#1| |#2| |#3|)))) (-1090) (-879 |#1|) (-659 |#2|)) (T -928))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-4 *6 (-879 *5)) (-4 *3 (-659 *6)) (-5 *1 (-928 *5 *6 *3)))))
+(-10 -7 (-15 -3631 ((-878 |#1| |#2| |#3|) |#3| (-885 |#1|) (-878 |#1| |#2| |#3|))))
+((-3631 (((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|)) 17 (|has| |#3| (-879 |#1|))) (((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|) (-1 (-882 |#1| |#5|) |#3| (-885 |#1|) (-882 |#1| |#5|))) 16)))
+(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3631 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|) (-1 (-882 |#1| |#5|) |#3| (-885 |#1|) (-882 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -3631 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|))) |%noBranch|)) (-1090) (-787) (-844) (-13 (-1042) (-844) (-879 |#1|)) (-13 (-942 |#4| |#2| |#3|) (-609 (-885 |#1|)))) (T -929))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-942 *8 *6 *7) (-609 *4))) (-5 *4 (-885 *5)) (-4 *7 (-879 *5)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-13 (-1042) (-844) (-879 *5))) (-5 *1 (-929 *5 *6 *7 *8 *3)))) (-3631 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-882 *6 *3) *8 (-885 *6) (-882 *6 *3))) (-4 *8 (-844)) (-5 *2 (-882 *6 *3)) (-5 *4 (-885 *6)) (-4 *6 (-1090)) (-4 *3 (-13 (-942 *9 *7 *8) (-609 *4))) (-4 *7 (-787)) (-4 *9 (-13 (-1042) (-844) (-879 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3631 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|) (-1 (-882 |#1| |#5|) |#3| (-885 |#1|) (-882 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -3631 ((-882 |#1| |#5|) |#5| (-885 |#1|) (-882 |#1| |#5|))) |%noBranch|))
+((-3183 ((|#2| |#2| (-638 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -3183 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3183 (|#2| |#2| (-638 (-1 (-112) |#3|))))) (-844) (-429 |#1|) (-1205)) (T -930))
+((-3183 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-1 (-112) *5))) (-4 *5 (-1205)) (-4 *4 (-844)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4)))) (-3183 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1205)) (-4 *4 (-844)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4)))))
+(-10 -7 (-15 -3183 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3183 (|#2| |#2| (-638 (-1 (-112) |#3|)))))
+((-3183 (((-315 (-561)) (-1166) (-638 (-1 (-112) |#1|))) 18) (((-315 (-561)) (-1166) (-1 (-112) |#1|)) 15)))
+(((-931 |#1|) (-10 -7 (-15 -3183 ((-315 (-561)) (-1166) (-1 (-112) |#1|))) (-15 -3183 ((-315 (-561)) (-1166) (-638 (-1 (-112) |#1|))))) (-1205)) (T -931))
+((-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-638 (-1 (-112) *5))) (-4 *5 (-1205)) (-5 *2 (-315 (-561))) (-5 *1 (-931 *5)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1205)) (-5 *2 (-315 (-561))) (-5 *1 (-931 *5)))))
+(-10 -7 (-15 -3183 ((-315 (-561)) (-1166) (-1 (-112) |#1|))) (-15 -3183 ((-315 (-561)) (-1166) (-638 (-1 (-112) |#1|)))))
+((-3631 (((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)) 25)))
+(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3631 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-1090) (-13 (-553) (-879 |#1|) (-609 (-885 |#1|))) (-985 |#2|)) (T -932))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-985 *6)) (-4 *6 (-13 (-553) (-879 *5) (-609 *4))) (-5 *4 (-885 *5)) (-5 *1 (-932 *5 *6 *3)))))
+(-10 -7 (-15 -3631 ((-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))))
+((-3631 (((-882 |#1| (-1166)) (-1166) (-885 |#1|) (-882 |#1| (-1166))) 17)))
+(((-933 |#1|) (-10 -7 (-15 -3631 ((-882 |#1| (-1166)) (-1166) (-885 |#1|) (-882 |#1| (-1166))))) (-1090)) (T -933))
+((-3631 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-5 *1 (-933 *5)))))
+(-10 -7 (-15 -3631 ((-882 |#1| (-1166)) (-1166) (-885 |#1|) (-882 |#1| (-1166)))))
+((-1371 (((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) 33)) (-3631 (((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-1 |#3| (-638 |#3|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))) 32)))
+(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3631 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-1 |#3| (-638 |#3|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-15 -1371 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|))))) (-1090) (-13 (-1042) (-844)) (-13 (-1042) (-609 (-885 |#1|)) (-1031 |#2|))) (T -934))
+((-1371 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-885 *6))) (-5 *5 (-1 (-882 *6 *8) *8 (-885 *6) (-882 *6 *8))) (-4 *6 (-1090)) (-4 *8 (-13 (-1042) (-609 (-885 *6)) (-1031 *7))) (-5 *2 (-882 *6 *8)) (-4 *7 (-13 (-1042) (-844))) (-5 *1 (-934 *6 *7 *8)))) (-3631 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-638 (-885 *7))) (-5 *5 (-1 *9 (-638 *9))) (-5 *6 (-1 (-882 *7 *9) *9 (-885 *7) (-882 *7 *9))) (-4 *7 (-1090)) (-4 *9 (-13 (-1042) (-609 (-885 *7)) (-1031 *8))) (-5 *2 (-882 *7 *9)) (-5 *3 (-638 *9)) (-4 *8 (-13 (-1042) (-844))) (-5 *1 (-934 *7 *8 *9)))))
+(-10 -7 (-15 -3631 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-1 |#3| (-638 |#3|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))) (-15 -1371 ((-882 |#1| |#3|) (-638 |#3|) (-638 (-885 |#1|)) (-882 |#1| |#3|) (-1 (-882 |#1| |#3|) |#3| (-885 |#1|) (-882 |#1| |#3|)))))
+((-3460 (((-1162 (-406 (-561))) (-561)) 62)) (-2716 (((-1162 (-561)) (-561)) 65)) (-2404 (((-1162 (-561)) (-561)) 59)) (-1800 (((-561) (-1162 (-561))) 54)) (-1597 (((-1162 (-406 (-561))) (-561)) 48)) (-2526 (((-1162 (-561)) (-561)) 37)) (-2475 (((-1162 (-561)) (-561)) 67)) (-1476 (((-1162 (-561)) (-561)) 66)) (-2806 (((-1162 (-406 (-561))) (-561)) 50)))
+(((-935) (-10 -7 (-15 -2806 ((-1162 (-406 (-561))) (-561))) (-15 -1476 ((-1162 (-561)) (-561))) (-15 -2475 ((-1162 (-561)) (-561))) (-15 -2526 ((-1162 (-561)) (-561))) (-15 -1597 ((-1162 (-406 (-561))) (-561))) (-15 -1800 ((-561) (-1162 (-561)))) (-15 -2404 ((-1162 (-561)) (-561))) (-15 -2716 ((-1162 (-561)) (-561))) (-15 -3460 ((-1162 (-406 (-561))) (-561))))) (T -935))
+((-3460 (*1 *2 *3) (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2716 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2404 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-561)) (-5 *1 (-935)))) (-1597 (*1 *2 *3) (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2526 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2475 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(-10 -7 (-15 -2806 ((-1162 (-406 (-561))) (-561))) (-15 -1476 ((-1162 (-561)) (-561))) (-15 -2475 ((-1162 (-561)) (-561))) (-15 -2526 ((-1162 (-561)) (-561))) (-15 -1597 ((-1162 (-406 (-561))) (-561))) (-15 -1800 ((-561) (-1162 (-561)))) (-15 -2404 ((-1162 (-561)) (-561))) (-15 -2716 ((-1162 (-561)) (-561))) (-15 -3460 ((-1162 (-406 (-561))) (-561))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2888 (($ (-765)) NIL (|has| |#1| (-23)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) |#1|) 11 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3376 (($ (-638 |#1|)) 13)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-2802 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-1470 (($ (-765) |#1|) 8)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 10 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3216 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-2230 (((-112) $ (-765)) NIL)) (-3617 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-1416 (($ $ (-638 |#1|)) 26)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 20) (($ $ (-1220 (-561))) NIL)) (-1327 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-3084 (((-914) $) 16)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-2307 (($ $ $) 24)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534)))) (($ (-638 |#1|)) 17)) (-4031 (($ (-638 |#1|)) NIL)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1824 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1813 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-561) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-3498 (((-765) $) 14 (|has| $ (-6 -4390)))))
+(((-936 |#1|) (-973 |#1|) (-1042)) (T -936))
+NIL
+(-973 |#1|)
+((-3022 (((-479 |#1| |#2|) (-945 |#2|)) 20)) (-2814 (((-246 |#1| |#2|) (-945 |#2|)) 33)) (-3072 (((-945 |#2|) (-479 |#1| |#2|)) 25)) (-3107 (((-246 |#1| |#2|) (-479 |#1| |#2|)) 55)) (-4141 (((-945 |#2|) (-246 |#1| |#2|)) 30)) (-3143 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 46)))
+(((-937 |#1| |#2|) (-10 -7 (-15 -3143 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3107 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3022 ((-479 |#1| |#2|) (-945 |#2|))) (-15 -3072 ((-945 |#2|) (-479 |#1| |#2|))) (-15 -4141 ((-945 |#2|) (-246 |#1| |#2|))) (-15 -2814 ((-246 |#1| |#2|) (-945 |#2|)))) (-638 (-1166)) (-1042)) (T -937))
+((-2814 (*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)))))
+(-10 -7 (-15 -3143 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3107 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3022 ((-479 |#1| |#2|) (-945 |#2|))) (-15 -3072 ((-945 |#2|) (-479 |#1| |#2|))) (-15 -4141 ((-945 |#2|) (-246 |#1| |#2|))) (-15 -2814 ((-246 |#1| |#2|) (-945 |#2|))))
+((-3662 (((-638 |#2|) |#2| |#2|) 10)) (-1490 (((-765) (-638 |#1|)) 37 (|has| |#1| (-842)))) (-3981 (((-638 |#2|) |#2|) 11)) (-2331 (((-765) (-638 |#1|) (-561) (-561)) 39 (|has| |#1| (-842)))) (-3581 ((|#1| |#2|) 32 (|has| |#1| (-842)))))
+(((-938 |#1| |#2|) (-10 -7 (-15 -3662 ((-638 |#2|) |#2| |#2|)) (-15 -3981 ((-638 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -3581 (|#1| |#2|)) (-15 -1490 ((-765) (-638 |#1|))) (-15 -2331 ((-765) (-638 |#1|) (-561) (-561)))) |%noBranch|)) (-362) (-1229 |#1|)) (T -938))
+((-2331 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-561)) (-4 *5 (-842)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1229 *5)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *4 *5)) (-4 *5 (-1229 *4)))) (-3581 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1229 *2)))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1229 *4)))) (-3662 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3662 ((-638 |#2|) |#2| |#2|)) (-15 -3981 ((-638 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -3581 (|#1| |#2|)) (-15 -1490 ((-765) (-638 |#1|))) (-15 -2331 ((-765) (-638 |#1|) (-561) (-561)))) |%noBranch|))
+((-4120 (((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)) 19)))
+(((-939 |#1| |#2|) (-10 -7 (-15 -4120 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) (-1042) (-1042)) (T -939))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-945 *6)) (-5 *1 (-939 *5 *6)))))
+(-10 -7 (-15 -4120 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|))))
+((-1620 (((-1226 |#1| (-945 |#2|)) (-945 |#2|) (-1249 |#1|)) 18)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -1620 ((-1226 |#1| (-945 |#2|)) (-945 |#2|) (-1249 |#1|)))) (-1166) (-1042)) (T -940))
+((-1620 (*1 *2 *3 *4) (-12 (-5 *4 (-1249 *5)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-5 *2 (-1226 *5 (-945 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-945 *6)))))
+(-10 -7 (-15 -1620 ((-1226 |#1| (-945 |#2|)) (-945 |#2|) (-1249 |#1|))))
+((-2710 (((-765) $) 71) (((-765) $ (-638 |#4|)) 74)) (-1591 (($ $) 172)) (-3422 (((-417 $) $) 164)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 115)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3938 ((|#2| $) NIL) (((-406 (-561)) $) NIL) (((-561) $) NIL) ((|#4| $) 59)) (-3051 (($ $ $ |#4|) 76)) (-3602 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 105) (((-682 |#2|) (-682 $)) 98)) (-2401 (($ $) 179) (($ $ |#4|) 182)) (-1602 (((-638 $) $) 63)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 198) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 191)) (-3371 (((-638 $) $) 28)) (-1387 (($ |#2| |#3|) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-638 |#4|) (-638 (-765))) 57)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |#4|) 161)) (-3638 (((-3 (-638 $) "failed") $) 42)) (-1664 (((-3 (-638 $) "failed") $) 31)) (-3431 (((-3 (-2 (|:| |var| |#4|) (|:| -4196 (-765))) "failed") $) 47)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 108)) (-3396 (((-417 (-1162 $)) (-1162 $)) 121)) (-3449 (((-417 (-1162 $)) (-1162 $)) 119)) (-1657 (((-417 $) $) 139)) (-1444 (($ $ (-638 (-293 $))) 21) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-638 |#4|) (-638 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-638 |#4|) (-638 $)) NIL)) (-2553 (($ $ |#4|) 78)) (-4174 (((-885 (-378)) $) 212) (((-885 (-561)) $) 205) (((-534) $) 220)) (-3609 ((|#2| $) NIL) (($ $ |#4|) 174)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 153)) (-2634 ((|#2| $ |#3|) NIL) (($ $ |#4| (-765)) 52) (($ $ (-638 |#4|) (-638 (-765))) 55)) (-1760 (((-3 $ "failed") $) 155)) (-1754 (((-112) $ $) 185)))
+(((-941 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -3449 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3396 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -3552 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -2401 (|#1| |#1| |#4|)) (-15 -3609 (|#1| |#1| |#4|)) (-15 -2553 (|#1| |#1| |#4|)) (-15 -3051 (|#1| |#1| |#1| |#4|)) (-15 -1602 ((-638 |#1|) |#1|)) (-15 -2710 ((-765) |#1| (-638 |#4|))) (-15 -2710 ((-765) |#1|)) (-15 -3431 ((-3 (-2 (|:| |var| |#4|) (|:| -4196 (-765))) "failed") |#1|)) (-15 -3638 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1664 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1387 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -1387 (|#1| |#1| |#4| (-765))) (-15 -2551 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1| |#4|)) (-15 -3371 ((-638 |#1|) |#1|)) (-15 -2634 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -2634 (|#1| |#1| |#4| (-765))) (-15 -3602 ((-682 |#2|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -4017 ((-3 |#4| "failed") |#1|)) (-15 -3938 (|#4| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#4| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#4| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1387 (|#1| |#2| |#3|)) (-15 -2634 (|#2| |#1| |#3|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -2401 (|#1| |#1|))) (-942 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -941))
+NIL
+(-10 -8 (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -1754 ((-112) |#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -3449 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3396 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -3552 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -2401 (|#1| |#1| |#4|)) (-15 -3609 (|#1| |#1| |#4|)) (-15 -2553 (|#1| |#1| |#4|)) (-15 -3051 (|#1| |#1| |#1| |#4|)) (-15 -1602 ((-638 |#1|) |#1|)) (-15 -2710 ((-765) |#1| (-638 |#4|))) (-15 -2710 ((-765) |#1|)) (-15 -3431 ((-3 (-2 (|:| |var| |#4|) (|:| -4196 (-765))) "failed") |#1|)) (-15 -3638 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1664 ((-3 (-638 |#1|) "failed") |#1|)) (-15 -1387 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -1387 (|#1| |#1| |#4| (-765))) (-15 -2551 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1| |#4|)) (-15 -3371 ((-638 |#1|) |#1|)) (-15 -2634 (|#1| |#1| (-638 |#4|) (-638 (-765)))) (-15 -2634 (|#1| |#1| |#4| (-765))) (-15 -3602 ((-682 |#2|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -4017 ((-3 |#4| "failed") |#1|)) (-15 -3938 (|#4| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#4| |#1|)) (-15 -1444 (|#1| |#1| (-638 |#4|) (-638 |#2|))) (-15 -1444 (|#1| |#1| |#4| |#2|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -1387 (|#1| |#2| |#3|)) (-15 -2634 (|#2| |#1| |#3|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -2401 (|#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 |#3|) $) 110)) (-1620 (((-1162 $) $ |#3|) 125) (((-1162 |#1|) $) 124)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-2851 (($ $) 88 (|has| |#1| (-553)))) (-3359 (((-112) $) 90 (|has| |#1| (-553)))) (-2710 (((-765) $) 112) (((-765) $ (-638 |#3|)) 111)) (-2249 (((-3 $ "failed") $ $) 19)) (-4046 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-1591 (($ $) 98 (|has| |#1| (-450)))) (-3422 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) 136)) (-3938 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) ((|#3| $) 137)) (-3051 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1619 (($ $) 154)) (-3602 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3466 (((-3 $ "failed") $) 33)) (-2401 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-1602 (((-638 $) $) 109)) (-2737 (((-112) $) 96 (|has| |#1| (-902)))) (-2103 (($ $ |#1| |#2| $) 172)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| |#3| (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| |#3| (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-3113 (((-112) $) 31)) (-2067 (((-765) $) 169)) (-1401 (($ (-1162 |#1|) |#3|) 117) (($ (-1162 $) |#3|) 116)) (-3371 (((-638 $) $) 126)) (-2092 (((-112) $) 152)) (-1387 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-638 |#3|) (-638 (-765))) 118)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |#3|) 120)) (-2393 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-638 (-765)) $ (-638 |#3|)) 121)) (-3443 (($ $ $) 79 (|has| |#1| (-844)))) (-2986 (($ $ $) 78 (|has| |#1| (-844)))) (-3524 (($ (-1 |#2| |#2|) $) 171)) (-4120 (($ (-1 |#1| |#1|) $) 151)) (-1358 (((-3 |#3| "failed") $) 123)) (-1578 (($ $) 149)) (-1590 ((|#1| $) 148)) (-1582 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-1764 (((-1148) $) 9)) (-3638 (((-3 (-638 $) "failed") $) 114)) (-1664 (((-3 (-638 $) "failed") $) 115)) (-3431 (((-3 (-2 (|:| |var| |#3|) (|:| -4196 (-765))) "failed") $) 113)) (-1714 (((-1110) $) 10)) (-1551 (((-112) $) 166)) (-1561 ((|#1| $) 167)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1623 (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1657 (((-417 $) $) 99 (|has| |#1| (-902)))) (-1756 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-638 |#3|) (-638 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-638 |#3|) (-638 $)) 138)) (-2553 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3238 (($ $ |#3|) 42) (($ $ (-638 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-638 |#3|) (-638 (-765))) 39)) (-2894 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-638 (-765)) $ (-638 |#3|)) 129)) (-4174 (((-885 (-378)) $) 82 (-12 (|has| |#3| (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| |#3| (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| |#3| (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 104 (-2170 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-553))) (($ (-406 (-561))) 72 (-4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))))) (-2742 (((-638 |#1|) $) 168)) (-2634 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-638 |#3|) (-638 (-765))) 127)) (-1760 (((-3 $ "failed") $) 73 (-4007 (-2170 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) 28)) (-1711 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3168 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ |#3|) 38) (($ $ (-638 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-638 |#3|) (-638 (-765))) 35)) (-1782 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1833 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-942 |#1| |#2| |#3|) (-139) (-1042) (-787) (-844)) (T -942))
+((-2401 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-2894 (*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-2894 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765))))) (-2634 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-2634 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-3371 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-1620 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1162 *1)) (-4 *1 (-942 *4 *5 *3)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1162 *3)))) (-1358 (*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-2393 (*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765))))) (-2551 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-942 *4 *5 *3)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *4)) (-4 *4 (-1042)) (-4 *1 (-942 *4 *5 *3)) (-4 *5 (-787)) (-4 *3 (-844)))) (-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)))) (-1664 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-3638 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-3431 (*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -4196 (-765)))))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-2710 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *5)))) (-1602 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5)))) (-3051 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-2553 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-3609 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-2401 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3422 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-417 *1)) (-4 *1 (-942 *3 *4 *5)))))
+(-13 (-893 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-512 |t#3| |t#1|) (-512 |t#3| $) (-1031 |t#3|) (-376 |t#1|) (-10 -8 (-15 -2894 ((-765) $ |t#3|)) (-15 -2894 ((-638 (-765)) $ (-638 |t#3|))) (-15 -2634 ($ $ |t#3| (-765))) (-15 -2634 ($ $ (-638 |t#3|) (-638 (-765)))) (-15 -3371 ((-638 $) $)) (-15 -1620 ((-1162 $) $ |t#3|)) (-15 -1620 ((-1162 |t#1|) $)) (-15 -1358 ((-3 |t#3| "failed") $)) (-15 -2393 ((-765) $ |t#3|)) (-15 -2393 ((-638 (-765)) $ (-638 |t#3|))) (-15 -2551 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |t#3|)) (-15 -1387 ($ $ |t#3| (-765))) (-15 -1387 ($ $ (-638 |t#3|) (-638 (-765)))) (-15 -1401 ($ (-1162 |t#1|) |t#3|)) (-15 -1401 ($ (-1162 $) |t#3|)) (-15 -1664 ((-3 (-638 $) "failed") $)) (-15 -3638 ((-3 (-638 $) "failed") $)) (-15 -3431 ((-3 (-2 (|:| |var| |t#3|) (|:| -4196 (-765))) "failed") $)) (-15 -2710 ((-765) $)) (-15 -2710 ((-765) $ (-638 |t#3|))) (-15 -1412 ((-638 |t#3|) $)) (-15 -1602 ((-638 $) $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (IF (|has| |t#3| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-885 (-561)))) (IF (|has| |t#3| (-609 (-885 (-561)))) (-6 (-609 (-885 (-561)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-885 (-378)))) (IF (|has| |t#3| (-609 (-885 (-378)))) (-6 (-609 (-885 (-378)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-561))) (IF (|has| |t#3| (-879 (-561))) (-6 (-879 (-561))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-378))) (IF (|has| |t#3| (-879 (-378))) (-6 (-879 (-378))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -3051 ($ $ $ |t#3|)) (-15 -2553 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-6 (-450)) (-15 -3609 ($ $ |t#3|)) (-15 -2401 ($ $)) (-15 -2401 ($ $ |t#3|)) (-15 -3422 ((-417 $) $)) (-15 -1591 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4388)) (-6 -4388) |%noBranch|) (IF (|has| |t#1| (-902)) (-6 (-902)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) ((-289) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4007 (|has| |#1| (-902)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-553) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) ((-902) |has| |#1| (-902)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) |has| |#1| (-902)))
+((-1412 (((-638 |#2|) |#5|) 36)) (-1620 (((-1162 |#5|) |#5| |#2| (-1162 |#5|)) 23) (((-406 (-1162 |#5|)) |#5| |#2|) 16)) (-1401 ((|#5| (-406 (-1162 |#5|)) |#2|) 30)) (-1358 (((-3 |#2| "failed") |#5|) 65)) (-3638 (((-3 (-638 |#5|) "failed") |#5|) 59)) (-3772 (((-3 (-2 (|:| |val| |#5|) (|:| -4196 (-561))) "failed") |#5|) 47)) (-1664 (((-3 (-638 |#5|) "failed") |#5|) 61)) (-3431 (((-3 (-2 (|:| |var| |#2|) (|:| -4196 (-561))) "failed") |#5|) 51)))
+(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1412 ((-638 |#2|) |#5|)) (-15 -1358 ((-3 |#2| "failed") |#5|)) (-15 -1620 ((-406 (-1162 |#5|)) |#5| |#2|)) (-15 -1401 (|#5| (-406 (-1162 |#5|)) |#2|)) (-15 -1620 ((-1162 |#5|) |#5| |#2| (-1162 |#5|))) (-15 -1664 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -3638 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -3431 ((-3 (-2 (|:| |var| |#2|) (|:| -4196 (-561))) "failed") |#5|)) (-15 -3772 ((-3 (-2 (|:| |val| |#5|) (|:| -4196 (-561))) "failed") |#5|))) (-787) (-844) (-1042) (-942 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4022 ($ |#4|)) (-15 -4030 (|#4| $)) (-15 -4045 (|#4| $))))) (T -943))
+((-3772 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4196 (-561)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))) (-3431 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4196 (-561)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))) (-3638 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))) (-1664 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))) (-1620 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))) (-4 *7 (-942 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-5 *1 (-943 *5 *4 *6 *7 *3)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1162 *2))) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *2 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))) (-5 *1 (-943 *5 *4 *6 *7 *2)) (-4 *7 (-942 *6 *5 *4)))) (-1620 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-406 (-1162 *3))) (-5 *1 (-943 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))) (-1358 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-942 *5 *4 *2)) (-4 *2 (-844)) (-5 *1 (-943 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *6)) (-15 -4030 (*6 $)) (-15 -4045 (*6 $))))))) (-1412 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *5)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))))
+(-10 -7 (-15 -1412 ((-638 |#2|) |#5|)) (-15 -1358 ((-3 |#2| "failed") |#5|)) (-15 -1620 ((-406 (-1162 |#5|)) |#5| |#2|)) (-15 -1401 (|#5| (-406 (-1162 |#5|)) |#2|)) (-15 -1620 ((-1162 |#5|) |#5| |#2| (-1162 |#5|))) (-15 -1664 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -3638 ((-3 (-638 |#5|) "failed") |#5|)) (-15 -3431 ((-3 (-2 (|:| |var| |#2|) (|:| -4196 (-561))) "failed") |#5|)) (-15 -3772 ((-3 (-2 (|:| |val| |#5|) (|:| -4196 (-561))) "failed") |#5|)))
+((-4120 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
+(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4120 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-787) (-844) (-1042) (-942 |#3| |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (T -944))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *6 (-787)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (-5 *1 (-944 *6 *7 *8 *5 *2)) (-4 *5 (-942 *8 *6 *7)))))
+(-10 -7 (-15 -4120 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1166)) $) 16)) (-1620 (((-1162 $) $ (-1166)) 21) (((-1162 |#1|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-1166))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 8) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1166) "failed") $) NIL)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1166) $) NIL)) (-3051 (($ $ $ (-1166)) NIL (|has| |#1| (-171)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-529 (-1166)) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1166) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1166) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1401 (($ (-1162 |#1|) (-1166)) NIL) (($ (-1162 $) (-1166)) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-1166)) NIL)) (-2393 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-638 (-765)) $ (-638 (-1166))) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-529 (-1166)) (-529 (-1166))) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (((-3 (-1166) "failed") $) 19)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-1166)) (|:| -4196 (-765))) "failed") $) NIL)) (-1842 (($ $ (-1166)) 29 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1166) |#1|) NIL) (($ $ (-638 (-1166)) (-638 |#1|)) NIL) (($ $ (-1166) $) NIL) (($ $ (-638 (-1166)) (-638 $)) NIL)) (-2553 (($ $ (-1166)) NIL (|has| |#1| (-171)))) (-3238 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-2894 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-638 (-765)) $ (-638 (-1166))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-1166) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1166) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1166) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) 25) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-1166)) 27) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-945 |#1|) (-13 (-942 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1166))) |%noBranch|))) (-1042)) (T -945))
+((-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-945 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))))
+(-13 (-942 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1166))) |%noBranch|)))
+((-2005 (((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) |#3| (-765)) 38)) (-1432 (((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) (-406 (-561)) (-765)) 34)) (-2595 (((-2 (|:| -4196 (-765)) (|:| -4188 |#4|) (|:| |radicand| (-638 |#4|))) |#4| (-765)) 54)) (-1518 (((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) |#5| (-765)) 64 (|has| |#3| (-450)))))
+(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2005 ((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -1432 ((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) (-406 (-561)) (-765))) (IF (|has| |#3| (-450)) (-15 -1518 ((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -2595 ((-2 (|:| -4196 (-765)) (|:| -4188 |#4|) (|:| |radicand| (-638 |#4|))) |#4| (-765)))) (-787) (-844) (-553) (-942 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4022 ($ |#4|)) (-15 -4030 (|#4| $)) (-15 -4045 (|#4| $))))) (T -946))
+((-2595 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553)) (-4 *3 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *3) (|:| |radicand| (-638 *3)))) (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4022 ($ *3)) (-15 -4030 (*3 $)) (-15 -4045 (*3 $))))))) (-1518 (*1 *2 *3 *4) (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *3) (|:| |radicand| *3))) (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4022 ($ *8)) (-15 -4030 (*8 $)) (-15 -4045 (*8 $))))))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-561))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *9) (|:| |radicand| *9))) (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765)) (-4 *9 (-13 (-362) (-10 -8 (-15 -4022 ($ *8)) (-15 -4030 (*8 $)) (-15 -4045 (*8 $))))))) (-2005 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-553)) (-4 *7 (-942 *3 *5 *6)) (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *8) (|:| |radicand| *8))) (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))))
+(-10 -7 (-15 -2005 ((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -1432 ((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) (-406 (-561)) (-765))) (IF (|has| |#3| (-450)) (-15 -1518 ((-2 (|:| -4196 (-765)) (|:| -4188 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -2595 ((-2 (|:| -4196 (-765)) (|:| -4188 |#4|) (|:| |radicand| (-638 |#4|))) |#4| (-765))))
+((-4011 (((-112) $ $) NIL)) (-3347 (($ (-1110)) 8)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 14) (((-1110) $) 11)) (-1733 (((-112) $ $) 10)))
+(((-947) (-13 (-1090) (-608 (-1110)) (-10 -8 (-15 -3347 ($ (-1110)))))) (T -947))
+((-3347 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947)))))
+(-13 (-1090) (-608 (-1110)) (-10 -8 (-15 -3347 ($ (-1110)))))
+((-2046 (((-1084 (-224)) $) 8)) (-4370 (((-1084 (-224)) $) 9)) (-3980 (((-638 (-638 (-936 (-224)))) $) 10)) (-4022 (((-856) $) 6)))
+(((-948) (-139)) (T -948))
+((-3980 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-638 (-638 (-936 (-224))))))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224))))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224))))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3980 ((-638 (-638 (-936 (-224)))) $)) (-15 -4370 ((-1084 (-224)) $)) (-15 -2046 ((-1084 (-224)) $))))
+(((-608 (-856)) . T))
+((-2747 (((-3 (-682 |#1|) "failed") |#2| (-914)) 15)))
+(((-949 |#1| |#2|) (-10 -7 (-15 -2747 ((-3 (-682 |#1|) "failed") |#2| (-914)))) (-553) (-649 |#1|)) (T -949))
+((-2747 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-914)) (-4 *5 (-553)) (-5 *2 (-682 *5)) (-5 *1 (-949 *5 *3)) (-4 *3 (-649 *5)))))
+(-10 -7 (-15 -2747 ((-3 (-682 |#1|) "failed") |#2| (-914))))
+((-3130 (((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 16)) (-3185 ((|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 18)) (-4120 (((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)) 13)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -3130 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4120 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)))) (-1205) (-1205)) (T -950))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-951 *6)) (-5 *1 (-950 *5 *6)))) (-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-950 *5 *2)))) (-3130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-951 *5)) (-5 *1 (-950 *6 *5)))))
+(-10 -7 (-15 -3130 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4120 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) |#1|) 16 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 15 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 13)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-1470 (($ (-765) |#1|) 12)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) 10 (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) 17 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) 11)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) 14) (($ $ (-1220 (-561))) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) NIL)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3498 (((-765) $) 8 (|has| $ (-6 -4390)))))
+(((-951 |#1|) (-19 |#1|) (-1205)) (T -951))
NIL
(-19 |#1|)
-((-3082 (($ $ (-1079 $)) 7) (($ $ (-1163)) 6)))
-(((-949) (-139)) (T -949))
-((-3082 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-949)))) (-3082 (*1 *1 *1 *2) (-12 (-4 *1 (-949)) (-5 *2 (-1163)))))
-(-13 (-10 -8 (-15 -3082 ($ $ (-1163))) (-15 -3082 ($ $ (-1079 $)))))
-((-3567 (((-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)) (-1163)) 25) (((-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163))) 26) (((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 |#1|))) (-942 |#1|) (-1163) (-942 |#1|) (-1163)) 43)))
-(((-950 |#1|) (-10 -7 (-15 -3567 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 |#1|))) (-942 |#1|) (-1163) (-942 |#1|) (-1163))) (-15 -3567 ((-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -3567 ((-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)) (-1163)))) (-13 (-362) (-146))) (T -950))
-((-3567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-5 *5 (-1163)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 *6))) (|:| |prim| (-1159 *6)))) (-5 *1 (-950 *6)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 *5))) (|:| |prim| (-1159 *5)))) (-5 *1 (-950 *5)))) (-3567 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-942 *5)) (-5 *4 (-1163)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 *5)))) (-5 *1 (-950 *5)))))
-(-10 -7 (-15 -3567 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1159 |#1|))) (-942 |#1|) (-1163) (-942 |#1|) (-1163))) (-15 -3567 ((-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)))) (-15 -3567 ((-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 |#1|))) (|:| |prim| (-1159 |#1|))) (-635 (-942 |#1|)) (-635 (-1163)) (-1163))))
-((-4309 (((-635 |#1|) |#1| |#1|) 42)) (-2992 (((-112) |#1|) 39)) (-4122 ((|#1| |#1|) 64)) (-4158 ((|#1| |#1|) 63)))
-(((-951 |#1|) (-10 -7 (-15 -2992 ((-112) |#1|)) (-15 -4158 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4309 ((-635 |#1|) |#1| |#1|))) (-543)) (T -951))
-((-4309 (*1 *2 *3 *3) (-12 (-5 *2 (-635 *3)) (-5 *1 (-951 *3)) (-4 *3 (-543)))) (-4122 (*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))) (-4158 (*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))) (-2992 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-543)))))
-(-10 -7 (-15 -2992 ((-112) |#1|)) (-15 -4158 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4309 ((-635 |#1|) |#1| |#1|)))
-((-3130 (((-1251) (-853)) 9)))
-(((-952) (-10 -7 (-15 -3130 ((-1251) (-853))))) (T -952))
-((-3130 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-952)))))
-(-10 -7 (-15 -3130 ((-1251) (-853))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 60 (|has| |#1| (-550)))) (-3244 (($ $) 61 (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 28)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3905 (($ $) 24)) (-3248 (((-3 $ "failed") $) 35)) (-3199 (($ $) NIL (|has| |#1| (-450)))) (-2704 (($ $ |#1| |#2| $) 47)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) 16)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| |#2|) NIL)) (-3672 ((|#2| $) 19)) (-2776 (($ (-1 |#2| |#2|) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3867 (($ $) 23)) (-3881 ((|#1| $) 21)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) 40)) (-3853 ((|#1| $) NIL)) (-3232 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-550))))) (-2861 (((-3 $ "failed") $ $) 73 (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-550)))) (-4263 ((|#2| $) 17)) (-3012 ((|#1| $) NIL (|has| |#1| (-450)))) (-3940 (((-853) $) NIL) (($ (-558)) 39) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 34) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ |#2|) 31)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) 15)) (-1664 (($ $ $ (-762)) 56 (|has| |#1| (-171)))) (-2671 (((-112) $ $) 66 (|has| |#1| (-550)))) (-2207 (($) 22 T CONST)) (-2220 (($) 12 T CONST)) (-1708 (((-112) $ $) 65)) (-1805 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) 53) (($ $ (-762)) 51)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-953 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| |#2| (-130)) (-15 -3232 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4381)) (-6 -4381) |%noBranch|))) (-1039) (-783)) (T -953))
-((-3232 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-953 *3 *2)) (-4 *2 (-130)) (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *2 (-783)))))
-(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| |#2| (-130)) (-15 -3232 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4381)) (-6 -4381) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-2707 (($ $ $) 63 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))) (-1868 (((-3 $ "failed") $ $) 50 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-2507 (((-762)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1625 ((|#2| $) 21)) (-3938 ((|#1| $) 20)) (-3457 (($) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))) CONST)) (-3248 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))) (-3692 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3999 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))) (-2142 (($ $ $) NIL (-3994 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-2281 (($ $ $) NIL (-3994 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1970 (($ |#1| |#2|) 19)) (-1486 (((-911) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 37 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2349 (($ (-911)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1688 (((-1107) $) NIL)) (-3068 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-3072 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-3940 (((-853) $) 14)) (-2207 (($) 40 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))) CONST)) (-2220 (($) 24 (-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-1757 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1737 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1708 (((-112) $ $) 18)) (-1749 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1728 (((-112) $ $) 66 (-3994 (-12 (|has| |#1| (-784)) (|has| |#2| (-784))) (-12 (|has| |#1| (-841)) (|has| |#2| (-841)))))) (-1805 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-1796 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1785 (($ $ $) 43 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (** (($ $ (-558)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-762)) 31 (-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))) (($ $ (-911)) NIL (-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))) (* (($ (-558) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-762) $) 46 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))) (($ (-911) $) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))) (($ $ $) 27 (-3994 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))))))
-(((-954 |#1| |#2|) (-13 (-1087) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-841)) (IF (|has| |#2| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (-15 -1970 ($ |#1| |#2|)) (-15 -3938 (|#1| $)) (-15 -1625 (|#2| $)))) (-1087) (-1087)) (T -954))
-((-1970 (*1 *1 *2 *3) (-12 (-5 *1 (-954 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-3938 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1087)))) (-1625 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-954 *3 *2)) (-4 *3 (-1087)))))
-(-13 (-1087) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-841)) (IF (|has| |#2| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (-15 -1970 ($ |#1| |#2|)) (-15 -3938 (|#1| $)) (-15 -1625 (|#2| $))))
-((-2426 (((-1091) $) 12)) (-3312 (($ (-1163) (-1091)) 13)) (-3179 (((-1163) $) 10)) (-3940 (((-853) $) 22)))
-(((-955) (-13 (-605 (-853)) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -2426 ((-1091) $)) (-15 -3312 ($ (-1163) (-1091)))))) (T -955))
-((-3179 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-955)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-955)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-955)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3179 ((-1163) $)) (-15 -2426 ((-1091) $)) (-15 -3312 ($ (-1163) (-1091)))))
-((-3929 (((-112) $ $) NIL)) (-4078 (((-1089 (-1163)) $) 19)) (-2266 (((-112) $) 26)) (-2317 (((-1163) $) 27)) (-3914 (((-112) $) 24)) (-3299 ((|#1| $) 25)) (-2031 (((-863 $ $) $) 34)) (-1707 (((-112) $) 33)) (-2168 (($ $ $) 12)) (-3950 (($ $) 29)) (-2213 (((-112) $) 28)) (-2143 (($ $) 10)) (-2510 (((-1145) $) NIL)) (-3288 (((-863 $ $) $) 36)) (-2970 (((-112) $) 35)) (-2334 (($ $ $) 13)) (-1688 (((-1107) $) NIL)) (-2346 (((-863 $ $) $) 38)) (-1463 (((-112) $) 37)) (-1741 (($ $ $) 14)) (-3940 (((-853) $) 40) (($ |#1|) 7) (($ (-1163)) 9)) (-2686 (((-863 $ $) $) 32)) (-3694 (((-112) $) 30)) (-2157 (($ $ $) 11)) (-1708 (((-112) $ $) NIL)))
-(((-956 |#1|) (-13 (-957) (-10 -8 (-15 -3940 ($ |#1|)) (-15 -3940 ($ (-1163))) (-15 -4078 ((-1089 (-1163)) $)) (-15 -3914 ((-112) $)) (-15 -3299 (|#1| $)) (-15 -2266 ((-112) $)) (-15 -2317 ((-1163) $)) (-15 -2213 ((-112) $)) (-15 -3950 ($ $)) (-15 -3694 ((-112) $)) (-15 -2686 ((-863 $ $) $)) (-15 -1707 ((-112) $)) (-15 -2031 ((-863 $ $) $)) (-15 -2970 ((-112) $)) (-15 -3288 ((-863 $ $) $)) (-15 -1463 ((-112) $)) (-15 -2346 ((-863 $ $) $)))) (-957)) (T -956))
-((-3940 (*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-1089 (-1163))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-3299 (*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-3950 (*1 *1 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))) (-2346 (*1 *2 *1) (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(-13 (-957) (-10 -8 (-15 -3940 ($ |#1|)) (-15 -3940 ($ (-1163))) (-15 -4078 ((-1089 (-1163)) $)) (-15 -3914 ((-112) $)) (-15 -3299 (|#1| $)) (-15 -2266 ((-112) $)) (-15 -2317 ((-1163) $)) (-15 -2213 ((-112) $)) (-15 -3950 ($ $)) (-15 -3694 ((-112) $)) (-15 -2686 ((-863 $ $) $)) (-15 -1707 ((-112) $)) (-15 -2031 ((-863 $ $) $)) (-15 -2970 ((-112) $)) (-15 -3288 ((-863 $ $) $)) (-15 -1463 ((-112) $)) (-15 -2346 ((-863 $ $) $))))
-((-3929 (((-112) $ $) 7)) (-2168 (($ $ $) 15)) (-2143 (($ $) 17)) (-2510 (((-1145) $) 9)) (-2334 (($ $ $) 14)) (-1688 (((-1107) $) 10)) (-1741 (($ $ $) 13)) (-3940 (((-853) $) 11)) (-2157 (($ $ $) 16)) (-1708 (((-112) $ $) 6)))
-(((-957) (-139)) (T -957))
-((-2143 (*1 *1 *1) (-4 *1 (-957))) (-2157 (*1 *1 *1 *1) (-4 *1 (-957))) (-2168 (*1 *1 *1 *1) (-4 *1 (-957))) (-2334 (*1 *1 *1 *1) (-4 *1 (-957))) (-1741 (*1 *1 *1 *1) (-4 *1 (-957))))
-(-13 (-1087) (-10 -8 (-15 -2143 ($ $)) (-15 -2157 ($ $ $)) (-15 -2168 ($ $ $)) (-15 -2334 ($ $ $)) (-15 -1741 ($ $ $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-3457 (($) 7 T CONST)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-4150 (($ $ $) 43)) (-3391 (($ $ $) 44)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2281 ((|#1| $) 45)) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-958 |#1|) (-139) (-841)) (T -958))
-((-2281 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))) (-4150 (*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4383) (-15 -2281 (|t#1| $)) (-15 -3391 ($ $ $)) (-15 -4150 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-1718 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1544 |#2|)) |#2| |#2|) 84)) (-2531 ((|#2| |#2| |#2|) 82)) (-1898 (((-2 (|:| |coef2| |#2|) (|:| -1544 |#2|)) |#2| |#2|) 86)) (-2580 (((-2 (|:| |coef1| |#2|) (|:| -1544 |#2|)) |#2| |#2|) 88)) (-3556 (((-2 (|:| |coef2| |#2|) (|:| -2162 |#1|)) |#2| |#2|) 106 (|has| |#1| (-450)))) (-1895 (((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|) 45)) (-2926 (((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|) 63)) (-1311 (((-2 (|:| |coef1| |#2|) (|:| -2862 |#1|)) |#2| |#2|) 65)) (-3996 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-1924 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 70)) (-1793 (((-2 (|:| |coef2| |#2|) (|:| -3789 |#1|)) |#2|) 96)) (-4330 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 73)) (-4258 (((-635 (-762)) |#2| |#2|) 81)) (-3115 ((|#1| |#2| |#2|) 41)) (-2081 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2162 |#1|)) |#2| |#2|) 104 (|has| |#1| (-450)))) (-2162 ((|#1| |#2| |#2|) 102 (|has| |#1| (-450)))) (-2421 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|) 43)) (-1950 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|) 62)) (-2862 ((|#1| |#2| |#2|) 60)) (-3343 (((-2 (|:| -3455 |#1|) (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2|) 34)) (-2075 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-2419 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-4069 ((|#2| |#2| |#2|) 74)) (-3906 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 68)) (-4278 ((|#2| |#2| |#2| (-762)) 66)) (-1544 ((|#2| |#2| |#2|) 110 (|has| |#1| (-450)))) (-2861 (((-1246 |#2|) (-1246 |#2|) |#1|) 21)) (-3902 (((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2|) 38)) (-3834 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3789 |#1|)) |#2|) 94)) (-3789 ((|#1| |#2|) 91)) (-3388 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762)) 72)) (-2258 ((|#2| |#2| |#2| (-762)) 71)) (-2560 (((-635 |#2|) |#2| |#2|) 79)) (-3095 ((|#2| |#2| |#1| |#1| (-762)) 49)) (-1419 ((|#1| |#1| |#1| (-762)) 48)) (* (((-1246 |#2|) |#1| (-1246 |#2|)) 16)))
-(((-959 |#1| |#2|) (-10 -7 (-15 -2862 (|#1| |#2| |#2|)) (-15 -1950 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -2926 ((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -1311 ((-2 (|:| |coef1| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -4278 (|#2| |#2| |#2| (-762))) (-15 -3906 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1924 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -2258 (|#2| |#2| |#2| (-762))) (-15 -3388 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -4330 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -4069 (|#2| |#2| |#2|)) (-15 -2419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3996 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2531 (|#2| |#2| |#2|)) (-15 -1718 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1544 |#2|)) |#2| |#2|)) (-15 -1898 ((-2 (|:| |coef2| |#2|) (|:| -1544 |#2|)) |#2| |#2|)) (-15 -2580 ((-2 (|:| |coef1| |#2|) (|:| -1544 |#2|)) |#2| |#2|)) (-15 -3789 (|#1| |#2|)) (-15 -3834 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3789 |#1|)) |#2|)) (-15 -1793 ((-2 (|:| |coef2| |#2|) (|:| -3789 |#1|)) |#2|)) (-15 -2560 ((-635 |#2|) |#2| |#2|)) (-15 -4258 ((-635 (-762)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -2162 (|#1| |#2| |#2|)) (-15 -2081 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2162 |#1|)) |#2| |#2|)) (-15 -3556 ((-2 (|:| |coef2| |#2|) (|:| -2162 |#1|)) |#2| |#2|)) (-15 -1544 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1246 |#2|) |#1| (-1246 |#2|))) (-15 -2861 ((-1246 |#2|) (-1246 |#2|) |#1|)) (-15 -3343 ((-2 (|:| -3455 |#1|) (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2|)) (-15 -3902 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2|)) (-15 -1419 (|#1| |#1| |#1| (-762))) (-15 -3095 (|#2| |#2| |#1| |#1| (-762))) (-15 -2075 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3115 (|#1| |#2| |#2|)) (-15 -2421 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -1895 ((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|))) (-550) (-1222 |#1|)) (T -959))
-((-1895 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2862 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2421 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2862 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3115 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))) (-2075 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-3095 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-1419 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *2 (-550)) (-5 *1 (-959 *2 *4)) (-4 *4 (-1222 *2)))) (-3902 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3343 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -3455 *4) (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2861 (*1 *2 *2 *3) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550)) (-5 *1 (-959 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550)) (-5 *1 (-959 *3 *4)))) (-1544 (*1 *2 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2162 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2081 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2162 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2162 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-4 *2 (-450)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))) (-4258 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-762))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2560 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3789 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3789 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-3789 (*1 *2 *3) (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))) (-2580 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1544 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1898 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1544 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1544 *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2531 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-3996 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-4069 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))) (-4330 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-3388 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-2258 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2)) (-4 *2 (-1222 *4)))) (-1924 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-3906 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))) (-4278 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2)) (-4 *2 (-1222 *4)))) (-1311 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2862 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2926 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2862 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-1950 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2862 *4))) (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))))
-(-10 -7 (-15 -2862 (|#1| |#2| |#2|)) (-15 -1950 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -2926 ((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -1311 ((-2 (|:| |coef1| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -4278 (|#2| |#2| |#2| (-762))) (-15 -3906 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -1924 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -2258 (|#2| |#2| |#2| (-762))) (-15 -3388 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -4330 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-762))) (-15 -4069 (|#2| |#2| |#2|)) (-15 -2419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3996 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2531 (|#2| |#2| |#2|)) (-15 -1718 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1544 |#2|)) |#2| |#2|)) (-15 -1898 ((-2 (|:| |coef2| |#2|) (|:| -1544 |#2|)) |#2| |#2|)) (-15 -2580 ((-2 (|:| |coef1| |#2|) (|:| -1544 |#2|)) |#2| |#2|)) (-15 -3789 (|#1| |#2|)) (-15 -3834 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3789 |#1|)) |#2|)) (-15 -1793 ((-2 (|:| |coef2| |#2|) (|:| -3789 |#1|)) |#2|)) (-15 -2560 ((-635 |#2|) |#2| |#2|)) (-15 -4258 ((-635 (-762)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -2162 (|#1| |#2| |#2|)) (-15 -2081 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2162 |#1|)) |#2| |#2|)) (-15 -3556 ((-2 (|:| |coef2| |#2|) (|:| -2162 |#1|)) |#2| |#2|)) (-15 -1544 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1246 |#2|) |#1| (-1246 |#2|))) (-15 -2861 ((-1246 |#2|) (-1246 |#2|) |#1|)) (-15 -3343 ((-2 (|:| -3455 |#1|) (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2|)) (-15 -3902 ((-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) |#2| |#2|)) (-15 -1419 (|#1| |#1| |#1| (-762))) (-15 -3095 (|#2| |#2| |#1| |#1| (-762))) (-15 -2075 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3115 (|#1| |#2| |#2|)) (-15 -2421 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)) (-15 -1895 ((-2 (|:| |coef2| |#2|) (|:| -2862 |#1|)) |#2| |#2|)))
-((-3929 (((-112) $ $) NIL)) (-3967 (((-1199) $) 13)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1660 (((-1122) $) 10)) (-3940 (((-853) $) 22) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-960) (-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3967 ((-1199) $))))) (T -960))
-((-1660 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-960)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-960)))))
-(-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3967 ((-1199) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) 26)) (-3457 (($) NIL T CONST)) (-3219 (((-635 (-635 (-558))) (-635 (-558))) 28)) (-1979 (((-558) $) 44)) (-1928 (($ (-635 (-558))) 17)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3441 (((-635 (-558)) $) 12)) (-3068 (($ $) 31)) (-3940 (((-853) $) 42) (((-635 (-558)) $) 10)) (-2207 (($) 7 T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 19)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 18)) (-1785 (($ $ $) 20)) (* (($ (-911) $) NIL) (($ (-762) $) 24)))
-(((-961) (-13 (-786) (-606 (-635 (-558))) (-605 (-635 (-558))) (-10 -8 (-15 -1928 ($ (-635 (-558)))) (-15 -3219 ((-635 (-635 (-558))) (-635 (-558)))) (-15 -1979 ((-558) $)) (-15 -3068 ($ $))))) (T -961))
-((-1928 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-961)))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-635 (-635 (-558)))) (-5 *1 (-961)) (-5 *3 (-635 (-558))))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-961)))) (-3068 (*1 *1 *1) (-5 *1 (-961))))
-(-13 (-786) (-606 (-635 (-558))) (-605 (-635 (-558))) (-10 -8 (-15 -1928 ($ (-635 (-558)))) (-15 -3219 ((-635 (-635 (-558))) (-635 (-558)))) (-15 -1979 ((-558) $)) (-15 -3068 ($ $))))
-((-1805 (($ $ |#2|) 30)) (-1796 (($ $) 22) (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-558)) $) 26) (($ $ (-406 (-558))) 28)))
-(((-962 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -1805 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|))) (-963 |#2| |#3| |#4|) (-1039) (-783) (-841)) (T -962))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-406 (-558)))) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 -1805 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 * (|#1| (-911) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 |#3|) $) 77)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3459 (((-112) $) 76)) (-3999 (((-112) $) 31)) (-3594 (((-112) $) 65)) (-4056 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-635 |#3|) (-635 |#2|)) 78)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-4263 ((|#2| $) 67)) (-1559 (($ $) 75)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3143 ((|#1| $ |#2|) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-963 |#1| |#2| |#3|) (-139) (-1039) (-783) (-841)) (T -963))
-((-3881 (*1 *2 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *3 (-783)) (-4 *4 (-841)) (-4 *2 (-1039)))) (-3867 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *4 (-841)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *2 *4)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *2 (-783)))) (-4056 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-963 *4 *3 *2)) (-4 *4 (-1039)) (-4 *3 (-783)) (-4 *2 (-841)))) (-4056 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-783)) (-4 *6 (-841)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783)) (-4 *5 (-841)) (-5 *2 (-635 *5)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783)) (-4 *5 (-841)) (-5 *2 (-112)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783)) (-4 *4 (-841)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4056 ($ $ |t#3| |t#2|)) (-15 -4056 ($ $ (-635 |t#3|) (-635 |t#2|))) (-15 -3867 ($ $)) (-15 -3881 (|t#1| $)) (-15 -4263 (|t#2| $)) (-15 -4078 ((-635 |t#3|) $)) (-15 -3459 ((-112) $)) (-15 -1559 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-289) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3665 (((-1081 (-224)) $) 8)) (-3654 (((-1081 (-224)) $) 9)) (-3643 (((-1081 (-224)) $) 10)) (-3305 (((-635 (-635 (-933 (-224)))) $) 11)) (-3940 (((-853) $) 6)))
-(((-964) (-139)) (T -964))
-((-3305 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-635 (-635 (-933 (-224))))))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3305 ((-635 (-635 (-933 (-224)))) $)) (-15 -3643 ((-1081 (-224)) $)) (-15 -3654 ((-1081 (-224)) $)) (-15 -3665 ((-1081 (-224)) $))))
-(((-605 (-853)) . T))
-((-4078 (((-635 |#4|) $) 23)) (-3369 (((-112) $) 47)) (-1852 (((-112) $) 46)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#4|) 35)) (-3614 (((-112) $) 48)) (-1293 (((-112) $ $) 54)) (-2211 (((-112) $ $) 57)) (-3554 (((-112) $) 52)) (-1542 (((-635 |#5|) (-635 |#5|) $) 89)) (-4256 (((-635 |#5|) (-635 |#5|) $) 86)) (-1548 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-2327 (((-635 |#4|) $) 27)) (-3541 (((-112) |#4| $) 29)) (-1659 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3121 (($ $ |#4|) 32)) (-2402 (($ $ |#4|) 31)) (-3294 (($ $ |#4|) 33)) (-1708 (((-112) $ $) 39)))
-(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1852 ((-112) |#1|)) (-15 -1542 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -4256 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -1548 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1659 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3614 ((-112) |#1|)) (-15 -2211 ((-112) |#1| |#1|)) (-15 -1293 ((-112) |#1| |#1|)) (-15 -3554 ((-112) |#1|)) (-15 -3369 ((-112) |#1|)) (-15 -3648 ((-2 (|:| |under| |#1|) (|:| -4259 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3121 (|#1| |#1| |#4|)) (-15 -3294 (|#1| |#1| |#4|)) (-15 -2402 (|#1| |#1| |#4|)) (-15 -3541 ((-112) |#4| |#1|)) (-15 -2327 ((-635 |#4|) |#1|)) (-15 -4078 ((-635 |#4|) |#1|)) (-15 -1708 ((-112) |#1| |#1|))) (-966 |#2| |#3| |#4| |#5|) (-1039) (-784) (-841) (-1053 |#2| |#3| |#4|)) (T -965))
-NIL
-(-10 -8 (-15 -1852 ((-112) |#1|)) (-15 -1542 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -4256 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -1548 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1659 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3614 ((-112) |#1|)) (-15 -2211 ((-112) |#1| |#1|)) (-15 -1293 ((-112) |#1| |#1|)) (-15 -3554 ((-112) |#1|)) (-15 -3369 ((-112) |#1|)) (-15 -3648 ((-2 (|:| |under| |#1|) (|:| -4259 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3121 (|#1| |#1| |#4|)) (-15 -3294 (|#1| |#1| |#4|)) (-15 -2402 (|#1| |#1| |#4|)) (-15 -3541 ((-112) |#4| |#1|)) (-15 -2327 ((-635 |#4|) |#1|)) (-15 -4078 ((-635 |#4|) |#1|)) (-15 -1708 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-4078 (((-635 |#3|) $) 33)) (-3369 (((-112) $) 26)) (-1852 (((-112) $) 17 (|has| |#1| (-550)))) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) 27)) (-3651 (((-112) $ (-762)) 44)) (-2072 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4383)))) (-3457 (($) 45 T CONST)) (-3614 (((-112) $) 22 (|has| |#1| (-550)))) (-1293 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2211 (((-112) $ $) 23 (|has| |#1| (-550)))) (-3554 (((-112) $) 25 (|has| |#1| (-550)))) (-1542 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) 36)) (-3226 (($ (-635 |#4|)) 35)) (-3188 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4383)))) (-2917 (((-635 |#4|) $) 52 (|has| $ (-6 -4383)))) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) 43)) (-3486 (((-635 |#4|) $) 53 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 47)) (-2327 (((-635 |#3|) $) 32)) (-3541 (((-112) |#3| $) 31)) (-3212 (((-112) $ (-762)) 42)) (-2510 (((-1145) $) 9)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-1688 (((-1107) $) 10)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3314 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) 38)) (-3711 (((-112) $) 41)) (-2876 (($) 40)) (-1698 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4383)))) (-4098 (($ $) 39)) (-3441 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 60)) (-3121 (($ $ |#3|) 28)) (-2402 (($ $ |#3|) 30)) (-3294 (($ $ |#3|) 29)) (-3940 (((-853) $) 11) (((-635 |#4|) $) 37)) (-2831 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 6)) (-1596 (((-762) $) 46 (|has| $ (-6 -4383)))))
-(((-966 |#1| |#2| |#3| |#4|) (-139) (-1039) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -966))
-((-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *1 (-966 *3 *4 *5 *6)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *1 (-966 *3 *4 *5 *6)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-1053 *3 *4 *2)) (-4 *2 (-841)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))) (-3541 (*1 *2 *3 *1) (-12 (-4 *1 (-966 *4 *5 *3 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112)))) (-2402 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))) (-3294 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))) (-3121 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))) (-3648 (*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4259 *1) (|:| |upper| *1))) (-4 *1 (-966 *4 *5 *3 *6)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1293 (*1 *2 *1 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-2211 (*1 *2 *1 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1659 (*1 *2 *3 *1) (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1548 (*1 *2 *3 *1) (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4256 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)))) (-1542 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)))) (-1852 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-112)))))
-(-13 (-1087) (-150 |t#4|) (-605 (-635 |t#4|)) (-10 -8 (-6 -4383) (-15 -3302 ((-3 $ "failed") (-635 |t#4|))) (-15 -3226 ($ (-635 |t#4|))) (-15 -4346 (|t#3| $)) (-15 -4078 ((-635 |t#3|) $)) (-15 -2327 ((-635 |t#3|) $)) (-15 -3541 ((-112) |t#3| $)) (-15 -2402 ($ $ |t#3|)) (-15 -3294 ($ $ |t#3|)) (-15 -3121 ($ $ |t#3|)) (-15 -3648 ((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |t#3|)) (-15 -3369 ((-112) $)) (IF (|has| |t#1| (-550)) (PROGN (-15 -3554 ((-112) $)) (-15 -1293 ((-112) $ $)) (-15 -2211 ((-112) $ $)) (-15 -3614 ((-112) $)) (-15 -1659 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1548 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4256 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -1542 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -1852 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-1087) . T) ((-1200) . T))
-((-1965 (((-635 |#4|) |#4| |#4|) 117)) (-3993 (((-635 |#4|) (-635 |#4|) (-112)) 106 (|has| |#1| (-450))) (((-635 |#4|) (-635 |#4|)) 107 (|has| |#1| (-450)))) (-2590 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 34)) (-1504 (((-112) |#4|) 33)) (-2886 (((-635 |#4|) |#4|) 102 (|has| |#1| (-450)))) (-3656 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|)) 19)) (-2478 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 21)) (-3471 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 22)) (-4075 (((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|)) 72)) (-3340 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-4015 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-1280 (((-635 |#4|) (-635 |#4|)) 109)) (-1871 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112)) 47) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 49)) (-1522 ((|#4| |#4| (-635 |#4|)) 48)) (-3542 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 113 (|has| |#1| (-450)))) (-1744 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 116 (|has| |#1| (-450)))) (-3361 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 115 (|has| |#1| (-450)))) (-2529 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|))) 86) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 88) (((-635 |#4|) (-635 |#4|) |#4|) 120) (((-635 |#4|) |#4| |#4|) 118) (((-635 |#4|) (-635 |#4|)) 87)) (-1807 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-2827 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 40)) (-3985 (((-112) (-635 |#4|)) 61)) (-4109 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 52)) (-1689 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 28)) (-3612 (((-112) |#4|) 27)) (-2634 (((-635 |#4|) (-635 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-1986 (((-635 |#4|) (-635 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-1915 (((-635 |#4|) (-635 |#4|)) 65)) (-2578 (((-635 |#4|) (-635 |#4|)) 78)) (-4303 (((-112) (-635 |#4|) (-635 |#4|)) 50)) (-2482 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 38)) (-3521 (((-112) |#4|) 35)))
-(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2529 ((-635 |#4|) (-635 |#4|))) (-15 -2529 ((-635 |#4|) |#4| |#4|)) (-15 -1280 ((-635 |#4|) (-635 |#4|))) (-15 -1965 ((-635 |#4|) |#4| |#4|)) (-15 -2529 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -2529 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -2529 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -4303 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4109 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3985 ((-112) (-635 |#4|))) (-15 -3656 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -2478 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3471 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -2827 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -1504 ((-112) |#4|)) (-15 -2590 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3612 ((-112) |#4|)) (-15 -1689 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3521 ((-112) |#4|)) (-15 -2482 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -1871 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -1871 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -1522 (|#4| |#4| (-635 |#4|))) (-15 -1915 ((-635 |#4|) (-635 |#4|))) (-15 -4075 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -2578 ((-635 |#4|) (-635 |#4|))) (-15 -3340 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4015 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -2886 ((-635 |#4|) |#4|)) (-15 -3993 ((-635 |#4|) (-635 |#4|))) (-15 -3993 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -3542 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3361 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -1744 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -1986 ((-635 |#4|) (-635 |#4|))) (-15 -2634 ((-635 |#4|) (-635 |#4|))) (-15 -1807 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|)) (-550) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -967))
-((-1807 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-2634 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-3361 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-3542 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-3993 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-2886 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4015 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-967 *5 *6 *7 *8)))) (-3340 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *1 (-967 *6 *7 *8 *9)))) (-2578 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-4075 (*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -1999 (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-1915 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-1522 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *2)))) (-1871 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))) (-1871 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3521 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-1689 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3612 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-2590 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *7)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *5 *6 *7 *8)))) (-4303 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *4 *5 *6 *7)))) (-2529 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))) (-2529 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-2529 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *3)))) (-1965 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-1280 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))) (-2529 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2529 ((-635 |#4|) (-635 |#4|))) (-15 -2529 ((-635 |#4|) |#4| |#4|)) (-15 -1280 ((-635 |#4|) (-635 |#4|))) (-15 -1965 ((-635 |#4|) |#4| |#4|)) (-15 -2529 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -2529 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -2529 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -4303 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4109 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3985 ((-112) (-635 |#4|))) (-15 -3656 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -2478 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3471 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -2827 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -1504 ((-112) |#4|)) (-15 -2590 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3612 ((-112) |#4|)) (-15 -1689 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3521 ((-112) |#4|)) (-15 -2482 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -1871 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -1871 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -1522 (|#4| |#4| (-635 |#4|))) (-15 -1915 ((-635 |#4|) (-635 |#4|))) (-15 -4075 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -2578 ((-635 |#4|) (-635 |#4|))) (-15 -3340 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4015 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -2886 ((-635 |#4|) |#4|)) (-15 -3993 ((-635 |#4|) (-635 |#4|))) (-15 -3993 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -3542 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3361 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -1744 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -1986 ((-635 |#4|) (-635 |#4|))) (-15 -2634 ((-635 |#4|) (-635 |#4|))) (-15 -1807 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|))
-((-3957 (((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3723 (((-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|)) 35)) (-2243 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-968 |#1|) (-10 -7 (-15 -3957 ((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2243 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3723 ((-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|)))) (-362)) (T -968))
-((-3723 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5))))) (-5 *1 (-968 *5)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)))) (-2243 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-679 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-968 *5)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-679 *6)) (|:| A (-679 *6)) (|:| |Ainv| (-679 *6)))) (-5 *1 (-968 *6)) (-5 *3 (-679 *6)))))
-(-10 -7 (-15 -3957 ((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2243 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3723 ((-635 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1246 |#1|)))) (-679 |#1|) (-1246 |#1|))))
-((-4110 (((-417 |#4|) |#4|) 48)))
-(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4110 ((-417 |#4|) |#4|))) (-841) (-784) (-450) (-939 |#3| |#2| |#1|)) (T -969))
-((-4110 (*1 *2 *3) (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-450)) (-5 *2 (-417 *3)) (-5 *1 (-969 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
-(-10 -7 (-15 -4110 ((-417 |#4|) |#4|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-4237 (($ (-762)) 112 (|has| |#1| (-23)))) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4384))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4384))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-2240 (($ $) 90 (|has| $ (-6 -4384)))) (-1911 (($ $) 100)) (-3188 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 51)) (-4145 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-2064 (($ (-635 |#1|)) 118)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-3335 (((-679 |#1|) $ $) 105 (|has| |#1| (-1039)))) (-1395 (($ (-762) |#1|) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-2142 (($ $ $) 87 (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-2281 (($ $ $) 86 (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3408 ((|#1| $) 102 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-3212 (((-112) $ (-762)) 10)) (-2958 ((|#1| $) 103 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 42 (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2830 (($ $ |#1|) 41 (|has| $ (-6 -4384)))) (-2319 (($ $ (-635 |#1|)) 116)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-2823 ((|#1| $ $) 106 (|has| |#1| (-1039)))) (-2887 (((-911) $) 117)) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-3116 (($ $ $) 104)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2834 (($ $ $ (-558)) 91 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| |#1| (-606 (-534)))) (($ (-635 |#1|)) 119)) (-3952 (($ (-635 |#1|)) 70)) (-2683 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 82 (|has| |#1| (-841)))) (-1796 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1785 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-558) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-717))) (($ $ |#1|) 107 (|has| |#1| (-717)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-970 |#1|) (-139) (-1039)) (T -970))
-((-2064 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-970 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-970 *3)) (-4 *3 (-1039)) (-5 *2 (-911)))) (-3116 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-1039)))) (-2319 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-970 *3)) (-4 *3 (-1039)))))
-(-13 (-1244 |t#1|) (-610 (-635 |t#1|)) (-10 -8 (-15 -2064 ($ (-635 |t#1|))) (-15 -2887 ((-911) $)) (-15 -3116 ($ $ $)) (-15 -2319 ($ $ (-635 |t#1|)))))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-610 (-635 |#1|)) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-19 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T) ((-1244 |#1|) . T))
-((-3397 (((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|)) 17)))
-(((-971 |#1| |#2|) (-10 -7 (-15 -3397 ((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|)))) (-1039) (-1039)) (T -971))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-933 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-933 *6)) (-5 *1 (-971 *5 *6)))))
-(-10 -7 (-15 -3397 ((-933 |#2|) (-1 |#2| |#1|) (-933 |#1|))))
-((-1971 ((|#1| (-933 |#1|)) 13)) (-4214 ((|#1| (-933 |#1|)) 12)) (-2742 ((|#1| (-933 |#1|)) 11)) (-3678 ((|#1| (-933 |#1|)) 15)) (-4026 ((|#1| (-933 |#1|)) 21)) (-4129 ((|#1| (-933 |#1|)) 14)) (-3197 ((|#1| (-933 |#1|)) 16)) (-2433 ((|#1| (-933 |#1|)) 20)) (-2322 ((|#1| (-933 |#1|)) 19)))
-(((-972 |#1|) (-10 -7 (-15 -2742 (|#1| (-933 |#1|))) (-15 -4214 (|#1| (-933 |#1|))) (-15 -1971 (|#1| (-933 |#1|))) (-15 -4129 (|#1| (-933 |#1|))) (-15 -3678 (|#1| (-933 |#1|))) (-15 -3197 (|#1| (-933 |#1|))) (-15 -2322 (|#1| (-933 |#1|))) (-15 -2433 (|#1| (-933 |#1|))) (-15 -4026 (|#1| (-933 |#1|)))) (-1039)) (T -972))
-((-4026 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(-10 -7 (-15 -2742 (|#1| (-933 |#1|))) (-15 -4214 (|#1| (-933 |#1|))) (-15 -1971 (|#1| (-933 |#1|))) (-15 -4129 (|#1| (-933 |#1|))) (-15 -3678 (|#1| (-933 |#1|))) (-15 -3197 (|#1| (-933 |#1|))) (-15 -2322 (|#1| (-933 |#1|))) (-15 -2433 (|#1| (-933 |#1|))) (-15 -4026 (|#1| (-933 |#1|))))
-((-3707 (((-3 |#1| "failed") |#1|) 18)) (-2002 (((-3 |#1| "failed") |#1|) 6)) (-4035 (((-3 |#1| "failed") |#1|) 16)) (-2955 (((-3 |#1| "failed") |#1|) 4)) (-4027 (((-3 |#1| "failed") |#1|) 20)) (-3292 (((-3 |#1| "failed") |#1|) 8)) (-2255 (((-3 |#1| "failed") |#1| (-762)) 1)) (-3131 (((-3 |#1| "failed") |#1|) 3)) (-4124 (((-3 |#1| "failed") |#1|) 2)) (-1935 (((-3 |#1| "failed") |#1|) 21)) (-1701 (((-3 |#1| "failed") |#1|) 9)) (-3717 (((-3 |#1| "failed") |#1|) 19)) (-4163 (((-3 |#1| "failed") |#1|) 7)) (-2342 (((-3 |#1| "failed") |#1|) 17)) (-2646 (((-3 |#1| "failed") |#1|) 5)) (-2716 (((-3 |#1| "failed") |#1|) 24)) (-3790 (((-3 |#1| "failed") |#1|) 12)) (-4130 (((-3 |#1| "failed") |#1|) 22)) (-1993 (((-3 |#1| "failed") |#1|) 10)) (-3559 (((-3 |#1| "failed") |#1|) 26)) (-1808 (((-3 |#1| "failed") |#1|) 14)) (-3141 (((-3 |#1| "failed") |#1|) 27)) (-1330 (((-3 |#1| "failed") |#1|) 15)) (-3795 (((-3 |#1| "failed") |#1|) 25)) (-1449 (((-3 |#1| "failed") |#1|) 13)) (-1588 (((-3 |#1| "failed") |#1|) 23)) (-3475 (((-3 |#1| "failed") |#1|) 11)))
-(((-973 |#1|) (-139) (-1185)) (T -973))
-((-3141 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3559 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3795 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-2716 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1588 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-4130 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1935 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-4027 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3717 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3707 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-2342 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-4035 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1330 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1808 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1449 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3790 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3475 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1993 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-1701 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-4163 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-2002 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-2646 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-2955 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-3131 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-4124 (*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))) (-2255 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-762)) (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(-13 (-10 -7 (-15 -2255 ((-3 |t#1| "failed") |t#1| (-762))) (-15 -4124 ((-3 |t#1| "failed") |t#1|)) (-15 -3131 ((-3 |t#1| "failed") |t#1|)) (-15 -2955 ((-3 |t#1| "failed") |t#1|)) (-15 -2646 ((-3 |t#1| "failed") |t#1|)) (-15 -2002 ((-3 |t#1| "failed") |t#1|)) (-15 -4163 ((-3 |t#1| "failed") |t#1|)) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -1701 ((-3 |t#1| "failed") |t#1|)) (-15 -1993 ((-3 |t#1| "failed") |t#1|)) (-15 -3475 ((-3 |t#1| "failed") |t#1|)) (-15 -3790 ((-3 |t#1| "failed") |t#1|)) (-15 -1449 ((-3 |t#1| "failed") |t#1|)) (-15 -1808 ((-3 |t#1| "failed") |t#1|)) (-15 -1330 ((-3 |t#1| "failed") |t#1|)) (-15 -4035 ((-3 |t#1| "failed") |t#1|)) (-15 -2342 ((-3 |t#1| "failed") |t#1|)) (-15 -3707 ((-3 |t#1| "failed") |t#1|)) (-15 -3717 ((-3 |t#1| "failed") |t#1|)) (-15 -4027 ((-3 |t#1| "failed") |t#1|)) (-15 -1935 ((-3 |t#1| "failed") |t#1|)) (-15 -4130 ((-3 |t#1| "failed") |t#1|)) (-15 -1588 ((-3 |t#1| "failed") |t#1|)) (-15 -2716 ((-3 |t#1| "failed") |t#1|)) (-15 -3795 ((-3 |t#1| "failed") |t#1|)) (-15 -3559 ((-3 |t#1| "failed") |t#1|)) (-15 -3141 ((-3 |t#1| "failed") |t#1|))))
-((-2130 ((|#4| |#4| (-635 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3946 ((|#4| |#4| (-635 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3397 ((|#4| (-1 |#4| (-942 |#1|)) |#4|) 30)))
-(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3946 (|#4| |#4| |#3|)) (-15 -3946 (|#4| |#4| (-635 |#3|))) (-15 -2130 (|#4| |#4| |#3|)) (-15 -2130 (|#4| |#4| (-635 |#3|))) (-15 -3397 (|#4| (-1 |#4| (-942 |#1|)) |#4|))) (-1039) (-784) (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163))))) (-939 (-942 |#1|) |#2| |#3|)) (T -974))
-((-3397 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-942 *4))) (-4 *4 (-1039)) (-4 *2 (-939 (-942 *4) *5 *6)) (-4 *5 (-784)) (-4 *6 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163)))))) (-5 *1 (-974 *4 *5 *6 *2)))) (-2130 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163)))))) (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2)) (-4 *2 (-939 (-942 *4) *5 *6)))) (-2130 (*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163)))))) (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163)))))) (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2)) (-4 *2 (-939 (-942 *4) *5 *6)))) (-3946 (*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)) (-15 -2317 ((-3 $ "failed") (-1163)))))) (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3)))))
-(-10 -7 (-15 -3946 (|#4| |#4| |#3|)) (-15 -3946 (|#4| |#4| (-635 |#3|))) (-15 -2130 (|#4| |#4| |#3|)) (-15 -2130 (|#4| |#4| (-635 |#3|))) (-15 -3397 (|#4| (-1 |#4| (-942 |#1|)) |#4|)))
-((-2766 ((|#2| |#3|) 35)) (-2767 (((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|) 73)) (-2999 (((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) 89)))
-(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2999 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2767 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)) (-15 -2766 (|#2| |#3|))) (-348) (-1222 |#1|) (-1222 |#2|) (-715 |#2| |#3|)) (T -975))
-((-2766 (*1 *2 *3) (-12 (-4 *3 (-1222 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-975 *4 *2 *3 *5)) (-4 *4 (-348)) (-4 *5 (-715 *2 *3)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3)) (-5 *2 (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-975 *4 *3 *5 *6)) (-4 *6 (-715 *3 *5)))) (-2999 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -2743 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-975 *3 *4 *5 *6)) (-4 *6 (-715 *4 *5)))))
-(-10 -7 (-15 -2999 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2767 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)) (-15 -2766 (|#2| |#3|)))
-((-4208 (((-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))) (-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558))))) 68)))
-(((-976 |#1| |#2|) (-10 -7 (-15 -4208 ((-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))) (-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558))))))) (-635 (-1163)) (-762)) (T -976))
-((-4208 (*1 *2 *2) (-12 (-5 *2 (-977 (-406 (-558)) (-855 *3) (-239 *4 (-762)) (-246 *3 (-406 (-558))))) (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-976 *3 *4)))))
-(-10 -7 (-15 -4208 ((-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))) (-977 (-406 (-558)) (-855 |#1|) (-239 |#2| (-762)) (-246 |#1| (-406 (-558)))))))
-((-3929 (((-112) $ $) NIL)) (-1455 (((-3 (-112) "failed") $) 69)) (-3395 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3813 (($ $ (-3 (-112) "failed")) 70)) (-3896 (($ (-635 |#4|) |#4|) 25)) (-2510 (((-1145) $) NIL)) (-1533 (($ $) 67)) (-1688 (((-1107) $) NIL)) (-3711 (((-112) $) 68)) (-2876 (($) 30)) (-1672 ((|#4| $) 72)) (-1434 (((-635 |#4|) $) 71)) (-3940 (((-853) $) 66)) (-1708 (((-112) $ $) NIL)))
-(((-977 |#1| |#2| |#3| |#4|) (-13 (-1087) (-605 (-853)) (-10 -8 (-15 -2876 ($)) (-15 -3896 ($ (-635 |#4|) |#4|)) (-15 -1455 ((-3 (-112) "failed") $)) (-15 -3813 ($ $ (-3 (-112) "failed"))) (-15 -3711 ((-112) $)) (-15 -1434 ((-635 |#4|) $)) (-15 -1672 (|#4| $)) (-15 -1533 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3395 ($ $)) |%noBranch|) |%noBranch|))) (-450) (-841) (-784) (-939 |#1| |#3| |#2|)) (T -977))
-((-2876 (*1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))) (-3896 (*1 *1 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-939 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-841)) (-4 *6 (-784)) (-5 *1 (-977 *4 *5 *6 *3)))) (-1455 (*1 *2 *1) (|partial| -12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-3711 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-1434 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-635 *6)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))) (-1672 (*1 *2 *1) (-12 (-4 *2 (-939 *3 *5 *4)) (-5 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)))) (-1533 (*1 *1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))) (-3395 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))))
-(-13 (-1087) (-605 (-853)) (-10 -8 (-15 -2876 ($)) (-15 -3896 ($ (-635 |#4|) |#4|)) (-15 -1455 ((-3 (-112) "failed") $)) (-15 -3813 ($ $ (-3 (-112) "failed"))) (-15 -3711 ((-112) $)) (-15 -1434 ((-635 |#4|) $)) (-15 -1672 (|#4| $)) (-15 -1533 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3395 ($ $)) |%noBranch|) |%noBranch|)))
-((-2203 (((-112) |#5| |#5|) 37)) (-4101 (((-112) |#5| |#5|) 51)) (-3739 (((-112) |#5| (-635 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-3658 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-1409 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) 62)) (-3239 (((-1251)) 33)) (-2090 (((-1251) (-1145) (-1145) (-1145)) 29)) (-4230 (((-635 |#5|) (-635 |#5|)) 80)) (-2159 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) 78)) (-1943 (((-635 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 100)) (-3770 (((-112) |#5| |#5|) 46)) (-1886 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3578 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-1827 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-3879 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-2668 (((-3 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-3028 (((-635 |#5|) (-635 |#5|)) 42)))
-(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2090 ((-1251) (-1145) (-1145) (-1145))) (-15 -3239 ((-1251))) (-15 -2203 ((-112) |#5| |#5|)) (-15 -3028 ((-635 |#5|) (-635 |#5|))) (-15 -3770 ((-112) |#5| |#5|)) (-15 -4101 ((-112) |#5| |#5|)) (-15 -3658 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3578 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1827 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3879 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1886 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3739 ((-112) |#5| |#5|)) (-15 -3739 ((-112) |#5| (-635 |#5|))) (-15 -4230 ((-635 |#5|) (-635 |#5|))) (-15 -1409 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2159 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-15 -1943 ((-635 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2668 ((-3 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -978))
-((-2668 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -3846 (-635 *9)) (|:| -3798 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-978 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1059 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -3846 (-635 *9)) (|:| -3798 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-978 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -3798 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-978 *3 *4 *5 *6 *7)))) (-1409 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-978 *3 *4 *5 *6 *7)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8 *3)))) (-3739 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1886 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3879 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1827 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-3578 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-3658 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-4101 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3770 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3028 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-978 *3 *4 *5 *6 *7)))) (-2203 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3239 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-2090 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2090 ((-1251) (-1145) (-1145) (-1145))) (-15 -3239 ((-1251))) (-15 -2203 ((-112) |#5| |#5|)) (-15 -3028 ((-635 |#5|) (-635 |#5|))) (-15 -3770 ((-112) |#5| |#5|)) (-15 -4101 ((-112) |#5| |#5|)) (-15 -3658 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3578 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1827 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3879 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1886 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3739 ((-112) |#5| |#5|)) (-15 -3739 ((-112) |#5| (-635 |#5|))) (-15 -4230 ((-635 |#5|) (-635 |#5|))) (-15 -1409 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2159 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-15 -1943 ((-635 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2668 ((-3 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2317 (((-1163) $) 15)) (-2426 (((-1145) $) 16)) (-2980 (($ (-1163) (-1145)) 14)) (-3940 (((-853) $) 13)))
-(((-979) (-13 (-605 (-853)) (-10 -8 (-15 -2980 ($ (-1163) (-1145))) (-15 -2317 ((-1163) $)) (-15 -2426 ((-1145) $))))) (T -979))
-((-2980 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-979)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-979)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-979)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -2980 ($ (-1163) (-1145))) (-15 -2317 ((-1163) $)) (-15 -2426 ((-1145) $))))
-((-3397 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| (-1 |#2| |#1|) |#3|))) (-550) (-550) (-982 |#1|) (-982 |#2|)) (T -980))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-4 *2 (-982 *6)) (-5 *1 (-980 *5 *6 *4 *2)) (-4 *4 (-982 *5)))))
-(-10 -7 (-15 -3397 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-1163) "failed") $) 65) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) 95)) (-3226 ((|#2| $) NIL) (((-1163) $) 60) (((-406 (-558)) $) NIL) (((-558) $) 92)) (-1918 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 112) (((-679 |#2|) (-679 $)) 28)) (-3692 (($) 98)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 75) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84)) (-2772 (($ $) 10)) (-2521 (((-3 $ "failed") $) 20)) (-3397 (($ (-1 |#2| |#2|) $) 22)) (-1823 (($) 16)) (-1636 (($ $) 54)) (-3780 (($ $) NIL) (($ $ (-762)) NIL) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4218 (($ $) 12)) (-3441 (((-882 (-558)) $) 70) (((-882 (-378)) $) 79) (((-534) $) 40) (((-378) $) 44) (((-224) $) 47)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 90) (($ |#2|) NIL) (($ (-1163)) 57)) (-2417 (((-762)) 31)) (-1728 (((-112) $ $) 50)))
-(((-981 |#1| |#2|) (-10 -8 (-15 -1728 ((-112) |#1| |#1|)) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3441 ((-224) |#1|)) (-15 -3441 ((-378) |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3940 (|#1| (-1163))) (-15 -3302 ((-3 (-1163) "failed") |#1|)) (-15 -3226 ((-1163) |#1|)) (-15 -3692 (|#1|)) (-15 -1636 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -1918 ((-679 |#2|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| |#1|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-982 |#2|) (-550)) (T -981))
-((-2417 (*1 *2) (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-981 *3 *4)) (-4 *3 (-982 *4)))))
-(-10 -8 (-15 -1728 ((-112) |#1| |#1|)) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3441 ((-224) |#1|)) (-15 -3441 ((-378) |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3940 (|#1| (-1163))) (-15 -3302 ((-3 (-1163) "failed") |#1|)) (-15 -3226 ((-1163) |#1|)) (-15 -3692 (|#1|)) (-15 -1636 (|#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3193 ((-879 (-558) |#1|) |#1| (-882 (-558)) (-879 (-558) |#1|))) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -1918 ((-679 |#2|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| |#1|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1669 ((|#1| $) 138 (|has| |#1| (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-2418 (((-417 (-1159 $)) (-1159 $)) 129 (|has| |#1| (-899)))) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 132 (|has| |#1| (-899)))) (-1599 (((-112) $ $) 60)) (-1334 (((-558) $) 119 (|has| |#1| (-811)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 176) (((-3 (-1163) "failed") $) 127 (|has| |#1| (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) 110 (|has| |#1| (-1028 (-558)))) (((-3 (-558) "failed") $) 108 (|has| |#1| (-1028 (-558))))) (-3226 ((|#1| $) 177) (((-1163) $) 128 (|has| |#1| (-1028 (-1163)))) (((-406 (-558)) $) 111 (|has| |#1| (-1028 (-558)))) (((-558) $) 109 (|has| |#1| (-1028 (-558))))) (-1709 (($ $ $) 56)) (-1918 (((-679 (-558)) (-679 $)) 151 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 150 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 149) (((-679 |#1|) (-679 $)) 148)) (-3248 (((-3 $ "failed") $) 33)) (-3692 (($) 136 (|has| |#1| (-543)))) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-2992 (((-112) $) 72)) (-4053 (((-112) $) 121 (|has| |#1| (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 145 (|has| |#1| (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 144 (|has| |#1| (-876 (-378))))) (-3999 (((-112) $) 31)) (-2772 (($ $) 140)) (-3316 ((|#1| $) 142)) (-2521 (((-3 $ "failed") $) 107 (|has| |#1| (-1138)))) (-2032 (((-112) $) 120 (|has| |#1| (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2142 (($ $ $) 117 (|has| |#1| (-841)))) (-2281 (($ $ $) 116 (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) 168)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-1823 (($) 106 (|has| |#1| (-1138)) CONST)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-1636 (($ $) 137 (|has| |#1| (-306)))) (-4259 ((|#1| $) 134 (|has| |#1| (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) 131 (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 130 (|has| |#1| (-899)))) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 170 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 169 (|has| |#1| (-512 (-1163) |#1|)))) (-1562 (((-762) $) 59)) (-2276 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3780 (($ $) 167 (|has| |#1| (-232))) (($ $ (-762)) 165 (|has| |#1| (-232))) (($ $ (-1163)) 163 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 162 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 161 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 160 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-4218 (($ $) 139)) (-3327 ((|#1| $) 141)) (-3441 (((-882 (-558)) $) 147 (|has| |#1| (-606 (-882 (-558))))) (((-882 (-378)) $) 146 (|has| |#1| (-606 (-882 (-378))))) (((-534) $) 124 (|has| |#1| (-606 (-534)))) (((-378) $) 123 (|has| |#1| (-1012))) (((-224) $) 122 (|has| |#1| (-1012)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 133 (-2157 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ |#1|) 180) (($ (-1163)) 126 (|has| |#1| (-1028 (-1163))))) (-1487 (((-3 $ "failed") $) 125 (-3994 (|has| |#1| (-144)) (-2157 (|has| $ (-144)) (|has| |#1| (-899)))))) (-2417 (((-762)) 28)) (-2912 ((|#1| $) 135 (|has| |#1| (-543)))) (-2671 (((-112) $ $) 40)) (-4241 (($ $) 118 (|has| |#1| (-811)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $) 166 (|has| |#1| (-232))) (($ $ (-762)) 164 (|has| |#1| (-232))) (($ $ (-1163)) 159 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 158 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 157 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 156 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1757 (((-112) $ $) 114 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 113 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 115 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 112 (|has| |#1| (-841)))) (-1805 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
-(((-982 |#1|) (-139) (-550)) (T -982))
-((-1805 (*1 *1 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-2772 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-4218 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306)))) (-1636 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306)))) (-3692 (*1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-543)) (-4 *2 (-550)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543)))))
-(-13 (-362) (-38 |t#1|) (-1028 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-874 |t#1|) (-399 |t#1|) (-10 -8 (-15 -1805 ($ |t#1| |t#1|)) (-15 -3316 (|t#1| $)) (-15 -3327 (|t#1| $)) (-15 -2772 ($ $)) (-15 -4218 ($ $)) (IF (|has| |t#1| (-1138)) (-6 (-1138)) |%noBranch|) (IF (|has| |t#1| (-1028 (-558))) (PROGN (-6 (-1028 (-558))) (-6 (-1028 (-406 (-558))))) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1028 (-1163))) (-6 (-1028 (-1163))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -1669 (|t#1| $)) (-15 -1636 ($ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3692 ($)) (-15 -2912 (|t#1| $)) (-15 -4259 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-899)) (-6 (-899)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 #1=(-1163)) |has| |#1| (-1028 (-1163))) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-224)) |has| |#1| (-1012)) ((-606 (-378)) |has| |#1| (-1012)) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-606 (-882 (-378))) |has| |#1| (-606 (-882 (-378)))) ((-606 (-882 (-558))) |has| |#1| (-606 (-882 (-558)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-450) . T) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) . T) ((-708 |#1|) . T) ((-708 $) . T) ((-717) . T) ((-782) |has| |#1| (-811)) ((-783) |has| |#1| (-811)) ((-785) |has| |#1| (-811)) ((-786) |has| |#1| (-811)) ((-811) |has| |#1| (-811)) ((-839) |has| |#1| (-811)) ((-841) -3994 (|has| |#1| (-841)) (|has| |#1| (-811))) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-876 (-378)) |has| |#1| (-876 (-378))) ((-876 (-558)) |has| |#1| (-876 (-558))) ((-874 |#1|) . T) ((-899) |has| |#1| (-899)) ((-910) . T) ((-1012) |has| |#1| (-1012)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-558))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #1#) |has| |#1| (-1028 (-1163))) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-1138)) ((-1200) . T) ((-1204) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3089 (($ (-1129 |#1| |#2|)) 11)) (-2144 (((-1129 |#1| |#2|) $) 12)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2276 ((|#2| $ (-239 |#1| |#2|)) 16)) (-3940 (((-853) $) NIL)) (-2207 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL)))
-(((-983 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3089 ($ (-1129 |#1| |#2|))) (-15 -2144 ((-1129 |#1| |#2|) $)) (-15 -2276 (|#2| $ (-239 |#1| |#2|))))) (-911) (-362)) (T -983))
-((-3089 (*1 *1 *2) (-12 (-5 *2 (-1129 *3 *4)) (-14 *3 (-911)) (-4 *4 (-362)) (-5 *1 (-983 *3 *4)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-1129 *3 *4)) (-5 *1 (-983 *3 *4)) (-14 *3 (-911)) (-4 *4 (-362)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-911)) (-4 *2 (-362)) (-5 *1 (-983 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -3089 ($ (-1129 |#1| |#2|))) (-15 -2144 ((-1129 |#1| |#2|) $)) (-15 -2276 (|#2| $ (-239 |#1| |#2|)))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1660 (((-1122) $) 9)) (-3940 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-984) (-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $))))) (T -984))
-((-1660 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-984)))))
-(-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $))))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) 8)) (-3457 (($) 7 T CONST)) (-2696 (($ $) 46)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2958 (((-762) $) 45)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2923 ((|#1| $) 44)) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2354 ((|#1| |#1| $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-4137 ((|#1| $) 47)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 42)) (-2022 ((|#1| $) 43)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-985 |#1|) (-139) (-1200)) (T -985))
-((-2354 (*1 *2 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-2696 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-985 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))) (-2022 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4383) (-15 -2354 (|t#1| |t#1| $)) (-15 -4137 (|t#1| $)) (-15 -2696 ($ $)) (-15 -2958 ((-762) $)) (-15 -2923 (|t#1| $)) (-15 -2022 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3124 (((-112) $) 42)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3226 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#2| $) 43)) (-3904 (((-3 (-406 (-558)) "failed") $) 78)) (-2288 (((-112) $) 72)) (-1673 (((-406 (-558)) $) 76)) (-3999 (((-112) $) 41)) (-1423 ((|#2| $) 22)) (-3397 (($ (-1 |#2| |#2|) $) 19)) (-3823 (($ $) 61)) (-3780 (($ $) NIL) (($ $ (-762)) NIL) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3441 (((-534) $) 67)) (-3068 (($ $) 17)) (-3940 (((-853) $) 56) (($ (-558)) 38) (($ |#2|) 36) (($ (-406 (-558))) NIL)) (-2417 (((-762)) 10)) (-4241 ((|#2| $) 71)) (-1708 (((-112) $ $) 25)) (-1728 (((-112) $ $) 69)) (-1796 (($ $) 29) (($ $ $) 28)) (-1785 (($ $ $) 26)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL)))
-(((-986 |#1| |#2|) (-10 -8 (-15 -3940 (|#1| (-406 (-558)))) (-15 -1728 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 -3823 (|#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -4241 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3068 (|#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 -3999 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|))) (-987 |#2|) (-171)) (T -986))
-((-2417 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-986 *3 *4)) (-4 *3 (-987 *4)))))
-(-10 -8 (-15 -3940 (|#1| (-406 (-558)))) (-15 -1728 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-558)) |#1|)) (-15 * (|#1| |#1| (-406 (-558)))) (-15 -3823 (|#1| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -4241 (|#2| |#1|)) (-15 -1423 (|#2| |#1|)) (-15 -3068 (|#1| |#1|)) (-15 -3397 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 -3999 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 * (|#1| (-762) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 * (|#1| (-911) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3302 (((-3 (-558) "failed") $) 118 (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 116 (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) 113)) (-3226 (((-558) $) 117 (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) 115 (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) 114)) (-1918 (((-679 (-558)) (-679 $)) 88 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 87 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 86) (((-679 |#1|) (-679 $)) 85)) (-3248 (((-3 $ "failed") $) 33)) (-3963 ((|#1| $) 78)) (-3904 (((-3 (-406 (-558)) "failed") $) 74 (|has| |#1| (-543)))) (-2288 (((-112) $) 76 (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) 75 (|has| |#1| (-543)))) (-3259 (($ |#1| |#1| |#1| |#1|) 79)) (-3999 (((-112) $) 31)) (-1423 ((|#1| $) 80)) (-2142 (($ $ $) 67 (|has| |#1| (-841)))) (-2281 (($ $ $) 66 (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) 89)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71 (|has| |#1| (-362)))) (-4329 ((|#1| $) 81)) (-2491 ((|#1| $) 82)) (-1523 ((|#1| $) 83)) (-1688 (((-1107) $) 10)) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) 91 (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) 90 (|has| |#1| (-512 (-1163) |#1|)))) (-2276 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-3780 (($ $) 112 (|has| |#1| (-232))) (($ $ (-762)) 110 (|has| |#1| (-232))) (($ $ (-1163)) 108 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 107 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 106 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 105 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-3441 (((-534) $) 72 (|has| |#1| (-606 (-534))))) (-3068 (($ $) 84)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 38) (($ (-406 (-558))) 61 (-3994 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-1487 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-4241 ((|#1| $) 77 (|has| |#1| (-1048)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $) 111 (|has| |#1| (-232))) (($ $ (-762)) 109 (|has| |#1| (-232))) (($ $ (-1163)) 104 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 103 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 102 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 101 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1757 (((-112) $ $) 64 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 63 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 65 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 62 (|has| |#1| (-841)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70 (|has| |#1| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-558))) 69 (|has| |#1| (-362))) (($ (-406 (-558)) $) 68 (|has| |#1| (-362)))))
-(((-987 |#1|) (-139) (-171)) (T -987))
-((-3068 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-3259 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)) (-4 *2 (-1048)))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))) (-3904 (*1 *2 *1) (|partial| -12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-558))))))
-(-13 (-38 |t#1|) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3068 ($ $)) (-15 -1523 (|t#1| $)) (-15 -2491 (|t#1| $)) (-15 -4329 (|t#1| $)) (-15 -1423 (|t#1| $)) (-15 -3259 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3963 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1048)) (-15 -4241 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -2288 ((-112) $)) (-15 -1673 ((-406 (-558)) $)) (-15 -3904 ((-3 (-406 (-558)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-362))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3994 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1163) |#1|) |has| |#1| (-512 (-1163) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-638 #0#) |has| |#1| (-362)) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-362)) ((-708 |#1|) . T) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1045 #0#) |has| |#1| (-362)) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3397 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#3| (-1 |#4| |#2|) |#1|))) (-987 |#2|) (-171) (-987 |#4|) (-171)) (T -988))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-987 *6)) (-5 *1 (-988 *4 *5 *2 *6)) (-4 *4 (-987 *5)))))
-(-10 -7 (-15 -3397 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3963 ((|#1| $) 12)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-543)))) (-2288 (((-112) $) NIL (|has| |#1| (-543)))) (-1673 (((-406 (-558)) $) NIL (|has| |#1| (-543)))) (-3259 (($ |#1| |#1| |#1| |#1|) 16)) (-3999 (((-112) $) NIL)) (-1423 ((|#1| $) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-4329 ((|#1| $) 15)) (-2491 ((|#1| $) 14)) (-1523 ((|#1| $) 13)) (-1688 (((-1107) $) NIL)) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1163) |#1|))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-512 (-1163) |#1|)))) (-2276 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3780 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3068 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-4241 ((|#1| $) NIL (|has| |#1| (-1048)))) (-2207 (($) 8 T CONST)) (-2220 (($) 10 T CONST)) (-3042 (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-362)))))
-(((-989 |#1|) (-987 |#1|) (-171)) (T -989))
-NIL
-(-987 |#1|)
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-3651 (((-112) $ (-762)) NIL)) (-3457 (($) NIL T CONST)) (-2696 (($ $) 20)) (-1603 (($ (-635 |#1|)) 29)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2958 (((-762) $) 22)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1498 ((|#1| $) 24)) (-2650 (($ |#1| $) 15)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2923 ((|#1| $) 23)) (-2533 ((|#1| $) 19)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2354 ((|#1| |#1| $) 14)) (-3711 (((-112) $) 17)) (-2876 (($) NIL)) (-4137 ((|#1| $) 18)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) NIL)) (-2022 ((|#1| $) 26)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-990 |#1|) (-13 (-985 |#1|) (-10 -8 (-15 -1603 ($ (-635 |#1|))))) (-1087)) (T -990))
-((-1603 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-990 *3)))))
-(-13 (-985 |#1|) (-10 -8 (-15 -1603 ($ (-635 |#1|)))))
-((-3948 (($ $) 12)) (-2136 (($ $ (-558)) 13)))
-(((-991 |#1|) (-10 -8 (-15 -3948 (|#1| |#1|)) (-15 -2136 (|#1| |#1| (-558)))) (-992)) (T -991))
-NIL
-(-10 -8 (-15 -3948 (|#1| |#1|)) (-15 -2136 (|#1| |#1| (-558))))
-((-3948 (($ $) 6)) (-2136 (($ $ (-558)) 7)) (** (($ $ (-406 (-558))) 8)))
-(((-992) (-139)) (T -992))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-406 (-558))))) (-2136 (*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-558)))) (-3948 (*1 *1 *1) (-4 *1 (-992))))
-(-13 (-10 -8 (-15 -3948 ($ $)) (-15 -2136 ($ $ (-558))) (-15 ** ($ $ (-406 (-558))))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3435 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-3244 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4326 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-3409 (((-679 (-406 |#2|)) (-1246 $)) NIL) (((-679 (-406 |#2|))) NIL)) (-1719 (((-406 |#2|) $) NIL)) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| (-406 |#2|) (-348)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4110 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1599 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2507 (((-762)) NIL (|has| (-406 |#2|) (-367)))) (-4348 (((-112)) NIL)) (-3740 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| (-406 |#2|) (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| (-406 |#2|) (-1028 (-406 (-558))))) (((-406 |#2|) $) NIL)) (-3431 (($ (-1246 (-406 |#2|)) (-1246 $)) NIL) (($ (-1246 (-406 |#2|))) 70) (($ (-1246 |#2|) |#2|) NIL)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1709 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3533 (((-679 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-406 |#2|) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-406 |#2|))) (|:| |vec| (-1246 (-406 |#2|)))) (-679 $) (-1246 $)) NIL) (((-679 (-406 |#2|)) (-679 $)) NIL)) (-2191 (((-1246 $) (-1246 $)) NIL)) (-3866 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3248 (((-3 $ "failed") $) NIL)) (-2352 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-2922 (((-112) |#1| |#1|) NIL)) (-1489 (((-911)) NIL)) (-3692 (($) NIL (|has| (-406 |#2|) (-367)))) (-3649 (((-112)) NIL)) (-3429 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-2881 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-3199 (($ $) NIL)) (-3567 (($) NIL (|has| (-406 |#2|) (-348)))) (-3617 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-4362 (($ $ (-762)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2992 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-2532 (((-911) $) NIL (|has| (-406 |#2|) (-348))) (((-824 (-911)) $) NIL (|has| (-406 |#2|) (-348)))) (-3999 (((-112) $) NIL)) (-3236 (((-762)) NIL)) (-2481 (((-1246 $) (-1246 $)) NIL)) (-1423 (((-406 |#2|) $) NIL)) (-3515 (((-635 (-942 |#1|)) (-1163)) NIL (|has| |#1| (-362)))) (-2521 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1715 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-1486 (((-911) $) NIL (|has| (-406 |#2|) (-367)))) (-3850 ((|#3| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2510 (((-1145) $) NIL)) (-3375 (((-679 (-406 |#2|))) 52)) (-2693 (((-679 (-406 |#2|))) 51)) (-3823 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2333 (($ (-1246 |#2|) |#2|) 71)) (-1959 (((-679 (-406 |#2|))) 50)) (-2216 (((-679 (-406 |#2|))) 49)) (-3493 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3037 (((-2 (|:| |num| (-1246 |#2|)) (|:| |den| |#2|)) $) 77)) (-3625 (((-1246 $)) 46)) (-2999 (((-1246 $)) 45)) (-3775 (((-112) $) NIL)) (-2960 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1823 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2349 (($ (-911)) NIL (|has| (-406 |#2|) (-367)))) (-2404 (((-3 |#2| "failed")) 63)) (-1688 (((-1107) $) NIL)) (-1995 (((-762)) NIL)) (-2461 (($) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| (-406 |#2|) (-362)))) (-1544 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| (-406 |#2|) (-348)))) (-3939 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2861 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1562 (((-762) $) NIL (|has| (-406 |#2|) (-362)))) (-2276 ((|#1| $ |#1| |#1|) NIL)) (-3754 (((-3 |#2| "failed")) 62)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3789 (((-406 |#2|) (-1246 $)) NIL) (((-406 |#2|)) 42)) (-2551 (((-762) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-762) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-3780 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2355 (((-679 (-406 |#2|)) (-1246 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-2297 ((|#3|) 53)) (-2933 (($) NIL (|has| (-406 |#2|) (-348)))) (-2979 (((-1246 (-406 |#2|)) $ (-1246 $)) NIL) (((-679 (-406 |#2|)) (-1246 $) (-1246 $)) NIL) (((-1246 (-406 |#2|)) $) 72) (((-679 (-406 |#2|)) (-1246 $)) NIL)) (-3441 (((-1246 (-406 |#2|)) $) NIL) (($ (-1246 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| (-406 |#2|) (-348)))) (-3744 (((-1246 $) (-1246 $)) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-558))) NIL (-3994 (|has| (-406 |#2|) (-1028 (-406 (-558)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1487 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-1969 ((|#3| $) NIL)) (-2417 (((-762)) NIL)) (-4296 (((-112)) 60)) (-4059 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-2743 (((-1246 $)) 125)) (-2671 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3276 (((-112)) NIL)) (-2207 (($) 94 T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-762)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-890 (-1163))))) (($ $ (-762)) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-3994 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-558)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-558))) NIL (|has| (-406 |#2|) (-362)))))
-(((-993 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1204) (-1222 |#1|) (-1222 (-406 |#2|)) (-406 |#2|) (-762)) (T -993))
+((-3041 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6)))
+(((-952) (-139)) (T -952))
+((-3041 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-952)))) (-3041 (*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-1166)))))
+(-13 (-10 -8 (-15 -3041 ($ $ (-1166))) (-15 -3041 ($ $ (-1082 $)))))
+((-2022 (((-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)) (-1166)) 25) (((-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166))) 26) (((-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 |#1|))) (-945 |#1|) (-1166) (-945 |#1|) (-1166)) 43)))
+(((-953 |#1|) (-10 -7 (-15 -2022 ((-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 |#1|))) (-945 |#1|) (-1166) (-945 |#1|) (-1166))) (-15 -2022 ((-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -2022 ((-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)) (-1166)))) (-13 (-362) (-146))) (T -953))
+((-2022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-5 *5 (-1166)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 *6))) (|:| |prim| (-1162 *6)))) (-5 *1 (-953 *6)))) (-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 *5))) (|:| |prim| (-1162 *5)))) (-5 *1 (-953 *5)))) (-2022 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 *5)))) (-5 *1 (-953 *5)))))
+(-10 -7 (-15 -2022 ((-2 (|:| |coef1| (-561)) (|:| |coef2| (-561)) (|:| |prim| (-1162 |#1|))) (-945 |#1|) (-1166) (-945 |#1|) (-1166))) (-15 -2022 ((-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)))) (-15 -2022 ((-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 |#1|))) (|:| |prim| (-1162 |#1|))) (-638 (-945 |#1|)) (-638 (-1166)) (-1166))))
+((-3319 (((-638 |#1|) |#1| |#1|) 42)) (-2737 (((-112) |#1|) 39)) (-1808 ((|#1| |#1|) 64)) (-2191 ((|#1| |#1|) 63)))
+(((-954 |#1|) (-10 -7 (-15 -2737 ((-112) |#1|)) (-15 -2191 (|#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -3319 ((-638 |#1|) |#1| |#1|))) (-543)) (T -954))
+((-3319 (*1 *2 *3 *3) (-12 (-5 *2 (-638 *3)) (-5 *1 (-954 *3)) (-4 *3 (-543)))) (-1808 (*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))) (-2191 (*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))) (-2737 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-954 *3)) (-4 *3 (-543)))))
+(-10 -7 (-15 -2737 ((-112) |#1|)) (-15 -2191 (|#1| |#1|)) (-15 -1808 (|#1| |#1|)) (-15 -3319 ((-638 |#1|) |#1| |#1|)))
+((-3225 (((-1258) (-856)) 9)))
+(((-955) (-10 -7 (-15 -3225 ((-1258) (-856))))) (T -955))
+((-3225 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-955)))))
+(-10 -7 (-15 -3225 ((-1258) (-856))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 60 (|has| |#1| (-553)))) (-2851 (($ $) 61 (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 28)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1619 (($ $) 24)) (-3466 (((-3 $ "failed") $) 35)) (-2401 (($ $) NIL (|has| |#1| (-450)))) (-2103 (($ $ |#1| |#2| $) 47)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) 16)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| |#2|) NIL)) (-2393 ((|#2| $) 19)) (-3524 (($ (-1 |#2| |#2|) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (($ $) 23)) (-1590 ((|#1| $) 21)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) 40)) (-1561 ((|#1| $) NIL)) (-3446 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-553))))) (-1756 (((-3 $ "failed") $ $) 73 (|has| |#1| (-553))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-553)))) (-2894 ((|#2| $) 17)) (-3609 ((|#1| $) NIL (|has| |#1| (-450)))) (-4022 (((-856) $) NIL) (($ (-561)) 39) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 34) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ |#2|) 31)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) 15)) (-1711 (($ $ $ (-765)) 56 (|has| |#1| (-171)))) (-3168 (((-112) $ $) 66 (|has| |#1| (-553)))) (-2211 (($) 22 T CONST)) (-2222 (($) 12 T CONST)) (-1733 (((-112) $ $) 65)) (-1833 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) 53) (($ $ (-765)) 51)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-956 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| |#2| (-130)) (-15 -3446 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4388)) (-6 -4388) |%noBranch|))) (-1042) (-786)) (T -956))
+((-3446 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-956 *3 *2)) (-4 *2 (-130)) (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| |#2| (-130)) (-15 -3446 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4388)) (-6 -4388) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL (-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-2090 (($ $ $) 63 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (-2249 (((-3 $ "failed") $ $) 50 (-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-1393 (((-765)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1998 ((|#2| $) 21)) (-4228 ((|#1| $) 20)) (-1965 (($) NIL (-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-3466 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-1332 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3113 (((-112) $) NIL (-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-3443 (($ $ $) NIL (-4007 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-2986 (($ $ $) NIL (-4007 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-4301 (($ |#1| |#2|) 19)) (-3198 (((-914) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 37 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2413 (($ (-914)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1714 (((-1110) $) NIL)) (-2260 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-3800 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-4022 (((-856) $) 14)) (-2211 (($) 40 (-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-2222 (($) 24 (-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))) CONST)) (-1782 (((-112) $ $) NIL (-4007 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1762 (((-112) $ $) NIL (-4007 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1733 (((-112) $ $) 18)) (-1773 (((-112) $ $) NIL (-4007 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1754 (((-112) $ $) 66 (-4007 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-1833 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-1824 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1813 (($ $ $) 43 (-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (** (($ $ (-561)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-765)) 31 (-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))) (($ $ (-914)) NIL (-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (* (($ (-561) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-765) $) 46 (-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ (-914) $) NIL (-4007 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ $ $) 27 (-4007 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))))
+(((-957 |#1| |#2|) (-13 (-1090) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -4301 ($ |#1| |#2|)) (-15 -4228 (|#1| $)) (-15 -1998 (|#2| $)))) (-1090) (-1090)) (T -957))
+((-4301 (*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-4228 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1090)))) (-1998 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1090)))))
+(-13 (-1090) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -4301 ($ |#1| |#2|)) (-15 -4228 (|#1| $)) (-15 -1998 (|#2| $))))
+((-2484 (((-1094) $) 12)) (-3409 (($ (-1166) (-1094)) 13)) (-3269 (((-1166) $) 10)) (-4022 (((-856) $) 22)))
+(((-958) (-13 (-608 (-856)) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -2484 ((-1094) $)) (-15 -3409 ($ (-1166) (-1094)))))) (T -958))
+((-3269 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-958)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-958)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-958)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3269 ((-1166) $)) (-15 -2484 ((-1094) $)) (-15 -3409 ($ (-1166) (-1094)))))
+((-4011 (((-112) $ $) NIL)) (-1412 (((-1092 (-1166)) $) 19)) (-3707 (((-112) $) 26)) (-2389 (((-1166) $) 27)) (-2214 (((-112) $) 24)) (-3769 ((|#1| $) 25)) (-2310 (((-866 $ $) $) 34)) (-2149 (((-112) $) 33)) (-2180 (($ $ $) 12)) (-2577 (($ $) 29)) (-2284 (((-112) $) 28)) (-2159 (($ $) 10)) (-1764 (((-1148) $) NIL)) (-2679 (((-866 $ $) $) 36)) (-3204 (((-112) $) 35)) (-2167 (($ $ $) 13)) (-1714 (((-1110) $) NIL)) (-4143 (((-866 $ $) $) 38)) (-1814 (((-112) $) 37)) (-2115 (($ $ $) 14)) (-4022 (((-856) $) 40) (($ |#1|) 7) (($ (-1166)) 9)) (-3580 (((-866 $ $) $) 32)) (-1512 (((-112) $) 30)) (-2170 (($ $ $) 11)) (-1733 (((-112) $ $) NIL)))
+(((-959 |#1|) (-13 (-960) (-10 -8 (-15 -4022 ($ |#1|)) (-15 -4022 ($ (-1166))) (-15 -1412 ((-1092 (-1166)) $)) (-15 -2214 ((-112) $)) (-15 -3769 (|#1| $)) (-15 -3707 ((-112) $)) (-15 -2389 ((-1166) $)) (-15 -2284 ((-112) $)) (-15 -2577 ($ $)) (-15 -1512 ((-112) $)) (-15 -3580 ((-866 $ $) $)) (-15 -2149 ((-112) $)) (-15 -2310 ((-866 $ $) $)) (-15 -3204 ((-112) $)) (-15 -2679 ((-866 $ $) $)) (-15 -1814 ((-112) $)) (-15 -4143 ((-866 $ $) $)))) (-960)) (T -959))
+((-4022 (*1 *1 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-1092 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3769 (*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2577 (*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(-13 (-960) (-10 -8 (-15 -4022 ($ |#1|)) (-15 -4022 ($ (-1166))) (-15 -1412 ((-1092 (-1166)) $)) (-15 -2214 ((-112) $)) (-15 -3769 (|#1| $)) (-15 -3707 ((-112) $)) (-15 -2389 ((-1166) $)) (-15 -2284 ((-112) $)) (-15 -2577 ($ $)) (-15 -1512 ((-112) $)) (-15 -3580 ((-866 $ $) $)) (-15 -2149 ((-112) $)) (-15 -2310 ((-866 $ $) $)) (-15 -3204 ((-112) $)) (-15 -2679 ((-866 $ $) $)) (-15 -1814 ((-112) $)) (-15 -4143 ((-866 $ $) $))))
+((-4011 (((-112) $ $) 7)) (-2180 (($ $ $) 15)) (-2159 (($ $) 17)) (-1764 (((-1148) $) 9)) (-2167 (($ $ $) 14)) (-1714 (((-1110) $) 10)) (-2115 (($ $ $) 13)) (-4022 (((-856) $) 11)) (-2170 (($ $ $) 16)) (-1733 (((-112) $ $) 6)))
+(((-960) (-139)) (T -960))
+((-2159 (*1 *1 *1) (-4 *1 (-960))) (-2170 (*1 *1 *1 *1) (-4 *1 (-960))) (-2180 (*1 *1 *1 *1) (-4 *1 (-960))) (-2167 (*1 *1 *1 *1) (-4 *1 (-960))) (-2115 (*1 *1 *1 *1) (-4 *1 (-960))))
+(-13 (-1090) (-10 -8 (-15 -2159 ($ $)) (-15 -2170 ($ $ $)) (-15 -2180 ($ $ $)) (-15 -2167 ($ $ $)) (-15 -2115 ($ $ $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-1965 (($) 7 T CONST)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-3092 (($ $ $) 43)) (-1407 (($ $ $) 44)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2986 ((|#1| $) 45)) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-961 |#1|) (-139) (-844)) (T -961))
+((-2986 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-1407 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-3092 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4390) (-15 -2986 (|t#1| $)) (-15 -1407 ($ $ $)) (-15 -3092 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-3065 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1623 |#2|)) |#2| |#2|) 84)) (-2645 ((|#2| |#2| |#2|) 82)) (-2832 (((-2 (|:| |coef2| |#2|) (|:| -1623 |#2|)) |#2| |#2|) 86)) (-2128 (((-2 (|:| |coef1| |#2|) (|:| -1623 |#2|)) |#2| |#2|) 88)) (-3883 (((-2 (|:| |coef2| |#2|) (|:| -1934 |#1|)) |#2| |#2|) 106 (|has| |#1| (-450)))) (-2231 (((-2 (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|) 45)) (-3859 (((-2 (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|) 63)) (-2410 (((-2 (|:| |coef1| |#2|) (|:| -3051 |#1|)) |#2| |#2|) 65)) (-3889 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3080 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 70)) (-2850 (((-2 (|:| |coef2| |#2|) (|:| -2553 |#1|)) |#2|) 96)) (-1683 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 73)) (-1918 (((-638 (-765)) |#2| |#2|) 81)) (-2625 ((|#1| |#2| |#2|) 41)) (-2136 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1934 |#1|)) |#2| |#2|) 104 (|has| |#1| (-450)))) (-1934 ((|#1| |#2| |#2|) 102 (|has| |#1| (-450)))) (-3680 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|) 43)) (-1963 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|) 62)) (-3051 ((|#1| |#2| |#2|) 60)) (-3806 (((-2 (|:| -4188 |#1|) (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2|) 34)) (-2188 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-2472 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-1631 ((|#2| |#2| |#2|) 74)) (-2415 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 68)) (-3256 ((|#2| |#2| |#2| (-765)) 66)) (-1623 ((|#2| |#2| |#2|) 110 (|has| |#1| (-450)))) (-1756 (((-1253 |#2|) (-1253 |#2|) |#1|) 21)) (-1971 (((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2|) 38)) (-4221 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2553 |#1|)) |#2|) 94)) (-2553 ((|#1| |#2|) 91)) (-2419 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 72)) (-1977 ((|#2| |#2| |#2| (-765)) 71)) (-2700 (((-638 |#2|) |#2| |#2|) 79)) (-3853 ((|#2| |#2| |#1| |#1| (-765)) 49)) (-3959 ((|#1| |#1| |#1| (-765)) 48)) (* (((-1253 |#2|) |#1| (-1253 |#2|)) 16)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -3051 (|#1| |#2| |#2|)) (-15 -1963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -3859 ((-2 (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -2410 ((-2 (|:| |coef1| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -3256 (|#2| |#2| |#2| (-765))) (-15 -2415 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3080 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -1977 (|#2| |#2| |#2| (-765))) (-15 -2419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -1683 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -1631 (|#2| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3889 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2645 (|#2| |#2| |#2|)) (-15 -3065 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1623 |#2|)) |#2| |#2|)) (-15 -2832 ((-2 (|:| |coef2| |#2|) (|:| -1623 |#2|)) |#2| |#2|)) (-15 -2128 ((-2 (|:| |coef1| |#2|) (|:| -1623 |#2|)) |#2| |#2|)) (-15 -2553 (|#1| |#2|)) (-15 -4221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2553 |#1|)) |#2|)) (-15 -2850 ((-2 (|:| |coef2| |#2|) (|:| -2553 |#1|)) |#2|)) (-15 -2700 ((-638 |#2|) |#2| |#2|)) (-15 -1918 ((-638 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -1934 (|#1| |#2| |#2|)) (-15 -2136 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1934 |#1|)) |#2| |#2|)) (-15 -3883 ((-2 (|:| |coef2| |#2|) (|:| -1934 |#1|)) |#2| |#2|)) (-15 -1623 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1253 |#2|) |#1| (-1253 |#2|))) (-15 -1756 ((-1253 |#2|) (-1253 |#2|) |#1|)) (-15 -3806 ((-2 (|:| -4188 |#1|) (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2|)) (-15 -1971 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2|)) (-15 -3959 (|#1| |#1| |#1| (-765))) (-15 -3853 (|#2| |#2| |#1| |#1| (-765))) (-15 -2188 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2625 (|#1| |#2| |#2|)) (-15 -3680 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -2231 ((-2 (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|))) (-553) (-1229 |#1|)) (T -962))
+((-2231 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3051 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3680 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3051 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2625 (*1 *2 *3 *3) (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-2188 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3853 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3959 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *2 (-553)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1229 *2)))) (-1971 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3806 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -4188 *4) (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-1756 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-553)) (-5 *1 (-962 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-553)) (-5 *1 (-962 *3 *4)))) (-1623 (*1 *2 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3883 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1934 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2136 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1934 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-1934 (*1 *2 *3 *3) (-12 (-4 *2 (-553)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-1918 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-765))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2700 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2850 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2553 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4221 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2553 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2553 (*1 *2 *3) (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-2128 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1623 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2832 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1623 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3065 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1623 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2645 (*1 *2 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3889 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-1631 (*1 *2 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-1683 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-2419 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-1977 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))) (-3080 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-2415 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3256 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))) (-2410 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3051 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3859 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3051 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-1963 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3051 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3051 (*1 *2 *3 *3) (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))))
+(-10 -7 (-15 -3051 (|#1| |#2| |#2|)) (-15 -1963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -3859 ((-2 (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -2410 ((-2 (|:| |coef1| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -3256 (|#2| |#2| |#2| (-765))) (-15 -2415 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3080 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -1977 (|#2| |#2| |#2| (-765))) (-15 -2419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -1683 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -1631 (|#2| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3889 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2645 (|#2| |#2| |#2|)) (-15 -3065 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1623 |#2|)) |#2| |#2|)) (-15 -2832 ((-2 (|:| |coef2| |#2|) (|:| -1623 |#2|)) |#2| |#2|)) (-15 -2128 ((-2 (|:| |coef1| |#2|) (|:| -1623 |#2|)) |#2| |#2|)) (-15 -2553 (|#1| |#2|)) (-15 -4221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2553 |#1|)) |#2|)) (-15 -2850 ((-2 (|:| |coef2| |#2|) (|:| -2553 |#1|)) |#2|)) (-15 -2700 ((-638 |#2|) |#2| |#2|)) (-15 -1918 ((-638 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -1934 (|#1| |#2| |#2|)) (-15 -2136 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1934 |#1|)) |#2| |#2|)) (-15 -3883 ((-2 (|:| |coef2| |#2|) (|:| -1934 |#1|)) |#2| |#2|)) (-15 -1623 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1253 |#2|) |#1| (-1253 |#2|))) (-15 -1756 ((-1253 |#2|) (-1253 |#2|) |#1|)) (-15 -3806 ((-2 (|:| -4188 |#1|) (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2|)) (-15 -1971 ((-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) |#2| |#2|)) (-15 -3959 (|#1| |#1| |#1| (-765))) (-15 -3853 (|#2| |#2| |#1| |#1| (-765))) (-15 -2188 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2625 (|#1| |#2| |#2|)) (-15 -3680 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|)) (-15 -2231 ((-2 (|:| |coef2| |#2|) (|:| -3051 |#1|)) |#2| |#2|)))
+((-4011 (((-112) $ $) NIL)) (-4052 (((-1204) $) 13)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1739 (((-1125) $) 10)) (-4022 (((-856) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-963) (-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -4052 ((-1204) $))))) (T -963))
+((-1739 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-963)))))
+(-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -4052 ((-1204) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) 26)) (-1965 (($) NIL T CONST)) (-4339 (((-638 (-638 (-561))) (-638 (-561))) 28)) (-1859 (((-561) $) 44)) (-1632 (($ (-638 (-561))) 17)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4174 (((-638 (-561)) $) 12)) (-2260 (($ $) 31)) (-4022 (((-856) $) 42) (((-638 (-561)) $) 10)) (-2211 (($) 7 T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 19)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 18)) (-1813 (($ $ $) 20)) (* (($ (-914) $) NIL) (($ (-765) $) 24)))
+(((-964) (-13 (-789) (-609 (-638 (-561))) (-608 (-638 (-561))) (-10 -8 (-15 -1632 ($ (-638 (-561)))) (-15 -4339 ((-638 (-638 (-561))) (-638 (-561)))) (-15 -1859 ((-561) $)) (-15 -2260 ($ $))))) (T -964))
+((-1632 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-964)))) (-4339 (*1 *2 *3) (-12 (-5 *2 (-638 (-638 (-561)))) (-5 *1 (-964)) (-5 *3 (-638 (-561))))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-964)))) (-2260 (*1 *1 *1) (-5 *1 (-964))))
+(-13 (-789) (-609 (-638 (-561))) (-608 (-638 (-561))) (-10 -8 (-15 -1632 ($ (-638 (-561)))) (-15 -4339 ((-638 (-638 (-561))) (-638 (-561)))) (-15 -1859 ((-561) $)) (-15 -2260 ($ $))))
+((-1833 (($ $ |#2|) 30)) (-1824 (($ $) 22) (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-561)) $) 26) (($ $ (-406 (-561))) 28)))
+(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -1833 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|))) (-966 |#2| |#3| |#4|) (-1042) (-786) (-844)) (T -965))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-406 (-561)))) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 -1833 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-914) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 |#3|) $) 77)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-3281 (((-112) $) 76)) (-3113 (((-112) $) 31)) (-2092 (((-112) $) 65)) (-1387 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-638 |#3|) (-638 |#2|)) 78)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-2894 ((|#2| $) 67)) (-1897 (($ $) 75)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2634 ((|#1| $ |#2|) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-966 |#1| |#2| |#3|) (-139) (-1042) (-786) (-844)) (T -966))
+((-1590 (*1 *2 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *2 (-786)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786)) (-4 *2 (-844)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 *5)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-638 *5)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-112)))) (-1897 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1387 ($ $ |t#3| |t#2|)) (-15 -1387 ($ $ (-638 |t#3|) (-638 |t#2|))) (-15 -1578 ($ $)) (-15 -1590 (|t#1| $)) (-15 -2894 (|t#2| $)) (-15 -1412 ((-638 |t#3|) $)) (-15 -3281 ((-112) $)) (-15 -1897 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-289) |has| |#1| (-553)) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-2056 (((-1084 (-224)) $) 8)) (-2046 (((-1084 (-224)) $) 9)) (-4370 (((-1084 (-224)) $) 10)) (-3980 (((-638 (-638 (-936 (-224)))) $) 11)) (-4022 (((-856) $) 6)))
+(((-967) (-139)) (T -967))
+((-3980 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-638 (-638 (-936 (-224))))))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3980 ((-638 (-638 (-936 (-224)))) $)) (-15 -4370 ((-1084 (-224)) $)) (-15 -2046 ((-1084 (-224)) $)) (-15 -2056 ((-1084 (-224)) $))))
+(((-608 (-856)) . T))
+((-1412 (((-638 |#4|) $) 23)) (-1978 (((-112) $) 47)) (-2701 (((-112) $) 46)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#4|) 35)) (-2002 (((-112) $) 48)) (-1951 (((-112) $ $) 54)) (-2959 (((-112) $ $) 57)) (-1361 (((-112) $) 52)) (-1825 (((-638 |#5|) (-638 |#5|) $) 89)) (-3712 (((-638 |#5|) (-638 |#5|) $) 86)) (-1693 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-2209 (((-638 |#4|) $) 27)) (-2866 (((-112) |#4| $) 29)) (-4318 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-1755 (($ $ |#4|) 32)) (-2794 (($ $ |#4|) 31)) (-1967 (($ $ |#4|) 33)) (-1733 (((-112) $ $) 39)))
+(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2701 ((-112) |#1|)) (-15 -1825 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -3712 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -1693 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4318 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2002 ((-112) |#1|)) (-15 -2959 ((-112) |#1| |#1|)) (-15 -1951 ((-112) |#1| |#1|)) (-15 -1361 ((-112) |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -1289 ((-2 (|:| |under| |#1|) (|:| -1388 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1755 (|#1| |#1| |#4|)) (-15 -1967 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -2866 ((-112) |#4| |#1|)) (-15 -2209 ((-638 |#4|) |#1|)) (-15 -1412 ((-638 |#4|) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-969 |#2| |#3| |#4| |#5|) (-1042) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -968))
+NIL
+(-10 -8 (-15 -2701 ((-112) |#1|)) (-15 -1825 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -3712 ((-638 |#5|) (-638 |#5|) |#1|)) (-15 -1693 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4318 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2002 ((-112) |#1|)) (-15 -2959 ((-112) |#1| |#1|)) (-15 -1951 ((-112) |#1| |#1|)) (-15 -1361 ((-112) |#1|)) (-15 -1978 ((-112) |#1|)) (-15 -1289 ((-2 (|:| |under| |#1|) (|:| -1388 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1755 (|#1| |#1| |#4|)) (-15 -1967 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -2866 ((-112) |#4| |#1|)) (-15 -2209 ((-638 |#4|) |#1|)) (-15 -1412 ((-638 |#4|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-1412 (((-638 |#3|) $) 33)) (-1978 (((-112) $) 26)) (-2701 (((-112) $) 17 (|has| |#1| (-553)))) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) 27)) (-1630 (((-112) $ (-765)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4390)))) (-1965 (($) 45 T CONST)) (-2002 (((-112) $) 22 (|has| |#1| (-553)))) (-1951 (((-112) $ $) 24 (|has| |#1| (-553)))) (-2959 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1361 (((-112) $) 25 (|has| |#1| (-553)))) (-1825 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) 36)) (-3938 (($ (-638 |#4|)) 35)) (-1472 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4390)))) (-3571 (((-638 |#4|) $) 52 (|has| $ (-6 -4390)))) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) 43)) (-1305 (((-638 |#4|) $) 53 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 47)) (-2209 (((-638 |#3|) $) 32)) (-2866 (((-112) |#3| $) 31)) (-2230 (((-112) $ (-765)) 42)) (-1764 (((-1148) $) 9)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-1714 (((-1110) $) 10)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2123 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) 38)) (-1928 (((-112) $) 41)) (-3170 (($) 40)) (-1724 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4390)))) (-4187 (($ $) 39)) (-4174 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 60)) (-1755 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-1967 (($ $ |#3|) 29)) (-4022 (((-856) $) 11) (((-638 |#4|) $) 37)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 6)) (-3498 (((-765) $) 46 (|has| $ (-6 -4390)))))
+(((-969 |#1| |#2| |#3| |#4|) (-139) (-1042) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -969))
+((-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))) (-2866 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-2794 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-1755 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-1289 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1388 *1) (|:| |upper| *1))) (-4 *1 (-969 *4 *5 *3 *6)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-1361 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-1951 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2959 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))) (-4318 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1693 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3712 (*1 *2 *2 *1) (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)))) (-1825 (*1 *2 *2 *1) (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-5 *2 (-112)))))
+(-13 (-1090) (-150 |t#4|) (-608 (-638 |t#4|)) (-10 -8 (-6 -4390) (-15 -4017 ((-3 $ "failed") (-638 |t#4|))) (-15 -3938 ($ (-638 |t#4|))) (-15 -2783 (|t#3| $)) (-15 -1412 ((-638 |t#3|) $)) (-15 -2209 ((-638 |t#3|) $)) (-15 -2866 ((-112) |t#3| $)) (-15 -2794 ($ $ |t#3|)) (-15 -1967 ($ $ |t#3|)) (-15 -1755 ($ $ |t#3|)) (-15 -1289 ((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |t#3|)) (-15 -1978 ((-112) $)) (IF (|has| |t#1| (-553)) (PROGN (-15 -1361 ((-112) $)) (-15 -1951 ((-112) $ $)) (-15 -2959 ((-112) $ $)) (-15 -2002 ((-112) $)) (-15 -4318 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1693 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3712 ((-638 |t#4|) (-638 |t#4|) $)) (-15 -1825 ((-638 |t#4|) (-638 |t#4|) $)) (-15 -2701 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-1090) . T) ((-1205) . T))
+((-2045 (((-638 |#4|) |#4| |#4|) 117)) (-2601 (((-638 |#4|) (-638 |#4|) (-112)) 106 (|has| |#1| (-450))) (((-638 |#4|) (-638 |#4|)) 107 (|has| |#1| (-450)))) (-2314 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 34)) (-1595 (((-112) |#4|) 33)) (-1443 (((-638 |#4|) |#4|) 102 (|has| |#1| (-450)))) (-1610 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-1 (-112) |#4|) (-638 |#4|)) 19)) (-2690 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|)) 21)) (-4357 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|)) 22)) (-1427 (((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|)) 72)) (-3937 (((-638 |#4|) (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-2688 (((-638 |#4|) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-3990 (((-638 |#4|) (-638 |#4|)) 109)) (-4189 (((-638 |#4|) (-638 |#4|) (-638 |#4|) (-112)) 47) (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 49)) (-3658 ((|#4| |#4| (-638 |#4|)) 48)) (-1629 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 113 (|has| |#1| (-450)))) (-2042 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 116 (|has| |#1| (-450)))) (-2892 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 115 (|has| |#1| (-450)))) (-2921 (((-638 |#4|) (-638 |#4|) (-638 |#4|) (-1 (-638 |#4|) (-638 |#4|))) 86) (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 88) (((-638 |#4|) (-638 |#4|) |#4|) 120) (((-638 |#4|) |#4| |#4|) 118) (((-638 |#4|) (-638 |#4|)) 87)) (-2544 (((-638 |#4|) (-638 |#4|) (-638 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-1775 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 40)) (-1700 (((-112) (-638 |#4|)) 61)) (-1633 (((-112) (-638 |#4|) (-638 (-638 |#4|))) 52)) (-3407 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 28)) (-2769 (((-112) |#4|) 27)) (-4267 (((-638 |#4|) (-638 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-2033 (((-638 |#4|) (-638 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-1409 (((-638 |#4|) (-638 |#4|)) 65)) (-3640 (((-638 |#4|) (-638 |#4|)) 78)) (-2220 (((-112) (-638 |#4|) (-638 |#4|)) 50)) (-3036 (((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|)) 38)) (-3239 (((-112) |#4|) 35)))
+(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2921 ((-638 |#4|) (-638 |#4|))) (-15 -2921 ((-638 |#4|) |#4| |#4|)) (-15 -3990 ((-638 |#4|) (-638 |#4|))) (-15 -2045 ((-638 |#4|) |#4| |#4|)) (-15 -2921 ((-638 |#4|) (-638 |#4|) |#4|)) (-15 -2921 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2921 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-1 (-638 |#4|) (-638 |#4|)))) (-15 -2220 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1633 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -1700 ((-112) (-638 |#4|))) (-15 -1610 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-1 (-112) |#4|) (-638 |#4|))) (-15 -2690 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -4357 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -1775 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -1595 ((-112) |#4|)) (-15 -2314 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -2769 ((-112) |#4|)) (-15 -3407 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -3239 ((-112) |#4|)) (-15 -3036 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -4189 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -4189 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-112))) (-15 -3658 (|#4| |#4| (-638 |#4|))) (-15 -1409 ((-638 |#4|) (-638 |#4|))) (-15 -1427 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|))) (-15 -3640 ((-638 |#4|) (-638 |#4|))) (-15 -3937 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2688 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -1443 ((-638 |#4|) |#4|)) (-15 -2601 ((-638 |#4|) (-638 |#4|))) (-15 -2601 ((-638 |#4|) (-638 |#4|) (-112))) (-15 -1629 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2892 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2042 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -2033 ((-638 |#4|) (-638 |#4|))) (-15 -4267 ((-638 |#4|) (-638 |#4|))) (-15 -2544 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) |%noBranch|)) (-553) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -970))
+((-2544 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-4267 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2042 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2892 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-1629 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2601 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-1443 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2688 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-970 *5 *6 *7 *8)))) (-3937 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-638 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-1427 (*1 *2 *3) (|partial| -12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -2735 (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3658 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2)))) (-4189 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-4189 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-3239 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3407 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2314 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-1775 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *5 *6 *7 *8)))) (-2220 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-2921 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-638 *7) (-638 *7))) (-5 *2 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-2921 (*1 *2 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2921 (*1 *2 *2 *3) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3)))) (-2045 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2921 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2921 ((-638 |#4|) (-638 |#4|))) (-15 -2921 ((-638 |#4|) |#4| |#4|)) (-15 -3990 ((-638 |#4|) (-638 |#4|))) (-15 -2045 ((-638 |#4|) |#4| |#4|)) (-15 -2921 ((-638 |#4|) (-638 |#4|) |#4|)) (-15 -2921 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2921 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-1 (-638 |#4|) (-638 |#4|)))) (-15 -2220 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -1633 ((-112) (-638 |#4|) (-638 (-638 |#4|)))) (-15 -1700 ((-112) (-638 |#4|))) (-15 -1610 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-1 (-112) |#4|) (-638 |#4|))) (-15 -2690 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -4357 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 (-1 (-112) |#4|)) (-638 |#4|))) (-15 -1775 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -1595 ((-112) |#4|)) (-15 -2314 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -2769 ((-112) |#4|)) (-15 -3407 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -3239 ((-112) |#4|)) (-15 -3036 ((-2 (|:| |goodPols| (-638 |#4|)) (|:| |badPols| (-638 |#4|))) (-638 |#4|))) (-15 -4189 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -4189 ((-638 |#4|) (-638 |#4|) (-638 |#4|) (-112))) (-15 -3658 (|#4| |#4| (-638 |#4|))) (-15 -1409 ((-638 |#4|) (-638 |#4|))) (-15 -1427 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|))) (-15 -3640 ((-638 |#4|) (-638 |#4|))) (-15 -3937 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2688 ((-638 |#4|) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -1443 ((-638 |#4|) |#4|)) (-15 -2601 ((-638 |#4|) (-638 |#4|))) (-15 -2601 ((-638 |#4|) (-638 |#4|) (-112))) (-15 -1629 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2892 ((-638 |#4|) (-638 |#4|) (-638 |#4|))) (-15 -2042 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -2033 ((-638 |#4|) (-638 |#4|))) (-15 -4267 ((-638 |#4|) (-638 |#4|))) (-15 -2544 ((-638 |#4|) (-638 |#4|) (-638 |#4|)))) |%noBranch|) |%noBranch|))
+((-4278 (((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3265 (((-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)) 35)) (-3982 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-971 |#1|) (-10 -7 (-15 -4278 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3982 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3265 ((-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)))) (-362)) (T -971))
+((-3265 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-638 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5))))) (-5 *1 (-971 *5)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)))) (-3982 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-971 *5)))) (-4278 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6)))) (-5 *1 (-971 *6)) (-5 *3 (-682 *6)))))
+(-10 -7 (-15 -4278 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3982 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3265 ((-638 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))))
+((-3422 (((-417 |#4|) |#4|) 48)))
+(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3422 ((-417 |#4|) |#4|))) (-844) (-787) (-450) (-942 |#3| |#2| |#1|)) (T -972))
+((-3422 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-417 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
+(-10 -7 (-15 -3422 ((-417 |#4|) |#4|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2888 (($ (-765)) 112 (|has| |#1| (-23)))) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4391))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4391))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 58 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-4075 (($ $) 90 (|has| $ (-6 -4391)))) (-2638 (($ $) 100)) (-1472 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 51)) (-4235 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-3376 (($ (-638 |#1|)) 118)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-2802 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-1470 (($ (-765) |#1|) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3443 (($ $ $) 87 (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2986 (($ $ $) 86 (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3216 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-2230 (((-112) $ (-765)) 10)) (-3617 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 42 (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1799 (($ $ |#1|) 41 (|has| $ (-6 -4391)))) (-1416 (($ $ (-638 |#1|)) 116)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1220 (-561))) 63)) (-1327 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-3084 (((-914) $) 117)) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-2307 (($ $ $) 104)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1365 (($ $ $ (-561)) 91 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| |#1| (-609 (-534)))) (($ (-638 |#1|)) 119)) (-4031 (($ (-638 |#1|)) 70)) (-2725 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1773 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 82 (|has| |#1| (-844)))) (-1824 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1813 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-561) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-973 |#1|) (-139) (-1042)) (T -973))
+((-3376 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-914)))) (-2307 (*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042)))))
+(-13 (-1251 |t#1|) (-613 (-638 |t#1|)) (-10 -8 (-15 -3376 ($ (-638 |t#1|))) (-15 -3084 ((-914) $)) (-15 -2307 ($ $ $)) (-15 -1416 ($ $ (-638 |t#1|)))))
+(((-34) . T) ((-102) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-613 (-638 |#1|)) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T) ((-1251 |#1|) . T))
+((-4120 (((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)) 17)))
+(((-974 |#1| |#2|) (-10 -7 (-15 -4120 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)))) (-1042) (-1042)) (T -974))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6)))))
+(-10 -7 (-15 -4120 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|))))
+((-2941 ((|#1| (-936 |#1|)) 13)) (-1559 ((|#1| (-936 |#1|)) 12)) (-4069 ((|#1| (-936 |#1|)) 11)) (-2250 ((|#1| (-936 |#1|)) 15)) (-2489 ((|#1| (-936 |#1|)) 21)) (-1848 ((|#1| (-936 |#1|)) 14)) (-4127 ((|#1| (-936 |#1|)) 16)) (-4177 ((|#1| (-936 |#1|)) 20)) (-1871 ((|#1| (-936 |#1|)) 19)))
+(((-975 |#1|) (-10 -7 (-15 -4069 (|#1| (-936 |#1|))) (-15 -1559 (|#1| (-936 |#1|))) (-15 -2941 (|#1| (-936 |#1|))) (-15 -1848 (|#1| (-936 |#1|))) (-15 -2250 (|#1| (-936 |#1|))) (-15 -4127 (|#1| (-936 |#1|))) (-15 -1871 (|#1| (-936 |#1|))) (-15 -4177 (|#1| (-936 |#1|))) (-15 -2489 (|#1| (-936 |#1|)))) (-1042)) (T -975))
+((-2489 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(-10 -7 (-15 -4069 (|#1| (-936 |#1|))) (-15 -1559 (|#1| (-936 |#1|))) (-15 -2941 (|#1| (-936 |#1|))) (-15 -1848 (|#1| (-936 |#1|))) (-15 -2250 (|#1| (-936 |#1|))) (-15 -4127 (|#1| (-936 |#1|))) (-15 -1871 (|#1| (-936 |#1|))) (-15 -4177 (|#1| (-936 |#1|))) (-15 -2489 (|#1| (-936 |#1|))))
+((-2734 (((-3 |#1| "failed") |#1|) 18)) (-3785 (((-3 |#1| "failed") |#1|) 6)) (-2442 (((-3 |#1| "failed") |#1|) 16)) (-3323 (((-3 |#1| "failed") |#1|) 4)) (-3208 (((-3 |#1| "failed") |#1|) 20)) (-3694 (((-3 |#1| "failed") |#1|) 8)) (-3759 (((-3 |#1| "failed") |#1| (-765)) 1)) (-4210 (((-3 |#1| "failed") |#1|) 3)) (-1846 (((-3 |#1| "failed") |#1|) 2)) (-2963 (((-3 |#1| "failed") |#1|) 21)) (-2977 (((-3 |#1| "failed") |#1|) 9)) (-1906 (((-3 |#1| "failed") |#1|) 19)) (-2818 (((-3 |#1| "failed") |#1|) 7)) (-3548 (((-3 |#1| "failed") |#1|) 17)) (-1481 (((-3 |#1| "failed") |#1|) 5)) (-2076 (((-3 |#1| "failed") |#1|) 24)) (-2876 (((-3 |#1| "failed") |#1|) 12)) (-1315 (((-3 |#1| "failed") |#1|) 22)) (-1747 (((-3 |#1| "failed") |#1|) 10)) (-2942 (((-3 |#1| "failed") |#1|) 26)) (-2232 (((-3 |#1| "failed") |#1|) 14)) (-1995 (((-3 |#1| "failed") |#1|) 27)) (-1908 (((-3 |#1| "failed") |#1|) 15)) (-2163 (((-3 |#1| "failed") |#1|) 25)) (-3147 (((-3 |#1| "failed") |#1|) 13)) (-2036 (((-3 |#1| "failed") |#1|) 23)) (-2840 (((-3 |#1| "failed") |#1|) 11)))
+(((-976 |#1|) (-139) (-1190)) (T -976))
+((-1995 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2942 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2163 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2076 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2036 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1315 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3208 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1906 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2734 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3548 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2442 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1908 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2232 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3147 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2876 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2840 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1747 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3694 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-2818 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3785 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1481 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3323 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-4210 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-1846 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3759 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(-13 (-10 -7 (-15 -3759 ((-3 |t#1| "failed") |t#1| (-765))) (-15 -1846 ((-3 |t#1| "failed") |t#1|)) (-15 -4210 ((-3 |t#1| "failed") |t#1|)) (-15 -3323 ((-3 |t#1| "failed") |t#1|)) (-15 -1481 ((-3 |t#1| "failed") |t#1|)) (-15 -3785 ((-3 |t#1| "failed") |t#1|)) (-15 -2818 ((-3 |t#1| "failed") |t#1|)) (-15 -3694 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -1747 ((-3 |t#1| "failed") |t#1|)) (-15 -2840 ((-3 |t#1| "failed") |t#1|)) (-15 -2876 ((-3 |t#1| "failed") |t#1|)) (-15 -3147 ((-3 |t#1| "failed") |t#1|)) (-15 -2232 ((-3 |t#1| "failed") |t#1|)) (-15 -1908 ((-3 |t#1| "failed") |t#1|)) (-15 -2442 ((-3 |t#1| "failed") |t#1|)) (-15 -3548 ((-3 |t#1| "failed") |t#1|)) (-15 -2734 ((-3 |t#1| "failed") |t#1|)) (-15 -1906 ((-3 |t#1| "failed") |t#1|)) (-15 -3208 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -1315 ((-3 |t#1| "failed") |t#1|)) (-15 -2036 ((-3 |t#1| "failed") |t#1|)) (-15 -2076 ((-3 |t#1| "failed") |t#1|)) (-15 -2163 ((-3 |t#1| "failed") |t#1|)) (-15 -2942 ((-3 |t#1| "failed") |t#1|)) (-15 -1995 ((-3 |t#1| "failed") |t#1|))))
+((-3362 ((|#4| |#4| (-638 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-1377 ((|#4| |#4| (-638 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4120 ((|#4| (-1 |#4| (-945 |#1|)) |#4|) 30)))
+(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1377 (|#4| |#4| |#3|)) (-15 -1377 (|#4| |#4| (-638 |#3|))) (-15 -3362 (|#4| |#4| |#3|)) (-15 -3362 (|#4| |#4| (-638 |#3|))) (-15 -4120 (|#4| (-1 |#4| (-945 |#1|)) |#4|))) (-1042) (-787) (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166))))) (-942 (-945 |#1|) |#2| |#3|)) (T -977))
+((-4120 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-945 *4))) (-4 *4 (-1042)) (-4 *2 (-942 (-945 *4) *5 *6)) (-4 *5 (-787)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166)))))) (-5 *1 (-977 *4 *5 *6 *2)))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6)))) (-3362 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3)))) (-1377 (*1 *2 *2 *3) (-12 (-5 *3 (-638 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6)))) (-1377 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)) (-15 -2389 ((-3 $ "failed") (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3)))))
+(-10 -7 (-15 -1377 (|#4| |#4| |#3|)) (-15 -1377 (|#4| |#4| (-638 |#3|))) (-15 -3362 (|#4| |#4| |#3|)) (-15 -3362 (|#4| |#4| (-638 |#3|))) (-15 -4120 (|#4| (-1 |#4| (-945 |#1|)) |#4|)))
+((-4319 ((|#2| |#3|) 35)) (-2529 (((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 73)) (-1625 (((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 89)))
+(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1625 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -2529 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -4319 (|#2| |#3|))) (-348) (-1229 |#1|) (-1229 |#2|) (-718 |#2| |#3|)) (T -978))
+((-4319 (*1 *2 *3) (-12 (-4 *3 (-1229 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-978 *4 *2 *3 *5)) (-4 *4 (-348)) (-4 *5 (-718 *2 *3)))) (-2529 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) (-5 *2 (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5)))) (-1625 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -3711 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5)))))
+(-10 -7 (-15 -1625 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -2529 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -4319 (|#2| |#3|)))
+((-3255 (((-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))) (-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561))))) 68)))
+(((-979 |#1| |#2|) (-10 -7 (-15 -3255 ((-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))) (-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561))))))) (-638 (-1166)) (-765)) (T -979))
+((-3255 (*1 *2 *2) (-12 (-5 *2 (-980 (-406 (-561)) (-858 *3) (-239 *4 (-765)) (-246 *3 (-406 (-561))))) (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-979 *3 *4)))))
+(-10 -7 (-15 -3255 ((-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))) (-980 (-406 (-561)) (-858 |#1|) (-239 |#2| (-765)) (-246 |#1| (-406 (-561)))))))
+((-4011 (((-112) $ $) NIL)) (-3957 (((-3 (-112) "failed") $) 69)) (-3699 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-1882 (($ $ (-3 (-112) "failed")) 70)) (-3381 (($ (-638 |#4|) |#4|) 25)) (-1764 (((-1148) $) NIL)) (-1692 (($ $) 67)) (-1714 (((-1110) $) NIL)) (-1928 (((-112) $) 68)) (-3170 (($) 30)) (-2749 ((|#4| $) 72)) (-2247 (((-638 |#4|) $) 71)) (-4022 (((-856) $) 66)) (-1733 (((-112) $ $) NIL)))
+(((-980 |#1| |#2| |#3| |#4|) (-13 (-1090) (-608 (-856)) (-10 -8 (-15 -3170 ($)) (-15 -3381 ($ (-638 |#4|) |#4|)) (-15 -3957 ((-3 (-112) "failed") $)) (-15 -1882 ($ $ (-3 (-112) "failed"))) (-15 -1928 ((-112) $)) (-15 -2247 ((-638 |#4|) $)) (-15 -2749 (|#4| $)) (-15 -1692 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3699 ($ $)) |%noBranch|) |%noBranch|))) (-450) (-844) (-787) (-942 |#1| |#3| |#2|)) (T -980))
+((-3170 (*1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) (-3381 (*1 *1 *2 *3) (-12 (-5 *2 (-638 *3)) (-4 *3 (-942 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *1 (-980 *4 *5 *6 *3)))) (-3957 (*1 *2 *1) (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-1928 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-2247 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-638 *6)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-2749 (*1 *2 *1) (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)))) (-1692 (*1 *1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) (-3699 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))))
+(-13 (-1090) (-608 (-856)) (-10 -8 (-15 -3170 ($)) (-15 -3381 ($ (-638 |#4|) |#4|)) (-15 -3957 ((-3 (-112) "failed") $)) (-15 -1882 ($ $ (-3 (-112) "failed"))) (-15 -1928 ((-112) $)) (-15 -2247 ((-638 |#4|) $)) (-15 -2749 (|#4| $)) (-15 -1692 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3699 ($ $)) |%noBranch|) |%noBranch|)))
+((-3145 (((-112) |#5| |#5|) 37)) (-2608 (((-112) |#5| |#5|) 51)) (-3857 (((-112) |#5| (-638 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-2838 (((-112) (-638 |#4|) (-638 |#4|)) 57)) (-4193 (((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) 62)) (-2189 (((-1258)) 33)) (-2616 (((-1258) (-1148) (-1148) (-1148)) 29)) (-1349 (((-638 |#5|) (-638 |#5|)) 80)) (-3743 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) 78)) (-3537 (((-638 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112)) 100)) (-3949 (((-112) |#5| |#5|) 46)) (-2086 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2811 (((-112) (-638 |#4|) (-638 |#4|)) 56)) (-2983 (((-112) (-638 |#4|) (-638 |#4|)) 58)) (-3863 (((-112) (-638 |#4|) (-638 |#4|)) 59)) (-3956 (((-3 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-3351 (((-638 |#5|) (-638 |#5|)) 42)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2616 ((-1258) (-1148) (-1148) (-1148))) (-15 -2189 ((-1258))) (-15 -3145 ((-112) |#5| |#5|)) (-15 -3351 ((-638 |#5|) (-638 |#5|))) (-15 -3949 ((-112) |#5| |#5|)) (-15 -2608 ((-112) |#5| |#5|)) (-15 -2838 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2811 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2983 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3863 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2086 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3857 ((-112) |#5| |#5|)) (-15 -3857 ((-112) |#5| (-638 |#5|))) (-15 -1349 ((-638 |#5|) (-638 |#5|))) (-15 -4193 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -3743 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-15 -3537 ((-638 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -3956 ((-3 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -981))
+((-3956 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3360 (-638 *9)) (|:| -1510 *4) (|:| |ineq| (-638 *9)))) (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-3537 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| -3360 (-638 *9)) (|:| -1510 *10) (|:| |ineq| (-638 *9))))) (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1510 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-4193 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-981 *5 *6 *7 *8 *3)))) (-3857 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2086 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3863 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2983 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2811 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2608 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3145 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2189 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2616 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2616 ((-1258) (-1148) (-1148) (-1148))) (-15 -2189 ((-1258))) (-15 -3145 ((-112) |#5| |#5|)) (-15 -3351 ((-638 |#5|) (-638 |#5|))) (-15 -3949 ((-112) |#5| |#5|)) (-15 -2608 ((-112) |#5| |#5|)) (-15 -2838 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2811 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2983 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3863 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2086 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3857 ((-112) |#5| |#5|)) (-15 -3857 ((-112) |#5| (-638 |#5|))) (-15 -1349 ((-638 |#5|) (-638 |#5|))) (-15 -4193 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -3743 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-15 -3537 ((-638 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -3956 ((-3 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2389 (((-1166) $) 15)) (-2484 (((-1148) $) 16)) (-3675 (($ (-1166) (-1148)) 14)) (-4022 (((-856) $) 13)))
+(((-982) (-13 (-608 (-856)) (-10 -8 (-15 -3675 ($ (-1166) (-1148))) (-15 -2389 ((-1166) $)) (-15 -2484 ((-1148) $))))) (T -982))
+((-3675 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3675 ($ (-1166) (-1148))) (-15 -2389 ((-1166) $)) (-15 -2484 ((-1148) $))))
+((-4120 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| (-1 |#2| |#1|) |#3|))) (-553) (-553) (-985 |#1|) (-985 |#2|)) (T -983))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-553)) (-4 *6 (-553)) (-4 *2 (-985 *6)) (-5 *1 (-983 *5 *6 *4 *2)) (-4 *4 (-985 *5)))))
+(-10 -7 (-15 -4120 (|#4| (-1 |#2| |#1|) |#3|)))
+((-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-1166) "failed") $) 65) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) 95)) (-3938 ((|#2| $) NIL) (((-1166) $) 60) (((-406 (-561)) $) NIL) (((-561) $) 92)) (-3602 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 112) (((-682 |#2|) (-682 $)) 28)) (-1332 (($) 98)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 75) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84)) (-3458 (($ $) 10)) (-1663 (((-3 $ "failed") $) 20)) (-4120 (($ (-1 |#2| |#2|) $) 22)) (-3721 (($) 16)) (-3841 (($ $) 54)) (-3238 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2861 (($ $) 12)) (-4174 (((-885 (-561)) $) 70) (((-885 (-378)) $) 79) (((-534) $) 40) (((-378) $) 44) (((-224) $) 47)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 90) (($ |#2|) NIL) (($ (-1166)) 57)) (-4259 (((-765)) 31)) (-1754 (((-112) $ $) 50)))
+(((-984 |#1| |#2|) (-10 -8 (-15 -1754 ((-112) |#1| |#1|)) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4174 ((-224) |#1|)) (-15 -4174 ((-378) |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4022 (|#1| (-1166))) (-15 -4017 ((-3 (-1166) "failed") |#1|)) (-15 -3938 ((-1166) |#1|)) (-15 -1332 (|#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -3602 ((-682 |#2|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| |#1|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-985 |#2|) (-553)) (T -984))
+((-4259 (*1 *2) (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-984 *3 *4)) (-4 *3 (-985 *4)))))
+(-10 -8 (-15 -1754 ((-112) |#1| |#1|)) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4174 ((-224) |#1|)) (-15 -4174 ((-378) |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4022 (|#1| (-1166))) (-15 -4017 ((-3 (-1166) "failed") |#1|)) (-15 -3938 ((-1166) |#1|)) (-15 -1332 (|#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -3631 ((-882 (-561) |#1|) |#1| (-885 (-561)) (-882 (-561) |#1|))) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -3602 ((-682 |#2|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| |#1|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2949 ((|#1| $) 138 (|has| |#1| (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-4046 (((-417 (-1162 $)) (-1162 $)) 129 (|has| |#1| (-902)))) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 132 (|has| |#1| (-902)))) (-1671 (((-112) $ $) 60)) (-2666 (((-561) $) 119 (|has| |#1| (-814)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 176) (((-3 (-1166) "failed") $) 127 (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) 110 (|has| |#1| (-1031 (-561)))) (((-3 (-561) "failed") $) 108 (|has| |#1| (-1031 (-561))))) (-3938 ((|#1| $) 177) (((-1166) $) 128 (|has| |#1| (-1031 (-1166)))) (((-406 (-561)) $) 111 (|has| |#1| (-1031 (-561)))) (((-561) $) 109 (|has| |#1| (-1031 (-561))))) (-1793 (($ $ $) 56)) (-3602 (((-682 (-561)) (-682 $)) 151 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 150 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 149) (((-682 |#1|) (-682 $)) 148)) (-3466 (((-3 $ "failed") $) 33)) (-1332 (($) 136 (|has| |#1| (-543)))) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2737 (((-112) $) 72)) (-3201 (((-112) $) 121 (|has| |#1| (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 145 (|has| |#1| (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 144 (|has| |#1| (-879 (-378))))) (-3113 (((-112) $) 31)) (-3458 (($ $) 140)) (-4030 ((|#1| $) 142)) (-1663 (((-3 $ "failed") $) 107 (|has| |#1| (-1141)))) (-2110 (((-112) $) 120 (|has| |#1| (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-3443 (($ $ $) 117 (|has| |#1| (-844)))) (-2986 (($ $ $) 116 (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) 168)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-3721 (($) 106 (|has| |#1| (-1141)) CONST)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-3841 (($ $) 137 (|has| |#1| (-306)))) (-1388 ((|#1| $) 134 (|has| |#1| (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) 131 (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 130 (|has| |#1| (-902)))) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 170 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 169 (|has| |#1| (-512 (-1166) |#1|)))) (-3569 (((-765) $) 59)) (-2277 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-3238 (($ $) 167 (|has| |#1| (-232))) (($ $ (-765)) 165 (|has| |#1| (-232))) (($ $ (-1166)) 163 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 162 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 161 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 160 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2861 (($ $) 139)) (-4045 ((|#1| $) 141)) (-4174 (((-885 (-561)) $) 147 (|has| |#1| (-609 (-885 (-561))))) (((-885 (-378)) $) 146 (|has| |#1| (-609 (-885 (-378))))) (((-534) $) 124 (|has| |#1| (-609 (-534)))) (((-378) $) 123 (|has| |#1| (-1015))) (((-224) $) 122 (|has| |#1| (-1015)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 133 (-2170 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ |#1|) 180) (($ (-1166)) 126 (|has| |#1| (-1031 (-1166))))) (-1760 (((-3 $ "failed") $) 125 (-4007 (|has| |#1| (-144)) (-2170 (|has| $ (-144)) (|has| |#1| (-902)))))) (-4259 (((-765)) 28)) (-2432 ((|#1| $) 135 (|has| |#1| (-543)))) (-3168 (((-112) $ $) 40)) (-3749 (($ $) 118 (|has| |#1| (-814)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $) 166 (|has| |#1| (-232))) (($ $ (-765)) 164 (|has| |#1| (-232))) (($ $ (-1166)) 159 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 158 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 157 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 156 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1782 (((-112) $ $) 114 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 113 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 115 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 112 (|has| |#1| (-844)))) (-1833 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
+(((-985 |#1|) (-139) (-553)) (T -985))
+((-1833 (*1 *1 *2 *2) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-2861 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306)))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306)))) (-1332 (*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-543)) (-4 *2 (-553)))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543)))))
+(-13 (-362) (-38 |t#1|) (-1031 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-877 |t#1|) (-399 |t#1|) (-10 -8 (-15 -1833 ($ |t#1| |t#1|)) (-15 -4030 (|t#1| $)) (-15 -4045 (|t#1| $)) (-15 -3458 ($ $)) (-15 -2861 ($ $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-1031 (-561))) (PROGN (-6 (-1031 (-561))) (-6 (-1031 (-406 (-561))))) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|) (IF (|has| |t#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1031 (-1166))) (-6 (-1031 (-1166))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -2949 (|t#1| $)) (-15 -3841 ($ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -1332 ($)) (-15 -2432 (|t#1| $)) (-15 -1388 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-902)) (-6 (-902)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 #1=(-1166)) |has| |#1| (-1031 (-1166))) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-224)) |has| |#1| (-1015)) ((-609 (-378)) |has| |#1| (-1015)) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-609 (-885 (-378))) |has| |#1| (-609 (-885 (-378)))) ((-609 (-885 (-561))) |has| |#1| (-609 (-885 (-561)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-450) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-785) |has| |#1| (-814)) ((-786) |has| |#1| (-814)) ((-788) |has| |#1| (-814)) ((-789) |has| |#1| (-814)) ((-814) |has| |#1| (-814)) ((-842) |has| |#1| (-814)) ((-844) -4007 (|has| |#1| (-844)) (|has| |#1| (-814))) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-378)) |has| |#1| (-879 (-378))) ((-879 (-561)) |has| |#1| (-879 (-561))) ((-877 |#1|) . T) ((-902) |has| |#1| (-902)) ((-913) . T) ((-1015) |has| |#1| (-1015)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-561))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #1#) |has| |#1| (-1031 (-1166))) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-1141)) ((-1205) . T) ((-1209) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-1987 (($ (-1132 |#1| |#2|)) 11)) (-2855 (((-1132 |#1| |#2|) $) 12)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2277 ((|#2| $ (-239 |#1| |#2|)) 16)) (-4022 (((-856) $) NIL)) (-2211 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL)))
+(((-986 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1987 ($ (-1132 |#1| |#2|))) (-15 -2855 ((-1132 |#1| |#2|) $)) (-15 -2277 (|#2| $ (-239 |#1| |#2|))))) (-914) (-362)) (T -986))
+((-1987 (*1 *1 *2) (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-914)) (-4 *4 (-362)) (-5 *1 (-986 *3 *4)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-914)) (-4 *4 (-362)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-914)) (-4 *2 (-362)) (-5 *1 (-986 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1987 ($ (-1132 |#1| |#2|))) (-15 -2855 ((-1132 |#1| |#2|) $)) (-15 -2277 (|#2| $ (-239 |#1| |#2|)))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1739 (((-1125) $) 9)) (-4022 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-987) (-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $))))) (T -987))
+((-1739 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987)))))
+(-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $))))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) 8)) (-1965 (($) 7 T CONST)) (-3830 (($ $) 46)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-3617 (((-765) $) 45)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2196 ((|#1| $) 44)) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3991 ((|#1| |#1| $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-3252 ((|#1| $) 47)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 42)) (-2016 ((|#1| $) 43)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-988 |#1|) (-139) (-1205)) (T -988))
+((-3991 (*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4390) (-15 -3991 (|t#1| |t#1| $)) (-15 -3252 (|t#1| $)) (-15 -3830 ($ $)) (-15 -3617 ((-765) $)) (-15 -2196 (|t#1| $)) (-15 -2016 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-2800 (((-112) $) 42)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3938 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#2| $) 43)) (-2937 (((-3 (-406 (-561)) "failed") $) 78)) (-3798 (((-112) $) 72)) (-3354 (((-406 (-561)) $) 76)) (-3113 (((-112) $) 41)) (-1672 ((|#2| $) 22)) (-4120 (($ (-1 |#2| |#2|) $) 19)) (-1540 (($ $) 61)) (-3238 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4174 (((-534) $) 67)) (-2260 (($ $) 17)) (-4022 (((-856) $) 56) (($ (-561)) 38) (($ |#2|) 36) (($ (-406 (-561))) NIL)) (-4259 (((-765)) 10)) (-3749 ((|#2| $) 71)) (-1733 (((-112) $ $) 25)) (-1754 (((-112) $ $) 69)) (-1824 (($ $) 29) (($ $ $) 28)) (-1813 (($ $ $) 26)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL)))
+(((-989 |#1| |#2|) (-10 -8 (-15 -4022 (|#1| (-406 (-561)))) (-15 -1754 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 -1540 (|#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3749 (|#2| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 -3113 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -2800 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-990 |#2|) (-171)) (T -989))
+((-4259 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-989 *3 *4)) (-4 *3 (-990 *4)))))
+(-10 -8 (-15 -4022 (|#1| (-406 (-561)))) (-15 -1754 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-561)) |#1|)) (-15 * (|#1| |#1| (-406 (-561)))) (-15 -1540 (|#1| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3749 (|#2| |#1|)) (-15 -1672 (|#2| |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -4120 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 -3113 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -2800 ((-112) |#1|)) (-15 * (|#1| (-914) |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-4017 (((-3 (-561) "failed") $) 118 (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 116 (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) 113)) (-3938 (((-561) $) 117 (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) 115 (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) 114)) (-3602 (((-682 (-561)) (-682 $)) 88 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 87 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 86) (((-682 |#1|) (-682 $)) 85)) (-3466 (((-3 $ "failed") $) 33)) (-1673 ((|#1| $) 78)) (-2937 (((-3 (-406 (-561)) "failed") $) 74 (|has| |#1| (-543)))) (-3798 (((-112) $) 76 (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) 75 (|has| |#1| (-543)))) (-2208 (($ |#1| |#1| |#1| |#1|) 79)) (-3113 (((-112) $) 31)) (-1672 ((|#1| $) 80)) (-3443 (($ $ $) 67 (|has| |#1| (-844)))) (-2986 (($ $ $) 66 (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) 89)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71 (|has| |#1| (-362)))) (-2900 ((|#1| $) 81)) (-2957 ((|#1| $) 82)) (-3233 ((|#1| $) 83)) (-1714 (((-1110) $) 10)) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) 91 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 90 (|has| |#1| (-512 (-1166) |#1|)))) (-2277 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-3238 (($ $) 112 (|has| |#1| (-232))) (($ $ (-765)) 110 (|has| |#1| (-232))) (($ $ (-1166)) 108 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 107 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 106 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 105 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4174 (((-534) $) 72 (|has| |#1| (-609 (-534))))) (-2260 (($ $) 84)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 38) (($ (-406 (-561))) 61 (-4007 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-1760 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-3749 ((|#1| $) 77 (|has| |#1| (-1051)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $) 111 (|has| |#1| (-232))) (($ $ (-765)) 109 (|has| |#1| (-232))) (($ $ (-1166)) 104 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 103 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 102 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 101 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1782 (((-112) $ $) 64 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 63 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 65 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 62 (|has| |#1| (-844)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70 (|has| |#1| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-561))) 69 (|has| |#1| (-362))) (($ (-406 (-561)) $) 68 (|has| |#1| (-362)))))
+(((-990 |#1|) (-139) (-171)) (T -990))
+((-2260 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-2957 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-2208 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))) (-2937 (*1 *2 *1) (|partial| -12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-561))))))
+(-13 (-38 |t#1|) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -2260 ($ $)) (-15 -3233 (|t#1| $)) (-15 -2957 (|t#1| $)) (-15 -2900 (|t#1| $)) (-15 -1672 (|t#1| $)) (-15 -2208 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1673 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3749 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3798 ((-112) $)) (-15 -3354 ((-406 (-561)) $)) (-15 -2937 ((-3 (-406 (-561)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-362))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4007 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 #0#) |has| |#1| (-362)) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-362)) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1048 #0#) |has| |#1| (-362)) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4120 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#3| (-1 |#4| |#2|) |#1|))) (-990 |#2|) (-171) (-990 |#4|) (-171)) (T -991))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-990 *6)) (-5 *1 (-991 *4 *5 *2 *6)) (-4 *4 (-990 *5)))))
+(-10 -7 (-15 -4120 (|#3| (-1 |#4| |#2|) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1673 ((|#1| $) 12)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-543)))) (-3798 (((-112) $) NIL (|has| |#1| (-543)))) (-3354 (((-406 (-561)) $) NIL (|has| |#1| (-543)))) (-2208 (($ |#1| |#1| |#1| |#1|) 16)) (-3113 (((-112) $) NIL)) (-1672 ((|#1| $) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-2900 ((|#1| $) 15)) (-2957 ((|#1| $) 14)) (-3233 ((|#1| $) 13)) (-1714 (((-1110) $) NIL)) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-2277 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3238 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-2260 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-3749 ((|#1| $) NIL (|has| |#1| (-1051)))) (-2211 (($) 8 T CONST)) (-2222 (($) 10 T CONST)) (-3122 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-362)))))
+(((-992 |#1|) (-990 |#1|) (-171)) (T -992))
+NIL
+(-990 |#1|)
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1630 (((-112) $ (-765)) NIL)) (-1965 (($) NIL T CONST)) (-3830 (($ $) 20)) (-2326 (($ (-638 |#1|)) 29)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-3617 (((-765) $) 22)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3211 ((|#1| $) 24)) (-3671 (($ |#1| $) 15)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2196 ((|#1| $) 23)) (-3522 ((|#1| $) 19)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3991 ((|#1| |#1| $) 14)) (-1928 (((-112) $) 17)) (-3170 (($) NIL)) (-3252 ((|#1| $) 18)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) NIL)) (-2016 ((|#1| $) 26)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-993 |#1|) (-13 (-988 |#1|) (-10 -8 (-15 -2326 ($ (-638 |#1|))))) (-1090)) (T -993))
+((-2326 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-993 *3)))))
+(-13 (-988 |#1|) (-10 -8 (-15 -2326 ($ (-638 |#1|)))))
+((-1665 (($ $) 12)) (-2556 (($ $ (-561)) 13)))
+(((-994 |#1|) (-10 -8 (-15 -1665 (|#1| |#1|)) (-15 -2556 (|#1| |#1| (-561)))) (-995)) (T -994))
+NIL
+(-10 -8 (-15 -1665 (|#1| |#1|)) (-15 -2556 (|#1| |#1| (-561))))
+((-1665 (($ $) 6)) (-2556 (($ $ (-561)) 7)) (** (($ $ (-406 (-561))) 8)))
+(((-995) (-139)) (T -995))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-561))))) (-2556 (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-561)))) (-1665 (*1 *1 *1) (-4 *1 (-995))))
+(-13 (-10 -8 (-15 -1665 ($ $)) (-15 -2556 ($ $ (-561))) (-15 ** ($ $ (-406 (-561))))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3142 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2851 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3359 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-2695 (((-682 (-406 |#2|)) (-1253 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-1744 (((-406 |#2|) $) NIL)) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| (-406 |#2|) (-348)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3422 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1671 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1393 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-2156 (((-112)) NIL)) (-2428 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| (-406 |#2|) (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-561))))) (((-406 |#2|) $) NIL)) (-2257 (($ (-1253 (-406 |#2|)) (-1253 $)) NIL) (($ (-1253 (-406 |#2|))) 70) (($ (-1253 |#2|) |#2|) NIL)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1793 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4145 (((-682 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-406 |#2|) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-4194 (((-1253 $) (-1253 $)) NIL)) (-3185 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3466 (((-3 $ "failed") $) NIL)) (-3727 (((-638 (-638 |#1|))) NIL (|has| |#1| (-367)))) (-4295 (((-112) |#1| |#1|) NIL)) (-1569 (((-914)) NIL)) (-1332 (($) NIL (|has| (-406 |#2|) (-367)))) (-3189 (((-112)) NIL)) (-2788 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-1774 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| (-406 |#2|) (-362)))) (-2401 (($ $) NIL)) (-2022 (($) NIL (|has| (-406 |#2|) (-348)))) (-1803 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-1575 (($ $ (-765)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2737 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4163 (((-914) $) NIL (|has| (-406 |#2|) (-348))) (((-827 (-914)) $) NIL (|has| (-406 |#2|) (-348)))) (-3113 (((-112) $) NIL)) (-3668 (((-765)) NIL)) (-4329 (((-1253 $) (-1253 $)) NIL)) (-1672 (((-406 |#2|) $) NIL)) (-3052 (((-638 (-945 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-1663 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2692 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-3198 (((-914) $) NIL (|has| (-406 |#2|) (-367)))) (-3174 ((|#3| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1764 (((-1148) $) NIL)) (-2269 (((-682 (-406 |#2|))) 52)) (-2650 (((-682 (-406 |#2|))) 51)) (-1540 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2962 (($ (-1253 |#2|) |#2|) 71)) (-3598 (((-682 (-406 |#2|))) 50)) (-2124 (((-682 (-406 |#2|))) 49)) (-3339 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2682 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 77)) (-1391 (((-1253 $)) 46)) (-1625 (((-1253 $)) 45)) (-2396 (((-112) $) NIL)) (-1656 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3721 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2413 (($ (-914)) NIL (|has| (-406 |#2|) (-367)))) (-3669 (((-3 |#2| "failed")) 63)) (-1714 (((-1110) $) NIL)) (-4199 (((-765)) NIL)) (-3158 (($) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| (-406 |#2|) (-362)))) (-1623 (($ (-638 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| (-406 |#2|) (-348)))) (-1657 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1756 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3569 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-2277 ((|#1| $ |#1| |#1|) NIL)) (-1867 (((-3 |#2| "failed")) 62)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2553 (((-406 |#2|) (-1253 $)) NIL) (((-406 |#2|)) 42)) (-1913 (((-765) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-3238 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2656 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3660 ((|#3|) 53)) (-1796 (($) NIL (|has| (-406 |#2|) (-348)))) (-3969 (((-1253 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 |#2|)) $) 72) (((-682 (-406 |#2|)) (-1253 $)) NIL)) (-4174 (((-1253 (-406 |#2|)) $) NIL) (($ (-1253 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-348)))) (-1299 (((-1253 $) (-1253 $)) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-561))) NIL (-4007 (|has| (-406 |#2|) (-1031 (-406 (-561)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1760 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2485 ((|#3| $) NIL)) (-4259 (((-765)) NIL)) (-3200 (((-112)) 60)) (-1811 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-3711 (((-1253 $)) 125)) (-3168 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3947 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3270 (((-112)) NIL)) (-2211 (($) 94 T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4007 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-561)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-561))) NIL (|has| (-406 |#2|) (-362)))))
+(((-996 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1209) (-1229 |#1|) (-1229 (-406 |#2|)) (-406 |#2|) (-765)) (T -996))
NIL
(-341 |#1| |#2| |#3|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1317 (((-635 (-558)) $) 54)) (-3097 (($ (-635 (-558))) 62)) (-1669 (((-558) $) 40 (|has| (-558) (-306)))) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL (|has| (-558) (-811)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) 49) (((-3 (-1163) "failed") $) NIL (|has| (-558) (-1028 (-1163)))) (((-3 (-406 (-558)) "failed") $) 47 (|has| (-558) (-1028 (-558)))) (((-3 (-558) "failed") $) 49 (|has| (-558) (-1028 (-558))))) (-3226 (((-558) $) NIL) (((-1163) $) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) NIL (|has| (-558) (-1028 (-558)))) (((-558) $) NIL (|has| (-558) (-1028 (-558))))) (-1709 (($ $ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| (-558) (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3692 (($) NIL (|has| (-558) (-543)))) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-1802 (((-635 (-558)) $) 60)) (-4053 (((-112) $) NIL (|has| (-558) (-811)))) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (|has| (-558) (-876 (-558)))) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (|has| (-558) (-876 (-378))))) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL)) (-3316 (((-558) $) 37)) (-2521 (((-3 $ "failed") $) NIL (|has| (-558) (-1138)))) (-2032 (((-112) $) NIL (|has| (-558) (-811)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-558) (-841)))) (-3397 (($ (-1 (-558) (-558)) $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL)) (-1823 (($) NIL (|has| (-558) (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1636 (($ $) NIL (|has| (-558) (-306))) (((-406 (-558)) $) 42)) (-3080 (((-1143 (-558)) $) 59)) (-4334 (($ (-635 (-558)) (-635 (-558))) 63)) (-4259 (((-558) $) 53 (|has| (-558) (-543)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| (-558) (-899)))) (-3939 (((-417 $) $) NIL)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1369 (($ $ (-635 (-558)) (-635 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-558) (-558)) NIL (|has| (-558) (-308 (-558)))) (($ $ (-293 (-558))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-293 (-558)))) NIL (|has| (-558) (-308 (-558)))) (($ $ (-635 (-1163)) (-635 (-558))) NIL (|has| (-558) (-512 (-1163) (-558)))) (($ $ (-1163) (-558)) NIL (|has| (-558) (-512 (-1163) (-558))))) (-1562 (((-762) $) NIL)) (-2276 (($ $ (-558)) NIL (|has| (-558) (-285 (-558) (-558))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $) 11 (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-4218 (($ $) NIL)) (-3327 (((-558) $) 39)) (-2910 (((-635 (-558)) $) 61)) (-3441 (((-882 (-558)) $) NIL (|has| (-558) (-606 (-882 (-558))))) (((-882 (-378)) $) NIL (|has| (-558) (-606 (-882 (-378))))) (((-534) $) NIL (|has| (-558) (-606 (-534)))) (((-378) $) NIL (|has| (-558) (-1012))) (((-224) $) NIL (|has| (-558) (-1012)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-558) (-899))))) (-3940 (((-853) $) 77) (($ (-558)) 43) (($ $) NIL) (($ (-406 (-558))) 20) (($ (-558)) 43) (($ (-1163)) NIL (|has| (-558) (-1028 (-1163)))) (((-406 (-558)) $) 18)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-558) (-899))) (|has| (-558) (-144))))) (-2417 (((-762)) 9)) (-2912 (((-558) $) 51 (|has| (-558) (-543)))) (-2671 (((-112) $ $) NIL)) (-4241 (($ $) NIL (|has| (-558) (-811)))) (-2207 (($) 10 T CONST)) (-2220 (($) 12 T CONST)) (-3042 (($ $) NIL (|has| (-558) (-232))) (($ $ (-762)) NIL (|has| (-558) (-232))) (($ $ (-1163)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| (-558) (-890 (-1163)))) (($ $ (-1 (-558) (-558)) (-762)) NIL) (($ $ (-1 (-558) (-558))) NIL)) (-1757 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1708 (((-112) $ $) 14)) (-1749 (((-112) $ $) NIL (|has| (-558) (-841)))) (-1728 (((-112) $ $) 33 (|has| (-558) (-841)))) (-1805 (($ $ $) 29) (($ (-558) (-558)) 31)) (-1796 (($ $) 15) (($ $ $) 23)) (-1785 (($ $ $) 21)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 25) (($ $ $) 27) (($ $ (-406 (-558))) NIL) (($ (-406 (-558)) $) NIL) (($ (-558) $) 25) (($ $ (-558)) NIL)))
-(((-994 |#1|) (-13 (-982 (-558)) (-605 (-406 (-558))) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -1317 ((-635 (-558)) $)) (-15 -3080 ((-1143 (-558)) $)) (-15 -1802 ((-635 (-558)) $)) (-15 -2910 ((-635 (-558)) $)) (-15 -3097 ($ (-635 (-558)))) (-15 -4334 ($ (-635 (-558)) (-635 (-558)))))) (-558)) (T -994))
-((-1636 (*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-2910 (*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-3097 (*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))) (-4334 (*1 *1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
-(-13 (-982 (-558)) (-605 (-406 (-558))) (-10 -8 (-15 -1636 ((-406 (-558)) $)) (-15 -1317 ((-635 (-558)) $)) (-15 -3080 ((-1143 (-558)) $)) (-15 -1802 ((-635 (-558)) $)) (-15 -2910 ((-635 (-558)) $)) (-15 -3097 ($ (-635 (-558)))) (-15 -4334 ($ (-635 (-558)) (-635 (-558))))))
-((-3803 (((-52) (-406 (-558)) (-558)) 9)))
-(((-995) (-10 -7 (-15 -3803 ((-52) (-406 (-558)) (-558))))) (T -995))
-((-3803 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-558))) (-5 *4 (-558)) (-5 *2 (-52)) (-5 *1 (-995)))))
-(-10 -7 (-15 -3803 ((-52) (-406 (-558)) (-558))))
-((-2507 (((-558)) 13)) (-3807 (((-558)) 16)) (-1967 (((-1251) (-558)) 15)) (-3897 (((-558) (-558)) 17) (((-558)) 12)))
-(((-996) (-10 -7 (-15 -3897 ((-558))) (-15 -2507 ((-558))) (-15 -3897 ((-558) (-558))) (-15 -1967 ((-1251) (-558))) (-15 -3807 ((-558))))) (T -996))
-((-3807 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-996)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))) (-2507 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))) (-3897 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))))
-(-10 -7 (-15 -3897 ((-558))) (-15 -2507 ((-558))) (-15 -3897 ((-558) (-558))) (-15 -1967 ((-1251) (-558))) (-15 -3807 ((-558))))
-((-1758 (((-417 |#1|) |#1|) 41)) (-3939 (((-417 |#1|) |#1|) 40)))
-(((-997 |#1|) (-10 -7 (-15 -3939 ((-417 |#1|) |#1|)) (-15 -1758 ((-417 |#1|) |#1|))) (-1222 (-406 (-558)))) (T -997))
-((-1758 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1222 (-406 (-558)))))) (-3939 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1222 (-406 (-558)))))))
-(-10 -7 (-15 -3939 ((-417 |#1|) |#1|)) (-15 -1758 ((-417 |#1|) |#1|)))
-((-3904 (((-3 (-406 (-558)) "failed") |#1|) 15)) (-2288 (((-112) |#1|) 14)) (-1673 (((-406 (-558)) |#1|) 10)))
-(((-998 |#1|) (-10 -7 (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|))) (-1028 (-406 (-558)))) (T -998))
-((-3904 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3)) (-4 *3 (-1028 *2)))) (-2288 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-998 *3)) (-4 *3 (-1028 (-406 (-558)))))) (-1673 (*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3)) (-4 *3 (-1028 *2)))))
-(-10 -7 (-15 -1673 ((-406 (-558)) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -3904 ((-3 (-406 (-558)) "failed") |#1|)))
-((-4077 ((|#2| $ "value" |#2|) 12)) (-2276 ((|#2| $ "value") 10)) (-4171 (((-112) $ $) 18)))
-(((-999 |#1| |#2|) (-10 -8 (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -4171 ((-112) |#1| |#1|)) (-15 -2276 (|#2| |#1| "value"))) (-1000 |#2|) (-1200)) (T -999))
-NIL
-(-10 -8 (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -4171 ((-112) |#1| |#1|)) (-15 -2276 (|#2| |#1| "value")))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-3457 (($) 7 T CONST)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47)) (-1904 (((-558) $ $) 44)) (-1609 (((-112) $) 46)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1000 |#1|) (-139) (-1200)) (T -1000))
-((-1384 (*1 *2 *1) (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3)))) (-1352 (*1 *2 *1) (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1200)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1000 *2)) (-4 *2 (-1200)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))) (-1904 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))) (-4171 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-2201 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-3697 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4384)) (-4 *1 (-1000 *3)) (-4 *3 (-1200)))) (-4077 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4384)) (-4 *1 (-1000 *2)) (-4 *2 (-1200)))) (-3083 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1000 *2)) (-4 *2 (-1200)))))
-(-13 (-487 |t#1|) (-10 -8 (-15 -1384 ((-635 $) $)) (-15 -1352 ((-635 $) $)) (-15 -3355 ((-112) $)) (-15 -2426 (|t#1| $)) (-15 -2276 (|t#1| $ "value")) (-15 -1609 ((-112) $)) (-15 -3783 ((-635 |t#1|) $)) (-15 -1904 ((-558) $ $)) (IF (|has| |t#1| (-1087)) (PROGN (-15 -4171 ((-112) $ $)) (-15 -2201 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4384)) (PROGN (-15 -3697 ($ $ (-635 $))) (-15 -4077 (|t#1| $ "value" |t#1|)) (-15 -3083 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3948 (($ $) 9) (($ $ (-911)) 43) (($ (-406 (-558))) 13) (($ (-558)) 15)) (-2363 (((-3 $ "failed") (-1159 $) (-911) (-853)) 23) (((-3 $ "failed") (-1159 $) (-911)) 28)) (-2136 (($ $ (-558)) 49)) (-2417 (((-762)) 17)) (-2537 (((-635 $) (-1159 $)) NIL) (((-635 $) (-1159 (-406 (-558)))) 54) (((-635 $) (-1159 (-558))) 59) (((-635 $) (-942 $)) 63) (((-635 $) (-942 (-406 (-558)))) 67) (((-635 $) (-942 (-558))) 71)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ $ (-406 (-558))) 47)))
-(((-1001 |#1|) (-10 -8 (-15 -3948 (|#1| (-558))) (-15 -3948 (|#1| (-406 (-558)))) (-15 -3948 (|#1| |#1| (-911))) (-15 -2537 ((-635 |#1|) (-942 (-558)))) (-15 -2537 ((-635 |#1|) (-942 (-406 (-558))))) (-15 -2537 ((-635 |#1|) (-942 |#1|))) (-15 -2537 ((-635 |#1|) (-1159 (-558)))) (-15 -2537 ((-635 |#1|) (-1159 (-406 (-558))))) (-15 -2537 ((-635 |#1|) (-1159 |#1|))) (-15 -2363 ((-3 |#1| "failed") (-1159 |#1|) (-911))) (-15 -2363 ((-3 |#1| "failed") (-1159 |#1|) (-911) (-853))) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2136 (|#1| |#1| (-558))) (-15 -3948 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -2417 ((-762))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911)))) (-1002)) (T -1001))
-((-2417 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1001 *3)) (-4 *3 (-1002)))))
-(-10 -8 (-15 -3948 (|#1| (-558))) (-15 -3948 (|#1| (-406 (-558)))) (-15 -3948 (|#1| |#1| (-911))) (-15 -2537 ((-635 |#1|) (-942 (-558)))) (-15 -2537 ((-635 |#1|) (-942 (-406 (-558))))) (-15 -2537 ((-635 |#1|) (-942 |#1|))) (-15 -2537 ((-635 |#1|) (-1159 (-558)))) (-15 -2537 ((-635 |#1|) (-1159 (-406 (-558))))) (-15 -2537 ((-635 |#1|) (-1159 |#1|))) (-15 -2363 ((-3 |#1| "failed") (-1159 |#1|) (-911))) (-15 -2363 ((-3 |#1| "failed") (-1159 |#1|) (-911) (-853))) (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2136 (|#1| |#1| (-558))) (-15 -3948 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -2417 ((-762))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 91)) (-3244 (($ $) 92)) (-4326 (((-112) $) 94)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 111)) (-4110 (((-417 $) $) 112)) (-3948 (($ $) 75) (($ $ (-911)) 61) (($ (-406 (-558))) 60) (($ (-558)) 59)) (-1599 (((-112) $ $) 102)) (-1334 (((-558) $) 128)) (-3457 (($) 17 T CONST)) (-2363 (((-3 $ "failed") (-1159 $) (-911) (-853)) 69) (((-3 $ "failed") (-1159 $) (-911)) 68)) (-3302 (((-3 (-558) "failed") $) 88 (|has| (-406 (-558)) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 86 (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-3 (-406 (-558)) "failed") $) 83)) (-3226 (((-558) $) 87 (|has| (-406 (-558)) (-1028 (-558)))) (((-406 (-558)) $) 85 (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-406 (-558)) $) 84)) (-1505 (($ $ (-853)) 58)) (-1752 (($ $ (-853)) 57)) (-1709 (($ $ $) 106)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 105)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 100)) (-2992 (((-112) $) 113)) (-4053 (((-112) $) 126)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 74)) (-2032 (((-112) $) 127)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 109)) (-2142 (($ $ $) 125)) (-2281 (($ $ $) 124)) (-1598 (((-3 (-1159 $) "failed") $) 70)) (-2119 (((-3 (-853) "failed") $) 72)) (-3698 (((-3 (-1159 $) "failed") $) 71)) (-1500 (($ (-635 $)) 98) (($ $ $) 97)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 114)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 99)) (-1544 (($ (-635 $)) 96) (($ $ $) 95)) (-3939 (((-417 $) $) 110)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 107)) (-2861 (((-3 $ "failed") $ $) 90)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 101)) (-1562 (((-762) $) 103)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 104)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 118) (($ $) 89) (($ (-406 (-558))) 82) (($ (-558)) 81) (($ (-406 (-558))) 78)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 93)) (-1422 (((-406 (-558)) $ $) 56)) (-2537 (((-635 $) (-1159 $)) 67) (((-635 $) (-1159 (-406 (-558)))) 66) (((-635 $) (-1159 (-558))) 65) (((-635 $) (-942 $)) 64) (((-635 $) (-942 (-406 (-558)))) 63) (((-635 $) (-942 (-558))) 62)) (-4241 (($ $) 129)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1757 (((-112) $ $) 122)) (-1737 (((-112) $ $) 121)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 123)) (-1728 (((-112) $ $) 120)) (-1805 (($ $ $) 119)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 115) (($ $ (-406 (-558))) 73)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ (-406 (-558)) $) 117) (($ $ (-406 (-558))) 116) (($ (-558) $) 80) (($ $ (-558)) 79) (($ (-406 (-558)) $) 77) (($ $ (-406 (-558))) 76)))
-(((-1002) (-139)) (T -1002))
-((-3948 (*1 *1 *1) (-4 *1 (-1002))) (-2119 (*1 *2 *1) (|partial| -12 (-4 *1 (-1002)) (-5 *2 (-853)))) (-3698 (*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))) (-1598 (*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))) (-2363 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-5 *4 (-853)) (-4 *1 (-1002)))) (-2363 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-4 *1 (-1002)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-1159 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-911)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1002)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1002)))) (-1505 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))) (-1422 (*1 *2 *1 *1) (-12 (-4 *1 (-1002)) (-5 *2 (-406 (-558))))))
-(-13 (-146) (-839) (-171) (-362) (-410 (-406 (-558))) (-38 (-558)) (-38 (-406 (-558))) (-992) (-10 -8 (-15 -2119 ((-3 (-853) "failed") $)) (-15 -3698 ((-3 (-1159 $) "failed") $)) (-15 -1598 ((-3 (-1159 $) "failed") $)) (-15 -2363 ((-3 $ "failed") (-1159 $) (-911) (-853))) (-15 -2363 ((-3 $ "failed") (-1159 $) (-911))) (-15 -2537 ((-635 $) (-1159 $))) (-15 -2537 ((-635 $) (-1159 (-406 (-558))))) (-15 -2537 ((-635 $) (-1159 (-558)))) (-15 -2537 ((-635 $) (-942 $))) (-15 -2537 ((-635 $) (-942 (-406 (-558))))) (-15 -2537 ((-635 $) (-942 (-558)))) (-15 -3948 ($ $ (-911))) (-15 -3948 ($ $)) (-15 -3948 ($ (-406 (-558)))) (-15 -3948 ($ (-558))) (-15 -1505 ($ $ (-853))) (-15 -1752 ($ $ (-853))) (-15 -1422 ((-406 (-558)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 #1=(-558)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-410 (-406 (-558))) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 #1#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 #1#) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-910) . T) ((-992) . T) ((-1028 (-406 (-558))) . T) ((-1028 (-558)) |has| (-406 (-558)) (-1028 (-558))) ((-1045 #0#) . T) ((-1045 #1#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
-((-2028 (((-2 (|:| |ans| |#2|) (|:| -1540 |#2|) (|:| |sol?| (-112))) (-558) |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65)))
-(((-1003 |#1| |#2|) (-10 -7 (-15 -2028 ((-2 (|:| |ans| |#2|) (|:| -1540 |#2|) (|:| |sol?| (-112))) (-558) |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-27) (-429 |#1|))) (T -1003))
-((-2028 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1163)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2475 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1185) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3))) (-5 *3 (-558)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1540 *4) (|:| |sol?| (-112)))) (-5 *1 (-1003 *8 *4)))))
-(-10 -7 (-15 -2028 ((-2 (|:| |ans| |#2|) (|:| -1540 |#2|) (|:| |sol?| (-112))) (-558) |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-4305 (((-3 (-635 |#2|) "failed") (-558) |#2| |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-1004 |#1| |#2|) (-10 -7 (-15 -4305 ((-3 (-635 |#2|) "failed") (-558) |#2| |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))) (-13 (-1185) (-27) (-429 |#1|))) (T -1004))
-((-4305 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1163)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2475 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1185) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3))) (-5 *3 (-558)) (-5 *2 (-635 *4)) (-5 *1 (-1004 *8 *4)))))
-(-10 -7 (-15 -4305 ((-3 (-635 |#2|) "failed") (-558) |#2| |#2| |#2| (-1163) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2475 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3528 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3846 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)) 31)) (-3981 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3273 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 59)) (-2916 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 64)))
-(((-1005 |#1| |#2|) (-10 -7 (-15 -3981 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3273 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2916 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3528 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3846 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1028 (-558))) (-1222 |#1|)) (T -1005))
-((-3528 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1222 *6)) (-4 *6 (-13 (-362) (-146) (-1028 *4))) (-5 *4 (-558)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3846 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1005 *6 *3)))) (-2916 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1005 *4 *5)) (-5 *3 (-406 *5)))) (-3981 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3273 *6))) (-5 *1 (-1005 *5 *6)) (-5 *3 (-406 *6)))))
-(-10 -7 (-15 -3981 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3273 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2916 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3528 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3846 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|))))
-((-1564 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3273 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-3530 (((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33)))
-(((-1006 |#1| |#2|) (-10 -7 (-15 -1564 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3273 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3530 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1028 (-558))) (-1222 |#1|)) (T -1006))
-((-3530 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4)) (-5 *2 (-635 (-406 *5))) (-5 *1 (-1006 *4 *5)) (-5 *3 (-406 *5)))) (-1564 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3273 *6))) (-5 *1 (-1006 *5 *6)) (-5 *3 (-406 *6)))))
-(-10 -7 (-15 -1564 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3273 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3530 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))))
-((-2485 (((-1 |#1|) (-635 (-2 (|:| -2426 |#1|) (|:| -4173 (-558))))) 37)) (-1822 (((-1 |#1|) (-1089 |#1|)) 45)) (-1747 (((-1 |#1|) (-1246 |#1|) (-1246 (-558)) (-558)) 34)))
-(((-1007 |#1|) (-10 -7 (-15 -1822 ((-1 |#1|) (-1089 |#1|))) (-15 -2485 ((-1 |#1|) (-635 (-2 (|:| -2426 |#1|) (|:| -4173 (-558)))))) (-15 -1747 ((-1 |#1|) (-1246 |#1|) (-1246 (-558)) (-558)))) (-1087)) (T -1007))
-((-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1246 *6)) (-5 *4 (-1246 (-558))) (-5 *5 (-558)) (-4 *6 (-1087)) (-5 *2 (-1 *6)) (-5 *1 (-1007 *6)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -2426 *4) (|:| -4173 (-558))))) (-4 *4 (-1087)) (-5 *2 (-1 *4)) (-5 *1 (-1007 *4)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-1089 *4)) (-4 *4 (-1087)) (-5 *2 (-1 *4)) (-5 *1 (-1007 *4)))))
-(-10 -7 (-15 -1822 ((-1 |#1|) (-1089 |#1|))) (-15 -2485 ((-1 |#1|) (-635 (-2 (|:| -2426 |#1|) (|:| -4173 (-558)))))) (-15 -1747 ((-1 |#1|) (-1246 |#1|) (-1246 (-558)) (-558))))
-((-2532 (((-762) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1008 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2532 ((-762) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1222 |#1|) (-1222 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1008))
-((-2532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1222 *6)) (-4 *4 (-1222 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-762)) (-5 *1 (-1008 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -2532 ((-762) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3929 (((-112) $ $) NIL)) (-2154 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) NIL) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-1122) $) 11)) (-1708 (((-112) $ $) NIL)))
-(((-1009) (-13 (-1070) (-10 -8 (-15 -2154 ((-1122) $)) (-15 -3190 ((-1122) $))))) (T -1009))
-((-2154 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009)))))
-(-13 (-1070) (-10 -8 (-15 -2154 ((-1122) $)) (-15 -3190 ((-1122) $))))
-((-3250 (((-3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) "failed") |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) 31) (((-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558))) 28)) (-2193 (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558))) 33) (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-406 (-558))) 29) (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) 32) (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1|) 27)) (-2307 (((-635 (-406 (-558))) (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) 19)) (-2273 (((-406 (-558)) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) 16)))
-(((-1010 |#1|) (-10 -7 (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1|)) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) "failed") |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2273 ((-406 (-558)) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2307 ((-635 (-406 (-558))) (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))))) (-1222 (-558))) (T -1010))
-((-2307 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-5 *2 (-635 (-406 (-558)))) (-5 *1 (-1010 *4)) (-4 *4 (-1222 (-558))))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) (-5 *2 (-406 (-558))) (-5 *1 (-1010 *4)) (-4 *4 (-1222 (-558))))) (-3250 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))))) (-3250 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) (-5 *4 (-406 (-558))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))))) (-2193 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-558))) (-5 *2 (-635 (-2 (|:| -1524 *5) (|:| -1540 *5)))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-2 (|:| -1524 *5) (|:| -1540 *5))))) (-2193 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-406 (-558))))) (-2193 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))) (-2193 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))))))
-(-10 -7 (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1|)) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) "failed") |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2273 ((-406 (-558)) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2307 ((-635 (-406 (-558))) (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))))
-((-3250 (((-3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) "failed") |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) 35) (((-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558))) 32)) (-2193 (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558))) 30) (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-406 (-558))) 26) (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) 28) (((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1|) 24)))
-(((-1011 |#1|) (-10 -7 (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1|)) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) "failed") |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))) (-1222 (-406 (-558)))) (T -1011))
-((-3250 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558)))))) (-3250 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) (-5 *4 (-406 (-558))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *4)))) (-2193 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-558))) (-5 *2 (-635 (-2 (|:| -1524 *5) (|:| -1540 *5)))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *5)) (-5 *4 (-2 (|:| -1524 *5) (|:| -1540 *5))))) (-2193 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-558))) (-5 *2 (-635 (-2 (|:| -1524 *4) (|:| -1540 *4)))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *4)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558)))) (-5 *4 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))) (-2193 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558)))))))
-(-10 -7 (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1|)) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-406 (-558)))) (-15 -2193 ((-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-406 (-558)))) (-15 -3250 ((-3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) "failed") |#1| (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))) (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))))
-((-3441 (((-224) $) 6) (((-378) $) 9)))
-(((-1012) (-139)) (T -1012))
-NIL
-(-13 (-606 (-224)) (-606 (-378)))
-(((-606 (-224)) . T) ((-606 (-378)) . T))
-((-2692 (((-635 (-378)) (-942 (-558)) (-378)) 28) (((-635 (-378)) (-942 (-406 (-558))) (-378)) 27)) (-2805 (((-635 (-635 (-378))) (-635 (-942 (-558))) (-635 (-1163)) (-378)) 37)))
-(((-1013) (-10 -7 (-15 -2692 ((-635 (-378)) (-942 (-406 (-558))) (-378))) (-15 -2692 ((-635 (-378)) (-942 (-558)) (-378))) (-15 -2805 ((-635 (-635 (-378))) (-635 (-942 (-558))) (-635 (-1163)) (-378))))) (T -1013))
-((-2805 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 (-378)))) (-5 *1 (-1013)) (-5 *5 (-378)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 (-378))) (-5 *1 (-1013)) (-5 *4 (-378)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 (-378))) (-5 *1 (-1013)) (-5 *4 (-378)))))
-(-10 -7 (-15 -2692 ((-635 (-378)) (-942 (-406 (-558))) (-378))) (-15 -2692 ((-635 (-378)) (-942 (-558)) (-378))) (-15 -2805 ((-635 (-635 (-378))) (-635 (-942 (-558))) (-635 (-1163)) (-378))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 70)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-3948 (($ $) NIL) (($ $ (-911)) NIL) (($ (-406 (-558))) NIL) (($ (-558)) NIL)) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) 65)) (-3457 (($) NIL T CONST)) (-2363 (((-3 $ "failed") (-1159 $) (-911) (-853)) NIL) (((-3 $ "failed") (-1159 $) (-911)) 50)) (-3302 (((-3 (-406 (-558)) "failed") $) NIL (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-558) "failed") $) NIL (-3994 (|has| (-406 (-558)) (-1028 (-558))) (|has| |#1| (-1028 (-558)))))) (-3226 (((-406 (-558)) $) 15 (|has| (-406 (-558)) (-1028 (-406 (-558))))) (((-406 (-558)) $) 15) ((|#1| $) 108) (((-558) $) NIL (-3994 (|has| (-406 (-558)) (-1028 (-558))) (|has| |#1| (-1028 (-558)))))) (-1505 (($ $ (-853)) 42)) (-1752 (($ $ (-853)) 43)) (-1709 (($ $ $) NIL)) (-3845 (((-406 (-558)) $ $) 19)) (-3248 (((-3 $ "failed") $) 83)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-4053 (((-112) $) 61)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL)) (-2032 (((-112) $) 64)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-1598 (((-3 (-1159 $) "failed") $) 78)) (-2119 (((-3 (-853) "failed") $) 77)) (-3698 (((-3 (-1159 $) "failed") $) 75)) (-3920 (((-3 (-1049 $ (-1159 $)) "failed") $) 73)) (-1500 (($ (-635 $)) NIL) (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 84)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3940 (((-853) $) 82) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ $) 58) (($ (-406 (-558))) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ |#1|) 110)) (-2417 (((-762)) NIL)) (-2671 (((-112) $ $) NIL)) (-1422 (((-406 (-558)) $ $) 25)) (-2537 (((-635 $) (-1159 $)) 56) (((-635 $) (-1159 (-406 (-558)))) NIL) (((-635 $) (-1159 (-558))) NIL) (((-635 $) (-942 $)) NIL) (((-635 $) (-942 (-406 (-558)))) NIL) (((-635 $) (-942 (-558))) NIL)) (-2642 (($ (-1049 $ (-1159 $)) (-853)) 41)) (-4241 (($ $) 20)) (-2207 (($) 29 T CONST)) (-2220 (($) 35 T CONST)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 71)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 22)) (-1805 (($ $ $) 33)) (-1796 (($ $) 34) (($ $ $) 69)) (-1785 (($ $ $) 103)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL) (($ $ (-406 (-558))) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 91) (($ $ $) 96) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ (-558) $) 91) (($ $ (-558)) NIL) (($ (-406 (-558)) $) NIL) (($ $ (-406 (-558))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-1014 |#1|) (-13 (-1002) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -2642 ($ (-1049 $ (-1159 $)) (-853))) (-15 -3920 ((-3 (-1049 $ (-1159 $)) "failed") $)) (-15 -3845 ((-406 (-558)) $ $)))) (-13 (-839) (-362) (-1012))) (T -1014))
-((-2642 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-1014 *4) (-1159 (-1014 *4)))) (-5 *3 (-853)) (-5 *1 (-1014 *4)) (-4 *4 (-13 (-839) (-362) (-1012))))) (-3920 (*1 *2 *1) (|partial| -12 (-5 *2 (-1049 (-1014 *3) (-1159 (-1014 *3)))) (-5 *1 (-1014 *3)) (-4 *3 (-13 (-839) (-362) (-1012))))) (-3845 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-1014 *3)) (-4 *3 (-13 (-839) (-362) (-1012))))))
-(-13 (-1002) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -2642 ($ (-1049 $ (-1159 $)) (-853))) (-15 -3920 ((-3 (-1049 $ (-1159 $)) "failed") $)) (-15 -3845 ((-406 (-558)) $ $))))
-((-3362 (((-2 (|:| -3846 |#2|) (|:| -2314 (-635 |#1|))) |#2| (-635 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-1015 |#1| |#2|) (-10 -7 (-15 -3362 (|#2| |#2| |#1|)) (-15 -3362 ((-2 (|:| -3846 |#2|) (|:| -2314 (-635 |#1|))) |#2| (-635 |#1|)))) (-362) (-646 |#1|)) (T -1015))
-((-3362 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3846 *3) (|:| -2314 (-635 *5)))) (-5 *1 (-1015 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-646 *5)))) (-3362 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1015 *3 *2)) (-4 *2 (-646 *3)))))
-(-10 -7 (-15 -3362 (|#2| |#2| |#1|)) (-15 -3362 ((-2 (|:| -3846 |#2|) (|:| -2314 (-635 |#1|))) |#2| (-635 |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1912 ((|#1| $ |#1|) 14)) (-4077 ((|#1| $ |#1|) 12)) (-3687 (($ |#1|) 10)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2276 ((|#1| $) 11)) (-1921 ((|#1| $) 13)) (-3940 (((-853) $) 21 (|has| |#1| (-1087)))) (-1708 (((-112) $ $) 9)))
-(((-1016 |#1|) (-13 (-1200) (-10 -8 (-15 -3687 ($ |#1|)) (-15 -2276 (|#1| $)) (-15 -4077 (|#1| $ |#1|)) (-15 -1921 (|#1| $)) (-15 -1912 (|#1| $ |#1|)) (-15 -1708 ((-112) $ $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|))) (-1200)) (T -1016))
-((-3687 (*1 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-2276 (*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-4077 (*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-1921 (*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-1912 (*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))) (-1708 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1200)))))
-(-13 (-1200) (-10 -8 (-15 -3687 ($ |#1|)) (-15 -2276 (|#1| $)) (-15 -4077 (|#1| $ |#1|)) (-15 -1921 (|#1| $)) (-15 -1912 (|#1| $ |#1|)) (-15 -1708 ((-112) $ $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3055 (((-635 $) (-635 |#4|)) 105) (((-635 $) (-635 |#4|) (-112)) 106) (((-635 $) (-635 |#4|) (-112) (-112)) 104) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 107)) (-4078 (((-635 |#3|) $) NIL)) (-3369 (((-112) $) NIL)) (-1852 (((-112) $) NIL (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2299 ((|#4| |#4| $) NIL)) (-2018 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| $) 99)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2072 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) 54)) (-3457 (($) NIL T CONST)) (-3614 (((-112) $) 27 (|has| |#1| (-550)))) (-1293 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2211 (((-112) $ $) NIL (|has| |#1| (-550)))) (-3554 (((-112) $) NIL (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1542 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3226 (($ (-635 |#4|)) NIL)) (-3168 (((-3 $ "failed") $) 40)) (-2687 ((|#4| |#4| $) 57)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-1488 (($ |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2388 ((|#4| |#4| $) NIL)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) NIL)) (-2497 (((-112) |#4| $) NIL)) (-2990 (((-112) |#4| $) NIL)) (-3119 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2852 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 119)) (-2917 (((-635 |#4|) $) 17 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#4|) $) 18 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-3674 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 22)) (-2327 (((-635 |#3|) $) NIL)) (-3541 (((-112) |#3| $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1948 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-4069 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| |#4| $) 97)) (-1514 (((-3 |#4| "failed") $) 38)) (-2681 (((-635 $) |#4| $) 80)) (-2015 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-4294 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3490 (((-635 $) |#4| $) 102) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 103) (((-635 $) |#4| (-635 $)) NIL)) (-3427 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 114)) (-3987 (($ |#4| $) 70) (($ (-635 |#4|) $) 71) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2367 (((-635 |#4|) $) NIL)) (-2643 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1401 ((|#4| |#4| $) NIL)) (-3879 (((-112) $ $) NIL)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2224 ((|#4| |#4| $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-3 |#4| "failed") $) 36)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2562 (((-3 $ "failed") $ |#4|) 48)) (-2319 (($ $ |#4|) NIL) (((-635 $) |#4| $) 82) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 77)) (-3314 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 16)) (-2876 (($) 14)) (-4263 (((-762) $) NIL)) (-1698 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) 13)) (-3441 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 21)) (-3121 (($ $ |#3|) 43)) (-2402 (($ $ |#3|) 44)) (-2004 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-3940 (((-853) $) 32) (((-635 |#4|) $) 41)) (-1435 (((-762) $) NIL (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3745 (((-635 $) |#4| $) 79) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-2831 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) NIL)) (-3337 (((-112) |#4| $) NIL)) (-4062 (((-112) |#3| $) 53)) (-1708 (((-112) $ $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1017 |#1| |#2| |#3| |#4|) (-13 (-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3987 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3427 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2852 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -1017))
-((-3987 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *3))) (-5 *1 (-1017 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7)))) (-3055 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8)))) (-3055 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8)))) (-3427 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8)))) (-2852 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1017 *5 *6 *7 *8))))) (-5 *1 (-1017 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
-(-13 (-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3987 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3427 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2852 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)))))
-((-2941 (((-635 (-679 |#1|)) (-635 (-679 |#1|))) 58) (((-679 |#1|) (-679 |#1|)) 57) (((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-635 (-679 |#1|))) 56) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 53)) (-3729 (((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911)) 52) (((-679 |#1|) (-679 |#1|) (-911)) 51)) (-2016 (((-635 (-679 (-558))) (-635 (-635 (-558)))) 68) (((-635 (-679 (-558))) (-635 (-895 (-558))) (-558)) 67) (((-679 (-558)) (-635 (-558))) 64) (((-679 (-558)) (-895 (-558)) (-558)) 63)) (-2183 (((-679 (-942 |#1|)) (-762)) 81)) (-2053 (((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911)) 37 (|has| |#1| (-6 (-4385 "*")))) (((-679 |#1|) (-679 |#1|) (-911)) 35 (|has| |#1| (-6 (-4385 "*"))))))
-(((-1018 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4385 "*"))) (-15 -2053 ((-679 |#1|) (-679 |#1|) (-911))) |%noBranch|) (IF (|has| |#1| (-6 (-4385 "*"))) (-15 -2053 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) |%noBranch|) (-15 -2183 ((-679 (-942 |#1|)) (-762))) (-15 -3729 ((-679 |#1|) (-679 |#1|) (-911))) (-15 -3729 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) (-15 -2941 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2941 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -2941 ((-679 |#1|) (-679 |#1|))) (-15 -2941 ((-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -2016 ((-679 (-558)) (-895 (-558)) (-558))) (-15 -2016 ((-679 (-558)) (-635 (-558)))) (-15 -2016 ((-635 (-679 (-558))) (-635 (-895 (-558))) (-558))) (-15 -2016 ((-635 (-679 (-558))) (-635 (-635 (-558)))))) (-1039)) (T -1018))
-((-2016 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-558)))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-1018 *4)) (-4 *4 (-1039)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-895 (-558)))) (-5 *4 (-558)) (-5 *2 (-635 (-679 *4))) (-5 *1 (-1018 *5)) (-4 *5 (-1039)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1018 *4)) (-4 *4 (-1039)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-558))) (-5 *4 (-558)) (-5 *2 (-679 *4)) (-5 *1 (-1018 *5)) (-4 *5 (-1039)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))) (-3729 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911)) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))) (-3729 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-679 (-942 *4))) (-5 *1 (-1018 *4)) (-4 *4 (-1039)))) (-2053 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911)) (|has| *4 (-6 (-4385 "*"))) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))) (-2053 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (|has| *4 (-6 (-4385 "*"))) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4385 "*"))) (-15 -2053 ((-679 |#1|) (-679 |#1|) (-911))) |%noBranch|) (IF (|has| |#1| (-6 (-4385 "*"))) (-15 -2053 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) |%noBranch|) (-15 -2183 ((-679 (-942 |#1|)) (-762))) (-15 -3729 ((-679 |#1|) (-679 |#1|) (-911))) (-15 -3729 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-911))) (-15 -2941 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2941 ((-635 (-679 |#1|)) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -2941 ((-679 |#1|) (-679 |#1|))) (-15 -2941 ((-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -2016 ((-679 (-558)) (-895 (-558)) (-558))) (-15 -2016 ((-679 (-558)) (-635 (-558)))) (-15 -2016 ((-635 (-679 (-558))) (-635 (-895 (-558))) (-558))) (-15 -2016 ((-635 (-679 (-558))) (-635 (-635 (-558))))))
-((-3370 (((-679 |#1|) (-635 (-679 |#1|)) (-1246 |#1|)) 49 (|has| |#1| (-306)))) (-3566 (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 (-1246 |#1|))) 75 (|has| |#1| (-362))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 |#1|)) 78 (|has| |#1| (-362)))) (-2169 (((-1246 |#1|) (-635 (-1246 |#1|)) (-558)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-1787 (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-911)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112) (-558) (-558)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-2554 (((-112) (-635 (-679 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-635 (-679 |#1|)) (-558)) 72 (|has| |#1| (-362)))) (-3454 (((-1246 (-1246 |#1|)) (-635 (-679 |#1|)) (-1246 |#1|)) 47 (|has| |#1| (-306)))) (-3636 (((-679 |#1|) (-635 (-679 |#1|)) (-679 |#1|)) 33)) (-3565 (((-679 |#1|) (-1246 (-1246 |#1|))) 30)) (-1795 (((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-558)) 64 (|has| |#1| (-362))) (((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|))) 63 (|has| |#1| (-362))) (((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-112) (-558)) 68 (|has| |#1| (-362)))))
-(((-1019 |#1|) (-10 -7 (-15 -3565 ((-679 |#1|) (-1246 (-1246 |#1|)))) (-15 -3636 ((-679 |#1|) (-635 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3454 ((-1246 (-1246 |#1|)) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3370 ((-679 |#1|) (-635 (-679 |#1|)) (-1246 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1795 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-112) (-558))) (-15 -1795 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -1795 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-558))) (-15 -2554 ((-112) (-635 (-679 |#1|)) (-558))) (-15 -2554 ((-112) (-635 (-679 |#1|)))) (-15 -3566 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3566 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 (-1246 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112) (-558) (-558))) (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)))) (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112))) (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-911))) (-15 -2169 ((-1246 |#1|) (-635 (-1246 |#1|)) (-558)))) |%noBranch|) |%noBranch|)) (-1039)) (T -1019))
-((-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1246 *5))) (-5 *4 (-558)) (-5 *2 (-1246 *5)) (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-1787 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-1787 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1039)) (-5 *2 (-635 (-635 (-679 *4)))) (-5 *1 (-1019 *4)) (-5 *3 (-635 (-679 *4))))) (-1787 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-558)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1039)) (-5 *2 (-635 (-635 (-679 *6)))) (-5 *1 (-1019 *6)) (-5 *3 (-635 (-679 *6))))) (-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-1246 (-1246 *5))) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5)) (-5 *3 (-635 (-679 *5))))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362)) (-4 *4 (-1039)) (-5 *2 (-112)) (-5 *1 (-1019 *4)))) (-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-4 *5 (-362)) (-4 *5 (-1039)) (-5 *2 (-112)) (-5 *1 (-1019 *5)))) (-1795 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-5 *2 (-679 *5)) (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-1039)))) (-1795 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-5 *1 (-1019 *4)) (-4 *4 (-362)) (-4 *4 (-1039)))) (-1795 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-679 *6))) (-5 *4 (-112)) (-5 *5 (-558)) (-5 *2 (-679 *6)) (-5 *1 (-1019 *6)) (-4 *6 (-362)) (-4 *6 (-1039)))) (-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-1246 *5)) (-4 *5 (-306)) (-4 *5 (-1039)) (-5 *2 (-679 *5)) (-5 *1 (-1019 *5)))) (-3454 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-679 *5))) (-4 *5 (-306)) (-4 *5 (-1039)) (-5 *2 (-1246 (-1246 *5))) (-5 *1 (-1019 *5)) (-5 *4 (-1246 *5)))) (-3636 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-4 *4 (-1039)) (-5 *1 (-1019 *4)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-1246 (-1246 *4))) (-4 *4 (-1039)) (-5 *2 (-679 *4)) (-5 *1 (-1019 *4)))))
-(-10 -7 (-15 -3565 ((-679 |#1|) (-1246 (-1246 |#1|)))) (-15 -3636 ((-679 |#1|) (-635 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3454 ((-1246 (-1246 |#1|)) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3370 ((-679 |#1|) (-635 (-679 |#1|)) (-1246 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1795 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-112) (-558))) (-15 -1795 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -1795 ((-679 |#1|) (-635 (-679 |#1|)) (-635 (-679 |#1|)) (-558))) (-15 -2554 ((-112) (-635 (-679 |#1|)) (-558))) (-15 -2554 ((-112) (-635 (-679 |#1|)))) (-15 -3566 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 |#1|))) (-15 -3566 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-1246 (-1246 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112) (-558) (-558))) (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)))) (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-112))) (-15 -1787 ((-635 (-635 (-679 |#1|))) (-635 (-679 |#1|)) (-911))) (-15 -2169 ((-1246 |#1|) (-635 (-1246 |#1|)) (-558)))) |%noBranch|) |%noBranch|))
-((-2530 ((|#1| (-911) |#1|) 9)))
-(((-1020 |#1|) (-10 -7 (-15 -2530 (|#1| (-911) |#1|))) (-13 (-1087) (-10 -8 (-15 -1785 ($ $ $))))) (T -1020))
-((-2530 (*1 *2 *3 *2) (-12 (-5 *3 (-911)) (-5 *1 (-1020 *2)) (-4 *2 (-13 (-1087) (-10 -8 (-15 -1785 ($ $ $))))))))
-(-10 -7 (-15 -2530 (|#1| (-911) |#1|)))
-((-3808 (((-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558))))))) (-679 (-406 (-942 (-558))))) 59)) (-3934 (((-635 (-679 (-315 (-558)))) (-315 (-558)) (-679 (-406 (-942 (-558))))) 48)) (-4213 (((-635 (-315 (-558))) (-679 (-406 (-942 (-558))))) 41)) (-1703 (((-635 (-679 (-315 (-558)))) (-679 (-406 (-942 (-558))))) 68)) (-3570 (((-679 (-315 (-558))) (-679 (-315 (-558)))) 34)) (-1295 (((-635 (-679 (-315 (-558)))) (-635 (-679 (-315 (-558))))) 62)) (-2007 (((-3 (-679 (-315 (-558))) "failed") (-679 (-406 (-942 (-558))))) 66)))
-(((-1021) (-10 -7 (-15 -3808 ((-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558))))))) (-679 (-406 (-942 (-558)))))) (-15 -3934 ((-635 (-679 (-315 (-558)))) (-315 (-558)) (-679 (-406 (-942 (-558)))))) (-15 -4213 ((-635 (-315 (-558))) (-679 (-406 (-942 (-558)))))) (-15 -2007 ((-3 (-679 (-315 (-558))) "failed") (-679 (-406 (-942 (-558)))))) (-15 -3570 ((-679 (-315 (-558))) (-679 (-315 (-558))))) (-15 -1295 ((-635 (-679 (-315 (-558)))) (-635 (-679 (-315 (-558)))))) (-15 -1703 ((-635 (-679 (-315 (-558)))) (-679 (-406 (-942 (-558)))))))) (T -1021))
-((-1703 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))) (-1295 (*1 *2 *2) (-12 (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))) (-2007 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-315 (-558)))) (-5 *1 (-1021)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *4 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)) (-5 *3 (-315 (-558))))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558)))))))) (-5 *1 (-1021)))))
-(-10 -7 (-15 -3808 ((-635 (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-635 (-679 (-315 (-558))))))) (-679 (-406 (-942 (-558)))))) (-15 -3934 ((-635 (-679 (-315 (-558)))) (-315 (-558)) (-679 (-406 (-942 (-558)))))) (-15 -4213 ((-635 (-315 (-558))) (-679 (-406 (-942 (-558)))))) (-15 -2007 ((-3 (-679 (-315 (-558))) "failed") (-679 (-406 (-942 (-558)))))) (-15 -3570 ((-679 (-315 (-558))) (-679 (-315 (-558))))) (-15 -1295 ((-635 (-679 (-315 (-558)))) (-635 (-679 (-315 (-558)))))) (-15 -1703 ((-635 (-679 (-315 (-558)))) (-679 (-406 (-942 (-558)))))))
-((-4327 ((|#1| |#1| (-911)) 9)))
-(((-1022 |#1|) (-10 -7 (-15 -4327 (|#1| |#1| (-911)))) (-13 (-1087) (-10 -8 (-15 * ($ $ $))))) (T -1022))
-((-4327 (*1 *2 *2 *3) (-12 (-5 *3 (-911)) (-5 *1 (-1022 *2)) (-4 *2 (-13 (-1087) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -4327 (|#1| |#1| (-911))))
-((-3940 ((|#1| (-311)) 11) (((-1251) |#1|) 9)))
-(((-1023 |#1|) (-10 -7 (-15 -3940 ((-1251) |#1|)) (-15 -3940 (|#1| (-311)))) (-1200)) (T -1023))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1023 *2)) (-4 *2 (-1200)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1251)) (-5 *1 (-1023 *3)) (-4 *3 (-1200)))))
-(-10 -7 (-15 -3940 ((-1251) |#1|)) (-15 -3940 (|#1| (-311))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3866 (($ |#4|) 25)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-3850 ((|#4| $) 27)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 46) (($ (-558)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2417 (((-762)) 43)) (-2207 (($) 21 T CONST)) (-2220 (($) 23 T CONST)) (-1708 (((-112) $ $) 40)) (-1796 (($ $) 31) (($ $ $) NIL)) (-1785 (($ $ $) 29)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1024 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -3866 ($ |#4|)) (-15 -3940 ($ |#4|)) (-15 -3850 (|#4| $)))) (-362) (-784) (-841) (-939 |#1| |#2| |#3|) (-635 |#4|)) (T -1024))
-((-3866 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5)) (-14 *6 (-635 *2)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5)) (-14 *6 (-635 *2)))) (-3850 (*1 *2 *1) (-12 (-4 *2 (-939 *3 *4 *5)) (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-14 *6 (-635 *2)))))
-(-13 (-171) (-38 |#1|) (-10 -8 (-15 -3866 ($ |#4|)) (-15 -3940 ($ |#4|)) (-15 -3850 (|#4| $))))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL)) (-3552 (((-1251) $ (-1163) (-1163)) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-3030 (((-112) (-112)) 39)) (-2237 (((-112) (-112)) 38)) (-4077 (((-52) $ (-1163) (-52)) NIL)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 (-52) "failed") (-1163) $) NIL)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-2375 (($ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-3 (-52) "failed") (-1163) $) NIL)) (-1488 (($ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-3683 (((-52) $ (-1163) (-52)) NIL (|has| $ (-6 -4384)))) (-3620 (((-52) $ (-1163)) NIL)) (-2917 (((-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-635 (-52)) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-1163) $) NIL (|has| (-1163) (-841)))) (-3486 (((-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-635 (-52)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087))))) (-3186 (((-1163) $) NIL (|has| (-1163) (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4384))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-1934 (((-635 (-1163)) $) 34)) (-3336 (((-112) (-1163) $) NIL)) (-1498 (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL)) (-2650 (($ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL)) (-3051 (((-635 (-1163)) $) NIL)) (-2740 (((-112) (-1163) $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-3156 (((-52) $) NIL (|has| (-1163) (-841)))) (-2820 (((-3 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) "failed") (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL)) (-2830 (($ $ (-52)) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-293 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-635 (-52)) (-635 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-635 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087))))) (-4318 (((-635 (-52)) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 (((-52) $ (-1163)) 35) (((-52) $ (-1163) (-52)) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (((-762) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087)))) (((-762) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL)) (-3940 (((-853) $) 37 (-3994 (|has| (-52) (-605 (-853))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1025) (-13 (-1176 (-1163) (-52)) (-10 -7 (-15 -3030 ((-112) (-112))) (-15 -2237 ((-112) (-112))) (-6 -4383)))) (T -1025))
-((-3030 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))))
-(-13 (-1176 (-1163) (-52)) (-10 -7 (-15 -3030 ((-112) (-112))) (-15 -2237 ((-112) (-112))) (-6 -4383)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1660 (((-1122) $) 9)) (-3940 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1026) (-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $))))) (T -1026))
-((-1660 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1026)))))
-(-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $))))
-((-3226 ((|#2| $) 10)))
-(((-1027 |#1| |#2|) (-10 -8 (-15 -3226 (|#2| |#1|))) (-1028 |#2|) (-1200)) (T -1027))
-NIL
-(-10 -8 (-15 -3226 (|#2| |#1|)))
-((-3302 (((-3 |#1| "failed") $) 9)) (-3226 ((|#1| $) 8)) (-3940 (($ |#1|) 6)))
-(((-1028 |#1|) (-139) (-1200)) (T -1028))
-((-3302 (*1 *2 *1) (|partial| -12 (-4 *1 (-1028 *2)) (-4 *2 (-1200)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1200)))))
-(-13 (-608 |t#1|) (-10 -8 (-15 -3302 ((-3 |t#1| "failed") $)) (-15 -3226 (|t#1| $))))
-(((-608 |#1|) . T))
-((-1994 (((-635 (-635 (-293 (-406 (-942 |#2|))))) (-635 (-942 |#2|)) (-635 (-1163))) 38)))
-(((-1029 |#1| |#2|) (-10 -7 (-15 -1994 ((-635 (-635 (-293 (-406 (-942 |#2|))))) (-635 (-942 |#2|)) (-635 (-1163))))) (-550) (-13 (-550) (-1028 |#1|))) (T -1029))
-((-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-4 *6 (-13 (-550) (-1028 *5))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *6)))))) (-5 *1 (-1029 *5 *6)))))
-(-10 -7 (-15 -1994 ((-635 (-635 (-293 (-406 (-942 |#2|))))) (-635 (-942 |#2|)) (-635 (-1163)))))
-((-4107 (((-378)) 15)) (-1822 (((-1 (-378)) (-378) (-378)) 20)) (-3273 (((-1 (-378)) (-762)) 42)) (-2098 (((-378)) 33)) (-2935 (((-1 (-378)) (-378) (-378)) 34)) (-3048 (((-378)) 26)) (-4248 (((-1 (-378)) (-378)) 27)) (-2175 (((-378) (-762)) 37)) (-4049 (((-1 (-378)) (-762)) 38)) (-3189 (((-1 (-378)) (-762) (-762)) 41)) (-3087 (((-1 (-378)) (-762) (-762)) 39)))
-(((-1030) (-10 -7 (-15 -4107 ((-378))) (-15 -2098 ((-378))) (-15 -3048 ((-378))) (-15 -2175 ((-378) (-762))) (-15 -1822 ((-1 (-378)) (-378) (-378))) (-15 -2935 ((-1 (-378)) (-378) (-378))) (-15 -4248 ((-1 (-378)) (-378))) (-15 -4049 ((-1 (-378)) (-762))) (-15 -3087 ((-1 (-378)) (-762) (-762))) (-15 -3189 ((-1 (-378)) (-762) (-762))) (-15 -3273 ((-1 (-378)) (-762))))) (T -1030))
-((-3273 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-3189 (*1 *2 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-3087 (*1 *2 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))) (-4248 (*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))) (-2935 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))) (-1822 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-378)) (-5 *1 (-1030)))) (-3048 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))) (-2098 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))) (-4107 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
-(-10 -7 (-15 -4107 ((-378))) (-15 -2098 ((-378))) (-15 -3048 ((-378))) (-15 -2175 ((-378) (-762))) (-15 -1822 ((-1 (-378)) (-378) (-378))) (-15 -2935 ((-1 (-378)) (-378) (-378))) (-15 -4248 ((-1 (-378)) (-378))) (-15 -4049 ((-1 (-378)) (-762))) (-15 -3087 ((-1 (-378)) (-762) (-762))) (-15 -3189 ((-1 (-378)) (-762) (-762))) (-15 -3273 ((-1 (-378)) (-762))))
-((-3939 (((-417 |#1|) |#1|) 33)))
-(((-1031 |#1|) (-10 -7 (-15 -3939 ((-417 |#1|) |#1|))) (-1222 (-406 (-942 (-558))))) (T -1031))
-((-3939 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1031 *3)) (-4 *3 (-1222 (-406 (-942 (-558))))))))
-(-10 -7 (-15 -3939 ((-417 |#1|) |#1|)))
-((-3267 (((-406 (-417 (-942 |#1|))) (-406 (-942 |#1|))) 14)))
-(((-1032 |#1|) (-10 -7 (-15 -3267 ((-406 (-417 (-942 |#1|))) (-406 (-942 |#1|))))) (-306)) (T -1032))
-((-3267 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-417 (-942 *4)))) (-5 *1 (-1032 *4)))))
-(-10 -7 (-15 -3267 ((-406 (-417 (-942 |#1|))) (-406 (-942 |#1|)))))
-((-4078 (((-635 (-1163)) (-406 (-942 |#1|))) 17)) (-3907 (((-406 (-1159 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163)) 24)) (-4068 (((-406 (-942 |#1|)) (-406 (-1159 (-406 (-942 |#1|)))) (-1163)) 26)) (-2135 (((-3 (-1163) "failed") (-406 (-942 |#1|))) 20)) (-1369 (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-293 (-406 (-942 |#1|))))) 32) (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|)))) 33) (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-1163)) (-635 (-406 (-942 |#1|)))) 28) (((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|))) 29)) (-3940 (((-406 (-942 |#1|)) |#1|) 11)))
-(((-1033 |#1|) (-10 -7 (-15 -4078 ((-635 (-1163)) (-406 (-942 |#1|)))) (-15 -2135 ((-3 (-1163) "failed") (-406 (-942 |#1|)))) (-15 -3907 ((-406 (-1159 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -4068 ((-406 (-942 |#1|)) (-406 (-1159 (-406 (-942 |#1|)))) (-1163))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-1163)) (-635 (-406 (-942 |#1|))))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -3940 ((-406 (-942 |#1|)) |#1|))) (-550)) (T -1033))
-((-3940 (*1 *2 *3) (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-550)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-293 (-406 (-942 *4))))) (-5 *2 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *1 (-1033 *4)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-293 (-406 (-942 *4)))) (-5 *2 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *1 (-1033 *4)))) (-1369 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-1163))) (-5 *4 (-635 (-406 (-942 *5)))) (-5 *2 (-406 (-942 *5))) (-4 *5 (-550)) (-5 *1 (-1033 *5)))) (-1369 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163)) (-4 *4 (-550)) (-5 *1 (-1033 *4)))) (-4068 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1159 (-406 (-942 *5))))) (-5 *4 (-1163)) (-5 *2 (-406 (-942 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-550)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-550)) (-5 *2 (-406 (-1159 (-406 (-942 *5))))) (-5 *1 (-1033 *5)) (-5 *3 (-406 (-942 *5))))) (-2135 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-1163)) (-5 *1 (-1033 *4)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-1163))) (-5 *1 (-1033 *4)))))
-(-10 -7 (-15 -4078 ((-635 (-1163)) (-406 (-942 |#1|)))) (-15 -2135 ((-3 (-1163) "failed") (-406 (-942 |#1|)))) (-15 -3907 ((-406 (-1159 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -4068 ((-406 (-942 |#1|)) (-406 (-1159 (-406 (-942 |#1|)))) (-1163))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-1163)) (-635 (-406 (-942 |#1|))))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-293 (-406 (-942 |#1|))))) (-15 -1369 ((-406 (-942 |#1|)) (-406 (-942 |#1|)) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -3940 ((-406 (-942 |#1|)) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-3457 (($) 17 T CONST)) (-2234 ((|#1| $) 22)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3360 ((|#1| $) 21)) (-1411 ((|#1|) 19 T CONST)) (-3940 (((-853) $) 11)) (-2885 ((|#1| $) 20)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
-(((-1034 |#1|) (-139) (-23)) (T -1034))
-((-2234 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))) (-1411 (*1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -2234 (|t#1| $)) (-15 -3360 (|t#1| $)) (-15 -2885 (|t#1| $)) (-15 -1411 (|t#1|) -2010)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1364 (($) 24 T CONST)) (-3457 (($) 17 T CONST)) (-2234 ((|#1| $) 22)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3360 ((|#1| $) 21)) (-1411 ((|#1|) 19 T CONST)) (-3940 (((-853) $) 11)) (-2885 ((|#1| $) 20)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15)))
-(((-1035 |#1|) (-139) (-23)) (T -1035))
-((-1364 (*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-23)))))
-(-13 (-1034 |t#1|) (-10 -8 (-15 -1364 ($) -2010)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-605 (-853)) . T) ((-1034 |#1|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 (-771 |#1| (-855 |#2|)))))) (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-3055 (((-635 $) (-635 (-771 |#1| (-855 |#2|)))) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112)) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112) (-112)) NIL)) (-4078 (((-635 (-855 |#2|)) $) NIL)) (-3369 (((-112) $) NIL)) (-1852 (((-112) $) NIL (|has| |#1| (-550)))) (-2690 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-2299 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-2018 (((-635 (-2 (|:| |val| (-771 |#1| (-855 |#2|))) (|:| -3798 $))) (-771 |#1| (-855 |#2|)) $) NIL)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ (-855 |#2|)) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2072 (($ (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 (-771 |#1| (-855 |#2|)) "failed") $ (-855 |#2|)) NIL)) (-3457 (($) NIL T CONST)) (-3614 (((-112) $) NIL (|has| |#1| (-550)))) (-1293 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2211 (((-112) $ $) NIL (|has| |#1| (-550)))) (-3554 (((-112) $) NIL (|has| |#1| (-550)))) (-2282 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))) $ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-1542 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| |#1| (-550)))) (-4256 (((-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-3226 (($ (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-3168 (((-3 $ "failed") $) NIL)) (-2687 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-771 |#1| (-855 |#2|)) (-1087))))) (-1488 (($ (-771 |#1| (-855 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-771 |#1| (-855 |#2|))) (|:| |den| |#1|)) (-771 |#1| (-855 |#2|)) $) NIL (|has| |#1| (-550)))) (-1798 (((-112) (-771 |#1| (-855 |#2|)) $ (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-2388 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-3866 (((-771 |#1| (-855 |#2|)) (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $ (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (((-771 |#1| (-855 |#2|)) (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $ (-771 |#1| (-855 |#2|))) NIL (|has| $ (-6 -4383))) (((-771 |#1| (-855 |#2|)) (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-4236 (((-2 (|:| -1464 (-635 (-771 |#1| (-855 |#2|)))) (|:| -3229 (-635 (-771 |#1| (-855 |#2|))))) $) NIL)) (-2497 (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-2990 (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-3119 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-2917 (((-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-4228 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-4346 (((-855 |#2|) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-771 |#1| (-855 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-771 |#1| (-855 |#2|)) (-1087))))) (-3674 (($ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) $) NIL)) (-2327 (((-635 (-855 |#2|)) $) NIL)) (-3541 (((-112) (-855 |#2|) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1948 (((-3 (-771 |#1| (-855 |#2|)) (-635 $)) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-4069 (((-635 (-2 (|:| |val| (-771 |#1| (-855 |#2|))) (|:| -3798 $))) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-1514 (((-3 (-771 |#1| (-855 |#2|)) "failed") $) NIL)) (-2681 (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL)) (-2015 (((-3 (-112) (-635 $)) (-771 |#1| (-855 |#2|)) $) NIL)) (-4294 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-3490 (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-635 $)) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) (-635 $)) NIL)) (-3987 (($ (-771 |#1| (-855 |#2|)) $) NIL) (($ (-635 (-771 |#1| (-855 |#2|))) $) NIL)) (-2367 (((-635 (-771 |#1| (-855 |#2|))) $) NIL)) (-2643 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-1401 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-3879 (((-112) $ $) NIL)) (-1659 (((-2 (|:| |num| (-771 |#1| (-855 |#2|))) (|:| |den| |#1|)) (-771 |#1| (-855 |#2|)) $) NIL (|has| |#1| (-550)))) (-2857 (((-112) (-771 |#1| (-855 |#2|)) $) NIL) (((-112) $) NIL)) (-2224 (((-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)) $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-3 (-771 |#1| (-855 |#2|)) "failed") $) NIL)) (-2820 (((-3 (-771 |#1| (-855 |#2|)) "failed") (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL)) (-2562 (((-3 $ "failed") $ (-771 |#1| (-855 |#2|))) NIL)) (-2319 (($ $ (-771 |#1| (-855 |#2|))) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-635 $)) NIL)) (-3314 (((-112) (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-771 |#1| (-855 |#2|))) (-635 (-771 |#1| (-855 |#2|)))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ $ (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ $ (-293 (-771 |#1| (-855 |#2|)))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (($ $ (-635 (-293 (-771 |#1| (-855 |#2|))))) NIL (-12 (|has| (-771 |#1| (-855 |#2|)) (-308 (-771 |#1| (-855 |#2|)))) (|has| (-771 |#1| (-855 |#2|)) (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-4263 (((-762) $) NIL)) (-1698 (((-762) (-771 |#1| (-855 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-771 |#1| (-855 |#2|)) (-1087)))) (((-762) (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-771 |#1| (-855 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-771 |#1| (-855 |#2|)))) NIL)) (-3121 (($ $ (-855 |#2|)) NIL)) (-2402 (($ $ (-855 |#2|)) NIL)) (-2004 (($ $) NIL)) (-3294 (($ $ (-855 |#2|)) NIL)) (-3940 (((-853) $) NIL) (((-635 (-771 |#1| (-855 |#2|))) $) NIL)) (-1435 (((-762) $) NIL (|has| (-855 |#2|) (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 (-771 |#1| (-855 |#2|))))) "failed") (-635 (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 (-771 |#1| (-855 |#2|))))) "failed") (-635 (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|))) (-1 (-112) (-771 |#1| (-855 |#2|)) (-771 |#1| (-855 |#2|)))) NIL)) (-3331 (((-112) $ (-1 (-112) (-771 |#1| (-855 |#2|)) (-635 (-771 |#1| (-855 |#2|))))) NIL)) (-3745 (((-635 $) (-771 |#1| (-855 |#2|)) $) NIL) (((-635 $) (-771 |#1| (-855 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) $) NIL) (((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-635 $)) NIL)) (-2831 (((-112) (-1 (-112) (-771 |#1| (-855 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2669 (((-635 (-855 |#2|)) $) NIL)) (-3337 (((-112) (-771 |#1| (-855 |#2|)) $) NIL)) (-4062 (((-112) (-855 |#2|) $) NIL)) (-1708 (((-112) $ $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1036 |#1| |#2|) (-13 (-1059 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) (-10 -8 (-15 -3055 ((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112) (-112))))) (-450) (-635 (-1163))) (T -1036))
-((-3055 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1036 *5 *6)))))
-(-13 (-1059 |#1| (-529 (-855 |#2|)) (-855 |#2|) (-771 |#1| (-855 |#2|))) (-10 -8 (-15 -3055 ((-635 $) (-635 (-771 |#1| (-855 |#2|))) (-112) (-112)))))
-((-1822 (((-1 (-558)) (-1081 (-558))) 33)) (-1902 (((-558) (-558) (-558) (-558) (-558)) 30)) (-2486 (((-1 (-558)) |RationalNumber|) NIL)) (-2914 (((-1 (-558)) |RationalNumber|) NIL)) (-3207 (((-1 (-558)) (-558) |RationalNumber|) NIL)))
-(((-1037) (-10 -7 (-15 -1822 ((-1 (-558)) (-1081 (-558)))) (-15 -3207 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -2486 ((-1 (-558)) |RationalNumber|)) (-15 -2914 ((-1 (-558)) |RationalNumber|)) (-15 -1902 ((-558) (-558) (-558) (-558) (-558))))) (T -1037))
-((-1902 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1037)))) (-2914 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))) (-2486 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)) (-5 *3 (-558)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-1081 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
-(-10 -7 (-15 -1822 ((-1 (-558)) (-1081 (-558)))) (-15 -3207 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -2486 ((-1 (-558)) |RationalNumber|)) (-15 -2914 ((-1 (-558)) |RationalNumber|)) (-15 -1902 ((-558) (-558) (-558) (-558) (-558))))
-((-3940 (((-853) $) NIL) (($ (-558)) 10)))
-(((-1038 |#1|) (-10 -8 (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-1039)) (T -1038))
-NIL
-(-10 -8 (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-1039) (-139)) (T -1039))
-((-2417 (*1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-762)))))
-(-13 (-1046) (-717) (-638 $) (-608 (-558)) (-10 -7 (-15 -2417 ((-762))) (-6 -4380)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-558)) . T) ((-605 (-853)) . T) ((-638 $) . T) ((-717) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-2859 (((-406 (-942 |#2|)) (-635 |#2|) (-635 |#2|) (-762) (-762)) 46)))
-(((-1040 |#1| |#2|) (-10 -7 (-15 -2859 ((-406 (-942 |#2|)) (-635 |#2|) (-635 |#2|) (-762) (-762)))) (-1163) (-362)) (T -1040))
-((-2859 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-762)) (-4 *6 (-362)) (-5 *2 (-406 (-942 *6))) (-5 *1 (-1040 *5 *6)) (-14 *5 (-1163)))))
-(-10 -7 (-15 -2859 ((-406 (-942 |#2|)) (-635 |#2|) (-635 |#2|) (-762) (-762))))
-((-2086 (((-112) $) 29)) (-1693 (((-112) $) 16)) (-1430 (((-762) $) 13)) (-1444 (((-762) $) 14)) (-1312 (((-112) $) 26)) (-3551 (((-112) $) 31)))
-(((-1041 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1444 ((-762) |#1|)) (-15 -1430 ((-762) |#1|)) (-15 -3551 ((-112) |#1|)) (-15 -2086 ((-112) |#1|)) (-15 -1312 ((-112) |#1|)) (-15 -1693 ((-112) |#1|))) (-1042 |#2| |#3| |#4| |#5| |#6|) (-762) (-762) (-1039) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1041))
-NIL
-(-10 -8 (-15 -1444 ((-762) |#1|)) (-15 -1430 ((-762) |#1|)) (-15 -3551 ((-112) |#1|)) (-15 -2086 ((-112) |#1|)) (-15 -1312 ((-112) |#1|)) (-15 -1693 ((-112) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2086 (((-112) $) 51)) (-1868 (((-3 $ "failed") $ $) 19)) (-1693 (((-112) $) 53)) (-3651 (((-112) $ (-762)) 61)) (-3457 (($) 17 T CONST)) (-3125 (($ $) 34 (|has| |#3| (-306)))) (-2500 ((|#4| $ (-558)) 39)) (-1489 (((-762) $) 33 (|has| |#3| (-550)))) (-3620 ((|#3| $ (-558) (-558)) 41)) (-2917 (((-635 |#3|) $) 68 (|has| $ (-6 -4383)))) (-2556 (((-762) $) 32 (|has| |#3| (-550)))) (-3693 (((-635 |#5|) $) 31 (|has| |#3| (-550)))) (-1430 (((-762) $) 45)) (-1444 (((-762) $) 44)) (-4007 (((-112) $ (-762)) 60)) (-3942 (((-558) $) 49)) (-1478 (((-558) $) 47)) (-3486 (((-635 |#3|) $) 69 (|has| $ (-6 -4383)))) (-3764 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1087)) (|has| $ (-6 -4383))))) (-4153 (((-558) $) 48)) (-3508 (((-558) $) 46)) (-2144 (($ (-635 (-635 |#3|))) 54)) (-3674 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3922 (((-635 (-635 |#3|)) $) 43)) (-3212 (((-112) $ (-762)) 59)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-550)))) (-3314 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#3|) (-635 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 (-293 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-3382 (((-112) $ $) 55)) (-3711 (((-112) $) 58)) (-2876 (($) 57)) (-2276 ((|#3| $ (-558) (-558)) 42) ((|#3| $ (-558) (-558) |#3|) 40)) (-1312 (((-112) $) 52)) (-1698 (((-762) |#3| $) 70 (-12 (|has| |#3| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4383)))) (-4098 (($ $) 56)) (-3962 ((|#5| $ (-558)) 38)) (-3940 (((-853) $) 11)) (-2831 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4383)))) (-3551 (((-112) $) 50)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-1596 (((-762) $) 62 (|has| $ (-6 -4383)))))
-(((-1042 |#1| |#2| |#3| |#4| |#5|) (-139) (-762) (-762) (-1039) (-237 |t#2| |t#3|) (-237 |t#1| |t#3|)) (T -1042))
-((-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1039)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-1312 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3551 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5))))) (-2276 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039)))) (-3620 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039)))) (-2276 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *2 (-1039)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-2500 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *2 *7)) (-4 *6 (-1039)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-3962 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *7 *2)) (-4 *6 (-1039)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-3397 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2861 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-550)))) (-1805 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550)) (-5 *2 (-762)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550)) (-5 *2 (-762)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550)) (-5 *2 (-635 *7)))))
-(-13 (-111 |t#3| |t#3|) (-487 |t#3|) (-10 -8 (-6 -4383) (IF (|has| |t#3| (-171)) (-6 (-708 |t#3|)) |%noBranch|) (-15 -2144 ($ (-635 (-635 |t#3|)))) (-15 -1693 ((-112) $)) (-15 -1312 ((-112) $)) (-15 -2086 ((-112) $)) (-15 -3551 ((-112) $)) (-15 -3942 ((-558) $)) (-15 -4153 ((-558) $)) (-15 -1478 ((-558) $)) (-15 -3508 ((-558) $)) (-15 -1430 ((-762) $)) (-15 -1444 ((-762) $)) (-15 -3922 ((-635 (-635 |t#3|)) $)) (-15 -2276 (|t#3| $ (-558) (-558))) (-15 -3620 (|t#3| $ (-558) (-558))) (-15 -2276 (|t#3| $ (-558) (-558) |t#3|)) (-15 -2500 (|t#4| $ (-558))) (-15 -3962 (|t#5| $ (-558))) (-15 -3397 ($ (-1 |t#3| |t#3|) $)) (-15 -3397 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-550)) (-15 -2861 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -1805 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -3125 ($ $)) |%noBranch|) (IF (|has| |t#3| (-550)) (PROGN (-15 -1489 ((-762) $)) (-15 -2556 ((-762) $)) (-15 -3693 ((-635 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-605 (-853)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))) ((-487 |#3|) . T) ((-512 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))) ((-638 |#3|) . T) ((-708 |#3|) |has| |#3| (-171)) ((-1045 |#3|) . T) ((-1087) . T) ((-1200) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2086 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1693 (((-112) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-3457 (($) NIL T CONST)) (-3125 (($ $) 43 (|has| |#3| (-306)))) (-2500 (((-239 |#2| |#3|) $ (-558)) 32)) (-3172 (($ (-679 |#3|)) 41)) (-1489 (((-762) $) 45 (|has| |#3| (-550)))) (-3620 ((|#3| $ (-558) (-558)) NIL)) (-2917 (((-635 |#3|) $) NIL (|has| $ (-6 -4383)))) (-2556 (((-762) $) 47 (|has| |#3| (-550)))) (-3693 (((-635 (-239 |#1| |#3|)) $) 51 (|has| |#3| (-550)))) (-1430 (((-762) $) NIL)) (-1444 (((-762) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-3942 (((-558) $) NIL)) (-1478 (((-558) $) NIL)) (-3486 (((-635 |#3|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087))))) (-4153 (((-558) $) NIL)) (-3508 (((-558) $) NIL)) (-2144 (($ (-635 (-635 |#3|))) 27)) (-3674 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3922 (((-635 (-635 |#3|)) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-550)))) (-3314 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#3| $ (-558) (-558)) NIL) ((|#3| $ (-558) (-558) |#3|) NIL)) (-2887 (((-133)) 54 (|has| |#3| (-362)))) (-1312 (((-112) $) NIL)) (-1698 (((-762) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087)))) (((-762) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) 63 (|has| |#3| (-606 (-534))))) (-3962 (((-239 |#1| |#3|) $ (-558)) 36)) (-3940 (((-853) $) 16) (((-679 |#3|) $) 38)) (-2831 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383)))) (-3551 (((-112) $) NIL)) (-2207 (($) 13 T CONST)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1043 |#1| |#2| |#3|) (-13 (-1042 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-605 (-679 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1253 |#3|)) |%noBranch|) (IF (|has| |#3| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (-15 -3172 ($ (-679 |#3|))))) (-762) (-762) (-1039)) (T -1043))
-((-3172 (*1 *1 *2) (-12 (-5 *2 (-679 *5)) (-4 *5 (-1039)) (-5 *1 (-1043 *3 *4 *5)) (-14 *3 (-762)) (-14 *4 (-762)))))
-(-13 (-1042 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-605 (-679 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1253 |#3|)) |%noBranch|) (IF (|has| |#3| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|) (-15 -3172 ($ (-679 |#3|)))))
-((-3866 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3397 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-1044 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3397 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3866 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-762) (-762) (-1039) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1042 |#1| |#2| |#3| |#4| |#5|) (-1039) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1042 |#1| |#2| |#7| |#8| |#9|)) (T -1044))
-((-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1039)) (-4 *2 (-1039)) (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *12 (-1042 *5 *6 *2 *10 *11)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1039)) (-4 *10 (-1039)) (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1042 *5 *6 *10 *11 *12)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10)))))
-(-10 -7 (-15 -3397 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3866 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ |#1|) 23)))
-(((-1045 |#1|) (-139) (-1046)) (T -1045))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-1046)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2218 (((-638 (-561)) $) 54)) (-1380 (($ (-638 (-561))) 62)) (-2949 (((-561) $) 40 (|has| (-561) (-306)))) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL (|has| (-561) (-814)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) 49) (((-3 (-1166) "failed") $) NIL (|has| (-561) (-1031 (-1166)))) (((-3 (-406 (-561)) "failed") $) 47 (|has| (-561) (-1031 (-561)))) (((-3 (-561) "failed") $) 49 (|has| (-561) (-1031 (-561))))) (-3938 (((-561) $) NIL) (((-1166) $) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) NIL (|has| (-561) (-1031 (-561)))) (((-561) $) NIL (|has| (-561) (-1031 (-561))))) (-1793 (($ $ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| (-561) (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1332 (($) NIL (|has| (-561) (-543)))) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1634 (((-638 (-561)) $) 60)) (-3201 (((-112) $) NIL (|has| (-561) (-814)))) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (|has| (-561) (-879 (-561)))) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (|has| (-561) (-879 (-378))))) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL)) (-4030 (((-561) $) 37)) (-1663 (((-3 $ "failed") $) NIL (|has| (-561) (-1141)))) (-2110 (((-112) $) NIL (|has| (-561) (-814)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-561) (-844)))) (-4120 (($ (-1 (-561) (-561)) $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL)) (-3721 (($) NIL (|has| (-561) (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-3841 (($ $) NIL (|has| (-561) (-306))) (((-406 (-561)) $) 42)) (-1516 (((-1146 (-561)) $) 59)) (-3353 (($ (-638 (-561)) (-638 (-561))) 63)) (-1388 (((-561) $) 53 (|has| (-561) (-543)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| (-561) (-902)))) (-1657 (((-417 $) $) NIL)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-1444 (($ $ (-638 (-561)) (-638 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-561) (-561)) NIL (|has| (-561) (-308 (-561)))) (($ $ (-293 (-561))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-293 (-561)))) NIL (|has| (-561) (-308 (-561)))) (($ $ (-638 (-1166)) (-638 (-561))) NIL (|has| (-561) (-512 (-1166) (-561)))) (($ $ (-1166) (-561)) NIL (|has| (-561) (-512 (-1166) (-561))))) (-3569 (((-765) $) NIL)) (-2277 (($ $ (-561)) NIL (|has| (-561) (-285 (-561) (-561))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $) 11 (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-2861 (($ $) NIL)) (-4045 (((-561) $) 39)) (-1501 (((-638 (-561)) $) 61)) (-4174 (((-885 (-561)) $) NIL (|has| (-561) (-609 (-885 (-561))))) (((-885 (-378)) $) NIL (|has| (-561) (-609 (-885 (-378))))) (((-534) $) NIL (|has| (-561) (-609 (-534)))) (((-378) $) NIL (|has| (-561) (-1015))) (((-224) $) NIL (|has| (-561) (-1015)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-561) (-902))))) (-4022 (((-856) $) 77) (($ (-561)) 43) (($ $) NIL) (($ (-406 (-561))) 20) (($ (-561)) 43) (($ (-1166)) NIL (|has| (-561) (-1031 (-1166)))) (((-406 (-561)) $) 18)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-561) (-902))) (|has| (-561) (-144))))) (-4259 (((-765)) 9)) (-2432 (((-561) $) 51 (|has| (-561) (-543)))) (-3168 (((-112) $ $) NIL)) (-3749 (($ $) NIL (|has| (-561) (-814)))) (-2211 (($) 10 T CONST)) (-2222 (($) 12 T CONST)) (-3122 (($ $) NIL (|has| (-561) (-232))) (($ $ (-765)) NIL (|has| (-561) (-232))) (($ $ (-1166)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| (-561) (-893 (-1166)))) (($ $ (-1 (-561) (-561)) (-765)) NIL) (($ $ (-1 (-561) (-561))) NIL)) (-1782 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1733 (((-112) $ $) 14)) (-1773 (((-112) $ $) NIL (|has| (-561) (-844)))) (-1754 (((-112) $ $) 33 (|has| (-561) (-844)))) (-1833 (($ $ $) 29) (($ (-561) (-561)) 31)) (-1824 (($ $) 15) (($ $ $) 23)) (-1813 (($ $ $) 21)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 25) (($ $ $) 27) (($ $ (-406 (-561))) NIL) (($ (-406 (-561)) $) NIL) (($ (-561) $) 25) (($ $ (-561)) NIL)))
+(((-997 |#1|) (-13 (-985 (-561)) (-608 (-406 (-561))) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -2218 ((-638 (-561)) $)) (-15 -1516 ((-1146 (-561)) $)) (-15 -1634 ((-638 (-561)) $)) (-15 -1501 ((-638 (-561)) $)) (-15 -1380 ($ (-638 (-561)))) (-15 -3353 ($ (-638 (-561)) (-638 (-561)))))) (-561)) (T -997))
+((-3841 (*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))) (-3353 (*1 *1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
+(-13 (-985 (-561)) (-608 (-406 (-561))) (-10 -8 (-15 -3841 ((-406 (-561)) $)) (-15 -2218 ((-638 (-561)) $)) (-15 -1516 ((-1146 (-561)) $)) (-15 -1634 ((-638 (-561)) $)) (-15 -1501 ((-638 (-561)) $)) (-15 -1380 ($ (-638 (-561)))) (-15 -3353 ($ (-638 (-561)) (-638 (-561))))))
+((-2592 (((-52) (-406 (-561)) (-561)) 9)))
+(((-998) (-10 -7 (-15 -2592 ((-52) (-406 (-561)) (-561))))) (T -998))
+((-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-561))) (-5 *4 (-561)) (-5 *2 (-52)) (-5 *1 (-998)))))
+(-10 -7 (-15 -2592 ((-52) (-406 (-561)) (-561))))
+((-1393 (((-561)) 13)) (-2003 (((-561)) 16)) (-2643 (((-1258) (-561)) 15)) (-1959 (((-561) (-561)) 17) (((-561)) 12)))
+(((-999) (-10 -7 (-15 -1959 ((-561))) (-15 -1393 ((-561))) (-15 -1959 ((-561) (-561))) (-15 -2643 ((-1258) (-561))) (-15 -2003 ((-561))))) (T -999))
+((-2003 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-999)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))) (-1393 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))) (-1959 (*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))))
+(-10 -7 (-15 -1959 ((-561))) (-15 -1393 ((-561))) (-15 -1959 ((-561) (-561))) (-15 -2643 ((-1258) (-561))) (-15 -2003 ((-561))))
+((-2494 (((-417 |#1|) |#1|) 41)) (-1657 (((-417 |#1|) |#1|) 40)))
+(((-1000 |#1|) (-10 -7 (-15 -1657 ((-417 |#1|) |#1|)) (-15 -2494 ((-417 |#1|) |#1|))) (-1229 (-406 (-561)))) (T -1000))
+((-2494 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-561)))))) (-1657 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-561)))))))
+(-10 -7 (-15 -1657 ((-417 |#1|) |#1|)) (-15 -2494 ((-417 |#1|) |#1|)))
+((-2937 (((-3 (-406 (-561)) "failed") |#1|) 15)) (-3798 (((-112) |#1|) 14)) (-3354 (((-406 (-561)) |#1|) 10)))
+(((-1001 |#1|) (-10 -7 (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|))) (-1031 (-406 (-561)))) (T -1001))
+((-2937 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))) (-3798 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-561)))))) (-3354 (*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))))
+(-10 -7 (-15 -3354 ((-406 (-561)) |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -2937 ((-3 (-406 (-561)) "failed") |#1|)))
+((-4167 ((|#2| $ "value" |#2|) 12)) (-2277 ((|#2| $ "value") 10)) (-3123 (((-112) $ $) 18)))
+(((-1002 |#1| |#2|) (-10 -8 (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -3123 ((-112) |#1| |#1|)) (-15 -2277 (|#2| |#1| "value"))) (-1003 |#2|) (-1205)) (T -1002))
+NIL
+(-10 -8 (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -3123 ((-112) |#1| |#1|)) (-15 -2277 (|#2| |#1| "value")))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-1965 (($) 7 T CONST)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47)) (-2004 (((-561) $ $) 44)) (-3849 (((-112) $) 46)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1003 |#1|) (-139) (-1205)) (T -1003))
+((-4257 (*1 *2 *1) (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3)))) (-1940 (*1 *2 *1) (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1205)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1205)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))) (-2004 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))) (-3123 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-2726 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-3894 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *1)) (|has| *1 (-6 -4391)) (-4 *1 (-1003 *3)) (-4 *3 (-1205)))) (-4167 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4391)) (-4 *1 (-1003 *2)) (-4 *2 (-1205)))) (-1969 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1003 *2)) (-4 *2 (-1205)))))
+(-13 (-487 |t#1|) (-10 -8 (-15 -4257 ((-638 $) $)) (-15 -1940 ((-638 $) $)) (-15 -3067 ((-112) $)) (-15 -2484 (|t#1| $)) (-15 -2277 (|t#1| $ "value")) (-15 -3849 ((-112) $)) (-15 -3884 ((-638 |t#1|) $)) (-15 -2004 ((-561) $ $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3123 ((-112) $ $)) (-15 -2726 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4391)) (PROGN (-15 -3894 ($ $ (-638 $))) (-15 -4167 (|t#1| $ "value" |t#1|)) (-15 -1969 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-1665 (($ $) 9) (($ $ (-914)) 43) (($ (-406 (-561))) 13) (($ (-561)) 15)) (-3559 (((-3 $ "failed") (-1162 $) (-914) (-856)) 23) (((-3 $ "failed") (-1162 $) (-914)) 28)) (-2556 (($ $ (-561)) 49)) (-4259 (((-765)) 17)) (-1952 (((-638 $) (-1162 $)) NIL) (((-638 $) (-1162 (-406 (-561)))) 54) (((-638 $) (-1162 (-561))) 59) (((-638 $) (-945 $)) 63) (((-638 $) (-945 (-406 (-561)))) 67) (((-638 $) (-945 (-561))) 71)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ $ (-406 (-561))) 47)))
+(((-1004 |#1|) (-10 -8 (-15 -1665 (|#1| (-561))) (-15 -1665 (|#1| (-406 (-561)))) (-15 -1665 (|#1| |#1| (-914))) (-15 -1952 ((-638 |#1|) (-945 (-561)))) (-15 -1952 ((-638 |#1|) (-945 (-406 (-561))))) (-15 -1952 ((-638 |#1|) (-945 |#1|))) (-15 -1952 ((-638 |#1|) (-1162 (-561)))) (-15 -1952 ((-638 |#1|) (-1162 (-406 (-561))))) (-15 -1952 ((-638 |#1|) (-1162 |#1|))) (-15 -3559 ((-3 |#1| "failed") (-1162 |#1|) (-914))) (-15 -3559 ((-3 |#1| "failed") (-1162 |#1|) (-914) (-856))) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -2556 (|#1| |#1| (-561))) (-15 -1665 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -4259 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914)))) (-1005)) (T -1004))
+((-4259 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005)))))
+(-10 -8 (-15 -1665 (|#1| (-561))) (-15 -1665 (|#1| (-406 (-561)))) (-15 -1665 (|#1| |#1| (-914))) (-15 -1952 ((-638 |#1|) (-945 (-561)))) (-15 -1952 ((-638 |#1|) (-945 (-406 (-561))))) (-15 -1952 ((-638 |#1|) (-945 |#1|))) (-15 -1952 ((-638 |#1|) (-1162 (-561)))) (-15 -1952 ((-638 |#1|) (-1162 (-406 (-561))))) (-15 -1952 ((-638 |#1|) (-1162 |#1|))) (-15 -3559 ((-3 |#1| "failed") (-1162 |#1|) (-914))) (-15 -3559 ((-3 |#1| "failed") (-1162 |#1|) (-914) (-856))) (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -2556 (|#1| |#1| (-561))) (-15 -1665 (|#1| |#1|)) (-15 ** (|#1| |#1| (-561))) (-15 -4259 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 91)) (-2851 (($ $) 92)) (-3359 (((-112) $) 94)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 111)) (-3422 (((-417 $) $) 112)) (-1665 (($ $) 75) (($ $ (-914)) 61) (($ (-406 (-561))) 60) (($ (-561)) 59)) (-1671 (((-112) $ $) 102)) (-2666 (((-561) $) 128)) (-1965 (($) 17 T CONST)) (-3559 (((-3 $ "failed") (-1162 $) (-914) (-856)) 69) (((-3 $ "failed") (-1162 $) (-914)) 68)) (-4017 (((-3 (-561) "failed") $) 88 (|has| (-406 (-561)) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 86 (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-3 (-406 (-561)) "failed") $) 83)) (-3938 (((-561) $) 87 (|has| (-406 (-561)) (-1031 (-561)))) (((-406 (-561)) $) 85 (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-406 (-561)) $) 84)) (-3083 (($ $ (-856)) 58)) (-3194 (($ $ (-856)) 57)) (-1793 (($ $ $) 106)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 105)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 100)) (-2737 (((-112) $) 113)) (-3201 (((-112) $) 126)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 74)) (-2110 (((-112) $) 127)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 109)) (-3443 (($ $ $) 125)) (-2986 (($ $ $) 124)) (-1889 (((-3 (-1162 $) "failed") $) 70)) (-2420 (((-3 (-856) "failed") $) 72)) (-2675 (((-3 (-1162 $) "failed") $) 71)) (-1582 (($ (-638 $)) 98) (($ $ $) 97)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 114)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 99)) (-1623 (($ (-638 $)) 96) (($ $ $) 95)) (-1657 (((-417 $) $) 110)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 107)) (-1756 (((-3 $ "failed") $ $) 90)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 101)) (-3569 (((-765) $) 103)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 104)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 118) (($ $) 89) (($ (-406 (-561))) 82) (($ (-561)) 81) (($ (-406 (-561))) 78)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 93)) (-1417 (((-406 (-561)) $ $) 56)) (-1952 (((-638 $) (-1162 $)) 67) (((-638 $) (-1162 (-406 (-561)))) 66) (((-638 $) (-1162 (-561))) 65) (((-638 $) (-945 $)) 64) (((-638 $) (-945 (-406 (-561)))) 63) (((-638 $) (-945 (-561))) 62)) (-3749 (($ $) 129)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1782 (((-112) $ $) 122)) (-1762 (((-112) $ $) 121)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 123)) (-1754 (((-112) $ $) 120)) (-1833 (($ $ $) 119)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 115) (($ $ (-406 (-561))) 73)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ (-406 (-561)) $) 117) (($ $ (-406 (-561))) 116) (($ (-561) $) 80) (($ $ (-561)) 79) (($ (-406 (-561)) $) 77) (($ $ (-406 (-561))) 76)))
+(((-1005) (-139)) (T -1005))
+((-1665 (*1 *1 *1) (-4 *1 (-1005))) (-2420 (*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-856)))) (-2675 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))) (-1889 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))) (-3559 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-5 *4 (-856)) (-4 *1 (-1005)))) (-3559 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-4 *1 (-1005)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-1162 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005)))) (-1665 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-914)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1005)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1005)))) (-3083 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))) (-3194 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))) (-1417 (*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-561))))))
+(-13 (-146) (-842) (-171) (-362) (-410 (-406 (-561))) (-38 (-561)) (-38 (-406 (-561))) (-995) (-10 -8 (-15 -2420 ((-3 (-856) "failed") $)) (-15 -2675 ((-3 (-1162 $) "failed") $)) (-15 -1889 ((-3 (-1162 $) "failed") $)) (-15 -3559 ((-3 $ "failed") (-1162 $) (-914) (-856))) (-15 -3559 ((-3 $ "failed") (-1162 $) (-914))) (-15 -1952 ((-638 $) (-1162 $))) (-15 -1952 ((-638 $) (-1162 (-406 (-561))))) (-15 -1952 ((-638 $) (-1162 (-561)))) (-15 -1952 ((-638 $) (-945 $))) (-15 -1952 ((-638 $) (-945 (-406 (-561))))) (-15 -1952 ((-638 $) (-945 (-561)))) (-15 -1665 ($ $ (-914))) (-15 -1665 ($ $)) (-15 -1665 ($ (-406 (-561)))) (-15 -1665 ($ (-561))) (-15 -3083 ($ $ (-856))) (-15 -3194 ($ $ (-856))) (-15 -1417 ((-406 (-561)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 #1=(-561)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-410 (-406 (-561))) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-913) . T) ((-995) . T) ((-1031 (-406 (-561))) . T) ((-1031 (-561)) |has| (-406 (-561)) (-1031 (-561))) ((-1048 #0#) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
+((-4287 (((-2 (|:| |ans| |#2|) (|:| -1621 |#2|) (|:| |sol?| (-112))) (-561) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65)))
+(((-1006 |#1| |#2|) (-10 -7 (-15 -4287 ((-2 (|:| |ans| |#2|) (|:| -1621 |#2|) (|:| |sol?| (-112))) (-561) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-27) (-429 |#1|))) (T -1006))
+((-4287 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-638 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-561)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1621 *4) (|:| |sol?| (-112)))) (-5 *1 (-1006 *8 *4)))))
+(-10 -7 (-15 -4287 ((-2 (|:| |ans| |#2|) (|:| -1621 |#2|) (|:| |sol?| (-112))) (-561) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3528 (((-3 (-638 |#2|) "failed") (-561) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-1007 |#1| |#2|) (-10 -7 (-15 -3528 ((-3 (-638 |#2|) "failed") (-561) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))) (-13 (-1190) (-27) (-429 |#1|))) (T -1007))
+((-3528 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-638 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-429 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-561)) (-5 *2 (-638 *4)) (-5 *1 (-1007 *8 *4)))))
+(-10 -7 (-15 -3528 ((-3 (-638 |#2|) "failed") (-561) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-638 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-638 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1641 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3360 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-561)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-561) (-1 |#2| |#2|)) 31)) (-2202 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3369 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 59)) (-2223 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 64)))
+(((-1008 |#1| |#2|) (-10 -7 (-15 -2202 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3369 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2223 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -1641 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3360 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-561)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-561) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1031 (-561))) (-1229 |#1|)) (T -1008))
+((-1641 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-561)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3360 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1008 *6 *3)))) (-2223 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5)))) (-2202 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3369 *6))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -2202 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3369 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2223 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -1641 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3360 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-561)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-561) (-1 |#2| |#2|))))
+((-1851 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3369 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-3119 (((-3 (-638 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33)))
+(((-1009 |#1| |#2|) (-10 -7 (-15 -1851 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3369 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3119 ((-3 (-638 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-561))) (-1229 |#1|)) (T -1009))
+((-3119 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1229 *4)) (-5 *2 (-638 (-406 *5))) (-5 *1 (-1009 *4 *5)) (-5 *3 (-406 *5)))) (-1851 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3369 *6))) (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6)))))
+(-10 -7 (-15 -1851 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3369 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3119 ((-3 (-638 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))))
+((-4311 (((-1 |#1|) (-638 (-2 (|:| -2484 |#1|) (|:| -3643 (-561))))) 37)) (-3040 (((-1 |#1|) (-1092 |#1|)) 45)) (-4204 (((-1 |#1|) (-1253 |#1|) (-1253 (-561)) (-561)) 34)))
+(((-1010 |#1|) (-10 -7 (-15 -3040 ((-1 |#1|) (-1092 |#1|))) (-15 -4311 ((-1 |#1|) (-638 (-2 (|:| -2484 |#1|) (|:| -3643 (-561)))))) (-15 -4204 ((-1 |#1|) (-1253 |#1|) (-1253 (-561)) (-561)))) (-1090)) (T -1010))
+((-4204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1253 *6)) (-5 *4 (-1253 (-561))) (-5 *5 (-561)) (-4 *6 (-1090)) (-5 *2 (-1 *6)) (-5 *1 (-1010 *6)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -2484 *4) (|:| -3643 (-561))))) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))))
+(-10 -7 (-15 -3040 ((-1 |#1|) (-1092 |#1|))) (-15 -4311 ((-1 |#1|) (-638 (-2 (|:| -2484 |#1|) (|:| -3643 (-561)))))) (-15 -4204 ((-1 |#1|) (-1253 |#1|) (-1253 (-561)) (-561))))
+((-4163 (((-765) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4163 ((-765) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1011))
+((-4163 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-4 *4 (-1229 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765)) (-5 *1 (-1011 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -4163 ((-765) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-4011 (((-112) $ $) NIL)) (-3479 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-1125) $) 11)) (-1733 (((-112) $ $) NIL)))
+(((-1012) (-13 (-1073) (-10 -8 (-15 -3479 ((-1125) $)) (-15 -3279 ((-1125) $))))) (T -1012))
+((-3479 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))))
+(-13 (-1073) (-10 -8 (-15 -3479 ((-1125) $)) (-15 -3279 ((-1125) $))))
+((-1883 (((-3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) "failed") |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) 31) (((-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561))) 28)) (-2661 (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561))) 33) (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-406 (-561))) 29) (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) 32) (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1|) 27)) (-1703 (((-638 (-406 (-561))) (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) 19)) (-1732 (((-406 (-561)) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) 16)))
+(((-1013 |#1|) (-10 -7 (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1|)) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) "failed") |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -1732 ((-406 (-561)) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -1703 ((-638 (-406 (-561))) (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))))) (-1229 (-561))) (T -1013))
+((-1703 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-5 *2 (-638 (-406 (-561)))) (-5 *1 (-1013 *4)) (-4 *4 (-1229 (-561))))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) (-5 *2 (-406 (-561))) (-5 *1 (-1013 *4)) (-4 *4 (-1229 (-561))))) (-1883 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561))))) (-1883 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) (-5 *4 (-406 (-561))) (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561))))) (-2661 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-561))) (-5 *2 (-638 (-2 (|:| -1605 *5) (|:| -1621 *5)))) (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561))) (-5 *4 (-2 (|:| -1605 *5) (|:| -1621 *5))))) (-2661 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561))) (-5 *4 (-406 (-561))))) (-2661 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561))) (-5 *4 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))) (-2661 (*1 *2 *3) (-12 (-5 *2 (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561))))))
+(-10 -7 (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1|)) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) "failed") |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -1732 ((-406 (-561)) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -1703 ((-638 (-406 (-561))) (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))))
+((-1883 (((-3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) "failed") |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) 35) (((-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561))) 32)) (-2661 (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561))) 30) (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-406 (-561))) 26) (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) 28) (((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1|) 24)))
+(((-1014 |#1|) (-10 -7 (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1|)) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) "failed") |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))) (-1229 (-406 (-561)))) (T -1014))
+((-1883 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-406 (-561)))))) (-1883 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) (-5 *4 (-406 (-561))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 *4)))) (-2661 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-561))) (-5 *2 (-638 (-2 (|:| -1605 *5) (|:| -1621 *5)))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 *5)) (-5 *4 (-2 (|:| -1605 *5) (|:| -1621 *5))))) (-2661 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-561))) (-5 *2 (-638 (-2 (|:| -1605 *4) (|:| -1621 *4)))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 *4)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *2 (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-406 (-561)))) (-5 *4 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))) (-2661 (*1 *2 *3) (-12 (-5 *2 (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-406 (-561)))))))
+(-10 -7 (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1|)) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-406 (-561)))) (-15 -2661 ((-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-406 (-561)))) (-15 -1883 ((-3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) "failed") |#1| (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))) (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))))
+((-4174 (((-224) $) 6) (((-378) $) 9)))
+(((-1015) (-139)) (T -1015))
+NIL
+(-13 (-609 (-224)) (-609 (-378)))
+(((-609 (-224)) . T) ((-609 (-378)) . T))
+((-3867 (((-638 (-378)) (-945 (-561)) (-378)) 28) (((-638 (-378)) (-945 (-406 (-561))) (-378)) 27)) (-1748 (((-638 (-638 (-378))) (-638 (-945 (-561))) (-638 (-1166)) (-378)) 37)))
+(((-1016) (-10 -7 (-15 -3867 ((-638 (-378)) (-945 (-406 (-561))) (-378))) (-15 -3867 ((-638 (-378)) (-945 (-561)) (-378))) (-15 -1748 ((-638 (-638 (-378))) (-638 (-945 (-561))) (-638 (-1166)) (-378))))) (T -1016))
+((-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 (-378)))) (-5 *1 (-1016)) (-5 *5 (-378)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 (-378))) (-5 *1 (-1016)) (-5 *4 (-378)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 (-378))) (-5 *1 (-1016)) (-5 *4 (-378)))))
+(-10 -7 (-15 -3867 ((-638 (-378)) (-945 (-406 (-561))) (-378))) (-15 -3867 ((-638 (-378)) (-945 (-561)) (-378))) (-15 -1748 ((-638 (-638 (-378))) (-638 (-945 (-561))) (-638 (-1166)) (-378))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 70)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1665 (($ $) NIL) (($ $ (-914)) NIL) (($ (-406 (-561))) NIL) (($ (-561)) NIL)) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) 65)) (-1965 (($) NIL T CONST)) (-3559 (((-3 $ "failed") (-1162 $) (-914) (-856)) NIL) (((-3 $ "failed") (-1162 $) (-914)) 50)) (-4017 (((-3 (-406 (-561)) "failed") $) NIL (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-561) "failed") $) NIL (-4007 (|has| (-406 (-561)) (-1031 (-561))) (|has| |#1| (-1031 (-561)))))) (-3938 (((-406 (-561)) $) 15 (|has| (-406 (-561)) (-1031 (-406 (-561))))) (((-406 (-561)) $) 15) ((|#1| $) 108) (((-561) $) NIL (-4007 (|has| (-406 (-561)) (-1031 (-561))) (|has| |#1| (-1031 (-561)))))) (-3083 (($ $ (-856)) 42)) (-3194 (($ $ (-856)) 43)) (-1793 (($ $ $) NIL)) (-3792 (((-406 (-561)) $ $) 19)) (-3466 (((-3 $ "failed") $) 83)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-3201 (((-112) $) 61)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL)) (-2110 (((-112) $) 64)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-1889 (((-3 (-1162 $) "failed") $) 78)) (-2420 (((-3 (-856) "failed") $) 77)) (-2675 (((-3 (-1162 $) "failed") $) 75)) (-2761 (((-3 (-1052 $ (-1162 $)) "failed") $) 73)) (-1582 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 84)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ (-638 $)) NIL) (($ $ $) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-4022 (((-856) $) 82) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ $) 58) (($ (-406 (-561))) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ |#1|) 110)) (-4259 (((-765)) NIL)) (-3168 (((-112) $ $) NIL)) (-1417 (((-406 (-561)) $ $) 25)) (-1952 (((-638 $) (-1162 $)) 56) (((-638 $) (-1162 (-406 (-561)))) NIL) (((-638 $) (-1162 (-561))) NIL) (((-638 $) (-945 $)) NIL) (((-638 $) (-945 (-406 (-561)))) NIL) (((-638 $) (-945 (-561))) NIL)) (-3160 (($ (-1052 $ (-1162 $)) (-856)) 41)) (-3749 (($ $) 20)) (-2211 (($) 29 T CONST)) (-2222 (($) 35 T CONST)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 71)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 22)) (-1833 (($ $ $) 33)) (-1824 (($ $) 34) (($ $ $) 69)) (-1813 (($ $ $) 103)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL) (($ $ (-406 (-561))) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 91) (($ $ $) 96) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ (-561) $) 91) (($ $ (-561)) NIL) (($ (-406 (-561)) $) NIL) (($ $ (-406 (-561))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-1017 |#1|) (-13 (-1005) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -3160 ($ (-1052 $ (-1162 $)) (-856))) (-15 -2761 ((-3 (-1052 $ (-1162 $)) "failed") $)) (-15 -3792 ((-406 (-561)) $ $)))) (-13 (-842) (-362) (-1015))) (T -1017))
+((-3160 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-1017 *4) (-1162 (-1017 *4)))) (-5 *3 (-856)) (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1015))))) (-2761 (*1 *2 *1) (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1162 (-1017 *3)))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1015))))) (-3792 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1015))))))
+(-13 (-1005) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -3160 ($ (-1052 $ (-1162 $)) (-856))) (-15 -2761 ((-3 (-1052 $ (-1162 $)) "failed") $)) (-15 -3792 ((-406 (-561)) $ $))))
+((-3905 (((-2 (|:| -3360 |#2|) (|:| -2375 (-638 |#1|))) |#2| (-638 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -3905 (|#2| |#2| |#1|)) (-15 -3905 ((-2 (|:| -3360 |#2|) (|:| -2375 (-638 |#1|))) |#2| (-638 |#1|)))) (-362) (-649 |#1|)) (T -1018))
+((-3905 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3360 *3) (|:| -2375 (-638 *5)))) (-5 *1 (-1018 *5 *3)) (-5 *4 (-638 *5)) (-4 *3 (-649 *5)))) (-3905 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-649 *3)))))
+(-10 -7 (-15 -3905 (|#2| |#2| |#1|)) (-15 -3905 ((-2 (|:| -3360 |#2|) (|:| -2375 (-638 |#1|))) |#2| (-638 |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1517 ((|#1| $ |#1|) 14)) (-4167 ((|#1| $ |#1|) 12)) (-2748 (($ |#1|) 10)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2277 ((|#1| $) 11)) (-1290 ((|#1| $) 13)) (-4022 (((-856) $) 21 (|has| |#1| (-1090)))) (-1733 (((-112) $ $) 9)))
+(((-1019 |#1|) (-13 (-1205) (-10 -8 (-15 -2748 ($ |#1|)) (-15 -2277 (|#1| $)) (-15 -4167 (|#1| $ |#1|)) (-15 -1290 (|#1| $)) (-15 -1517 (|#1| $ |#1|)) (-15 -1733 ((-112) $ $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|))) (-1205)) (T -1019))
+((-2748 (*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-2277 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-4167 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-1290 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-1517 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))) (-1733 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1205)))))
+(-13 (-1205) (-10 -8 (-15 -2748 ($ |#1|)) (-15 -2277 (|#1| $)) (-15 -4167 (|#1| $ |#1|)) (-15 -1290 (|#1| $)) (-15 -1517 (|#1| $ |#1|)) (-15 -1733 ((-112) $ $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3047 (((-638 $) (-638 |#4|)) 105) (((-638 $) (-638 |#4|) (-112)) 106) (((-638 $) (-638 |#4|) (-112) (-112)) 104) (((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112)) 107)) (-1412 (((-638 |#3|) $) NIL)) (-1978 (((-112) $) NIL)) (-2701 (((-112) $) NIL (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2427 ((|#4| |#4| $) NIL)) (-1591 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| $) 99)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) 54)) (-1965 (($) NIL T CONST)) (-2002 (((-112) $) 27 (|has| |#1| (-553)))) (-1951 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1361 (((-112) $) NIL (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1825 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3938 (($ (-638 |#4|)) NIL)) (-1445 (((-3 $ "failed") $) 40)) (-3320 ((|#4| |#4| $) 57)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-1489 (($ |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3372 ((|#4| |#4| $) NIL)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) NIL)) (-3871 (((-112) |#4| $) NIL)) (-2639 (((-112) |#4| $) NIL)) (-1786 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1403 (((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)) 119)) (-3571 (((-638 |#4|) $) 17 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#4|) $) 18 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-2065 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 22)) (-2209 (((-638 |#3|) $) NIL)) (-2866 (((-112) |#3| $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2987 (((-3 |#4| (-638 $)) |#4| |#4| $) NIL)) (-1631 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| |#4| $) 97)) (-1520 (((-3 |#4| "failed") $) 38)) (-3316 (((-638 $) |#4| $) 80)) (-4021 (((-3 (-112) (-638 $)) |#4| $) NIL)) (-1924 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-2579 (((-638 $) |#4| $) 102) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 103) (((-638 $) |#4| (-638 $)) NIL)) (-3178 (((-638 $) (-638 |#4|) (-112) (-112) (-112)) 114)) (-2961 (($ |#4| $) 70) (($ (-638 |#4|) $) 71) (((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-1981 (((-638 |#4|) $) NIL)) (-2153 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1829 ((|#4| |#4| $) NIL)) (-3863 (((-112) $ $) NIL)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-3 |#4| "failed") $) 36)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2916 (((-3 $ "failed") $ |#4|) 48)) (-1416 (($ $ |#4|) NIL) (((-638 $) |#4| $) 82) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 77)) (-2123 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 16)) (-3170 (($) 14)) (-2894 (((-765) $) NIL)) (-1724 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) 13)) (-4174 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 21)) (-1755 (($ $ |#3|) 43)) (-2794 (($ $ |#3|) 44)) (-2074 (($ $) NIL)) (-1967 (($ $ |#3|) NIL)) (-4022 (((-856) $) 32) (((-638 |#4|) $) 41)) (-4161 (((-765) $) NIL (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-2930 (((-638 $) |#4| $) 79) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) NIL)) (-2827 (((-112) |#4| $) NIL)) (-1751 (((-112) |#3| $) 53)) (-1733 (((-112) $ $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1020 |#1| |#2| |#3| |#4|) (-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2961 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -3178 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1403 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1020))
+((-2961 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-3047 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-3178 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-1403 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-638 *8)) (|:| |towers| (-638 (-1020 *5 *6 *7 *8))))) (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
+(-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2961 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -3178 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1403 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)))))
+((-2299 (((-638 (-682 |#1|)) (-638 (-682 |#1|))) 58) (((-682 |#1|) (-682 |#1|)) 57) (((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-638 (-682 |#1|))) 56) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 53)) (-2391 (((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914)) 52) (((-682 |#1|) (-682 |#1|) (-914)) 51)) (-2383 (((-638 (-682 (-561))) (-638 (-638 (-561)))) 68) (((-638 (-682 (-561))) (-638 (-898 (-561))) (-561)) 67) (((-682 (-561)) (-638 (-561))) 64) (((-682 (-561)) (-898 (-561)) (-561)) 63)) (-2388 (((-682 (-945 |#1|)) (-765)) 81)) (-3742 (((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914)) 37 (|has| |#1| (-6 (-4392 "*")))) (((-682 |#1|) (-682 |#1|) (-914)) 35 (|has| |#1| (-6 (-4392 "*"))))))
+(((-1021 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4392 "*"))) (-15 -3742 ((-682 |#1|) (-682 |#1|) (-914))) |%noBranch|) (IF (|has| |#1| (-6 (-4392 "*"))) (-15 -3742 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) |%noBranch|) (-15 -2388 ((-682 (-945 |#1|)) (-765))) (-15 -2391 ((-682 |#1|) (-682 |#1|) (-914))) (-15 -2391 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) (-15 -2299 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2299 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -2299 ((-682 |#1|) (-682 |#1|))) (-15 -2299 ((-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -2383 ((-682 (-561)) (-898 (-561)) (-561))) (-15 -2383 ((-682 (-561)) (-638 (-561)))) (-15 -2383 ((-638 (-682 (-561))) (-638 (-898 (-561))) (-561))) (-15 -2383 ((-638 (-682 (-561))) (-638 (-638 (-561)))))) (-1042)) (T -1021))
+((-2383 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-561)))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-1021 *4)) (-4 *4 (-1042)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-898 (-561)))) (-5 *4 (-561)) (-5 *2 (-638 (-682 *4))) (-5 *1 (-1021 *5)) (-4 *5 (-1042)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1021 *4)) (-4 *4 (-1042)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *3 (-898 (-561))) (-5 *4 (-561)) (-5 *2 (-682 *4)) (-5 *1 (-1021 *5)) (-4 *5 (-1042)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))) (-2391 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914)) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))) (-2391 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-682 (-945 *4))) (-5 *1 (-1021 *4)) (-4 *4 (-1042)))) (-3742 (*1 *2 *2 *3) (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914)) (|has| *4 (-6 (-4392 "*"))) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))) (-3742 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (|has| *4 (-6 (-4392 "*"))) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4392 "*"))) (-15 -3742 ((-682 |#1|) (-682 |#1|) (-914))) |%noBranch|) (IF (|has| |#1| (-6 (-4392 "*"))) (-15 -3742 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) |%noBranch|) (-15 -2388 ((-682 (-945 |#1|)) (-765))) (-15 -2391 ((-682 |#1|) (-682 |#1|) (-914))) (-15 -2391 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-914))) (-15 -2299 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2299 ((-638 (-682 |#1|)) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -2299 ((-682 |#1|) (-682 |#1|))) (-15 -2299 ((-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -2383 ((-682 (-561)) (-898 (-561)) (-561))) (-15 -2383 ((-682 (-561)) (-638 (-561)))) (-15 -2383 ((-638 (-682 (-561))) (-638 (-898 (-561))) (-561))) (-15 -2383 ((-638 (-682 (-561))) (-638 (-638 (-561))))))
+((-3567 (((-682 |#1|) (-638 (-682 |#1|)) (-1253 |#1|)) 49 (|has| |#1| (-306)))) (-2321 (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1253 (-1253 |#1|))) 75 (|has| |#1| (-362))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1253 |#1|)) 78 (|has| |#1| (-362)))) (-1783 (((-1253 |#1|) (-638 (-1253 |#1|)) (-561)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3607 (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-914)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112) (-561) (-561)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-4168 (((-112) (-638 (-682 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-638 (-682 |#1|)) (-561)) 72 (|has| |#1| (-362)))) (-1344 (((-1253 (-1253 |#1|)) (-638 (-682 |#1|)) (-1253 |#1|)) 47 (|has| |#1| (-306)))) (-1877 (((-682 |#1|) (-638 (-682 |#1|)) (-682 |#1|)) 33)) (-3748 (((-682 |#1|) (-1253 (-1253 |#1|))) 30)) (-2058 (((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-561)) 64 (|has| |#1| (-362))) (((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|))) 63 (|has| |#1| (-362))) (((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-112) (-561)) 68 (|has| |#1| (-362)))))
+(((-1022 |#1|) (-10 -7 (-15 -3748 ((-682 |#1|) (-1253 (-1253 |#1|)))) (-15 -1877 ((-682 |#1|) (-638 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -1344 ((-1253 (-1253 |#1|)) (-638 (-682 |#1|)) (-1253 |#1|))) (-15 -3567 ((-682 |#1|) (-638 (-682 |#1|)) (-1253 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2058 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-112) (-561))) (-15 -2058 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -2058 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-561))) (-15 -4168 ((-112) (-638 (-682 |#1|)) (-561))) (-15 -4168 ((-112) (-638 (-682 |#1|)))) (-15 -2321 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1253 |#1|))) (-15 -2321 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1253 (-1253 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112) (-561) (-561))) (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)))) (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112))) (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-914))) (-15 -1783 ((-1253 |#1|) (-638 (-1253 |#1|)) (-561)))) |%noBranch|) |%noBranch|)) (-1042)) (T -1022))
+((-1783 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1253 *5))) (-5 *4 (-561)) (-5 *2 (-1253 *5)) (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)))) (-3607 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-3607 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-3607 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042)) (-5 *2 (-638 (-638 (-682 *4)))) (-5 *1 (-1022 *4)) (-5 *3 (-638 (-682 *4))))) (-3607 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-561)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1042)) (-5 *2 (-638 (-638 (-682 *6)))) (-5 *1 (-1022 *6)) (-5 *3 (-638 (-682 *6))))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 (-1253 *5))) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5)) (-5 *3 (-638 (-682 *5))))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-1022 *4)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-112)) (-5 *1 (-1022 *5)))) (-2058 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-5 *2 (-682 *5)) (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-1042)))) (-2058 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1022 *4)) (-4 *4 (-362)) (-4 *4 (-1042)))) (-2058 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-638 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-561)) (-5 *2 (-682 *6)) (-5 *1 (-1022 *6)) (-4 *6 (-362)) (-4 *6 (-1042)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-1253 *5)) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1022 *5)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-1253 (-1253 *5))) (-5 *1 (-1022 *5)) (-5 *4 (-1253 *5)))) (-1877 (*1 *2 *3 *2) (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-1253 (-1253 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4)) (-5 *1 (-1022 *4)))))
+(-10 -7 (-15 -3748 ((-682 |#1|) (-1253 (-1253 |#1|)))) (-15 -1877 ((-682 |#1|) (-638 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -1344 ((-1253 (-1253 |#1|)) (-638 (-682 |#1|)) (-1253 |#1|))) (-15 -3567 ((-682 |#1|) (-638 (-682 |#1|)) (-1253 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2058 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-112) (-561))) (-15 -2058 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -2058 ((-682 |#1|) (-638 (-682 |#1|)) (-638 (-682 |#1|)) (-561))) (-15 -4168 ((-112) (-638 (-682 |#1|)) (-561))) (-15 -4168 ((-112) (-638 (-682 |#1|)))) (-15 -2321 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1253 |#1|))) (-15 -2321 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-1253 (-1253 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112) (-561) (-561))) (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)))) (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-112))) (-15 -3607 ((-638 (-638 (-682 |#1|))) (-638 (-682 |#1|)) (-914))) (-15 -1783 ((-1253 |#1|) (-638 (-1253 |#1|)) (-561)))) |%noBranch|) |%noBranch|))
+((-2481 ((|#1| (-914) |#1|) 9)))
+(((-1023 |#1|) (-10 -7 (-15 -2481 (|#1| (-914) |#1|))) (-13 (-1090) (-10 -8 (-15 -1813 ($ $ $))))) (T -1023))
+((-2481 (*1 *2 *3 *2) (-12 (-5 *3 (-914)) (-5 *1 (-1023 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1813 ($ $ $))))))))
+(-10 -7 (-15 -2481 (|#1| (-914) |#1|)))
+((-1701 (((-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561))))))) (-682 (-406 (-945 (-561))))) 59)) (-2999 (((-638 (-682 (-315 (-561)))) (-315 (-561)) (-682 (-406 (-945 (-561))))) 48)) (-2766 (((-638 (-315 (-561))) (-682 (-406 (-945 (-561))))) 41)) (-1970 (((-638 (-682 (-315 (-561)))) (-682 (-406 (-945 (-561))))) 68)) (-2476 (((-682 (-315 (-561))) (-682 (-315 (-561)))) 34)) (-3868 (((-638 (-682 (-315 (-561)))) (-638 (-682 (-315 (-561))))) 62)) (-3355 (((-3 (-682 (-315 (-561))) "failed") (-682 (-406 (-945 (-561))))) 66)))
+(((-1024) (-10 -7 (-15 -1701 ((-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561))))))) (-682 (-406 (-945 (-561)))))) (-15 -2999 ((-638 (-682 (-315 (-561)))) (-315 (-561)) (-682 (-406 (-945 (-561)))))) (-15 -2766 ((-638 (-315 (-561))) (-682 (-406 (-945 (-561)))))) (-15 -3355 ((-3 (-682 (-315 (-561))) "failed") (-682 (-406 (-945 (-561)))))) (-15 -2476 ((-682 (-315 (-561))) (-682 (-315 (-561))))) (-15 -3868 ((-638 (-682 (-315 (-561)))) (-638 (-682 (-315 (-561)))))) (-15 -1970 ((-638 (-682 (-315 (-561)))) (-682 (-406 (-945 (-561)))))))) (T -1024))
+((-1970 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))) (-3355 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-315 (-561)))) (-5 *1 (-1024)))) (-2999 (*1 *2 *3 *4) (-12 (-5 *4 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)) (-5 *3 (-315 (-561))))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561)))))))) (-5 *1 (-1024)))))
+(-10 -7 (-15 -1701 ((-638 (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561)) (|:| |radvect| (-638 (-682 (-315 (-561))))))) (-682 (-406 (-945 (-561)))))) (-15 -2999 ((-638 (-682 (-315 (-561)))) (-315 (-561)) (-682 (-406 (-945 (-561)))))) (-15 -2766 ((-638 (-315 (-561))) (-682 (-406 (-945 (-561)))))) (-15 -3355 ((-3 (-682 (-315 (-561))) "failed") (-682 (-406 (-945 (-561)))))) (-15 -2476 ((-682 (-315 (-561))) (-682 (-315 (-561))))) (-15 -3868 ((-638 (-682 (-315 (-561)))) (-638 (-682 (-315 (-561)))))) (-15 -1970 ((-638 (-682 (-315 (-561)))) (-682 (-406 (-945 (-561)))))))
+((-4215 ((|#1| |#1| (-914)) 9)))
+(((-1025 |#1|) (-10 -7 (-15 -4215 (|#1| |#1| (-914)))) (-13 (-1090) (-10 -8 (-15 * ($ $ $))))) (T -1025))
+((-4215 (*1 *2 *2 *3) (-12 (-5 *3 (-914)) (-5 *1 (-1025 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -4215 (|#1| |#1| (-914))))
+((-4022 ((|#1| (-311)) 11) (((-1258) |#1|) 9)))
+(((-1026 |#1|) (-10 -7 (-15 -4022 ((-1258) |#1|)) (-15 -4022 (|#1| (-311)))) (-1205)) (T -1026))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1026 *2)) (-4 *2 (-1205)))) (-4022 (*1 *2 *3) (-12 (-5 *2 (-1258)) (-5 *1 (-1026 *3)) (-4 *3 (-1205)))))
+(-10 -7 (-15 -4022 ((-1258) |#1|)) (-15 -4022 (|#1| (-311))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3185 (($ |#4|) 25)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-3174 ((|#4| $) 27)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 46) (($ (-561)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4259 (((-765)) 43)) (-2211 (($) 21 T CONST)) (-2222 (($) 23 T CONST)) (-1733 (((-112) $ $) 40)) (-1824 (($ $) 31) (($ $ $) NIL)) (-1813 (($ $ $) 29)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1027 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -3185 ($ |#4|)) (-15 -4022 ($ |#4|)) (-15 -3174 (|#4| $)))) (-362) (-787) (-844) (-942 |#1| |#2| |#3|) (-638 |#4|)) (T -1027))
+((-3185 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-638 *2)))) (-4022 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-638 *2)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-942 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-638 *2)))))
+(-13 (-171) (-38 |#1|) (-10 -8 (-15 -3185 ($ |#4|)) (-15 -4022 ($ |#4|)) (-15 -3174 (|#4| $))))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL)) (-3024 (((-1258) $ (-1166) (-1166)) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-1556 (((-112) (-112)) 39)) (-1325 (((-112) (-112)) 38)) (-4167 (((-52) $ (-1166) (-52)) NIL)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 (-52) "failed") (-1166) $) NIL)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-3999 (($ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-3 (-52) "failed") (-1166) $) NIL)) (-1489 (($ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-2073 (((-52) $ (-1166) (-52)) NIL (|has| $ (-6 -4391)))) (-4344 (((-52) $ (-1166)) NIL)) (-3571 (((-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-638 (-52)) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-1166) $) NIL (|has| (-1166) (-844)))) (-1305 (((-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-638 (-52)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090))))) (-2780 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4391))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-2017 (((-638 (-1166)) $) 34)) (-2857 (((-112) (-1166) $) NIL)) (-3211 (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL)) (-3671 (($ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL)) (-2451 (((-638 (-1166)) $) NIL)) (-1390 (((-112) (-1166) $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-1433 (((-52) $) NIL (|has| (-1166) (-844)))) (-1330 (((-3 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) "failed") (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL)) (-1799 (($ $ (-52)) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-293 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-638 (-52)) (-638 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-638 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090))))) (-2658 (((-638 (-52)) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 (((-52) $ (-1166)) 35) (((-52) $ (-1166) (-52)) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (((-765) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090)))) (((-765) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL)) (-4022 (((-856) $) 37 (-4007 (|has| (-52) (-608 (-856))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1028) (-13 (-1181 (-1166) (-52)) (-10 -7 (-15 -1556 ((-112) (-112))) (-15 -1325 ((-112) (-112))) (-6 -4390)))) (T -1028))
+((-1556 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
+(-13 (-1181 (-1166) (-52)) (-10 -7 (-15 -1556 ((-112) (-112))) (-15 -1325 ((-112) (-112))) (-6 -4390)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1739 (((-1125) $) 9)) (-4022 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1029) (-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $))))) (T -1029))
+((-1739 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029)))))
+(-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $))))
+((-3938 ((|#2| $) 10)))
+(((-1030 |#1| |#2|) (-10 -8 (-15 -3938 (|#2| |#1|))) (-1031 |#2|) (-1205)) (T -1030))
+NIL
+(-10 -8 (-15 -3938 (|#2| |#1|)))
+((-4017 (((-3 |#1| "failed") $) 9)) (-3938 ((|#1| $) 8)) (-4022 (($ |#1|) 6)))
+(((-1031 |#1|) (-139) (-1205)) (T -1031))
+((-4017 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1205)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1205)))))
+(-13 (-611 |t#1|) (-10 -8 (-15 -4017 ((-3 |t#1| "failed") $)) (-15 -3938 (|t#1| $))))
+(((-611 |#1|) . T))
+((-2532 (((-638 (-638 (-293 (-406 (-945 |#2|))))) (-638 (-945 |#2|)) (-638 (-1166))) 38)))
+(((-1032 |#1| |#2|) (-10 -7 (-15 -2532 ((-638 (-638 (-293 (-406 (-945 |#2|))))) (-638 (-945 |#2|)) (-638 (-1166))))) (-553) (-13 (-553) (-1031 |#1|))) (T -1032))
+((-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-4 *6 (-13 (-553) (-1031 *5))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *6)))))) (-5 *1 (-1032 *5 *6)))))
+(-10 -7 (-15 -2532 ((-638 (-638 (-293 (-406 (-945 |#2|))))) (-638 (-945 |#2|)) (-638 (-1166)))))
+((-2148 (((-378)) 15)) (-3040 (((-1 (-378)) (-378) (-378)) 20)) (-3369 (((-1 (-378)) (-765)) 42)) (-3260 (((-378)) 33)) (-2397 (((-1 (-378)) (-378) (-378)) 34)) (-3029 (((-378)) 26)) (-2527 (((-1 (-378)) (-378)) 27)) (-3292 (((-378) (-765)) 37)) (-3915 (((-1 (-378)) (-765)) 38)) (-3214 (((-1 (-378)) (-765) (-765)) 41)) (-3882 (((-1 (-378)) (-765) (-765)) 39)))
+(((-1033) (-10 -7 (-15 -2148 ((-378))) (-15 -3260 ((-378))) (-15 -3029 ((-378))) (-15 -3292 ((-378) (-765))) (-15 -3040 ((-1 (-378)) (-378) (-378))) (-15 -2397 ((-1 (-378)) (-378) (-378))) (-15 -2527 ((-1 (-378)) (-378))) (-15 -3915 ((-1 (-378)) (-765))) (-15 -3882 ((-1 (-378)) (-765) (-765))) (-15 -3214 ((-1 (-378)) (-765) (-765))) (-15 -3369 ((-1 (-378)) (-765))))) (T -1033))
+((-3369 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-3214 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-3882 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))) (-2527 (*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))) (-2397 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))) (-3040 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-378)) (-5 *1 (-1033)))) (-3029 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))) (-3260 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))) (-2148 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
+(-10 -7 (-15 -2148 ((-378))) (-15 -3260 ((-378))) (-15 -3029 ((-378))) (-15 -3292 ((-378) (-765))) (-15 -3040 ((-1 (-378)) (-378) (-378))) (-15 -2397 ((-1 (-378)) (-378) (-378))) (-15 -2527 ((-1 (-378)) (-378))) (-15 -3915 ((-1 (-378)) (-765))) (-15 -3882 ((-1 (-378)) (-765) (-765))) (-15 -3214 ((-1 (-378)) (-765) (-765))) (-15 -3369 ((-1 (-378)) (-765))))
+((-1657 (((-417 |#1|) |#1|) 33)))
+(((-1034 |#1|) (-10 -7 (-15 -1657 ((-417 |#1|) |#1|))) (-1229 (-406 (-945 (-561))))) (T -1034))
+((-1657 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1034 *3)) (-4 *3 (-1229 (-406 (-945 (-561))))))))
+(-10 -7 (-15 -1657 ((-417 |#1|) |#1|)))
+((-1635 (((-406 (-417 (-945 |#1|))) (-406 (-945 |#1|))) 14)))
+(((-1035 |#1|) (-10 -7 (-15 -1635 ((-406 (-417 (-945 |#1|))) (-406 (-945 |#1|))))) (-306)) (T -1035))
+((-1635 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-417 (-945 *4)))) (-5 *1 (-1035 *4)))))
+(-10 -7 (-15 -1635 ((-406 (-417 (-945 |#1|))) (-406 (-945 |#1|)))))
+((-1412 (((-638 (-1166)) (-406 (-945 |#1|))) 17)) (-1620 (((-406 (-1162 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166)) 24)) (-1401 (((-406 (-945 |#1|)) (-406 (-1162 (-406 (-945 |#1|)))) (-1166)) 26)) (-1358 (((-3 (-1166) "failed") (-406 (-945 |#1|))) 20)) (-1444 (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-293 (-406 (-945 |#1|))))) 32) (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|)))) 33) (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-1166)) (-638 (-406 (-945 |#1|)))) 28) (((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|))) 29)) (-4022 (((-406 (-945 |#1|)) |#1|) 11)))
+(((-1036 |#1|) (-10 -7 (-15 -1412 ((-638 (-1166)) (-406 (-945 |#1|)))) (-15 -1358 ((-3 (-1166) "failed") (-406 (-945 |#1|)))) (-15 -1620 ((-406 (-1162 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -1401 ((-406 (-945 |#1|)) (-406 (-1162 (-406 (-945 |#1|)))) (-1166))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-1166)) (-638 (-406 (-945 |#1|))))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4022 ((-406 (-945 |#1|)) |#1|))) (-553)) (T -1036))
+((-4022 (*1 *2 *3) (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-1036 *3)) (-4 *3 (-553)))) (-1444 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-293 (-406 (-945 *4))))) (-5 *2 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *1 (-1036 *4)))) (-1444 (*1 *2 *2 *3) (-12 (-5 *3 (-293 (-406 (-945 *4)))) (-5 *2 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *1 (-1036 *4)))) (-1444 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-638 (-1166))) (-5 *4 (-638 (-406 (-945 *5)))) (-5 *2 (-406 (-945 *5))) (-4 *5 (-553)) (-5 *1 (-1036 *5)))) (-1444 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166)) (-4 *4 (-553)) (-5 *1 (-1036 *4)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1162 (-406 (-945 *5))))) (-5 *4 (-1166)) (-5 *2 (-406 (-945 *5))) (-5 *1 (-1036 *5)) (-4 *5 (-553)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-553)) (-5 *2 (-406 (-1162 (-406 (-945 *5))))) (-5 *1 (-1036 *5)) (-5 *3 (-406 (-945 *5))))) (-1358 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-1166)) (-5 *1 (-1036 *4)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-1166))) (-5 *1 (-1036 *4)))))
+(-10 -7 (-15 -1412 ((-638 (-1166)) (-406 (-945 |#1|)))) (-15 -1358 ((-3 (-1166) "failed") (-406 (-945 |#1|)))) (-15 -1620 ((-406 (-1162 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -1401 ((-406 (-945 |#1|)) (-406 (-1162 (-406 (-945 |#1|)))) (-1166))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-1166)) (-638 (-406 (-945 |#1|))))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-293 (-406 (-945 |#1|))))) (-15 -1444 ((-406 (-945 |#1|)) (-406 (-945 |#1|)) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4022 ((-406 (-945 |#1|)) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1965 (($) 17 T CONST)) (-4178 ((|#1| $) 22)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1375 ((|#1| $) 21)) (-4107 ((|#1|) 19 T CONST)) (-4022 (((-856) $) 11)) (-3619 ((|#1| $) 20)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
+(((-1037 |#1|) (-139) (-23)) (T -1037))
+((-4178 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-4107 (*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -4178 (|t#1| $)) (-15 -1375 (|t#1| $)) (-15 -3619 (|t#1| $)) (-15 -4107 (|t#1|) -1514)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2268 (($) 24 T CONST)) (-1965 (($) 17 T CONST)) (-4178 ((|#1| $) 22)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1375 ((|#1| $) 21)) (-4107 ((|#1|) 19 T CONST)) (-4022 (((-856) $) 11)) (-3619 ((|#1| $) 20)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15)))
+(((-1038 |#1|) (-139) (-23)) (T -1038))
+((-2268 (*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23)))))
+(-13 (-1037 |t#1|) (-10 -8 (-15 -2268 ($) -1514)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-856)) . T) ((-1037 |#1|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 (-774 |#1| (-858 |#2|)))))) (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-3047 (((-638 $) (-638 (-774 |#1| (-858 |#2|)))) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112)) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112) (-112)) NIL)) (-1412 (((-638 (-858 |#2|)) $) NIL)) (-1978 (((-112) $) NIL)) (-2701 (((-112) $) NIL (|has| |#1| (-553)))) (-3010 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-2427 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1591 (((-638 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1510 $))) (-774 |#1| (-858 |#2|)) $) NIL)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ (-858 |#2|)) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-3556 (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 (-774 |#1| (-858 |#2|)) "failed") $ (-858 |#2|)) NIL)) (-1965 (($) NIL T CONST)) (-2002 (((-112) $) NIL (|has| |#1| (-553)))) (-1951 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1361 (((-112) $) NIL (|has| |#1| (-553)))) (-3150 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-1825 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-553)))) (-3712 (((-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-3938 (($ (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-1445 (((-3 $ "failed") $) NIL)) (-3320 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-774 |#1| (-858 |#2|)) (-1090))))) (-1489 (($ (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-553)))) (-2095 (((-112) (-774 |#1| (-858 |#2|)) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-3372 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3185 (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|))) NIL (|has| $ (-6 -4390))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-1405 (((-2 (|:| -1461 (-638 (-774 |#1| (-858 |#2|)))) (|:| -3333 (-638 (-774 |#1| (-858 |#2|))))) $) NIL)) (-3871 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-2639 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-1786 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-3571 (((-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3033 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-2783 (((-858 |#2|) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-774 |#1| (-858 |#2|)) (-1090))))) (-2065 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL)) (-2209 (((-638 (-858 |#2|)) $) NIL)) (-2866 (((-112) (-858 |#2|) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2987 (((-3 (-774 |#1| (-858 |#2|)) (-638 $)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1631 (((-638 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1510 $))) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1520 (((-3 (-774 |#1| (-858 |#2|)) "failed") $) NIL)) (-3316 (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL)) (-4021 (((-3 (-112) (-638 $)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1924 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-2579 (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-638 $)) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) (-638 $)) NIL)) (-2961 (($ (-774 |#1| (-858 |#2|)) $) NIL) (($ (-638 (-774 |#1| (-858 |#2|))) $) NIL)) (-1981 (((-638 (-774 |#1| (-858 |#2|))) $) NIL)) (-2153 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-1829 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3863 (((-112) $ $) NIL)) (-4318 (((-2 (|:| |num| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-553)))) (-4033 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4118 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-3 (-774 |#1| (-858 |#2|)) "failed") $) NIL)) (-1330 (((-3 (-774 |#1| (-858 |#2|)) "failed") (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL)) (-2916 (((-3 $ "failed") $ (-774 |#1| (-858 |#2|))) NIL)) (-1416 (($ $ (-774 |#1| (-858 |#2|))) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) (-638 $)) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-638 $)) NIL)) (-2123 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-774 |#1| (-858 |#2|))) (-638 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ $ (-293 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (($ $ (-638 (-293 (-774 |#1| (-858 |#2|))))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2894 (((-765) $) NIL)) (-1724 (((-765) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-774 |#1| (-858 |#2|)) (-1090)))) (((-765) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-774 |#1| (-858 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-774 |#1| (-858 |#2|)))) NIL)) (-1755 (($ $ (-858 |#2|)) NIL)) (-2794 (($ $ (-858 |#2|)) NIL)) (-2074 (($ $) NIL)) (-1967 (($ $ (-858 |#2|)) NIL)) (-4022 (((-856) $) NIL) (((-638 (-774 |#1| (-858 |#2|))) $) NIL)) (-4161 (((-765) $) NIL (|has| (-858 |#2|) (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 (-774 |#1| (-858 |#2|))))) "failed") (-638 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 (-774 |#1| (-858 |#2|))))) "failed") (-638 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-2024 (((-112) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-638 (-774 |#1| (-858 |#2|))))) NIL)) (-2930 (((-638 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-638 $) (-774 |#1| (-858 |#2|)) (-638 $)) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) $) NIL) (((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-638 $)) NIL)) (-3715 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2524 (((-638 (-858 |#2|)) $) NIL)) (-2827 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-1751 (((-112) (-858 |#2|) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1039 |#1| |#2|) (-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -3047 ((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112) (-112))))) (-450) (-638 (-1166))) (T -1039))
+((-3047 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1039 *5 *6)))))
+(-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -3047 ((-638 $) (-638 (-774 |#1| (-858 |#2|))) (-112) (-112)))))
+((-3040 (((-1 (-561)) (-1084 (-561))) 33)) (-4192 (((-561) (-561) (-561) (-561) (-561)) 30)) (-1309 (((-1 (-561)) |RationalNumber|) NIL)) (-1677 (((-1 (-561)) |RationalNumber|) NIL)) (-3599 (((-1 (-561)) (-561) |RationalNumber|) NIL)))
+(((-1040) (-10 -7 (-15 -3040 ((-1 (-561)) (-1084 (-561)))) (-15 -3599 ((-1 (-561)) (-561) |RationalNumber|)) (-15 -1309 ((-1 (-561)) |RationalNumber|)) (-15 -1677 ((-1 (-561)) |RationalNumber|)) (-15 -4192 ((-561) (-561) (-561) (-561) (-561))))) (T -1040))
+((-4192 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1040)))) (-1677 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))) (-1309 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)) (-5 *3 (-561)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-1084 (-561))) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
+(-10 -7 (-15 -3040 ((-1 (-561)) (-1084 (-561)))) (-15 -3599 ((-1 (-561)) (-561) |RationalNumber|)) (-15 -1309 ((-1 (-561)) |RationalNumber|)) (-15 -1677 ((-1 (-561)) |RationalNumber|)) (-15 -4192 ((-561) (-561) (-561) (-561) (-561))))
+((-4022 (((-856) $) NIL) (($ (-561)) 10)))
+(((-1041 |#1|) (-10 -8 (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-1042)) (T -1041))
+NIL
+(-10 -8 (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-1042) (-139)) (T -1042))
+((-4259 (*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765)))))
+(-13 (-1049) (-720) (-641 $) (-611 (-561)) (-10 -7 (-15 -4259 ((-765))) (-6 -4387)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-561)) . T) ((-608 (-856)) . T) ((-641 $) . T) ((-720) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-2514 (((-406 (-945 |#2|)) (-638 |#2|) (-638 |#2|) (-765) (-765)) 46)))
+(((-1043 |#1| |#2|) (-10 -7 (-15 -2514 ((-406 (-945 |#2|)) (-638 |#2|) (-638 |#2|) (-765) (-765)))) (-1166) (-362)) (T -1043))
+((-2514 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-765)) (-4 *6 (-362)) (-5 *2 (-406 (-945 *6))) (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166)))))
+(-10 -7 (-15 -2514 ((-406 (-945 |#2|)) (-638 |#2|) (-638 |#2|) (-765) (-765))))
+((-1810 (((-112) $) 29)) (-2487 (((-112) $) 16)) (-1513 (((-765) $) 13)) (-1526 (((-765) $) 14)) (-2182 (((-112) $) 26)) (-4247 (((-112) $) 31)))
+(((-1044 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1526 ((-765) |#1|)) (-15 -1513 ((-765) |#1|)) (-15 -4247 ((-112) |#1|)) (-15 -1810 ((-112) |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -2487 ((-112) |#1|))) (-1045 |#2| |#3| |#4| |#5| |#6|) (-765) (-765) (-1042) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1044))
+NIL
+(-10 -8 (-15 -1526 ((-765) |#1|)) (-15 -1513 ((-765) |#1|)) (-15 -4247 ((-112) |#1|)) (-15 -1810 ((-112) |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -2487 ((-112) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1810 (((-112) $) 51)) (-2249 (((-3 $ "failed") $ $) 19)) (-2487 (((-112) $) 53)) (-1630 (((-112) $ (-765)) 61)) (-1965 (($) 17 T CONST)) (-1298 (($ $) 34 (|has| |#3| (-306)))) (-3845 ((|#4| $ (-561)) 39)) (-1569 (((-765) $) 33 (|has| |#3| (-553)))) (-4344 ((|#3| $ (-561) (-561)) 41)) (-3571 (((-638 |#3|) $) 68 (|has| $ (-6 -4390)))) (-3370 (((-765) $) 32 (|has| |#3| (-553)))) (-2542 (((-638 |#5|) $) 31 (|has| |#3| (-553)))) (-1513 (((-765) $) 45)) (-1526 (((-765) $) 44)) (-3744 (((-112) $ (-765)) 60)) (-3514 (((-561) $) 49)) (-2804 (((-561) $) 47)) (-1305 (((-638 |#3|) $) 69 (|has| $ (-6 -4390)))) (-4087 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1090)) (|has| $ (-6 -4390))))) (-3089 (((-561) $) 48)) (-1709 (((-561) $) 46)) (-2855 (($ (-638 (-638 |#3|))) 54)) (-2065 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3971 (((-638 (-638 |#3|)) $) 43)) (-2230 (((-112) $ (-765)) 59)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-553)))) (-2123 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#3|) (-638 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 (-293 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-3016 (((-112) $ $) 55)) (-1928 (((-112) $) 58)) (-3170 (($) 57)) (-2277 ((|#3| $ (-561) (-561)) 42) ((|#3| $ (-561) (-561) |#3|) 40)) (-2182 (((-112) $) 52)) (-1724 (((-765) |#3| $) 70 (-12 (|has| |#3| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4390)))) (-4187 (($ $) 56)) (-2745 ((|#5| $ (-561)) 38)) (-4022 (((-856) $) 11)) (-3715 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4390)))) (-4247 (((-112) $) 50)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3498 (((-765) $) 62 (|has| $ (-6 -4390)))))
+(((-1045 |#1| |#2| |#3| |#4| |#5|) (-139) (-765) (-765) (-1042) (-237 |t#2| |t#3|) (-237 |t#1| |t#3|)) (T -1045))
+((-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2855 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *5))) (-4 *5 (-1042)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-638 (-638 *5))))) (-2277 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-4344 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-2277 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-2745 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-4120 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-1756 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-553)))) (-1833 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-1298 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553)) (-5 *2 (-765)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553)) (-5 *2 (-765)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553)) (-5 *2 (-638 *7)))))
+(-13 (-111 |t#3| |t#3|) (-487 |t#3|) (-10 -8 (-6 -4390) (IF (|has| |t#3| (-171)) (-6 (-711 |t#3|)) |%noBranch|) (-15 -2855 ($ (-638 (-638 |t#3|)))) (-15 -2487 ((-112) $)) (-15 -2182 ((-112) $)) (-15 -1810 ((-112) $)) (-15 -4247 ((-112) $)) (-15 -3514 ((-561) $)) (-15 -3089 ((-561) $)) (-15 -2804 ((-561) $)) (-15 -1709 ((-561) $)) (-15 -1513 ((-765) $)) (-15 -1526 ((-765) $)) (-15 -3971 ((-638 (-638 |t#3|)) $)) (-15 -2277 (|t#3| $ (-561) (-561))) (-15 -4344 (|t#3| $ (-561) (-561))) (-15 -2277 (|t#3| $ (-561) (-561) |t#3|)) (-15 -3845 (|t#4| $ (-561))) (-15 -2745 (|t#5| $ (-561))) (-15 -4120 ($ (-1 |t#3| |t#3|) $)) (-15 -4120 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-553)) (-15 -1756 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -1833 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -1298 ($ $)) |%noBranch|) (IF (|has| |t#3| (-553)) (PROGN (-15 -1569 ((-765) $)) (-15 -3370 ((-765) $)) (-15 -2542 ((-638 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-608 (-856)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))) ((-487 |#3|) . T) ((-512 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))) ((-641 |#3|) . T) ((-711 |#3|) |has| |#3| (-171)) ((-1048 |#3|) . T) ((-1090) . T) ((-1205) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1810 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2487 (((-112) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-1965 (($) NIL T CONST)) (-1298 (($ $) 43 (|has| |#3| (-306)))) (-3845 (((-239 |#2| |#3|) $ (-561)) 32)) (-1341 (($ (-682 |#3|)) 41)) (-1569 (((-765) $) 45 (|has| |#3| (-553)))) (-4344 ((|#3| $ (-561) (-561)) NIL)) (-3571 (((-638 |#3|) $) NIL (|has| $ (-6 -4390)))) (-3370 (((-765) $) 47 (|has| |#3| (-553)))) (-2542 (((-638 (-239 |#1| |#3|)) $) 51 (|has| |#3| (-553)))) (-1513 (((-765) $) NIL)) (-1526 (((-765) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3514 (((-561) $) NIL)) (-2804 (((-561) $) NIL)) (-1305 (((-638 |#3|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090))))) (-3089 (((-561) $) NIL)) (-1709 (((-561) $) NIL)) (-2855 (($ (-638 (-638 |#3|))) 27)) (-2065 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3971 (((-638 (-638 |#3|)) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-553)))) (-2123 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#3|) (-638 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#3| $ (-561) (-561)) NIL) ((|#3| $ (-561) (-561) |#3|) NIL)) (-3084 (((-133)) 54 (|has| |#3| (-362)))) (-2182 (((-112) $) NIL)) (-1724 (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090)))) (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) 63 (|has| |#3| (-609 (-534))))) (-2745 (((-239 |#1| |#3|) $ (-561)) 36)) (-4022 (((-856) $) 16) (((-682 |#3|) $) 38)) (-3715 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390)))) (-4247 (((-112) $) NIL)) (-2211 (($) 13 T CONST)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1046 |#1| |#2| |#3|) (-13 (-1045 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1260 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (-15 -1341 ($ (-682 |#3|))))) (-765) (-765) (-1042)) (T -1046))
+((-1341 (*1 *1 *2) (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)))))
+(-13 (-1045 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1260 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|) (-15 -1341 ($ (-682 |#3|)))))
+((-3185 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4120 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-1047 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4120 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3185 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-765) (-765) (-1042) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1045 |#1| |#2| |#3| |#4| |#5|) (-1042) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1045 |#1| |#2| |#7| |#8| |#9|)) (T -1047))
+((-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1045 *5 *6 *10 *11 *12)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10)))))
+(-10 -7 (-15 -4120 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3185 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ |#1|) 23)))
+(((-1048 |#1|) (-139) (-1049)) (T -1048))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-1049)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-1046) (-139)) (T -1046))
-NIL
-(-13 (-21) (-1099))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-605 (-853)) . T) ((-1099) . T) ((-1087) . T))
-((-4057 (($ $) 16)) (-2676 (($ $) 22)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 49)) (-1423 (($ $) 24)) (-1636 (($ $) 11)) (-4259 (($ $) 38)) (-3441 (((-378) $) NIL) (((-224) $) NIL) (((-882 (-378)) $) 33)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL) (($ (-406 (-558))) 28) (($ (-558)) NIL) (($ (-406 (-558))) 28)) (-2417 (((-762)) 8)) (-2912 (($ $) 39)))
-(((-1047 |#1|) (-10 -8 (-15 -2676 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| (-558))) (-15 -3441 ((-224) |#1|)) (-15 -3441 ((-378) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| |#1|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-1048)) (T -1047))
-((-2417 (*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1047 *3)) (-4 *3 (-1048)))))
-(-10 -8 (-15 -2676 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -3193 ((-879 (-378) |#1|) |#1| (-882 (-378)) (-879 (-378) |#1|))) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| (-558))) (-15 -3441 ((-224) |#1|)) (-15 -3441 ((-378) |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| |#1|)) (-15 -2417 ((-762))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1669 (((-558) $) 90)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-4057 (($ $) 88)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-3948 (($ $) 98)) (-1599 (((-112) $ $) 60)) (-1334 (((-558) $) 115)) (-3457 (($) 17 T CONST)) (-2676 (($ $) 87)) (-3302 (((-3 (-558) "failed") $) 103) (((-3 (-406 (-558)) "failed") $) 100)) (-3226 (((-558) $) 104) (((-406 (-558)) $) 101)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-2992 (((-112) $) 72)) (-4053 (((-112) $) 113)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 94)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 97)) (-1423 (($ $) 93)) (-2032 (((-112) $) 114)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2142 (($ $ $) 112)) (-2281 (($ $ $) 111)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-1636 (($ $) 89)) (-4259 (($ $) 91)) (-3939 (((-417 $) $) 75)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-3441 (((-378) $) 106) (((-224) $) 105) (((-882 (-378)) $) 95)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ (-558)) 102) (($ (-406 (-558))) 99)) (-2417 (((-762)) 28)) (-2912 (($ $) 92)) (-2671 (((-112) $ $) 40)) (-4241 (($ $) 116)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1757 (((-112) $ $) 109)) (-1737 (((-112) $ $) 108)) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 110)) (-1728 (((-112) $ $) 107)) (-1805 (($ $ $) 66)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70) (($ $ (-406 (-558))) 96)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68)))
-(((-1048) (-139)) (T -1048))
-((-4241 (*1 *1 *1) (-4 *1 (-1048))) (-1423 (*1 *1 *1) (-4 *1 (-1048))) (-2912 (*1 *1 *1) (-4 *1 (-1048))) (-4259 (*1 *1 *1) (-4 *1 (-1048))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-558)))) (-1636 (*1 *1 *1) (-4 *1 (-1048))) (-4057 (*1 *1 *1) (-4 *1 (-1048))) (-2676 (*1 *1 *1) (-4 *1 (-1048))))
-(-13 (-362) (-839) (-1012) (-1028 (-558)) (-1028 (-406 (-558))) (-992) (-606 (-882 (-378))) (-876 (-378)) (-146) (-10 -8 (-15 -1423 ($ $)) (-15 -2912 ($ $)) (-15 -4259 ($ $)) (-15 -1669 ((-558) $)) (-15 -1636 ($ $)) (-15 -4057 ($ $)) (-15 -2676 ($ $)) (-15 -4241 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-606 (-224)) . T) ((-606 (-378)) . T) ((-606 (-882 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 $) . T) ((-717) . T) ((-782) . T) ((-783) . T) ((-785) . T) ((-786) . T) ((-839) . T) ((-841) . T) ((-876 (-378)) . T) ((-910) . T) ((-992) . T) ((-1012) . T) ((-1028 (-406 (-558))) . T) ((-1028 (-558)) . T) ((-1045 #0#) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) |#2| $) 23)) (-2507 ((|#1| $) 10)) (-1334 (((-558) |#2| $) 87)) (-2363 (((-3 $ "failed") |#2| (-911)) 57)) (-1540 ((|#1| $) 28)) (-3845 ((|#1| |#2| $ |#1|) 37)) (-3250 (($ $) 25)) (-3248 (((-3 |#2| "failed") |#2| $) 86)) (-4053 (((-112) |#2| $) NIL)) (-2032 (((-112) |#2| $) NIL)) (-4345 (((-112) |#2| $) 24)) (-1936 ((|#1| $) 88)) (-1524 ((|#1| $) 27)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2297 ((|#2| $) 78)) (-3940 (((-853) $) 70)) (-1422 ((|#1| |#2| $ |#1|) 38)) (-2537 (((-635 $) |#2|) 59)) (-1708 (((-112) $ $) 73)))
-(((-1049 |#1| |#2|) (-13 (-1056 |#1| |#2|) (-10 -8 (-15 -1524 (|#1| $)) (-15 -1540 (|#1| $)) (-15 -2507 (|#1| $)) (-15 -1936 (|#1| $)) (-15 -3250 ($ $)) (-15 -4345 ((-112) |#2| $)) (-15 -3845 (|#1| |#2| $ |#1|)))) (-13 (-839) (-362)) (-1222 |#1|)) (T -1049))
-((-3845 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-1524 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-1540 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-2507 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-1936 (*1 *2 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-3250 (*1 *1 *1) (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1222 *2)))) (-4345 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-839) (-362))) (-5 *2 (-112)) (-5 *1 (-1049 *4 *3)) (-4 *3 (-1222 *4)))))
-(-13 (-1056 |#1| |#2|) (-10 -8 (-15 -1524 (|#1| $)) (-15 -1540 (|#1| $)) (-15 -2507 (|#1| $)) (-15 -1936 (|#1| $)) (-15 -3250 ($ $)) (-15 -4345 ((-112) |#2| $)) (-15 -3845 (|#1| |#2| $ |#1|))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1997 (($ $ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1502 (($ $ $ $) NIL)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-1334 (((-558) $) NIL)) (-3277 (($ $ $) NIL)) (-3457 (($) NIL T CONST)) (-1462 (($ (-1163)) 10) (($ (-558)) 7)) (-3302 (((-3 (-558) "failed") $) NIL)) (-3226 (((-558) $) NIL)) (-1709 (($ $ $) NIL)) (-1918 (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-679 (-558)) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL)) (-2288 (((-112) $) NIL)) (-1673 (((-406 (-558)) $) NIL)) (-3692 (($) NIL) (($ $) NIL)) (-2881 (($ $ $) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2283 (($ $ $ $) NIL)) (-4089 (($ $ $) NIL)) (-4053 (((-112) $) NIL)) (-3322 (($ $ $) NIL)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-3999 (((-112) $) NIL)) (-1495 (((-112) $) NIL)) (-2521 (((-3 $ "failed") $) NIL)) (-2032 (((-112) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3664 (($ $ $ $) NIL)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-1397 (($ $) NIL)) (-2958 (($ $) NIL)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-1521 (($ $ $) NIL)) (-1823 (($) NIL T CONST)) (-1610 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3608 (($ $) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4254 (((-112) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3780 (($ $ (-762)) NIL) (($ $) NIL)) (-3915 (($ $) NIL)) (-4098 (($ $) NIL)) (-3441 (((-558) $) 16) (((-534) $) NIL) (((-882 (-558)) $) NIL) (((-378) $) NIL) (((-224) $) NIL) (($ (-1163)) 9)) (-3940 (((-853) $) 20) (($ (-558)) 6) (($ $) NIL) (($ (-558)) 6)) (-2417 (((-762)) NIL)) (-2626 (((-112) $ $) NIL)) (-3207 (($ $ $) NIL)) (-2636 (($) NIL)) (-2671 (((-112) $ $) NIL)) (-4363 (($ $ $ $) NIL)) (-4241 (($ $) NIL)) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1796 (($ $) 19) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL)))
-(((-1050) (-13 (-543) (-610 (-1163)) (-10 -8 (-6 -4370) (-6 -4375) (-6 -4371) (-15 -1462 ($ (-1163))) (-15 -1462 ($ (-558)))))) (T -1050))
-((-1462 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1050)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1050)))))
-(-13 (-543) (-610 (-1163)) (-10 -8 (-6 -4370) (-6 -4375) (-6 -4371) (-15 -1462 ($ (-1163))) (-15 -1462 ($ (-558)))))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL)) (-3552 (((-1251) $ (-1163) (-1163)) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-3013 (($) 9)) (-4077 (((-52) $ (-1163) (-52)) NIL)) (-3856 (($ $) 30)) (-4317 (($ $) 28)) (-2870 (($ $) 27)) (-3596 (($ $) 29)) (-3241 (($ $) 32)) (-1699 (($ $) 33)) (-2583 (($ $) 26)) (-3350 (($ $) 31)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) 25 (|has| $ (-6 -4383)))) (-2623 (((-3 (-52) "failed") (-1163) $) 40)) (-3457 (($) NIL T CONST)) (-2338 (($) 7)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-2375 (($ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) 50 (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-3 (-52) "failed") (-1163) $) NIL)) (-1488 (($ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383)))) (-2724 (((-3 (-1145) "failed") $ (-1145) (-558)) 59)) (-3683 (((-52) $ (-1163) (-52)) NIL (|has| $ (-6 -4384)))) (-3620 (((-52) $ (-1163)) NIL)) (-2917 (((-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-635 (-52)) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-1163) $) NIL (|has| (-1163) (-841)))) (-3486 (((-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) 35 (|has| $ (-6 -4383))) (((-635 (-52)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087))))) (-3186 (((-1163) $) NIL (|has| (-1163) (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4384))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-1934 (((-635 (-1163)) $) NIL)) (-3336 (((-112) (-1163) $) NIL)) (-1498 (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL)) (-2650 (($ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) 43)) (-3051 (((-635 (-1163)) $) NIL)) (-2740 (((-112) (-1163) $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-2039 (((-378) $ (-1163)) 49)) (-2651 (((-635 (-1145)) $ (-1145)) 60)) (-3156 (((-52) $) NIL (|has| (-1163) (-841)))) (-2820 (((-3 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) "failed") (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL)) (-2830 (($ $ (-52)) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-293 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL (-12 (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-308 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (($ $ (-635 (-52)) (-635 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087)))) (($ $ (-635 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087))))) (-4318 (((-635 (-52)) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 (((-52) $ (-1163)) NIL) (((-52) $ (-1163) (-52)) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL)) (-1614 (($ $ (-1163)) 51)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087)))) (((-762) (-52) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-52) (-1087)))) (((-762) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) 37)) (-2683 (($ $ $) 38)) (-3940 (((-853) $) NIL (-3994 (|has| (-52) (-605 (-853))) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-605 (-853)))))) (-4229 (($ $ (-1163) (-378)) 47)) (-1530 (($ $ (-1163) (-378)) 48)) (-2472 (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 (-1163)) (|:| -1925 (-52)))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-52) (-1087)) (|has| (-2 (|:| -2176 (-1163)) (|:| -1925 (-52))) (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1051) (-13 (-1176 (-1163) (-52)) (-10 -8 (-15 -2683 ($ $ $)) (-15 -2338 ($)) (-15 -2583 ($ $)) (-15 -2870 ($ $)) (-15 -4317 ($ $)) (-15 -3596 ($ $)) (-15 -3350 ($ $)) (-15 -3856 ($ $)) (-15 -3241 ($ $)) (-15 -1699 ($ $)) (-15 -4229 ($ $ (-1163) (-378))) (-15 -1530 ($ $ (-1163) (-378))) (-15 -2039 ((-378) $ (-1163))) (-15 -2651 ((-635 (-1145)) $ (-1145))) (-15 -1614 ($ $ (-1163))) (-15 -3013 ($)) (-15 -2724 ((-3 (-1145) "failed") $ (-1145) (-558))) (-6 -4383)))) (T -1051))
-((-2683 (*1 *1 *1 *1) (-5 *1 (-1051))) (-2338 (*1 *1) (-5 *1 (-1051))) (-2583 (*1 *1 *1) (-5 *1 (-1051))) (-2870 (*1 *1 *1) (-5 *1 (-1051))) (-4317 (*1 *1 *1) (-5 *1 (-1051))) (-3596 (*1 *1 *1) (-5 *1 (-1051))) (-3350 (*1 *1 *1) (-5 *1 (-1051))) (-3856 (*1 *1 *1) (-5 *1 (-1051))) (-3241 (*1 *1 *1) (-5 *1 (-1051))) (-1699 (*1 *1 *1) (-5 *1 (-1051))) (-4229 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))) (-1530 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))) (-2039 (*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-378)) (-5 *1 (-1051)))) (-2651 (*1 *2 *1 *3) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1051)) (-5 *3 (-1145)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1051)))) (-3013 (*1 *1) (-5 *1 (-1051))) (-2724 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-1051)))))
-(-13 (-1176 (-1163) (-52)) (-10 -8 (-15 -2683 ($ $ $)) (-15 -2338 ($)) (-15 -2583 ($ $)) (-15 -2870 ($ $)) (-15 -4317 ($ $)) (-15 -3596 ($ $)) (-15 -3350 ($ $)) (-15 -3856 ($ $)) (-15 -3241 ($ $)) (-15 -1699 ($ $)) (-15 -4229 ($ $ (-1163) (-378))) (-15 -1530 ($ $ (-1163) (-378))) (-15 -2039 ((-378) $ (-1163))) (-15 -2651 ((-635 (-1145)) $ (-1145))) (-15 -1614 ($ $ (-1163))) (-15 -3013 ($)) (-15 -2724 ((-3 (-1145) "failed") $ (-1145) (-558))) (-6 -4383)))
-((-2427 (($ $) 45)) (-3380 (((-112) $ $) 74)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-942 (-406 (-558)))) 226) (((-3 $ "failed") (-942 (-558))) 225) (((-3 $ "failed") (-942 |#2|)) 228)) (-3226 ((|#2| $) NIL) (((-406 (-558)) $) NIL) (((-558) $) NIL) ((|#4| $) NIL) (($ (-942 (-406 (-558)))) 214) (($ (-942 (-558))) 210) (($ (-942 |#2|)) 230)) (-3905 (($ $) NIL) (($ $ |#4|) 43)) (-1798 (((-112) $ $) 111) (((-112) $ (-635 $)) 112)) (-3036 (((-112) $) 56)) (-3343 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 106)) (-3472 (($ $) 137)) (-3066 (($ $) 133)) (-3225 (($ $) 132)) (-2442 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3522 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4228 (((-112) $ $) 120) (((-112) $ (-635 $)) 121)) (-4346 ((|#4| $) 33)) (-4313 (($ $ $) 109)) (-1953 (((-112) $) 55)) (-3669 (((-762) $) 35)) (-2924 (($ $) 151)) (-3970 (($ $) 148)) (-3057 (((-635 $) $) 68)) (-2311 (($ $) 57)) (-3569 (($ $) 144)) (-1593 (((-635 $) $) 65)) (-3912 (($ $) 59)) (-3881 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2577 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1630 (-762))) $ $) 110)) (-2996 (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $) 107) (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $ |#4|) 108)) (-3415 (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $) 103) (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $ |#4|) 104)) (-3700 (($ $ $) 89) (($ $ $ |#4|) 94)) (-2332 (($ $ $) 90) (($ $ $ |#4|) 95)) (-3686 (((-635 $) $) 51)) (-2643 (((-112) $ $) 117) (((-112) $ (-635 $)) 118)) (-1401 (($ $ $) 102)) (-1823 (($ $) 37)) (-3879 (((-112) $ $) 72)) (-2857 (((-112) $ $) 113) (((-112) $ (-635 $)) 115)) (-2224 (($ $ $) 100)) (-3734 (($ $) 40)) (-1544 ((|#2| |#2| $) 141) (($ (-635 $)) NIL) (($ $ $) NIL)) (-3682 (($ $ |#2|) NIL) (($ $ $) 130)) (-3333 (($ $ |#2|) 125) (($ $ $) 128)) (-2115 (($ $) 48)) (-4310 (($ $) 52)) (-3441 (((-882 (-378)) $) NIL) (((-882 (-558)) $) NIL) (((-534) $) NIL) (($ (-942 (-406 (-558)))) 216) (($ (-942 (-558))) 212) (($ (-942 |#2|)) 227) (((-1145) $) 249) (((-942 |#2|) $) 161)) (-3940 (((-853) $) 30) (($ (-558)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-942 |#2|) $) 162) (($ (-406 (-558))) NIL) (($ $) NIL)) (-1491 (((-3 (-112) "failed") $ $) 71)))
-(((-1052 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -1544 (|#1| |#1| |#1|)) (-15 -1544 (|#1| (-635 |#1|))) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 ((-942 |#2|) |#1|)) (-15 -3441 ((-942 |#2|) |#1|)) (-15 -3441 ((-1145) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3569 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1544 (|#2| |#2| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -3333 (|#1| |#1| |#2|)) (-15 -3066 (|#1| |#1|)) (-15 -3225 (|#1| |#1|)) (-15 -3441 (|#1| (-942 |#2|))) (-15 -3226 (|#1| (-942 |#2|))) (-15 -3302 ((-3 |#1| "failed") (-942 |#2|))) (-15 -3441 (|#1| (-942 (-558)))) (-15 -3226 (|#1| (-942 (-558)))) (-15 -3302 ((-3 |#1| "failed") (-942 (-558)))) (-15 -3441 (|#1| (-942 (-406 (-558))))) (-15 -3226 (|#1| (-942 (-406 (-558))))) (-15 -3302 ((-3 |#1| "failed") (-942 (-406 (-558))))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2224 (|#1| |#1| |#1|)) (-15 -2577 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1630 (-762))) |#1| |#1|)) (-15 -4313 (|#1| |#1| |#1|)) (-15 -3343 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -2996 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1| |#4|)) (-15 -2996 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -3415 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -1548 |#1|)) |#1| |#1| |#4|)) (-15 -3415 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -2332 (|#1| |#1| |#1| |#4|)) (-15 -3700 (|#1| |#1| |#1| |#4|)) (-15 -2332 (|#1| |#1| |#1|)) (-15 -3700 (|#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| |#1| |#4|)) (-15 -2442 (|#1| |#1| |#1| |#4|)) (-15 -3522 (|#1| |#1| |#1|)) (-15 -2442 (|#1| |#1| |#1|)) (-15 -4228 ((-112) |#1| (-635 |#1|))) (-15 -4228 ((-112) |#1| |#1|)) (-15 -2643 ((-112) |#1| (-635 |#1|))) (-15 -2643 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| (-635 |#1|))) (-15 -2857 ((-112) |#1| |#1|)) (-15 -1798 ((-112) |#1| (-635 |#1|))) (-15 -1798 ((-112) |#1| |#1|)) (-15 -3380 ((-112) |#1| |#1|)) (-15 -3879 ((-112) |#1| |#1|)) (-15 -1491 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3057 ((-635 |#1|) |#1|)) (-15 -1593 ((-635 |#1|) |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -3036 ((-112) |#1|)) (-15 -1953 ((-112) |#1|)) (-15 -3905 (|#1| |#1| |#4|)) (-15 -3881 (|#1| |#1| |#4|)) (-15 -4310 (|#1| |#1|)) (-15 -3686 ((-635 |#1|) |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -3734 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3669 ((-762) |#1|)) (-15 -4346 (|#4| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3940 (|#1| |#4|)) (-15 -3302 ((-3 |#4| "failed") |#1|)) (-15 -3226 (|#4| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-1053 |#2| |#3| |#4|) (-1039) (-784) (-841)) (T -1052))
-NIL
-(-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -1544 (|#1| |#1| |#1|)) (-15 -1544 (|#1| (-635 |#1|))) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 ((-942 |#2|) |#1|)) (-15 -3441 ((-942 |#2|) |#1|)) (-15 -3441 ((-1145) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3569 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1544 (|#2| |#2| |#1|)) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -3682 (|#1| |#1| |#2|)) (-15 -3333 (|#1| |#1| |#2|)) (-15 -3066 (|#1| |#1|)) (-15 -3225 (|#1| |#1|)) (-15 -3441 (|#1| (-942 |#2|))) (-15 -3226 (|#1| (-942 |#2|))) (-15 -3302 ((-3 |#1| "failed") (-942 |#2|))) (-15 -3441 (|#1| (-942 (-558)))) (-15 -3226 (|#1| (-942 (-558)))) (-15 -3302 ((-3 |#1| "failed") (-942 (-558)))) (-15 -3441 (|#1| (-942 (-406 (-558))))) (-15 -3226 (|#1| (-942 (-406 (-558))))) (-15 -3302 ((-3 |#1| "failed") (-942 (-406 (-558))))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2224 (|#1| |#1| |#1|)) (-15 -2577 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1630 (-762))) |#1| |#1|)) (-15 -4313 (|#1| |#1| |#1|)) (-15 -3343 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -2996 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1| |#4|)) (-15 -2996 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -3415 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -1548 |#1|)) |#1| |#1| |#4|)) (-15 -3415 ((-2 (|:| -3455 |#1|) (|:| |gap| (-762)) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -2332 (|#1| |#1| |#1| |#4|)) (-15 -3700 (|#1| |#1| |#1| |#4|)) (-15 -2332 (|#1| |#1| |#1|)) (-15 -3700 (|#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| |#1| |#4|)) (-15 -2442 (|#1| |#1| |#1| |#4|)) (-15 -3522 (|#1| |#1| |#1|)) (-15 -2442 (|#1| |#1| |#1|)) (-15 -4228 ((-112) |#1| (-635 |#1|))) (-15 -4228 ((-112) |#1| |#1|)) (-15 -2643 ((-112) |#1| (-635 |#1|))) (-15 -2643 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| (-635 |#1|))) (-15 -2857 ((-112) |#1| |#1|)) (-15 -1798 ((-112) |#1| (-635 |#1|))) (-15 -1798 ((-112) |#1| |#1|)) (-15 -3380 ((-112) |#1| |#1|)) (-15 -3879 ((-112) |#1| |#1|)) (-15 -1491 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3057 ((-635 |#1|) |#1|)) (-15 -1593 ((-635 |#1|) |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -3036 ((-112) |#1|)) (-15 -1953 ((-112) |#1|)) (-15 -3905 (|#1| |#1| |#4|)) (-15 -3881 (|#1| |#1| |#4|)) (-15 -4310 (|#1| |#1|)) (-15 -3686 ((-635 |#1|) |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -3734 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -3669 ((-762) |#1|)) (-15 -4346 (|#4| |#1|)) (-15 -3441 ((-534) |#1|)) (-15 -3441 ((-882 (-558)) |#1|)) (-15 -3441 ((-882 (-378)) |#1|)) (-15 -3940 (|#1| |#4|)) (-15 -3302 ((-3 |#4| "failed") |#1|)) (-15 -3226 (|#4| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 |#3|) $) 110)) (-3907 (((-1159 $) $ |#3|) 125) (((-1159 |#1|) $) 124)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-3244 (($ $) 88 (|has| |#1| (-550)))) (-4326 (((-112) $) 90 (|has| |#1| (-550)))) (-2909 (((-762) $) 112) (((-762) $ (-635 |#3|)) 111)) (-2427 (($ $) 271)) (-3380 (((-112) $ $) 257)) (-1868 (((-3 $ "failed") $ $) 19)) (-2531 (($ $ $) 216 (|has| |#1| (-550)))) (-3289 (((-635 $) $ $) 211 (|has| |#1| (-550)))) (-2418 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-2018 (($ $) 98 (|has| |#1| (-450)))) (-4110 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-942 (-406 (-558)))) 231 (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))) (((-3 $ "failed") (-942 (-558))) 228 (-3994 (-12 (-2143 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163)))))) (((-3 $ "failed") (-942 |#1|)) 225 (-3994 (-12 (-2143 (|has| |#1| (-38 (-406 (-558))))) (-2143 (|has| |#1| (-38 (-558)))) (|has| |#3| (-606 (-1163)))) (-12 (-2143 (|has| |#1| (-543))) (-2143 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (-2143 (|has| |#1| (-982 (-558)))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))))) (-3226 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) ((|#3| $) 137) (($ (-942 (-406 (-558)))) 230 (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))) (($ (-942 (-558))) 227 (-3994 (-12 (-2143 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163)))))) (($ (-942 |#1|)) 224 (-3994 (-12 (-2143 (|has| |#1| (-38 (-406 (-558))))) (-2143 (|has| |#1| (-38 (-558)))) (|has| |#3| (-606 (-1163)))) (-12 (-2143 (|has| |#1| (-543))) (-2143 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (-2143 (|has| |#1| (-982 (-558)))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))))) (-2862 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-550)))) (-3905 (($ $) 154) (($ $ |#3|) 266)) (-1918 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-1798 (((-112) $ $) 256) (((-112) $ (-635 $)) 255)) (-3248 (((-3 $ "failed") $) 33)) (-3036 (((-112) $) 264)) (-3343 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 236)) (-3472 (($ $) 205 (|has| |#1| (-450)))) (-3199 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3894 (((-635 $) $) 109)) (-2992 (((-112) $) 96 (|has| |#1| (-899)))) (-3066 (($ $) 221 (|has| |#1| (-550)))) (-3225 (($ $) 222 (|has| |#1| (-550)))) (-2442 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3522 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2704 (($ $ |#1| |#2| $) 172)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| |#3| (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| |#3| (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3999 (((-112) $) 31)) (-2987 (((-762) $) 169)) (-4228 (((-112) $ $) 250) (((-112) $ (-635 $)) 249)) (-1595 (($ $ $ $ $) 207 (|has| |#1| (-550)))) (-4346 ((|#3| $) 275)) (-4068 (($ (-1159 |#1|) |#3|) 117) (($ (-1159 $) |#3|) 116)) (-4033 (((-635 $) $) 126)) (-3594 (((-112) $) 152)) (-4056 (($ |#1| |#2|) 153) (($ $ |#3| (-762)) 119) (($ $ (-635 |#3|) (-635 (-762))) 118)) (-4313 (($ $ $) 235)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |#3|) 120)) (-1953 (((-112) $) 265)) (-3672 ((|#2| $) 170) (((-762) $ |#3|) 122) (((-635 (-762)) $ (-635 |#3|)) 121)) (-2142 (($ $ $) 79 (|has| |#1| (-841)))) (-3669 (((-762) $) 274)) (-2281 (($ $ $) 78 (|has| |#1| (-841)))) (-2776 (($ (-1 |#2| |#2|) $) 171)) (-3397 (($ (-1 |#1| |#1|) $) 151)) (-2135 (((-3 |#3| "failed") $) 123)) (-2924 (($ $) 202 (|has| |#1| (-450)))) (-3970 (($ $) 203 (|has| |#1| (-450)))) (-3057 (((-635 $) $) 260)) (-2311 (($ $) 263)) (-3569 (($ $) 204 (|has| |#1| (-450)))) (-1593 (((-635 $) $) 261)) (-3912 (($ $) 262)) (-3867 (($ $) 149)) (-3881 ((|#1| $) 148) (($ $ |#3|) 267)) (-1500 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-2577 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1630 (-762))) $ $) 234)) (-2996 (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $) 238) (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $ |#3|) 237)) (-3415 (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $) 240) (((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $ |#3|) 239)) (-3700 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2332 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2510 (((-1145) $) 9)) (-4069 (($ $ $) 210 (|has| |#1| (-550)))) (-3686 (((-635 $) $) 269)) (-2819 (((-3 (-635 $) "failed") $) 114)) (-4195 (((-3 (-635 $) "failed") $) 115)) (-3637 (((-3 (-2 (|:| |var| |#3|) (|:| -1857 (-762))) "failed") $) 113)) (-2643 (((-112) $ $) 252) (((-112) $ (-635 $)) 251)) (-1401 (($ $ $) 232)) (-1823 (($ $) 273)) (-3879 (((-112) $ $) 258)) (-2857 (((-112) $ $) 254) (((-112) $ (-635 $)) 253)) (-2224 (($ $ $) 233)) (-3734 (($ $) 272)) (-1688 (((-1107) $) 10)) (-4117 (((-2 (|:| -1544 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-550)))) (-2525 (((-2 (|:| -1544 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-550)))) (-3837 (((-112) $) 166)) (-3853 ((|#1| $) 167)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-1544 ((|#1| |#1| $) 206 (|has| |#1| (-450))) (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-3939 (((-417 $) $) 99 (|has| |#1| (-899)))) (-3836 (((-2 (|:| -1544 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-550)))) (-2861 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-3682 (($ $ |#1|) 219 (|has| |#1| (-550))) (($ $ $) 217 (|has| |#1| (-550)))) (-3333 (($ $ |#1|) 220 (|has| |#1| (-550))) (($ $ $) 218 (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-3789 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3780 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-762)) 40) (($ $ (-635 |#3|) (-635 (-762))) 39)) (-4263 ((|#2| $) 150) (((-762) $ |#3|) 130) (((-635 (-762)) $ (-635 |#3|)) 129)) (-2115 (($ $) 270)) (-4310 (($ $) 268)) (-3441 (((-882 (-378)) $) 82 (-12 (|has| |#3| (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| |#3| (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| |#3| (-606 (-534))) (|has| |#1| (-606 (-534))))) (($ (-942 (-406 (-558)))) 229 (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163))))) (($ (-942 (-558))) 226 (-3994 (-12 (-2143 (|has| |#1| (-38 (-406 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-606 (-1163)))) (-12 (|has| |#1| (-38 (-406 (-558)))) (|has| |#3| (-606 (-1163)))))) (($ (-942 |#1|)) 223 (|has| |#3| (-606 (-1163)))) (((-1145) $) 201 (-12 (|has| |#1| (-1028 (-558))) (|has| |#3| (-606 (-1163))))) (((-942 |#1|) $) 200 (|has| |#3| (-606 (-1163))))) (-3012 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2157 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-942 |#1|) $) 199 (|has| |#3| (-606 (-1163)))) (($ (-406 (-558))) 72 (-3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558)))))) (($ $) 85 (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) 168)) (-3143 ((|#1| $ |#2|) 155) (($ $ |#3| (-762)) 128) (($ $ (-635 |#3|) (-635 (-762))) 127)) (-1487 (((-3 $ "failed") $) 73 (-3994 (-2157 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) 28)) (-1664 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-2671 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2207 (($) 18 T CONST)) (-1491 (((-3 (-112) "failed") $ $) 259)) (-2220 (($) 30 T CONST)) (-2494 (($ $ $ $ (-762)) 208 (|has| |#1| (-550)))) (-2350 (($ $ $ (-762)) 209 (|has| |#1| (-550)))) (-3042 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-762)) 36) (($ $ (-635 |#3|) (-635 (-762))) 35)) (-1757 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1805 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1053 |#1| |#2| |#3|) (-139) (-1039) (-784) (-841)) (T -1053))
-((-4346 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-762)))) (-1823 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3734 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-2427 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-2115 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3686 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-4310 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3881 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-2311 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3912 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1593 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-3057 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-1491 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3879 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-3380 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-1798 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-2857 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-2643 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-2643 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-4228 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)))) (-2442 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3522 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-2442 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-3522 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-3700 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-2332 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3700 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-2332 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *2 (-841)))) (-3415 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -1548 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-3415 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -1548 *1))) (-4 *1 (-1053 *4 *5 *3)))) (-2996 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-2996 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1053 *4 *5 *3)))) (-3343 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-4313 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-2577 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1630 (-762)))) (-4 *1 (-1053 *3 *4 *5)))) (-2224 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-1401 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)))) (-3302 (*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))) (-3302 (*1 *1 *2) (|partial| -3994 (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3226 (*1 *1 *2) (-3994 (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3441 (*1 *1 *2) (-3994 (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3302 (*1 *1 *2) (|partial| -3994 (-12 (-5 *2 (-942 *3)) (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-2143 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-2143 (-4 *3 (-543))) (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-2143 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3226 (*1 *1 *2) (-3994 (-12 (-5 *2 (-942 *3)) (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-2143 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-2143 (-4 *3 (-543))) (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))) (-12 (-5 *2 (-942 *3)) (-12 (-2143 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784)) (-4 *5 (-841))))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *5 (-606 (-1163))) (-4 *4 (-784)) (-4 *5 (-841)))) (-3225 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3066 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3333 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3682 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3333 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3682 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-2531 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -1544 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-2525 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -1544 *1) (|:| |coef1| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-4117 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-2 (|:| -1544 *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-3289 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-4069 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-2350 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))) (-2494 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))) (-1595 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-550)))) (-1544 (*1 *2 *2 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-3569 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-3970 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))) (-2924 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-450)))))
-(-13 (-939 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4346 (|t#3| $)) (-15 -3669 ((-762) $)) (-15 -1823 ($ $)) (-15 -3734 ($ $)) (-15 -2427 ($ $)) (-15 -2115 ($ $)) (-15 -3686 ((-635 $) $)) (-15 -4310 ($ $)) (-15 -3881 ($ $ |t#3|)) (-15 -3905 ($ $ |t#3|)) (-15 -1953 ((-112) $)) (-15 -3036 ((-112) $)) (-15 -2311 ($ $)) (-15 -3912 ($ $)) (-15 -1593 ((-635 $) $)) (-15 -3057 ((-635 $) $)) (-15 -1491 ((-3 (-112) "failed") $ $)) (-15 -3879 ((-112) $ $)) (-15 -3380 ((-112) $ $)) (-15 -1798 ((-112) $ $)) (-15 -1798 ((-112) $ (-635 $))) (-15 -2857 ((-112) $ $)) (-15 -2857 ((-112) $ (-635 $))) (-15 -2643 ((-112) $ $)) (-15 -2643 ((-112) $ (-635 $))) (-15 -4228 ((-112) $ $)) (-15 -4228 ((-112) $ (-635 $))) (-15 -2442 ($ $ $)) (-15 -3522 ($ $ $)) (-15 -2442 ($ $ $ |t#3|)) (-15 -3522 ($ $ $ |t#3|)) (-15 -3700 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -3700 ($ $ $ |t#3|)) (-15 -2332 ($ $ $ |t#3|)) (-15 -3415 ((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $)) (-15 -3415 ((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -1548 $)) $ $ |t#3|)) (-15 -2996 ((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -2996 ((-2 (|:| -3455 $) (|:| |gap| (-762)) (|:| -2263 $) (|:| -1548 $)) $ $ |t#3|)) (-15 -3343 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -4313 ($ $ $)) (-15 -2577 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1630 (-762))) $ $)) (-15 -2224 ($ $ $)) (-15 -1401 ($ $ $)) (IF (|has| |t#3| (-606 (-1163))) (PROGN (-6 (-605 (-942 |t#1|))) (-6 (-606 (-942 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -3302 ((-3 $ "failed") (-942 (-406 (-558))))) (-15 -3226 ($ (-942 (-406 (-558))))) (-15 -3441 ($ (-942 (-406 (-558))))) (-15 -3302 ((-3 $ "failed") (-942 (-558)))) (-15 -3226 ($ (-942 (-558)))) (-15 -3441 ($ (-942 (-558)))) (IF (|has| |t#1| (-982 (-558))) |%noBranch| (PROGN (-15 -3302 ((-3 $ "failed") (-942 |t#1|))) (-15 -3226 ($ (-942 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) (IF (|has| |t#1| (-38 (-406 (-558)))) |%noBranch| (PROGN (-15 -3302 ((-3 $ "failed") (-942 (-558)))) (-15 -3226 ($ (-942 (-558)))) (-15 -3441 ($ (-942 (-558)))) (IF (|has| |t#1| (-543)) |%noBranch| (PROGN (-15 -3302 ((-3 $ "failed") (-942 |t#1|))) (-15 -3226 ($ (-942 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-558)))) |%noBranch| (PROGN (-15 -3302 ((-3 $ "failed") (-942 |t#1|))) (-15 -3226 ($ (-942 |t#1|)))))) (-15 -3441 ($ (-942 |t#1|))) (IF (|has| |t#1| (-1028 (-558))) (-6 (-606 (-1145))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3225 ($ $)) (-15 -3066 ($ $)) (-15 -3333 ($ $ |t#1|)) (-15 -3682 ($ $ |t#1|)) (-15 -3333 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -2531 ($ $ $)) (-15 -3836 ((-2 (|:| -1544 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2525 ((-2 (|:| -1544 $) (|:| |coef1| $)) $ $)) (-15 -4117 ((-2 (|:| -1544 $) (|:| |coef2| $)) $ $)) (-15 -2862 ($ $ $)) (-15 -3289 ((-635 $) $ $)) (-15 -4069 ($ $ $)) (-15 -2350 ($ $ $ (-762))) (-15 -2494 ($ $ $ $ (-762))) (-15 -1595 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -1544 (|t#1| |t#1| $)) (-15 -3472 ($ $)) (-15 -3569 ($ $)) (-15 -3970 ($ $)) (-15 -2924 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 |#3|) . T) ((-608 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-605 (-853)) . T) ((-605 (-942 |#1|)) |has| |#3| (-606 (-1163))) ((-171) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| |#1| (-606 (-534))) (|has| |#3| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#3| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#3| (-606 (-882 (-558))))) ((-606 (-942 |#1|)) |has| |#3| (-606 (-1163))) ((-606 (-1145)) -12 (|has| |#1| (-1028 (-558))) (|has| |#3| (-606 (-1163)))) ((-289) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3994 (|has| |#1| (-899)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-550) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 |#3|) . T) ((-876 (-378)) -12 (|has| |#1| (-876 (-378))) (|has| |#3| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-876 (-558))) (|has| |#3| (-876 (-558)))) ((-939 |#1| |#2| |#3|) . T) ((-899) |has| |#1| (-899)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 |#1|) . T) ((-1028 |#3|) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) |has| |#1| (-899)))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-2328 (((-635 (-1122)) $) 13)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 24) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-1122) $) 15)) (-1708 (((-112) $ $) NIL)))
-(((-1054) (-13 (-1070) (-10 -8 (-15 -2328 ((-635 (-1122)) $)) (-15 -3190 ((-1122) $))))) (T -1054))
-((-2328 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1054)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1054)))))
-(-13 (-1070) (-10 -8 (-15 -2328 ((-635 (-1122)) $)) (-15 -3190 ((-1122) $))))
-((-3124 (((-112) |#3| $) 13)) (-2363 (((-3 $ "failed") |#3| (-911)) 23)) (-3248 (((-3 |#3| "failed") |#3| $) 38)) (-4053 (((-112) |#3| $) 16)) (-2032 (((-112) |#3| $) 14)))
-(((-1055 |#1| |#2| |#3|) (-10 -8 (-15 -2363 ((-3 |#1| "failed") |#3| (-911))) (-15 -3248 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4053 ((-112) |#3| |#1|)) (-15 -2032 ((-112) |#3| |#1|)) (-15 -3124 ((-112) |#3| |#1|))) (-1056 |#2| |#3|) (-13 (-839) (-362)) (-1222 |#2|)) (T -1055))
-NIL
-(-10 -8 (-15 -2363 ((-3 |#1| "failed") |#3| (-911))) (-15 -3248 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4053 ((-112) |#3| |#1|)) (-15 -2032 ((-112) |#3| |#1|)) (-15 -3124 ((-112) |#3| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) |#2| $) 21)) (-1334 (((-558) |#2| $) 22)) (-2363 (((-3 $ "failed") |#2| (-911)) 15)) (-3845 ((|#1| |#2| $ |#1|) 13)) (-3248 (((-3 |#2| "failed") |#2| $) 18)) (-4053 (((-112) |#2| $) 19)) (-2032 (((-112) |#2| $) 20)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2297 ((|#2| $) 17)) (-3940 (((-853) $) 11)) (-1422 ((|#1| |#2| $ |#1|) 14)) (-2537 (((-635 $) |#2|) 16)) (-1708 (((-112) $ $) 6)))
-(((-1056 |#1| |#2|) (-139) (-13 (-839) (-362)) (-1222 |t#1|)) (T -1056))
-((-1334 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-558)))) (-3124 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-112)))) (-2032 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-112)))) (-4053 (*1 *2 *3 *1) (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-112)))) (-3248 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362))) (-4 *2 (-1222 *3)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362))) (-4 *2 (-1222 *3)))) (-2537 (*1 *2 *3) (-12 (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *4 *3)))) (-2363 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-911)) (-4 *4 (-13 (-839) (-362))) (-4 *1 (-1056 *4 *2)) (-4 *2 (-1222 *4)))) (-1422 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362))) (-4 *3 (-1222 *2)))) (-3845 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362))) (-4 *3 (-1222 *2)))))
-(-13 (-1087) (-10 -8 (-15 -1334 ((-558) |t#2| $)) (-15 -3124 ((-112) |t#2| $)) (-15 -2032 ((-112) |t#2| $)) (-15 -4053 ((-112) |t#2| $)) (-15 -3248 ((-3 |t#2| "failed") |t#2| $)) (-15 -2297 (|t#2| $)) (-15 -2537 ((-635 $) |t#2|)) (-15 -2363 ((-3 $ "failed") |t#2| (-911))) (-15 -1422 (|t#1| |t#2| $ |t#1|)) (-15 -3845 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3908 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-762)) 95)) (-3309 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762)) 56)) (-2755 (((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-762)) 87)) (-4188 (((-762) (-635 |#4|) (-635 |#5|)) 27)) (-2174 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762)) 58) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762) (-112)) 60)) (-3353 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 79)) (-3441 (((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) 82)) (-3688 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-112)) 55)) (-2331 (((-762) (-635 |#4|) (-635 |#5|)) 19)))
-(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -4188 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -3688 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-112))) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3908 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-762))) (-15 -3441 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2755 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-762)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1057))
-((-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9)))) (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-3908 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -3798 *11)))))) (-5 *6 (-762)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -3798 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1059 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-3353 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3353 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-2174 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2174 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-2174 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1059 *7 *8 *9 *3)))) (-3309 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3309 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-3688 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -4188 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -3688 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-112))) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3908 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-762))) (-15 -3441 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2755 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-762))))
-((-2497 (((-112) |#5| $) 20)) (-2990 (((-112) |#5| $) 23)) (-3119 (((-112) |#5| $) 16) (((-112) $) 44)) (-3490 (((-635 $) |#5| $) NIL) (((-635 $) (-635 |#5|) $) 76) (((-635 $) (-635 |#5|) (-635 $)) 74) (((-635 $) |#5| (-635 $)) 77)) (-2319 (($ $ |#5|) NIL) (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 59) (((-635 $) (-635 |#5|) $) 61) (((-635 $) (-635 |#5|) (-635 $)) 63)) (-3745 (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 53) (((-635 $) (-635 |#5|) $) 55) (((-635 $) (-635 |#5|) (-635 $)) 57)) (-3337 (((-112) |#5| $) 26)))
-(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2319 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -2319 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -2319 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -2319 ((-635 |#1|) |#5| |#1|)) (-15 -3745 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3745 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3745 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3745 ((-635 |#1|) |#5| |#1|)) (-15 -3490 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3490 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3490 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3490 ((-635 |#1|) |#5| |#1|)) (-15 -2990 ((-112) |#5| |#1|)) (-15 -3119 ((-112) |#1|)) (-15 -3337 ((-112) |#5| |#1|)) (-15 -2497 ((-112) |#5| |#1|)) (-15 -3119 ((-112) |#5| |#1|)) (-15 -2319 (|#1| |#1| |#5|))) (-1059 |#2| |#3| |#4| |#5|) (-450) (-784) (-841) (-1053 |#2| |#3| |#4|)) (T -1058))
-NIL
-(-10 -8 (-15 -2319 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -2319 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -2319 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -2319 ((-635 |#1|) |#5| |#1|)) (-15 -3745 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3745 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3745 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3745 ((-635 |#1|) |#5| |#1|)) (-15 -3490 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3490 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3490 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3490 ((-635 |#1|) |#5| |#1|)) (-15 -2990 ((-112) |#5| |#1|)) (-15 -3119 ((-112) |#1|)) (-15 -3337 ((-112) |#5| |#1|)) (-15 -2497 ((-112) |#5| |#1|)) (-15 -3119 ((-112) |#5| |#1|)) (-15 -2319 (|#1| |#1| |#5|)))
-((-3929 (((-112) $ $) 7)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) 85)) (-3055 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-4078 (((-635 |#3|) $) 33)) (-3369 (((-112) $) 26)) (-1852 (((-112) $) 17 (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) 101) (((-112) $) 97)) (-2299 ((|#4| |#4| $) 92)) (-2018 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| $) 126)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) 27)) (-3651 (((-112) $ (-762)) 44)) (-2072 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) 79)) (-3457 (($) 45 T CONST)) (-3614 (((-112) $) 22 (|has| |#1| (-550)))) (-1293 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2211 (((-112) $ $) 23 (|has| |#1| (-550)))) (-3554 (((-112) $) 25 (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1542 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) 36)) (-3226 (($ (-635 |#4|)) 35)) (-3168 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-3188 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2388 ((|#4| |#4| $) 87)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) 105)) (-2497 (((-112) |#4| $) 136)) (-2990 (((-112) |#4| $) 133)) (-3119 (((-112) |#4| $) 137) (((-112) $) 134)) (-2917 (((-635 |#4|) $) 52 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) 104) (((-112) $) 103)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) 43)) (-3486 (((-635 |#4|) $) 53 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 47)) (-2327 (((-635 |#3|) $) 32)) (-3541 (((-112) |#3| $) 31)) (-3212 (((-112) $ (-762)) 42)) (-2510 (((-1145) $) 9)) (-1948 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-4069 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| |#4| $) 127)) (-1514 (((-3 |#4| "failed") $) 83)) (-2681 (((-635 $) |#4| $) 129)) (-2015 (((-3 (-112) (-635 $)) |#4| $) 132)) (-4294 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3490 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3987 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-2367 (((-635 |#4|) $) 107)) (-2643 (((-112) |#4| $) 99) (((-112) $) 95)) (-1401 ((|#4| |#4| $) 90)) (-3879 (((-112) $ $) 110)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) 100) (((-112) $) 96)) (-2224 ((|#4| |#4| $) 91)) (-1688 (((-1107) $) 10)) (-3156 (((-3 |#4| "failed") $) 84)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2562 (((-3 $ "failed") $ |#4|) 78)) (-2319 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3314 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) 38)) (-3711 (((-112) $) 41)) (-2876 (($) 40)) (-4263 (((-762) $) 106)) (-1698 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4383)))) (-4098 (($ $) 39)) (-3441 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 60)) (-3121 (($ $ |#3|) 28)) (-2402 (($ $ |#3|) 30)) (-2004 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-3940 (((-853) $) 11) (((-635 |#4|) $) 37)) (-1435 (((-762) $) 76 (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3745 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2831 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) 81)) (-3337 (((-112) |#4| $) 135)) (-4062 (((-112) |#3| $) 80)) (-1708 (((-112) $ $) 6)) (-1596 (((-762) $) 46 (|has| $ (-6 -4383)))))
-(((-1059 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1059))
-((-3119 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2497 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3337 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-2990 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2015 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 (-112) (-635 *1))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-4294 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *1)))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-4294 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2681 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-1948 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 *3 (-635 *1))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-4069 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *1)))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-2018 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *1)))) (-4 *1 (-1059 *4 *5 *6 *3)))) (-3490 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-3490 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *7)))) (-3490 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)))) (-3490 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)))) (-3745 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)))) (-3745 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *7)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)))) (-3987 (*1 *1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3987 (*1 *1 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)))) (-2319 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)))) (-2319 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)))) (-2319 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *7)))) (-2319 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *5 *6 *7 *8)))))
-(-13 (-1193 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3119 ((-112) |t#4| $)) (-15 -2497 ((-112) |t#4| $)) (-15 -3337 ((-112) |t#4| $)) (-15 -3119 ((-112) $)) (-15 -2990 ((-112) |t#4| $)) (-15 -2015 ((-3 (-112) (-635 $)) |t#4| $)) (-15 -4294 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) |t#4| $)) (-15 -4294 ((-112) |t#4| $)) (-15 -2681 ((-635 $) |t#4| $)) (-15 -1948 ((-3 |t#4| (-635 $)) |t#4| |t#4| $)) (-15 -4069 ((-635 (-2 (|:| |val| |t#4|) (|:| -3798 $))) |t#4| |t#4| $)) (-15 -2018 ((-635 (-2 (|:| |val| |t#4|) (|:| -3798 $))) |t#4| $)) (-15 -3490 ((-635 $) |t#4| $)) (-15 -3490 ((-635 $) (-635 |t#4|) $)) (-15 -3490 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3490 ((-635 $) |t#4| (-635 $))) (-15 -3745 ((-635 $) |t#4| $)) (-15 -3745 ((-635 $) |t#4| (-635 $))) (-15 -3745 ((-635 $) (-635 |t#4|) $)) (-15 -3745 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3987 ($ |t#4| $)) (-15 -3987 ($ (-635 |t#4|) $)) (-15 -2319 ((-635 $) |t#4| $)) (-15 -2319 ((-635 $) |t#4| (-635 $))) (-15 -2319 ((-635 $) (-635 |t#4|) $)) (-15 -2319 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3055 ((-635 $) (-635 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
-((-3641 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|) 81)) (-2894 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|) 112)) (-2071 (((-635 |#5|) |#4| |#5|) 70)) (-1299 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-1492 (((-1251)) 37)) (-2845 (((-1251)) 26)) (-3451 (((-1251) (-1145) (-1145) (-1145)) 33)) (-2587 (((-1251) (-1145) (-1145) (-1145)) 22)) (-3150 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#4| |#4| |#5|) 95)) (-2546 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#3| (-112)) 106) (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1497 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|) 101)))
-(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2587 ((-1251) (-1145) (-1145) (-1145))) (-15 -2845 ((-1251))) (-15 -3451 ((-1251) (-1145) (-1145) (-1145))) (-15 -1492 ((-1251))) (-15 -3150 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -2546 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2546 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#3| (-112))) (-15 -1497 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -2894 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -1299 ((-112) |#4| |#5|)) (-15 -1299 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -2071 ((-635 |#5|) |#4| |#5|)) (-15 -3641 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1060))
-((-3641 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2071 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-1299 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-1299 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2894 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-1497 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9)))) (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -3798 *9)))) (-5 *1 (-1060 *6 *7 *4 *8 *9)))) (-2546 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-3150 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-1492 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-3451 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-2845 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-2587 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2587 ((-1251) (-1145) (-1145) (-1145))) (-15 -2845 ((-1251))) (-15 -3451 ((-1251) (-1145) (-1145) (-1145))) (-15 -1492 ((-1251))) (-15 -3150 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -2546 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2546 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#3| (-112))) (-15 -1497 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -2894 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -1299 ((-112) |#4| |#5|)) (-15 -1299 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -2071 ((-635 |#5|) |#4| |#5|)) (-15 -3641 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|)))
-((-3929 (((-112) $ $) NIL)) (-3967 (((-1199) $) 13)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1660 (((-1122) $) 10)) (-3940 (((-853) $) 22) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1061) (-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3967 ((-1199) $))))) (T -1061))
-((-1660 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1061)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1061)))))
-(-13 (-1070) (-10 -8 (-15 -1660 ((-1122) $)) (-15 -3967 ((-1199) $))))
-((-3929 (((-112) $ $) NIL)) (-3179 (((-1163) $) 8)) (-2510 (((-1145) $) 16)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 13)))
-(((-1062 |#1|) (-13 (-1087) (-10 -8 (-15 -3179 ((-1163) $)))) (-1163)) (T -1062))
-((-3179 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1062 *3)) (-14 *3 *2))))
-(-13 (-1087) (-10 -8 (-15 -3179 ((-1163) $))))
-((-3929 (((-112) $ $) NIL)) (-4316 (($ $ (-635 (-1163)) (-1 (-112) (-635 |#3|))) 33)) (-1834 (($ |#3| |#3|) 22) (($ |#3| |#3| (-635 (-1163))) 20)) (-2385 ((|#3| $) 13)) (-3302 (((-3 (-293 |#3|) "failed") $) 58)) (-3226 (((-293 |#3|) $) NIL)) (-2588 (((-635 (-1163)) $) 16)) (-1903 (((-882 |#1|) $) 11)) (-2372 ((|#3| $) 12)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2276 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-911)) 39)) (-3940 (((-853) $) 86) (($ (-293 |#3|)) 21)) (-1708 (((-112) $ $) 36)))
-(((-1063 |#1| |#2| |#3|) (-13 (-1087) (-285 |#3| |#3|) (-1028 (-293 |#3|)) (-10 -8 (-15 -1834 ($ |#3| |#3|)) (-15 -1834 ($ |#3| |#3| (-635 (-1163)))) (-15 -4316 ($ $ (-635 (-1163)) (-1 (-112) (-635 |#3|)))) (-15 -1903 ((-882 |#1|) $)) (-15 -2372 (|#3| $)) (-15 -2385 (|#3| $)) (-15 -2276 (|#3| $ |#3| (-911))) (-15 -2588 ((-635 (-1163)) $)))) (-1087) (-13 (-1039) (-876 |#1|) (-841) (-606 (-882 |#1|))) (-13 (-429 |#2|) (-876 |#1|) (-606 (-882 |#1|)))) (T -1063))
-((-1834 (*1 *1 *2 *2) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-5 *1 (-1063 *3 *4 *2)) (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))) (-1834 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1063 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))) (-4316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1 (-112) (-635 *6))) (-4 *6 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1063 *4 *5 *6)))) (-1903 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 *2))) (-5 *2 (-882 *3)) (-5 *1 (-1063 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 *2))))) (-2372 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))) (-5 *1 (-1063 *3 *4 *2)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))))) (-2385 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))) (-5 *1 (-1063 *3 *4 *2)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))))) (-2276 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-911)) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1063 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))) (-2588 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-5 *2 (-635 (-1163))) (-5 *1 (-1063 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
-(-13 (-1087) (-285 |#3| |#3|) (-1028 (-293 |#3|)) (-10 -8 (-15 -1834 ($ |#3| |#3|)) (-15 -1834 ($ |#3| |#3| (-635 (-1163)))) (-15 -4316 ($ $ (-635 (-1163)) (-1 (-112) (-635 |#3|)))) (-15 -1903 ((-882 |#1|) $)) (-15 -2372 (|#3| $)) (-15 -2385 (|#3| $)) (-15 -2276 (|#3| $ |#3| (-911))) (-15 -2588 ((-635 (-1163)) $))))
-((-3929 (((-112) $ $) NIL)) (-4279 (($ (-635 (-1063 |#1| |#2| |#3|))) 13)) (-3885 (((-635 (-1063 |#1| |#2| |#3|)) $) 20)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2276 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-911)) 26)) (-3940 (((-853) $) 16)) (-1708 (((-112) $ $) 19)))
-(((-1064 |#1| |#2| |#3|) (-13 (-1087) (-285 |#3| |#3|) (-10 -8 (-15 -4279 ($ (-635 (-1063 |#1| |#2| |#3|)))) (-15 -3885 ((-635 (-1063 |#1| |#2| |#3|)) $)) (-15 -2276 (|#3| $ |#3| (-911))))) (-1087) (-13 (-1039) (-876 |#1|) (-841) (-606 (-882 |#1|))) (-13 (-429 |#2|) (-876 |#1|) (-606 (-882 |#1|)))) (T -1064))
-((-4279 (*1 *1 *2) (-12 (-5 *2 (-635 (-1063 *3 *4 *5))) (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))) (-5 *1 (-1064 *3 *4 *5)))) (-3885 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3)))) (-5 *2 (-635 (-1063 *3 *4 *5))) (-5 *1 (-1064 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))) (-2276 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-911)) (-4 *4 (-1087)) (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4)))) (-5 *1 (-1064 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))))
-(-13 (-1087) (-285 |#3| |#3|) (-10 -8 (-15 -4279 ($ (-635 (-1063 |#1| |#2| |#3|)))) (-15 -3885 ((-635 (-1063 |#1| |#2| |#3|)) $)) (-15 -2276 (|#3| $ |#3| (-911)))))
-((-1848 (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112)) 74) (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|))) 76) (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112)) 75)))
-(((-1065 |#1| |#2|) (-10 -7 (-15 -1848 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -1848 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -1848 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-635 (-1163))) (T -1065))
-((-1848 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5)))))) (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *4)) (|:| -2979 (-635 (-942 *4)))))) (-5 *1 (-1065 *4 *5)) (-5 *3 (-635 (-942 *4))) (-14 *5 (-635 (-1163))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5)))))) (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))))))
-(-10 -7 (-15 -1848 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -1848 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -1848 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112))))
-((-3939 (((-417 |#3|) |#3|) 18)))
-(((-1066 |#1| |#2| |#3|) (-10 -7 (-15 -3939 ((-417 |#3|) |#3|))) (-1222 (-406 (-558))) (-13 (-362) (-146) (-715 (-406 (-558)) |#1|)) (-1222 |#2|)) (T -1066))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-13 (-362) (-146) (-715 (-406 (-558)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1066 *4 *5 *3)) (-4 *3 (-1222 *5)))))
-(-10 -7 (-15 -3939 ((-417 |#3|) |#3|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 126)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-3244 (($ $) NIL (|has| |#1| (-362)))) (-4326 (((-112) $) NIL (|has| |#1| (-362)))) (-3409 (((-679 |#1|) (-1246 $)) NIL) (((-679 |#1|)) 115)) (-1719 ((|#1| $) 119)) (-3067 (((-1173 (-911) (-762)) (-558)) NIL (|has| |#1| (-348)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2507 (((-762)) 40 (|has| |#1| (-367)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3431 (($ (-1246 |#1|) (-1246 $)) NIL) (($ (-1246 |#1|)) 43)) (-2937 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3533 (((-679 |#1|) $ (-1246 $)) NIL) (((-679 |#1|) $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 106) (((-679 |#1|) (-679 $)) 101)) (-3866 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-3248 (((-3 $ "failed") $) NIL)) (-1489 (((-911)) 77)) (-3692 (($) 44 (|has| |#1| (-367)))) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3567 (($) NIL (|has| |#1| (-348)))) (-3617 (((-112) $) NIL (|has| |#1| (-348)))) (-4362 (($ $ (-762)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-2532 (((-911) $) NIL (|has| |#1| (-348))) (((-824 (-911)) $) NIL (|has| |#1| (-348)))) (-3999 (((-112) $) NIL)) (-1423 ((|#1| $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1715 ((|#2| $) 84 (|has| |#1| (-362)))) (-1486 (((-911) $) 130 (|has| |#1| (-367)))) (-3850 ((|#2| $) 58)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1823 (($) NIL (|has| |#1| (-348)) CONST)) (-2349 (($ (-911)) 125 (|has| |#1| (-367)))) (-1688 (((-1107) $) NIL)) (-2461 (($) 121)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3476 (((-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))) NIL (|has| |#1| (-348)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3789 ((|#1| (-1246 $)) NIL) ((|#1|) 109)) (-2551 (((-762) $) NIL (|has| |#1| (-348))) (((-3 (-762) "failed") $ $) NIL (|has| |#1| (-348)))) (-3780 (($ $) NIL (-3994 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) NIL (-3994 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1 |#1| |#1|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2355 (((-679 |#1|) (-1246 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2297 ((|#2|) 73)) (-2933 (($) NIL (|has| |#1| (-348)))) (-2979 (((-1246 |#1|) $ (-1246 $)) 89) (((-679 |#1|) (-1246 $) (-1246 $)) NIL) (((-1246 |#1|) $) 71) (((-679 |#1|) (-1246 $)) 85)) (-3441 (((-1246 |#1|) $) NIL) (($ (-1246 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (|has| |#1| (-348)))) (-3940 (((-853) $) 57) (($ (-558)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-362)) (|has| |#1| (-1028 (-406 (-558))))))) (-1487 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1969 ((|#2| $) 82)) (-2417 (((-762)) 75)) (-2743 (((-1246 $)) 81)) (-2671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2207 (($) 30 T CONST)) (-2220 (($) 19 T CONST)) (-3042 (($ $) NIL (-3994 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-762)) NIL (-3994 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-890 (-1163))))) (($ $ (-1 |#1| |#1|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-1708 (((-112) $ $) 63)) (-1805 (($ $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) 67) (($ $ $) NIL)) (-1785 (($ $ $) 65)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-558)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-558))) NIL (|has| |#1| (-362)))))
-(((-1067 |#1| |#2| |#3|) (-715 |#1| |#2|) (-171) (-1222 |#1|) |#2|) (T -1067))
-NIL
-(-715 |#1| |#2|)
-((-3939 (((-417 |#3|) |#3|) 19)))
-(((-1068 |#1| |#2| |#3|) (-10 -7 (-15 -3939 ((-417 |#3|) |#3|))) (-1222 (-406 (-942 (-558)))) (-13 (-362) (-146) (-715 (-406 (-942 (-558))) |#1|)) (-1222 |#2|)) (T -1068))
-((-3939 (*1 *2 *3) (-12 (-4 *4 (-1222 (-406 (-942 (-558))))) (-4 *5 (-13 (-362) (-146) (-715 (-406 (-942 (-558))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1068 *4 *5 *3)) (-4 *3 (-1222 *5)))))
-(-10 -7 (-15 -3939 ((-417 |#3|) |#3|)))
-((-3929 (((-112) $ $) NIL)) (-2142 (($ $ $) 14)) (-2281 (($ $ $) 15)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3951 (($) 6)) (-3441 (((-1163) $) 18)) (-3940 (((-853) $) 12)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 13)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 8)))
-(((-1069) (-13 (-841) (-606 (-1163)) (-10 -8 (-15 -3951 ($))))) (T -1069))
-((-3951 (*1 *1) (-5 *1 (-1069))))
-(-13 (-841) (-606 (-1163)) (-10 -8 (-15 -3951 ($))))
-((-3929 (((-112) $ $) 7)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-1168)) 16) (((-1168) $) 15)) (-1708 (((-112) $ $) 6)))
-(((-1070) (-139)) (T -1070))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-1049) (-139)) (T -1049))
+NIL
+(-13 (-21) (-1102))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-856)) . T) ((-1102) . T) ((-1090) . T))
+((-3411 (($ $) 16)) (-2210 (($ $) 22)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 49)) (-1672 (($ $) 24)) (-3841 (($ $) 11)) (-1388 (($ $) 38)) (-4174 (((-378) $) NIL) (((-224) $) NIL) (((-885 (-378)) $) 33)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL) (($ (-406 (-561))) 28) (($ (-561)) NIL) (($ (-406 (-561))) 28)) (-4259 (((-765)) 8)) (-2432 (($ $) 39)))
+(((-1050 |#1|) (-10 -8 (-15 -2210 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -1388 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| (-561))) (-15 -4174 ((-224) |#1|)) (-15 -4174 ((-378) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| |#1|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-1051)) (T -1050))
+((-4259 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051)))))
+(-10 -8 (-15 -2210 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -1388 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -3631 ((-882 (-378) |#1|) |#1| (-885 (-378)) (-882 (-378) |#1|))) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| (-561))) (-15 -4174 ((-224) |#1|)) (-15 -4174 ((-378) |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| |#1|)) (-15 -4259 ((-765))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2949 (((-561) $) 90)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-3411 (($ $) 88)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1665 (($ $) 98)) (-1671 (((-112) $ $) 60)) (-2666 (((-561) $) 115)) (-1965 (($) 17 T CONST)) (-2210 (($ $) 87)) (-4017 (((-3 (-561) "failed") $) 103) (((-3 (-406 (-561)) "failed") $) 100)) (-3938 (((-561) $) 104) (((-406 (-561)) $) 101)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-2737 (((-112) $) 72)) (-3201 (((-112) $) 113)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 94)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 97)) (-1672 (($ $) 93)) (-2110 (((-112) $) 114)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-3443 (($ $ $) 112)) (-2986 (($ $ $) 111)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-3841 (($ $) 89)) (-1388 (($ $) 91)) (-1657 (((-417 $) $) 75)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-4174 (((-378) $) 106) (((-224) $) 105) (((-885 (-378)) $) 95)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ (-561)) 102) (($ (-406 (-561))) 99)) (-4259 (((-765)) 28)) (-2432 (($ $) 92)) (-3168 (((-112) $ $) 40)) (-3749 (($ $) 116)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1782 (((-112) $ $) 109)) (-1762 (((-112) $ $) 108)) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 110)) (-1754 (((-112) $ $) 107)) (-1833 (($ $ $) 66)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70) (($ $ (-406 (-561))) 96)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68)))
+(((-1051) (-139)) (T -1051))
+((-3749 (*1 *1 *1) (-4 *1 (-1051))) (-1672 (*1 *1 *1) (-4 *1 (-1051))) (-2432 (*1 *1 *1) (-4 *1 (-1051))) (-1388 (*1 *1 *1) (-4 *1 (-1051))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-561)))) (-3841 (*1 *1 *1) (-4 *1 (-1051))) (-3411 (*1 *1 *1) (-4 *1 (-1051))) (-2210 (*1 *1 *1) (-4 *1 (-1051))))
+(-13 (-362) (-842) (-1015) (-1031 (-561)) (-1031 (-406 (-561))) (-995) (-609 (-885 (-378))) (-879 (-378)) (-146) (-10 -8 (-15 -1672 ($ $)) (-15 -2432 ($ $)) (-15 -1388 ($ $)) (-15 -2949 ((-561) $)) (-15 -3841 ($ $)) (-15 -3411 ($ $)) (-15 -2210 ($ $)) (-15 -3749 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-378)) . T) ((-609 (-885 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-789) . T) ((-842) . T) ((-844) . T) ((-879 (-378)) . T) ((-913) . T) ((-995) . T) ((-1015) . T) ((-1031 (-406 (-561))) . T) ((-1031 (-561)) . T) ((-1048 #0#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) |#2| $) 23)) (-1393 ((|#1| $) 10)) (-2666 (((-561) |#2| $) 87)) (-3559 (((-3 $ "failed") |#2| (-914)) 57)) (-1621 ((|#1| $) 28)) (-3792 ((|#1| |#2| $ |#1|) 37)) (-1883 (($ $) 25)) (-3466 (((-3 |#2| "failed") |#2| $) 86)) (-3201 (((-112) |#2| $) NIL)) (-2110 (((-112) |#2| $) NIL)) (-4002 (((-112) |#2| $) 24)) (-2598 ((|#1| $) 88)) (-1605 ((|#1| $) 27)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3660 ((|#2| $) 78)) (-4022 (((-856) $) 70)) (-1417 ((|#1| |#2| $ |#1|) 38)) (-1952 (((-638 $) |#2|) 59)) (-1733 (((-112) $ $) 73)))
+(((-1052 |#1| |#2|) (-13 (-1059 |#1| |#2|) (-10 -8 (-15 -1605 (|#1| $)) (-15 -1621 (|#1| $)) (-15 -1393 (|#1| $)) (-15 -2598 (|#1| $)) (-15 -1883 ($ $)) (-15 -4002 ((-112) |#2| $)) (-15 -3792 (|#1| |#2| $ |#1|)))) (-13 (-842) (-362)) (-1229 |#1|)) (T -1052))
+((-3792 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-1605 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-1621 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-1393 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-2598 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-1883 (*1 *1 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-4002 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3)) (-4 *3 (-1229 *4)))))
+(-13 (-1059 |#1| |#2|) (-10 -8 (-15 -1605 (|#1| $)) (-15 -1621 (|#1| $)) (-15 -1393 (|#1| $)) (-15 -2598 (|#1| $)) (-15 -1883 ($ $)) (-15 -4002 ((-112) |#2| $)) (-15 -3792 (|#1| |#2| $ |#1|))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-1854 (($ $ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ $ $) NIL)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-2666 (((-561) $) NIL)) (-3368 (($ $ $) NIL)) (-1965 (($) NIL T CONST)) (-1527 (($ (-1166)) 10) (($ (-561)) 7)) (-4017 (((-3 (-561) "failed") $) NIL)) (-3938 (((-561) $) NIL)) (-1793 (($ $ $) NIL)) (-3602 (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-682 (-561)) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL)) (-3798 (((-112) $) NIL)) (-3354 (((-406 (-561)) $) NIL)) (-1332 (($) NIL) (($ $) NIL)) (-1774 (($ $ $) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1288 (($ $ $ $) NIL)) (-3531 (($ $ $) NIL)) (-3201 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-3113 (((-112) $) NIL)) (-3402 (((-112) $) NIL)) (-1663 (((-3 $ "failed") $) NIL)) (-2110 (((-112) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3386 (($ $ $ $) NIL)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3908 (($ $) NIL)) (-3617 (($ $) NIL)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-4305 (($ $ $) NIL)) (-3721 (($) NIL T CONST)) (-4103 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) NIL) (($ (-638 $)) NIL)) (-2101 (($ $) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2736 (((-112) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-3238 (($ $ (-765)) NIL) (($ $) NIL)) (-3994 (($ $) NIL)) (-4187 (($ $) NIL)) (-4174 (((-561) $) 16) (((-534) $) NIL) (((-885 (-561)) $) NIL) (((-378) $) NIL) (((-224) $) NIL) (($ (-1166)) 9)) (-4022 (((-856) $) 20) (($ (-561)) 6) (($ $) NIL) (($ (-561)) 6)) (-4259 (((-765)) NIL)) (-1383 (((-112) $ $) NIL)) (-3599 (($ $ $) NIL)) (-2684 (($) NIL)) (-3168 (((-112) $ $) NIL)) (-3383 (($ $ $ $) NIL)) (-3749 (($ $) NIL)) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)) (-1824 (($ $) 19) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL)))
+(((-1053) (-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4377) (-6 -4382) (-6 -4378) (-15 -1527 ($ (-1166))) (-15 -1527 ($ (-561)))))) (T -1053))
+((-1527 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053)))) (-1527 (*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1053)))))
+(-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4377) (-6 -4382) (-6 -4378) (-15 -1527 ($ (-1166))) (-15 -1527 ($ (-561)))))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL)) (-3024 (((-1258) $ (-1166) (-1166)) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-3307 (($) 9)) (-4167 (((-52) $ (-1166) (-52)) NIL)) (-2458 (($ $) 30)) (-4148 (($ $) 28)) (-2286 (($ $) 27)) (-2537 (($ $) 29)) (-3665 (($ $) 32)) (-2009 (($ $) 33)) (-3182 (($ $) 26)) (-1474 (($ $) 31)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) 25 (|has| $ (-6 -4390)))) (-1485 (((-3 (-52) "failed") (-1166) $) 40)) (-1965 (($) NIL T CONST)) (-4315 (($) 7)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-3999 (($ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) 50 (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-3 (-52) "failed") (-1166) $) NIL)) (-1489 (($ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390)))) (-3739 (((-3 (-1148) "failed") $ (-1148) (-561)) 59)) (-2073 (((-52) $ (-1166) (-52)) NIL (|has| $ (-6 -4391)))) (-4344 (((-52) $ (-1166)) NIL)) (-3571 (((-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-638 (-52)) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-1166) $) NIL (|has| (-1166) (-844)))) (-1305 (((-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) 35 (|has| $ (-6 -4390))) (((-638 (-52)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090))))) (-2780 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4391))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-2017 (((-638 (-1166)) $) NIL)) (-2857 (((-112) (-1166) $) NIL)) (-3211 (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL)) (-3671 (($ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) 43)) (-2451 (((-638 (-1166)) $) NIL)) (-1390 (((-112) (-1166) $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-1337 (((-378) $ (-1166)) 49)) (-3377 (((-638 (-1148)) $ (-1148)) 60)) (-1433 (((-52) $) NIL (|has| (-1166) (-844)))) (-1330 (((-3 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) "failed") (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL)) (-1799 (($ $ (-52)) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-293 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL (-12 (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-308 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (($ $ (-638 (-52)) (-638 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090)))) (($ $ (-638 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090))))) (-2658 (((-638 (-52)) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 (((-52) $ (-1166)) NIL) (((-52) $ (-1166) (-52)) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL)) (-3550 (($ $ (-1166)) 51)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090)))) (((-765) (-52) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-52) (-1090)))) (((-765) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) 37)) (-2725 (($ $ $) 38)) (-4022 (((-856) $) NIL (-4007 (|has| (-52) (-608 (-856))) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-608 (-856)))))) (-1776 (($ $ (-1166) (-378)) 47)) (-1688 (($ $ (-1166) (-378)) 48)) (-3025 (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 (-1166)) (|:| -2654 (-52)))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-52) (-1090)) (|has| (-2 (|:| -2252 (-1166)) (|:| -2654 (-52))) (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1054) (-13 (-1181 (-1166) (-52)) (-10 -8 (-15 -2725 ($ $ $)) (-15 -4315 ($)) (-15 -3182 ($ $)) (-15 -2286 ($ $)) (-15 -4148 ($ $)) (-15 -2537 ($ $)) (-15 -1474 ($ $)) (-15 -2458 ($ $)) (-15 -3665 ($ $)) (-15 -2009 ($ $)) (-15 -1776 ($ $ (-1166) (-378))) (-15 -1688 ($ $ (-1166) (-378))) (-15 -1337 ((-378) $ (-1166))) (-15 -3377 ((-638 (-1148)) $ (-1148))) (-15 -3550 ($ $ (-1166))) (-15 -3307 ($)) (-15 -3739 ((-3 (-1148) "failed") $ (-1148) (-561))) (-6 -4390)))) (T -1054))
+((-2725 (*1 *1 *1 *1) (-5 *1 (-1054))) (-4315 (*1 *1) (-5 *1 (-1054))) (-3182 (*1 *1 *1) (-5 *1 (-1054))) (-2286 (*1 *1 *1) (-5 *1 (-1054))) (-4148 (*1 *1 *1) (-5 *1 (-1054))) (-2537 (*1 *1 *1) (-5 *1 (-1054))) (-1474 (*1 *1 *1) (-5 *1 (-1054))) (-2458 (*1 *1 *1) (-5 *1 (-1054))) (-3665 (*1 *1 *1) (-5 *1 (-1054))) (-2009 (*1 *1 *1) (-5 *1 (-1054))) (-1776 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))) (-1688 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))) (-1337 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-378)) (-5 *1 (-1054)))) (-3377 (*1 *2 *1 *3) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148)))) (-3550 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054)))) (-3307 (*1 *1) (-5 *1 (-1054))) (-3739 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-1054)))))
+(-13 (-1181 (-1166) (-52)) (-10 -8 (-15 -2725 ($ $ $)) (-15 -4315 ($)) (-15 -3182 ($ $)) (-15 -2286 ($ $)) (-15 -4148 ($ $)) (-15 -2537 ($ $)) (-15 -1474 ($ $)) (-15 -2458 ($ $)) (-15 -3665 ($ $)) (-15 -2009 ($ $)) (-15 -1776 ($ $ (-1166) (-378))) (-15 -1688 ($ $ (-1166) (-378))) (-15 -1337 ((-378) $ (-1166))) (-15 -3377 ((-638 (-1148)) $ (-1148))) (-15 -3550 ($ $ (-1166))) (-15 -3307 ($)) (-15 -3739 ((-3 (-1148) "failed") $ (-1148) (-561))) (-6 -4390)))
+((-3129 (($ $) 45)) (-2619 (((-112) $ $) 74)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-945 (-406 (-561)))) 226) (((-3 $ "failed") (-945 (-561))) 225) (((-3 $ "failed") (-945 |#2|)) 228)) (-3938 ((|#2| $) NIL) (((-406 (-561)) $) NIL) (((-561) $) NIL) ((|#4| $) NIL) (($ (-945 (-406 (-561)))) 214) (($ (-945 (-561))) 210) (($ (-945 |#2|)) 230)) (-1619 (($ $) NIL) (($ $ |#4|) 43)) (-2095 (((-112) $ $) 111) (((-112) $ (-638 $)) 112)) (-3048 (((-112) $) 56)) (-3806 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 106)) (-2895 (($ $) 137)) (-2367 (($ $) 133)) (-2242 (($ $) 132)) (-2741 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1741 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3033 (((-112) $ $) 120) (((-112) $ (-638 $)) 121)) (-2783 ((|#4| $) 33)) (-4134 (($ $ $) 109)) (-1509 (((-112) $) 55)) (-4072 (((-765) $) 35)) (-4101 (($ $) 151)) (-4250 (($ $) 148)) (-3593 (((-638 $) $) 68)) (-1942 (($ $) 57)) (-2296 (($ $) 144)) (-2291 (((-638 $) $) 65)) (-3966 (($ $) 59)) (-1590 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3951 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1364 (-765))) $ $) 110)) (-2313 (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $) 107) (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $ |#4|) 108)) (-1999 (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $) 103) (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $ |#4|) 104)) (-1560 (($ $ $) 89) (($ $ $ |#4|) 94)) (-1346 (($ $ $) 90) (($ $ $ |#4|) 95)) (-2040 (((-638 $) $) 51)) (-2153 (((-112) $ $) 117) (((-112) $ (-638 $)) 118)) (-1829 (($ $ $) 102)) (-3721 (($ $) 37)) (-3863 (((-112) $ $) 72)) (-4033 (((-112) $ $) 113) (((-112) $ (-638 $)) 115)) (-4118 (($ $ $) 100)) (-3574 (($ $) 40)) (-1623 ((|#2| |#2| $) 141) (($ (-638 $)) NIL) (($ $ $) NIL)) (-2686 (($ $ |#2|) NIL) (($ $ $) 130)) (-1606 (($ $ |#2|) 125) (($ $ $) 128)) (-3695 (($ $) 48)) (-4368 (($ $) 52)) (-4174 (((-885 (-378)) $) NIL) (((-885 (-561)) $) NIL) (((-534) $) NIL) (($ (-945 (-406 (-561)))) 216) (($ (-945 (-561))) 212) (($ (-945 |#2|)) 227) (((-1148) $) 249) (((-945 |#2|) $) 161)) (-4022 (((-856) $) 30) (($ (-561)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-945 |#2|) $) 162) (($ (-406 (-561))) NIL) (($ $) NIL)) (-1414 (((-3 (-112) "failed") $ $) 71)))
+(((-1055 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4022 (|#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| (-638 |#1|))) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 ((-945 |#2|) |#1|)) (-15 -4174 ((-945 |#2|) |#1|)) (-15 -4174 ((-1148) |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -4250 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -1623 (|#2| |#2| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -1606 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#2|)) (-15 -1606 (|#1| |#1| |#2|)) (-15 -2367 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -4174 (|#1| (-945 |#2|))) (-15 -3938 (|#1| (-945 |#2|))) (-15 -4017 ((-3 |#1| "failed") (-945 |#2|))) (-15 -4174 (|#1| (-945 (-561)))) (-15 -3938 (|#1| (-945 (-561)))) (-15 -4017 ((-3 |#1| "failed") (-945 (-561)))) (-15 -4174 (|#1| (-945 (-406 (-561))))) (-15 -3938 (|#1| (-945 (-406 (-561))))) (-15 -4017 ((-3 |#1| "failed") (-945 (-406 (-561))))) (-15 -1829 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -3951 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1364 (-765))) |#1| |#1|)) (-15 -4134 (|#1| |#1| |#1|)) (-15 -3806 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -2313 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1| |#4|)) (-15 -2313 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1999 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1693 |#1|)) |#1| |#1| |#4|)) (-15 -1999 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1| |#4|)) (-15 -1560 (|#1| |#1| |#1| |#4|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1560 (|#1| |#1| |#1|)) (-15 -1741 (|#1| |#1| |#1| |#4|)) (-15 -2741 (|#1| |#1| |#1| |#4|)) (-15 -1741 (|#1| |#1| |#1|)) (-15 -2741 (|#1| |#1| |#1|)) (-15 -3033 ((-112) |#1| (-638 |#1|))) (-15 -3033 ((-112) |#1| |#1|)) (-15 -2153 ((-112) |#1| (-638 |#1|))) (-15 -2153 ((-112) |#1| |#1|)) (-15 -4033 ((-112) |#1| (-638 |#1|))) (-15 -4033 ((-112) |#1| |#1|)) (-15 -2095 ((-112) |#1| (-638 |#1|))) (-15 -2095 ((-112) |#1| |#1|)) (-15 -2619 ((-112) |#1| |#1|)) (-15 -3863 ((-112) |#1| |#1|)) (-15 -1414 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3593 ((-638 |#1|) |#1|)) (-15 -2291 ((-638 |#1|) |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -1942 (|#1| |#1|)) (-15 -3048 ((-112) |#1|)) (-15 -1509 ((-112) |#1|)) (-15 -1619 (|#1| |#1| |#4|)) (-15 -1590 (|#1| |#1| |#4|)) (-15 -4368 (|#1| |#1|)) (-15 -2040 ((-638 |#1|) |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -4072 ((-765) |#1|)) (-15 -2783 (|#4| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4022 (|#1| |#4|)) (-15 -4017 ((-3 |#4| "failed") |#1|)) (-15 -3938 (|#4| |#1|)) (-15 -1590 (|#2| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-1056 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -1055))
+NIL
+(-10 -8 (-15 -4022 (|#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| (-638 |#1|))) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 ((-945 |#2|) |#1|)) (-15 -4174 ((-945 |#2|) |#1|)) (-15 -4174 ((-1148) |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -4250 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -1623 (|#2| |#2| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -1606 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#2|)) (-15 -1606 (|#1| |#1| |#2|)) (-15 -2367 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -4174 (|#1| (-945 |#2|))) (-15 -3938 (|#1| (-945 |#2|))) (-15 -4017 ((-3 |#1| "failed") (-945 |#2|))) (-15 -4174 (|#1| (-945 (-561)))) (-15 -3938 (|#1| (-945 (-561)))) (-15 -4017 ((-3 |#1| "failed") (-945 (-561)))) (-15 -4174 (|#1| (-945 (-406 (-561))))) (-15 -3938 (|#1| (-945 (-406 (-561))))) (-15 -4017 ((-3 |#1| "failed") (-945 (-406 (-561))))) (-15 -1829 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -3951 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1364 (-765))) |#1| |#1|)) (-15 -4134 (|#1| |#1| |#1|)) (-15 -3806 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -2313 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1| |#4|)) (-15 -2313 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1999 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1693 |#1|)) |#1| |#1| |#4|)) (-15 -1999 ((-2 (|:| -4188 |#1|) (|:| |gap| (-765)) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1| |#4|)) (-15 -1560 (|#1| |#1| |#1| |#4|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1560 (|#1| |#1| |#1|)) (-15 -1741 (|#1| |#1| |#1| |#4|)) (-15 -2741 (|#1| |#1| |#1| |#4|)) (-15 -1741 (|#1| |#1| |#1|)) (-15 -2741 (|#1| |#1| |#1|)) (-15 -3033 ((-112) |#1| (-638 |#1|))) (-15 -3033 ((-112) |#1| |#1|)) (-15 -2153 ((-112) |#1| (-638 |#1|))) (-15 -2153 ((-112) |#1| |#1|)) (-15 -4033 ((-112) |#1| (-638 |#1|))) (-15 -4033 ((-112) |#1| |#1|)) (-15 -2095 ((-112) |#1| (-638 |#1|))) (-15 -2095 ((-112) |#1| |#1|)) (-15 -2619 ((-112) |#1| |#1|)) (-15 -3863 ((-112) |#1| |#1|)) (-15 -1414 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3593 ((-638 |#1|) |#1|)) (-15 -2291 ((-638 |#1|) |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -1942 (|#1| |#1|)) (-15 -3048 ((-112) |#1|)) (-15 -1509 ((-112) |#1|)) (-15 -1619 (|#1| |#1| |#4|)) (-15 -1590 (|#1| |#1| |#4|)) (-15 -4368 (|#1| |#1|)) (-15 -2040 ((-638 |#1|) |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -4072 ((-765) |#1|)) (-15 -2783 (|#4| |#1|)) (-15 -4174 ((-534) |#1|)) (-15 -4174 ((-885 (-561)) |#1|)) (-15 -4174 ((-885 (-378)) |#1|)) (-15 -4022 (|#1| |#4|)) (-15 -4017 ((-3 |#4| "failed") |#1|)) (-15 -3938 (|#4| |#1|)) (-15 -1590 (|#2| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 |#3|) $) 110)) (-1620 (((-1162 $) $ |#3|) 125) (((-1162 |#1|) $) 124)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-2851 (($ $) 88 (|has| |#1| (-553)))) (-3359 (((-112) $) 90 (|has| |#1| (-553)))) (-2710 (((-765) $) 112) (((-765) $ (-638 |#3|)) 111)) (-3129 (($ $) 271)) (-2619 (((-112) $ $) 257)) (-2249 (((-3 $ "failed") $ $) 19)) (-2645 (($ $ $) 216 (|has| |#1| (-553)))) (-3042 (((-638 $) $ $) 211 (|has| |#1| (-553)))) (-4046 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-1591 (($ $) 98 (|has| |#1| (-450)))) (-3422 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-945 (-406 (-561)))) 231 (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))) (((-3 $ "failed") (-945 (-561))) 228 (-4007 (-12 (-2159 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166)))))) (((-3 $ "failed") (-945 |#1|)) 225 (-4007 (-12 (-2159 (|has| |#1| (-38 (-406 (-561))))) (-2159 (|has| |#1| (-38 (-561)))) (|has| |#3| (-609 (-1166)))) (-12 (-2159 (|has| |#1| (-543))) (-2159 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (-2159 (|has| |#1| (-985 (-561)))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))))) (-3938 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) ((|#3| $) 137) (($ (-945 (-406 (-561)))) 230 (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))) (($ (-945 (-561))) 227 (-4007 (-12 (-2159 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166)))))) (($ (-945 |#1|)) 224 (-4007 (-12 (-2159 (|has| |#1| (-38 (-406 (-561))))) (-2159 (|has| |#1| (-38 (-561)))) (|has| |#3| (-609 (-1166)))) (-12 (-2159 (|has| |#1| (-543))) (-2159 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (-2159 (|has| |#1| (-985 (-561)))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))))) (-3051 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-553)))) (-1619 (($ $) 154) (($ $ |#3|) 266)) (-3602 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-2095 (((-112) $ $) 256) (((-112) $ (-638 $)) 255)) (-3466 (((-3 $ "failed") $) 33)) (-3048 (((-112) $) 264)) (-3806 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 236)) (-2895 (($ $) 205 (|has| |#1| (-450)))) (-2401 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-1602 (((-638 $) $) 109)) (-2737 (((-112) $) 96 (|has| |#1| (-902)))) (-2367 (($ $) 221 (|has| |#1| (-553)))) (-2242 (($ $) 222 (|has| |#1| (-553)))) (-2741 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1741 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2103 (($ $ |#1| |#2| $) 172)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| |#3| (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| |#3| (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-3113 (((-112) $) 31)) (-2067 (((-765) $) 169)) (-3033 (((-112) $ $) 250) (((-112) $ (-638 $)) 249)) (-3568 (($ $ $ $ $) 207 (|has| |#1| (-553)))) (-2783 ((|#3| $) 275)) (-1401 (($ (-1162 |#1|) |#3|) 117) (($ (-1162 $) |#3|) 116)) (-3371 (((-638 $) $) 126)) (-2092 (((-112) $) 152)) (-1387 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-638 |#3|) (-638 (-765))) 118)) (-4134 (($ $ $) 235)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |#3|) 120)) (-1509 (((-112) $) 265)) (-2393 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-638 (-765)) $ (-638 |#3|)) 121)) (-3443 (($ $ $) 79 (|has| |#1| (-844)))) (-4072 (((-765) $) 274)) (-2986 (($ $ $) 78 (|has| |#1| (-844)))) (-3524 (($ (-1 |#2| |#2|) $) 171)) (-4120 (($ (-1 |#1| |#1|) $) 151)) (-1358 (((-3 |#3| "failed") $) 123)) (-4101 (($ $) 202 (|has| |#1| (-450)))) (-4250 (($ $) 203 (|has| |#1| (-450)))) (-3593 (((-638 $) $) 260)) (-1942 (($ $) 263)) (-2296 (($ $) 204 (|has| |#1| (-450)))) (-2291 (((-638 $) $) 261)) (-3966 (($ $) 262)) (-1578 (($ $) 149)) (-1590 ((|#1| $) 148) (($ $ |#3|) 267)) (-1582 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3951 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1364 (-765))) $ $) 234)) (-2313 (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $) 238) (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $ |#3|) 237)) (-1999 (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $) 240) (((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $ |#3|) 239)) (-1560 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1346 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1764 (((-1148) $) 9)) (-1631 (($ $ $) 210 (|has| |#1| (-553)))) (-2040 (((-638 $) $) 269)) (-3638 (((-3 (-638 $) "failed") $) 114)) (-1664 (((-3 (-638 $) "failed") $) 115)) (-3431 (((-3 (-2 (|:| |var| |#3|) (|:| -4196 (-765))) "failed") $) 113)) (-2153 (((-112) $ $) 252) (((-112) $ (-638 $)) 251)) (-1829 (($ $ $) 232)) (-3721 (($ $) 273)) (-3863 (((-112) $ $) 258)) (-4033 (((-112) $ $) 254) (((-112) $ (-638 $)) 253)) (-4118 (($ $ $) 233)) (-3574 (($ $) 272)) (-1714 (((-1110) $) 10)) (-4359 (((-2 (|:| -1623 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-553)))) (-2184 (((-2 (|:| -1623 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-553)))) (-1551 (((-112) $) 166)) (-1561 ((|#1| $) 167)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1623 ((|#1| |#1| $) 206 (|has| |#1| (-450))) (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1657 (((-417 $) $) 99 (|has| |#1| (-902)))) (-2615 (((-2 (|:| -1623 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-553)))) (-1756 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-2686 (($ $ |#1|) 219 (|has| |#1| (-553))) (($ $ $) 217 (|has| |#1| (-553)))) (-1606 (($ $ |#1|) 220 (|has| |#1| (-553))) (($ $ $) 218 (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-638 |#3|) (-638 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-638 |#3|) (-638 $)) 138)) (-2553 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-3238 (($ $ |#3|) 42) (($ $ (-638 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-638 |#3|) (-638 (-765))) 39)) (-2894 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-638 (-765)) $ (-638 |#3|)) 129)) (-3695 (($ $) 270)) (-4368 (($ $) 268)) (-4174 (((-885 (-378)) $) 82 (-12 (|has| |#3| (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| |#3| (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| |#3| (-609 (-534))) (|has| |#1| (-609 (-534))))) (($ (-945 (-406 (-561)))) 229 (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166))))) (($ (-945 (-561))) 226 (-4007 (-12 (-2159 (|has| |#1| (-38 (-406 (-561))))) (|has| |#1| (-38 (-561))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-561)))) (|has| |#3| (-609 (-1166)))))) (($ (-945 |#1|)) 223 (|has| |#3| (-609 (-1166)))) (((-1148) $) 201 (-12 (|has| |#1| (-1031 (-561))) (|has| |#3| (-609 (-1166))))) (((-945 |#1|) $) 200 (|has| |#3| (-609 (-1166))))) (-3609 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 104 (-2170 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-945 |#1|) $) 199 (|has| |#3| (-609 (-1166)))) (($ (-406 (-561))) 72 (-4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561)))))) (($ $) 85 (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) 168)) (-2634 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-638 |#3|) (-638 (-765))) 127)) (-1760 (((-3 $ "failed") $) 73 (-4007 (-2170 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) 28)) (-1711 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3168 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2211 (($) 18 T CONST)) (-1414 (((-3 (-112) "failed") $ $) 259)) (-2222 (($) 30 T CONST)) (-1322 (($ $ $ $ (-765)) 208 (|has| |#1| (-553)))) (-2787 (($ $ $ (-765)) 209 (|has| |#1| (-553)))) (-3122 (($ $ |#3|) 38) (($ $ (-638 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-638 |#3|) (-638 (-765))) 35)) (-1782 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1833 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1056 |#1| |#2| |#3|) (-139) (-1042) (-787) (-844)) (T -1056))
+((-2783 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-3721 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3574 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3695 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2040 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-4368 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1590 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-1942 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3966 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2291 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3593 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-1414 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3863 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2619 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2095 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2095 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-4033 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4033 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-2153 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-3033 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3033 (*1 *2 *1 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-2741 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1741 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-2741 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1741 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1560 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1346 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1560 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1346 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-1999 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1693 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-1999 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1693 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-2313 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-2313 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-3806 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-4134 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3951 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1364 (-765)))) (-4 *1 (-1056 *3 *4 *5)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-1829 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-4017 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-4017 (*1 *1 *2) (|partial| -4007 (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3938 (*1 *1 *2) (-4007 (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4174 (*1 *1 *2) (-4007 (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4017 (*1 *1 *2) (|partial| -4007 (-12 (-5 *2 (-945 *3)) (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-2159 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2159 (-4 *3 (-543))) (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2159 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3938 (*1 *1 *2) (-4007 (-12 (-5 *2 (-945 *3)) (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-2159 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2159 (-4 *3 (-543))) (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-945 *3)) (-12 (-2159 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *5 (-609 (-1166))) (-4 *4 (-787)) (-4 *5 (-844)))) (-2242 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-1606 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-2686 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-1606 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-2686 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-2645 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-2615 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -1623 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-2184 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -1623 *1) (|:| |coef1| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-4359 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -1623 *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3051 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-3042 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-1631 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-2787 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))) (-1322 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))) (-3568 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-553)))) (-1623 (*1 *2 *2 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-2296 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-4250 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-4101 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))))
+(-13 (-942 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2783 (|t#3| $)) (-15 -4072 ((-765) $)) (-15 -3721 ($ $)) (-15 -3574 ($ $)) (-15 -3129 ($ $)) (-15 -3695 ($ $)) (-15 -2040 ((-638 $) $)) (-15 -4368 ($ $)) (-15 -1590 ($ $ |t#3|)) (-15 -1619 ($ $ |t#3|)) (-15 -1509 ((-112) $)) (-15 -3048 ((-112) $)) (-15 -1942 ($ $)) (-15 -3966 ($ $)) (-15 -2291 ((-638 $) $)) (-15 -3593 ((-638 $) $)) (-15 -1414 ((-3 (-112) "failed") $ $)) (-15 -3863 ((-112) $ $)) (-15 -2619 ((-112) $ $)) (-15 -2095 ((-112) $ $)) (-15 -2095 ((-112) $ (-638 $))) (-15 -4033 ((-112) $ $)) (-15 -4033 ((-112) $ (-638 $))) (-15 -2153 ((-112) $ $)) (-15 -2153 ((-112) $ (-638 $))) (-15 -3033 ((-112) $ $)) (-15 -3033 ((-112) $ (-638 $))) (-15 -2741 ($ $ $)) (-15 -1741 ($ $ $)) (-15 -2741 ($ $ $ |t#3|)) (-15 -1741 ($ $ $ |t#3|)) (-15 -1560 ($ $ $)) (-15 -1346 ($ $ $)) (-15 -1560 ($ $ $ |t#3|)) (-15 -1346 ($ $ $ |t#3|)) (-15 -1999 ((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $)) (-15 -1999 ((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1693 $)) $ $ |t#3|)) (-15 -2313 ((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -2313 ((-2 (|:| -4188 $) (|:| |gap| (-765)) (|:| -1307 $) (|:| -1693 $)) $ $ |t#3|)) (-15 -3806 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -4134 ($ $ $)) (-15 -3951 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1364 (-765))) $ $)) (-15 -4118 ($ $ $)) (-15 -1829 ($ $ $)) (IF (|has| |t#3| (-609 (-1166))) (PROGN (-6 (-608 (-945 |t#1|))) (-6 (-609 (-945 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -4017 ((-3 $ "failed") (-945 (-406 (-561))))) (-15 -3938 ($ (-945 (-406 (-561))))) (-15 -4174 ($ (-945 (-406 (-561))))) (-15 -4017 ((-3 $ "failed") (-945 (-561)))) (-15 -3938 ($ (-945 (-561)))) (-15 -4174 ($ (-945 (-561)))) (IF (|has| |t#1| (-985 (-561))) |%noBranch| (PROGN (-15 -4017 ((-3 $ "failed") (-945 |t#1|))) (-15 -3938 ($ (-945 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-561))) (IF (|has| |t#1| (-38 (-406 (-561)))) |%noBranch| (PROGN (-15 -4017 ((-3 $ "failed") (-945 (-561)))) (-15 -3938 ($ (-945 (-561)))) (-15 -4174 ($ (-945 (-561)))) (IF (|has| |t#1| (-543)) |%noBranch| (PROGN (-15 -4017 ((-3 $ "failed") (-945 |t#1|))) (-15 -3938 ($ (-945 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-561))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-561)))) |%noBranch| (PROGN (-15 -4017 ((-3 $ "failed") (-945 |t#1|))) (-15 -3938 ($ (-945 |t#1|)))))) (-15 -4174 ($ (-945 |t#1|))) (IF (|has| |t#1| (-1031 (-561))) (-6 (-609 (-1148))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -2242 ($ $)) (-15 -2367 ($ $)) (-15 -1606 ($ $ |t#1|)) (-15 -2686 ($ $ |t#1|)) (-15 -1606 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2645 ($ $ $)) (-15 -2615 ((-2 (|:| -1623 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2184 ((-2 (|:| -1623 $) (|:| |coef1| $)) $ $)) (-15 -4359 ((-2 (|:| -1623 $) (|:| |coef2| $)) $ $)) (-15 -3051 ($ $ $)) (-15 -3042 ((-638 $) $ $)) (-15 -1631 ($ $ $)) (-15 -2787 ($ $ $ (-765))) (-15 -1322 ($ $ $ $ (-765))) (-15 -3568 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -1623 (|t#1| |t#1| $)) (-15 -2895 ($ $)) (-15 -2296 ($ $)) (-15 -4250 ($ $)) (-15 -4101 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-608 (-856)) . T) ((-608 (-945 |#1|)) |has| |#3| (-609 (-1166))) ((-171) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| |#1| (-609 (-534))) (|has| |#3| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#3| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#3| (-609 (-885 (-561))))) ((-609 (-945 |#1|)) |has| |#3| (-609 (-1166))) ((-609 (-1148)) -12 (|has| |#1| (-1031 (-561))) (|has| |#3| (-609 (-1166)))) ((-289) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4007 (|has| |#1| (-902)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-553) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-378)) -12 (|has| |#1| (-879 (-378))) (|has| |#3| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-879 (-561))) (|has| |#3| (-879 (-561)))) ((-942 |#1| |#2| |#3|) . T) ((-902) |has| |#1| (-902)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) |has| |#1| (-902)))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-2400 (((-638 (-1125)) $) 13)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-1125) $) 15)) (-1733 (((-112) $ $) NIL)))
+(((-1057) (-13 (-1073) (-10 -8 (-15 -2400 ((-638 (-1125)) $)) (-15 -3279 ((-1125) $))))) (T -1057))
+((-2400 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1057)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057)))))
+(-13 (-1073) (-10 -8 (-15 -2400 ((-638 (-1125)) $)) (-15 -3279 ((-1125) $))))
+((-2800 (((-112) |#3| $) 13)) (-3559 (((-3 $ "failed") |#3| (-914)) 23)) (-3466 (((-3 |#3| "failed") |#3| $) 38)) (-3201 (((-112) |#3| $) 16)) (-2110 (((-112) |#3| $) 14)))
+(((-1058 |#1| |#2| |#3|) (-10 -8 (-15 -3559 ((-3 |#1| "failed") |#3| (-914))) (-15 -3466 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3201 ((-112) |#3| |#1|)) (-15 -2110 ((-112) |#3| |#1|)) (-15 -2800 ((-112) |#3| |#1|))) (-1059 |#2| |#3|) (-13 (-842) (-362)) (-1229 |#2|)) (T -1058))
+NIL
+(-10 -8 (-15 -3559 ((-3 |#1| "failed") |#3| (-914))) (-15 -3466 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3201 ((-112) |#3| |#1|)) (-15 -2110 ((-112) |#3| |#1|)) (-15 -2800 ((-112) |#3| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) |#2| $) 21)) (-2666 (((-561) |#2| $) 22)) (-3559 (((-3 $ "failed") |#2| (-914)) 15)) (-3792 ((|#1| |#2| $ |#1|) 13)) (-3466 (((-3 |#2| "failed") |#2| $) 18)) (-3201 (((-112) |#2| $) 19)) (-2110 (((-112) |#2| $) 20)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3660 ((|#2| $) 17)) (-4022 (((-856) $) 11)) (-1417 ((|#1| |#2| $ |#1|) 14)) (-1952 (((-638 $) |#2|) 16)) (-1733 (((-112) $ $) 6)))
+(((-1059 |#1| |#2|) (-139) (-13 (-842) (-362)) (-1229 |t#1|)) (T -1059))
+((-2666 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-561)))) (-2800 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-2110 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3466 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3)))) (-1952 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-638 *1)) (-4 *1 (-1059 *4 *3)))) (-3559 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-914)) (-4 *4 (-13 (-842) (-362))) (-4 *1 (-1059 *4 *2)) (-4 *2 (-1229 *4)))) (-1417 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2)))) (-3792 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2)))))
+(-13 (-1090) (-10 -8 (-15 -2666 ((-561) |t#2| $)) (-15 -2800 ((-112) |t#2| $)) (-15 -2110 ((-112) |t#2| $)) (-15 -3201 ((-112) |t#2| $)) (-15 -3466 ((-3 |t#2| "failed") |t#2| $)) (-15 -3660 (|t#2| $)) (-15 -1952 ((-638 $) |t#2|)) (-15 -3559 ((-3 $ "failed") |t#2| (-914))) (-15 -1417 (|t#1| |t#2| $ |t#1|)) (-15 -3792 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4100 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-765)) 95)) (-3525 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765)) 56)) (-2797 (((-1258) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-765)) 87)) (-2676 (((-765) (-638 |#4|) (-638 |#5|)) 27)) (-2796 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765)) 58) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765) (-112)) 60)) (-2091 (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112)) 79)) (-4174 (((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) 82)) (-1598 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-112)) 55)) (-2697 (((-765) (-638 |#4|) (-638 |#5|)) 19)))
+(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2697 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -2676 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -1598 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-112))) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4100 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-765))) (-15 -4174 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -2797 ((-1258) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1060))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1258)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-4100 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-638 *11)) (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1510 *11)))))) (-5 *6 (-765)) (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1510 *11)))) (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-2091 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-2091 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-2796 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2796 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-2796 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1062 *7 *8 *9 *3)))) (-3525 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3525 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-2676 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2697 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -2676 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -1598 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-112))) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4100 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-765))) (-15 -4174 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -2797 ((-1258) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-765))))
+((-3871 (((-112) |#5| $) 20)) (-2639 (((-112) |#5| $) 23)) (-1786 (((-112) |#5| $) 16) (((-112) $) 44)) (-2579 (((-638 $) |#5| $) NIL) (((-638 $) (-638 |#5|) $) 76) (((-638 $) (-638 |#5|) (-638 $)) 74) (((-638 $) |#5| (-638 $)) 77)) (-1416 (($ $ |#5|) NIL) (((-638 $) |#5| $) NIL) (((-638 $) |#5| (-638 $)) 59) (((-638 $) (-638 |#5|) $) 61) (((-638 $) (-638 |#5|) (-638 $)) 63)) (-2930 (((-638 $) |#5| $) NIL) (((-638 $) |#5| (-638 $)) 53) (((-638 $) (-638 |#5|) $) 55) (((-638 $) (-638 |#5|) (-638 $)) 57)) (-2827 (((-112) |#5| $) 26)))
+(((-1061 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1416 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -1416 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -1416 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -1416 ((-638 |#1|) |#5| |#1|)) (-15 -2930 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -2930 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -2930 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -2930 ((-638 |#1|) |#5| |#1|)) (-15 -2579 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -2579 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -2579 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -2579 ((-638 |#1|) |#5| |#1|)) (-15 -2639 ((-112) |#5| |#1|)) (-15 -1786 ((-112) |#1|)) (-15 -2827 ((-112) |#5| |#1|)) (-15 -3871 ((-112) |#5| |#1|)) (-15 -1786 ((-112) |#5| |#1|)) (-15 -1416 (|#1| |#1| |#5|))) (-1062 |#2| |#3| |#4| |#5|) (-450) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1061))
+NIL
+(-10 -8 (-15 -1416 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -1416 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -1416 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -1416 ((-638 |#1|) |#5| |#1|)) (-15 -2930 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -2930 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -2930 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -2930 ((-638 |#1|) |#5| |#1|)) (-15 -2579 ((-638 |#1|) |#5| (-638 |#1|))) (-15 -2579 ((-638 |#1|) (-638 |#5|) (-638 |#1|))) (-15 -2579 ((-638 |#1|) (-638 |#5|) |#1|)) (-15 -2579 ((-638 |#1|) |#5| |#1|)) (-15 -2639 ((-112) |#5| |#1|)) (-15 -1786 ((-112) |#1|)) (-15 -2827 ((-112) |#5| |#1|)) (-15 -3871 ((-112) |#5| |#1|)) (-15 -1786 ((-112) |#5| |#1|)) (-15 -1416 (|#1| |#1| |#5|)))
+((-4011 (((-112) $ $) 7)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) 85)) (-3047 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1412 (((-638 |#3|) $) 33)) (-1978 (((-112) $) 26)) (-2701 (((-112) $) 17 (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) 101) (((-112) $) 97)) (-2427 ((|#4| |#4| $) 92)) (-1591 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) 27)) (-1630 (((-112) $ (-765)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) 79)) (-1965 (($) 45 T CONST)) (-2002 (((-112) $) 22 (|has| |#1| (-553)))) (-1951 (((-112) $ $) 24 (|has| |#1| (-553)))) (-2959 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1361 (((-112) $) 25 (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1825 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) 36)) (-3938 (($ (-638 |#4|)) 35)) (-1445 (((-3 $ "failed") $) 82)) (-3320 ((|#4| |#4| $) 89)) (-1472 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3372 ((|#4| |#4| $) 87)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) 105)) (-3871 (((-112) |#4| $) 136)) (-2639 (((-112) |#4| $) 133)) (-1786 (((-112) |#4| $) 137) (((-112) $) 134)) (-3571 (((-638 |#4|) $) 52 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) 104) (((-112) $) 103)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) 43)) (-1305 (((-638 |#4|) $) 53 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 47)) (-2209 (((-638 |#3|) $) 32)) (-2866 (((-112) |#3| $) 31)) (-2230 (((-112) $ (-765)) 42)) (-1764 (((-1148) $) 9)) (-2987 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-1631 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| |#4| $) 127)) (-1520 (((-3 |#4| "failed") $) 83)) (-3316 (((-638 $) |#4| $) 129)) (-4021 (((-3 (-112) (-638 $)) |#4| $) 132)) (-1924 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2579 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-2961 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-1981 (((-638 |#4|) $) 107)) (-2153 (((-112) |#4| $) 99) (((-112) $) 95)) (-1829 ((|#4| |#4| $) 90)) (-3863 (((-112) $ $) 110)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-1714 (((-1110) $) 10)) (-1433 (((-3 |#4| "failed") $) 84)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2916 (((-3 $ "failed") $ |#4|) 78)) (-1416 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-2123 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) 38)) (-1928 (((-112) $) 41)) (-3170 (($) 40)) (-2894 (((-765) $) 106)) (-1724 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4390)))) (-4187 (($ $) 39)) (-4174 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 60)) (-1755 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-2074 (($ $) 88)) (-1967 (($ $ |#3|) 29)) (-4022 (((-856) $) 11) (((-638 |#4|) $) 37)) (-4161 (((-765) $) 76 (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2930 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) 81)) (-2827 (((-112) |#4| $) 135)) (-1751 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3498 (((-765) $) 46 (|has| $ (-6 -4390)))))
+(((-1062 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1062))
+((-1786 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3871 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2827 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-2639 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4021 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 (-112) (-638 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1924 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1924 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3316 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-2987 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 *3 (-638 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1631 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1591 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-2579 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-2579 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-2579 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-2579 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-2930 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-2930 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-2930 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-2930 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-2961 (*1 *1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-2961 (*1 *1 *2 *1) (-12 (-5 *2 (-638 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)))) (-1416 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-1416 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-1416 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-1416 (*1 *2 *3 *2) (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1062 *5 *6 *7 *8)))))
+(-13 (-1198 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1786 ((-112) |t#4| $)) (-15 -3871 ((-112) |t#4| $)) (-15 -2827 ((-112) |t#4| $)) (-15 -1786 ((-112) $)) (-15 -2639 ((-112) |t#4| $)) (-15 -4021 ((-3 (-112) (-638 $)) |t#4| $)) (-15 -1924 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) |t#4| $)) (-15 -1924 ((-112) |t#4| $)) (-15 -3316 ((-638 $) |t#4| $)) (-15 -2987 ((-3 |t#4| (-638 $)) |t#4| |t#4| $)) (-15 -1631 ((-638 (-2 (|:| |val| |t#4|) (|:| -1510 $))) |t#4| |t#4| $)) (-15 -1591 ((-638 (-2 (|:| |val| |t#4|) (|:| -1510 $))) |t#4| $)) (-15 -2579 ((-638 $) |t#4| $)) (-15 -2579 ((-638 $) (-638 |t#4|) $)) (-15 -2579 ((-638 $) (-638 |t#4|) (-638 $))) (-15 -2579 ((-638 $) |t#4| (-638 $))) (-15 -2930 ((-638 $) |t#4| $)) (-15 -2930 ((-638 $) |t#4| (-638 $))) (-15 -2930 ((-638 $) (-638 |t#4|) $)) (-15 -2930 ((-638 $) (-638 |t#4|) (-638 $))) (-15 -2961 ($ |t#4| $)) (-15 -2961 ($ (-638 |t#4|) $)) (-15 -1416 ((-638 $) |t#4| $)) (-15 -1416 ((-638 $) |t#4| (-638 $))) (-15 -1416 ((-638 $) (-638 |t#4|) $)) (-15 -1416 ((-638 $) (-638 |t#4|) (-638 $))) (-15 -3047 ((-638 $) (-638 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
+((-3086 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|) 81)) (-3998 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|) 112)) (-3128 (((-638 |#5|) |#4| |#5|) 70)) (-2429 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2069 (((-1258)) 37)) (-1519 (((-1258)) 26)) (-2224 (((-1258) (-1148) (-1148) (-1148)) 33)) (-3226 (((-1258) (-1148) (-1148) (-1148)) 22)) (-2206 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#4| |#4| |#5|) 95)) (-1707 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#3| (-112)) 106) (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1704 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|) 101)))
+(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3226 ((-1258) (-1148) (-1148) (-1148))) (-15 -1519 ((-1258))) (-15 -2224 ((-1258) (-1148) (-1148) (-1148))) (-15 -2069 ((-1258))) (-15 -2206 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -1707 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1707 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#3| (-112))) (-15 -1704 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -3998 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -2429 ((-112) |#4| |#5|)) (-15 -2429 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -3128 ((-638 |#5|) |#4| |#5|)) (-15 -3086 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1063))
+((-3086 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3128 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3998 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1704 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1510 *9)))) (-5 *1 (-1063 *6 *7 *4 *8 *9)))) (-1707 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-2206 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2069 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2224 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-1519 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3226 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3226 ((-1258) (-1148) (-1148) (-1148))) (-15 -1519 ((-1258))) (-15 -2224 ((-1258) (-1148) (-1148) (-1148))) (-15 -2069 ((-1258))) (-15 -2206 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -1707 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1707 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#3| (-112))) (-15 -1704 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -3998 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -2429 ((-112) |#4| |#5|)) (-15 -2429 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -3128 ((-638 |#5|) |#4| |#5|)) (-15 -3086 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|)))
+((-4011 (((-112) $ $) NIL)) (-4052 (((-1204) $) 13)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1739 (((-1125) $) 10)) (-4022 (((-856) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1064) (-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -4052 ((-1204) $))))) (T -1064))
+((-1739 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-1064)))))
+(-13 (-1073) (-10 -8 (-15 -1739 ((-1125) $)) (-15 -4052 ((-1204) $))))
+((-4011 (((-112) $ $) NIL)) (-3269 (((-1166) $) 8)) (-1764 (((-1148) $) 16)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 13)))
+(((-1065 |#1|) (-13 (-1090) (-10 -8 (-15 -3269 ((-1166) $)))) (-1166)) (T -1065))
+((-3269 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1065 *3)) (-14 *3 *2))))
+(-13 (-1090) (-10 -8 (-15 -3269 ((-1166) $))))
+((-4011 (((-112) $ $) NIL)) (-3183 (($ $ (-638 (-1166)) (-1 (-112) (-638 |#3|))) 33)) (-2540 (($ |#3| |#3|) 22) (($ |#3| |#3| (-638 (-1166))) 20)) (-4306 ((|#3| $) 13)) (-4017 (((-3 (-293 |#3|) "failed") $) 58)) (-3938 (((-293 |#3|) $) NIL)) (-2663 (((-638 (-1166)) $) 16)) (-3825 (((-885 |#1|) $) 11)) (-4293 ((|#3| $) 12)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2277 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-914)) 39)) (-4022 (((-856) $) 86) (($ (-293 |#3|)) 21)) (-1733 (((-112) $ $) 36)))
+(((-1066 |#1| |#2| |#3|) (-13 (-1090) (-285 |#3| |#3|) (-1031 (-293 |#3|)) (-10 -8 (-15 -2540 ($ |#3| |#3|)) (-15 -2540 ($ |#3| |#3| (-638 (-1166)))) (-15 -3183 ($ $ (-638 (-1166)) (-1 (-112) (-638 |#3|)))) (-15 -3825 ((-885 |#1|) $)) (-15 -4293 (|#3| $)) (-15 -4306 (|#3| $)) (-15 -2277 (|#3| $ |#3| (-914))) (-15 -2663 ((-638 (-1166)) $)))) (-1090) (-13 (-1042) (-879 |#1|) (-844) (-609 (-885 |#1|))) (-13 (-429 |#2|) (-879 |#1|) (-609 (-885 |#1|)))) (T -1066))
+((-2540 (*1 *1 *2 *2) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-5 *1 (-1066 *3 *4 *2)) (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))) (-2540 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1066 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))) (-3183 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1 (-112) (-638 *6))) (-4 *6 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1066 *4 *5 *6)))) (-3825 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2))) (-5 *2 (-885 *3)) (-5 *1 (-1066 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 *2))))) (-4293 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))) (-5 *1 (-1066 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))))) (-4306 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))) (-5 *1 (-1066 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))))) (-2277 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-914)) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1066 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))) (-2663 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-5 *2 (-638 (-1166))) (-5 *1 (-1066 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
+(-13 (-1090) (-285 |#3| |#3|) (-1031 (-293 |#3|)) (-10 -8 (-15 -2540 ($ |#3| |#3|)) (-15 -2540 ($ |#3| |#3| (-638 (-1166)))) (-15 -3183 ($ $ (-638 (-1166)) (-1 (-112) (-638 |#3|)))) (-15 -3825 ((-885 |#1|) $)) (-15 -4293 (|#3| $)) (-15 -4306 (|#3| $)) (-15 -2277 (|#3| $ |#3| (-914))) (-15 -2663 ((-638 (-1166)) $))))
+((-4011 (((-112) $ $) NIL)) (-3149 (($ (-638 (-1066 |#1| |#2| |#3|))) 13)) (-1593 (((-638 (-1066 |#1| |#2| |#3|)) $) 20)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2277 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-914)) 26)) (-4022 (((-856) $) 16)) (-1733 (((-112) $ $) 19)))
+(((-1067 |#1| |#2| |#3|) (-13 (-1090) (-285 |#3| |#3|) (-10 -8 (-15 -3149 ($ (-638 (-1066 |#1| |#2| |#3|)))) (-15 -1593 ((-638 (-1066 |#1| |#2| |#3|)) $)) (-15 -2277 (|#3| $ |#3| (-914))))) (-1090) (-13 (-1042) (-879 |#1|) (-844) (-609 (-885 |#1|))) (-13 (-429 |#2|) (-879 |#1|) (-609 (-885 |#1|)))) (T -1067))
+((-3149 (*1 *1 *2) (-12 (-5 *2 (-638 (-1066 *3 *4 *5))) (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))) (-5 *1 (-1067 *3 *4 *5)))) (-1593 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3)))) (-5 *2 (-638 (-1066 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))) (-2277 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-914)) (-4 *4 (-1090)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4)))) (-5 *1 (-1067 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))))
+(-13 (-1090) (-285 |#3| |#3|) (-10 -8 (-15 -3149 ($ (-638 (-1066 |#1| |#2| |#3|)))) (-15 -1593 ((-638 (-1066 |#1| |#2| |#3|)) $)) (-15 -2277 (|#3| $ |#3| (-914)))))
+((-4202 (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112)) 74) (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|))) 76) (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112)) 75)))
+(((-1068 |#1| |#2|) (-10 -7 (-15 -4202 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -4202 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -4202 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-638 (-1166))) (T -1068))
+((-4202 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *4)) (|:| -3969 (-638 (-945 *4)))))) (-5 *1 (-1068 *4 *5)) (-5 *3 (-638 (-945 *4))) (-14 *5 (-638 (-1166))))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))))))
+(-10 -7 (-15 -4202 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -4202 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -4202 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112))))
+((-1657 (((-417 |#3|) |#3|) 18)))
+(((-1069 |#1| |#2| |#3|) (-10 -7 (-15 -1657 ((-417 |#3|) |#3|))) (-1229 (-406 (-561))) (-13 (-362) (-146) (-718 (-406 (-561)) |#1|)) (-1229 |#2|)) (T -1069))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 (-561)))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-561)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1069 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -1657 ((-417 |#3|) |#3|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 126)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-2851 (($ $) NIL (|has| |#1| (-362)))) (-3359 (((-112) $) NIL (|has| |#1| (-362)))) (-2695 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) 115)) (-1744 ((|#1| $) 119)) (-4207 (((-1178 (-914) (-765)) (-561)) NIL (|has| |#1| (-348)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1393 (((-765)) 40 (|has| |#1| (-367)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-2257 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) 43)) (-1900 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-4145 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 106) (((-682 |#1|) (-682 $)) 101)) (-3185 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-3466 (((-3 $ "failed") $) NIL)) (-1569 (((-914)) 77)) (-1332 (($) 44 (|has| |#1| (-367)))) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2022 (($) NIL (|has| |#1| (-348)))) (-1803 (((-112) $) NIL (|has| |#1| (-348)))) (-1575 (($ $ (-765)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-4163 (((-914) $) NIL (|has| |#1| (-348))) (((-827 (-914)) $) NIL (|has| |#1| (-348)))) (-3113 (((-112) $) NIL)) (-1672 ((|#1| $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2692 ((|#2| $) 84 (|has| |#1| (-362)))) (-3198 (((-914) $) 130 (|has| |#1| (-367)))) (-3174 ((|#2| $) 58)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-3721 (($) NIL (|has| |#1| (-348)) CONST)) (-2413 (($ (-914)) 125 (|has| |#1| (-367)))) (-1714 (((-1110) $) NIL)) (-3158 (($) 121)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3082 (((-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))) NIL (|has| |#1| (-348)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-2553 ((|#1| (-1253 $)) NIL) ((|#1|) 109)) (-1913 (((-765) $) NIL (|has| |#1| (-348))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-348)))) (-3238 (($ $) NIL (-4007 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) NIL (-4007 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2656 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3660 ((|#2|) 73)) (-1796 (($) NIL (|has| |#1| (-348)))) (-3969 (((-1253 |#1|) $ (-1253 $)) 89) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) 71) (((-682 |#1|) (-1253 $)) 85)) (-4174 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-348)))) (-4022 (((-856) $) 57) (($ (-561)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-561))))))) (-1760 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2485 ((|#2| $) 82)) (-4259 (((-765)) 75)) (-3711 (((-1253 $)) 81)) (-3168 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2211 (($) 30 T CONST)) (-2222 (($) 19 T CONST)) (-3122 (($ $) NIL (-4007 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-765)) NIL (-4007 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-1733 (((-112) $ $) 63)) (-1833 (($ $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) 67) (($ $ $) NIL)) (-1813 (($ $ $) 65)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-561)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-561))) NIL (|has| |#1| (-362)))))
+(((-1070 |#1| |#2| |#3|) (-718 |#1| |#2|) (-171) (-1229 |#1|) |#2|) (T -1070))
+NIL
+(-718 |#1| |#2|)
+((-1657 (((-417 |#3|) |#3|) 19)))
+(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -1657 ((-417 |#3|) |#3|))) (-1229 (-406 (-945 (-561)))) (-13 (-362) (-146) (-718 (-406 (-945 (-561))) |#1|)) (-1229 |#2|)) (T -1071))
+((-1657 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 (-945 (-561))))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-945 (-561))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(-10 -7 (-15 -1657 ((-417 |#3|) |#3|)))
+((-4011 (((-112) $ $) NIL)) (-3443 (($ $ $) 14)) (-2986 (($ $ $) 15)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4128 (($) 6)) (-4174 (((-1166) $) 18)) (-4022 (((-856) $) 12)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 13)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 8)))
+(((-1072) (-13 (-844) (-609 (-1166)) (-10 -8 (-15 -4128 ($))))) (T -1072))
+((-4128 (*1 *1) (-5 *1 (-1072))))
+(-13 (-844) (-609 (-1166)) (-10 -8 (-15 -4128 ($))))
+((-4011 (((-112) $ $) 7)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-1733 (((-112) $ $) 6)))
+(((-1073) (-139)) (T -1073))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-608 #0=(-1168)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T))
-((-2765 ((|#1| |#1| (-1 (-558) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3318 (((-1251)) 15)) (-1414 (((-635 |#1|)) 9)))
-(((-1071 |#1|) (-10 -7 (-15 -3318 ((-1251))) (-15 -1414 ((-635 |#1|))) (-15 -2765 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2765 (|#1| |#1| (-1 (-558) |#1| |#1|)))) (-131)) (T -1071))
-((-2765 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2)))) (-2765 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2)))) (-1414 (*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))) (-3318 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))))
-(-10 -7 (-15 -3318 ((-1251))) (-15 -1414 ((-635 |#1|))) (-15 -2765 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2765 (|#1| |#1| (-1 (-558) |#1| |#1|))))
-((-1309 (($ (-109) $) 16)) (-3009 (((-3 (-109) "failed") (-1163) $) 15)) (-2876 (($) 7)) (-3470 (($) 17)) (-3495 (($) 18)) (-3667 (((-635 (-174)) $) 10)) (-3940 (((-853) $) 21)))
-(((-1072) (-13 (-605 (-853)) (-10 -8 (-15 -2876 ($)) (-15 -3667 ((-635 (-174)) $)) (-15 -3009 ((-3 (-109) "failed") (-1163) $)) (-15 -1309 ($ (-109) $)) (-15 -3470 ($)) (-15 -3495 ($))))) (T -1072))
-((-2876 (*1 *1) (-5 *1 (-1072))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1072)))) (-3009 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-1072)))) (-1309 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1072)))) (-3470 (*1 *1) (-5 *1 (-1072))) (-3495 (*1 *1) (-5 *1 (-1072))))
-(-13 (-605 (-853)) (-10 -8 (-15 -2876 ($)) (-15 -3667 ((-635 (-174)) $)) (-15 -3009 ((-3 (-109) "failed") (-1163) $)) (-15 -1309 ($ (-109) $)) (-15 -3470 ($)) (-15 -3495 ($))))
-((-1644 (((-1246 (-679 |#1|)) (-635 (-679 |#1|))) 42) (((-1246 (-679 (-942 |#1|))) (-635 (-1163)) (-679 (-942 |#1|))) 62) (((-1246 (-679 (-406 (-942 |#1|)))) (-635 (-1163)) (-679 (-406 (-942 |#1|)))) 78)) (-2979 (((-1246 |#1|) (-679 |#1|) (-635 (-679 |#1|))) 36)))
-(((-1073 |#1|) (-10 -7 (-15 -1644 ((-1246 (-679 (-406 (-942 |#1|)))) (-635 (-1163)) (-679 (-406 (-942 |#1|))))) (-15 -1644 ((-1246 (-679 (-942 |#1|))) (-635 (-1163)) (-679 (-942 |#1|)))) (-15 -1644 ((-1246 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -2979 ((-1246 |#1|) (-679 |#1|) (-635 (-679 |#1|))))) (-362)) (T -1073))
-((-2979 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-679 *5))) (-5 *3 (-679 *5)) (-4 *5 (-362)) (-5 *2 (-1246 *5)) (-5 *1 (-1073 *5)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-1073 *4)))) (-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362)) (-5 *2 (-1246 (-679 (-942 *5)))) (-5 *1 (-1073 *5)) (-5 *4 (-679 (-942 *5))))) (-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362)) (-5 *2 (-1246 (-679 (-406 (-942 *5))))) (-5 *1 (-1073 *5)) (-5 *4 (-679 (-406 (-942 *5)))))))
-(-10 -7 (-15 -1644 ((-1246 (-679 (-406 (-942 |#1|)))) (-635 (-1163)) (-679 (-406 (-942 |#1|))))) (-15 -1644 ((-1246 (-679 (-942 |#1|))) (-635 (-1163)) (-679 (-942 |#1|)))) (-15 -1644 ((-1246 (-679 |#1|)) (-635 (-679 |#1|)))) (-15 -2979 ((-1246 |#1|) (-679 |#1|) (-635 (-679 |#1|)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3880 (((-635 (-762)) $) NIL) (((-635 (-762)) $ (-1163)) NIL)) (-4173 (((-762) $) NIL) (((-762) $ (-1163)) NIL)) (-4078 (((-635 (-1075 (-1163))) $) NIL)) (-3907 (((-1159 $) $ (-1075 (-1163))) NIL) (((-1159 |#1|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-1075 (-1163)))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-1507 (($ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1075 (-1163)) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL) (((-3 (-1112 |#1| (-1163)) "failed") $) NIL)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1075 (-1163)) $) NIL) (((-1163) $) NIL) (((-1112 |#1| (-1163)) $) NIL)) (-2862 (($ $ $ (-1075 (-1163))) NIL (|has| |#1| (-171)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1075 (-1163))) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-529 (-1075 (-1163))) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1075 (-1163)) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1075 (-1163)) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2532 (((-762) $ (-1163)) NIL) (((-762) $) NIL)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4068 (($ (-1159 |#1|) (-1075 (-1163))) NIL) (($ (-1159 $) (-1075 (-1163))) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-529 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-1075 (-1163))) NIL)) (-3672 (((-529 (-1075 (-1163))) $) NIL) (((-762) $ (-1075 (-1163))) NIL) (((-635 (-762)) $ (-635 (-1075 (-1163)))) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-529 (-1075 (-1163))) (-529 (-1075 (-1163)))) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3102 (((-1 $ (-762)) (-1163)) NIL) (((-1 $ (-762)) $) NIL (|has| |#1| (-232)))) (-2135 (((-3 (-1075 (-1163)) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-3630 (((-1075 (-1163)) $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-3448 (((-112) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-1075 (-1163))) (|:| -1857 (-762))) "failed") $) NIL)) (-4116 (($ $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1075 (-1163)) |#1|) NIL) (($ $ (-635 (-1075 (-1163))) (-635 |#1|)) NIL) (($ $ (-1075 (-1163)) $) NIL) (($ $ (-635 (-1075 (-1163))) (-635 $)) NIL) (($ $ (-1163) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1163)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-3789 (($ $ (-1075 (-1163))) NIL (|has| |#1| (-171)))) (-3780 (($ $ (-1075 (-1163))) NIL) (($ $ (-635 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3481 (((-635 (-1163)) $) NIL)) (-4263 (((-529 (-1075 (-1163))) $) NIL) (((-762) $ (-1075 (-1163))) NIL) (((-635 (-762)) $ (-635 (-1075 (-1163)))) NIL) (((-762) $ (-1163)) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-1075 (-1163)) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1075 (-1163)) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1075 (-1163)) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1075 (-1163))) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-1075 (-1163))) NIL) (($ (-1163)) NIL) (($ (-1112 |#1| (-1163))) NIL) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-529 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-1075 (-1163))) NIL) (($ $ (-635 (-1075 (-1163)))) NIL) (($ $ (-1075 (-1163)) (-762)) NIL) (($ $ (-635 (-1075 (-1163))) (-635 (-762))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-762)) NIL (|has| |#1| (-232))) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1074 |#1|) (-13 (-252 |#1| (-1163) (-1075 (-1163)) (-529 (-1075 (-1163)))) (-1028 (-1112 |#1| (-1163)))) (-1039)) (T -1074))
-NIL
-(-13 (-252 |#1| (-1163) (-1075 (-1163)) (-529 (-1075 (-1163)))) (-1028 (-1112 |#1| (-1163))))
-((-3929 (((-112) $ $) NIL)) (-4173 (((-762) $) NIL)) (-2317 ((|#1| $) 10)) (-3302 (((-3 |#1| "failed") $) NIL)) (-3226 ((|#1| $) NIL)) (-2532 (((-762) $) 11)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-3102 (($ |#1| (-762)) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3780 (($ $) NIL) (($ $ (-762)) NIL)) (-3940 (((-853) $) NIL) (($ |#1|) NIL)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 15)))
-(((-1075 |#1|) (-265 |#1|) (-841)) (T -1075))
+(((-93) . T) ((-102) . T) ((-611 #0=(-1171)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T))
+((-2574 ((|#1| |#1| (-1 (-561) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3424 (((-1258)) 15)) (-1494 (((-638 |#1|)) 9)))
+(((-1074 |#1|) (-10 -7 (-15 -3424 ((-1258))) (-15 -1494 ((-638 |#1|))) (-15 -2574 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2574 (|#1| |#1| (-1 (-561) |#1| |#1|)))) (-131)) (T -1074))
+((-2574 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-561) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-2574 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-1494 (*1 *2) (-12 (-5 *2 (-638 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))) (-3424 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
+(-10 -7 (-15 -3424 ((-1258))) (-15 -1494 ((-638 |#1|))) (-15 -2574 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2574 (|#1| |#1| (-1 (-561) |#1| |#1|))))
+((-1770 (($ (-109) $) 16)) (-3729 (((-3 (-109) "failed") (-1166) $) 15)) (-3170 (($) 7)) (-2778 (($) 17)) (-2905 (($) 18)) (-2584 (((-638 (-174)) $) 10)) (-4022 (((-856) $) 21)))
+(((-1075) (-13 (-608 (-856)) (-10 -8 (-15 -3170 ($)) (-15 -2584 ((-638 (-174)) $)) (-15 -3729 ((-3 (-109) "failed") (-1166) $)) (-15 -1770 ($ (-109) $)) (-15 -2778 ($)) (-15 -2905 ($))))) (T -1075))
+((-3170 (*1 *1) (-5 *1 (-1075))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-638 (-174))) (-5 *1 (-1075)))) (-3729 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075)))) (-1770 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075)))) (-2778 (*1 *1) (-5 *1 (-1075))) (-2905 (*1 *1) (-5 *1 (-1075))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3170 ($)) (-15 -2584 ((-638 (-174)) $)) (-15 -3729 ((-3 (-109) "failed") (-1166) $)) (-15 -1770 ($ (-109) $)) (-15 -2778 ($)) (-15 -2905 ($))))
+((-2602 (((-1253 (-682 |#1|)) (-638 (-682 |#1|))) 42) (((-1253 (-682 (-945 |#1|))) (-638 (-1166)) (-682 (-945 |#1|))) 62) (((-1253 (-682 (-406 (-945 |#1|)))) (-638 (-1166)) (-682 (-406 (-945 |#1|)))) 78)) (-3969 (((-1253 |#1|) (-682 |#1|) (-638 (-682 |#1|))) 36)))
+(((-1076 |#1|) (-10 -7 (-15 -2602 ((-1253 (-682 (-406 (-945 |#1|)))) (-638 (-1166)) (-682 (-406 (-945 |#1|))))) (-15 -2602 ((-1253 (-682 (-945 |#1|))) (-638 (-1166)) (-682 (-945 |#1|)))) (-15 -2602 ((-1253 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3969 ((-1253 |#1|) (-682 |#1|) (-638 (-682 |#1|))))) (-362)) (T -1076))
+((-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-1253 *5)) (-5 *1 (-1076 *5)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-1076 *4)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-945 *5)))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-945 *5))))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-406 (-945 *5))))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-406 (-945 *5)))))))
+(-10 -7 (-15 -2602 ((-1253 (-682 (-406 (-945 |#1|)))) (-638 (-1166)) (-682 (-406 (-945 |#1|))))) (-15 -2602 ((-1253 (-682 (-945 |#1|))) (-638 (-1166)) (-682 (-945 |#1|)))) (-15 -2602 ((-1253 (-682 |#1|)) (-638 (-682 |#1|)))) (-15 -3969 ((-1253 |#1|) (-682 |#1|) (-638 (-682 |#1|)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-3874 (((-638 (-765)) $) NIL) (((-638 (-765)) $ (-1166)) NIL)) (-3643 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-1412 (((-638 (-1078 (-1166))) $) NIL)) (-1620 (((-1162 $) $ (-1078 (-1166))) NIL) (((-1162 |#1|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-1078 (-1166)))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3414 (($ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1078 (-1166)) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL) (((-3 (-1115 |#1| (-1166)) "failed") $) NIL)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1078 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-3051 (($ $ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-529 (-1078 (-1166))) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4163 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1401 (($ (-1162 |#1|) (-1078 (-1166))) NIL) (($ (-1162 $) (-1078 (-1166))) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-1078 (-1166))) NIL)) (-2393 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-638 (-765)) $ (-638 (-1078 (-1166)))) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-529 (-1078 (-1166))) (-529 (-1078 (-1166)))) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3904 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-1358 (((-3 (-1078 (-1166)) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-3726 (((-1078 (-1166)) $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-2205 (((-112) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-1078 (-1166))) (|:| -4196 (-765))) "failed") $) NIL)) (-3591 (($ $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1078 (-1166)) |#1|) NIL) (($ $ (-638 (-1078 (-1166))) (-638 |#1|)) NIL) (($ $ (-1078 (-1166)) $) NIL) (($ $ (-638 (-1078 (-1166))) (-638 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-638 (-1166)) (-638 |#1|)) NIL (|has| |#1| (-232)))) (-2553 (($ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-3238 (($ $ (-1078 (-1166))) NIL) (($ $ (-638 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2884 (((-638 (-1166)) $) NIL)) (-2894 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-638 (-765)) $ (-638 (-1078 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-1078 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-1078 (-1166))) NIL) (($ $ (-638 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-638 (-1078 (-1166))) (-638 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1077 |#1|) (-13 (-252 |#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) (-1031 (-1115 |#1| (-1166)))) (-1042)) (T -1077))
+NIL
+(-13 (-252 |#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) (-1031 (-1115 |#1| (-1166))))
+((-4011 (((-112) $ $) NIL)) (-3643 (((-765) $) NIL)) (-2389 ((|#1| $) 10)) (-4017 (((-3 |#1| "failed") $) NIL)) (-3938 ((|#1| $) NIL)) (-4163 (((-765) $) 11)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3904 (($ |#1| (-765)) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3238 (($ $) NIL) (($ $ (-765)) NIL)) (-4022 (((-856) $) NIL) (($ |#1|) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 15)))
+(((-1078 |#1|) (-265 |#1|) (-844)) (T -1078))
NIL
(-265 |#1|)
-((-3397 (((-635 |#2|) (-1 |#2| |#1|) (-1081 |#1|)) 23 (|has| |#1| (-839))) (((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|)) 14)))
-(((-1076 |#1| |#2|) (-10 -7 (-15 -3397 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) (IF (|has| |#1| (-839)) (-15 -3397 ((-635 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) |%noBranch|)) (-1200) (-1200)) (T -1076))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-839)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-635 *6)) (-5 *1 (-1076 *5 *6)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1081 *6)) (-5 *1 (-1076 *5 *6)))))
-(-10 -7 (-15 -3397 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) (IF (|has| |#1| (-839)) (-15 -3397 ((-635 |#2|) (-1 |#2| |#1|) (-1081 |#1|))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3974 (((-635 (-1122)) $) 9)) (-1708 (((-112) $ $) NIL)))
-(((-1077) (-13 (-1070) (-10 -8 (-15 -3974 ((-635 (-1122)) $))))) (T -1077))
-((-3974 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1077)))))
-(-13 (-1070) (-10 -8 (-15 -3974 ((-635 (-1122)) $))))
-((-3397 (((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)) 19)))
-(((-1078 |#1| |#2|) (-10 -7 (-15 -3397 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)))) (-1200) (-1200)) (T -1078))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1079 *6)) (-5 *1 (-1078 *5 *6)))))
-(-10 -7 (-15 -3397 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2317 (((-1163) $) 11)) (-2677 (((-1081 |#1|) $) 12)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2980 (($ (-1163) (-1081 |#1|)) 10)) (-3940 (((-853) $) 20 (|has| |#1| (-1087)))) (-1708 (((-112) $ $) 15 (|has| |#1| (-1087)))))
-(((-1079 |#1|) (-13 (-1200) (-10 -8 (-15 -2980 ($ (-1163) (-1081 |#1|))) (-15 -2317 ((-1163) $)) (-15 -2677 ((-1081 |#1|) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|))) (-1200)) (T -1079))
-((-2980 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1081 *4)) (-4 *4 (-1200)) (-5 *1 (-1079 *4)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1079 *3)) (-4 *3 (-1200)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-1200)))))
-(-13 (-1200) (-10 -8 (-15 -2980 ($ (-1163) (-1081 |#1|))) (-15 -2317 ((-1163) $)) (-15 -2677 ((-1081 |#1|) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|)))
-((-2677 (($ |#1| |#1|) 8)) (-2425 ((|#1| $) 11)) (-4051 ((|#1| $) 13)) (-1281 (((-558) $) 9)) (-3568 ((|#1| $) 10)) (-1294 ((|#1| $) 12)) (-3441 (($ |#1|) 6)) (-3746 (($ |#1| |#1|) 15)) (-1494 (($ $ (-558)) 14)))
-(((-1080 |#1|) (-139) (-1200)) (T -1080))
-((-3746 (*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-1494 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1080 *3)) (-4 *3 (-1200)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))) (-1281 (*1 *2 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))) (-2677 (*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
-(-13 (-610 |t#1|) (-10 -8 (-15 -3746 ($ |t#1| |t#1|)) (-15 -1494 ($ $ (-558))) (-15 -4051 (|t#1| $)) (-15 -1294 (|t#1| $)) (-15 -2425 (|t#1| $)) (-15 -3568 (|t#1| $)) (-15 -1281 ((-558) $)) (-15 -2677 ($ |t#1| |t#1|))))
-(((-610 |#1|) . T))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2677 (($ |#1| |#1|) 15)) (-3397 (((-635 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-839)))) (-2425 ((|#1| $) 10)) (-4051 ((|#1| $) 9)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1281 (((-558) $) 14)) (-3568 ((|#1| $) 12)) (-1294 ((|#1| $) 11)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2040 (((-635 |#1|) $) 35 (|has| |#1| (-839))) (((-635 |#1|) (-635 $)) 34 (|has| |#1| (-839)))) (-3441 (($ |#1|) 26)) (-3940 (((-853) $) 25 (|has| |#1| (-1087)))) (-3746 (($ |#1| |#1|) 8)) (-1494 (($ $ (-558)) 16)) (-1708 (((-112) $ $) 19 (|has| |#1| (-1087)))))
-(((-1081 |#1|) (-13 (-1080 |#1|) (-10 -7 (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-635 |#1|))) |%noBranch|))) (-1200)) (T -1081))
-NIL
-(-13 (-1080 |#1|) (-10 -7 (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-635 |#1|))) |%noBranch|)))
-((-2677 (($ |#1| |#1|) 8)) (-3397 ((|#2| (-1 |#1| |#1|) $) 16)) (-2425 ((|#1| $) 11)) (-4051 ((|#1| $) 13)) (-1281 (((-558) $) 9)) (-3568 ((|#1| $) 10)) (-1294 ((|#1| $) 12)) (-2040 ((|#2| (-635 $)) 18) ((|#2| $) 17)) (-3441 (($ |#1|) 6)) (-3746 (($ |#1| |#1|) 15)) (-1494 (($ $ (-558)) 14)))
-(((-1082 |#1| |#2|) (-139) (-839) (-1136 |t#1|)) (T -1082))
-((-2040 (*1 *2 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839)) (-4 *2 (-1136 *4)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *2)) (-4 *3 (-839)) (-4 *2 (-1136 *3)))) (-3397 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839)) (-4 *2 (-1136 *4)))))
-(-13 (-1080 |t#1|) (-10 -8 (-15 -2040 (|t#2| (-635 $))) (-15 -2040 (|t#2| $)) (-15 -3397 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-610 |#1|) . T) ((-1080 |#1|) . T))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1514 (((-1122) $) 12)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 20) (($ (-1168)) NIL) (((-1168) $) NIL)) (-3190 (((-635 (-1122)) $) 10)) (-1708 (((-112) $ $) NIL)))
-(((-1083) (-13 (-1070) (-10 -8 (-15 -3190 ((-635 (-1122)) $)) (-15 -1514 ((-1122) $))))) (T -1083))
-((-3190 (*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1083)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1083)))))
-(-13 (-1070) (-10 -8 (-15 -3190 ((-635 (-1122)) $)) (-15 -1514 ((-1122) $))))
-((-2382 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1513 (($ $ $) 10)) (-1780 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1084 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#2| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#2|)) (-15 -1780 (|#1| |#1| |#1|))) (-1085 |#2|) (-1087)) (T -1084))
-NIL
-(-10 -8 (-15 -2382 (|#1| |#2| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#2|)) (-15 -1780 (|#1| |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-2382 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1513 (($ $ $) 20)) (-3204 (((-112) $ $) 19)) (-3651 (((-112) $ (-762)) 35)) (-1607 (($) 25) (($ (-635 |#1|)) 24)) (-2072 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4383)))) (-3457 (($) 36 T CONST)) (-3188 (($ $) 59 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#1| $) 58 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4383)))) (-2917 (((-635 |#1|) $) 43 (|has| $ (-6 -4383)))) (-2953 (((-112) $ $) 28)) (-4007 (((-112) $ (-762)) 34)) (-3486 (((-635 |#1|) $) 44 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 38)) (-3212 (((-112) $ (-762)) 33)) (-2510 (((-1145) $) 9)) (-3490 (($ $ $) 23)) (-1688 (((-1107) $) 10)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3314 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#1|) (-635 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 (-293 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 29)) (-3711 (((-112) $) 32)) (-2876 (($) 31)) (-1780 (($ $ $) 22) (($ $ |#1|) 21)) (-1698 (((-762) |#1| $) 45 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4383)))) (-4098 (($ $) 30)) (-3441 (((-534) $) 60 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 51)) (-3940 (((-853) $) 11)) (-4008 (($) 27) (($ (-635 |#1|)) 26)) (-2831 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 6)) (-1596 (((-762) $) 37 (|has| $ (-6 -4383)))))
-(((-1085 |#1|) (-139) (-1087)) (T -1085))
-((-2953 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-4008 (*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3)))) (-1607 (*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3)))) (-3490 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-1780 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-1780 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-1513 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-3204 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))) (-2382 (*1 *1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
-(-13 (-1087) (-150 |t#1|) (-10 -8 (-6 -4373) (-15 -2953 ((-112) $ $)) (-15 -4008 ($)) (-15 -4008 ($ (-635 |t#1|))) (-15 -1607 ($)) (-15 -1607 ($ (-635 |t#1|))) (-15 -3490 ($ $ $)) (-15 -1780 ($ $ $)) (-15 -1780 ($ $ |t#1|)) (-15 -1513 ($ $ $)) (-15 -3204 ((-112) $ $)) (-15 -2382 ($ $ $)) (-15 -2382 ($ $ |t#1|)) (-15 -2382 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) . T) ((-1200) . T))
-((-2510 (((-1145) $) 10)) (-1688 (((-1107) $) 8)))
-(((-1086 |#1|) (-10 -8 (-15 -2510 ((-1145) |#1|)) (-15 -1688 ((-1107) |#1|))) (-1087)) (T -1086))
-NIL
-(-10 -8 (-15 -2510 ((-1145) |#1|)) (-15 -1688 ((-1107) |#1|)))
-((-3929 (((-112) $ $) 7)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)))
-(((-1087) (-139)) (T -1087))
-((-1688 (*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1107)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1145)))))
-(-13 (-102) (-605 (-853)) (-10 -8 (-15 -1688 ((-1107) $)) (-15 -2510 ((-1145) $))))
-(((-102) . T) ((-605 (-853)) . T))
-((-3929 (((-112) $ $) NIL)) (-2507 (((-762)) 30)) (-2760 (($ (-635 (-911))) 52)) (-3786 (((-3 $ "failed") $ (-911) (-911)) 58)) (-3692 (($) 32)) (-3764 (((-112) (-911) $) 35)) (-1486 (((-911) $) 50)) (-2510 (((-1145) $) NIL)) (-2349 (($ (-911)) 31)) (-1881 (((-3 $ "failed") $ (-911)) 55)) (-1688 (((-1107) $) NIL)) (-4283 (((-1246 $)) 40)) (-3735 (((-635 (-911)) $) 24)) (-3691 (((-762) $ (-911) (-911)) 56)) (-3940 (((-853) $) 29)) (-1708 (((-112) $ $) 21)))
-(((-1088 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -1881 ((-3 $ "failed") $ (-911))) (-15 -3786 ((-3 $ "failed") $ (-911) (-911))) (-15 -3735 ((-635 (-911)) $)) (-15 -2760 ($ (-635 (-911)))) (-15 -4283 ((-1246 $))) (-15 -3764 ((-112) (-911) $)) (-15 -3691 ((-762) $ (-911) (-911))))) (-911) (-911)) (T -1088))
-((-1881 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3786 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-2760 (*1 *1 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-4283 (*1 *2) (-12 (-5 *2 (-1246 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911)))) (-3764 (*1 *2 *3 *1) (-12 (-5 *3 (-911)) (-5 *2 (-112)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3691 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-762)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-367) (-10 -8 (-15 -1881 ((-3 $ "failed") $ (-911))) (-15 -3786 ((-3 $ "failed") $ (-911) (-911))) (-15 -3735 ((-635 (-911)) $)) (-15 -2760 ($ (-635 (-911)))) (-15 -4283 ((-1246 $))) (-15 -3764 ((-112) (-911) $)) (-15 -3691 ((-762) $ (-911) (-911)))))
-((-3929 (((-112) $ $) NIL)) (-3621 (($) NIL (|has| |#1| (-367)))) (-2382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-1513 (($ $ $) 71)) (-3204 (((-112) $ $) 72)) (-3651 (((-112) $ (-762)) NIL)) (-2507 (((-762)) NIL (|has| |#1| (-367)))) (-1607 (($ (-635 |#1|)) NIL) (($) 13)) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2375 (($ |#1| $) 67 (|has| $ (-6 -4383))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4383)))) (-3692 (($) NIL (|has| |#1| (-367)))) (-2917 (((-635 |#1|) $) 19 (|has| $ (-6 -4383)))) (-2953 (((-112) $ $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2142 ((|#1| $) 57 (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2281 ((|#1| $) 55 (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 34)) (-1486 (((-911) $) NIL (|has| |#1| (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-3490 (($ $ $) 69)) (-1498 ((|#1| $) 25)) (-2650 (($ |#1| $) 65)) (-2349 (($ (-911)) NIL (|has| |#1| (-367)))) (-1688 (((-1107) $) NIL)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2533 ((|#1| $) 27)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 21)) (-2876 (($) 11)) (-1780 (($ $ |#1|) NIL) (($ $ $) 70)) (-1966 (($) NIL) (($ (-635 |#1|)) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 16)) (-3441 (((-534) $) 52 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 61)) (-3733 (($ $) NIL (|has| |#1| (-367)))) (-3940 (((-853) $) NIL)) (-3071 (((-762) $) NIL)) (-4008 (($ (-635 |#1|)) NIL) (($) 12)) (-2472 (($ (-635 |#1|)) NIL)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 54)) (-1596 (((-762) $) 10 (|has| $ (-6 -4383)))))
-(((-1089 |#1|) (-424 |#1|) (-1087)) (T -1089))
+((-4120 (((-638 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 23 (|has| |#1| (-842))) (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 14)))
+(((-1079 |#1| |#2|) (-10 -7 (-15 -4120 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) (IF (|has| |#1| (-842)) (-15 -4120 ((-638 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) |%noBranch|)) (-1205) (-1205)) (T -1079))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-842)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-638 *6)) (-5 *1 (-1079 *5 *6)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1084 *6)) (-5 *1 (-1079 *5 *6)))))
+(-10 -7 (-15 -4120 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) (IF (|has| |#1| (-842)) (-15 -4120 ((-638 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3103 (((-638 (-1125)) $) 9)) (-1733 (((-112) $ $) NIL)))
+(((-1080) (-13 (-1073) (-10 -8 (-15 -3103 ((-638 (-1125)) $))))) (T -1080))
+((-3103 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1080)))))
+(-13 (-1073) (-10 -8 (-15 -3103 ((-638 (-1125)) $))))
+((-4120 (((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)) 19)))
+(((-1081 |#1| |#2|) (-10 -7 (-15 -4120 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)))) (-1205) (-1205)) (T -1081))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1082 *6)) (-5 *1 (-1081 *5 *6)))))
+(-10 -7 (-15 -4120 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2389 (((-1166) $) 11)) (-2629 (((-1084 |#1|) $) 12)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3675 (($ (-1166) (-1084 |#1|)) 10)) (-4022 (((-856) $) 20 (|has| |#1| (-1090)))) (-1733 (((-112) $ $) 15 (|has| |#1| (-1090)))))
+(((-1082 |#1|) (-13 (-1205) (-10 -8 (-15 -3675 ($ (-1166) (-1084 |#1|))) (-15 -2389 ((-1166) $)) (-15 -2629 ((-1084 |#1|) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|))) (-1205)) (T -1082))
+((-3675 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1084 *4)) (-4 *4 (-1205)) (-5 *1 (-1082 *4)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1205)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1205)))))
+(-13 (-1205) (-10 -8 (-15 -3675 ($ (-1166) (-1084 |#1|))) (-15 -2389 ((-1166) $)) (-15 -2629 ((-1084 |#1|) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|)))
+((-2629 (($ |#1| |#1|) 8)) (-1866 ((|#1| $) 11)) (-1745 ((|#1| $) 13)) (-1757 (((-561) $) 9)) (-2541 ((|#1| $) 10)) (-2019 ((|#1| $) 12)) (-4174 (($ |#1|) 6)) (-3848 (($ |#1| |#1|) 15)) (-1497 (($ $ (-561)) 14)))
+(((-1083 |#1|) (-139) (-1205)) (T -1083))
+((-3848 (*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-1497 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1083 *3)) (-4 *3 (-1205)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))) (-2629 (*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
+(-13 (-613 |t#1|) (-10 -8 (-15 -3848 ($ |t#1| |t#1|)) (-15 -1497 ($ $ (-561))) (-15 -1745 (|t#1| $)) (-15 -2019 (|t#1| $)) (-15 -1866 (|t#1| $)) (-15 -2541 (|t#1| $)) (-15 -1757 ((-561) $)) (-15 -2629 ($ |t#1| |t#1|))))
+(((-613 |#1|) . T))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2629 (($ |#1| |#1|) 15)) (-4120 (((-638 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-842)))) (-1866 ((|#1| $) 10)) (-1745 ((|#1| $) 9)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1757 (((-561) $) 14)) (-2541 ((|#1| $) 12)) (-2019 ((|#1| $) 11)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3529 (((-638 |#1|) $) 35 (|has| |#1| (-842))) (((-638 |#1|) (-638 $)) 34 (|has| |#1| (-842)))) (-4174 (($ |#1|) 26)) (-4022 (((-856) $) 25 (|has| |#1| (-1090)))) (-3848 (($ |#1| |#1|) 8)) (-1497 (($ $ (-561)) 16)) (-1733 (((-112) $ $) 19 (|has| |#1| (-1090)))))
+(((-1084 |#1|) (-13 (-1083 |#1|) (-10 -7 (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-638 |#1|))) |%noBranch|))) (-1205)) (T -1084))
+NIL
+(-13 (-1083 |#1|) (-10 -7 (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-638 |#1|))) |%noBranch|)))
+((-2629 (($ |#1| |#1|) 8)) (-4120 ((|#2| (-1 |#1| |#1|) $) 16)) (-1866 ((|#1| $) 11)) (-1745 ((|#1| $) 13)) (-1757 (((-561) $) 9)) (-2541 ((|#1| $) 10)) (-2019 ((|#1| $) 12)) (-3529 ((|#2| (-638 $)) 18) ((|#2| $) 17)) (-4174 (($ |#1|) 6)) (-3848 (($ |#1| |#1|) 15)) (-1497 (($ $ (-561)) 14)))
+(((-1085 |#1| |#2|) (-139) (-842) (-1139 |t#1|)) (T -1085))
+((-3529 (*1 *2 *3) (-12 (-5 *3 (-638 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3)))) (-4120 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4)))))
+(-13 (-1083 |t#1|) (-10 -8 (-15 -3529 (|t#2| (-638 $))) (-15 -3529 (|t#2| $)) (-15 -4120 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-613 |#1|) . T) ((-1083 |#1|) . T))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1520 (((-1125) $) 12)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3279 (((-638 (-1125)) $) 10)) (-1733 (((-112) $ $) NIL)))
+(((-1086) (-13 (-1073) (-10 -8 (-15 -3279 ((-638 (-1125)) $)) (-15 -1520 ((-1125) $))))) (T -1086))
+((-3279 (*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1086)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086)))))
+(-13 (-1073) (-10 -8 (-15 -3279 ((-638 (-1125)) $)) (-15 -1520 ((-1125) $))))
+((-2443 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2613 (($ $ $) 10)) (-4294 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1087 |#1| |#2|) (-10 -8 (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#2|)) (-15 -4294 (|#1| |#1| |#1|))) (-1088 |#2|) (-1090)) (T -1087))
+NIL
+(-10 -8 (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -4294 (|#1| |#1| |#2|)) (-15 -4294 (|#1| |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2443 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2613 (($ $ $) 20)) (-3903 (((-112) $ $) 19)) (-1630 (((-112) $ (-765)) 35)) (-1627 (($) 25) (($ (-638 |#1|)) 24)) (-3556 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4390)))) (-1965 (($) 36 T CONST)) (-1472 (($ $) 59 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#1| $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4390)))) (-3571 (((-638 |#1|) $) 43 (|has| $ (-6 -4390)))) (-4198 (((-112) $ $) 28)) (-3744 (((-112) $ (-765)) 34)) (-1305 (((-638 |#1|) $) 44 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 38)) (-2230 (((-112) $ (-765)) 33)) (-1764 (((-1148) $) 9)) (-2579 (($ $ $) 23)) (-1714 (((-1110) $) 10)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2123 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#1|) (-638 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 (-293 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 29)) (-1928 (((-112) $) 32)) (-3170 (($) 31)) (-4294 (($ $ $) 22) (($ $ |#1|) 21)) (-1724 (((-765) |#1| $) 45 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4390)))) (-4187 (($ $) 30)) (-4174 (((-534) $) 60 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 51)) (-4022 (((-856) $) 11)) (-1710 (($) 27) (($ (-638 |#1|)) 26)) (-3715 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 6)) (-3498 (((-765) $) 37 (|has| $ (-6 -4390)))))
+(((-1088 |#1|) (-139) (-1090)) (T -1088))
+((-4198 (*1 *2 *1 *1) (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-1710 (*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3)))) (-1627 (*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-1627 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-4294 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-4294 (*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-2613 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-3903 (*1 *2 *1 *1) (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))) (-2443 (*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-2443 (*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))) (-2443 (*1 *1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
+(-13 (-1090) (-150 |t#1|) (-10 -8 (-6 -4380) (-15 -4198 ((-112) $ $)) (-15 -1710 ($)) (-15 -1710 ($ (-638 |t#1|))) (-15 -1627 ($)) (-15 -1627 ($ (-638 |t#1|))) (-15 -2579 ($ $ $)) (-15 -4294 ($ $ $)) (-15 -4294 ($ $ |t#1|)) (-15 -2613 ($ $ $)) (-15 -3903 ((-112) $ $)) (-15 -2443 ($ $ $)) (-15 -2443 ($ $ |t#1|)) (-15 -2443 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) . T) ((-1205) . T))
+((-1764 (((-1148) $) 10)) (-1714 (((-1110) $) 8)))
+(((-1089 |#1|) (-10 -8 (-15 -1764 ((-1148) |#1|)) (-15 -1714 ((-1110) |#1|))) (-1090)) (T -1089))
+NIL
+(-10 -8 (-15 -1764 ((-1148) |#1|)) (-15 -1714 ((-1110) |#1|)))
+((-4011 (((-112) $ $) 7)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)))
+(((-1090) (-139)) (T -1090))
+((-1714 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1110)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1148)))))
+(-13 (-102) (-608 (-856)) (-10 -8 (-15 -1714 ((-1110) $)) (-15 -1764 ((-1148) $))))
+(((-102) . T) ((-608 (-856)) . T))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) 30)) (-4144 (($ (-638 (-914))) 52)) (-2698 (((-3 $ "failed") $ (-914) (-914)) 58)) (-1332 (($) 32)) (-4087 (((-112) (-914) $) 35)) (-3198 (((-914) $) 50)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) 31)) (-1778 (((-3 $ "failed") $ (-914)) 55)) (-1714 (((-1110) $) NIL)) (-1950 (((-1253 $)) 40)) (-4092 (((-638 (-914)) $) 24)) (-3790 (((-765) $ (-914) (-914)) 56)) (-4022 (((-856) $) 29)) (-1733 (((-112) $ $) 21)))
+(((-1091 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -1778 ((-3 $ "failed") $ (-914))) (-15 -2698 ((-3 $ "failed") $ (-914) (-914))) (-15 -4092 ((-638 (-914)) $)) (-15 -4144 ($ (-638 (-914)))) (-15 -1950 ((-1253 $))) (-15 -4087 ((-112) (-914) $)) (-15 -3790 ((-765) $ (-914) (-914))))) (-914) (-914)) (T -1091))
+((-1778 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2698 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-4144 (*1 *1 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-1950 (*1 *2) (-12 (-5 *2 (-1253 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914)))) (-4087 (*1 *2 *3 *1) (-12 (-5 *3 (-914)) (-5 *2 (-112)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3790 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-765)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-367) (-10 -8 (-15 -1778 ((-3 $ "failed") $ (-914))) (-15 -2698 ((-3 $ "failed") $ (-914) (-914))) (-15 -4092 ((-638 (-914)) $)) (-15 -4144 ($ (-638 (-914)))) (-15 -1950 ((-1253 $))) (-15 -4087 ((-112) (-914) $)) (-15 -3790 ((-765) $ (-914) (-914)))))
+((-4011 (((-112) $ $) NIL)) (-4080 (($) NIL (|has| |#1| (-367)))) (-2443 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-2613 (($ $ $) 71)) (-3903 (((-112) $ $) 72)) (-1630 (((-112) $ (-765)) NIL)) (-1393 (((-765)) NIL (|has| |#1| (-367)))) (-1627 (($ (-638 |#1|)) NIL) (($) 13)) (-3388 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-3999 (($ |#1| $) 67 (|has| $ (-6 -4390))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4390)))) (-1332 (($) NIL (|has| |#1| (-367)))) (-3571 (((-638 |#1|) $) 19 (|has| $ (-6 -4390)))) (-4198 (((-112) $ $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3443 ((|#1| $) 57 (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2986 ((|#1| $) 55 (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 34)) (-3198 (((-914) $) NIL (|has| |#1| (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2579 (($ $ $) 69)) (-3211 ((|#1| $) 25)) (-3671 (($ |#1| $) 65)) (-2413 (($ (-914)) NIL (|has| |#1| (-367)))) (-1714 (((-1110) $) NIL)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3522 ((|#1| $) 27)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 21)) (-3170 (($) 11)) (-4294 (($ $ |#1|) NIL) (($ $ $) 70)) (-3579 (($) NIL) (($ (-638 |#1|)) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 16)) (-4174 (((-534) $) 52 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 61)) (-2079 (($ $) NIL (|has| |#1| (-367)))) (-4022 (((-856) $) NIL)) (-1915 (((-765) $) NIL)) (-1710 (($ (-638 |#1|)) NIL) (($) 12)) (-3025 (($ (-638 |#1|)) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 54)) (-3498 (((-765) $) 10 (|has| $ (-6 -4390)))))
+(((-1092 |#1|) (-424 |#1|) (-1090)) (T -1092))
NIL
(-424 |#1|)
-((-3929 (((-112) $ $) 7)) (-2848 (((-112) $) 32)) (-1650 ((|#2| $) 27)) (-3181 (((-112) $) 33)) (-3503 ((|#1| $) 28)) (-3208 (((-112) $) 35)) (-3549 (((-112) $) 37)) (-1974 (((-112) $) 34)) (-2510 (((-1145) $) 9)) (-3840 (((-112) $) 31)) (-1667 ((|#3| $) 26)) (-1688 (((-1107) $) 10)) (-1335 (((-112) $) 30)) (-4114 ((|#4| $) 25)) (-3445 ((|#5| $) 24)) (-3846 (((-112) $ $) 38)) (-2276 (($ $ (-558)) 20) (($ $ (-635 (-558))) 19)) (-4017 (((-635 $) $) 29)) (-3441 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-635 $)) 39)) (-3940 (((-853) $) 11)) (-2437 (($ $) 22)) (-2423 (($ $) 23)) (-1670 (((-112) $) 36)) (-1708 (((-112) $ $) 6)) (-1596 (((-558) $) 21)))
-(((-1090 |#1| |#2| |#3| |#4| |#5|) (-139) (-1087) (-1087) (-1087) (-1087) (-1087)) (T -1090))
-((-3846 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))) (-4017 (*1 *2 *1) (-12 (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-635 *1)) (-4 *1 (-1090 *3 *4 *5 *6 *7)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *2 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *2 *6)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *2)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))) (-2423 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-558)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)))))
-(-13 (-1087) (-610 |t#1|) (-610 |t#2|) (-610 |t#3|) (-610 |t#4|) (-610 |t#4|) (-610 |t#5|) (-610 (-635 $)) (-10 -8 (-15 -3846 ((-112) $ $)) (-15 -3549 ((-112) $)) (-15 -1670 ((-112) $)) (-15 -3208 ((-112) $)) (-15 -1974 ((-112) $)) (-15 -3181 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -3840 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -4017 ((-635 $) $)) (-15 -3503 (|t#1| $)) (-15 -1650 (|t#2| $)) (-15 -1667 (|t#3| $)) (-15 -4114 (|t#4| $)) (-15 -3445 (|t#5| $)) (-15 -2423 ($ $)) (-15 -2437 ($ $)) (-15 -1596 ((-558) $)) (-15 -2276 ($ $ (-558))) (-15 -2276 ($ $ (-635 (-558))))))
-(((-102) . T) ((-605 (-853)) . T) ((-610 (-635 $)) . T) ((-610 |#1|) . T) ((-610 |#2|) . T) ((-610 |#3|) . T) ((-610 |#4|) . T) ((-610 |#5|) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2848 (((-112) $) NIL)) (-1650 (((-1163) $) NIL)) (-3181 (((-112) $) NIL)) (-3503 (((-1145) $) NIL)) (-3208 (((-112) $) NIL)) (-3549 (((-112) $) NIL)) (-1974 (((-112) $) NIL)) (-2510 (((-1145) $) NIL)) (-3840 (((-112) $) NIL)) (-1667 (((-558) $) NIL)) (-1688 (((-1107) $) NIL)) (-1335 (((-112) $) NIL)) (-4114 (((-224) $) NIL)) (-3445 (((-853) $) NIL)) (-3846 (((-112) $ $) NIL)) (-2276 (($ $ (-558)) NIL) (($ $ (-635 (-558))) NIL)) (-4017 (((-635 $) $) NIL)) (-3441 (($ (-1145)) NIL) (($ (-1163)) NIL) (($ (-558)) NIL) (($ (-224)) NIL) (($ (-853)) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL)) (-2437 (($ $) NIL)) (-2423 (($ $) NIL)) (-1670 (((-112) $) NIL)) (-1708 (((-112) $ $) NIL)) (-1596 (((-558) $) NIL)))
-(((-1091) (-1090 (-1145) (-1163) (-558) (-224) (-853))) (T -1091))
-NIL
-(-1090 (-1145) (-1163) (-558) (-224) (-853))
-((-3929 (((-112) $ $) NIL)) (-2848 (((-112) $) 39)) (-1650 ((|#2| $) 42)) (-3181 (((-112) $) 18)) (-3503 ((|#1| $) 19)) (-3208 (((-112) $) 37)) (-3549 (((-112) $) 14)) (-1974 (((-112) $) 38)) (-2510 (((-1145) $) NIL)) (-3840 (((-112) $) 40)) (-1667 ((|#3| $) 44)) (-1688 (((-1107) $) NIL)) (-1335 (((-112) $) 41)) (-4114 ((|#4| $) 43)) (-3445 ((|#5| $) 45)) (-3846 (((-112) $ $) 36)) (-2276 (($ $ (-558)) 56) (($ $ (-635 (-558))) 58)) (-4017 (((-635 $) $) 24)) (-3441 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-635 $)) 46)) (-3940 (((-853) $) 25)) (-2437 (($ $) 23)) (-2423 (($ $) 52)) (-1670 (((-112) $) 21)) (-1708 (((-112) $ $) 35)) (-1596 (((-558) $) 54)))
-(((-1092 |#1| |#2| |#3| |#4| |#5|) (-1090 |#1| |#2| |#3| |#4| |#5|) (-1087) (-1087) (-1087) (-1087) (-1087)) (T -1092))
-NIL
-(-1090 |#1| |#2| |#3| |#4| |#5|)
-((-3154 (((-1251) $) 23)) (-3661 (($ (-1163) (-433) |#2|) 11)) (-3940 (((-853) $) 16)))
-(((-1093 |#1| |#2|) (-13 (-394) (-10 -8 (-15 -3661 ($ (-1163) (-433) |#2|)))) (-841) (-429 |#1|)) (T -1093))
-((-3661 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *3 (-433)) (-4 *5 (-841)) (-5 *1 (-1093 *5 *4)) (-4 *4 (-429 *5)))))
-(-13 (-394) (-10 -8 (-15 -3661 ($ (-1163) (-433) |#2|))))
-((-2203 (((-112) |#5| |#5|) 37)) (-4101 (((-112) |#5| |#5|) 51)) (-3739 (((-112) |#5| (-635 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-3658 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-1409 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) 62)) (-3239 (((-1251)) 33)) (-2090 (((-1251) (-1145) (-1145) (-1145)) 29)) (-4230 (((-635 |#5|) (-635 |#5|)) 81)) (-2159 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) 79)) (-1943 (((-635 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 101)) (-3770 (((-112) |#5| |#5|) 46)) (-1886 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3578 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-1827 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-3879 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-2668 (((-3 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3028 (((-635 |#5|) (-635 |#5|)) 42)))
-(((-1094 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2090 ((-1251) (-1145) (-1145) (-1145))) (-15 -3239 ((-1251))) (-15 -2203 ((-112) |#5| |#5|)) (-15 -3028 ((-635 |#5|) (-635 |#5|))) (-15 -3770 ((-112) |#5| |#5|)) (-15 -4101 ((-112) |#5| |#5|)) (-15 -3658 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3578 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1827 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3879 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1886 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3739 ((-112) |#5| |#5|)) (-15 -3739 ((-112) |#5| (-635 |#5|))) (-15 -4230 ((-635 |#5|) (-635 |#5|))) (-15 -1409 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2159 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-15 -1943 ((-635 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2668 ((-3 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1094))
-((-2668 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -3846 (-635 *9)) (|:| -3798 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-1094 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1059 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -3846 (-635 *9)) (|:| -3798 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-1094 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -3798 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))) (-1409 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1094 *5 *6 *7 *8 *3)))) (-3739 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-1886 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3879 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-1827 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-3578 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-3658 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-4101 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3770 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3028 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))) (-2203 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))) (-3239 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-2090 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2090 ((-1251) (-1145) (-1145) (-1145))) (-15 -3239 ((-1251))) (-15 -2203 ((-112) |#5| |#5|)) (-15 -3028 ((-635 |#5|) (-635 |#5|))) (-15 -3770 ((-112) |#5| |#5|)) (-15 -4101 ((-112) |#5| |#5|)) (-15 -3658 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3578 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1827 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3879 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -1886 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3739 ((-112) |#5| |#5|)) (-15 -3739 ((-112) |#5| (-635 |#5|))) (-15 -4230 ((-635 |#5|) (-635 |#5|))) (-15 -1409 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2159 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-15 -1943 ((-635 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -2668 ((-3 (-2 (|:| -3846 (-635 |#4|)) (|:| -3798 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-4307 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|) 95)) (-1716 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#4| |#4| |#5|) 71)) (-4084 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|) 89)) (-4178 (((-635 |#5|) |#4| |#5|) 109)) (-2011 (((-635 |#5|) |#4| |#5|) 116)) (-3015 (((-635 |#5|) |#4| |#5|) 117)) (-3771 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|) 96)) (-1382 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|) 115)) (-3052 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3878 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#3| (-112)) 83) (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-4141 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|) 78)) (-1492 (((-1251)) 37)) (-2845 (((-1251)) 26)) (-3451 (((-1251) (-1145) (-1145) (-1145)) 33)) (-2587 (((-1251) (-1145) (-1145) (-1145)) 22)))
-(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2587 ((-1251) (-1145) (-1145) (-1145))) (-15 -2845 ((-1251))) (-15 -3451 ((-1251) (-1145) (-1145) (-1145))) (-15 -1492 ((-1251))) (-15 -1716 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -3878 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3878 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#3| (-112))) (-15 -4141 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -4084 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -3052 ((-112) |#4| |#5|)) (-15 -3771 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -4178 ((-635 |#5|) |#4| |#5|)) (-15 -1382 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -2011 ((-635 |#5|) |#4| |#5|)) (-15 -3052 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -3015 ((-635 |#5|) |#4| |#5|)) (-15 -4307 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1059 |#1| |#2| |#3| |#4|)) (T -1095))
-((-4307 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3015 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3052 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-2011 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-1382 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-4178 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3771 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3052 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-4084 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-4141 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-3878 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9)))) (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -3798 *9)))) (-5 *1 (-1095 *6 *7 *4 *8 *9)))) (-3878 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1095 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3)))) (-1716 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))) (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))) (-1492 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-3451 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))) (-2845 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251)) (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))) (-2587 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251)) (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2587 ((-1251) (-1145) (-1145) (-1145))) (-15 -2845 ((-1251))) (-15 -3451 ((-1251) (-1145) (-1145) (-1145))) (-15 -1492 ((-1251))) (-15 -1716 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -3878 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3878 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) |#3| (-112))) (-15 -4141 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -4084 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#4| |#5|)) (-15 -3052 ((-112) |#4| |#5|)) (-15 -3771 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -4178 ((-635 |#5|) |#4| |#5|)) (-15 -1382 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -2011 ((-635 |#5|) |#4| |#5|)) (-15 -3052 ((-635 (-2 (|:| |val| (-112)) (|:| -3798 |#5|))) |#4| |#5|)) (-15 -3015 ((-635 |#5|) |#4| |#5|)) (-15 -4307 ((-635 (-2 (|:| |val| |#4|) (|:| -3798 |#5|))) |#4| |#5|)))
-((-3929 (((-112) $ $) 7)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) 85)) (-3055 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-4078 (((-635 |#3|) $) 33)) (-3369 (((-112) $) 26)) (-1852 (((-112) $) 17 (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) 101) (((-112) $) 97)) (-2299 ((|#4| |#4| $) 92)) (-2018 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| $) 126)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) 27)) (-3651 (((-112) $ (-762)) 44)) (-2072 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) 79)) (-3457 (($) 45 T CONST)) (-3614 (((-112) $) 22 (|has| |#1| (-550)))) (-1293 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2211 (((-112) $ $) 23 (|has| |#1| (-550)))) (-3554 (((-112) $) 25 (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1542 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) 36)) (-3226 (($ (-635 |#4|)) 35)) (-3168 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-3188 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2388 ((|#4| |#4| $) 87)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) 105)) (-2497 (((-112) |#4| $) 136)) (-2990 (((-112) |#4| $) 133)) (-3119 (((-112) |#4| $) 137) (((-112) $) 134)) (-2917 (((-635 |#4|) $) 52 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) 104) (((-112) $) 103)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) 43)) (-3486 (((-635 |#4|) $) 53 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 47)) (-2327 (((-635 |#3|) $) 32)) (-3541 (((-112) |#3| $) 31)) (-3212 (((-112) $ (-762)) 42)) (-2510 (((-1145) $) 9)) (-1948 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-4069 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| |#4| $) 127)) (-1514 (((-3 |#4| "failed") $) 83)) (-2681 (((-635 $) |#4| $) 129)) (-2015 (((-3 (-112) (-635 $)) |#4| $) 132)) (-4294 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3490 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3987 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-2367 (((-635 |#4|) $) 107)) (-2643 (((-112) |#4| $) 99) (((-112) $) 95)) (-1401 ((|#4| |#4| $) 90)) (-3879 (((-112) $ $) 110)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) 100) (((-112) $) 96)) (-2224 ((|#4| |#4| $) 91)) (-1688 (((-1107) $) 10)) (-3156 (((-3 |#4| "failed") $) 84)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2562 (((-3 $ "failed") $ |#4|) 78)) (-2319 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3314 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) 38)) (-3711 (((-112) $) 41)) (-2876 (($) 40)) (-4263 (((-762) $) 106)) (-1698 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4383)))) (-4098 (($ $) 39)) (-3441 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 60)) (-3121 (($ $ |#3|) 28)) (-2402 (($ $ |#3|) 30)) (-2004 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-3940 (((-853) $) 11) (((-635 |#4|) $) 37)) (-1435 (((-762) $) 76 (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3745 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2831 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) 81)) (-3337 (((-112) |#4| $) 135)) (-4062 (((-112) |#3| $) 80)) (-1708 (((-112) $ $) 6)) (-1596 (((-762) $) 46 (|has| $ (-6 -4383)))))
-(((-1096 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1096))
-NIL
-(-13 (-1059 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1059 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
-((-2227 (((-635 (-558)) (-558) (-558) (-558)) 22)) (-1557 (((-635 (-558)) (-558) (-558) (-558)) 12)) (-1446 (((-635 (-558)) (-558) (-558) (-558)) 18)) (-3864 (((-558) (-558) (-558)) 9)) (-2608 (((-1246 (-558)) (-635 (-558)) (-1246 (-558)) (-558)) 45) (((-1246 (-558)) (-1246 (-558)) (-1246 (-558)) (-558)) 40)) (-4042 (((-635 (-558)) (-635 (-558)) (-635 (-558)) (-112)) 27)) (-1525 (((-679 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558))) 44)) (-1620 (((-679 (-558)) (-635 (-558)) (-635 (-558))) 32)) (-2329 (((-635 (-679 (-558))) (-635 (-558))) 34)) (-1790 (((-635 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558))) 48)) (-2822 (((-679 (-558)) (-635 (-558)) (-635 (-558)) (-635 (-558))) 56)))
-(((-1097) (-10 -7 (-15 -2822 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -1790 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -2329 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -1620 ((-679 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -1525 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -4042 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-112))) (-15 -2608 ((-1246 (-558)) (-1246 (-558)) (-1246 (-558)) (-558))) (-15 -2608 ((-1246 (-558)) (-635 (-558)) (-1246 (-558)) (-558))) (-15 -3864 ((-558) (-558) (-558))) (-15 -1446 ((-635 (-558)) (-558) (-558) (-558))) (-15 -1557 ((-635 (-558)) (-558) (-558) (-558))) (-15 -2227 ((-635 (-558)) (-558) (-558) (-558))))) (T -1097))
-((-2227 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))) (-1557 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))) (-1446 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))) (-3864 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1097)))) (-2608 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-635 (-558))) (-5 *4 (-558)) (-5 *1 (-1097)))) (-2608 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-558)) (-5 *1 (-1097)))) (-4042 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *3 (-112)) (-5 *1 (-1097)))) (-1525 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-679 (-558))) (-5 *3 (-635 (-558))) (-5 *1 (-1097)))) (-1620 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-1097)))) (-1790 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *3 (-679 (-558))) (-5 *1 (-1097)))) (-2822 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))))
-(-10 -7 (-15 -2822 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -1790 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -2329 ((-635 (-679 (-558))) (-635 (-558)))) (-15 -1620 ((-679 (-558)) (-635 (-558)) (-635 (-558)))) (-15 -1525 ((-679 (-558)) (-635 (-558)) (-635 (-558)) (-679 (-558)))) (-15 -4042 ((-635 (-558)) (-635 (-558)) (-635 (-558)) (-112))) (-15 -2608 ((-1246 (-558)) (-1246 (-558)) (-1246 (-558)) (-558))) (-15 -2608 ((-1246 (-558)) (-635 (-558)) (-1246 (-558)) (-558))) (-15 -3864 ((-558) (-558) (-558))) (-15 -1446 ((-635 (-558)) (-558) (-558) (-558))) (-15 -1557 ((-635 (-558)) (-558) (-558) (-558))) (-15 -2227 ((-635 (-558)) (-558) (-558) (-558))))
-((** (($ $ (-911)) 10)))
-(((-1098 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-911)))) (-1099)) (T -1098))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-911))))
-((-3929 (((-112) $ $) 7)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)) (** (($ $ (-911)) 13)) (* (($ $ $) 14)))
-(((-1099) (-139)) (T -1099))
-((* (*1 *1 *1 *1) (-4 *1 (-1099))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1099)) (-5 *2 (-911)))))
-(-13 (-1087) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-911)))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL (|has| |#3| (-1087)))) (-3124 (((-112) $) NIL (|has| |#3| (-130)))) (-1441 (($ (-911)) NIL (|has| |#3| (-1039)))) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2707 (($ $ $) NIL (|has| |#3| (-784)))) (-1868 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3651 (((-112) $ (-762)) NIL)) (-2507 (((-762)) NIL (|has| |#3| (-367)))) (-1334 (((-558) $) NIL (|has| |#3| (-839)))) (-4077 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1087)))) (-3226 (((-558) $) NIL (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087)))) (((-406 (-558)) $) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087)))) ((|#3| $) NIL (|has| |#3| (-1087)))) (-1918 (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#3| (-631 (-558))) (|has| |#3| (-1039)))) (((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) NIL (|has| |#3| (-1039))) (((-679 |#3|) (-679 $)) NIL (|has| |#3| (-1039)))) (-3248 (((-3 $ "failed") $) NIL (|has| |#3| (-717)))) (-3692 (($) NIL (|has| |#3| (-367)))) (-3683 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#3| $ (-558)) 12)) (-4053 (((-112) $) NIL (|has| |#3| (-839)))) (-2917 (((-635 |#3|) $) NIL (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL (|has| |#3| (-717)))) (-2032 (((-112) $) NIL (|has| |#3| (-839)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-3486 (((-635 |#3|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-3674 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#3| |#3|) $) NIL)) (-1486 (((-911) $) NIL (|has| |#3| (-367)))) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#3| (-1087)))) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-2349 (($ (-911)) NIL (|has| |#3| (-367)))) (-1688 (((-1107) $) NIL (|has| |#3| (-1087)))) (-3156 ((|#3| $) NIL (|has| (-558) (-841)))) (-2830 (($ $ |#3|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087))))) (-4318 (((-635 |#3|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#3| $ (-558) |#3|) NIL) ((|#3| $ (-558)) NIL)) (-2823 ((|#3| $ $) NIL (|has| |#3| (-1039)))) (-3982 (($ (-1246 |#3|)) NIL)) (-2887 (((-133)) NIL (|has| |#3| (-362)))) (-3780 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039)))) (-1698 (((-762) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383))) (((-762) |#3| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#3| (-1087))))) (-4098 (($ $) NIL)) (-3940 (((-1246 |#3|) $) NIL) (($ (-558)) NIL (-3994 (-12 (|has| |#3| (-1028 (-558))) (|has| |#3| (-1087))) (|has| |#3| (-1039)))) (($ (-406 (-558))) NIL (-12 (|has| |#3| (-1028 (-406 (-558)))) (|has| |#3| (-1087)))) (($ |#3|) NIL (|has| |#3| (-1087))) (((-853) $) NIL (|has| |#3| (-605 (-853))))) (-2417 (((-762)) NIL (|has| |#3| (-1039)))) (-2831 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4383)))) (-4241 (($ $) NIL (|has| |#3| (-839)))) (-2207 (($) NIL (|has| |#3| (-130)) CONST)) (-2220 (($) NIL (|has| |#3| (-717)) CONST)) (-3042 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-762)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1039)))) (($ $ (-1163)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#3| (-890 (-1163))) (|has| |#3| (-1039)))) (($ $ (-1 |#3| |#3|) (-762)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039)))) (-1757 (((-112) $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1737 (((-112) $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1708 (((-112) $ $) NIL (|has| |#3| (-1087)))) (-1749 (((-112) $ $) NIL (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1728 (((-112) $ $) 17 (-3994 (|has| |#3| (-784)) (|has| |#3| (-839))))) (-1805 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1796 (($ $ $) NIL (|has| |#3| (-1039))) (($ $) NIL (|has| |#3| (-1039)))) (-1785 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-762)) NIL (|has| |#3| (-717))) (($ $ (-911)) NIL (|has| |#3| (-717)))) (* (($ (-558) $) NIL (|has| |#3| (-1039))) (($ $ $) NIL (|has| |#3| (-717))) (($ $ |#3|) NIL (|has| |#3| (-717))) (($ |#3| $) NIL (|has| |#3| (-717))) (($ (-762) $) NIL (|has| |#3| (-130))) (($ (-911) $) NIL (|has| |#3| (-25)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1100 |#1| |#2| |#3|) (-237 |#1| |#3|) (-762) (-762) (-784)) (T -1100))
+((-4011 (((-112) $ $) 7)) (-3997 (((-112) $) 32)) (-1730 ((|#2| $) 27)) (-1669 (((-112) $) 33)) (-3595 ((|#1| $) 28)) (-3285 (((-112) $) 35)) (-1328 (((-112) $) 37)) (-1448 (((-112) $) 34)) (-1764 (((-1148) $) 9)) (-2382 (((-112) $) 31)) (-1750 ((|#3| $) 26)) (-1714 (((-1110) $) 10)) (-1422 (((-112) $) 30)) (-4205 ((|#4| $) 25)) (-2345 ((|#5| $) 24)) (-3360 (((-112) $ $) 38)) (-2277 (($ $ (-561)) 20) (($ $ (-638 (-561))) 19)) (-1721 (((-638 $) $) 29)) (-4174 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-638 $)) 39)) (-4022 (((-856) $) 11)) (-3731 (($ $) 22)) (-3719 (($ $) 23)) (-2988 (((-112) $) 36)) (-1733 (((-112) $ $) 6)) (-3498 (((-561) $) 21)))
+(((-1093 |#1| |#2| |#3| |#4| |#5|) (-139) (-1090) (-1090) (-1090) (-1090) (-1090)) (T -1093))
+((-3360 (*1 *2 *1 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-3997 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))) (-1721 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-638 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-3719 (*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-3731 (*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-561)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))))
+(-13 (-1090) (-613 |t#1|) (-613 |t#2|) (-613 |t#3|) (-613 |t#4|) (-613 |t#4|) (-613 |t#5|) (-613 (-638 $)) (-10 -8 (-15 -3360 ((-112) $ $)) (-15 -1328 ((-112) $)) (-15 -2988 ((-112) $)) (-15 -3285 ((-112) $)) (-15 -1448 ((-112) $)) (-15 -1669 ((-112) $)) (-15 -3997 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -1422 ((-112) $)) (-15 -1721 ((-638 $) $)) (-15 -3595 (|t#1| $)) (-15 -1730 (|t#2| $)) (-15 -1750 (|t#3| $)) (-15 -4205 (|t#4| $)) (-15 -2345 (|t#5| $)) (-15 -3719 ($ $)) (-15 -3731 ($ $)) (-15 -3498 ((-561) $)) (-15 -2277 ($ $ (-561))) (-15 -2277 ($ $ (-638 (-561))))))
+(((-102) . T) ((-608 (-856)) . T) ((-613 (-638 $)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 |#4|) . T) ((-613 |#5|) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-3997 (((-112) $) NIL)) (-1730 (((-1166) $) NIL)) (-1669 (((-112) $) NIL)) (-3595 (((-1148) $) NIL)) (-3285 (((-112) $) NIL)) (-1328 (((-112) $) NIL)) (-1448 (((-112) $) NIL)) (-1764 (((-1148) $) NIL)) (-2382 (((-112) $) NIL)) (-1750 (((-561) $) NIL)) (-1714 (((-1110) $) NIL)) (-1422 (((-112) $) NIL)) (-4205 (((-224) $) NIL)) (-2345 (((-856) $) NIL)) (-3360 (((-112) $ $) NIL)) (-2277 (($ $ (-561)) NIL) (($ $ (-638 (-561))) NIL)) (-1721 (((-638 $) $) NIL)) (-4174 (($ (-1148)) NIL) (($ (-1166)) NIL) (($ (-561)) NIL) (($ (-224)) NIL) (($ (-856)) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL)) (-3731 (($ $) NIL)) (-3719 (($ $) NIL)) (-2988 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3498 (((-561) $) NIL)))
+(((-1094) (-1093 (-1148) (-1166) (-561) (-224) (-856))) (T -1094))
+NIL
+(-1093 (-1148) (-1166) (-561) (-224) (-856))
+((-4011 (((-112) $ $) NIL)) (-3997 (((-112) $) 39)) (-1730 ((|#2| $) 42)) (-1669 (((-112) $) 18)) (-3595 ((|#1| $) 19)) (-3285 (((-112) $) 37)) (-1328 (((-112) $) 14)) (-1448 (((-112) $) 38)) (-1764 (((-1148) $) NIL)) (-2382 (((-112) $) 40)) (-1750 ((|#3| $) 44)) (-1714 (((-1110) $) NIL)) (-1422 (((-112) $) 41)) (-4205 ((|#4| $) 43)) (-2345 ((|#5| $) 45)) (-3360 (((-112) $ $) 36)) (-2277 (($ $ (-561)) 56) (($ $ (-638 (-561))) 58)) (-1721 (((-638 $) $) 24)) (-4174 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-638 $)) 46)) (-4022 (((-856) $) 25)) (-3731 (($ $) 23)) (-3719 (($ $) 52)) (-2988 (((-112) $) 21)) (-1733 (((-112) $ $) 35)) (-3498 (((-561) $) 54)))
+(((-1095 |#1| |#2| |#3| |#4| |#5|) (-1093 |#1| |#2| |#3| |#4| |#5|) (-1090) (-1090) (-1090) (-1090) (-1090)) (T -1095))
+NIL
+(-1093 |#1| |#2| |#3| |#4| |#5|)
+((-2633 (((-1258) $) 23)) (-1304 (($ (-1166) (-433) |#2|) 11)) (-4022 (((-856) $) 16)))
+(((-1096 |#1| |#2|) (-13 (-394) (-10 -8 (-15 -1304 ($ (-1166) (-433) |#2|)))) (-844) (-429 |#1|)) (T -1096))
+((-1304 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844)) (-5 *1 (-1096 *5 *4)) (-4 *4 (-429 *5)))))
+(-13 (-394) (-10 -8 (-15 -1304 ($ (-1166) (-433) |#2|))))
+((-3145 (((-112) |#5| |#5|) 37)) (-2608 (((-112) |#5| |#5|) 51)) (-3857 (((-112) |#5| (-638 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-2838 (((-112) (-638 |#4|) (-638 |#4|)) 57)) (-4193 (((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) 62)) (-2189 (((-1258)) 33)) (-2616 (((-1258) (-1148) (-1148) (-1148)) 29)) (-1349 (((-638 |#5|) (-638 |#5|)) 81)) (-3743 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) 79)) (-3537 (((-638 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112)) 101)) (-3949 (((-112) |#5| |#5|) 46)) (-2086 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2811 (((-112) (-638 |#4|) (-638 |#4|)) 56)) (-2983 (((-112) (-638 |#4|) (-638 |#4|)) 58)) (-3863 (((-112) (-638 |#4|) (-638 |#4|)) 59)) (-3956 (((-3 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3351 (((-638 |#5|) (-638 |#5|)) 42)))
+(((-1097 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2616 ((-1258) (-1148) (-1148) (-1148))) (-15 -2189 ((-1258))) (-15 -3145 ((-112) |#5| |#5|)) (-15 -3351 ((-638 |#5|) (-638 |#5|))) (-15 -3949 ((-112) |#5| |#5|)) (-15 -2608 ((-112) |#5| |#5|)) (-15 -2838 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2811 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2983 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3863 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2086 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3857 ((-112) |#5| |#5|)) (-15 -3857 ((-112) |#5| (-638 |#5|))) (-15 -1349 ((-638 |#5|) (-638 |#5|))) (-15 -4193 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -3743 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-15 -3537 ((-638 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -3956 ((-3 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1097))
+((-3956 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3360 (-638 *9)) (|:| -1510 *4) (|:| |ineq| (-638 *9)))) (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-3537 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| -3360 (-638 *9)) (|:| -1510 *10) (|:| |ineq| (-638 *9))))) (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1510 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-4193 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *8 *3)))) (-3857 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2086 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3863 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2983 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2811 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-2608 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3145 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-2189 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2616 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2616 ((-1258) (-1148) (-1148) (-1148))) (-15 -2189 ((-1258))) (-15 -3145 ((-112) |#5| |#5|)) (-15 -3351 ((-638 |#5|) (-638 |#5|))) (-15 -3949 ((-112) |#5| |#5|)) (-15 -2608 ((-112) |#5| |#5|)) (-15 -2838 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2811 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2983 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -3863 ((-112) (-638 |#4|) (-638 |#4|))) (-15 -2086 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3857 ((-112) |#5| |#5|)) (-15 -3857 ((-112) |#5| (-638 |#5|))) (-15 -1349 ((-638 |#5|) (-638 |#5|))) (-15 -4193 ((-112) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -3743 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-15 -3537 ((-638 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|)))) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -3956 ((-3 (-2 (|:| -3360 (-638 |#4|)) (|:| -1510 |#5|) (|:| |ineq| (-638 |#4|))) "failed") (-638 |#4|) |#5| (-638 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1980 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|) 95)) (-4138 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#4| |#4| |#5|) 71)) (-2473 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|) 89)) (-2972 (((-638 |#5|) |#4| |#5|) 109)) (-1441 (((-638 |#5|) |#4| |#5|) 116)) (-3495 (((-638 |#5|) |#4| |#5|) 117)) (-2636 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|) 96)) (-4362 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|) 115)) (-1329 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2160 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#3| (-112)) 83) (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2943 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|) 78)) (-2069 (((-1258)) 37)) (-1519 (((-1258)) 26)) (-2224 (((-1258) (-1148) (-1148) (-1148)) 33)) (-3226 (((-1258) (-1148) (-1148) (-1148)) 22)))
+(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3226 ((-1258) (-1148) (-1148) (-1148))) (-15 -1519 ((-1258))) (-15 -2224 ((-1258) (-1148) (-1148) (-1148))) (-15 -2069 ((-1258))) (-15 -4138 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -2160 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2160 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#3| (-112))) (-15 -2943 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -2473 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -1329 ((-112) |#4| |#5|)) (-15 -2636 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -2972 ((-638 |#5|) |#4| |#5|)) (-15 -4362 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -1441 ((-638 |#5|) |#4| |#5|)) (-15 -1329 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -3495 ((-638 |#5|) |#4| |#5|)) (-15 -1980 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1098))
+((-1980 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3495 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1329 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1441 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-4362 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2972 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-1329 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2473 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2943 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1510 *9)))) (-5 *1 (-1098 *6 *7 *4 *8 *9)))) (-2160 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-4138 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2069 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-2224 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-1519 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3226 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3226 ((-1258) (-1148) (-1148) (-1148))) (-15 -1519 ((-1258))) (-15 -2224 ((-1258) (-1148) (-1148) (-1148))) (-15 -2069 ((-1258))) (-15 -4138 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -2160 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2160 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) |#3| (-112))) (-15 -2943 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -2473 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#4| |#5|)) (-15 -1329 ((-112) |#4| |#5|)) (-15 -2636 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -2972 ((-638 |#5|) |#4| |#5|)) (-15 -4362 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -1441 ((-638 |#5|) |#4| |#5|)) (-15 -1329 ((-638 (-2 (|:| |val| (-112)) (|:| -1510 |#5|))) |#4| |#5|)) (-15 -3495 ((-638 |#5|) |#4| |#5|)) (-15 -1980 ((-638 (-2 (|:| |val| |#4|) (|:| -1510 |#5|))) |#4| |#5|)))
+((-4011 (((-112) $ $) 7)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) 85)) (-3047 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1412 (((-638 |#3|) $) 33)) (-1978 (((-112) $) 26)) (-2701 (((-112) $) 17 (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) 101) (((-112) $) 97)) (-2427 ((|#4| |#4| $) 92)) (-1591 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) 27)) (-1630 (((-112) $ (-765)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) 79)) (-1965 (($) 45 T CONST)) (-2002 (((-112) $) 22 (|has| |#1| (-553)))) (-1951 (((-112) $ $) 24 (|has| |#1| (-553)))) (-2959 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1361 (((-112) $) 25 (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1825 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) 36)) (-3938 (($ (-638 |#4|)) 35)) (-1445 (((-3 $ "failed") $) 82)) (-3320 ((|#4| |#4| $) 89)) (-1472 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3372 ((|#4| |#4| $) 87)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) 105)) (-3871 (((-112) |#4| $) 136)) (-2639 (((-112) |#4| $) 133)) (-1786 (((-112) |#4| $) 137) (((-112) $) 134)) (-3571 (((-638 |#4|) $) 52 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) 104) (((-112) $) 103)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) 43)) (-1305 (((-638 |#4|) $) 53 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 47)) (-2209 (((-638 |#3|) $) 32)) (-2866 (((-112) |#3| $) 31)) (-2230 (((-112) $ (-765)) 42)) (-1764 (((-1148) $) 9)) (-2987 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-1631 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| |#4| $) 127)) (-1520 (((-3 |#4| "failed") $) 83)) (-3316 (((-638 $) |#4| $) 129)) (-4021 (((-3 (-112) (-638 $)) |#4| $) 132)) (-1924 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2579 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-2961 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-1981 (((-638 |#4|) $) 107)) (-2153 (((-112) |#4| $) 99) (((-112) $) 95)) (-1829 ((|#4| |#4| $) 90)) (-3863 (((-112) $ $) 110)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-1714 (((-1110) $) 10)) (-1433 (((-3 |#4| "failed") $) 84)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2916 (((-3 $ "failed") $ |#4|) 78)) (-1416 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-2123 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) 38)) (-1928 (((-112) $) 41)) (-3170 (($) 40)) (-2894 (((-765) $) 106)) (-1724 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4390)))) (-4187 (($ $) 39)) (-4174 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 60)) (-1755 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-2074 (($ $) 88)) (-1967 (($ $ |#3|) 29)) (-4022 (((-856) $) 11) (((-638 |#4|) $) 37)) (-4161 (((-765) $) 76 (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2930 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) 81)) (-2827 (((-112) |#4| $) 135)) (-1751 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3498 (((-765) $) 46 (|has| $ (-6 -4390)))))
+(((-1099 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1099))
+NIL
+(-13 (-1062 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
+((-3462 (((-638 (-561)) (-561) (-561) (-561)) 22)) (-3197 (((-638 (-561)) (-561) (-561) (-561)) 12)) (-3014 (((-638 (-561)) (-561) (-561) (-561)) 18)) (-2072 (((-561) (-561) (-561)) 9)) (-1566 (((-1253 (-561)) (-638 (-561)) (-1253 (-561)) (-561)) 45) (((-1253 (-561)) (-1253 (-561)) (-1253 (-561)) (-561)) 40)) (-2406 (((-638 (-561)) (-638 (-561)) (-638 (-561)) (-112)) 27)) (-1936 (((-682 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561))) 44)) (-2915 (((-682 (-561)) (-638 (-561)) (-638 (-561))) 32)) (-1879 (((-638 (-682 (-561))) (-638 (-561))) 34)) (-3172 (((-638 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561))) 48)) (-1699 (((-682 (-561)) (-638 (-561)) (-638 (-561)) (-638 (-561))) 56)))
+(((-1100) (-10 -7 (-15 -1699 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -3172 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -1879 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -2915 ((-682 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -1936 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -2406 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-112))) (-15 -1566 ((-1253 (-561)) (-1253 (-561)) (-1253 (-561)) (-561))) (-15 -1566 ((-1253 (-561)) (-638 (-561)) (-1253 (-561)) (-561))) (-15 -2072 ((-561) (-561) (-561))) (-15 -3014 ((-638 (-561)) (-561) (-561) (-561))) (-15 -3197 ((-638 (-561)) (-561) (-561) (-561))) (-15 -3462 ((-638 (-561)) (-561) (-561) (-561))))) (T -1100))
+((-3462 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))) (-3197 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))) (-3014 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))) (-2072 (*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1100)))) (-1566 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1253 (-561))) (-5 *3 (-638 (-561))) (-5 *4 (-561)) (-5 *1 (-1100)))) (-1566 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1253 (-561))) (-5 *3 (-561)) (-5 *1 (-1100)))) (-2406 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *3 (-112)) (-5 *1 (-1100)))) (-1936 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-682 (-561))) (-5 *3 (-638 (-561))) (-5 *1 (-1100)))) (-2915 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-1100)))) (-3172 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *3 (-682 (-561))) (-5 *1 (-1100)))) (-1699 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))))
+(-10 -7 (-15 -1699 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -3172 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -1879 ((-638 (-682 (-561))) (-638 (-561)))) (-15 -2915 ((-682 (-561)) (-638 (-561)) (-638 (-561)))) (-15 -1936 ((-682 (-561)) (-638 (-561)) (-638 (-561)) (-682 (-561)))) (-15 -2406 ((-638 (-561)) (-638 (-561)) (-638 (-561)) (-112))) (-15 -1566 ((-1253 (-561)) (-1253 (-561)) (-1253 (-561)) (-561))) (-15 -1566 ((-1253 (-561)) (-638 (-561)) (-1253 (-561)) (-561))) (-15 -2072 ((-561) (-561) (-561))) (-15 -3014 ((-638 (-561)) (-561) (-561) (-561))) (-15 -3197 ((-638 (-561)) (-561) (-561) (-561))) (-15 -3462 ((-638 (-561)) (-561) (-561) (-561))))
+((** (($ $ (-914)) 10)))
+(((-1101 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-914)))) (-1102)) (T -1101))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-914))))
+((-4011 (((-112) $ $) 7)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)) (** (($ $ (-914)) 13)) (* (($ $ $) 14)))
+(((-1102) (-139)) (T -1102))
+((* (*1 *1 *1 *1) (-4 *1 (-1102))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-914)))))
+(-13 (-1090) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-914)))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL (|has| |#3| (-1090)))) (-2800 (((-112) $) NIL (|has| |#3| (-130)))) (-2923 (($ (-914)) NIL (|has| |#3| (-1042)))) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-2090 (($ $ $) NIL (|has| |#3| (-787)))) (-2249 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1630 (((-112) $ (-765)) NIL)) (-1393 (((-765)) NIL (|has| |#3| (-367)))) (-2666 (((-561) $) NIL (|has| |#3| (-842)))) (-4167 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1090)))) (-3938 (((-561) $) NIL (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090)))) (((-406 (-561)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090)))) ((|#3| $) NIL (|has| |#3| (-1090)))) (-3602 (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#3| (-634 (-561))) (|has| |#3| (-1042)))) (((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042)))) (-3466 (((-3 $ "failed") $) NIL (|has| |#3| (-720)))) (-1332 (($) NIL (|has| |#3| (-367)))) (-2073 ((|#3| $ (-561) |#3|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#3| $ (-561)) 12)) (-3201 (((-112) $) NIL (|has| |#3| (-842)))) (-3571 (((-638 |#3|) $) NIL (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL (|has| |#3| (-720)))) (-2110 (((-112) $) NIL (|has| |#3| (-842)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1305 (((-638 |#3|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2065 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#3| |#3|) $) NIL)) (-3198 (((-914) $) NIL (|has| |#3| (-367)))) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#3| (-1090)))) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-2413 (($ (-914)) NIL (|has| |#3| (-367)))) (-1714 (((-1110) $) NIL (|has| |#3| (-1090)))) (-1433 ((|#3| $) NIL (|has| (-561) (-844)))) (-1799 (($ $ |#3|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090)))) (($ $ (-638 |#3|) (-638 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090))))) (-2658 (((-638 |#3|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#3| $ (-561) |#3|) NIL) ((|#3| $ (-561)) NIL)) (-1327 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1690 (($ (-1253 |#3|)) NIL)) (-3084 (((-133)) NIL (|has| |#3| (-362)))) (-3238 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-1724 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#3| (-1090))))) (-4187 (($ $) NIL)) (-4022 (((-1253 |#3|) $) NIL) (($ (-561)) NIL (-4007 (-12 (|has| |#3| (-1031 (-561))) (|has| |#3| (-1090))) (|has| |#3| (-1042)))) (($ (-406 (-561))) NIL (-12 (|has| |#3| (-1031 (-406 (-561)))) (|has| |#3| (-1090)))) (($ |#3|) NIL (|has| |#3| (-1090))) (((-856) $) NIL (|has| |#3| (-608 (-856))))) (-4259 (((-765)) NIL (|has| |#3| (-1042)))) (-3715 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4390)))) (-3749 (($ $) NIL (|has| |#3| (-842)))) (-2211 (($) NIL (|has| |#3| (-130)) CONST)) (-2222 (($) NIL (|has| |#3| (-720)) CONST)) (-3122 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-1782 (((-112) $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1762 (((-112) $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1733 (((-112) $ $) NIL (|has| |#3| (-1090)))) (-1773 (((-112) $ $) NIL (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1754 (((-112) $ $) 17 (-4007 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-1833 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1824 (($ $ $) NIL (|has| |#3| (-1042))) (($ $) NIL (|has| |#3| (-1042)))) (-1813 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-765)) NIL (|has| |#3| (-720))) (($ $ (-914)) NIL (|has| |#3| (-720)))) (* (($ (-561) $) NIL (|has| |#3| (-1042))) (($ $ $) NIL (|has| |#3| (-720))) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ (-765) $) NIL (|has| |#3| (-130))) (($ (-914) $) NIL (|has| |#3| (-25)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1103 |#1| |#2| |#3|) (-237 |#1| |#3|) (-765) (-765) (-787)) (T -1103))
NIL
(-237 |#1| |#3|)
-((-2566 (((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 36)) (-1531 (((-558) (-1219 |#2| |#1|)) 68 (|has| |#1| (-450)))) (-2395 (((-558) (-1219 |#2| |#1|)) 53)) (-2357 (((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 44)) (-3826 (((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 67 (|has| |#1| (-450)))) (-3010 (((-635 |#1|) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 47)) (-2561 (((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|)) 52)))
-(((-1101 |#1| |#2|) (-10 -7 (-15 -2566 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -2357 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3010 ((-635 |#1|) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -2561 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -2395 ((-558) (-1219 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3826 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -1531 ((-558) (-1219 |#2| |#1|)))) |%noBranch|)) (-811) (-1163)) (T -1101))
-((-1531 (*1 *2 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-3826 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-2561 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))) (-3010 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 *4)) (-5 *1 (-1101 *4 *5)))) (-2357 (*1 *2 *3 *3) (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4))) (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))) (-2566 (*1 *2 *3 *3) (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4))) (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))))
-(-10 -7 (-15 -2566 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -2357 ((-635 (-1219 |#2| |#1|)) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -3010 ((-635 |#1|) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -2561 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -2395 ((-558) (-1219 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3826 ((-558) (-1219 |#2| |#1|) (-1219 |#2| |#1|))) (-15 -1531 ((-558) (-1219 |#2| |#1|)))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-3624 (($ (-504) (-1105)) 14)) (-2751 (((-1105) $) 20)) (-3179 (((-504) $) 17)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 28) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1102) (-13 (-1070) (-10 -8 (-15 -3624 ($ (-504) (-1105))) (-15 -3179 ((-504) $)) (-15 -2751 ((-1105) $))))) (T -1102))
-((-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1102)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1102)))) (-2751 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1102)))))
-(-13 (-1070) (-10 -8 (-15 -3624 ($ (-504) (-1105))) (-15 -3179 ((-504) $)) (-15 -2751 ((-1105) $))))
-((-1334 (((-3 (-558) "failed") |#2| (-1163) |#2| (-1145)) 17) (((-3 (-558) "failed") |#2| (-1163) (-834 |#2|)) 15) (((-3 (-558) "failed") |#2|) 54)))
-(((-1103 |#1| |#2|) (-10 -7 (-15 -1334 ((-3 (-558) "failed") |#2|)) (-15 -1334 ((-3 (-558) "failed") |#2| (-1163) (-834 |#2|))) (-15 -1334 ((-3 (-558) "failed") |#2| (-1163) |#2| (-1145)))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)) (-450)) (-13 (-27) (-1185) (-429 |#1|))) (T -1103))
-((-1334 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-1145)) (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450))) (-5 *2 (-558)) (-5 *1 (-1103 *6 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))))) (-1334 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6))) (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450))) (-5 *2 (-558)) (-5 *1 (-1103 *6 *3)))) (-1334 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450))) (-5 *2 (-558)) (-5 *1 (-1103 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))))
-(-10 -7 (-15 -1334 ((-3 (-558) "failed") |#2|)) (-15 -1334 ((-3 (-558) "failed") |#2| (-1163) (-834 |#2|))) (-15 -1334 ((-3 (-558) "failed") |#2| (-1163) |#2| (-1145))))
-((-1334 (((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)) (-1145)) 35) (((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-834 (-406 (-942 |#1|)))) 30) (((-3 (-558) "failed") (-406 (-942 |#1|))) 13)))
-(((-1104 |#1|) (-10 -7 (-15 -1334 ((-3 (-558) "failed") (-406 (-942 |#1|)))) (-15 -1334 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-834 (-406 (-942 |#1|))))) (-15 -1334 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)) (-1145)))) (-450)) (T -1104))
-((-1334 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1163)) (-5 *5 (-1145)) (-4 *6 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *6)))) (-1334 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 (-406 (-942 *6)))) (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *6)))) (-1334 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *4)))))
-(-10 -7 (-15 -1334 ((-3 (-558) "failed") (-406 (-942 |#1|)))) (-15 -1334 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-834 (-406 (-942 |#1|))))) (-15 -1334 ((-3 (-558) "failed") (-406 (-942 |#1|)) (-1163) (-406 (-942 |#1|)) (-1145))))
-((-3929 (((-112) $ $) NIL)) (-3967 (((-1168) $) 10)) (-3910 (((-635 (-1168)) $) 11)) (-2751 (($ (-635 (-1168)) (-1168)) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 22)) (-1708 (((-112) $ $) 14)))
-(((-1105) (-13 (-1087) (-10 -8 (-15 -2751 ($ (-635 (-1168)) (-1168))) (-15 -3967 ((-1168) $)) (-15 -3910 ((-635 (-1168)) $))))) (T -1105))
-((-2751 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1168))) (-5 *3 (-1168)) (-5 *1 (-1105)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1105)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1105)))))
-(-13 (-1087) (-10 -8 (-15 -2751 ($ (-635 (-1168)) (-1168))) (-15 -3967 ((-1168) $)) (-15 -3910 ((-635 (-1168)) $))))
-((-3395 (((-315 (-558)) (-48)) 12)))
-(((-1106) (-10 -7 (-15 -3395 ((-315 (-558)) (-48))))) (T -1106))
-((-3395 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-558))) (-5 *1 (-1106)))))
-(-10 -7 (-15 -3395 ((-315 (-558)) (-48))))
-((-3929 (((-112) $ $) NIL)) (-3209 (($ $) 40)) (-3124 (((-112) $) 64)) (-2182 (($ $ $) 47)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 89)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1997 (($ $ $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1502 (($ $ $ $) 74)) (-2018 (($ $) NIL)) (-4110 (((-417 $) $) NIL)) (-1599 (((-112) $ $) NIL)) (-2507 (((-762)) 76)) (-1334 (((-558) $) NIL)) (-3277 (($ $ $) 71)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL)) (-3226 (((-558) $) NIL)) (-1709 (($ $ $) 58)) (-1918 (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 83) (((-679 (-558)) (-679 $)) 27)) (-3248 (((-3 $ "failed") $) NIL)) (-3904 (((-3 (-406 (-558)) "failed") $) NIL)) (-2288 (((-112) $) NIL)) (-1673 (((-406 (-558)) $) NIL)) (-3692 (($) 86) (($ $) 87)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL)) (-2992 (((-112) $) NIL)) (-2283 (($ $ $ $) NIL)) (-4089 (($ $ $) 84)) (-4053 (((-112) $) NIL)) (-3322 (($ $ $) NIL)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL)) (-3999 (((-112) $) 65)) (-1495 (((-112) $) 63)) (-2143 (($ $) 41)) (-2521 (((-3 $ "failed") $) NIL)) (-2032 (((-112) $) 75)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3664 (($ $ $ $) 72)) (-2142 (($ $ $) 67) (($) 38 T CONST)) (-2281 (($ $ $) 66) (($) 37 T CONST)) (-1397 (($ $) NIL)) (-1486 (((-911) $) 79)) (-2958 (($ $) 70)) (-1500 (($ $ $) NIL) (($ (-635 $)) NIL)) (-2510 (((-1145) $) NIL)) (-1521 (($ $ $) NIL)) (-1823 (($) NIL T CONST)) (-2349 (($ (-911)) 78)) (-1610 (($ $) 49)) (-1688 (((-1107) $) 69)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL)) (-1544 (($ $ $) 61) (($ (-635 $)) NIL)) (-3608 (($ $) NIL)) (-3939 (((-417 $) $) NIL)) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL)) (-2861 (((-3 $ "failed") $ $) NIL)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4254 (((-112) $) NIL)) (-1562 (((-762) $) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 60)) (-3780 (($ $ (-762)) NIL) (($ $) NIL)) (-3915 (($ $) 50)) (-4098 (($ $) NIL)) (-3441 (((-558) $) 31) (((-534) $) NIL) (((-882 (-558)) $) NIL) (((-378) $) NIL) (((-224) $) NIL)) (-3940 (((-853) $) 30) (($ (-558)) 85) (($ $) NIL) (($ (-558)) 85)) (-2417 (((-762)) NIL)) (-2626 (((-112) $ $) NIL)) (-3207 (($ $ $) NIL)) (-2636 (($) 36)) (-2671 (((-112) $ $) NIL)) (-4363 (($ $ $ $) 73)) (-4241 (($ $) 62)) (-3245 (($ $ $) 43)) (-2207 (($) 34 T CONST)) (-4275 (($ $ $) 46)) (-2220 (($) 35 T CONST)) (-2555 (((-1145) $) 20) (((-1145) $ (-112)) 22) (((-1251) (-813) $) 23) (((-1251) (-813) $ (-112)) 24)) (-2875 (($ $) 44)) (-3042 (($ $ (-762)) NIL) (($ $) NIL)) (-4261 (($ $ $) 45)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 39)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 48)) (-3234 (($ $ $) 42)) (-1796 (($ $) 51) (($ $ $) 53)) (-1785 (($ $ $) 52)) (** (($ $ (-911)) NIL) (($ $ (-762)) 56)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 33) (($ $ $) 54)))
-(((-1107) (-13 (-543) (-835) (-651) (-819) (-10 -8 (-6 -4370) (-6 -4375) (-6 -4371) (-15 -2143 ($ $)) (-15 -2182 ($ $ $)) (-15 -2875 ($ $)) (-15 -4261 ($ $ $)) (-15 -4275 ($ $ $))))) (T -1107))
-((-2143 (*1 *1 *1) (-5 *1 (-1107))) (-2182 (*1 *1 *1 *1) (-5 *1 (-1107))) (-2875 (*1 *1 *1) (-5 *1 (-1107))) (-4261 (*1 *1 *1 *1) (-5 *1 (-1107))) (-4275 (*1 *1 *1 *1) (-5 *1 (-1107))))
-(-13 (-543) (-835) (-651) (-819) (-10 -8 (-6 -4370) (-6 -4375) (-6 -4371) (-15 -2143 ($ $)) (-15 -2182 ($ $ $)) (-15 -2875 ($ $)) (-15 -4261 ($ $ $)) (-15 -4275 ($ $ $))))
+((-3934 (((-638 (-1226 |#2| |#1|)) (-1226 |#2| |#1|) (-1226 |#2| |#1|)) 36)) (-3247 (((-561) (-1226 |#2| |#1|)) 68 (|has| |#1| (-450)))) (-4245 (((-561) (-1226 |#2| |#1|)) 53)) (-3049 (((-638 (-1226 |#2| |#1|)) (-1226 |#2| |#1|) (-1226 |#2| |#1|)) 44)) (-4076 (((-561) (-1226 |#2| |#1|) (-1226 |#2| |#1|)) 67 (|has| |#1| (-450)))) (-2226 (((-638 |#1|) (-1226 |#2| |#1|) (-1226 |#2| |#1|)) 47)) (-3272 (((-561) (-1226 |#2| |#1|) (-1226 |#2| |#1|)) 52)))
+(((-1104 |#1| |#2|) (-10 -7 (-15 -3934 ((-638 (-1226 |#2| |#1|)) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -3049 ((-638 (-1226 |#2| |#1|)) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -2226 ((-638 |#1|) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -3272 ((-561) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -4245 ((-561) (-1226 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -4076 ((-561) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -3247 ((-561) (-1226 |#2| |#1|)))) |%noBranch|)) (-814) (-1166)) (T -1104))
+((-3247 (*1 *2 *3) (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-4076 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))) (-2226 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 *4)) (-5 *1 (-1104 *4 *5)))) (-3049 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1226 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1226 *5 *4)))) (-3934 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1226 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1226 *5 *4)))))
+(-10 -7 (-15 -3934 ((-638 (-1226 |#2| |#1|)) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -3049 ((-638 (-1226 |#2| |#1|)) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -2226 ((-638 |#1|) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -3272 ((-561) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -4245 ((-561) (-1226 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -4076 ((-561) (-1226 |#2| |#1|) (-1226 |#2| |#1|))) (-15 -3247 ((-561) (-1226 |#2| |#1|)))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-1863 (($ (-504) (-1108)) 14)) (-2807 (((-1108) $) 20)) (-3269 (((-504) $) 17)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 28) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1105) (-13 (-1073) (-10 -8 (-15 -1863 ($ (-504) (-1108))) (-15 -3269 ((-504) $)) (-15 -2807 ((-1108) $))))) (T -1105))
+((-1863 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-1105)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1105)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1105)))))
+(-13 (-1073) (-10 -8 (-15 -1863 ($ (-504) (-1108))) (-15 -3269 ((-504) $)) (-15 -2807 ((-1108) $))))
+((-2666 (((-3 (-561) "failed") |#2| (-1166) |#2| (-1148)) 17) (((-3 (-561) "failed") |#2| (-1166) (-837 |#2|)) 15) (((-3 (-561) "failed") |#2|) 54)))
+(((-1106 |#1| |#2|) (-10 -7 (-15 -2666 ((-3 (-561) "failed") |#2|)) (-15 -2666 ((-3 (-561) "failed") |#2| (-1166) (-837 |#2|))) (-15 -2666 ((-3 (-561) "failed") |#2| (-1166) |#2| (-1148)))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)) (-450)) (-13 (-27) (-1190) (-429 |#1|))) (T -1106))
+((-2666 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-561)) (-5 *1 (-1106 *6 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))))) (-2666 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6))) (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-561)) (-5 *1 (-1106 *6 *3)))) (-2666 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-561)) (-5 *1 (-1106 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))))
+(-10 -7 (-15 -2666 ((-3 (-561) "failed") |#2|)) (-15 -2666 ((-3 (-561) "failed") |#2| (-1166) (-837 |#2|))) (-15 -2666 ((-3 (-561) "failed") |#2| (-1166) |#2| (-1148))))
+((-2666 (((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)) (-1148)) 35) (((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-837 (-406 (-945 |#1|)))) 30) (((-3 (-561) "failed") (-406 (-945 |#1|))) 13)))
+(((-1107 |#1|) (-10 -7 (-15 -2666 ((-3 (-561) "failed") (-406 (-945 |#1|)))) (-15 -2666 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-837 (-406 (-945 |#1|))))) (-15 -2666 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)) (-1148)))) (-450)) (T -1107))
+((-2666 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *6)))) (-2666 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 (-406 (-945 *6)))) (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *6)))) (-2666 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *4)))))
+(-10 -7 (-15 -2666 ((-3 (-561) "failed") (-406 (-945 |#1|)))) (-15 -2666 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-837 (-406 (-945 |#1|))))) (-15 -2666 ((-3 (-561) "failed") (-406 (-945 |#1|)) (-1166) (-406 (-945 |#1|)) (-1148))))
+((-4011 (((-112) $ $) NIL)) (-4052 (((-1171) $) 10)) (-3989 (((-638 (-1171)) $) 11)) (-2807 (($ (-638 (-1171)) (-1171)) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 22)) (-1733 (((-112) $ $) 14)))
+(((-1108) (-13 (-1090) (-10 -8 (-15 -2807 ($ (-638 (-1171)) (-1171))) (-15 -4052 ((-1171) $)) (-15 -3989 ((-638 (-1171)) $))))) (T -1108))
+((-2807 (*1 *1 *2 *3) (-12 (-5 *2 (-638 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1108)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1108)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1108)))))
+(-13 (-1090) (-10 -8 (-15 -2807 ($ (-638 (-1171)) (-1171))) (-15 -4052 ((-1171) $)) (-15 -3989 ((-638 (-1171)) $))))
+((-3699 (((-315 (-561)) (-48)) 12)))
+(((-1109) (-10 -7 (-15 -3699 ((-315 (-561)) (-48))))) (T -1109))
+((-3699 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-561))) (-5 *1 (-1109)))))
+(-10 -7 (-15 -3699 ((-315 (-561)) (-48))))
+((-4011 (((-112) $ $) NIL)) (-3310 (($ $) 40)) (-2800 (((-112) $) 64)) (-2190 (($ $ $) 47)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 89)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-1854 (($ $ $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ $ $) 74)) (-1591 (($ $) NIL)) (-3422 (((-417 $) $) NIL)) (-1671 (((-112) $ $) NIL)) (-1393 (((-765)) 76)) (-2666 (((-561) $) NIL)) (-3368 (($ $ $) 71)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL)) (-3938 (((-561) $) NIL)) (-1793 (($ $ $) 58)) (-3602 (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 83) (((-682 (-561)) (-682 $)) 27)) (-3466 (((-3 $ "failed") $) NIL)) (-2937 (((-3 (-406 (-561)) "failed") $) NIL)) (-3798 (((-112) $) NIL)) (-3354 (((-406 (-561)) $) NIL)) (-1332 (($) 86) (($ $) 87)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL)) (-2737 (((-112) $) NIL)) (-1288 (($ $ $ $) NIL)) (-3531 (($ $ $) 84)) (-3201 (((-112) $) NIL)) (-2227 (($ $ $) NIL)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL)) (-3113 (((-112) $) 65)) (-3402 (((-112) $) 63)) (-2159 (($ $) 41)) (-1663 (((-3 $ "failed") $) NIL)) (-2110 (((-112) $) 75)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-3386 (($ $ $ $) 72)) (-3443 (($ $ $) 67) (($) 38 T CONST)) (-2986 (($ $ $) 66) (($) 37 T CONST)) (-3908 (($ $) NIL)) (-3198 (((-914) $) 79)) (-3617 (($ $) 70)) (-1582 (($ $ $) NIL) (($ (-638 $)) NIL)) (-1764 (((-1148) $) NIL)) (-4305 (($ $ $) NIL)) (-3721 (($) NIL T CONST)) (-2413 (($ (-914)) 78)) (-4103 (($ $) 49)) (-1714 (((-1110) $) 69)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL)) (-1623 (($ $ $) 61) (($ (-638 $)) NIL)) (-2101 (($ $) NIL)) (-1657 (((-417 $) $) NIL)) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL)) (-1756 (((-3 $ "failed") $ $) NIL)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL)) (-2736 (((-112) $) NIL)) (-3569 (((-765) $) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 60)) (-3238 (($ $ (-765)) NIL) (($ $) NIL)) (-3994 (($ $) 50)) (-4187 (($ $) NIL)) (-4174 (((-561) $) 31) (((-534) $) NIL) (((-885 (-561)) $) NIL) (((-378) $) NIL) (((-224) $) NIL)) (-4022 (((-856) $) 30) (($ (-561)) 85) (($ $) NIL) (($ (-561)) 85)) (-4259 (((-765)) NIL)) (-1383 (((-112) $ $) NIL)) (-3599 (($ $ $) NIL)) (-2684 (($) 36)) (-3168 (((-112) $ $) NIL)) (-3383 (($ $ $ $) 73)) (-3749 (($ $) 62)) (-2236 (($ $ $) 43)) (-2211 (($) 34 T CONST)) (-2920 (($ $ $) 46)) (-2222 (($) 35 T CONST)) (-3677 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1258) (-816) $) 23) (((-1258) (-816) $ (-112)) 24)) (-2931 (($ $) 44)) (-3122 (($ $ (-765)) NIL) (($ $) NIL)) (-2908 (($ $ $) 45)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 39)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 48)) (-2225 (($ $ $) 42)) (-1824 (($ $) 51) (($ $ $) 53)) (-1813 (($ $ $) 52)) (** (($ $ (-914)) NIL) (($ $ (-765)) 56)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 33) (($ $ $) 54)))
+(((-1110) (-13 (-543) (-838) (-654) (-822) (-10 -8 (-6 -4377) (-6 -4382) (-6 -4378) (-15 -2159 ($ $)) (-15 -2190 ($ $ $)) (-15 -2931 ($ $)) (-15 -2908 ($ $ $)) (-15 -2920 ($ $ $))))) (T -1110))
+((-2159 (*1 *1 *1) (-5 *1 (-1110))) (-2190 (*1 *1 *1 *1) (-5 *1 (-1110))) (-2931 (*1 *1 *1) (-5 *1 (-1110))) (-2908 (*1 *1 *1 *1) (-5 *1 (-1110))) (-2920 (*1 *1 *1 *1) (-5 *1 (-1110))))
+(-13 (-543) (-838) (-654) (-822) (-10 -8 (-6 -4377) (-6 -4382) (-6 -4378) (-15 -2159 ($ $)) (-15 -2190 ($ $ $)) (-15 -2931 ($ $)) (-15 -2908 ($ $ $)) (-15 -2920 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-1999 ((|#1| $) 44)) (-3651 (((-112) $ (-762)) 8)) (-3457 (($) 7 T CONST)) (-3106 ((|#1| |#1| $) 46)) (-1627 ((|#1| $) 45)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1498 ((|#1| $) 39)) (-2650 (($ |#1| $) 40)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-2533 ((|#1| $) 41)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-3752 (((-762) $) 43)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) 42)) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1108 |#1|) (-139) (-1200)) (T -1108))
-((-3106 (*1 *2 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4383) (-15 -3106 (|t#1| |t#1| $)) (-15 -1627 (|t#1| $)) (-15 -1999 (|t#1| $)) (-15 -3752 ((-762) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-1719 ((|#3| $) 76)) (-3302 (((-3 (-558) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3226 (((-558) $) NIL) (((-406 (-558)) $) NIL) ((|#3| $) 37)) (-1918 (((-679 (-558)) (-679 $)) NIL) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL) (((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 $) (-1246 $)) 73) (((-679 |#3|) (-679 $)) 65)) (-3780 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163)) NIL) (($ $ (-762)) NIL) (($ $) NIL)) (-4139 ((|#3| $) 78)) (-3439 ((|#4| $) 32)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ |#3|) 16)) (** (($ $ (-911)) NIL) (($ $ (-762)) 15) (($ $ (-558)) 82)))
-(((-1109 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 -4139 (|#3| |#1|)) (-15 -1719 (|#3| |#1|)) (-15 -3439 (|#4| |#1|)) (-15 -1918 ((-679 |#3|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#3| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3940 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -3940 ((-853) |#1|))) (-1110 |#2| |#3| |#4| |#5|) (-762) (-1039) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1109))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 -4139 (|#3| |#1|)) (-15 -1719 (|#3| |#1|)) (-15 -3439 (|#4| |#1|)) (-15 -1918 ((-679 |#3|) (-679 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 |#3|)) (|:| |vec| (-1246 |#3|))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 |#1|) (-1246 |#1|))) (-15 -1918 ((-679 (-558)) (-679 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#3| |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|) (-762))) (-15 -3780 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3940 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1719 ((|#2| $) 71)) (-2086 (((-112) $) 111)) (-1868 (((-3 $ "failed") $ $) 19)) (-1693 (((-112) $) 109)) (-3651 (((-112) $ (-762)) 101)) (-1866 (($ |#2|) 74)) (-3457 (($) 17 T CONST)) (-3125 (($ $) 128 (|has| |#2| (-306)))) (-2500 ((|#3| $ (-558)) 123)) (-3302 (((-3 (-558) "failed") $) 86 (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) 83 (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) 80)) (-3226 (((-558) $) 85 (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) 82 (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) 81)) (-1918 (((-679 (-558)) (-679 $)) 78 (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 77 (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 76) (((-679 |#2|) (-679 $)) 75)) (-3248 (((-3 $ "failed") $) 33)) (-1489 (((-762) $) 129 (|has| |#2| (-550)))) (-3620 ((|#2| $ (-558) (-558)) 121)) (-2917 (((-635 |#2|) $) 94 (|has| $ (-6 -4383)))) (-3999 (((-112) $) 31)) (-2556 (((-762) $) 130 (|has| |#2| (-550)))) (-3693 (((-635 |#4|) $) 131 (|has| |#2| (-550)))) (-1430 (((-762) $) 117)) (-1444 (((-762) $) 118)) (-4007 (((-112) $ (-762)) 102)) (-2591 ((|#2| $) 66 (|has| |#2| (-6 (-4385 "*"))))) (-3942 (((-558) $) 113)) (-1478 (((-558) $) 115)) (-3486 (((-635 |#2|) $) 93 (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383))))) (-4153 (((-558) $) 114)) (-3508 (((-558) $) 116)) (-2144 (($ (-635 (-635 |#2|))) 108)) (-3674 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3922 (((-635 (-635 |#2|)) $) 119)) (-3212 (((-112) $ (-762)) 103)) (-2510 (((-1145) $) 9)) (-3191 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-1688 (((-1107) $) 10)) (-2861 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-550)))) (-3314 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) 107)) (-3711 (((-112) $) 104)) (-2876 (($) 105)) (-2276 ((|#2| $ (-558) (-558) |#2|) 122) ((|#2| $ (-558) (-558)) 120)) (-3780 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-762)) 51) (($ $ (-635 (-1163)) (-635 (-762))) 44 (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) 43 (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) 42 (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) 41 (|has| |#2| (-890 (-1163)))) (($ $ (-762)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-4139 ((|#2| $) 70)) (-2049 (($ (-635 |#2|)) 73)) (-1312 (((-112) $) 110)) (-3439 ((|#3| $) 72)) (-3843 ((|#2| $) 67 (|has| |#2| (-6 (-4385 "*"))))) (-1698 (((-762) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4383))) (((-762) |#2| $) 92 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 106)) (-3962 ((|#4| $ (-558)) 124)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 84 (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) 79)) (-2417 (((-762)) 28)) (-2831 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4383)))) (-3551 (((-112) $) 112)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-762)) 49) (($ $ (-635 (-1163)) (-635 (-762))) 48 (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) 47 (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) 46 (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) 45 (|has| |#2| (-890 (-1163)))) (($ $ (-762)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 64 (|has| |#2| (-362)))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-1596 (((-762) $) 100 (|has| $ (-6 -4383)))))
-(((-1110 |#1| |#2| |#3| |#4|) (-139) (-762) (-1039) (-237 |t#1| |t#2|) (-237 |t#1| |t#2|)) (T -1110))
-((-1866 (*1 *1 *2) (-12 (-4 *2 (-1039)) (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-635 *4)) (-4 *4 (-1039)) (-4 *1 (-1110 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1110 *3 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039)))) (-3191 (*1 *1 *1) (|partial| -12 (-4 *1 (-1110 *2 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1110 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))))
-(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1042 |t#1| |t#1| |t#2| |t#3| |t#4|) (-410 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-708 |t#2|)) |%noBranch|) (-15 -1866 ($ |t#2|)) (-15 -2049 ($ (-635 |t#2|))) (-15 -3439 (|t#3| $)) (-15 -1719 (|t#2| $)) (-15 -4139 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4385 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3843 (|t#2| $)) (-15 -2591 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -3191 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4385 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 #0=(-406 (-558))) |has| |#2| (-1028 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-376 |#2|) . T) ((-410 |#2|) . T) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-638 |#2|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#2| (-631 (-558))) ((-631 |#2|) . T) ((-708 |#2|) -3994 (|has| |#2| (-171)) (|has| |#2| (-6 (-4385 "*")))) ((-717) . T) ((-890 (-1163)) |has| |#2| (-890 (-1163))) ((-1042 |#1| |#1| |#2| |#3| |#4|) . T) ((-1028 #0#) |has| |#2| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#2| (-1028 (-558))) ((-1028 |#2|) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1200) . T))
-((-1320 ((|#4| |#4|) 70)) (-3498 ((|#4| |#4|) 65)) (-3989 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|))) |#4| |#3|) 78)) (-3589 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1287 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1111 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3498 (|#4| |#4|)) (-15 -1287 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1320 (|#4| |#4|)) (-15 -3589 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3989 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|))) |#4| |#3|))) (-306) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -1111))
-((-3989 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4)))) (-5 *1 (-1111 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-1320 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-1287 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
-(-10 -7 (-15 -3498 (|#4| |#4|)) (-15 -1287 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1320 (|#4| |#4|)) (-15 -3589 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3989 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2743 (-635 |#3|))) |#4| |#3|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 17)) (-4078 (((-635 |#2|) $) 158)) (-3907 (((-1159 $) $ |#2|) 53) (((-1159 |#1|) $) 42)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 107 (|has| |#1| (-550)))) (-3244 (($ $) 109 (|has| |#1| (-550)))) (-4326 (((-112) $) 111 (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 |#2|)) 191)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) 155) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 |#2| "failed") $) NIL)) (-3226 ((|#1| $) 153) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) ((|#2| $) NIL)) (-2862 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-3905 (($ $) 195)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) 81)) (-3199 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-529 |#2|) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#1| (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#1| (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-3999 (((-112) $) 19)) (-2987 (((-762) $) 26)) (-4068 (($ (-1159 |#1|) |#2|) 47) (($ (-1159 $) |#2|) 63)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) 32)) (-4056 (($ |#1| (-529 |#2|)) 70) (($ $ |#2| (-762)) 51) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ |#2|) NIL)) (-3672 (((-529 |#2|) $) 185) (((-762) $ |#2|) 186) (((-635 (-762)) $ (-635 |#2|)) 187)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) 119)) (-2135 (((-3 |#2| "failed") $) 160)) (-3867 (($ $) 194)) (-3881 ((|#1| $) 36)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| |#2|) (|:| -1857 (-762))) "failed") $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) 33)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 137 (|has| |#1| (-450)))) (-1544 (($ (-635 $)) 142 (|has| |#1| (-450))) (($ $ $) 129 (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#1| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-899)))) (-2861 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-550)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-635 |#2|) (-635 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-635 |#2|) (-635 $)) 175)) (-3789 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-3780 (($ $ |#2|) 193) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-4263 (((-529 |#2|) $) 181) (((-762) $ |#2|) 177) (((-635 (-762)) $ (-635 |#2|)) 179)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| |#1| (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| |#1| (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| |#1| (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-3012 ((|#1| $) 125 (|has| |#1| (-450))) (($ $ |#2|) 128 (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-3940 (((-853) $) 148) (($ (-558)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-550))) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-3712 (((-635 |#1|) $) 151)) (-3143 ((|#1| $ (-529 |#2|)) 72) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) 78)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) 114 (|has| |#1| (-550)))) (-2207 (($) 12 T CONST)) (-2220 (($) 14 T CONST)) (-3042 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) 96)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-1796 (($ $) 84) (($ $ $) 94)) (-1785 (($ $ $) 48)) (** (($ $ (-911)) 101) (($ $ (-762)) 99)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 87) (($ $ $) 64) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-1112 |#1| |#2|) (-939 |#1| (-529 |#2|) |#2|) (-1039) (-841)) (T -1112))
-NIL
-(-939 |#1| (-529 |#2|) |#2|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 |#2|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2277 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 116 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2254 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 112 (|has| |#1| (-38 (-406 (-558)))))) (-2298 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2584 (((-942 |#1|) $ (-762)) NIL) (((-942 |#1|) $ (-762) (-762)) NIL)) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-762) $ |#2|) NIL) (((-762) $ |#2| (-762)) NIL)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3594 (((-112) $) NIL)) (-4056 (($ $ (-635 |#2|) (-635 (-529 |#2|))) NIL) (($ $ |#2| (-529 |#2|)) NIL) (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-762)) 55) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4342 (($ $) 110 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1337 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-3824 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-558)))))) (-2319 (($ $ (-762)) 13)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3944 (($ $) 108 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (($ $ |#2| $) 94) (($ $ (-635 |#2|) (-635 $)) 87) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-3780 (($ $ |#2|) 97) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-4263 (((-529 |#2|) $) NIL)) (-3215 (((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|))) 76)) (-2312 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 118 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 114 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 15)) (-3940 (((-853) $) 179) (($ (-558)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-550))) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#2|) 62) (($ |#3|) 60)) (-3143 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL) ((|#3| $ (-762)) 38)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-4175 (($ $) 152 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 156 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-2038 (($ $) 158 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 154 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 150 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 47 T CONST)) (-2220 (($) 54 T CONST)) (-3042 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-762)) NIL) (($ $ (-635 |#2|) (-635 (-762))) NIL)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 58)) (** (($ $ (-911)) NIL) (($ $ (-762)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 100 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 57) (($ $ (-406 (-558))) 105 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 103 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
-(((-1113 |#1| |#2| |#3|) (-13 (-731 |#1| |#2|) (-10 -8 (-15 -3143 (|#3| $ (-762))) (-15 -3940 ($ |#2|)) (-15 -3940 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3215 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $ |#2| |#1|)) (-15 -3824 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1039) (-841) (-939 |#1| (-529 |#2|) |#2|)) (T -1113))
-((-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *2 (-939 *4 (-529 *5) *5)) (-5 *1 (-1113 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-841)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *2 (-841)) (-5 *1 (-1113 *3 *2 *4)) (-4 *4 (-939 *3 (-529 *2) *2)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2)) (-4 *2 (-939 *3 (-529 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2)) (-4 *2 (-939 *3 (-529 *4) *4)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-841)) (-4 *7 (-939 *5 (-529 *6) *6)) (-4 *5 (-1039)) (-5 *2 (-1 (-1143 *7) *7)) (-5 *1 (-1113 *5 *6 *7)))) (-1337 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-4 *2 (-841)) (-5 *1 (-1113 *3 *2 *4)) (-4 *4 (-939 *3 (-529 *2) *2)))) (-3824 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1113 *4 *3 *5))) (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)) (-4 *3 (-841)) (-5 *1 (-1113 *4 *3 *5)) (-4 *5 (-939 *4 (-529 *3) *3)))))
-(-13 (-731 |#1| |#2|) (-10 -8 (-15 -3143 (|#3| $ (-762))) (-15 -3940 ($ |#2|)) (-15 -3940 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3215 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $ |#2| |#1|)) (-15 -3824 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-3929 (((-112) $ $) 7)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) 85)) (-3055 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-4078 (((-635 |#3|) $) 33)) (-3369 (((-112) $) 26)) (-1852 (((-112) $) 17 (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) 101) (((-112) $) 97)) (-2299 ((|#4| |#4| $) 92)) (-2018 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| $) 126)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) 27)) (-3651 (((-112) $ (-762)) 44)) (-2072 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) 79)) (-3457 (($) 45 T CONST)) (-3614 (((-112) $) 22 (|has| |#1| (-550)))) (-1293 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2211 (((-112) $ $) 23 (|has| |#1| (-550)))) (-3554 (((-112) $) 25 (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1542 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) 36)) (-3226 (($ (-635 |#4|)) 35)) (-3168 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-3188 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2388 ((|#4| |#4| $) 87)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) 105)) (-2497 (((-112) |#4| $) 136)) (-2990 (((-112) |#4| $) 133)) (-3119 (((-112) |#4| $) 137) (((-112) $) 134)) (-2917 (((-635 |#4|) $) 52 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) 104) (((-112) $) 103)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) 43)) (-3486 (((-635 |#4|) $) 53 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 47)) (-2327 (((-635 |#3|) $) 32)) (-3541 (((-112) |#3| $) 31)) (-3212 (((-112) $ (-762)) 42)) (-2510 (((-1145) $) 9)) (-1948 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-4069 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| |#4| $) 127)) (-1514 (((-3 |#4| "failed") $) 83)) (-2681 (((-635 $) |#4| $) 129)) (-2015 (((-3 (-112) (-635 $)) |#4| $) 132)) (-4294 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3490 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3987 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-2367 (((-635 |#4|) $) 107)) (-2643 (((-112) |#4| $) 99) (((-112) $) 95)) (-1401 ((|#4| |#4| $) 90)) (-3879 (((-112) $ $) 110)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) 100) (((-112) $) 96)) (-2224 ((|#4| |#4| $) 91)) (-1688 (((-1107) $) 10)) (-3156 (((-3 |#4| "failed") $) 84)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2562 (((-3 $ "failed") $ |#4|) 78)) (-2319 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-3314 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) 38)) (-3711 (((-112) $) 41)) (-2876 (($) 40)) (-4263 (((-762) $) 106)) (-1698 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4383)))) (-4098 (($ $) 39)) (-3441 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 60)) (-3121 (($ $ |#3|) 28)) (-2402 (($ $ |#3|) 30)) (-2004 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-3940 (((-853) $) 11) (((-635 |#4|) $) 37)) (-1435 (((-762) $) 76 (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3745 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2831 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) 81)) (-3337 (((-112) |#4| $) 135)) (-4062 (((-112) |#3| $) 80)) (-1708 (((-112) $ $) 6)) (-1596 (((-762) $) 46 (|has| $ (-6 -4383)))))
-(((-1114 |#1| |#2| |#3| |#4|) (-139) (-450) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1114))
-NIL
-(-13 (-1096 |t#1| |t#2| |t#3| |t#4|) (-775 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-775 |#1| |#2| |#3| |#4|) . T) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1059 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1193 |#1| |#2| |#3| |#4|) . T) ((-1200) . T))
-((-2692 (((-635 |#2|) |#1|) 12)) (-1874 (((-635 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-635 |#2|) |#1|) 49)) (-3701 (((-635 |#2|) |#2| |#2| |#2|) 36) (((-635 |#2|) |#1|) 47)) (-2145 ((|#2| |#1|) 43)) (-1394 (((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-2563 (((-635 |#2|) |#2| |#2|) 35) (((-635 |#2|) |#1|) 46)) (-1811 (((-635 |#2|) |#2| |#2| |#2| |#2|) 37) (((-635 |#2|) |#1|) 48)) (-1762 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-2971 ((|#2| |#2| |#2| |#2|) 40)) (-2779 ((|#2| |#2| |#2|) 39)) (-3342 ((|#2| |#2| |#2| |#2| |#2|) 41)))
-(((-1115 |#1| |#2|) (-10 -7 (-15 -2692 ((-635 |#2|) |#1|)) (-15 -2145 (|#2| |#1|)) (-15 -1394 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2563 ((-635 |#2|) |#1|)) (-15 -3701 ((-635 |#2|) |#1|)) (-15 -1811 ((-635 |#2|) |#1|)) (-15 -1874 ((-635 |#2|) |#1|)) (-15 -2563 ((-635 |#2|) |#2| |#2|)) (-15 -3701 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -1811 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1874 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2779 (|#2| |#2| |#2|)) (-15 -2971 (|#2| |#2| |#2| |#2|)) (-15 -3342 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1762 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1222 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (T -1115))
-((-1762 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-3342 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-2971 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-2779 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-1874 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-1811 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-3701 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-2563 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-3701 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-2563 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))) (-1394 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-2 (|:| |solns| (-635 *5)) (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1115 *3 *5)) (-4 *3 (-1222 *5)))) (-2145 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558))))))) (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -2692 ((-635 |#2|) |#1|)) (-15 -2145 (|#2| |#1|)) (-15 -1394 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2563 ((-635 |#2|) |#1|)) (-15 -3701 ((-635 |#2|) |#1|)) (-15 -1811 ((-635 |#2|) |#1|)) (-15 -1874 ((-635 |#2|) |#1|)) (-15 -2563 ((-635 |#2|) |#2| |#2|)) (-15 -3701 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -1811 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1874 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2779 (|#2| |#2| |#2|)) (-15 -2971 (|#2| |#2| |#2| |#2|)) (-15 -3342 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1762 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-1315 (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|))))) 95) (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163))) 94) (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|)))) 92) (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 90) (((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|)))) 75) (((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))) (-1163)) 76) (((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|))) 70) (((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)) (-1163)) 59)) (-4155 (((-635 (-635 (-315 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 88) (((-635 (-315 |#1|)) (-406 (-942 |#1|)) (-1163)) 43)) (-2729 (((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-406 (-942 |#1|)) (-1163)) 98) (((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163)) 97)))
-(((-1116 |#1|) (-10 -7 (-15 -1315 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -1315 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)))) (-15 -1315 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -1315 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -4155 ((-635 (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -4155 ((-635 (-635 (-315 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2729 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2729 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-406 (-942 |#1|)) (-1163)))) (-13 (-306) (-841) (-146))) (T -1116))
-((-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-315 *5)))) (-5 *1 (-1116 *5)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-315 *5))) (-5 *1 (-1116 *5)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-635 (-293 (-406 (-942 *4))))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-293 (-406 (-942 *5))))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-942 *4)))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-293 (-406 (-942 *4)))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1116 *4)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1116 *5)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1116 *4)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1116 *5)))))
-(-10 -7 (-15 -1315 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)) (-1163))) (-15 -1315 ((-635 (-293 (-315 |#1|))) (-406 (-942 |#1|)))) (-15 -1315 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -1315 ((-635 (-293 (-315 |#1|))) (-293 (-406 (-942 |#1|))))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-406 (-942 |#1|))))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -1315 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -4155 ((-635 (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -4155 ((-635 (-635 (-315 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2729 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2729 ((-1152 (-635 (-315 |#1|)) (-635 (-293 (-315 |#1|)))) (-406 (-942 |#1|)) (-1163))))
-((-2717 (((-406 (-1159 (-315 |#1|))) (-1246 (-315 |#1|)) (-406 (-1159 (-315 |#1|))) (-558)) 29)) (-4191 (((-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|)))) 40)))
-(((-1117 |#1|) (-10 -7 (-15 -4191 ((-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))))) (-15 -2717 ((-406 (-1159 (-315 |#1|))) (-1246 (-315 |#1|)) (-406 (-1159 (-315 |#1|))) (-558)))) (-13 (-550) (-841))) (T -1117))
-((-2717 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1159 (-315 *5)))) (-5 *3 (-1246 (-315 *5))) (-5 *4 (-558)) (-4 *5 (-13 (-550) (-841))) (-5 *1 (-1117 *5)))) (-4191 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1159 (-315 *3)))) (-4 *3 (-13 (-550) (-841))) (-5 *1 (-1117 *3)))))
-(-10 -7 (-15 -4191 ((-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))) (-406 (-1159 (-315 |#1|))))) (-15 -2717 ((-406 (-1159 (-315 |#1|))) (-1246 (-315 |#1|)) (-406 (-1159 (-315 |#1|))) (-558))))
-((-2692 (((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-315 |#1|))) (-635 (-1163))) 222) (((-635 (-293 (-315 |#1|))) (-315 |#1|) (-1163)) 20) (((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1163)) 26) (((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|))) 25) (((-635 (-293 (-315 |#1|))) (-315 |#1|)) 21)))
-(((-1118 |#1|) (-10 -7 (-15 -2692 ((-635 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -2692 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -2692 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1163))) (-15 -2692 ((-635 (-293 (-315 |#1|))) (-315 |#1|) (-1163))) (-15 -2692 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-315 |#1|))) (-635 (-1163))))) (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (T -1118))
-((-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1163))) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1118 *5)) (-5 *3 (-635 (-293 (-315 *5)))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5)) (-5 *3 (-315 *5)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5)) (-5 *3 (-293 (-315 *5))))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-293 (-315 *4))))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146))) (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-315 *4)))))
-(-10 -7 (-15 -2692 ((-635 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -2692 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -2692 ((-635 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1163))) (-15 -2692 ((-635 (-293 (-315 |#1|))) (-315 |#1|) (-1163))) (-15 -2692 ((-635 (-635 (-293 (-315 |#1|)))) (-635 (-293 (-315 |#1|))) (-635 (-1163)))))
-((-4073 ((|#2| |#2|) 20 (|has| |#1| (-841))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-1819 ((|#2| |#2|) 19 (|has| |#1| (-841))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
-(((-1119 |#1| |#2|) (-10 -7 (-15 -1819 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4073 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-841)) (PROGN (-15 -1819 (|#2| |#2|)) (-15 -4073 (|#2| |#2|))) |%noBranch|)) (-1200) (-13 (-596 (-558) |#1|) (-10 -7 (-6 -4383) (-6 -4384)))) (T -1119))
-((-4073 (*1 *2 *2) (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4383) (-6 -4384)))))) (-1819 (*1 *2 *2) (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4383) (-6 -4384)))))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4383) (-6 -4384)))))) (-1819 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4383) (-6 -4384)))))))
-(-10 -7 (-15 -1819 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4073 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-841)) (PROGN (-15 -1819 (|#2| |#2|)) (-15 -4073 (|#2| |#2|))) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-1538 (((-1151 3 |#1|) $) 107)) (-3527 (((-112) $) 72)) (-3061 (($ $ (-635 (-933 |#1|))) 20) (($ $ (-635 (-635 |#1|))) 75) (($ (-635 (-933 |#1|))) 74) (((-635 (-933 |#1|)) $) 73)) (-2828 (((-112) $) 41)) (-2064 (($ $ (-933 |#1|)) 46) (($ $ (-635 |#1|)) 51) (($ $ (-762)) 53) (($ (-933 |#1|)) 47) (((-933 |#1|) $) 45)) (-2624 (((-2 (|:| -1358 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762))) $) 105)) (-3247 (((-762) $) 26)) (-3236 (((-762) $) 25)) (-3050 (($ $ (-762) (-933 |#1|)) 39)) (-3526 (((-112) $) 82)) (-2572 (($ $ (-635 (-635 (-933 |#1|))) (-635 (-170)) (-170)) 89) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 91) (($ $ (-635 (-635 (-933 |#1|))) (-112) (-112)) 85) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 93) (($ (-635 (-635 (-933 |#1|)))) 86) (($ (-635 (-635 (-933 |#1|))) (-112) (-112)) 87) (((-635 (-635 (-933 |#1|))) $) 84)) (-3391 (($ (-635 $)) 28) (($ $ $) 29)) (-4156 (((-635 (-170)) $) 102)) (-2792 (((-635 (-933 |#1|)) $) 96)) (-3461 (((-635 (-635 (-170))) $) 101)) (-1608 (((-635 (-635 (-635 (-933 |#1|)))) $) NIL)) (-3539 (((-635 (-635 (-635 (-762)))) $) 99)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3873 (((-762) $ (-635 (-933 |#1|))) 37)) (-2997 (((-112) $) 54)) (-3588 (($ $ (-635 (-933 |#1|))) 56) (($ $ (-635 (-635 |#1|))) 62) (($ (-635 (-933 |#1|))) 57) (((-635 (-933 |#1|)) $) 55)) (-2013 (($) 23) (($ (-1151 3 |#1|)) 24)) (-4098 (($ $) 35)) (-1291 (((-635 $) $) 34)) (-2017 (($ (-635 $)) 31)) (-2161 (((-635 $) $) 33)) (-3940 (((-853) $) 111)) (-1803 (((-112) $) 64)) (-1615 (($ $ (-635 (-933 |#1|))) 66) (($ $ (-635 (-635 |#1|))) 69) (($ (-635 (-933 |#1|))) 67) (((-635 (-933 |#1|)) $) 65)) (-1846 (($ $) 106)) (-1708 (((-112) $ $) NIL)))
-(((-1120 |#1|) (-1121 |#1|) (-1039)) (T -1120))
-NIL
-(-1121 |#1|)
-((-3929 (((-112) $ $) 7)) (-1538 (((-1151 3 |#1|) $) 13)) (-3527 (((-112) $) 29)) (-3061 (($ $ (-635 (-933 |#1|))) 33) (($ $ (-635 (-635 |#1|))) 32) (($ (-635 (-933 |#1|))) 31) (((-635 (-933 |#1|)) $) 30)) (-2828 (((-112) $) 44)) (-2064 (($ $ (-933 |#1|)) 49) (($ $ (-635 |#1|)) 48) (($ $ (-762)) 47) (($ (-933 |#1|)) 46) (((-933 |#1|) $) 45)) (-2624 (((-2 (|:| -1358 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762))) $) 15)) (-3247 (((-762) $) 58)) (-3236 (((-762) $) 59)) (-3050 (($ $ (-762) (-933 |#1|)) 50)) (-3526 (((-112) $) 21)) (-2572 (($ $ (-635 (-635 (-933 |#1|))) (-635 (-170)) (-170)) 28) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 27) (($ $ (-635 (-635 (-933 |#1|))) (-112) (-112)) 26) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 25) (($ (-635 (-635 (-933 |#1|)))) 24) (($ (-635 (-635 (-933 |#1|))) (-112) (-112)) 23) (((-635 (-635 (-933 |#1|))) $) 22)) (-3391 (($ (-635 $)) 57) (($ $ $) 56)) (-4156 (((-635 (-170)) $) 16)) (-2792 (((-635 (-933 |#1|)) $) 20)) (-3461 (((-635 (-635 (-170))) $) 17)) (-1608 (((-635 (-635 (-635 (-933 |#1|)))) $) 18)) (-3539 (((-635 (-635 (-635 (-762)))) $) 19)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3873 (((-762) $ (-635 (-933 |#1|))) 51)) (-2997 (((-112) $) 39)) (-3588 (($ $ (-635 (-933 |#1|))) 43) (($ $ (-635 (-635 |#1|))) 42) (($ (-635 (-933 |#1|))) 41) (((-635 (-933 |#1|)) $) 40)) (-2013 (($) 61) (($ (-1151 3 |#1|)) 60)) (-4098 (($ $) 52)) (-1291 (((-635 $) $) 53)) (-2017 (($ (-635 $)) 55)) (-2161 (((-635 $) $) 54)) (-3940 (((-853) $) 11)) (-1803 (((-112) $) 34)) (-1615 (($ $ (-635 (-933 |#1|))) 38) (($ $ (-635 (-635 |#1|))) 37) (($ (-635 (-933 |#1|))) 36) (((-635 (-933 |#1|)) $) 35)) (-1846 (($ $) 14)) (-1708 (((-112) $ $) 6)))
-(((-1121 |#1|) (-139) (-1039)) (T -1121))
-((-3940 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-853)))) (-2013 (*1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1151 3 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-2161 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))) (-1291 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))) (-4098 (*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-933 *4))) (-4 *1 (-1121 *4)) (-4 *4 (-1039)) (-5 *2 (-762)))) (-3050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-933 *4)) (-4 *1 (-1121 *4)) (-4 *4 (-1039)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-933 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-933 *3)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-3588 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3588 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-1615 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-1615 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-1615 (*1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-1803 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-3061 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3061 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))) (-3061 (*1 *1 *2) (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-2572 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-933 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039)))) (-2572 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039)))) (-2572 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112)) (-4 *1 (-1121 *4)) (-4 *4 (-1039)))) (-2572 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112)) (-4 *1 (-1121 *4)) (-4 *4 (-1039)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 *3)))) (-4 *3 (-1039)) (-4 *1 (-1121 *3)))) (-2572 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112)) (-4 *4 (-1039)) (-4 *1 (-1121 *4)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-933 *3)))))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-635 (-762))))))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-635 (-933 *3))))))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-170)))))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-170))))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -1358 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762)))))) (-1846 (*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-1151 3 *3)))))
-(-13 (-1087) (-10 -8 (-15 -2013 ($)) (-15 -2013 ($ (-1151 3 |t#1|))) (-15 -3236 ((-762) $)) (-15 -3247 ((-762) $)) (-15 -3391 ($ (-635 $))) (-15 -3391 ($ $ $)) (-15 -2017 ($ (-635 $))) (-15 -2161 ((-635 $) $)) (-15 -1291 ((-635 $) $)) (-15 -4098 ($ $)) (-15 -3873 ((-762) $ (-635 (-933 |t#1|)))) (-15 -3050 ($ $ (-762) (-933 |t#1|))) (-15 -2064 ($ $ (-933 |t#1|))) (-15 -2064 ($ $ (-635 |t#1|))) (-15 -2064 ($ $ (-762))) (-15 -2064 ($ (-933 |t#1|))) (-15 -2064 ((-933 |t#1|) $)) (-15 -2828 ((-112) $)) (-15 -3588 ($ $ (-635 (-933 |t#1|)))) (-15 -3588 ($ $ (-635 (-635 |t#1|)))) (-15 -3588 ($ (-635 (-933 |t#1|)))) (-15 -3588 ((-635 (-933 |t#1|)) $)) (-15 -2997 ((-112) $)) (-15 -1615 ($ $ (-635 (-933 |t#1|)))) (-15 -1615 ($ $ (-635 (-635 |t#1|)))) (-15 -1615 ($ (-635 (-933 |t#1|)))) (-15 -1615 ((-635 (-933 |t#1|)) $)) (-15 -1803 ((-112) $)) (-15 -3061 ($ $ (-635 (-933 |t#1|)))) (-15 -3061 ($ $ (-635 (-635 |t#1|)))) (-15 -3061 ($ (-635 (-933 |t#1|)))) (-15 -3061 ((-635 (-933 |t#1|)) $)) (-15 -3527 ((-112) $)) (-15 -2572 ($ $ (-635 (-635 (-933 |t#1|))) (-635 (-170)) (-170))) (-15 -2572 ($ $ (-635 (-635 (-635 |t#1|))) (-635 (-170)) (-170))) (-15 -2572 ($ $ (-635 (-635 (-933 |t#1|))) (-112) (-112))) (-15 -2572 ($ $ (-635 (-635 (-635 |t#1|))) (-112) (-112))) (-15 -2572 ($ (-635 (-635 (-933 |t#1|))))) (-15 -2572 ($ (-635 (-635 (-933 |t#1|))) (-112) (-112))) (-15 -2572 ((-635 (-635 (-933 |t#1|))) $)) (-15 -3526 ((-112) $)) (-15 -2792 ((-635 (-933 |t#1|)) $)) (-15 -3539 ((-635 (-635 (-635 (-762)))) $)) (-15 -1608 ((-635 (-635 (-635 (-933 |t#1|)))) $)) (-15 -3461 ((-635 (-635 (-170))) $)) (-15 -4156 ((-635 (-170)) $)) (-15 -2624 ((-2 (|:| -1358 (-762)) (|:| |curves| (-762)) (|:| |polygons| (-762)) (|:| |constructs| (-762))) $)) (-15 -1846 ($ $)) (-15 -1538 ((-1151 3 |t#1|) $)) (-15 -3940 ((-853) $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 176) (($ (-1168)) NIL) (((-1168) $) 7)) (-2194 (((-112) $ (|[\|\|]| (-522))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-666))) 25) (((-112) $ (|[\|\|]| (-1256))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1102))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-671))) 49) (((-112) $ (|[\|\|]| (-515))) 53) (((-112) $ (|[\|\|]| (-1054))) 57) (((-112) $ (|[\|\|]| (-1257))) 61) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-661))) 73) (((-112) $ (|[\|\|]| (-310))) 77) (((-112) $ (|[\|\|]| (-1026))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-960))) 89) (((-112) $ (|[\|\|]| (-1061))) 93) (((-112) $ (|[\|\|]| (-1077))) 97) (((-112) $ (|[\|\|]| (-1083))) 101) (((-112) $ (|[\|\|]| (-618))) 105) (((-112) $ (|[\|\|]| (-1153))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-476))) 121) (((-112) $ (|[\|\|]| (-585))) 125) (((-112) $ (|[\|\|]| (-504))) 131) (((-112) $ (|[\|\|]| (-1145))) 135) (((-112) $ (|[\|\|]| (-558))) 139)) (-4127 (((-522) $) 18) (((-217) $) 22) (((-666) $) 26) (((-1256) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1102) $) 42) (((-96) $) 46) (((-671) $) 50) (((-515) $) 54) (((-1054) $) 58) (((-1257) $) 62) (((-523) $) 66) (((-153) $) 70) (((-661) $) 74) (((-310) $) 78) (((-1026) $) 82) (((-179) $) 86) (((-960) $) 90) (((-1061) $) 94) (((-1077) $) 98) (((-1083) $) 102) (((-618) $) 106) (((-1153) $) 110) (((-155) $) 114) (((-136) $) 118) (((-476) $) 122) (((-585) $) 126) (((-504) $) 132) (((-1145) $) 136) (((-558) $) 140)) (-1708 (((-112) $ $) NIL)))
-(((-1122) (-1124)) (T -1122))
-NIL
-(-1124)
-((-2226 (((-635 (-1168)) (-1145)) 9)))
-(((-1123) (-10 -7 (-15 -2226 ((-635 (-1168)) (-1145))))) (T -1123))
-((-2226 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-1123)))))
-(-10 -7 (-15 -2226 ((-635 (-1168)) (-1145))))
-((-3929 (((-112) $ $) 7)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-1168)) 16) (((-1168) $) 15)) (-2194 (((-112) $ (|[\|\|]| (-522))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-666))) 76) (((-112) $ (|[\|\|]| (-1256))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1102))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-671))) 64) (((-112) $ (|[\|\|]| (-515))) 62) (((-112) $ (|[\|\|]| (-1054))) 60) (((-112) $ (|[\|\|]| (-1257))) 58) (((-112) $ (|[\|\|]| (-523))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-661))) 52) (((-112) $ (|[\|\|]| (-310))) 50) (((-112) $ (|[\|\|]| (-1026))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-960))) 44) (((-112) $ (|[\|\|]| (-1061))) 42) (((-112) $ (|[\|\|]| (-1077))) 40) (((-112) $ (|[\|\|]| (-1083))) 38) (((-112) $ (|[\|\|]| (-618))) 36) (((-112) $ (|[\|\|]| (-1153))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-476))) 28) (((-112) $ (|[\|\|]| (-585))) 26) (((-112) $ (|[\|\|]| (-504))) 24) (((-112) $ (|[\|\|]| (-1145))) 22) (((-112) $ (|[\|\|]| (-558))) 20)) (-4127 (((-522) $) 79) (((-217) $) 77) (((-666) $) 75) (((-1256) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1102) $) 67) (((-96) $) 65) (((-671) $) 63) (((-515) $) 61) (((-1054) $) 59) (((-1257) $) 57) (((-523) $) 55) (((-153) $) 53) (((-661) $) 51) (((-310) $) 49) (((-1026) $) 47) (((-179) $) 45) (((-960) $) 43) (((-1061) $) 41) (((-1077) $) 39) (((-1083) $) 37) (((-618) $) 35) (((-1153) $) 33) (((-155) $) 31) (((-136) $) 29) (((-476) $) 27) (((-585) $) 25) (((-504) $) 23) (((-1145) $) 21) (((-558) $) 19)) (-1708 (((-112) $ $) 6)))
-(((-1124) (-139)) (T -1124))
-((-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-522)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-217)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-666)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1256))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1256)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-137)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-132)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1102)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-96)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-671)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-515)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1054)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1257))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1257)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-523)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-153)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-661)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-310)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1026))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1026)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-179)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-960))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-960)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1061)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1077)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1083)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-618)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1153)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-155)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-136)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-476)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-585))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-585)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-504)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1145)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-558)))))
-(-13 (-1070) (-1241) (-10 -8 (-15 -2194 ((-112) $ (|[\|\|]| (-522)))) (-15 -4127 ((-522) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-217)))) (-15 -4127 ((-217) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-666)))) (-15 -4127 ((-666) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1256)))) (-15 -4127 ((-1256) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-137)))) (-15 -4127 ((-137) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-132)))) (-15 -4127 ((-132) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1102)))) (-15 -4127 ((-1102) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-96)))) (-15 -4127 ((-96) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-671)))) (-15 -4127 ((-671) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-515)))) (-15 -4127 ((-515) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1054)))) (-15 -4127 ((-1054) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1257)))) (-15 -4127 ((-1257) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-523)))) (-15 -4127 ((-523) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-153)))) (-15 -4127 ((-153) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-661)))) (-15 -4127 ((-661) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-310)))) (-15 -4127 ((-310) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1026)))) (-15 -4127 ((-1026) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-179)))) (-15 -4127 ((-179) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-960)))) (-15 -4127 ((-960) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1061)))) (-15 -4127 ((-1061) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1077)))) (-15 -4127 ((-1077) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1083)))) (-15 -4127 ((-1083) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-618)))) (-15 -4127 ((-618) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1153)))) (-15 -4127 ((-1153) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-155)))) (-15 -4127 ((-155) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-136)))) (-15 -4127 ((-136) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-476)))) (-15 -4127 ((-476) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-585)))) (-15 -4127 ((-585) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-504)))) (-15 -4127 ((-504) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-1145)))) (-15 -4127 ((-1145) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-558)))) (-15 -4127 ((-558) $))))
-(((-93) . T) ((-102) . T) ((-608 #0=(-1168)) . T) ((-605 (-853)) . T) ((-605 #0#) . T) ((-488 #0#) . T) ((-1087) . T) ((-1070) . T) ((-1241) . T))
-((-1453 (((-1251) (-635 (-853))) 23) (((-1251) (-853)) 22)) (-4314 (((-1251) (-635 (-853))) 21) (((-1251) (-853)) 20)) (-3154 (((-1251) (-635 (-853))) 19) (((-1251) (-853)) 11) (((-1251) (-1145) (-853)) 17)))
-(((-1125) (-10 -7 (-15 -3154 ((-1251) (-1145) (-853))) (-15 -3154 ((-1251) (-853))) (-15 -4314 ((-1251) (-853))) (-15 -1453 ((-1251) (-853))) (-15 -3154 ((-1251) (-635 (-853)))) (-15 -4314 ((-1251) (-635 (-853)))) (-15 -1453 ((-1251) (-635 (-853)))))) (T -1125))
-((-1453 (*1 *2 *3) (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125)))))
-(-10 -7 (-15 -3154 ((-1251) (-1145) (-853))) (-15 -3154 ((-1251) (-853))) (-15 -4314 ((-1251) (-853))) (-15 -1453 ((-1251) (-853))) (-15 -3154 ((-1251) (-635 (-853)))) (-15 -4314 ((-1251) (-635 (-853)))) (-15 -1453 ((-1251) (-635 (-853)))))
-((-3748 (($ $ $) 10)) (-2802 (($ $) 9)) (-3185 (($ $ $) 13)) (-1493 (($ $ $) 15)) (-1817 (($ $ $) 12)) (-3750 (($ $ $) 14)) (-2343 (($ $) 17)) (-2734 (($ $) 16)) (-4241 (($ $) 6)) (-3765 (($ $ $) 11) (($ $) 7)) (-3087 (($ $ $) 8)))
-(((-1126) (-139)) (T -1126))
-((-2343 (*1 *1 *1) (-4 *1 (-1126))) (-2734 (*1 *1 *1) (-4 *1 (-1126))) (-1493 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3750 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3185 (*1 *1 *1 *1) (-4 *1 (-1126))) (-1817 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3765 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3748 (*1 *1 *1 *1) (-4 *1 (-1126))) (-2802 (*1 *1 *1) (-4 *1 (-1126))) (-3087 (*1 *1 *1 *1) (-4 *1 (-1126))) (-3765 (*1 *1 *1) (-4 *1 (-1126))) (-4241 (*1 *1 *1) (-4 *1 (-1126))))
-(-13 (-10 -8 (-15 -4241 ($ $)) (-15 -3765 ($ $)) (-15 -3087 ($ $ $)) (-15 -2802 ($ $)) (-15 -3748 ($ $ $)) (-15 -3765 ($ $ $)) (-15 -1817 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -2734 ($ $)) (-15 -2343 ($ $))))
-((-3929 (((-112) $ $) 42)) (-2426 ((|#1| $) 16)) (-3958 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-1455 (((-112) $) 18)) (-1350 (($ $ |#1|) 29)) (-2664 (($ $ (-112)) 31)) (-2260 (($ $) 32)) (-3571 (($ $ |#2|) 30)) (-2510 (((-1145) $) NIL)) (-1406 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-1688 (((-1107) $) NIL)) (-3711 (((-112) $) 15)) (-2876 (($) 11)) (-4098 (($ $) 28)) (-3952 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -3798 |#2|))) 22) (((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -3798 |#2|)))) 25) (((-635 $) |#1| (-635 |#2|)) 27)) (-3814 ((|#2| $) 17)) (-3940 (((-853) $) 51)) (-1708 (((-112) $ $) 40)))
-(((-1127 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -2876 ($)) (-15 -3711 ((-112) $)) (-15 -2426 (|#1| $)) (-15 -3814 (|#2| $)) (-15 -1455 ((-112) $)) (-15 -3952 ($ |#1| |#2| (-112))) (-15 -3952 ($ |#1| |#2|)) (-15 -3952 ($ (-2 (|:| |val| |#1|) (|:| -3798 |#2|)))) (-15 -3952 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -3798 |#2|))))) (-15 -3952 ((-635 $) |#1| (-635 |#2|))) (-15 -4098 ($ $)) (-15 -1350 ($ $ |#1|)) (-15 -3571 ($ $ |#2|)) (-15 -2664 ($ $ (-112))) (-15 -2260 ($ $)) (-15 -1406 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3958 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1087) (-34)) (-13 (-1087) (-34))) (T -1127))
-((-2876 (*1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-2426 (*1 *2 *1) (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *2 *3)) (-4 *3 (-13 (-1087) (-34))))) (-3814 (*1 *2 *1) (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-13 (-1087) (-34))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-3952 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3952 (*1 *1 *2 *3) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3798 *4))) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1127 *3 *4)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -3798 *5)))) (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-635 (-1127 *4 *5))) (-5 *1 (-1127 *4 *5)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-635 (-1127 *3 *5))) (-5 *1 (-1127 *3 *5)) (-4 *3 (-13 (-1087) (-34))))) (-4098 (*1 *1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-1350 (*1 *1 *1 *2) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3571 (*1 *1 *1 *2) (-12 (-5 *1 (-1127 *3 *2)) (-4 *3 (-13 (-1087) (-34))) (-4 *2 (-13 (-1087) (-34))))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-1406 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1127 *5 *6)))) (-3958 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34))))))
-(-13 (-1087) (-10 -8 (-15 -2876 ($)) (-15 -3711 ((-112) $)) (-15 -2426 (|#1| $)) (-15 -3814 (|#2| $)) (-15 -1455 ((-112) $)) (-15 -3952 ($ |#1| |#2| (-112))) (-15 -3952 ($ |#1| |#2|)) (-15 -3952 ($ (-2 (|:| |val| |#1|) (|:| -3798 |#2|)))) (-15 -3952 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -3798 |#2|))))) (-15 -3952 ((-635 $) |#1| (-635 |#2|))) (-15 -4098 ($ $)) (-15 -1350 ($ $ |#1|)) (-15 -3571 ($ $ |#2|)) (-15 -2664 ($ $ (-112))) (-15 -2260 ($ $)) (-15 -1406 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3958 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-3929 (((-112) $ $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-2426 (((-1127 |#1| |#2|) $) 26)) (-2839 (($ $) 76)) (-2435 (((-112) (-1127 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-4128 (($ $ $ (-635 (-1127 |#1| |#2|))) 90) (($ $ $ (-635 (-1127 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3651 (((-112) $ (-762)) NIL)) (-3083 (((-1127 |#1| |#2|) $ (-1127 |#1| |#2|)) 43 (|has| $ (-6 -4384)))) (-4077 (((-1127 |#1| |#2|) $ "value" (-1127 |#1| |#2|)) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-4332 (((-635 (-2 (|:| |val| |#1|) (|:| -3798 |#2|))) $) 80)) (-2375 (($ (-1127 |#1| |#2|) $) 39)) (-1488 (($ (-1127 |#1| |#2|) $) 31)) (-2917 (((-635 (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 51)) (-3117 (((-112) (-1127 |#1| |#2|) $) 82)) (-2201 (((-112) $ $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 (-1127 |#1| |#2|)) $) 55 (|has| $ (-6 -4383)))) (-3764 (((-112) (-1127 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-1127 |#1| |#2|) (-1087))))) (-3674 (($ (-1 (-1127 |#1| |#2|) (-1127 |#1| |#2|)) $) 47 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-1127 |#1| |#2|) (-1127 |#1| |#2|)) $) 46)) (-3212 (((-112) $ (-762)) NIL)) (-3783 (((-635 (-1127 |#1| |#2|)) $) 53)) (-3355 (((-112) $) 42)) (-2510 (((-1145) $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-1688 (((-1107) $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-2073 (((-3 $ "failed") $) 75)) (-3314 (((-112) (-1 (-112) (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-1127 |#1| |#2|)))) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087)))) (($ $ (-293 (-1127 |#1| |#2|))) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087)))) (($ $ (-1127 |#1| |#2|) (-1127 |#1| |#2|)) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087)))) (($ $ (-635 (-1127 |#1| |#2|)) (-635 (-1127 |#1| |#2|))) NIL (-12 (|has| (-1127 |#1| |#2|) (-308 (-1127 |#1| |#2|))) (|has| (-1127 |#1| |#2|) (-1087))))) (-3382 (((-112) $ $) 50)) (-3711 (((-112) $) 23)) (-2876 (($) 25)) (-2276 (((-1127 |#1| |#2|) $ "value") NIL)) (-1904 (((-558) $ $) NIL)) (-1609 (((-112) $) 44)) (-1698 (((-762) (-1 (-112) (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4383))) (((-762) (-1127 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-1127 |#1| |#2|) (-1087))))) (-4098 (($ $) 49)) (-3952 (($ (-1127 |#1| |#2|)) 10) (($ |#1| |#2| (-635 $)) 13) (($ |#1| |#2| (-635 (-1127 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-635 |#2|)) 18)) (-3062 (((-635 |#2|) $) 81)) (-3940 (((-853) $) 73 (|has| (-1127 |#1| |#2|) (-605 (-853))))) (-1384 (((-635 $) $) 29)) (-4171 (((-112) $ $) NIL (|has| (-1127 |#1| |#2|) (-1087)))) (-2831 (((-112) (-1 (-112) (-1127 |#1| |#2|)) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 64 (|has| (-1127 |#1| |#2|) (-1087)))) (-1596 (((-762) $) 58 (|has| $ (-6 -4383)))))
-(((-1128 |#1| |#2|) (-13 (-1000 (-1127 |#1| |#2|)) (-10 -8 (-6 -4384) (-6 -4383) (-15 -2073 ((-3 $ "failed") $)) (-15 -2839 ($ $)) (-15 -3952 ($ (-1127 |#1| |#2|))) (-15 -3952 ($ |#1| |#2| (-635 $))) (-15 -3952 ($ |#1| |#2| (-635 (-1127 |#1| |#2|)))) (-15 -3952 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -3062 ((-635 |#2|) $)) (-15 -4332 ((-635 (-2 (|:| |val| |#1|) (|:| -3798 |#2|))) $)) (-15 -3117 ((-112) (-1127 |#1| |#2|) $)) (-15 -2435 ((-112) (-1127 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1488 ($ (-1127 |#1| |#2|) $)) (-15 -2375 ($ (-1127 |#1| |#2|) $)) (-15 -4128 ($ $ $ (-635 (-1127 |#1| |#2|)))) (-15 -4128 ($ $ $ (-635 (-1127 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1087) (-34)) (-13 (-1087) (-34))) (T -1128))
-((-2073 (*1 *1 *1) (|partial| -12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-2839 (*1 *1 *1) (-12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-3952 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1128 *2 *3))) (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))))) (-3952 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1127 *2 *3))) (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34))) (-5 *1 (-1128 *2 *3)))) (-3952 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1087) (-34))) (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34))))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-635 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4)))) (-5 *1 (-1128 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))) (-3117 (*1 *2 *3 *1) (-12 (-5 *3 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5)))) (-2435 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1127 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1128 *5 *6)))) (-1488 (*1 *1 *2 *1) (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-4128 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-635 (-1127 *3 *4))) (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))) (-4128 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1127 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34))) (-5 *1 (-1128 *4 *5)))))
-(-13 (-1000 (-1127 |#1| |#2|)) (-10 -8 (-6 -4384) (-6 -4383) (-15 -2073 ((-3 $ "failed") $)) (-15 -2839 ($ $)) (-15 -3952 ($ (-1127 |#1| |#2|))) (-15 -3952 ($ |#1| |#2| (-635 $))) (-15 -3952 ($ |#1| |#2| (-635 (-1127 |#1| |#2|)))) (-15 -3952 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -3062 ((-635 |#2|) $)) (-15 -4332 ((-635 (-2 (|:| |val| |#1|) (|:| -3798 |#2|))) $)) (-15 -3117 ((-112) (-1127 |#1| |#2|) $)) (-15 -2435 ((-112) (-1127 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1488 ($ (-1127 |#1| |#2|) $)) (-15 -2375 ($ (-1127 |#1| |#2|) $)) (-15 -4128 ($ $ $ (-635 (-1127 |#1| |#2|)))) (-15 -4128 ($ $ $ (-635 (-1127 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-3295 (($ $) NIL)) (-1719 ((|#2| $) NIL)) (-2086 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1730 (($ (-679 |#2|)) 50)) (-1693 (((-112) $) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-1866 (($ |#2|) 10)) (-3457 (($) NIL T CONST)) (-3125 (($ $) 63 (|has| |#2| (-306)))) (-2500 (((-239 |#1| |#2|) $ (-558)) 36)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 |#2| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) ((|#2| $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) 77)) (-1489 (((-762) $) 65 (|has| |#2| (-550)))) (-3620 ((|#2| $ (-558) (-558)) NIL)) (-2917 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3999 (((-112) $) NIL)) (-2556 (((-762) $) 67 (|has| |#2| (-550)))) (-3693 (((-635 (-239 |#1| |#2|)) $) 71 (|has| |#2| (-550)))) (-1430 (((-762) $) NIL)) (-1395 (($ |#2|) 20)) (-1444 (((-762) $) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2591 ((|#2| $) 61 (|has| |#2| (-6 (-4385 "*"))))) (-3942 (((-558) $) NIL)) (-1478 (((-558) $) NIL)) (-3486 (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4153 (((-558) $) NIL)) (-3508 (((-558) $) NIL)) (-2144 (($ (-635 (-635 |#2|))) 31)) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3922 (((-635 (-635 |#2|)) $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-3191 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-1688 (((-1107) $) NIL)) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-3314 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ (-558) (-558) |#2|) NIL) ((|#2| $ (-558) (-558)) NIL)) (-3780 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-4139 ((|#2| $) NIL)) (-2049 (($ (-635 |#2|)) 44)) (-1312 (((-112) $) NIL)) (-3439 (((-239 |#1| |#2|) $) NIL)) (-3843 ((|#2| $) 59 (|has| |#2| (-6 (-4385 "*"))))) (-1698 (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4098 (($ $) NIL)) (-3441 (((-534) $) 86 (|has| |#2| (-606 (-534))))) (-3962 (((-239 |#1| |#2|) $ (-558)) 38)) (-3940 (((-853) $) 41) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#2| (-1028 (-406 (-558))))) (($ |#2|) NIL) (((-679 |#2|) $) 46)) (-2417 (((-762)) 18)) (-2831 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-3551 (((-112) $) NIL)) (-2207 (($) 12 T CONST)) (-2220 (($) 15 T CONST)) (-3042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-762)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) 57) (($ $ (-558)) 76 (|has| |#2| (-362)))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 53) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 55)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1129 |#1| |#2|) (-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-10 -8 (-15 -1395 ($ |#2|)) (-15 -3295 ($ $)) (-15 -1730 ($ (-679 |#2|))) (IF (|has| |#2| (-6 (-4385 "*"))) (-6 -4372) |%noBranch|) (IF (|has| |#2| (-6 (-4385 "*"))) (IF (|has| |#2| (-6 -4380)) (-6 -4380) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|))) (-762) (-1039)) (T -1129))
-((-1395 (*1 *1 *2) (-12 (-5 *1 (-1129 *3 *2)) (-14 *3 (-762)) (-4 *2 (-1039)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-1129 *2 *3)) (-14 *2 (-762)) (-4 *3 (-1039)))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-679 *4)) (-4 *4 (-1039)) (-5 *1 (-1129 *3 *4)) (-14 *3 (-762)))))
-(-13 (-1110 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-605 (-679 |#2|)) (-10 -8 (-15 -1395 ($ |#2|)) (-15 -3295 ($ $)) (-15 -1730 ($ (-679 |#2|))) (IF (|has| |#2| (-6 (-4385 "*"))) (-6 -4372) |%noBranch|) (IF (|has| |#2| (-6 (-4385 "*"))) (IF (|has| |#2| (-6 -4380)) (-6 -4380) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-606 (-534))) (-6 (-606 (-534))) |%noBranch|)))
-((-3847 (($ $) 19)) (-3756 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-1307 (((-112) $ $) 24)) (-4331 (($ $) 17)) (-2276 (((-143) $ (-558) (-143)) NIL) (((-143) $ (-558)) NIL) (($ $ (-1213 (-558))) NIL) (($ $ $) 29)) (-3940 (($ (-143)) 27) (((-853) $) NIL)))
-(((-1130 |#1|) (-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -3756 (|#1| |#1| (-140))) (-15 -3756 (|#1| |#1| (-143))) (-15 -3940 (|#1| (-143))) (-15 -1307 ((-112) |#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4331 (|#1| |#1|)) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -2276 ((-143) |#1| (-558))) (-15 -2276 ((-143) |#1| (-558) (-143)))) (-1131)) (T -1130))
-NIL
-(-10 -8 (-15 -3940 ((-853) |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -3756 (|#1| |#1| (-140))) (-15 -3756 (|#1| |#1| (-143))) (-15 -3940 (|#1| (-143))) (-15 -1307 ((-112) |#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4331 (|#1| |#1|)) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -2276 ((-143) |#1| (-558))) (-15 -2276 ((-143) |#1| (-558) (-143))))
-((-3929 (((-112) $ $) 19 (|has| (-143) (-1087)))) (-2535 (($ $) 120)) (-3847 (($ $) 121)) (-3756 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-1282 (((-112) $ $) 118)) (-4341 (((-112) $ $ (-558)) 117)) (-3566 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-2878 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-841)))) (-3041 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4384))) (($ $) 88 (-12 (|has| (-143) (-841)) (|has| $ (-6 -4384))))) (-3648 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-841)))) (-3651 (((-112) $ (-762)) 8)) (-4077 (((-143) $ (-558) (-143)) 52 (|has| $ (-6 -4384))) (((-143) $ (-1213 (-558)) (-143)) 58 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-1835 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2240 (($ $) 90 (|has| $ (-6 -4384)))) (-1911 (($ $) 100)) (-3284 (($ $ (-1213 (-558)) $) 114)) (-3188 (($ $) 78 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ (-143) $) 77 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4383)))) (-3866 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4383))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4383)))) (-3683 (((-143) $ (-558) (-143)) 53 (|has| $ (-6 -4384)))) (-3620 (((-143) $ (-558)) 51)) (-1307 (((-112) $ $) 119)) (-4145 (((-558) (-1 (-112) (-143)) $) 97) (((-558) (-143) $) 96 (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) 95 (|has| (-143) (-1087))) (((-558) $ $ (-558)) 113) (((-558) (-140) $ (-558)) 112)) (-2917 (((-635 (-143)) $) 30 (|has| $ (-6 -4383)))) (-1395 (($ (-762) (-143)) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-2142 (($ $ $) 87 (|has| (-143) (-841)))) (-3391 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-841)))) (-3486 (((-635 (-143)) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-2281 (($ $ $) 86 (|has| (-143) (-841)))) (-4143 (((-112) $ $ (-143)) 115)) (-3073 (((-762) $ $ (-143)) 116)) (-3674 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-2630 (($ $) 122)) (-4331 (($ $) 123)) (-3212 (((-112) $ (-762)) 10)) (-1845 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-2510 (((-1145) $) 22 (|has| (-143) (-1087)))) (-1363 (($ (-143) $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21 (|has| (-143) (-1087)))) (-3156 (((-143) $) 42 (|has| (-558) (-841)))) (-2820 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2830 (($ $ (-143)) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-4318 (((-635 (-143)) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 (((-143) $ (-558) (-143)) 50) (((-143) $ (-558)) 49) (($ $ (-1213 (-558))) 63) (($ $ $) 102)) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-1698 (((-762) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4383))) (((-762) (-143) $) 28 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383))))) (-2834 (($ $ $ (-558)) 91 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| (-143) (-606 (-534))))) (-3952 (($ (-635 (-143))) 70)) (-2683 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (($ (-143)) 111) (((-853) $) 18 (|has| (-143) (-605 (-853))))) (-2831 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) 84 (|has| (-143) (-841)))) (-1737 (((-112) $ $) 83 (|has| (-143) (-841)))) (-1708 (((-112) $ $) 20 (|has| (-143) (-1087)))) (-1749 (((-112) $ $) 85 (|has| (-143) (-841)))) (-1728 (((-112) $ $) 82 (|has| (-143) (-841)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1131) (-139)) (T -1131))
-((-4331 (*1 *1 *1) (-4 *1 (-1131))) (-2630 (*1 *1 *1) (-4 *1 (-1131))) (-3847 (*1 *1 *1) (-4 *1 (-1131))) (-2535 (*1 *1 *1) (-4 *1 (-1131))) (-1307 (*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))) (-1282 (*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))) (-4341 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-558)) (-5 *2 (-112)))) (-3073 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-762)))) (-4143 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-112)))) (-3284 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1213 (-558))))) (-4145 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)))) (-4145 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)) (-5 *3 (-140)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1131)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1131)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1131)))) (-3756 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))) (-3756 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140)))) (-1845 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))) (-1845 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140)))) (-1835 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))) (-1835 (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140)))) (-2276 (*1 *1 *1 *1) (-4 *1 (-1131))))
-(-13 (-19 (-143)) (-10 -8 (-15 -4331 ($ $)) (-15 -2630 ($ $)) (-15 -3847 ($ $)) (-15 -2535 ($ $)) (-15 -1307 ((-112) $ $)) (-15 -1282 ((-112) $ $)) (-15 -4341 ((-112) $ $ (-558))) (-15 -3073 ((-762) $ $ (-143))) (-15 -4143 ((-112) $ $ (-143))) (-15 -3284 ($ $ (-1213 (-558)) $)) (-15 -4145 ((-558) $ $ (-558))) (-15 -4145 ((-558) (-140) $ (-558))) (-15 -3940 ($ (-143))) (-15 -3566 ((-635 $) $ (-143))) (-15 -3566 ((-635 $) $ (-140))) (-15 -3756 ($ $ (-143))) (-15 -3756 ($ $ (-140))) (-15 -1845 ($ $ (-143))) (-15 -1845 ($ $ (-140))) (-15 -1835 ($ $ (-143))) (-15 -1835 ($ $ (-140))) (-15 -2276 ($ $ $))))
-(((-34) . T) ((-102) -3994 (|has| (-143) (-1087)) (|has| (-143) (-841))) ((-605 (-853)) -3994 (|has| (-143) (-1087)) (|has| (-143) (-841)) (|has| (-143) (-605 (-853)))) ((-150 #0=(-143)) . T) ((-606 (-534)) |has| (-143) (-606 (-534))) ((-285 #1=(-558) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-372 #0#) . T) ((-487 #0#) . T) ((-596 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-641 #0#) . T) ((-19 #0#) . T) ((-841) |has| (-143) (-841)) ((-1087) -3994 (|has| (-143) (-1087)) (|has| (-143) (-841))) ((-1200) . T))
-((-3908 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-762)) 93)) (-3309 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762)) 54)) (-2755 (((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-762)) 85)) (-4188 (((-762) (-635 |#4|) (-635 |#5|)) 27)) (-2174 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762)) 56) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762) (-112)) 58)) (-3353 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 77)) (-3441 (((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) 80)) (-3688 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|) 53)) (-2331 (((-762) (-635 |#4|) (-635 |#5|)) 19)))
-(((-1132 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -4188 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -3688 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3908 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-762))) (-15 -3441 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2755 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-762)))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1132))
-((-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9)))) (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145)) (-5 *1 (-1132 *4 *5 *6 *7 *8)))) (-3908 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -3798 *11)))))) (-5 *6 (-762)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -3798 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-5 *1 (-1132 *7 *8 *9 *10 *11)))) (-3353 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-3353 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-2174 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2174 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-2174 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784)) (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1132 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3)))) (-3309 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3309 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-3688 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4)))))) (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2331 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -4188 ((-762) (-635 |#4|) (-635 |#5|))) (-15 -3688 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -3309 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762) (-112))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5| (-762))) (-15 -2174 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) |#4| |#5|)) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3353 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3908 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))))) (-762))) (-15 -3441 ((-1145) (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|)))) (-15 -2755 ((-1251) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -3798 |#5|))) (-762))))
-((-3929 (((-112) $ $) NIL)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3055 (((-635 $) (-635 |#4|)) 110) (((-635 $) (-635 |#4|) (-112)) 111) (((-635 $) (-635 |#4|) (-112) (-112)) 109) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 112)) (-4078 (((-635 |#3|) $) NIL)) (-3369 (((-112) $) NIL)) (-1852 (((-112) $) NIL (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2299 ((|#4| |#4| $) NIL)) (-2018 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| $) 84)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2072 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) 62)) (-3457 (($) NIL T CONST)) (-3614 (((-112) $) 27 (|has| |#1| (-550)))) (-1293 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2211 (((-112) $ $) NIL (|has| |#1| (-550)))) (-3554 (((-112) $) NIL (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1542 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3226 (($ (-635 |#4|)) NIL)) (-3168 (((-3 $ "failed") $) 40)) (-2687 ((|#4| |#4| $) 65)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-1488 (($ |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2388 ((|#4| |#4| $) NIL)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) NIL)) (-2497 (((-112) |#4| $) NIL)) (-2990 (((-112) |#4| $) NIL)) (-3119 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2852 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 124)) (-2917 (((-635 |#4|) $) 17 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#4|) $) 18 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-3674 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 22)) (-2327 (((-635 |#3|) $) NIL)) (-3541 (((-112) |#3| $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1948 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-4069 (((-635 (-2 (|:| |val| |#4|) (|:| -3798 $))) |#4| |#4| $) 103)) (-1514 (((-3 |#4| "failed") $) 38)) (-2681 (((-635 $) |#4| $) 88)) (-2015 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-4294 (((-635 (-2 (|:| |val| (-112)) (|:| -3798 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3490 (((-635 $) |#4| $) 107) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 108) (((-635 $) |#4| (-635 $)) NIL)) (-3427 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 119)) (-3987 (($ |#4| $) 75) (($ (-635 |#4|) $) 76) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2367 (((-635 |#4|) $) NIL)) (-2643 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1401 ((|#4| |#4| $) NIL)) (-3879 (((-112) $ $) NIL)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2224 ((|#4| |#4| $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-3 |#4| "failed") $) 36)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2562 (((-3 $ "failed") $ |#4|) 48)) (-2319 (($ $ |#4|) NIL) (((-635 $) |#4| $) 90) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 86)) (-3314 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 16)) (-2876 (($) 14)) (-4263 (((-762) $) NIL)) (-1698 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) 13)) (-3441 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 21)) (-3121 (($ $ |#3|) 43)) (-2402 (($ $ |#3|) 44)) (-2004 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-3940 (((-853) $) 32) (((-635 |#4|) $) 41)) (-1435 (((-762) $) NIL (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3745 (((-635 $) |#4| $) 54) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-2831 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) NIL)) (-3337 (((-112) |#4| $) NIL)) (-4062 (((-112) |#3| $) 61)) (-1708 (((-112) $ $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1133 |#1| |#2| |#3| |#4|) (-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3987 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3427 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2852 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -1133))
-((-3987 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *3))) (-5 *1 (-1133 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7)))) (-3055 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))) (-3055 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))) (-3427 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))) (-2852 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1133 *5 *6 *7 *8))))) (-5 *1 (-1133 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
-(-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3987 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -3055 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3427 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -2852 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1999 ((|#1| $) 34)) (-2883 (($ (-635 |#1|)) 39)) (-3651 (((-112) $ (-762)) NIL)) (-3457 (($) NIL T CONST)) (-3106 ((|#1| |#1| $) 36)) (-1627 ((|#1| $) 32)) (-2917 (((-635 |#1|) $) 18 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 22)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1498 ((|#1| $) 35)) (-2650 (($ |#1| $) 37)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2533 ((|#1| $) 33)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 31)) (-2876 (($) 38)) (-3752 (((-762) $) 29)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 27)) (-3940 (((-853) $) 14 (|has| |#1| (-605 (-853))))) (-2472 (($ (-635 |#1|)) NIL)) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 17 (|has| |#1| (-1087)))) (-1596 (((-762) $) 30 (|has| $ (-6 -4383)))))
-(((-1134 |#1|) (-13 (-1108 |#1|) (-10 -8 (-15 -2883 ($ (-635 |#1|))))) (-1200)) (T -1134))
-((-2883 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1134 *3)))))
-(-13 (-1108 |#1|) (-10 -8 (-15 -2883 ($ (-635 |#1|)))))
-((-4077 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1213 (-558)) |#2|) 43) ((|#2| $ (-558) |#2|) 40)) (-4151 (((-112) $) 11)) (-3674 (($ (-1 |#2| |#2|) $) 38)) (-3156 ((|#2| $) NIL) (($ $ (-762)) 16)) (-2830 (($ $ |#2|) 39)) (-1890 (((-112) $) 10)) (-2276 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1213 (-558))) 30) ((|#2| $ (-558)) 22) ((|#2| $ (-558) |#2|) NIL)) (-1651 (($ $ $) 46) (($ $ |#2|) NIL)) (-2683 (($ $ $) 32) (($ |#2| $) NIL) (($ (-635 $)) 35) (($ $ |#2|) NIL)))
-(((-1135 |#1| |#2|) (-10 -8 (-15 -4151 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -4077 (|#2| |#1| (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558))) (-15 -2830 (|#1| |#1| |#2|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -4077 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -4077 (|#2| |#1| "last" |#2|)) (-15 -4077 (|#1| |#1| "rest" |#1|)) (-15 -4077 (|#2| |#1| "first" |#2|)) (-15 -1651 (|#1| |#1| |#2|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -2276 (|#2| |#1| "last")) (-15 -2276 (|#1| |#1| "rest")) (-15 -3156 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "first")) (-15 -3156 (|#2| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -2276 (|#2| |#1| "value")) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|))) (-1136 |#2|) (-1200)) (T -1135))
-NIL
-(-10 -8 (-15 -4151 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -4077 (|#2| |#1| (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558) |#2|)) (-15 -2276 (|#2| |#1| (-558))) (-15 -2830 (|#1| |#1| |#2|)) (-15 -2683 (|#1| |#1| |#2|)) (-15 -2683 (|#1| (-635 |#1|))) (-15 -2276 (|#1| |#1| (-1213 (-558)))) (-15 -4077 (|#2| |#1| (-1213 (-558)) |#2|)) (-15 -4077 (|#2| |#1| "last" |#2|)) (-15 -4077 (|#1| |#1| "rest" |#1|)) (-15 -4077 (|#2| |#1| "first" |#2|)) (-15 -1651 (|#1| |#1| |#2|)) (-15 -1651 (|#1| |#1| |#1|)) (-15 -2276 (|#2| |#1| "last")) (-15 -2276 (|#1| |#1| "rest")) (-15 -3156 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "first")) (-15 -3156 (|#2| |#1|)) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -2276 (|#2| |#1| "value")) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-1611 ((|#1| $) 65)) (-2427 (($ $) 67)) (-3552 (((-1251) $ (-558) (-558)) 97 (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) 52 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-1649 (($ $ $) 56 (|has| $ (-6 -4384)))) (-2851 ((|#1| $ |#1|) 54 (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) 58 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4384))) (($ $ "rest" $) 55 (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 117 (|has| $ (-6 -4384))) ((|#1| $ (-558) |#1|) 86 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4383)))) (-1601 ((|#1| $) 66)) (-3457 (($) 7 T CONST)) (-3168 (($ $) 73) (($ $ (-762)) 71)) (-3188 (($ $) 99 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4383))) (($ |#1| $) 100 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3683 ((|#1| $ (-558) |#1|) 85 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 87)) (-4151 (((-112) $) 83)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-1395 (($ (-762) |#1|) 108)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 95 (|has| (-558) (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 94 (|has| (-558) (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3212 (((-112) $ (-762)) 10)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1514 ((|#1| $) 70) (($ $ (-762)) 68)) (-1363 (($ $ $ (-558)) 116) (($ |#1| $ (-558)) 115)) (-3051 (((-635 (-558)) $) 92)) (-2740 (((-112) (-558) $) 91)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 76) (($ $ (-762)) 74)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2830 (($ $ |#1|) 96 (|has| $ (-6 -4384)))) (-1890 (((-112) $) 84)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 90)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1213 (-558))) 112) ((|#1| $ (-558)) 89) ((|#1| $ (-558) |#1|) 88)) (-1904 (((-558) $ $) 44)) (-3976 (($ $ (-1213 (-558))) 114) (($ $ (-558)) 113)) (-1609 (((-112) $) 46)) (-3070 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4384)))) (-2398 (((-762) $) 63)) (-4009 (($ $) 64)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-3441 (((-534) $) 98 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 107)) (-1651 (($ $ $) 61 (|has| $ (-6 -4384))) (($ $ |#1|) 60 (|has| $ (-6 -4384)))) (-2683 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1136 |#1|) (-139) (-1200)) (T -1136))
-((-1890 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
-(-13 (-1234 |t#1|) (-641 |t#1|) (-10 -8 (-15 -1890 ((-112) $)) (-15 -4151 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T) ((-1234 |#1|) . T))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3552 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#2| $ |#1| |#2|) NIL)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) NIL)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) NIL)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) NIL)) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 ((|#1| $) NIL (|has| |#1| (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 ((|#1| $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1934 (((-635 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3051 (((-635 |#1|) $) NIL)) (-2740 (((-112) |#1| $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#2| $) NIL (|has| |#1| (-841)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1137 |#1| |#2| |#3|) (-1176 |#1| |#2|) (-1087) (-1087) |#2|) (T -1137))
-NIL
-(-1176 |#1| |#2|)
-((-3929 (((-112) $ $) 7)) (-2521 (((-3 $ "failed") $) 13)) (-2510 (((-1145) $) 9)) (-1823 (($) 14 T CONST)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11)) (-1708 (((-112) $ $) 6)))
-(((-1138) (-139)) (T -1138))
-((-1823 (*1 *1) (-4 *1 (-1138))) (-2521 (*1 *1 *1) (|partial| -4 *1 (-1138))))
-(-13 (-1087) (-10 -8 (-15 -1823 ($) -2010) (-15 -2521 ((-3 $ "failed") $))))
-(((-102) . T) ((-605 (-853)) . T) ((-1087) . T))
-((-2065 (((-1143 |#1|) (-1143 |#1|)) 17)) (-2460 (((-1143 |#1|) (-1143 |#1|)) 13)) (-3260 (((-1143 |#1|) (-1143 |#1|) (-558) (-558)) 20)) (-3709 (((-1143 |#1|) (-1143 |#1|)) 15)))
-(((-1139 |#1|) (-10 -7 (-15 -2460 ((-1143 |#1|) (-1143 |#1|))) (-15 -3709 ((-1143 |#1|) (-1143 |#1|))) (-15 -2065 ((-1143 |#1|) (-1143 |#1|))) (-15 -3260 ((-1143 |#1|) (-1143 |#1|) (-558) (-558)))) (-13 (-550) (-146))) (T -1139))
-((-3260 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-1139 *4)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1139 *3)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1139 *3)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1139 *3)))))
-(-10 -7 (-15 -2460 ((-1143 |#1|) (-1143 |#1|))) (-15 -3709 ((-1143 |#1|) (-1143 |#1|))) (-15 -2065 ((-1143 |#1|) (-1143 |#1|))) (-15 -3260 ((-1143 |#1|) (-1143 |#1|) (-558) (-558))))
-((-2683 (((-1143 |#1|) (-1143 (-1143 |#1|))) 15)))
-(((-1140 |#1|) (-10 -7 (-15 -2683 ((-1143 |#1|) (-1143 (-1143 |#1|))))) (-1200)) (T -1140))
-((-2683 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1140 *4)) (-4 *4 (-1200)))))
-(-10 -7 (-15 -2683 ((-1143 |#1|) (-1143 (-1143 |#1|)))))
-((-3484 (((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 25)) (-3866 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 26)) (-3397 (((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)) 16)))
-(((-1141 |#1| |#2|) (-10 -7 (-15 -3397 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -3484 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -3866 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)))) (-1200) (-1200)) (T -1141))
-((-3866 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-1141 *5 *2)))) (-3484 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1200)) (-4 *3 (-1200)) (-5 *2 (-1143 *3)) (-5 *1 (-1141 *6 *3)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1143 *6)) (-5 *1 (-1141 *5 *6)))))
-(-10 -7 (-15 -3397 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -3484 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -3866 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))))
-((-3397 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)) 21)))
-(((-1142 |#1| |#2| |#3|) (-10 -7 (-15 -3397 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)))) (-1200) (-1200) (-1200)) (T -1142))
-((-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8)) (-5 *1 (-1142 *6 *7 *8)))))
-(-10 -7 (-15 -3397 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) NIL)) (-1611 ((|#1| $) NIL)) (-2427 (($ $) 51)) (-3552 (((-1251) $ (-558) (-558)) 76 (|has| $ (-6 -4384)))) (-1482 (($ $ (-558)) 110 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-2269 (((-853) $) 40 (|has| |#1| (-1087)))) (-2553 (((-112)) 39 (|has| |#1| (-1087)))) (-3083 ((|#1| $ |#1|) NIL (|has| $ (-6 -4384)))) (-1649 (($ $ $) 98 (|has| $ (-6 -4384))) (($ $ (-558) $) 122)) (-2851 ((|#1| $ |#1|) 107 (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) 102 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4384))) (($ $ "rest" $) 106 (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 89 (|has| $ (-6 -4384))) ((|#1| $ (-558) |#1|) 55 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 58)) (-1601 ((|#1| $) NIL)) (-3457 (($) NIL T CONST)) (-4264 (($ $) 14)) (-3168 (($ $) 28) (($ $ (-762)) 88)) (-2376 (((-112) (-635 |#1|) $) 116 (|has| |#1| (-1087)))) (-3031 (($ (-635 |#1|)) 112)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) 57)) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4151 (((-112) $) NIL)) (-2917 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-2770 (((-1251) (-558) $) 121 (|has| |#1| (-1087)))) (-2463 (((-762) $) 118)) (-1352 (((-635 $) $) NIL)) (-2201 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1395 (($ (-762) |#1|) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3212 (((-112) $ (-762)) NIL)) (-3783 (((-635 |#1|) $) NIL)) (-3355 (((-112) $) NIL)) (-3964 (($ $) 90)) (-1367 (((-112) $) 13)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1514 ((|#1| $) NIL) (($ $ (-762)) NIL)) (-1363 (($ $ $ (-558)) NIL) (($ |#1| $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) 74)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2009 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1403 ((|#1| $) 10)) (-3156 ((|#1| $) 27) (($ $ (-762)) 49)) (-3216 (((-2 (|:| |cycle?| (-112)) (|:| -2663 (-762)) (|:| |period| (-762))) (-762) $) 24)) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2050 (($ (-1 (-112) |#1|) $) 126)) (-2061 (($ (-1 (-112) |#1|) $) 127)) (-2830 (($ $ |#1|) 68 (|has| $ (-6 -4384)))) (-2319 (($ $ (-558)) 31)) (-1890 (((-112) $) 72)) (-2268 (((-112) $) 12)) (-2140 (((-112) $) 117)) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 20)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) 15)) (-2876 (($) 44)) (-2276 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1213 (-558))) NIL) ((|#1| $ (-558)) 54) ((|#1| $ (-558) |#1|) NIL)) (-1904 (((-558) $ $) 48)) (-3976 (($ $ (-1213 (-558))) NIL) (($ $ (-558)) NIL)) (-2087 (($ (-1 $)) 47)) (-1609 (((-112) $) 69)) (-3070 (($ $) 70)) (-4132 (($ $) 99 (|has| $ (-6 -4384)))) (-2398 (((-762) $) NIL)) (-4009 (($ $) NIL)) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 43)) (-3441 (((-534) $) NIL (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 53)) (-3829 (($ |#1| $) 97)) (-1651 (($ $ $) 100 (|has| $ (-6 -4384))) (($ $ |#1|) 101 (|has| $ (-6 -4384)))) (-2683 (($ $ $) 78) (($ |#1| $) 45) (($ (-635 $)) 83) (($ $ |#1|) 77)) (-1559 (($ $) 50)) (-3940 (($ (-635 |#1|)) 111) (((-853) $) 41 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) NIL)) (-4171 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 114 (|has| |#1| (-1087)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1143 |#1|) (-13 (-664 |#1|) (-608 (-635 |#1|)) (-10 -8 (-6 -4384) (-15 -3031 ($ (-635 |#1|))) (IF (|has| |#1| (-1087)) (-15 -2376 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -3216 ((-2 (|:| |cycle?| (-112)) (|:| -2663 (-762)) (|:| |period| (-762))) (-762) $)) (-15 -2087 ($ (-1 $))) (-15 -3829 ($ |#1| $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -2770 ((-1251) (-558) $)) (-15 -2269 ((-853) $)) (-15 -2553 ((-112)))) |%noBranch|) (-15 -1649 ($ $ (-558) $)) (-15 -2009 ($ (-1 |#1|))) (-15 -2009 ($ (-1 |#1| |#1|) |#1|)) (-15 -2050 ($ (-1 (-112) |#1|) $)) (-15 -2061 ($ (-1 (-112) |#1|) $)))) (-1200)) (T -1143))
-((-3031 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-2376 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-4 *4 (-1200)) (-5 *2 (-112)) (-5 *1 (-1143 *4)))) (-3216 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2663 (-762)) (|:| |period| (-762)))) (-5 *1 (-1143 *4)) (-4 *4 (-1200)) (-5 *3 (-762)))) (-2087 (*1 *1 *2) (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1200)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1200)))) (-2770 (*1 *2 *3 *1) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1143 *4)) (-4 *4 (-1087)) (-4 *4 (-1200)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1143 *3)) (-4 *3 (-1087)) (-4 *3 (-1200)))) (-2553 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1087)) (-4 *3 (-1200)))) (-1649 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1143 *3)) (-4 *3 (-1200)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-2009 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-2050 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))) (-2061 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
-(-13 (-664 |#1|) (-608 (-635 |#1|)) (-10 -8 (-6 -4384) (-15 -3031 ($ (-635 |#1|))) (IF (|has| |#1| (-1087)) (-15 -2376 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -3216 ((-2 (|:| |cycle?| (-112)) (|:| -2663 (-762)) (|:| |period| (-762))) (-762) $)) (-15 -2087 ($ (-1 $))) (-15 -3829 ($ |#1| $)) (IF (|has| |#1| (-1087)) (PROGN (-15 -2770 ((-1251) (-558) $)) (-15 -2269 ((-853) $)) (-15 -2553 ((-112)))) |%noBranch|) (-15 -1649 ($ $ (-558) $)) (-15 -2009 ($ (-1 |#1|))) (-15 -2009 ($ (-1 |#1| |#1|) |#1|)) (-15 -2050 ($ (-1 (-112) |#1|) $)) (-15 -2061 ($ (-1 (-112) |#1|) $))))
-((-3929 (((-112) $ $) 19)) (-2535 (($ $) 120)) (-3847 (($ $) 121)) (-3756 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-1282 (((-112) $ $) 118)) (-4341 (((-112) $ $ (-558)) 117)) (-3503 (($ (-558)) 127)) (-3566 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-2878 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-841)))) (-3041 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4384))) (($ $) 88 (-12 (|has| (-143) (-841)) (|has| $ (-6 -4384))))) (-3648 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-841)))) (-3651 (((-112) $ (-762)) 8)) (-4077 (((-143) $ (-558) (-143)) 52 (|has| $ (-6 -4384))) (((-143) $ (-1213 (-558)) (-143)) 58 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-1835 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2240 (($ $) 90 (|has| $ (-6 -4384)))) (-1911 (($ $) 100)) (-3284 (($ $ (-1213 (-558)) $) 114)) (-3188 (($ $) 78 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ (-143) $) 77 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4383)))) (-3866 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4383))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4383)))) (-3683 (((-143) $ (-558) (-143)) 53 (|has| $ (-6 -4384)))) (-3620 (((-143) $ (-558)) 51)) (-1307 (((-112) $ $) 119)) (-4145 (((-558) (-1 (-112) (-143)) $) 97) (((-558) (-143) $) 96 (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) 95 (|has| (-143) (-1087))) (((-558) $ $ (-558)) 113) (((-558) (-140) $ (-558)) 112)) (-2917 (((-635 (-143)) $) 30 (|has| $ (-6 -4383)))) (-1395 (($ (-762) (-143)) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-2142 (($ $ $) 87 (|has| (-143) (-841)))) (-3391 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-841)))) (-3486 (((-635 (-143)) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-2281 (($ $ $) 86 (|has| (-143) (-841)))) (-4143 (((-112) $ $ (-143)) 115)) (-3073 (((-762) $ $ (-143)) 116)) (-3674 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-2630 (($ $) 122)) (-4331 (($ $) 123)) (-3212 (((-112) $ (-762)) 10)) (-1845 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-2510 (((-1145) $) 22)) (-1363 (($ (-143) $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21)) (-3156 (((-143) $) 42 (|has| (-558) (-841)))) (-2820 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2830 (($ $ (-143)) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-4318 (((-635 (-143)) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 (((-143) $ (-558) (-143)) 50) (((-143) $ (-558)) 49) (($ $ (-1213 (-558))) 63) (($ $ $) 102)) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-1698 (((-762) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4383))) (((-762) (-143) $) 28 (-12 (|has| (-143) (-1087)) (|has| $ (-6 -4383))))) (-2834 (($ $ $ (-558)) 91 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| (-143) (-606 (-534))))) (-3952 (($ (-635 (-143))) 70)) (-2683 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (($ (-143)) 111) (((-853) $) 18)) (-2831 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4383)))) (-2555 (((-1145) $) 131) (((-1145) $ (-112)) 130) (((-1251) (-813) $) 129) (((-1251) (-813) $ (-112)) 128)) (-1757 (((-112) $ $) 84 (|has| (-143) (-841)))) (-1737 (((-112) $ $) 83 (|has| (-143) (-841)))) (-1708 (((-112) $ $) 20)) (-1749 (((-112) $ $) 85 (|has| (-143) (-841)))) (-1728 (((-112) $ $) 82 (|has| (-143) (-841)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1144) (-139)) (T -1144))
-((-3503 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1144)))))
-(-13 (-1131) (-1087) (-819) (-10 -8 (-15 -3503 ($ (-558)))))
-(((-34) . T) ((-102) . T) ((-605 (-853)) . T) ((-150 #0=(-143)) . T) ((-606 (-534)) |has| (-143) (-606 (-534))) ((-285 #1=(-558) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-372 #0#) . T) ((-487 #0#) . T) ((-596 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))) ((-641 #0#) . T) ((-19 #0#) . T) ((-819) . T) ((-841) |has| (-143) (-841)) ((-1087) . T) ((-1131) . T) ((-1200) . T))
-((-3929 (((-112) $ $) NIL)) (-2535 (($ $) NIL)) (-3847 (($ $) NIL)) (-3756 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-1282 (((-112) $ $) NIL)) (-4341 (((-112) $ $ (-558)) NIL)) (-3503 (($ (-558)) 7)) (-3566 (((-635 $) $ (-143)) NIL) (((-635 $) $ (-140)) NIL)) (-2878 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-841)))) (-3041 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| (-143) (-841))))) (-3648 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 (((-143) $ (-558) (-143)) NIL (|has| $ (-6 -4384))) (((-143) $ (-1213 (-558)) (-143)) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-1835 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3284 (($ $ (-1213 (-558)) $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-1488 (($ (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4383))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4383)))) (-3683 (((-143) $ (-558) (-143)) NIL (|has| $ (-6 -4384)))) (-3620 (((-143) $ (-558)) NIL)) (-1307 (((-112) $ $) NIL)) (-4145 (((-558) (-1 (-112) (-143)) $) NIL) (((-558) (-143) $) NIL (|has| (-143) (-1087))) (((-558) (-143) $ (-558)) NIL (|has| (-143) (-1087))) (((-558) $ $ (-558)) NIL) (((-558) (-140) $ (-558)) NIL)) (-2917 (((-635 (-143)) $) NIL (|has| $ (-6 -4383)))) (-1395 (($ (-762) (-143)) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| (-143) (-841)))) (-3391 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-841)))) (-3486 (((-635 (-143)) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| (-143) (-841)))) (-4143 (((-112) $ $ (-143)) NIL)) (-3073 (((-762) $ $ (-143)) NIL)) (-3674 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-2630 (($ $) NIL)) (-4331 (($ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-1845 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2510 (((-1145) $) NIL)) (-1363 (($ (-143) $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-143) $) NIL (|has| (-558) (-841)))) (-2820 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2830 (($ $ (-143)) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-4318 (((-635 (-143)) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 (((-143) $ (-558) (-143)) NIL) (((-143) $ (-558)) NIL) (($ $ (-1213 (-558))) NIL) (($ $ $) NIL)) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-1698 (((-762) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383))) (((-762) (-143) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-143) (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-143) (-606 (-534))))) (-3952 (($ (-635 (-143))) NIL)) (-2683 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (($ (-143)) NIL) (((-853) $) NIL)) (-2831 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4383)))) (-2555 (((-1145) $) 18) (((-1145) $ (-112)) 20) (((-1251) (-813) $) 21) (((-1251) (-813) $ (-112)) 22)) (-1757 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1737 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1728 (((-112) $ $) NIL (|has| (-143) (-841)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1145) (-1144)) (T -1145))
-NIL
-(-1144)
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL)) (-3552 (((-1251) $ (-1145) (-1145)) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-1145) |#1|) NIL)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#1| "failed") (-1145) $) NIL)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#1| "failed") (-1145) $) NIL)) (-1488 (($ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-1145) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-1145)) NIL)) (-2917 (((-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-1145) $) NIL (|has| (-1145) (-841)))) (-3486 (((-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-1145) $) NIL (|has| (-1145) (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-1934 (((-635 (-1145)) $) NIL)) (-3336 (((-112) (-1145) $) NIL)) (-1498 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL)) (-3051 (((-635 (-1145)) $) NIL)) (-2740 (((-112) (-1145) $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-3156 ((|#1| $) NIL (|has| (-1145) (-841)))) (-2820 (((-3 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) "failed") (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ $ (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL (-12 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-308 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-1145)) NIL) ((|#1| $ (-1145) |#1|) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-605 (-853))) (|has| |#1| (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 (-1145)) (|:| -1925 |#1|)) (-1087)) (|has| |#1| (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1146 |#1|) (-13 (-1176 (-1145) |#1|) (-10 -7 (-6 -4383))) (-1087)) (T -1146))
-NIL
-(-13 (-1176 (-1145) |#1|) (-10 -7 (-6 -4383)))
-((-3308 (((-1143 |#1|) (-1143 |#1|)) 77)) (-3248 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 37)) (-4325 (((-1143 |#1|) (-406 (-558)) (-1143 |#1|)) 121 (|has| |#1| (-38 (-406 (-558)))))) (-1630 (((-1143 |#1|) |#1| (-1143 |#1|)) 127 (|has| |#1| (-362)))) (-2100 (((-1143 |#1|) (-1143 |#1|)) 90)) (-3870 (((-1143 (-558)) (-558)) 57)) (-3064 (((-1143 |#1|) (-1143 (-1143 |#1|))) 109 (|has| |#1| (-38 (-406 (-558)))))) (-2212 (((-1143 |#1|) (-558) (-558) (-1143 |#1|)) 95)) (-2345 (((-1143 |#1|) |#1| (-558)) 45)) (-2101 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 60)) (-3517 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 124 (|has| |#1| (-362)))) (-2758 (((-1143 |#1|) |#1| (-1 (-1143 |#1|))) 108 (|has| |#1| (-38 (-406 (-558)))))) (-3007 (((-1143 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1143 |#1|))) 125 (|has| |#1| (-362)))) (-3113 (((-1143 |#1|) (-1143 |#1|)) 89)) (-1479 (((-1143 |#1|) (-1143 |#1|)) 76)) (-1404 (((-1143 |#1|) (-558) (-558) (-1143 |#1|)) 96)) (-1337 (((-1143 |#1|) |#1| (-1143 |#1|)) 105 (|has| |#1| (-38 (-406 (-558)))))) (-1574 (((-1143 (-558)) (-558)) 56)) (-1426 (((-1143 |#1|) |#1|) 59)) (-4148 (((-1143 |#1|) (-1143 |#1|) (-558) (-558)) 92)) (-2976 (((-1143 |#1|) (-1 |#1| (-558)) (-1143 |#1|)) 66)) (-2861 (((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|)) 35)) (-2344 (((-1143 |#1|) (-1143 |#1|)) 91)) (-1369 (((-1143 |#1|) (-1143 |#1|) |#1|) 71)) (-2156 (((-1143 |#1|) (-1143 |#1|)) 62)) (-2771 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 72)) (-3940 (((-1143 |#1|) |#1|) 67)) (-1532 (((-1143 |#1|) (-1143 (-1143 |#1|))) 82)) (-1805 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 36)) (-1796 (((-1143 |#1|) (-1143 |#1|)) 21) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 23)) (-1785 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 17)) (* (((-1143 |#1|) (-1143 |#1|) |#1|) 29) (((-1143 |#1|) |#1| (-1143 |#1|)) 26) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 27)))
-(((-1147 |#1|) (-10 -7 (-15 -1785 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1796 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1796 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -2861 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -1805 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3248 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -2345 ((-1143 |#1|) |#1| (-558))) (-15 -1574 ((-1143 (-558)) (-558))) (-15 -3870 ((-1143 (-558)) (-558))) (-15 -1426 ((-1143 |#1|) |#1|)) (-15 -2101 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2156 ((-1143 |#1|) (-1143 |#1|))) (-15 -2976 ((-1143 |#1|) (-1 |#1| (-558)) (-1143 |#1|))) (-15 -3940 ((-1143 |#1|) |#1|)) (-15 -1369 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -2771 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1479 ((-1143 |#1|) (-1143 |#1|))) (-15 -3308 ((-1143 |#1|) (-1143 |#1|))) (-15 -1532 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -3113 ((-1143 |#1|) (-1143 |#1|))) (-15 -2100 ((-1143 |#1|) (-1143 |#1|))) (-15 -2344 ((-1143 |#1|) (-1143 |#1|))) (-15 -4148 ((-1143 |#1|) (-1143 |#1|) (-558) (-558))) (-15 -2212 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (-15 -1404 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -2758 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -3064 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -4325 ((-1143 |#1|) (-406 (-558)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3517 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3007 ((-1143 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1143 |#1|)))) (-15 -1630 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|)) (-1039)) (T -1147))
-((-1630 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362)) (-4 *4 (-1039)) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)))) (-3517 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-4325 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1039)) (-5 *3 (-406 (-558))) (-5 *1 (-1147 *4)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))) (-1337 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1404 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-2212 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-4148 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-2344 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1039)))) (-3308 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2771 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))) (-2976 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1039)) (-5 *1 (-1147 *4)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2101 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1426 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))) (-3870 (*1 *2 *3) (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039)) (-5 *3 (-558)))) (-1574 (*1 *2 *3) (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039)) (-5 *3 (-558)))) (-2345 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))) (-3248 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1805 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-2861 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1796 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))) (-1785 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
-(-10 -7 (-15 -1785 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1796 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1796 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -2861 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -1805 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3248 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -2345 ((-1143 |#1|) |#1| (-558))) (-15 -1574 ((-1143 (-558)) (-558))) (-15 -3870 ((-1143 (-558)) (-558))) (-15 -1426 ((-1143 |#1|) |#1|)) (-15 -2101 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2156 ((-1143 |#1|) (-1143 |#1|))) (-15 -2976 ((-1143 |#1|) (-1 |#1| (-558)) (-1143 |#1|))) (-15 -3940 ((-1143 |#1|) |#1|)) (-15 -1369 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -2771 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -1479 ((-1143 |#1|) (-1143 |#1|))) (-15 -3308 ((-1143 |#1|) (-1143 |#1|))) (-15 -1532 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -3113 ((-1143 |#1|) (-1143 |#1|))) (-15 -2100 ((-1143 |#1|) (-1143 |#1|))) (-15 -2344 ((-1143 |#1|) (-1143 |#1|))) (-15 -4148 ((-1143 |#1|) (-1143 |#1|) (-558) (-558))) (-15 -2212 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (-15 -1404 ((-1143 |#1|) (-558) (-558) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -2758 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -3064 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -4325 ((-1143 |#1|) (-406 (-558)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3517 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3007 ((-1143 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1143 |#1|)))) (-15 -1630 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|))
-((-2277 (((-1143 |#1|) (-1143 |#1|)) 57)) (-2131 (((-1143 |#1|) (-1143 |#1|)) 39)) (-2254 (((-1143 |#1|) (-1143 |#1|)) 53)) (-2109 (((-1143 |#1|) (-1143 |#1|)) 35)) (-2298 (((-1143 |#1|) (-1143 |#1|)) 60)) (-2158 (((-1143 |#1|) (-1143 |#1|)) 42)) (-4342 (((-1143 |#1|) (-1143 |#1|)) 31)) (-3944 (((-1143 |#1|) (-1143 |#1|)) 27)) (-2312 (((-1143 |#1|) (-1143 |#1|)) 61)) (-2170 (((-1143 |#1|) (-1143 |#1|)) 43)) (-2289 (((-1143 |#1|) (-1143 |#1|)) 58)) (-2146 (((-1143 |#1|) (-1143 |#1|)) 40)) (-2265 (((-1143 |#1|) (-1143 |#1|)) 55)) (-2120 (((-1143 |#1|) (-1143 |#1|)) 37)) (-4175 (((-1143 |#1|) (-1143 |#1|)) 65)) (-2209 (((-1143 |#1|) (-1143 |#1|)) 47)) (-2325 (((-1143 |#1|) (-1143 |#1|)) 63)) (-2184 (((-1143 |#1|) (-1143 |#1|)) 45)) (-4197 (((-1143 |#1|) (-1143 |#1|)) 68)) (-2233 (((-1143 |#1|) (-1143 |#1|)) 50)) (-2038 (((-1143 |#1|) (-1143 |#1|)) 69)) (-2244 (((-1143 |#1|) (-1143 |#1|)) 51)) (-4185 (((-1143 |#1|) (-1143 |#1|)) 67)) (-2221 (((-1143 |#1|) (-1143 |#1|)) 49)) (-4164 (((-1143 |#1|) (-1143 |#1|)) 66)) (-2195 (((-1143 |#1|) (-1143 |#1|)) 48)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 33)))
-(((-1148 |#1|) (-10 -7 (-15 -3944 ((-1143 |#1|) (-1143 |#1|))) (-15 -4342 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2109 ((-1143 |#1|) (-1143 |#1|))) (-15 -2120 ((-1143 |#1|) (-1143 |#1|))) (-15 -2131 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2158 ((-1143 |#1|) (-1143 |#1|))) (-15 -2170 ((-1143 |#1|) (-1143 |#1|))) (-15 -2184 ((-1143 |#1|) (-1143 |#1|))) (-15 -2195 ((-1143 |#1|) (-1143 |#1|))) (-15 -2209 ((-1143 |#1|) (-1143 |#1|))) (-15 -2221 ((-1143 |#1|) (-1143 |#1|))) (-15 -2233 ((-1143 |#1|) (-1143 |#1|))) (-15 -2244 ((-1143 |#1|) (-1143 |#1|))) (-15 -2254 ((-1143 |#1|) (-1143 |#1|))) (-15 -2265 ((-1143 |#1|) (-1143 |#1|))) (-15 -2277 ((-1143 |#1|) (-1143 |#1|))) (-15 -2289 ((-1143 |#1|) (-1143 |#1|))) (-15 -2298 ((-1143 |#1|) (-1143 |#1|))) (-15 -2312 ((-1143 |#1|) (-1143 |#1|))) (-15 -2325 ((-1143 |#1|) (-1143 |#1|))) (-15 -4164 ((-1143 |#1|) (-1143 |#1|))) (-15 -4175 ((-1143 |#1|) (-1143 |#1|))) (-15 -4185 ((-1143 |#1|) (-1143 |#1|))) (-15 -4197 ((-1143 |#1|) (-1143 |#1|))) (-15 -2038 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-558)))) (T -1148))
-((-2038 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4197 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2277 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2233 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1148 *3)))))
-(-10 -7 (-15 -3944 ((-1143 |#1|) (-1143 |#1|))) (-15 -4342 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2109 ((-1143 |#1|) (-1143 |#1|))) (-15 -2120 ((-1143 |#1|) (-1143 |#1|))) (-15 -2131 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2158 ((-1143 |#1|) (-1143 |#1|))) (-15 -2170 ((-1143 |#1|) (-1143 |#1|))) (-15 -2184 ((-1143 |#1|) (-1143 |#1|))) (-15 -2195 ((-1143 |#1|) (-1143 |#1|))) (-15 -2209 ((-1143 |#1|) (-1143 |#1|))) (-15 -2221 ((-1143 |#1|) (-1143 |#1|))) (-15 -2233 ((-1143 |#1|) (-1143 |#1|))) (-15 -2244 ((-1143 |#1|) (-1143 |#1|))) (-15 -2254 ((-1143 |#1|) (-1143 |#1|))) (-15 -2265 ((-1143 |#1|) (-1143 |#1|))) (-15 -2277 ((-1143 |#1|) (-1143 |#1|))) (-15 -2289 ((-1143 |#1|) (-1143 |#1|))) (-15 -2298 ((-1143 |#1|) (-1143 |#1|))) (-15 -2312 ((-1143 |#1|) (-1143 |#1|))) (-15 -2325 ((-1143 |#1|) (-1143 |#1|))) (-15 -4164 ((-1143 |#1|) (-1143 |#1|))) (-15 -4175 ((-1143 |#1|) (-1143 |#1|))) (-15 -4185 ((-1143 |#1|) (-1143 |#1|))) (-15 -4197 ((-1143 |#1|) (-1143 |#1|))) (-15 -2038 ((-1143 |#1|) (-1143 |#1|))))
-((-2277 (((-1143 |#1|) (-1143 |#1|)) 100)) (-2131 (((-1143 |#1|) (-1143 |#1|)) 64)) (-1764 (((-2 (|:| -2254 (-1143 |#1|)) (|:| -2265 (-1143 |#1|))) (-1143 |#1|)) 96)) (-2254 (((-1143 |#1|) (-1143 |#1|)) 97)) (-3339 (((-2 (|:| -2109 (-1143 |#1|)) (|:| -2120 (-1143 |#1|))) (-1143 |#1|)) 53)) (-2109 (((-1143 |#1|) (-1143 |#1|)) 54)) (-2298 (((-1143 |#1|) (-1143 |#1|)) 102)) (-2158 (((-1143 |#1|) (-1143 |#1|)) 71)) (-4342 (((-1143 |#1|) (-1143 |#1|)) 39)) (-3944 (((-1143 |#1|) (-1143 |#1|)) 36)) (-2312 (((-1143 |#1|) (-1143 |#1|)) 103)) (-2170 (((-1143 |#1|) (-1143 |#1|)) 72)) (-2289 (((-1143 |#1|) (-1143 |#1|)) 101)) (-2146 (((-1143 |#1|) (-1143 |#1|)) 67)) (-2265 (((-1143 |#1|) (-1143 |#1|)) 98)) (-2120 (((-1143 |#1|) (-1143 |#1|)) 55)) (-4175 (((-1143 |#1|) (-1143 |#1|)) 111)) (-2209 (((-1143 |#1|) (-1143 |#1|)) 86)) (-2325 (((-1143 |#1|) (-1143 |#1|)) 105)) (-2184 (((-1143 |#1|) (-1143 |#1|)) 82)) (-4197 (((-1143 |#1|) (-1143 |#1|)) 115)) (-2233 (((-1143 |#1|) (-1143 |#1|)) 90)) (-2038 (((-1143 |#1|) (-1143 |#1|)) 117)) (-2244 (((-1143 |#1|) (-1143 |#1|)) 92)) (-4185 (((-1143 |#1|) (-1143 |#1|)) 113)) (-2221 (((-1143 |#1|) (-1143 |#1|)) 88)) (-4164 (((-1143 |#1|) (-1143 |#1|)) 107)) (-2195 (((-1143 |#1|) (-1143 |#1|)) 84)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 40)))
-(((-1149 |#1|) (-10 -7 (-15 -3944 ((-1143 |#1|) (-1143 |#1|))) (-15 -4342 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3339 ((-2 (|:| -2109 (-1143 |#1|)) (|:| -2120 (-1143 |#1|))) (-1143 |#1|))) (-15 -2109 ((-1143 |#1|) (-1143 |#1|))) (-15 -2120 ((-1143 |#1|) (-1143 |#1|))) (-15 -2131 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2158 ((-1143 |#1|) (-1143 |#1|))) (-15 -2170 ((-1143 |#1|) (-1143 |#1|))) (-15 -2184 ((-1143 |#1|) (-1143 |#1|))) (-15 -2195 ((-1143 |#1|) (-1143 |#1|))) (-15 -2209 ((-1143 |#1|) (-1143 |#1|))) (-15 -2221 ((-1143 |#1|) (-1143 |#1|))) (-15 -2233 ((-1143 |#1|) (-1143 |#1|))) (-15 -2244 ((-1143 |#1|) (-1143 |#1|))) (-15 -1764 ((-2 (|:| -2254 (-1143 |#1|)) (|:| -2265 (-1143 |#1|))) (-1143 |#1|))) (-15 -2254 ((-1143 |#1|) (-1143 |#1|))) (-15 -2265 ((-1143 |#1|) (-1143 |#1|))) (-15 -2277 ((-1143 |#1|) (-1143 |#1|))) (-15 -2289 ((-1143 |#1|) (-1143 |#1|))) (-15 -2298 ((-1143 |#1|) (-1143 |#1|))) (-15 -2312 ((-1143 |#1|) (-1143 |#1|))) (-15 -2325 ((-1143 |#1|) (-1143 |#1|))) (-15 -4164 ((-1143 |#1|) (-1143 |#1|))) (-15 -4175 ((-1143 |#1|) (-1143 |#1|))) (-15 -4185 ((-1143 |#1|) (-1143 |#1|))) (-15 -4197 ((-1143 |#1|) (-1143 |#1|))) (-15 -2038 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-558)))) (T -1149))
-((-2038 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4197 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2277 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-1764 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-2 (|:| -2254 (-1143 *4)) (|:| -2265 (-1143 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2233 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-2 (|:| -2109 (-1143 *4)) (|:| -2120 (-1143 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1149 *3)))))
-(-10 -7 (-15 -3944 ((-1143 |#1|) (-1143 |#1|))) (-15 -4342 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3339 ((-2 (|:| -2109 (-1143 |#1|)) (|:| -2120 (-1143 |#1|))) (-1143 |#1|))) (-15 -2109 ((-1143 |#1|) (-1143 |#1|))) (-15 -2120 ((-1143 |#1|) (-1143 |#1|))) (-15 -2131 ((-1143 |#1|) (-1143 |#1|))) (-15 -2146 ((-1143 |#1|) (-1143 |#1|))) (-15 -2158 ((-1143 |#1|) (-1143 |#1|))) (-15 -2170 ((-1143 |#1|) (-1143 |#1|))) (-15 -2184 ((-1143 |#1|) (-1143 |#1|))) (-15 -2195 ((-1143 |#1|) (-1143 |#1|))) (-15 -2209 ((-1143 |#1|) (-1143 |#1|))) (-15 -2221 ((-1143 |#1|) (-1143 |#1|))) (-15 -2233 ((-1143 |#1|) (-1143 |#1|))) (-15 -2244 ((-1143 |#1|) (-1143 |#1|))) (-15 -1764 ((-2 (|:| -2254 (-1143 |#1|)) (|:| -2265 (-1143 |#1|))) (-1143 |#1|))) (-15 -2254 ((-1143 |#1|) (-1143 |#1|))) (-15 -2265 ((-1143 |#1|) (-1143 |#1|))) (-15 -2277 ((-1143 |#1|) (-1143 |#1|))) (-15 -2289 ((-1143 |#1|) (-1143 |#1|))) (-15 -2298 ((-1143 |#1|) (-1143 |#1|))) (-15 -2312 ((-1143 |#1|) (-1143 |#1|))) (-15 -2325 ((-1143 |#1|) (-1143 |#1|))) (-15 -4164 ((-1143 |#1|) (-1143 |#1|))) (-15 -4175 ((-1143 |#1|) (-1143 |#1|))) (-15 -4185 ((-1143 |#1|) (-1143 |#1|))) (-15 -4197 ((-1143 |#1|) (-1143 |#1|))) (-15 -2038 ((-1143 |#1|) (-1143 |#1|))))
-((-4339 (((-948 |#2|) |#2| |#2|) 35)) (-3199 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306)))))
-(((-1150 |#1| |#2|) (-10 -7 (-15 -4339 ((-948 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -3199 (|#2| |#2| |#1|)) |%noBranch|)) (-550) (-1222 |#1|)) (T -1150))
-((-3199 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-550)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-1222 *3)))) (-4339 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-948 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -4339 ((-948 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -3199 (|#2| |#2| |#1|)) |%noBranch|))
-((-3929 (((-112) $ $) NIL)) (-2389 (($ $ (-635 (-762))) 66)) (-1538 (($) 25)) (-4079 (($ $) 41)) (-2855 (((-635 $) $) 50)) (-3696 (((-112) $) 16)) (-3400 (((-635 (-933 |#2|)) $) 73)) (-4031 (($ $) 67)) (-4287 (((-762) $) 36)) (-1395 (($) 24)) (-1770 (($ $ (-635 (-762)) (-933 |#2|)) 59) (($ $ (-635 (-762)) (-762)) 60) (($ $ (-762) (-933 |#2|)) 62)) (-3391 (($ $ $) 47) (($ (-635 $)) 49)) (-3832 (((-762) $) 74)) (-3355 (((-112) $) 15)) (-2510 (((-1145) $) NIL)) (-2973 (((-112) $) 17)) (-1688 (((-1107) $) NIL)) (-2582 (((-170) $) 72)) (-2148 (((-933 |#2|) $) 68)) (-2476 (((-762) $) 69)) (-3919 (((-112) $) 71)) (-2748 (($ $ (-635 (-762)) (-170)) 65)) (-3645 (($ $) 42)) (-3940 (((-853) $) 85)) (-4286 (($ $ (-635 (-762)) (-112)) 64)) (-1384 (((-635 $) $) 11)) (-1949 (($ $ (-762)) 35)) (-3218 (($ $) 31)) (-2403 (($ $ $ (-933 |#2|) (-762)) 55)) (-3605 (($ $ (-933 |#2|)) 54)) (-2407 (($ $ (-635 (-762)) (-933 |#2|)) 53) (($ $ (-635 (-762)) (-762)) 57) (((-762) $ (-933 |#2|)) 58)) (-1708 (((-112) $ $) 79)))
-(((-1151 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -3355 ((-112) $)) (-15 -3696 ((-112) $)) (-15 -2973 ((-112) $)) (-15 -1395 ($)) (-15 -1538 ($)) (-15 -3218 ($ $)) (-15 -1949 ($ $ (-762))) (-15 -1384 ((-635 $) $)) (-15 -4287 ((-762) $)) (-15 -4079 ($ $)) (-15 -3645 ($ $)) (-15 -3391 ($ $ $)) (-15 -3391 ($ (-635 $))) (-15 -2855 ((-635 $) $)) (-15 -2407 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -3605 ($ $ (-933 |#2|))) (-15 -2403 ($ $ $ (-933 |#2|) (-762))) (-15 -1770 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -2407 ($ $ (-635 (-762)) (-762))) (-15 -1770 ($ $ (-635 (-762)) (-762))) (-15 -2407 ((-762) $ (-933 |#2|))) (-15 -1770 ($ $ (-762) (-933 |#2|))) (-15 -4286 ($ $ (-635 (-762)) (-112))) (-15 -2748 ($ $ (-635 (-762)) (-170))) (-15 -2389 ($ $ (-635 (-762)))) (-15 -2148 ((-933 |#2|) $)) (-15 -2476 ((-762) $)) (-15 -3919 ((-112) $)) (-15 -2582 ((-170) $)) (-15 -3832 ((-762) $)) (-15 -4031 ($ $)) (-15 -3400 ((-635 (-933 |#2|)) $)))) (-911) (-1039)) (T -1151))
-((-3355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1395 (*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1538 (*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-3218 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-1949 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-4079 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-3605 (*1 *1 *1 *2) (-12 (-5 *2 (-933 *4)) (-4 *4 (-1039)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)))) (-2403 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-933 *5)) (-5 *3 (-762)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-1770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-1770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-2407 (*1 *2 *1 *3) (-12 (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *2 (-762)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-1770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))) (-4286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-112)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-2748 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-762))) (-5 *3 (-170)) (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)) (-4 *5 (-1039)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-933 *4)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))) (-4031 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-635 (-933 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911)) (-4 *4 (-1039)))))
-(-13 (-1087) (-10 -8 (-15 -3355 ((-112) $)) (-15 -3696 ((-112) $)) (-15 -2973 ((-112) $)) (-15 -1395 ($)) (-15 -1538 ($)) (-15 -3218 ($ $)) (-15 -1949 ($ $ (-762))) (-15 -1384 ((-635 $) $)) (-15 -4287 ((-762) $)) (-15 -4079 ($ $)) (-15 -3645 ($ $)) (-15 -3391 ($ $ $)) (-15 -3391 ($ (-635 $))) (-15 -2855 ((-635 $) $)) (-15 -2407 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -3605 ($ $ (-933 |#2|))) (-15 -2403 ($ $ $ (-933 |#2|) (-762))) (-15 -1770 ($ $ (-635 (-762)) (-933 |#2|))) (-15 -2407 ($ $ (-635 (-762)) (-762))) (-15 -1770 ($ $ (-635 (-762)) (-762))) (-15 -2407 ((-762) $ (-933 |#2|))) (-15 -1770 ($ $ (-762) (-933 |#2|))) (-15 -4286 ($ $ (-635 (-762)) (-112))) (-15 -2748 ($ $ (-635 (-762)) (-170))) (-15 -2389 ($ $ (-635 (-762)))) (-15 -2148 ((-933 |#2|) $)) (-15 -2476 ((-762) $)) (-15 -3919 ((-112) $)) (-15 -2582 ((-170) $)) (-15 -3832 ((-762) $)) (-15 -4031 ($ $)) (-15 -3400 ((-635 (-933 |#2|)) $))))
-((-3929 (((-112) $ $) NIL)) (-2385 ((|#2| $) 11)) (-2372 ((|#1| $) 10)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3952 (($ |#1| |#2|) 9)) (-3940 (((-853) $) 16)) (-1708 (((-112) $ $) NIL)))
-(((-1152 |#1| |#2|) (-13 (-1087) (-10 -8 (-15 -3952 ($ |#1| |#2|)) (-15 -2372 (|#1| $)) (-15 -2385 (|#2| $)))) (-1087) (-1087)) (T -1152))
-((-3952 (*1 *1 *2 *3) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-2372 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *2 *3)) (-4 *3 (-1087)))) (-2385 (*1 *2 *1) (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *3 *2)) (-4 *3 (-1087)))))
-(-13 (-1087) (-10 -8 (-15 -3952 ($ |#1| |#2|)) (-15 -2372 (|#1| $)) (-15 -2385 (|#2| $))))
-((-3929 (((-112) $ $) NIL)) (-3547 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1153) (-13 (-1070) (-10 -8 (-15 -3547 ((-1122) $))))) (T -1153))
-((-3547 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1153)))))
-(-13 (-1070) (-10 -8 (-15 -3547 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 11)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-3244 (($ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-4326 (((-112) $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-4057 (($ $ (-558)) NIL) (($ $ (-558) (-558)) 66)) (-3414 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL)) (-1572 (((-1161 |#1| |#2| |#3|) $) 36)) (-1333 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 29)) (-3776 (((-1161 |#1| |#2| |#3|) $) 30)) (-2277 (($ $) 107 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 83 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) 103 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 79 (|has| |#1| (-38 (-406 (-558)))))) (-1334 (((-558) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2095 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL)) (-2298 (($ $) 111 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 87 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1163) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-558) "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-3226 (((-1161 |#1| |#2| |#3|) $) 131) (((-1163) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-406 (-558)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-558) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-1685 (($ $) 34) (($ (-558) $) 35)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-1161 |#1| |#2| |#3|)) (-679 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 (-1161 |#1| |#2| |#3|))) (|:| |vec| (-1246 (-1161 |#1| |#2| |#3|)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362))))) (-3248 (((-3 $ "failed") $) 48)) (-3426 (((-406 (-942 |#1|)) $ (-558)) 65 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 67 (|has| |#1| (-550)))) (-3692 (($) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-4053 (((-112) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-3459 (((-112) $) 25)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-876 (-558))) (|has| |#1| (-362))))) (-2532 (((-558) $) NIL) (((-558) $ (-558)) 24)) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL (|has| |#1| (-362)))) (-3316 (((-1161 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2521 (((-3 $ "failed") $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))))) (-2032 (((-112) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-4184 (($ $ (-911)) NIL)) (-1448 (($ (-1 |#1| (-558)) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-558)) 18) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-2142 (($ $ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-2281 (($ $ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4342 (($ $) 72 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3788 (($ (-558) (-1161 |#1| |#2| |#3|)) 33)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1337 (($ $) 70 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 71 (|has| |#1| (-38 (-406 (-558)))))) (-1823 (($) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1636 (($ $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4259 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-558)) 145)) (-2861 (((-3 $ "failed") $ $) 49 (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3944 (($ $) 73 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-512 (-1163) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-512 (-1163) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-293 (-1161 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1161 |#1| |#2| |#3|)) (-635 (-1161 |#1| |#2| |#3|))) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-308 (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-558)) NIL) (($ $ $) 54 (|has| (-558) (-1099))) (($ $ (-1161 |#1| |#2| |#3|)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-285 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1242 |#2|)) 51) (($ $ (-762)) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 50 (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-4218 (($ $) NIL (|has| |#1| (-362)))) (-3327 (((-1161 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-4263 (((-558) $) 37)) (-2312 (($ $) 113 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 89 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 109 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 85 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 105 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 81 (|has| |#1| (-38 (-406 (-558)))))) (-3441 (((-534) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-606 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-882 (-378)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-1559 (($ $) NIL)) (-3940 (((-853) $) 149) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1161 |#1| |#2| |#3|)) 27) (($ (-1242 |#2|)) 23) (($ (-1163)) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (($ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550)))) (($ (-406 (-558))) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-558))))))) (-3143 ((|#1| $ (-558)) 68)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) 12)) (-2912 (((-1161 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4175 (($ $) 119 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 95 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-2325 (($ $) 115 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 91 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 99 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 101 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 97 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 117 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 93 (|has| |#1| (-38 (-406 (-558)))))) (-4241 (($ $) NIL (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2207 (($) 20 T CONST)) (-2220 (($) 16 T CONST)) (-3042 (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-1757 (((-112) $ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1737 (((-112) $ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1728 (((-112) $ $) NIL (-3994 (-12 (|has| (-1161 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1161 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1161 |#1| |#2| |#3|) (-1161 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 21)) (** (($ $ (-911)) NIL) (($ $ (-762)) 53) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 128 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1161 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1161 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1154 |#1| |#2| |#3|) (-13 (-1208 |#1| (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1154))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(-13 (-1208 |#1| (-1161 |#1| |#2| |#3|)) (-10 -8 (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|)))
-((-2757 ((|#2| |#2| (-1079 |#2|)) 26) ((|#2| |#2| (-1163)) 28)))
-(((-1155 |#1| |#2|) (-10 -7 (-15 -2757 (|#2| |#2| (-1163))) (-15 -2757 (|#2| |#2| (-1079 |#2|)))) (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-429 |#1|) (-159) (-27) (-1185))) (T -1155))
-((-2757 (*1 *2 *2 *3) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185))) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1155 *4 *2)))) (-2757 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1155 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185))))))
-(-10 -7 (-15 -2757 (|#2| |#2| (-1163))) (-15 -2757 (|#2| |#2| (-1079 |#2|))))
-((-2757 (((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1079 (-406 (-942 |#1|)))) 31) (((-406 (-942 |#1|)) (-942 |#1|) (-1079 (-942 |#1|))) 44) (((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1163)) 33) (((-406 (-942 |#1|)) (-942 |#1|) (-1163)) 36)))
-(((-1156 |#1|) (-10 -7 (-15 -2757 ((-406 (-942 |#1|)) (-942 |#1|) (-1163))) (-15 -2757 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -2757 ((-406 (-942 |#1|)) (-942 |#1|) (-1079 (-942 |#1|)))) (-15 -2757 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1079 (-406 (-942 |#1|)))))) (-13 (-550) (-841) (-1028 (-558)))) (T -1156))
-((-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5))) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1156 *5)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-942 *5))) (-5 *3 (-942 *5)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-406 *3)) (-5 *1 (-1156 *5)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-3 (-406 (-942 *5)) (-315 *5))) (-5 *1 (-1156 *5)) (-5 *3 (-406 (-942 *5))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-406 (-942 *5))) (-5 *1 (-1156 *5)) (-5 *3 (-942 *5)))))
-(-10 -7 (-15 -2757 ((-406 (-942 |#1|)) (-942 |#1|) (-1163))) (-15 -2757 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1163))) (-15 -2757 ((-406 (-942 |#1|)) (-942 |#1|) (-1079 (-942 |#1|)))) (-15 -2757 ((-3 (-406 (-942 |#1|)) (-315 |#1|)) (-406 (-942 |#1|)) (-1079 (-406 (-942 |#1|))))))
-((-3397 (((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|)) 13)))
-(((-1157 |#1| |#2|) (-10 -7 (-15 -3397 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|)))) (-1039) (-1039)) (T -1157))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6)))))
-(-10 -7 (-15 -3397 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|))))
-((-4110 (((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|))) 51)) (-3939 (((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|))) 52)))
-(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3939 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|)))) (-15 -4110 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|))))) (-784) (-841) (-450) (-939 |#3| |#1| |#2|)) (T -1158))
-((-4110 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7)))) (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7))))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450)) (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7)))) (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7))))))
-(-10 -7 (-15 -3939 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|)))) (-15 -4110 ((-417 (-1159 (-406 |#4|))) (-1159 (-406 |#4|)))))
-((-3929 (((-112) $ $) 136)) (-3124 (((-112) $) 27)) (-4333 (((-1246 |#1|) $ (-762)) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-1285 (($ (-1159 |#1|)) NIL)) (-3907 (((-1159 $) $ (-1069)) 58) (((-1159 |#1|) $) 47)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) 131 (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2531 (($ $ $) 125 (|has| |#1| (-550)))) (-2418 (((-417 (-1159 $)) (-1159 $)) 71 (|has| |#1| (-899)))) (-2018 (($ $) NIL (|has| |#1| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 91 (|has| |#1| (-899)))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2186 (($ $ (-762)) 39)) (-3291 (($ $ (-762)) 40)) (-2855 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL)) (-3226 ((|#1| $) NIL) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-1069) $) NIL)) (-2862 (($ $ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) 56)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-2567 (($ $ $) 103)) (-3862 (($ $ $) NIL (|has| |#1| (-550)))) (-3343 (((-2 (|:| -3455 |#1|) (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-550)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3199 (($ $) 132 (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-762) $) 45)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-3364 (((-853) $ (-853)) 116)) (-2532 (((-762) $ $) NIL (|has| |#1| (-550)))) (-3999 (((-112) $) 30)) (-2987 (((-762) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| |#1| (-1138)))) (-4068 (($ (-1159 |#1|) (-1069)) 49) (($ (-1159 $) (-1069)) 65)) (-4184 (($ $ (-762)) 32)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) 63) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-1069)) NIL) (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 120)) (-3672 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-2776 (($ (-1 (-762) (-762)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (((-1159 |#1|) $) NIL)) (-2135 (((-3 (-1069) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) 52)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2510 (((-1145) $) NIL)) (-1710 (((-2 (|:| -2263 $) (|:| -1548 $)) $ (-762)) 38)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-1069)) (|:| -1857 (-762))) "failed") $) NIL)) (-1337 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1823 (($) NIL (|has| |#1| (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) 31)) (-3853 ((|#1| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 79 (|has| |#1| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 134 (|has| |#1| (-450)))) (-3232 (($ $ (-762) |#1| $) 98)) (-2321 (((-417 (-1159 $)) (-1159 $)) 77 (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 76 (|has| |#1| (-899)))) (-3939 (((-417 $) $) 84 (|has| |#1| (-899)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2861 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#1|) NIL) (($ $ (-635 (-1069)) (-635 |#1|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-550)))) (-2397 (((-3 $ "failed") $ (-762)) 35)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 137 (|has| |#1| (-362)))) (-3789 (($ $ (-1069)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-3780 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4263 (((-762) $) 54) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) 129 (|has| |#1| (-450))) (($ $ (-1069)) NIL (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-899))))) (-2017 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-550)))) (-3940 (((-853) $) 117) (($ (-558)) NIL) (($ |#1|) 53) (($ (-1069)) NIL) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) 25 (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) 15 T CONST)) (-2220 (($) 16 T CONST)) (-3042 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) 96)) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1805 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 66)) (** (($ $ (-911)) 14) (($ $ (-762)) 12)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 24) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
-(((-1159 |#1|) (-13 (-1222 |#1|) (-10 -8 (-15 -3364 ((-853) $ (-853))) (-15 -3232 ($ $ (-762) |#1| $)))) (-1039)) (T -1159))
-((-3364 (*1 *2 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1159 *3)) (-4 *3 (-1039)))) (-3232 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1159 *3)) (-4 *3 (-1039)))))
-(-13 (-1222 |#1|) (-10 -8 (-15 -3364 ((-853) $ (-853))) (-15 -3232 ($ $ (-762) |#1| $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 11)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3414 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) NIL)) (-2277 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-2298 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-1154 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 36)) (-3226 (((-1154 |#1| |#2| |#3|) $) NIL) (((-1161 |#1| |#2| |#3|) $) NIL)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-1623 (((-406 (-558)) $) 55)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3801 (($ (-406 (-558)) (-1154 |#1| |#2| |#3|)) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) NIL)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-406 (-558))) 20) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4342 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2422 (((-1154 |#1| |#2| |#3|) $) 41)) (-4219 (((-3 (-1154 |#1| |#2| |#3|) "failed") $) NIL)) (-3788 (((-1154 |#1| |#2| |#3|) $) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1337 (($ $) 39 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 40 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-406 (-558))) NIL)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3944 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $ (-1242 |#2|)) 38)) (-4263 (((-406 (-558)) $) NIL)) (-2312 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) NIL)) (-3940 (((-853) $) 58) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1154 |#1| |#2| |#3|)) 30) (($ (-1161 |#1| |#2| |#3|)) 31) (($ (-1242 |#2|)) 26) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3143 ((|#1| $ (-406 (-558))) NIL)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) 12)) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 22 T CONST)) (-2220 (($) 16 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 24)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1160 |#1| |#2| |#3|) (-13 (-1229 |#1| (-1154 |#1| |#2| |#3|)) (-1028 (-1161 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1160))
-((-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(-13 (-1229 |#1| (-1154 |#1| |#2| |#3|)) (-1028 (-1161 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 124)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 115)) (-4189 (((-1219 |#2| |#1|) $ (-762)) 62)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-762)) 78) (($ $ (-762) (-762)) 75)) (-3414 (((-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|))) $) 101)) (-2277 (($ $) 168 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2254 (($ $) 164 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|)))) 114) (($ (-1143 |#1|)) 109)) (-2298 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) 23)) (-3148 (($ $) 26)) (-2584 (((-942 |#1|) $ (-762)) 74) (((-942 |#1|) $ (-762) (-762)) 76)) (-3459 (((-112) $) 119)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-762) $) 121) (((-762) $ (-762)) 123)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) NIL)) (-1448 (($ (-1 |#1| (-558)) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) 13) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4342 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1337 (($ $) 128 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 129 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-2319 (($ $ (-762)) 15)) (-2861 (((-3 $ "failed") $ $) 24 (|has| |#1| (-550)))) (-3944 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-762)))))) (-2276 ((|#1| $ (-762)) 118) (($ $ $) 127 (|has| (-762) (-1099)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $ (-1242 |#2|)) 29)) (-4263 (((-762) $) NIL)) (-2312 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 150 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 166 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) NIL)) (-3940 (((-853) $) 200) (($ (-558)) NIL) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1219 |#2| |#1|)) 50) (($ (-1242 |#2|)) 32)) (-3712 (((-1143 |#1|) $) 97)) (-3143 ((|#1| $ (-762)) 117)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) 53)) (-4175 (($ $) 180 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 156 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 152 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 184 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-762)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-762)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 182 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 158 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 154 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 17 T CONST)) (-2220 (($) 19 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) 193)) (-1785 (($ $ $) 31)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 136 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1161 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-10 -8 (-15 -3940 ($ (-1219 |#2| |#1|))) (-15 -4189 ((-1219 |#2| |#1|) $ (-762))) (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1161))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-1161 *3 *4 *5)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1161 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(-13 (-1237 |#1|) (-10 -8 (-15 -3940 ($ (-1219 |#2| |#1|))) (-15 -4189 ((-1219 |#2| |#1|) $ (-762))) (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|)))
-((-3940 (((-853) $) 27) (($ (-1163)) 29)) (-3994 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 40)) (-3983 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 33) (($ $) 34)) (-4245 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 35)) (-4231 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 37)) (-4216 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 36)) (-4202 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 38)) (-3297 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 39)))
-(((-1162) (-13 (-605 (-853)) (-10 -8 (-15 -3940 ($ (-1163))) (-15 -4245 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4216 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4231 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4202 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3994 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3297 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3983 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3983 ($ $))))) (T -1162))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1162)))) (-4245 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-4216 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-4231 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-4202 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3994 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3297 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3983 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162)))) (-5 *1 (-1162)))) (-3983 (*1 *1 *1) (-5 *1 (-1162))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3940 ($ (-1163))) (-15 -4245 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4216 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4231 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4202 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3994 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3297 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3983 ($ (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3983 ($ $))))
-((-3929 (((-112) $ $) NIL)) (-1589 (($ $ (-635 (-853))) 59)) (-2056 (($ $ (-635 (-853))) 57)) (-3503 (((-1145) $) 84)) (-2969 (((-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853)))) $) 87)) (-3237 (((-112) $) 22)) (-3792 (($ $ (-635 (-635 (-853)))) 56) (($ $ (-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853))))) 82)) (-3457 (($) 123 T CONST)) (-3590 (((-1251)) 105)) (-3193 (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 66) (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 73)) (-1395 (($) 94) (($ $) 100)) (-3179 (($ $) 83)) (-2142 (($ $ $) NIL)) (-2281 (($ $ $) NIL)) (-2411 (((-635 $) $) 106)) (-2510 (((-1145) $) 89)) (-1688 (((-1107) $) NIL)) (-2276 (($ $ (-635 (-853))) 58)) (-3441 (((-534) $) 46) (((-1163) $) 47) (((-882 (-558)) $) 77) (((-882 (-378)) $) 75)) (-3940 (((-853) $) 53) (($ (-1145)) 48)) (-1882 (($ $ (-635 (-853))) 60)) (-2555 (((-1145) $) 33) (((-1145) $ (-112)) 34) (((-1251) (-813) $) 35) (((-1251) (-813) $ (-112)) 36)) (-1757 (((-112) $ $) NIL)) (-1737 (((-112) $ $) NIL)) (-1708 (((-112) $ $) 49)) (-1749 (((-112) $ $) NIL)) (-1728 (((-112) $ $) 50)))
-(((-1163) (-13 (-841) (-606 (-534)) (-819) (-606 (-1163)) (-608 (-1145)) (-606 (-882 (-558))) (-606 (-882 (-378))) (-876 (-558)) (-876 (-378)) (-10 -8 (-15 -1395 ($)) (-15 -1395 ($ $)) (-15 -3590 ((-1251))) (-15 -3179 ($ $)) (-15 -3237 ((-112) $)) (-15 -2969 ((-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853)))) $)) (-15 -3792 ($ $ (-635 (-635 (-853))))) (-15 -3792 ($ $ (-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853)))))) (-15 -2056 ($ $ (-635 (-853)))) (-15 -1589 ($ $ (-635 (-853)))) (-15 -1882 ($ $ (-635 (-853)))) (-15 -2276 ($ $ (-635 (-853)))) (-15 -3503 ((-1145) $)) (-15 -2411 ((-635 $) $)) (-15 -3457 ($) -2010)))) (T -1163))
-((-1395 (*1 *1) (-5 *1 (-1163))) (-1395 (*1 *1 *1) (-5 *1 (-1163))) (-3590 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1163)))) (-3179 (*1 *1 *1) (-5 *1 (-1163))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853))))) (-5 *1 (-1163)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-1163)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853))))) (-5 *1 (-1163)))) (-2056 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-1589 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1163)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1163)))) (-3457 (*1 *1) (-5 *1 (-1163))))
-(-13 (-841) (-606 (-534)) (-819) (-606 (-1163)) (-608 (-1145)) (-606 (-882 (-558))) (-606 (-882 (-378))) (-876 (-558)) (-876 (-378)) (-10 -8 (-15 -1395 ($)) (-15 -1395 ($ $)) (-15 -3590 ((-1251))) (-15 -3179 ($ $)) (-15 -3237 ((-112) $)) (-15 -2969 ((-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853)))) $)) (-15 -3792 ($ $ (-635 (-635 (-853))))) (-15 -3792 ($ $ (-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853))) (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853))) (|:| |args| (-635 (-853)))))) (-15 -2056 ($ $ (-635 (-853)))) (-15 -1589 ($ $ (-635 (-853)))) (-15 -1882 ($ $ (-635 (-853)))) (-15 -2276 ($ $ (-635 (-853)))) (-15 -3503 ((-1145) $)) (-15 -2411 ((-635 $) $)) (-15 -3457 ($) -2010)))
-((-4272 (((-1246 |#1|) |#1| (-911)) 16) (((-1246 |#1|) (-635 |#1|)) 20)))
-(((-1164 |#1|) (-10 -7 (-15 -4272 ((-1246 |#1|) (-635 |#1|))) (-15 -4272 ((-1246 |#1|) |#1| (-911)))) (-1039)) (T -1164))
-((-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-1246 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1039)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1039)) (-5 *2 (-1246 *4)) (-5 *1 (-1164 *4)))))
-(-10 -7 (-15 -4272 ((-1246 |#1|) (-635 |#1|))) (-15 -4272 ((-1246 |#1|) |#1| (-911))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| |#1| (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#1| (-1028 (-406 (-558))))) (((-3 |#1| "failed") $) NIL)) (-3226 (((-558) $) NIL (|has| |#1| (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| |#1| (-1028 (-406 (-558))))) ((|#1| $) NIL)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3199 (($ $) NIL (|has| |#1| (-450)))) (-2704 (($ $ |#1| (-961) $) NIL)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-961)) NIL)) (-3672 (((-961) $) NIL)) (-2776 (($ (-1 (-961) (-961)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#1| $) NIL)) (-3232 (($ $ (-961) |#1| $) NIL (-12 (|has| (-961) (-130)) (|has| |#1| (-550))))) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-4263 (((-961) $) NIL)) (-3012 ((|#1| $) NIL (|has| |#1| (-450)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) NIL) (($ (-406 (-558))) NIL (-3994 (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-1028 (-406 (-558))))))) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ (-961)) NIL)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#1| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2207 (($) 9 T CONST)) (-2220 (($) 14 T CONST)) (-1708 (((-112) $ $) 16)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 19)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1165 |#1|) (-13 (-325 |#1| (-961)) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| (-961) (-130)) (-15 -3232 ($ $ (-961) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4381)) (-6 -4381) |%noBranch|))) (-1039)) (T -1165))
-((-3232 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-961)) (-4 *2 (-130)) (-5 *1 (-1165 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
-(-13 (-325 |#1| (-961)) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| (-961) (-130)) (-15 -3232 ($ $ (-961) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4381)) (-6 -4381) |%noBranch|)))
-((-2370 (((-1167) (-1163) $) 25)) (-1324 (($) 29)) (-3854 (((-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-1163) $) 22)) (-3531 (((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -1894 "void")) $) 41) (((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) 42) (((-1251) (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) 43)) (-2450 (((-1251) (-1163)) 58)) (-3772 (((-1251) (-1163) $) 55) (((-1251) (-1163)) 56) (((-1251)) 57)) (-4162 (((-1251) (-1163)) 37)) (-2241 (((-1163)) 36)) (-2876 (($) 34)) (-2601 (((-436) (-1163) (-436) (-1163) $) 45) (((-436) (-635 (-1163)) (-436) (-1163) $) 49) (((-436) (-1163) (-436)) 46) (((-436) (-1163) (-436) (-1163)) 50)) (-4295 (((-1163)) 35)) (-3940 (((-853) $) 28)) (-3300 (((-1251)) 30) (((-1251) (-1163)) 33)) (-1456 (((-635 (-1163)) (-1163) $) 24)) (-2453 (((-1251) (-1163) (-635 (-1163)) $) 38) (((-1251) (-1163) (-635 (-1163))) 39) (((-1251) (-635 (-1163))) 40)))
-(((-1166) (-13 (-605 (-853)) (-10 -8 (-15 -1324 ($)) (-15 -3300 ((-1251))) (-15 -3300 ((-1251) (-1163))) (-15 -2601 ((-436) (-1163) (-436) (-1163) $)) (-15 -2601 ((-436) (-635 (-1163)) (-436) (-1163) $)) (-15 -2601 ((-436) (-1163) (-436))) (-15 -2601 ((-436) (-1163) (-436) (-1163))) (-15 -4162 ((-1251) (-1163))) (-15 -4295 ((-1163))) (-15 -2241 ((-1163))) (-15 -2453 ((-1251) (-1163) (-635 (-1163)) $)) (-15 -2453 ((-1251) (-1163) (-635 (-1163)))) (-15 -2453 ((-1251) (-635 (-1163)))) (-15 -3531 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -1894 "void")) $)) (-15 -3531 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -1894 "void")))) (-15 -3531 ((-1251) (-3 (|:| |fst| (-433)) (|:| -1894 "void")))) (-15 -3772 ((-1251) (-1163) $)) (-15 -3772 ((-1251) (-1163))) (-15 -3772 ((-1251))) (-15 -2450 ((-1251) (-1163))) (-15 -2876 ($)) (-15 -3854 ((-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-1163) $)) (-15 -1456 ((-635 (-1163)) (-1163) $)) (-15 -2370 ((-1167) (-1163) $))))) (T -1166))
-((-1324 (*1 *1) (-5 *1 (-1166))) (-3300 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2601 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166)))) (-2601 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *4 (-1163)) (-5 *1 (-1166)))) (-2601 (*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166)))) (-2601 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-4295 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))) (-2241 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))) (-2453 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-3531 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1163)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-3772 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-3772 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))) (-2876 (*1 *1) (-5 *1 (-1166))) (-3854 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *1 (-1166)))) (-1456 (*1 *2 *3 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1166)) (-5 *3 (-1163)))) (-2370 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1167)) (-5 *1 (-1166)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -1324 ($)) (-15 -3300 ((-1251))) (-15 -3300 ((-1251) (-1163))) (-15 -2601 ((-436) (-1163) (-436) (-1163) $)) (-15 -2601 ((-436) (-635 (-1163)) (-436) (-1163) $)) (-15 -2601 ((-436) (-1163) (-436))) (-15 -2601 ((-436) (-1163) (-436) (-1163))) (-15 -4162 ((-1251) (-1163))) (-15 -4295 ((-1163))) (-15 -2241 ((-1163))) (-15 -2453 ((-1251) (-1163) (-635 (-1163)) $)) (-15 -2453 ((-1251) (-1163) (-635 (-1163)))) (-15 -2453 ((-1251) (-635 (-1163)))) (-15 -3531 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -1894 "void")) $)) (-15 -3531 ((-1251) (-1163) (-3 (|:| |fst| (-433)) (|:| -1894 "void")))) (-15 -3531 ((-1251) (-3 (|:| |fst| (-433)) (|:| -1894 "void")))) (-15 -3772 ((-1251) (-1163) $)) (-15 -3772 ((-1251) (-1163))) (-15 -3772 ((-1251))) (-15 -2450 ((-1251) (-1163))) (-15 -2876 ($)) (-15 -3854 ((-3 (|:| |fst| (-433)) (|:| -1894 "void")) (-1163) $)) (-15 -1456 ((-635 (-1163)) (-1163) $)) (-15 -2370 ((-1167) (-1163) $))))
-((-3573 (((-635 (-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) $) 59)) (-1854 (((-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))) (-433) $) 43)) (-2763 (($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-436))))) 17)) (-2450 (((-1251) $) 67)) (-3514 (((-635 (-1163)) $) 22)) (-1284 (((-1091) $) 55)) (-3003 (((-436) (-1163) $) 27)) (-2735 (((-635 (-1163)) $) 30)) (-2876 (($) 19)) (-2601 (((-436) (-635 (-1163)) (-436) $) 25) (((-436) (-1163) (-436) $) 24)) (-3940 (((-853) $) 9) (((-1173 (-1163) (-436)) $) 13)))
-(((-1167) (-13 (-605 (-853)) (-10 -8 (-15 -3940 ((-1173 (-1163) (-436)) $)) (-15 -2876 ($)) (-15 -2601 ((-436) (-635 (-1163)) (-436) $)) (-15 -2601 ((-436) (-1163) (-436) $)) (-15 -3003 ((-436) (-1163) $)) (-15 -3514 ((-635 (-1163)) $)) (-15 -1854 ((-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))) (-433) $)) (-15 -2735 ((-635 (-1163)) $)) (-15 -3573 ((-635 (-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) $)) (-15 -1284 ((-1091) $)) (-15 -2450 ((-1251) $)) (-15 -2763 ($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-436))))))))) (T -1167))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-1173 (-1163) (-436))) (-5 *1 (-1167)))) (-2876 (*1 *1) (-5 *1 (-1167))) (-2601 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *1 (-1167)))) (-2601 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1167)))) (-3003 (*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-436)) (-5 *1 (-1167)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))) (-1854 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) (-5 *1 (-1167)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))))) (-5 *1 (-1167)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1167)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1167)))) (-2763 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-436))))) (-5 *1 (-1167)))))
-(-13 (-605 (-853)) (-10 -8 (-15 -3940 ((-1173 (-1163) (-436)) $)) (-15 -2876 ($)) (-15 -2601 ((-436) (-635 (-1163)) (-436) $)) (-15 -2601 ((-436) (-1163) (-436) $)) (-15 -3003 ((-436) (-1163) $)) (-15 -3514 ((-635 (-1163)) $)) (-15 -1854 ((-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))) (-433) $)) (-15 -2735 ((-635 (-1163)) $)) (-15 -3573 ((-635 (-635 (-3 (|:| -3179 (-1163)) (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))) $)) (-15 -1284 ((-1091) $)) (-15 -2450 ((-1251) $)) (-15 -2763 ($ (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-436))))))))
-((-3929 (((-112) $ $) NIL)) (-3302 (((-3 (-558) "failed") $) 29) (((-3 (-224) "failed") $) 35) (((-3 (-1163) "failed") $) 41) (((-3 (-1145) "failed") $) 47)) (-3226 (((-558) $) 30) (((-224) $) 36) (((-1163) $) 42) (((-1145) $) 48)) (-3488 (((-112) $) 53)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2490 (((-3 (-558) (-224) (-1163) (-1145) $) $) 55)) (-3535 (((-635 $) $) 57)) (-3441 (((-1091) $) 24) (($ (-1091)) 25)) (-2753 (((-112) $) 56)) (-3940 (((-853) $) 23) (($ (-558)) 26) (($ (-224)) 32) (($ (-1163)) 38) (($ (-1145)) 44) (((-534) $) 59) (((-558) $) 31) (((-224) $) 37) (((-1163) $) 43) (((-1145) $) 49)) (-2194 (((-112) $ (|[\|\|]| (-558))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1163))) 19) (((-112) $ (|[\|\|]| (-1145))) 16)) (-2206 (($ (-1163) (-635 $)) 51) (($ $ (-635 $)) 52)) (-4127 (((-558) $) 27) (((-224) $) 33) (((-1163) $) 39) (((-1145) $) 45)) (-1708 (((-112) $ $) 7)))
-(((-1168) (-13 (-1241) (-1087) (-1028 (-558)) (-1028 (-224)) (-1028 (-1163)) (-1028 (-1145)) (-605 (-534)) (-10 -8 (-15 -3441 ((-1091) $)) (-15 -3441 ($ (-1091))) (-15 -3940 ((-558) $)) (-15 -4127 ((-558) $)) (-15 -3940 ((-224) $)) (-15 -4127 ((-224) $)) (-15 -3940 ((-1163) $)) (-15 -4127 ((-1163) $)) (-15 -3940 ((-1145) $)) (-15 -4127 ((-1145) $)) (-15 -2206 ($ (-1163) (-635 $))) (-15 -2206 ($ $ (-635 $))) (-15 -3488 ((-112) $)) (-15 -2490 ((-3 (-558) (-224) (-1163) (-1145) $) $)) (-15 -3535 ((-635 $) $)) (-15 -2753 ((-112) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-558)))) (-15 -2194 ((-112) $ (|[\|\|]| (-224)))) (-15 -2194 ((-112) $ (|[\|\|]| (-1163)))) (-15 -2194 ((-112) $ (|[\|\|]| (-1145))))))) (T -1168))
-((-3441 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1168)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1168)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168)))) (-2206 (*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-1168))) (-5 *1 (-1168)))) (-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-3 (-558) (-224) (-1163) (-1145) (-1168))) (-5 *1 (-1168)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112)) (-5 *1 (-1168)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1168)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-1168)))) (-2194 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)) (-5 *1 (-1168)))))
-(-13 (-1241) (-1087) (-1028 (-558)) (-1028 (-224)) (-1028 (-1163)) (-1028 (-1145)) (-605 (-534)) (-10 -8 (-15 -3441 ((-1091) $)) (-15 -3441 ($ (-1091))) (-15 -3940 ((-558) $)) (-15 -4127 ((-558) $)) (-15 -3940 ((-224) $)) (-15 -4127 ((-224) $)) (-15 -3940 ((-1163) $)) (-15 -4127 ((-1163) $)) (-15 -3940 ((-1145) $)) (-15 -4127 ((-1145) $)) (-15 -2206 ($ (-1163) (-635 $))) (-15 -2206 ($ $ (-635 $))) (-15 -3488 ((-112) $)) (-15 -2490 ((-3 (-558) (-224) (-1163) (-1145) $) $)) (-15 -3535 ((-635 $) $)) (-15 -2753 ((-112) $)) (-15 -2194 ((-112) $ (|[\|\|]| (-558)))) (-15 -2194 ((-112) $ (|[\|\|]| (-224)))) (-15 -2194 ((-112) $ (|[\|\|]| (-1163)))) (-15 -2194 ((-112) $ (|[\|\|]| (-1145))))))
-((-1570 (((-635 (-635 (-942 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 57)) (-2692 (((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|)))) 69) (((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|))) 65) (((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163)) 70) (((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163)) 64) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|))))) 93) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|)))) 92) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163))) 94) (((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))) (-635 (-1163))) 91)))
-(((-1169 |#1|) (-10 -7 (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))))) (-15 -1570 ((-635 (-635 (-942 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163))))) (-550)) (T -1169))
-((-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-942 *5)))) (-5 *1 (-1169 *5)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4))))) (-5 *1 (-1169 *4)) (-5 *3 (-293 (-406 (-942 *4)))))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4))))) (-5 *1 (-1169 *4)) (-5 *3 (-406 (-942 *4))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5)) (-5 *3 (-293 (-406 (-942 *5)))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-1163)) (-4 *5 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5)) (-5 *3 (-406 (-942 *5))))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-1169 *4)) (-5 *3 (-635 (-293 (-406 (-942 *4))))))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-942 *4)))) (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-1169 *4)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-1169 *5)) (-5 *3 (-635 (-293 (-406 (-942 *5))))))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163))) (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-1169 *5)))))
-(-10 -7 (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))) (-635 (-1163)))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-406 (-942 |#1|))))) (-15 -2692 ((-635 (-635 (-293 (-406 (-942 |#1|))))) (-635 (-293 (-406 (-942 |#1|)))))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)) (-1163))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))) (-1163))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-406 (-942 |#1|)))) (-15 -2692 ((-635 (-293 (-406 (-942 |#1|)))) (-293 (-406 (-942 |#1|))))) (-15 -1570 ((-635 (-635 (-942 |#1|))) (-635 (-406 (-942 |#1|))) (-635 (-1163)))))
-((-1872 (((-1145)) 7)) (-1408 (((-1145)) 9)) (-2448 (((-1251) (-1145)) 11)) (-2315 (((-1145)) 8)))
-(((-1170) (-10 -7 (-15 -1872 ((-1145))) (-15 -2315 ((-1145))) (-15 -1408 ((-1145))) (-15 -2448 ((-1251) (-1145))))) (T -1170))
-((-2448 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1170)))) (-1408 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))) (-2315 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))) (-1872 (*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
-(-10 -7 (-15 -1872 ((-1145))) (-15 -2315 ((-1145))) (-15 -1408 ((-1145))) (-15 -2448 ((-1251) (-1145))))
-((-3200 (((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 38)) (-3841 (((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|))) 24)) (-2318 (((-1172 (-635 |#1|)) (-635 |#1|)) 34)) (-1368 (((-635 (-635 |#1|)) (-635 |#1|)) 30)) (-3886 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))) 37)) (-1976 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|)))) 36)) (-3424 (((-635 (-635 |#1|)) (-635 (-635 |#1|))) 28)) (-3191 (((-635 |#1|) (-635 |#1|)) 31)) (-1982 (((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 18)) (-2431 (((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 16)) (-3358 (((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|))) 14)) (-2117 (((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 39)) (-3509 (((-635 (-635 |#1|)) (-1172 (-635 |#1|))) 41)))
-(((-1171 |#1|) (-10 -7 (-15 -3358 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -2431 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -1982 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3200 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -2117 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3509 ((-635 (-635 |#1|)) (-1172 (-635 |#1|)))) (-15 -3841 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -2318 ((-1172 (-635 |#1|)) (-635 |#1|))) (-15 -3424 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -1368 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -3191 ((-635 |#1|) (-635 |#1|))) (-15 -1976 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -3886 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))))) (-841)) (T -1171))
-((-3886 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4)))) (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4)))))) (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 (-635 *4)))))) (-1976 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-841)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5) (|:| |f4| (-635 *5)))) (-5 *1 (-1171 *6)) (-5 *4 (-635 *5)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-1171 *3)))) (-1368 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)) (-5 *3 (-635 *4)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-841)) (-5 *1 (-1171 *3)))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-1172 (-635 *4))) (-5 *1 (-1171 *4)) (-5 *3 (-635 *4)))) (-3841 (*1 *2 *3) (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 (-635 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 *4))))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-1172 (-635 *4))) (-4 *4 (-841)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)) (-4 *4 (-841)))) (-3200 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-4 *4 (-841)) (-5 *1 (-1171 *4)))) (-1982 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-841)) (-5 *1 (-1171 *4)))) (-2431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-635 *5)) (-4 *5 (-841)) (-5 *1 (-1171 *5)))) (-3358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-841)) (-5 *4 (-635 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4)))) (-5 *1 (-1171 *6)) (-5 *5 (-635 *4)))))
-(-10 -7 (-15 -3358 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -2431 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -1982 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3200 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -2117 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3509 ((-635 (-635 |#1|)) (-1172 (-635 |#1|)))) (-15 -3841 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -2318 ((-1172 (-635 |#1|)) (-635 |#1|))) (-15 -3424 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -1368 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -3191 ((-635 |#1|) (-635 |#1|))) (-15 -1976 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -3886 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|))))))
-((-3924 (($ (-635 (-635 |#1|))) 10)) (-3922 (((-635 (-635 |#1|)) $) 11)) (-3940 (((-853) $) 26)))
-(((-1172 |#1|) (-10 -8 (-15 -3924 ($ (-635 (-635 |#1|)))) (-15 -3922 ((-635 (-635 |#1|)) $)) (-15 -3940 ((-853) $))) (-1087)) (T -1172))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1172 *3)) (-4 *3 (-1087)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1087)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-1172 *3)))))
-(-10 -8 (-15 -3924 ($ (-635 (-635 |#1|)))) (-15 -3922 ((-635 (-635 |#1|)) $)) (-15 -3940 ((-853) $)))
-((-3929 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1379 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3552 (((-1251) $ |#1| |#1|) NIL (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#2| $ |#1| |#2|) NIL)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) NIL)) (-3457 (($) NIL T CONST)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) NIL)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) NIL)) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) NIL)) (-2192 ((|#1| $) NIL (|has| |#1| (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-635 |#2|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-3186 ((|#1| $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1934 (((-635 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3051 (((-635 |#1|) $) NIL)) (-2740 (((-112) |#1| $) NIL)) (-1688 (((-1107) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-3156 ((|#2| $) NIL (|has| |#1| (-841)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL)) (-2830 (($ $ |#2|) NIL (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1966 (($) NIL) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) NIL (-12 (|has| $ (-6 -4383)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (((-762) |#2| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087)))) (((-762) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-3940 (((-853) $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853))) (|has| |#2| (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) NIL)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) NIL (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| |#2| (-1087))))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1173 |#1| |#2|) (-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383))) (-1087) (-1087)) (T -1173))
-NIL
-(-13 (-1176 |#1| |#2|) (-10 -7 (-6 -4383)))
-((-3460 ((|#1| (-635 |#1|)) 32)) (-2543 ((|#1| |#1| (-558)) 18)) (-3741 (((-1159 |#1|) |#1| (-911)) 15)))
-(((-1174 |#1|) (-10 -7 (-15 -3460 (|#1| (-635 |#1|))) (-15 -3741 ((-1159 |#1|) |#1| (-911))) (-15 -2543 (|#1| |#1| (-558)))) (-362)) (T -1174))
-((-2543 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *4 (-911)) (-5 *2 (-1159 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-362)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))))
-(-10 -7 (-15 -3460 (|#1| (-635 |#1|))) (-15 -3741 ((-1159 |#1|) |#1| (-911))) (-15 -2543 (|#1| |#1| (-558))))
-((-1379 (($) 10) (($ (-635 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)))) 14)) (-2375 (($ (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2917 (((-635 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) 39) (((-635 |#3|) $) 41)) (-3674 (($ (-1 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3397 (($ (-1 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1498 (((-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) $) 54)) (-2650 (($ (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) $) 16)) (-3051 (((-635 |#2|) $) 19)) (-2740 (((-112) |#2| $) 59)) (-2820 (((-3 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) "failed") (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) 58)) (-2533 (((-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) $) 63)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-4318 (((-635 |#3|) $) 43)) (-2276 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) NIL) (((-762) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) $) NIL) (((-762) |#3| $) NIL) (((-762) (-1 (-112) |#3|) $) 67)) (-3940 (((-853) $) 27)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1708 (((-112) $ $) 49)))
-(((-1175 |#1| |#2| |#3|) (-10 -8 (-15 -1708 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -3397 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1379 (|#1| (-635 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))))) (-15 -1379 (|#1|)) (-15 -3397 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1698 ((-762) (-1 (-112) |#3|) |#1|)) (-15 -2917 ((-635 |#3|) |#1|)) (-15 -1698 ((-762) |#3| |#1|)) (-15 -2276 (|#3| |#1| |#2| |#3|)) (-15 -2276 (|#3| |#1| |#2|)) (-15 -4318 ((-635 |#3|) |#1|)) (-15 -2740 ((-112) |#2| |#1|)) (-15 -3051 ((-635 |#2|) |#1|)) (-15 -2375 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2375 (|#1| (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -2375 (|#1| (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2820 ((-3 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) "failed") (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -1498 ((-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2650 (|#1| (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2533 ((-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -1698 ((-762) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2917 ((-635 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -1698 ((-762) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -3314 ((-112) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -2831 ((-112) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -3674 (|#1| (-1 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -3397 (|#1| (-1 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|))) (-1176 |#2| |#3|) (-1087) (-1087)) (T -1175))
-NIL
-(-10 -8 (-15 -1708 ((-112) |#1| |#1|)) (-15 -3940 ((-853) |#1|)) (-15 -3397 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1379 (|#1| (-635 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))))) (-15 -1379 (|#1|)) (-15 -3397 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2831 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3314 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1698 ((-762) (-1 (-112) |#3|) |#1|)) (-15 -2917 ((-635 |#3|) |#1|)) (-15 -1698 ((-762) |#3| |#1|)) (-15 -2276 (|#3| |#1| |#2| |#3|)) (-15 -2276 (|#3| |#1| |#2|)) (-15 -4318 ((-635 |#3|) |#1|)) (-15 -2740 ((-112) |#2| |#1|)) (-15 -3051 ((-635 |#2|) |#1|)) (-15 -2375 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2375 (|#1| (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -2375 (|#1| (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2820 ((-3 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) "failed") (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -1498 ((-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2650 (|#1| (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2533 ((-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -1698 ((-762) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) |#1|)) (-15 -2917 ((-635 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -1698 ((-762) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -3314 ((-112) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -2831 ((-112) (-1 (-112) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -3674 (|#1| (-1 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)) (-15 -3397 (|#1| (-1 (-2 (|:| -2176 |#2|) (|:| -1925 |#3|)) (-2 (|:| -2176 |#2|) (|:| -1925 |#3|))) |#1|)))
-((-3929 (((-112) $ $) 19 (-3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-1379 (($) 72) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 71)) (-3552 (((-1251) $ |#1| |#1|) 99 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#2| $ |#1| |#2|) 73)) (-2256 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 45 (|has| $ (-6 -4383)))) (-2072 (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 55 (|has| $ (-6 -4383)))) (-2623 (((-3 |#2| "failed") |#1| $) 61)) (-3457 (($) 7 T CONST)) (-3188 (($ $) 58 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383))))) (-2375 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 47 (|has| $ (-6 -4383))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 46 (|has| $ (-6 -4383))) (((-3 |#2| "failed") |#1| $) 62)) (-1488 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 54 (|has| $ (-6 -4383)))) (-3866 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 56 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 53 (|has| $ (-6 -4383))) (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 52 (|has| $ (-6 -4383)))) (-3683 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4384)))) (-3620 ((|#2| $ |#1|) 88)) (-2917 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 30 (|has| $ (-6 -4383))) (((-635 |#2|) $) 79 (|has| $ (-6 -4383)))) (-4007 (((-112) $ (-762)) 9)) (-2192 ((|#1| $) 96 (|has| |#1| (-841)))) (-3486 (((-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 29 (|has| $ (-6 -4383))) (((-635 |#2|) $) 80 (|has| $ (-6 -4383)))) (-3764 (((-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383))))) (-3186 ((|#1| $) 95 (|has| |#1| (-841)))) (-3674 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 34 (|has| $ (-6 -4384))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4384)))) (-3397 (($ (-1 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3212 (((-112) $ (-762)) 10)) (-2510 (((-1145) $) 22 (-3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-1934 (((-635 |#1|) $) 63)) (-3336 (((-112) |#1| $) 64)) (-1498 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 39)) (-2650 (($ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 40)) (-3051 (((-635 |#1|) $) 93)) (-2740 (((-112) |#1| $) 92)) (-1688 (((-1107) $) 21 (-3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-3156 ((|#2| $) 97 (|has| |#1| (-841)))) (-2820 (((-3 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) "failed") (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 51)) (-2830 (($ $ |#2|) 98 (|has| $ (-6 -4384)))) (-2533 (((-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 41)) (-3314 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 32 (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))))) 26 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-293 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 25 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) 24 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 23 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087)))) (($ $ (-635 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4383)) (|has| |#2| (-1087))))) (-4318 (((-635 |#2|) $) 91)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1966 (($) 49) (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 48)) (-1698 (((-762) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 31 (|has| $ (-6 -4383))) (((-762) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| $ (-6 -4383)))) (((-762) |#2| $) 81 (-12 (|has| |#2| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4383)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 59 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))))) (-3952 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 50)) (-3940 (((-853) $) 18 (-3994 (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853)))))) (-2472 (($ (-635 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) 42)) (-2831 (((-112) (-1 (-112) (-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) $) 33 (|has| $ (-6 -4383))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (-3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1176 |#1| |#2|) (-139) (-1087) (-1087)) (T -1176))
-((-4077 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1176 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))) (-1379 (*1 *1) (-12 (-4 *1 (-1176 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2176 *3) (|:| -1925 *4)))) (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *1 (-1176 *3 *4)))) (-3397 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1176 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))))
-(-13 (-602 |t#1| |t#2|) (-596 |t#1| |t#2|) (-10 -8 (-15 -4077 (|t#2| $ |t#1| |t#2|)) (-15 -1379 ($)) (-15 -1379 ($ (-635 (-2 (|:| -2176 |t#1|) (|:| -1925 |t#2|))))) (-15 -3397 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2176 |#1|) (|:| -1925 |#2|))) . T) ((-102) -3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-605 (-853)) -3994 (|has| |#2| (-1087)) (|has| |#2| (-605 (-853))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-605 (-853)))) ((-150 #0#) . T) ((-606 (-534)) |has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-606 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-487 #0#) . T) ((-487 |#2|) . T) ((-596 |#1| |#2|) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-308 (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)))) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1087))) ((-602 |#1| |#2|) . T) ((-1087) -3994 (|has| |#2| (-1087)) (|has| (-2 (|:| -2176 |#1|) (|:| -1925 |#2|)) (-1087))) ((-1200) . T))
-((-1661 (((-112)) 24)) (-3767 (((-1251) (-1145)) 26)) (-2781 (((-112)) 36)) (-2604 (((-1251)) 34)) (-3719 (((-1251) (-1145) (-1145)) 25)) (-3310 (((-112)) 37)) (-2650 (((-1251) |#1| |#2|) 44)) (-4099 (((-1251)) 20)) (-2451 (((-3 |#2| "failed") |#1|) 42)) (-4043 (((-1251)) 35)))
-(((-1177 |#1| |#2|) (-10 -7 (-15 -4099 ((-1251))) (-15 -3719 ((-1251) (-1145) (-1145))) (-15 -3767 ((-1251) (-1145))) (-15 -2604 ((-1251))) (-15 -4043 ((-1251))) (-15 -1661 ((-112))) (-15 -2781 ((-112))) (-15 -3310 ((-112))) (-15 -2451 ((-3 |#2| "failed") |#1|)) (-15 -2650 ((-1251) |#1| |#2|))) (-1087) (-1087)) (T -1177))
-((-2650 (*1 *2 *3 *4) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-2451 (*1 *2 *3) (|partial| -12 (-4 *2 (-1087)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1087)))) (-3310 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-2781 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-1661 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-4043 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-2604 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)))) (-3719 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087)))) (-4099 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087)))))
-(-10 -7 (-15 -4099 ((-1251))) (-15 -3719 ((-1251) (-1145) (-1145))) (-15 -3767 ((-1251) (-1145))) (-15 -2604 ((-1251))) (-15 -4043 ((-1251))) (-15 -1661 ((-112))) (-15 -2781 ((-112))) (-15 -3310 ((-112))) (-15 -2451 ((-3 |#2| "failed") |#1|)) (-15 -2650 ((-1251) |#1| |#2|)))
-((-3462 (((-1145) (-1145)) 18)) (-2672 (((-52) (-1145)) 21)))
-(((-1178) (-10 -7 (-15 -2672 ((-52) (-1145))) (-15 -3462 ((-1145) (-1145))))) (T -1178))
-((-3462 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1178)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-1178)))))
-(-10 -7 (-15 -2672 ((-52) (-1145))) (-15 -3462 ((-1145) (-1145))))
-((-3940 (((-1180) |#1|) 11)))
-(((-1179 |#1|) (-10 -7 (-15 -3940 ((-1180) |#1|))) (-1087)) (T -1179))
-((-3940 (*1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *1 (-1179 *3)) (-4 *3 (-1087)))))
-(-10 -7 (-15 -3940 ((-1180) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3828 (((-635 (-1145)) $) 34)) (-2549 (((-635 (-1145)) $ (-635 (-1145))) 37)) (-2189 (((-635 (-1145)) $ (-635 (-1145))) 36)) (-3784 (((-635 (-1145)) $ (-635 (-1145))) 38)) (-4133 (((-635 (-1145)) $) 33)) (-1395 (($) 22)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2951 (((-635 (-1145)) $) 35)) (-1490 (((-1251) $ (-558)) 29) (((-1251) $) 30)) (-3441 (($ (-853) (-558)) 26) (($ (-853) (-558) (-853)) NIL)) (-3940 (((-853) $) 40) (($ (-853)) 24)) (-1708 (((-112) $ $) NIL)))
-(((-1180) (-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3441 ($ (-853) (-558))) (-15 -3441 ($ (-853) (-558) (-853))) (-15 -1490 ((-1251) $ (-558))) (-15 -1490 ((-1251) $)) (-15 -2951 ((-635 (-1145)) $)) (-15 -3828 ((-635 (-1145)) $)) (-15 -1395 ($)) (-15 -4133 ((-635 (-1145)) $)) (-15 -3784 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2549 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2189 ((-635 (-1145)) $ (-635 (-1145))))))) (T -1180))
-((-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180)))) (-3441 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180)))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1180)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1180)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-1395 (*1 *1) (-5 *1 (-1180))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-3784 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-2549 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))) (-2189 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
-(-13 (-1087) (-608 (-853)) (-10 -8 (-15 -3441 ($ (-853) (-558))) (-15 -3441 ($ (-853) (-558) (-853))) (-15 -1490 ((-1251) $ (-558))) (-15 -1490 ((-1251) $)) (-15 -2951 ((-635 (-1145)) $)) (-15 -3828 ((-635 (-1145)) $)) (-15 -1395 ($)) (-15 -4133 ((-635 (-1145)) $)) (-15 -3784 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2549 ((-635 (-1145)) $ (-635 (-1145)))) (-15 -2189 ((-635 (-1145)) $ (-635 (-1145))))))
-((-3929 (((-112) $ $) NIL)) (-2647 (((-1145) $ (-1145)) 17) (((-1145) $) 16)) (-2458 (((-1145) $ (-1145)) 15)) (-1989 (($ $ (-1145)) NIL)) (-1458 (((-3 (-1145) "failed") $) 11)) (-2215 (((-1145) $) 8)) (-3098 (((-3 (-1145) "failed") $) 12)) (-1681 (((-1145) $) 9)) (-3229 (($ (-387)) NIL) (($ (-387) (-1145)) NIL)) (-3179 (((-387) $) NIL)) (-2510 (((-1145) $) NIL)) (-4194 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-1990 (((-112) $) 18)) (-3940 (((-853) $) NIL)) (-1388 (($ $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1181) (-13 (-363 (-387) (-1145)) (-10 -8 (-15 -2647 ((-1145) $ (-1145))) (-15 -2647 ((-1145) $)) (-15 -2215 ((-1145) $)) (-15 -1458 ((-3 (-1145) "failed") $)) (-15 -3098 ((-3 (-1145) "failed") $)) (-15 -1990 ((-112) $))))) (T -1181))
-((-2647 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-1458 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-3098 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))))
-(-13 (-363 (-387) (-1145)) (-10 -8 (-15 -2647 ((-1145) $ (-1145))) (-15 -2647 ((-1145) $)) (-15 -2215 ((-1145) $)) (-15 -1458 ((-3 (-1145) "failed") $)) (-15 -3098 ((-3 (-1145) "failed") $)) (-15 -1990 ((-112) $))))
-((-1334 (((-3 (-558) "failed") |#1|) 19)) (-3839 (((-3 (-558) "failed") |#1|) 14)) (-3281 (((-558) (-1145)) 28)))
-(((-1182 |#1|) (-10 -7 (-15 -1334 ((-3 (-558) "failed") |#1|)) (-15 -3839 ((-3 (-558) "failed") |#1|)) (-15 -3281 ((-558) (-1145)))) (-1039)) (T -1182))
-((-3281 (*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-1182 *4)) (-4 *4 (-1039)))) (-3839 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))) (-1334 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))))
-(-10 -7 (-15 -1334 ((-3 (-558) "failed") |#1|)) (-15 -3839 ((-3 (-558) "failed") |#1|)) (-15 -3281 ((-558) (-1145))))
-((-2070 (((-1120 (-224))) 9)))
-(((-1183) (-10 -7 (-15 -2070 ((-1120 (-224)))))) (T -1183))
-((-2070 (*1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1183)))))
-(-10 -7 (-15 -2070 ((-1120 (-224)))))
-((-3348 (($) 11)) (-4175 (($ $) 35)) (-2325 (($ $) 33)) (-2184 (($ $) 25)) (-4197 (($ $) 17)) (-2038 (($ $) 15)) (-4185 (($ $) 19)) (-2221 (($ $) 30)) (-4164 (($ $) 34)) (-2195 (($ $) 29)))
-(((-1184 |#1|) (-10 -8 (-15 -3348 (|#1|)) (-15 -4175 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2221 (|#1| |#1|)) (-15 -2195 (|#1| |#1|))) (-1185)) (T -1184))
-NIL
-(-10 -8 (-15 -3348 (|#1|)) (-15 -4175 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2221 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)))
-((-2277 (($ $) 26)) (-2131 (($ $) 11)) (-2254 (($ $) 27)) (-2109 (($ $) 10)) (-2298 (($ $) 28)) (-2158 (($ $) 9)) (-3348 (($) 16)) (-4342 (($ $) 19)) (-3944 (($ $) 18)) (-2312 (($ $) 29)) (-2170 (($ $) 8)) (-2289 (($ $) 30)) (-2146 (($ $) 7)) (-2265 (($ $) 31)) (-2120 (($ $) 6)) (-4175 (($ $) 20)) (-2209 (($ $) 32)) (-2325 (($ $) 21)) (-2184 (($ $) 33)) (-4197 (($ $) 22)) (-2233 (($ $) 34)) (-2038 (($ $) 23)) (-2244 (($ $) 35)) (-4185 (($ $) 24)) (-2221 (($ $) 36)) (-4164 (($ $) 25)) (-2195 (($ $) 37)) (** (($ $ $) 17)))
-(((-1185) (-139)) (T -1185))
-((-3348 (*1 *1) (-4 *1 (-1185))))
-(-13 (-1188) (-95) (-491) (-35) (-283) (-10 -8 (-15 -3348 ($))))
-(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-1188) . T))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2426 ((|#1| $) 17)) (-2390 (($ |#1| (-635 $)) 23) (($ (-635 |#1|)) 27) (($ |#1|) 25)) (-3651 (((-112) $ (-762)) 47)) (-3083 ((|#1| $ |#1|) 14 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 13 (|has| $ (-6 -4384)))) (-3457 (($) NIL T CONST)) (-2917 (((-635 |#1|) $) 51 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 42)) (-2201 (((-112) $ $) 32 (|has| |#1| (-1087)))) (-4007 (((-112) $ (-762)) 40)) (-3486 (((-635 |#1|) $) 52 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3674 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 22)) (-3212 (((-112) $ (-762)) 39)) (-3783 (((-635 |#1|) $) 36)) (-3355 (((-112) $) 35)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3314 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 73)) (-3711 (((-112) $) 9)) (-2876 (($) 10)) (-2276 ((|#1| $ "value") NIL)) (-1904 (((-558) $ $) 31)) (-3086 (((-635 $) $) 58)) (-1288 (((-112) $ $) 76)) (-2559 (((-635 $) $) 71)) (-2558 (($ $) 72)) (-1609 (((-112) $) 55)) (-1698 (((-762) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4383))) (((-762) |#1| $) 16 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4098 (($ $) 57)) (-3940 (((-853) $) 60 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 12)) (-4171 (((-112) $ $) 29 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 28 (|has| |#1| (-1087)))) (-1596 (((-762) $) 38 (|has| $ (-6 -4383)))))
-(((-1186 |#1|) (-13 (-1000 |#1|) (-10 -8 (-6 -4383) (-6 -4384) (-15 -2390 ($ |#1| (-635 $))) (-15 -2390 ($ (-635 |#1|))) (-15 -2390 ($ |#1|)) (-15 -1609 ((-112) $)) (-15 -2558 ($ $)) (-15 -2559 ((-635 $) $)) (-15 -1288 ((-112) $ $)) (-15 -3086 ((-635 $) $)))) (-1087)) (T -1186))
-((-1609 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))) (-2390 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1186 *2))) (-5 *1 (-1186 *2)) (-4 *2 (-1087)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-1186 *3)))) (-2390 (*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087)))) (-2558 (*1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))) (-1288 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
-(-13 (-1000 |#1|) (-10 -8 (-6 -4383) (-6 -4384) (-15 -2390 ($ |#1| (-635 $))) (-15 -2390 ($ (-635 |#1|))) (-15 -2390 ($ |#1|)) (-15 -1609 ((-112) $)) (-15 -2558 ($ $)) (-15 -2559 ((-635 $) $)) (-15 -1288 ((-112) $ $)) (-15 -3086 ((-635 $) $))))
-((-2131 (($ $) 15)) (-2158 (($ $) 12)) (-2170 (($ $) 10)) (-2146 (($ $) 17)))
-(((-1187 |#1|) (-10 -8 (-15 -2146 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2131 (|#1| |#1|))) (-1188)) (T -1187))
-NIL
-(-10 -8 (-15 -2146 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2131 (|#1| |#1|)))
-((-2131 (($ $) 11)) (-2109 (($ $) 10)) (-2158 (($ $) 9)) (-2170 (($ $) 8)) (-2146 (($ $) 7)) (-2120 (($ $) 6)))
-(((-1188) (-139)) (T -1188))
-((-2131 (*1 *1 *1) (-4 *1 (-1188))) (-2109 (*1 *1 *1) (-4 *1 (-1188))) (-2158 (*1 *1 *1) (-4 *1 (-1188))) (-2170 (*1 *1 *1) (-4 *1 (-1188))) (-2146 (*1 *1 *1) (-4 *1 (-1188))) (-2120 (*1 *1 *1) (-4 *1 (-1188))))
-(-13 (-10 -8 (-15 -2120 ($ $)) (-15 -2146 ($ $)) (-15 -2170 ($ $)) (-15 -2158 ($ $)) (-15 -2109 ($ $)) (-15 -2131 ($ $))))
-((-1797 ((|#2| |#2|) 88)) (-3695 (((-112) |#2|) 26)) (-3963 ((|#2| |#2|) 30)) (-3975 ((|#2| |#2|) 32)) (-4319 ((|#2| |#2| (-1163)) 83) ((|#2| |#2|) 84)) (-2330 (((-168 |#2|) |#2|) 28)) (-1900 ((|#2| |#2| (-1163)) 85) ((|#2| |#2|) 86)))
-(((-1189 |#1| |#2|) (-10 -7 (-15 -4319 (|#2| |#2|)) (-15 -4319 (|#2| |#2| (-1163))) (-15 -1900 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1163))) (-15 -1797 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3695 ((-112) |#2|)) (-15 -2330 ((-168 |#2|) |#2|))) (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))) (-13 (-27) (-1185) (-429 |#1|))) (T -1189))
-((-2330 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-168 *3)) (-5 *1 (-1189 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *2 (-112)) (-5 *1 (-1189 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *4))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-1797 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-1900 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-1900 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))) (-4319 (*1 *2 *2 *3) (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))) (-4319 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558)))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
-(-10 -7 (-15 -4319 (|#2| |#2|)) (-15 -4319 (|#2| |#2| (-1163))) (-15 -1900 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1163))) (-15 -1797 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3695 ((-112) |#2|)) (-15 -2330 ((-168 |#2|) |#2|)))
-((-2046 ((|#4| |#4| |#1|) 27)) (-2471 ((|#4| |#4| |#1|) 28)))
-(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2046 (|#4| |#4| |#1|)) (-15 -2471 (|#4| |#4| |#1|))) (-550) (-372 |#1|) (-372 |#1|) (-677 |#1| |#2| |#3|)) (T -1190))
-((-2471 (*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-2046 (*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
-(-10 -7 (-15 -2046 (|#4| |#4| |#1|)) (-15 -2471 (|#4| |#4| |#1|)))
-((-1791 ((|#2| |#2|) 133)) (-2055 ((|#2| |#2|) 130)) (-4018 ((|#2| |#2|) 121)) (-4223 ((|#2| |#2|) 118)) (-2965 ((|#2| |#2|) 126)) (-2167 ((|#2| |#2|) 114)) (-2627 ((|#2| |#2|) 43)) (-3506 ((|#2| |#2|) 94)) (-3395 ((|#2| |#2|) 74)) (-1945 ((|#2| |#2|) 128)) (-3107 ((|#2| |#2|) 116)) (-1944 ((|#2| |#2|) 138)) (-1876 ((|#2| |#2|) 136)) (-3440 ((|#2| |#2|) 137)) (-4210 ((|#2| |#2|) 135)) (-2939 ((|#2| |#2|) 148)) (-1466 ((|#2| |#2|) 30 (-12 (|has| |#2| (-606 (-882 |#1|))) (|has| |#2| (-876 |#1|)) (|has| |#1| (-606 (-882 |#1|))) (|has| |#1| (-876 |#1|))))) (-3482 ((|#2| |#2|) 75)) (-3705 ((|#2| |#2|) 139)) (-2040 ((|#2| |#2|) 140)) (-2413 ((|#2| |#2|) 127)) (-4135 ((|#2| |#2|) 115)) (-1328 ((|#2| |#2|) 134)) (-1687 ((|#2| |#2|) 132)) (-3516 ((|#2| |#2|) 122)) (-2171 ((|#2| |#2|) 120)) (-3341 ((|#2| |#2|) 124)) (-2301 ((|#2| |#2|) 112)))
-(((-1191 |#1| |#2|) (-10 -7 (-15 -2040 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -3516 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -3107 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2965 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -1791 (|#2| |#2|)) (-15 -4223 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -4210 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -3440 (|#2| |#2|)) (-15 -1944 (|#2| |#2|)) (IF (|has| |#1| (-876 |#1|)) (IF (|has| |#1| (-606 (-882 |#1|))) (IF (|has| |#2| (-606 (-882 |#1|))) (IF (|has| |#2| (-876 |#1|)) (-15 -1466 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-841) (-450)) (-13 (-429 |#1|) (-1185))) (T -1191))
-((-1466 (*1 *2 *2) (-12 (-4 *3 (-606 (-882 *3))) (-4 *3 (-876 *3)) (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-606 (-882 *3))) (-4 *2 (-876 *3)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1944 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-4210 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2171 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-4223 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1791 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2965 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3107 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3516 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3341 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3705 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2627 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2939 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2)) (-4 *2 (-13 (-429 *3) (-1185))))))
-(-10 -7 (-15 -2040 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -3516 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -3107 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2965 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -1791 (|#2| |#2|)) (-15 -4223 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -4210 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -3440 (|#2| |#2|)) (-15 -1944 (|#2| |#2|)) (IF (|has| |#1| (-876 |#1|)) (IF (|has| |#1| (-606 (-882 |#1|))) (IF (|has| |#2| (-606 (-882 |#1|))) (IF (|has| |#2| (-876 |#1|)) (-15 -1466 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2690 (((-112) |#5| $) 59) (((-112) $) 101)) (-2299 ((|#5| |#5| $) 74)) (-2072 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-2282 (((-635 |#5|) (-635 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-3302 (((-3 $ "failed") (-635 |#5|)) 125)) (-3168 (((-3 $ "failed") $) 111)) (-2687 ((|#5| |#5| $) 93)) (-1798 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-2388 ((|#5| |#5| $) 97)) (-3866 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-4236 (((-2 (|:| -1464 (-635 |#5|)) (|:| -3229 (-635 |#5|))) $) 54)) (-4228 (((-112) |#5| $) 57) (((-112) $) 102)) (-4346 ((|#4| $) 107)) (-1514 (((-3 |#5| "failed") $) 109)) (-2367 (((-635 |#5|) $) 48)) (-2643 (((-112) |#5| $) 66) (((-112) $) 106)) (-1401 ((|#5| |#5| $) 80)) (-3879 (((-112) $ $) 26)) (-2857 (((-112) |#5| $) 62) (((-112) $) 104)) (-2224 ((|#5| |#5| $) 77)) (-3156 (((-3 |#5| "failed") $) 108)) (-2319 (($ $ |#5|) 126)) (-4263 (((-762) $) 51)) (-3952 (($ (-635 |#5|)) 123)) (-3121 (($ $ |#4|) 121)) (-2402 (($ $ |#4|) 120)) (-2004 (($ $) 119)) (-3940 (((-853) $) NIL) (((-635 |#5|) $) 112)) (-1435 (((-762) $) 129)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-3331 (((-112) $ (-1 (-112) |#5| (-635 |#5|))) 99)) (-2669 (((-635 |#4|) $) 114)) (-4062 (((-112) |#4| $) 117)) (-1708 (((-112) $ $) 19)))
-(((-1192 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1435 ((-762) |#1|)) (-15 -2319 (|#1| |#1| |#5|)) (-15 -2072 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4062 ((-112) |#4| |#1|)) (-15 -2669 ((-635 |#4|) |#1|)) (-15 -3168 ((-3 |#1| "failed") |#1|)) (-15 -1514 ((-3 |#5| "failed") |#1|)) (-15 -3156 ((-3 |#5| "failed") |#1|)) (-15 -2388 (|#5| |#5| |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2687 (|#5| |#5| |#1|)) (-15 -1401 (|#5| |#5| |#1|)) (-15 -2224 (|#5| |#5| |#1|)) (-15 -2299 (|#5| |#5| |#1|)) (-15 -2282 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3866 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2643 ((-112) |#1|)) (-15 -2857 ((-112) |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -3331 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -2643 ((-112) |#5| |#1|)) (-15 -2857 ((-112) |#5| |#1|)) (-15 -2690 ((-112) |#5| |#1|)) (-15 -1798 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4228 ((-112) |#1|)) (-15 -4228 ((-112) |#5| |#1|)) (-15 -4236 ((-2 (|:| -1464 (-635 |#5|)) (|:| -3229 (-635 |#5|))) |#1|)) (-15 -4263 ((-762) |#1|)) (-15 -2367 ((-635 |#5|) |#1|)) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3879 ((-112) |#1| |#1|)) (-15 -3121 (|#1| |#1| |#4|)) (-15 -2402 (|#1| |#1| |#4|)) (-15 -4346 (|#4| |#1|)) (-15 -3302 ((-3 |#1| "failed") (-635 |#5|))) (-15 -3940 ((-635 |#5|) |#1|)) (-15 -3952 (|#1| (-635 |#5|))) (-15 -3866 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3866 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2072 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3866 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|))) (-1193 |#2| |#3| |#4| |#5|) (-550) (-784) (-841) (-1053 |#2| |#3| |#4|)) (T -1192))
-NIL
-(-10 -8 (-15 -1435 ((-762) |#1|)) (-15 -2319 (|#1| |#1| |#5|)) (-15 -2072 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4062 ((-112) |#4| |#1|)) (-15 -2669 ((-635 |#4|) |#1|)) (-15 -3168 ((-3 |#1| "failed") |#1|)) (-15 -1514 ((-3 |#5| "failed") |#1|)) (-15 -3156 ((-3 |#5| "failed") |#1|)) (-15 -2388 (|#5| |#5| |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2687 (|#5| |#5| |#1|)) (-15 -1401 (|#5| |#5| |#1|)) (-15 -2224 (|#5| |#5| |#1|)) (-15 -2299 (|#5| |#5| |#1|)) (-15 -2282 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3866 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2643 ((-112) |#1|)) (-15 -2857 ((-112) |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -3331 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -2643 ((-112) |#5| |#1|)) (-15 -2857 ((-112) |#5| |#1|)) (-15 -2690 ((-112) |#5| |#1|)) (-15 -1798 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4228 ((-112) |#1|)) (-15 -4228 ((-112) |#5| |#1|)) (-15 -4236 ((-2 (|:| -1464 (-635 |#5|)) (|:| -3229 (-635 |#5|))) |#1|)) (-15 -4263 ((-762) |#1|)) (-15 -2367 ((-635 |#5|) |#1|)) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3214 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3879 ((-112) |#1| |#1|)) (-15 -3121 (|#1| |#1| |#4|)) (-15 -2402 (|#1| |#1| |#4|)) (-15 -4346 (|#4| |#1|)) (-15 -3302 ((-3 |#1| "failed") (-635 |#5|))) (-15 -3940 ((-635 |#5|) |#1|)) (-15 -3952 (|#1| (-635 |#5|))) (-15 -3866 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3866 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2072 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3866 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3940 ((-853) |#1|)) (-15 -1708 ((-112) |#1| |#1|)))
-((-3929 (((-112) $ $) 7)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) 85)) (-3055 (((-635 $) (-635 |#4|)) 86)) (-4078 (((-635 |#3|) $) 33)) (-3369 (((-112) $) 26)) (-1852 (((-112) $) 17 (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) 101) (((-112) $) 97)) (-2299 ((|#4| |#4| $) 92)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) 27)) (-3651 (((-112) $ (-762)) 44)) (-2072 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) 79)) (-3457 (($) 45 T CONST)) (-3614 (((-112) $) 22 (|has| |#1| (-550)))) (-1293 (((-112) $ $) 24 (|has| |#1| (-550)))) (-2211 (((-112) $ $) 23 (|has| |#1| (-550)))) (-3554 (((-112) $) 25 (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1542 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) 36)) (-3226 (($ (-635 |#4|)) 35)) (-3168 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-3188 (($ $) 68 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#4| $) 67 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2388 ((|#4| |#4| $) 87)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) 105)) (-2917 (((-635 |#4|) $) 52 (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) 104) (((-112) $) 103)) (-4346 ((|#3| $) 34)) (-4007 (((-112) $ (-762)) 43)) (-3486 (((-635 |#4|) $) 53 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) 47)) (-2327 (((-635 |#3|) $) 32)) (-3541 (((-112) |#3| $) 31)) (-3212 (((-112) $ (-762)) 42)) (-2510 (((-1145) $) 9)) (-1514 (((-3 |#4| "failed") $) 83)) (-2367 (((-635 |#4|) $) 107)) (-2643 (((-112) |#4| $) 99) (((-112) $) 95)) (-1401 ((|#4| |#4| $) 90)) (-3879 (((-112) $ $) 110)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) 100) (((-112) $) 96)) (-2224 ((|#4| |#4| $) 91)) (-1688 (((-1107) $) 10)) (-3156 (((-3 |#4| "failed") $) 84)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2562 (((-3 $ "failed") $ |#4|) 78)) (-2319 (($ $ |#4|) 77)) (-3314 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) 38)) (-3711 (((-112) $) 41)) (-2876 (($) 40)) (-4263 (((-762) $) 106)) (-1698 (((-762) |#4| $) 54 (-12 (|has| |#4| (-1087)) (|has| $ (-6 -4383)))) (((-762) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4383)))) (-4098 (($ $) 39)) (-3441 (((-534) $) 69 (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) 60)) (-3121 (($ $ |#3|) 28)) (-2402 (($ $ |#3|) 30)) (-2004 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-3940 (((-853) $) 11) (((-635 |#4|) $) 37)) (-1435 (((-762) $) 76 (|has| |#3| (-367)))) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-2831 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) 81)) (-4062 (((-112) |#3| $) 80)) (-1708 (((-112) $ $) 6)) (-1596 (((-762) $) 46 (|has| $ (-6 -4383)))))
-(((-1193 |#1| |#2| |#3| |#4|) (-139) (-550) (-784) (-841) (-1053 |t#1| |t#2| |t#3|)) (T -1193))
-((-3879 (*1 *2 *1 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3214 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-635 *8)))) (-5 *3 (-635 *8)) (-4 *1 (-1193 *5 *6 *7 *8)))) (-3214 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-635 *9)))) (-5 *3 (-635 *9)) (-4 *1 (-1193 *6 *7 *8 *9)))) (-2367 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *6)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-762)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-2 (|:| -1464 (-635 *6)) (|:| -3229 (-635 *6)))))) (-4228 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-1798 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1193 *5 *6 *7 *3)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)))) (-2690 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2857 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2643 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1193 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))) (-3866 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1193 *5 *6 *7 *2)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *2 (-1053 *5 *6 *7)))) (-2282 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1193 *5 *6 *7 *8)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)))) (-2299 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-2224 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-1401 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-2687 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-2004 (*1 *1 *1) (-12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4)))) (-2388 (*1 *2 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1)) (-4 *1 (-1193 *4 *5 *6 *7)))) (-2947 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| -1464 *1) (|:| -3229 (-635 *7))))) (-5 *3 (-635 *7)) (-4 *1 (-1193 *4 *5 *6 *7)))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-3168 (*1 *1 *1) (|partial| -12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))) (-4062 (*1 *2 *3 *1) (-12 (-4 *1 (-1193 *4 *5 *3 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112)))) (-2072 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1193 *4 *5 *3 *2)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *3 (-841)) (-4 *2 (-1053 *4 *5 *3)))) (-2562 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-2319 (*1 *1 *1 *2) (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-762)))))
-(-13 (-966 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4383) (-6 -4384) (-15 -3879 ((-112) $ $)) (-15 -3214 ((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3214 ((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2367 ((-635 |t#4|) $)) (-15 -4263 ((-762) $)) (-15 -4236 ((-2 (|:| -1464 (-635 |t#4|)) (|:| -3229 (-635 |t#4|))) $)) (-15 -4228 ((-112) |t#4| $)) (-15 -4228 ((-112) $)) (-15 -1798 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2690 ((-112) |t#4| $)) (-15 -2857 ((-112) |t#4| $)) (-15 -2643 ((-112) |t#4| $)) (-15 -3331 ((-112) $ (-1 (-112) |t#4| (-635 |t#4|)))) (-15 -2690 ((-112) $)) (-15 -2857 ((-112) $)) (-15 -2643 ((-112) $)) (-15 -3866 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2282 ((-635 |t#4|) (-635 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2299 (|t#4| |t#4| $)) (-15 -2224 (|t#4| |t#4| $)) (-15 -1401 (|t#4| |t#4| $)) (-15 -2687 (|t#4| |t#4| $)) (-15 -2004 ($ $)) (-15 -2388 (|t#4| |t#4| $)) (-15 -3055 ((-635 $) (-635 |t#4|))) (-15 -2947 ((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |t#4|)))) (-635 |t#4|))) (-15 -3156 ((-3 |t#4| "failed") $)) (-15 -1514 ((-3 |t#4| "failed") $)) (-15 -3168 ((-3 $ "failed") $)) (-15 -2669 ((-635 |t#3|) $)) (-15 -4062 ((-112) |t#3| $)) (-15 -2072 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2562 ((-3 $ "failed") $ |t#4|)) (-15 -2319 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -1435 ((-762) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-605 (-635 |#4|)) . T) ((-605 (-853)) . T) ((-150 |#4|) . T) ((-606 (-534)) |has| |#4| (-606 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))) ((-966 |#1| |#2| |#3| |#4|) . T) ((-1087) . T) ((-1200) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1163)) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-2277 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2254 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2298 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2584 (((-942 |#1|) $ (-762)) 16) (((-942 |#1|) $ (-762) (-762)) NIL)) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-762) $ (-1163)) NIL) (((-762) $ (-1163) (-762)) NIL)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3594 (((-112) $) NIL)) (-4056 (($ $ (-635 (-1163)) (-635 (-529 (-1163)))) NIL) (($ $ (-1163) (-529 (-1163))) NIL) (($ |#1| (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4342 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1337 (($ $ (-1163)) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163) |#1|) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-3824 (($ (-1 $) (-1163) |#1|) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2319 (($ $ (-762)) NIL)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3944 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1369 (($ $ (-1163) $) NIL) (($ $ (-635 (-1163)) (-635 $)) NIL) (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-3780 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-4263 (((-529 (-1163)) $) NIL)) (-2312 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-550))) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-1163)) NIL) (($ (-942 |#1|)) NIL)) (-3143 ((|#1| $ (-529 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (((-942 |#1|) $ (-762)) NIL)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2038 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) NIL T CONST)) (-2220 (($) NIL T CONST)) (-3042 (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1194 |#1|) (-13 (-731 |#1| (-1163)) (-10 -8 (-15 -3143 ((-942 |#1|) $ (-762))) (-15 -3940 ($ (-1163))) (-15 -3940 ($ (-942 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $ (-1163) |#1|)) (-15 -3824 ($ (-1 $) (-1163) |#1|))) |%noBranch|))) (-1039)) (T -1194))
-((-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-942 *4)) (-5 *1 (-1194 *4)) (-4 *4 (-1039)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-1039)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-5 *1 (-1194 *3)))) (-1337 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))) (-3824 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1194 *4))) (-5 *3 (-1163)) (-5 *1 (-1194 *4)) (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))))
-(-13 (-731 |#1| (-1163)) (-10 -8 (-15 -3143 ((-942 |#1|) $ (-762))) (-15 -3940 ($ (-1163))) (-15 -3940 ($ (-942 |#1|))) (IF (|has| |#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $ (-1163) |#1|)) (-15 -3824 ($ (-1 $) (-1163) |#1|))) |%noBranch|)))
-((-2799 (($ |#1| (-635 (-635 (-933 (-224)))) (-112)) 18)) (-2911 (((-112) $ (-112)) 17)) (-2808 (((-112) $) 16)) (-1326 (((-635 (-635 (-933 (-224)))) $) 13)) (-4356 ((|#1| $) 8)) (-2879 (((-112) $) 15)))
-(((-1195 |#1|) (-10 -8 (-15 -4356 (|#1| $)) (-15 -1326 ((-635 (-635 (-933 (-224)))) $)) (-15 -2879 ((-112) $)) (-15 -2808 ((-112) $)) (-15 -2911 ((-112) $ (-112))) (-15 -2799 ($ |#1| (-635 (-635 (-933 (-224)))) (-112)))) (-964)) (T -1195))
-((-2799 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-112)) (-5 *1 (-1195 *2)) (-4 *2 (-964)))) (-2911 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-1195 *3)) (-4 *3 (-964)))) (-4356 (*1 *2 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-964)))))
-(-10 -8 (-15 -4356 (|#1| $)) (-15 -1326 ((-635 (-635 (-933 (-224)))) $)) (-15 -2879 ((-112) $)) (-15 -2808 ((-112) $)) (-15 -2911 ((-112) $ (-112))) (-15 -2799 ($ |#1| (-635 (-635 (-933 (-224)))) (-112))))
-((-1441 (((-933 (-224)) (-933 (-224))) 25)) (-2064 (((-933 (-224)) (-224) (-224) (-224) (-224)) 10)) (-1813 (((-635 (-933 (-224))) (-933 (-224)) (-933 (-224)) (-933 (-224)) (-224) (-635 (-635 (-224)))) 35)) (-2823 (((-224) (-933 (-224)) (-933 (-224))) 21)) (-3116 (((-933 (-224)) (-933 (-224)) (-933 (-224))) 22)) (-3044 (((-635 (-635 (-224))) (-558)) 31)) (-1796 (((-933 (-224)) (-933 (-224)) (-933 (-224))) 20)) (-1785 (((-933 (-224)) (-933 (-224)) (-933 (-224))) 19)) (* (((-933 (-224)) (-224) (-933 (-224))) 18)))
-(((-1196) (-10 -7 (-15 -2064 ((-933 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-933 (-224)) (-224) (-933 (-224)))) (-15 -1785 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -1796 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -2823 ((-224) (-933 (-224)) (-933 (-224)))) (-15 -3116 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -1441 ((-933 (-224)) (-933 (-224)))) (-15 -3044 ((-635 (-635 (-224))) (-558))) (-15 -1813 ((-635 (-933 (-224))) (-933 (-224)) (-933 (-224)) (-933 (-224)) (-224) (-635 (-635 (-224))))))) (T -1196))
-((-1813 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 (-933 *4))) (-5 *1 (-1196)) (-5 *3 (-933 *4)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1196)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (-3116 (*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (-2823 (*1 *2 *3 *3) (-12 (-5 *3 (-933 (-224))) (-5 *2 (-224)) (-5 *1 (-1196)))) (-1796 (*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (-1785 (*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-933 (-224))) (-5 *3 (-224)) (-5 *1 (-1196)))) (-2064 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)) (-5 *3 (-224)))))
-(-10 -7 (-15 -2064 ((-933 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-933 (-224)) (-224) (-933 (-224)))) (-15 -1785 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -1796 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -2823 ((-224) (-933 (-224)) (-933 (-224)))) (-15 -3116 ((-933 (-224)) (-933 (-224)) (-933 (-224)))) (-15 -1441 ((-933 (-224)) (-933 (-224)))) (-15 -3044 ((-635 (-635 (-224))) (-558))) (-15 -1813 ((-635 (-933 (-224))) (-933 (-224)) (-933 (-224)) (-933 (-224)) (-224) (-635 (-635 (-224))))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2072 ((|#1| $ (-762)) 13)) (-2958 (((-762) $) 12)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3940 (((-948 |#1|) $) 10) (($ (-948 |#1|)) 9) (((-853) $) 23 (|has| |#1| (-605 (-853))))) (-1708 (((-112) $ $) 16 (|has| |#1| (-1087)))))
-(((-1197 |#1|) (-13 (-488 (-948 |#1|)) (-10 -8 (-15 -2072 (|#1| $ (-762))) (-15 -2958 ((-762) $)) (IF (|has| |#1| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|))) (-1200)) (T -1197))
-((-2072 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-1197 *2)) (-4 *2 (-1200)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1197 *3)) (-4 *3 (-1200)))))
-(-13 (-488 (-948 |#1|)) (-10 -8 (-15 -2072 (|#1| $ (-762))) (-15 -2958 ((-762) $)) (IF (|has| |#1| (-605 (-853))) (-6 (-605 (-853))) |%noBranch|) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|)))
-((-1864 (((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)) (-558)) 80)) (-3108 (((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|))) 74)) (-1981 (((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|))) 59)))
-(((-1198 |#1|) (-10 -7 (-15 -3108 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -1981 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -1864 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)) (-558)))) (-348)) (T -1198))
-((-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-348)) (-5 *2 (-417 (-1159 (-1159 *5)))) (-5 *1 (-1198 *5)) (-5 *3 (-1159 (-1159 *5))))) (-1981 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4)))) (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4)))) (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))))
-(-10 -7 (-15 -3108 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -1981 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)))) (-15 -1864 ((-417 (-1159 (-1159 |#1|))) (-1159 (-1159 |#1|)) (-558))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 9) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1199) (-1070)) (T -1199))
-NIL
-(-1070)
-NIL
-(((-1200) (-139)) (T -1200))
-NIL
-(-13 (-10 -7 (-6 -1380)))
-((-3137 (((-112)) 14)) (-1888 (((-1251) (-635 |#1|) (-635 |#1|)) 18) (((-1251) (-635 |#1|)) 19)) (-4007 (((-112) |#1| |#1|) 31 (|has| |#1| (-841)))) (-3212 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-1577 ((|#1| (-635 |#1|)) 32 (|has| |#1| (-841))) ((|#1| (-635 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-3092 (((-2 (|:| -2425 (-635 |#1|)) (|:| -3568 (-635 |#1|)))) 16)))
-(((-1201 |#1|) (-10 -7 (-15 -1888 ((-1251) (-635 |#1|))) (-15 -1888 ((-1251) (-635 |#1|) (-635 |#1|))) (-15 -3092 ((-2 (|:| -2425 (-635 |#1|)) (|:| -3568 (-635 |#1|))))) (-15 -3212 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3212 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1577 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3137 ((-112))) (IF (|has| |#1| (-841)) (PROGN (-15 -1577 (|#1| (-635 |#1|))) (-15 -4007 ((-112) |#1| |#1|))) |%noBranch|)) (-1087)) (T -1201))
-((-4007 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-841)) (-4 *3 (-1087)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-841)) (-5 *1 (-1201 *2)))) (-3137 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1201 *2)) (-4 *2 (-1087)))) (-3212 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1087)) (-5 *2 (-112)) (-5 *1 (-1201 *3)))) (-3212 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))) (-3092 (*1 *2) (-12 (-5 *2 (-2 (|:| -2425 (-635 *3)) (|:| -3568 (-635 *3)))) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))) (-1888 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251)) (-5 *1 (-1201 *4)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251)) (-5 *1 (-1201 *4)))))
-(-10 -7 (-15 -1888 ((-1251) (-635 |#1|))) (-15 -1888 ((-1251) (-635 |#1|) (-635 |#1|))) (-15 -3092 ((-2 (|:| -2425 (-635 |#1|)) (|:| -3568 (-635 |#1|))))) (-15 -3212 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3212 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1577 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3137 ((-112))) (IF (|has| |#1| (-841)) (PROGN (-15 -1577 (|#1| (-635 |#1|))) (-15 -4007 ((-112) |#1| |#1|))) |%noBranch|))
-((-1675 (((-1251) (-635 (-1163)) (-635 (-1163))) 13) (((-1251) (-635 (-1163))) 11)) (-3882 (((-1251)) 14)) (-1727 (((-2 (|:| -3568 (-635 (-1163))) (|:| -2425 (-635 (-1163))))) 18)))
-(((-1202) (-10 -7 (-15 -1675 ((-1251) (-635 (-1163)))) (-15 -1675 ((-1251) (-635 (-1163)) (-635 (-1163)))) (-15 -1727 ((-2 (|:| -3568 (-635 (-1163))) (|:| -2425 (-635 (-1163)))))) (-15 -3882 ((-1251))))) (T -1202))
-((-3882 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1202)))) (-1727 (*1 *2) (-12 (-5 *2 (-2 (|:| -3568 (-635 (-1163))) (|:| -2425 (-635 (-1163))))) (-5 *1 (-1202)))) (-1675 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202)))))
-(-10 -7 (-15 -1675 ((-1251) (-635 (-1163)))) (-15 -1675 ((-1251) (-635 (-1163)) (-635 (-1163)))) (-15 -1727 ((-2 (|:| -3568 (-635 (-1163))) (|:| -2425 (-635 (-1163)))))) (-15 -3882 ((-1251))))
-((-2018 (($ $) 17)) (-2992 (((-112) $) 24)))
-(((-1203 |#1|) (-10 -8 (-15 -2018 (|#1| |#1|)) (-15 -2992 ((-112) |#1|))) (-1204)) (T -1203))
-NIL
-(-10 -8 (-15 -2018 (|#1| |#1|)) (-15 -2992 ((-112) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 52)) (-4110 (((-417 $) $) 53)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-2992 (((-112) $) 54)) (-3999 (((-112) $) 31)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3939 (((-417 $) $) 51)) (-2861 (((-3 $ "failed") $ $) 43)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44)) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24)))
-(((-1204) (-139)) (T -1204))
-((-2992 (*1 *2 *1) (-12 (-4 *1 (-1204)) (-5 *2 (-112)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204)))) (-2018 (*1 *1 *1) (-4 *1 (-1204))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204)))))
-(-13 (-450) (-10 -8 (-15 -2992 ((-112) $)) (-15 -4110 ((-417 $) $)) (-15 -2018 ($ $)) (-15 -3939 ((-417 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-550) . T) ((-638 $) . T) ((-708 $) . T) ((-717) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3397 (((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)) 23)))
-(((-1205 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3397 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)))) (-1039) (-1039) (-1163) (-1163) |#1| |#2|) (T -1205))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1205 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1163)))))
-(-10 -7 (-15 -3397 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 (-1069)) $) 77)) (-2317 (((-1163) $) 106)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-4057 (($ $ (-558)) 101) (($ $ (-558) (-558)) 100)) (-3414 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 108)) (-2277 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 165 (|has| |#1| (-362)))) (-4110 (((-417 $) $) 166 (|has| |#1| (-362)))) (-3948 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) 156 (|has| |#1| (-362)))) (-2254 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 176)) (-2298 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) 17 T CONST)) (-1709 (($ $ $) 160 (|has| |#1| (-362)))) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3426 (((-406 (-942 |#1|)) $ (-558)) 174 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 173 (|has| |#1| (-550)))) (-2881 (($ $ $) 159 (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-2992 (((-112) $) 167 (|has| |#1| (-362)))) (-3459 (((-112) $) 76)) (-3348 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-558) $) 103) (((-558) $ (-558)) 102)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) 104)) (-1448 (($ (-1 |#1| (-558)) $) 175)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-3594 (((-112) $) 65)) (-4056 (($ |#1| (-558)) 64) (($ $ (-1069) (-558)) 79) (($ $ (-635 (-1069)) (-635 (-558))) 78)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-4342 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-1500 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-2510 (((-1145) $) 9)) (-3823 (($ $) 168 (|has| |#1| (-362)))) (-1337 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3994 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-1544 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-3939 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 161 (|has| |#1| (-362)))) (-2319 (($ $ (-558)) 98)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-3944 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-558)))))) (-1562 (((-762) $) 157 (|has| |#1| (-362)))) (-2276 ((|#1| $ (-558)) 107) (($ $ $) 84 (|has| (-558) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 158 (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-4263 (((-558) $) 67)) (-2312 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 75)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3143 ((|#1| $ (-558)) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2814 ((|#1| $) 105)) (-4175 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2325 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-558)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-1206 |#1|) (-139) (-1039)) (T -1206))
-((-2095 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1206 *3)))) (-1448 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1206 *3)) (-4 *3 (-1039)))) (-3426 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-406 (-942 *4))))) (-3426 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-406 (-942 *4))))) (-1337 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))) (-1337 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185)) (-4 *3 (-38 (-406 (-558)))))) (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -4078 ((-635 *2) *3))) (|has| *3 (-15 -1337 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558)))))))))
-(-13 (-1224 |t#1| (-558)) (-10 -8 (-15 -2095 ($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |t#1|))))) (-15 -1448 ($ (-1 |t#1| (-558)) $)) (IF (|has| |t#1| (-550)) (PROGN (-15 -3426 ((-406 (-942 |t#1|)) $ (-558))) (-15 -3426 ((-406 (-942 |t#1|)) $ (-558) (-558)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $)) (IF (|has| |t#1| (-15 -1337 (|t#1| |t#1| (-1163)))) (IF (|has| |t#1| (-15 -4078 ((-635 (-1163)) |t#1|))) (-15 -1337 ($ $ (-1163))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1185)) (IF (|has| |t#1| (-949)) (IF (|has| |t#1| (-29 (-558))) (-15 -1337 ($ $ (-1163))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-992)) (-6 (-1185))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-558)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-558) (-1099)) ((-289) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1204) |has| |#1| (-362)) ((-1224 |#1| #0#) . T))
-((-3124 (((-112) $) 12)) (-3302 (((-3 |#3| "failed") $) 17) (((-3 (-1163) "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL)) (-3226 ((|#3| $) 14) (((-1163) $) NIL) (((-406 (-558)) $) NIL) (((-558) $) NIL)))
-(((-1207 |#1| |#2| |#3|) (-10 -8 (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-1163) "failed") |#1|)) (-15 -3226 ((-1163) |#1|)) (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#3| |#1|)) (-15 -3124 ((-112) |#1|))) (-1208 |#2| |#3|) (-1039) (-1237 |#2|)) (T -1207))
-NIL
-(-10 -8 (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3302 ((-3 (-1163) "failed") |#1|)) (-15 -3226 ((-1163) |#1|)) (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#3| |#1|)) (-15 -3124 ((-112) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1669 ((|#2| $) 231 (-2157 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4078 (((-635 (-1069)) $) 77)) (-2317 (((-1163) $) 106)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-4057 (($ $ (-558)) 101) (($ $ (-558) (-558)) 100)) (-3414 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 108)) (-1572 ((|#2| $) 267)) (-1333 (((-3 |#2| "failed") $) 263)) (-3776 ((|#2| $) 264)) (-2277 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) 19)) (-2418 (((-417 (-1159 $)) (-1159 $)) 240 (-2157 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-2018 (($ $) 165 (|has| |#1| (-362)))) (-4110 (((-417 $) $) 166 (|has| |#1| (-362)))) (-3948 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 237 (-2157 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-1599 (((-112) $ $) 156 (|has| |#1| (-362)))) (-2254 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-1334 (((-558) $) 249 (-2157 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2095 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 176)) (-2298 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#2| "failed") $) 270) (((-3 (-558) "failed") $) 260 (-2157 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) 258 (-2157 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-1163) "failed") $) 242 (-2157 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-3226 ((|#2| $) 271) (((-558) $) 259 (-2157 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-406 (-558)) $) 257 (-2157 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-1163) $) 241 (-2157 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-1685 (($ $) 266) (($ (-558) $) 265)) (-1709 (($ $ $) 160 (|has| |#1| (-362)))) (-3905 (($ $) 63)) (-1918 (((-679 |#2|) (-679 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 219 (-2157 (|has| |#2| (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) 218 (-2157 (|has| |#2| (-631 (-558))) (|has| |#1| (-362))))) (-3248 (((-3 $ "failed") $) 33)) (-3426 (((-406 (-942 |#1|)) $ (-558)) 174 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 173 (|has| |#1| (-550)))) (-3692 (($) 233 (-2157 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-2881 (($ $ $) 159 (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-2992 (((-112) $) 167 (|has| |#1| (-362)))) (-4053 (((-112) $) 247 (-2157 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-3459 (((-112) $) 76)) (-3348 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 225 (-2157 (|has| |#2| (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 224 (-2157 (|has| |#2| (-876 (-558))) (|has| |#1| (-362))))) (-2532 (((-558) $) 103) (((-558) $ (-558)) 102)) (-3999 (((-112) $) 31)) (-2772 (($ $) 229 (|has| |#1| (-362)))) (-3316 ((|#2| $) 227 (|has| |#1| (-362)))) (-2136 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-2521 (((-3 $ "failed") $) 261 (-2157 (|has| |#2| (-1138)) (|has| |#1| (-362))))) (-2032 (((-112) $) 248 (-2157 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-4184 (($ $ (-911)) 104)) (-1448 (($ (-1 |#1| (-558)) $) 175)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-3594 (((-112) $) 65)) (-4056 (($ |#1| (-558)) 64) (($ $ (-1069) (-558)) 79) (($ $ (-635 (-1069)) (-635 (-558))) 78)) (-2142 (($ $ $) 251 (-2157 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-2281 (($ $ $) 252 (-2157 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-3397 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-4342 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-1500 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3788 (($ (-558) |#2|) 268)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 168 (|has| |#1| (-362)))) (-1337 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3994 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-1823 (($) 262 (-2157 (|has| |#2| (-1138)) (|has| |#1| (-362))) CONST)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-1544 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1636 (($ $) 232 (-2157 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4259 ((|#2| $) 235 (-2157 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-2321 (((-417 (-1159 $)) (-1159 $)) 238 (-2157 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-2796 (((-417 (-1159 $)) (-1159 $)) 239 (-2157 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3939 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 161 (|has| |#1| (-362)))) (-2319 (($ $ (-558)) 98)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-3944 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) |#2|) 212 (-2157 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 |#2|)) 211 (-2157 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-293 |#2|))) 210 (-2157 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) 209 (-2157 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-2157 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-635 |#2|) (-635 |#2|)) 207 (-2157 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1562 (((-762) $) 157 (|has| |#1| (-362)))) (-2276 ((|#1| $ (-558)) 107) (($ $ $) 84 (|has| (-558) (-1099))) (($ $ |#2|) 206 (-2157 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 158 (|has| |#1| (-362)))) (-3780 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) 216 (|has| |#1| (-362))) (($ $ (-762)) 87 (-3994 (-2157 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 85 (-3994 (-2157 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) 92 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163) (-762)) 91 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-635 (-1163))) 90 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163)) 89 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))))) (-4218 (($ $) 230 (|has| |#1| (-362)))) (-3327 ((|#2| $) 228 (|has| |#1| (-362)))) (-4263 (((-558) $) 67)) (-2312 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-3441 (((-224) $) 246 (-2157 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-378) $) 245 (-2157 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-534) $) 244 (-2157 (|has| |#2| (-606 (-534))) (|has| |#1| (-362)))) (((-882 (-378)) $) 223 (-2157 (|has| |#2| (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) 222 (-2157 (|has| |#2| (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 236 (-2157 (-2157 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#1| (-362))))) (-1559 (($ $) 75)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1163)) 243 (-2157 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362)))) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3143 ((|#1| $ (-558)) 62)) (-1487 (((-3 $ "failed") $) 51 (-3994 (-2157 (-3994 (|has| |#2| (-144)) (-2157 (|has| $ (-144)) (|has| |#2| (-899)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2417 (((-762)) 28)) (-2814 ((|#1| $) 105)) (-2912 ((|#2| $) 234 (-2157 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4175 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2325 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-558)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-4241 (($ $) 250 (-2157 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) 214 (|has| |#1| (-362))) (($ $ (-762)) 88 (-3994 (-2157 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 86 (-3994 (-2157 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) 96 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163) (-762)) 95 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-635 (-1163))) 94 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (($ $ (-1163)) 93 (-3994 (-2157 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))))) (-1757 (((-112) $ $) 254 (-2157 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1737 (((-112) $ $) 255 (-2157 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 253 (-2157 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1728 (((-112) $ $) 256 (-2157 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-1208 |#1| |#2|) (-139) (-1039) (-1237 |t#1|)) (T -1208))
-((-4263 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1237 *3)) (-5 *2 (-558)))) (-3788 (*1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *4 (-1039)) (-4 *1 (-1208 *4 *3)) (-4 *3 (-1237 *4)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))) (-1685 (*1 *1 *1) (-12 (-4 *1 (-1208 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1237 *2)))) (-1685 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1237 *3)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))) (-1333 (*1 *2 *1) (|partial| -12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))))
-(-13 (-1206 |t#1|) (-1028 |t#2|) (-608 |t#2|) (-10 -8 (-15 -3788 ($ (-558) |t#2|)) (-15 -4263 ((-558) $)) (-15 -1572 (|t#2| $)) (-15 -1685 ($ $)) (-15 -1685 ($ (-558) $)) (-15 -3776 (|t#2| $)) (-15 -1333 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-982 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-558)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -3994 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -3994 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-608 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 #2=(-1163)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) ((-608 |#1|) |has| |#1| (-171)) ((-608 |#2|) . T) ((-608 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-606 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) ((-606 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) ((-606 (-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-606 (-882 (-558))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -3994 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-558) (-1099)) ((-289) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-512 (-1163) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1163) |#2|))) ((-512 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-550) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 |#2|) |has| |#1| (-362)) ((-638 $) . T) ((-631 (-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-631 (-558)))) ((-631 |#2|) |has| |#1| (-362)) ((-708 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 |#2|) |has| |#1| (-362)) ((-708 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-782) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-783) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-785) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-811) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-839) -12 (|has| |#1| (-362)) (|has| |#2| (-811))) ((-841) -3994 (-12 (|has| |#1| (-362)) (|has| |#2| (-841))) (-12 (|has| |#1| (-362)) (|has| |#2| (-811)))) ((-890 (-1163)) -3994 (-12 (|has| |#1| (-362)) (|has| |#2| (-890 (-1163)))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))) ((-876 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-378)))) ((-876 (-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-876 (-558)))) ((-874 |#2|) |has| |#1| (-362)) ((-899) -12 (|has| |#1| (-362)) (|has| |#2| (-899))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-982 |#2|) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1012) -12 (|has| |#1| (-362)) (|has| |#2| (-1012))) ((-1028 (-406 (-558))) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))) ((-1028 (-558)) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-558)))) ((-1028 #2#) -12 (|has| |#1| (-362)) (|has| |#2| (-1028 (-1163)))) ((-1028 |#2|) . T) ((-1045 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 |#2|) |has| |#1| (-362)) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) -12 (|has| |#1| (-362)) (|has| |#2| (-1138))) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1200) |has| |#1| (-362)) ((-1204) |has| |#1| (-362)) ((-1206 |#1|) . T) ((-1224 |#1| #0#) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 70)) (-1669 ((|#2| $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 88)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-558)) 97) (($ $ (-558) (-558)) 99)) (-3414 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 47)) (-1572 ((|#2| $) 11)) (-1333 (((-3 |#2| "failed") $) 30)) (-3776 ((|#2| $) 31)) (-2277 (($ $) 192 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 168 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) 188 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 164 (|has| |#1| (-38 (-406 (-558)))))) (-1334 (((-558) $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2095 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 57)) (-2298 (($ $) 196 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) 144) (((-3 (-558) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-1163) "failed") $) NIL (-12 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-3226 ((|#2| $) 143) (((-558) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-406 (-558)) $) NIL (-12 (|has| |#2| (-1028 (-558))) (|has| |#1| (-362)))) (((-1163) $) NIL (-12 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362))))) (-1685 (($ $) 61) (($ (-558) $) 24)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-1918 (((-679 |#2|) (-679 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| |#2| (-631 (-558))) (|has| |#1| (-362))))) (-3248 (((-3 $ "failed") $) 77)) (-3426 (((-406 (-942 |#1|)) $ (-558)) 112 (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) 114 (|has| |#1| (-550)))) (-3692 (($) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-4053 (((-112) $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-3459 (((-112) $) 64)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| |#2| (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| |#2| (-876 (-558))) (|has| |#1| (-362))))) (-2532 (((-558) $) 93) (((-558) $ (-558)) 95)) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL (|has| |#1| (-362)))) (-3316 ((|#2| $) 151 (|has| |#1| (-362)))) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2521 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1138)) (|has| |#1| (-362))))) (-2032 (((-112) $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-4184 (($ $ (-911)) 136)) (-1448 (($ (-1 |#1| (-558)) $) 132)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-558)) 19) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-2142 (($ $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-2281 (($ $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-3397 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-4342 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3788 (($ (-558) |#2|) 10)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 145 (|has| |#1| (-362)))) (-1337 (($ $) 214 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 219 (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185)))))) (-1823 (($) NIL (-12 (|has| |#2| (-1138)) (|has| |#1| (-362))) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1636 (($ $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4259 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| |#2| (-899)) (|has| |#1| (-362))))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-558)) 126)) (-2861 (((-3 $ "failed") $ $) 116 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3944 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) |#2|) NIL (-12 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 |#2|)) NIL (-12 (|has| |#2| (-512 (-1163) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-558)) 91) (($ $ $) 79 (|has| (-558) (-1099))) (($ $ |#2|) NIL (-12 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3994 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 137 (-3994 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) 140 (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-4218 (($ $) NIL (|has| |#1| (-362)))) (-3327 ((|#2| $) 152 (|has| |#1| (-362)))) (-4263 (((-558) $) 12)) (-2312 (($ $) 198 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 194 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 190 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 166 (|has| |#1| (-38 (-406 (-558)))))) (-3441 (((-224) $) NIL (-12 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| |#2| (-1012)) (|has| |#1| (-362)))) (((-534) $) NIL (-12 (|has| |#2| (-606 (-534))) (|has| |#1| (-362)))) (((-882 (-378)) $) NIL (-12 (|has| |#2| (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) NIL (-12 (|has| |#2| (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899)) (|has| |#1| (-362))))) (-1559 (($ $) 124)) (-3940 (((-853) $) 244) (($ (-558)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1163)) NIL (-12 (|has| |#2| (-1028 (-1163))) (|has| |#1| (-362)))) (($ (-406 (-558))) 155 (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3143 ((|#1| $ (-558)) 74)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#2| (-899)) (|has| |#1| (-362))) (-12 (|has| |#2| (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2417 (((-762)) 142)) (-2814 ((|#1| $) 90)) (-2912 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-4175 (($ $) 204 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 180 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) 200 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 208 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 184 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-558)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 210 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 206 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 182 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 202 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-4241 (($ $) NIL (-12 (|has| |#2| (-811)) (|has| |#1| (-362))))) (-2207 (($) 13 T CONST)) (-2220 (($) 17 T CONST)) (-3042 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3994 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) NIL (-3994 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| |#2| (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-1757 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1737 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1708 (((-112) $ $) 63)) (-1749 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1728 (((-112) $ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-362))))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-1796 (($ $) 213) (($ $ $) 68)) (-1785 (($ $ $) 66)) (** (($ $ (-911)) NIL) (($ $ (-762)) 73) (($ $ (-558)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1209 |#1| |#2|) (-1208 |#1| |#2|) (-1039) (-1237 |#1|)) (T -1209))
-NIL
-(-1208 |#1| |#2|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1669 (((-1238 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 10)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-3244 (($ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-4326 (((-112) $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-4057 (($ $ (-558)) NIL) (($ $ (-558) (-558)) NIL)) (-3414 (((-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL)) (-1572 (((-1238 |#1| |#2| |#3|) $) NIL)) (-1333 (((-3 (-1238 |#1| |#2| |#3|) "failed") $) NIL)) (-3776 (((-1238 |#1| |#2| |#3|) $) NIL)) (-2277 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1334 (((-558) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2095 (($ (-1143 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL)) (-2298 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-1238 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1163) "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-3 (-406 (-558)) "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-3 (-558) "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-3226 (((-1238 |#1| |#2| |#3|) $) NIL) (((-1163) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (((-406 (-558)) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362)))) (((-558) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))))) (-1685 (($ $) NIL) (($ (-558) $) NIL)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-1238 |#1| |#2| |#3|)) (-679 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 (-1238 |#1| |#2| |#3|))) (|:| |vec| (-1246 (-1238 |#1| |#2| |#3|)))) (-679 $) (-1246 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362)))) (((-679 (-558)) (-679 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-631 (-558))) (|has| |#1| (-362))))) (-3248 (((-3 $ "failed") $) NIL)) (-3426 (((-406 (-942 |#1|)) $ (-558)) NIL (|has| |#1| (-550))) (((-406 (-942 |#1|)) $ (-558) (-558)) NIL (|has| |#1| (-550)))) (-3692 (($) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-4053 (((-112) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-876 (-378))) (|has| |#1| (-362)))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-876 (-558))) (|has| |#1| (-362))))) (-2532 (((-558) $) NIL) (((-558) $ (-558)) NIL)) (-3999 (((-112) $) NIL)) (-2772 (($ $) NIL (|has| |#1| (-362)))) (-3316 (((-1238 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2521 (((-3 $ "failed") $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))))) (-2032 (((-112) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-4184 (($ $ (-911)) NIL)) (-1448 (($ (-1 |#1| (-558)) $) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-558)) 17) (($ $ (-1069) (-558)) NIL) (($ $ (-635 (-1069)) (-635 (-558))) NIL)) (-2142 (($ $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-2281 (($ $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4342 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3788 (($ (-558) (-1238 |#1| |#2| |#3|)) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1337 (($ $) 25 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 26 (|has| |#1| (-38 (-406 (-558)))))) (-1823 (($) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1138)) (|has| |#1| (-362))) CONST)) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1636 (($ $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4259 (((-1238 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-558)) NIL)) (-2861 (((-3 $ "failed") $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3944 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558))))) (($ $ (-1163) (-1238 |#1| |#2| |#3|)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-512 (-1163) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1163)) (-635 (-1238 |#1| |#2| |#3|))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-512 (-1163) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-293 (-1238 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1238 |#1| |#2| |#3|))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1238 |#1| |#2| |#3|)) (-635 (-1238 |#1| |#2| |#3|))) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-308 (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-558)) NIL) (($ $ $) NIL (|has| (-558) (-1099))) (($ $ (-1238 |#1| |#2| |#3|)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-285 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-1242 |#2|)) 24) (($ $ (-762)) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) 23 (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-4218 (($ $) NIL (|has| |#1| (-362)))) (-3327 (((-1238 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-4263 (((-558) $) NIL)) (-2312 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3441 (((-534) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-606 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1012)) (|has| |#1| (-362)))) (((-882 (-378)) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-606 (-882 (-378)))) (|has| |#1| (-362)))) (((-882 (-558)) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-606 (-882 (-558)))) (|has| |#1| (-362))))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))))) (-1559 (($ $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1238 |#1| |#2| |#3|)) NIL) (($ (-1242 |#2|)) 22) (($ (-1163)) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-1163))) (|has| |#1| (-362)))) (($ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550)))) (($ (-406 (-558))) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-1028 (-558))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-558))))))) (-3143 ((|#1| $ (-558)) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) 11)) (-2912 (((-1238 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-899)) (|has| |#1| (-362))) (|has| |#1| (-550))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4241 (($ $) NIL (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))))) (-2207 (($) 19 T CONST)) (-2220 (($) 15 T CONST)) (-3042 (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) (-762)) NIL (|has| |#1| (-362))) (($ $ (-762)) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163) (-762)) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-635 (-1163))) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163)))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-890 (-1163))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (|has| |#1| (-890 (-1163))))))) (-1757 (((-112) $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1737 (((-112) $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1728 (((-112) $ $) NIL (-3994 (-12 (|has| (-1238 |#1| |#2| |#3|) (-811)) (|has| |#1| (-362))) (-12 (|has| (-1238 |#1| |#2| |#3|) (-841)) (|has| |#1| (-362)))))) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1238 |#1| |#2| |#3|) (-1238 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 20)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1238 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1238 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1210 |#1| |#2| |#3|) (-13 (-1208 |#1| (-1238 |#1| |#2| |#3|)) (-10 -8 (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1210))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(-13 (-1208 |#1| (-1238 |#1| |#2| |#3|)) (-10 -8 (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|)))
-((-2784 (((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112)) 12)) (-1758 (((-417 |#1|) |#1|) 22)) (-3939 (((-417 |#1|) |#1|) 21)))
-(((-1211 |#1|) (-10 -7 (-15 -3939 ((-417 |#1|) |#1|)) (-15 -1758 ((-417 |#1|) |#1|)) (-15 -2784 ((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112)))) (-1222 (-558))) (T -1211))
-((-2784 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558))))))) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))) (-1758 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))) (-3939 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
-(-10 -7 (-15 -3939 ((-417 |#1|) |#1|)) (-15 -1758 ((-417 |#1|) |#1|)) (-15 -2784 ((-2 (|:| |contp| (-558)) (|:| -3381 (-635 (-2 (|:| |irr| |#1|) (|:| -2074 (-558)))))) |#1| (-112))))
-((-3397 (((-1143 |#2|) (-1 |#2| |#1|) (-1213 |#1|)) 23 (|has| |#1| (-839))) (((-1213 |#2|) (-1 |#2| |#1|) (-1213 |#1|)) 17)))
-(((-1212 |#1| |#2|) (-10 -7 (-15 -3397 ((-1213 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) (IF (|has| |#1| (-839)) (-15 -3397 ((-1143 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) |%noBranch|)) (-1200) (-1200)) (T -1212))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-839)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1143 *6)) (-5 *1 (-1212 *5 *6)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1213 *6)) (-5 *1 (-1212 *5 *6)))))
-(-10 -7 (-15 -3397 ((-1213 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) (IF (|has| |#1| (-839)) (-15 -3397 ((-1143 |#2|) (-1 |#2| |#1|) (-1213 |#1|))) |%noBranch|))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-2677 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3397 (((-1143 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-839)))) (-2425 ((|#1| $) 14)) (-4051 ((|#1| $) 10)) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1281 (((-558) $) 18)) (-3568 ((|#1| $) 17)) (-1294 ((|#1| $) 11)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-2908 (((-112) $) 16)) (-2040 (((-1143 |#1|) $) 38 (|has| |#1| (-839))) (((-1143 |#1|) (-635 $)) 37 (|has| |#1| (-839)))) (-3441 (($ |#1|) 25)) (-3940 (($ (-1081 |#1|)) 24) (((-853) $) 34 (|has| |#1| (-1087)))) (-3746 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1494 (($ $ (-558)) 13)) (-1708 (((-112) $ $) 27 (|has| |#1| (-1087)))))
-(((-1213 |#1|) (-13 (-1080 |#1|) (-10 -8 (-15 -3746 ($ |#1|)) (-15 -2677 ($ |#1|)) (-15 -3940 ($ (-1081 |#1|))) (-15 -2908 ((-112) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-1143 |#1|))) |%noBranch|))) (-1200)) (T -1213))
-((-3746 (*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))) (-2677 (*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-1200)) (-5 *1 (-1213 *3)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1200)))))
-(-13 (-1080 |#1|) (-10 -8 (-15 -3746 ($ |#1|)) (-15 -2677 ($ |#1|)) (-15 -3940 ($ (-1081 |#1|))) (-15 -2908 ((-112) $)) (IF (|has| |#1| (-1087)) (-6 (-1087)) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-1082 |#1| (-1143 |#1|))) |%noBranch|)))
-((-3397 (((-1219 |#3| |#4|) (-1 |#4| |#2|) (-1219 |#1| |#2|)) 15)))
-(((-1214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 ((-1219 |#3| |#4|) (-1 |#4| |#2|) (-1219 |#1| |#2|)))) (-1163) (-1039) (-1163) (-1039)) (T -1214))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1219 *5 *6)) (-14 *5 (-1163)) (-4 *6 (-1039)) (-4 *8 (-1039)) (-5 *2 (-1219 *7 *8)) (-5 *1 (-1214 *5 *6 *7 *8)) (-14 *7 (-1163)))))
-(-10 -7 (-15 -3397 ((-1219 |#3| |#4|) (-1 |#4| |#2|) (-1219 |#1| |#2|))))
-((-4247 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1515 ((|#1| |#3|) 13)) (-3275 ((|#3| |#3|) 19)))
-(((-1215 |#1| |#2| |#3|) (-10 -7 (-15 -1515 (|#1| |#3|)) (-15 -3275 (|#3| |#3|)) (-15 -4247 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-550) (-982 |#1|) (-1222 |#2|)) (T -1215))
-((-4247 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1215 *4 *5 *3)) (-4 *3 (-1222 *5)))) (-3275 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-1215 *3 *4 *2)) (-4 *2 (-1222 *4)))) (-1515 (*1 *2 *3) (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-1215 *2 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -1515 (|#1| |#3|)) (-15 -3275 (|#3| |#3|)) (-15 -4247 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3285 (((-3 |#2| "failed") |#2| (-762) |#1|) 29)) (-1844 (((-3 |#2| "failed") |#2| (-762)) 30)) (-3021 (((-3 (-2 (|:| -1524 |#2|) (|:| -1540 |#2|)) "failed") |#2|) 42)) (-1634 (((-635 |#2|) |#2|) 44)) (-1676 (((-3 |#2| "failed") |#2| |#2|) 39)))
-(((-1216 |#1| |#2|) (-10 -7 (-15 -1844 ((-3 |#2| "failed") |#2| (-762))) (-15 -3285 ((-3 |#2| "failed") |#2| (-762) |#1|)) (-15 -1676 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3021 ((-3 (-2 (|:| -1524 |#2|) (|:| -1540 |#2|)) "failed") |#2|)) (-15 -1634 ((-635 |#2|) |#2|))) (-13 (-550) (-146)) (-1222 |#1|)) (T -1216))
-((-1634 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-146))) (-5 *2 (-635 *3)) (-5 *1 (-1216 *4 *3)) (-4 *3 (-1222 *4)))) (-3021 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-146))) (-5 *2 (-2 (|:| -1524 *3) (|:| -1540 *3))) (-5 *1 (-1216 *4 *3)) (-4 *3 (-1222 *4)))) (-1676 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1216 *3 *2)) (-4 *2 (-1222 *3)))) (-3285 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))) (-1844 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))))
-(-10 -7 (-15 -1844 ((-3 |#2| "failed") |#2| (-762))) (-15 -3285 ((-3 |#2| "failed") |#2| (-762) |#1|)) (-15 -1676 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3021 ((-3 (-2 (|:| -1524 |#2|) (|:| -1540 |#2|)) "failed") |#2|)) (-15 -1634 ((-635 |#2|) |#2|)))
-((-2786 (((-3 (-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) "failed") |#2| |#2|) 31)))
-(((-1217 |#1| |#2|) (-10 -7 (-15 -2786 ((-3 (-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) "failed") |#2| |#2|))) (-550) (-1222 |#1|)) (T -1217))
-((-2786 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-1217 *4 *3)) (-4 *3 (-1222 *4)))))
-(-10 -7 (-15 -2786 ((-3 (-2 (|:| -2263 |#2|) (|:| -1548 |#2|)) "failed") |#2| |#2|)))
-((-2128 ((|#2| |#2| |#2|) 19)) (-2685 ((|#2| |#2| |#2|) 30)) (-2620 ((|#2| |#2| |#2| (-762) (-762)) 36)))
-(((-1218 |#1| |#2|) (-10 -7 (-15 -2128 (|#2| |#2| |#2|)) (-15 -2685 (|#2| |#2| |#2|)) (-15 -2620 (|#2| |#2| |#2| (-762) (-762)))) (-1039) (-1222 |#1|)) (T -1218))
-((-2620 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-1218 *4 *2)) (-4 *2 (-1222 *4)))) (-2685 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))) (-2128 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))))
-(-10 -7 (-15 -2128 (|#2| |#2| |#2|)) (-15 -2685 (|#2| |#2| |#2|)) (-15 -2620 (|#2| |#2| |#2| (-762) (-762))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4333 (((-1246 |#2|) $ (-762)) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-1285 (($ (-1159 |#2|)) NIL)) (-3907 (((-1159 $) $ (-1069)) NIL) (((-1159 |#2|) $) NIL)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-3244 (($ $) NIL (|has| |#2| (-550)))) (-4326 (((-112) $) NIL (|has| |#2| (-550)))) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-1069))) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2531 (($ $ $) NIL (|has| |#2| (-550)))) (-2418 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2018 (($ $) NIL (|has| |#2| (-450)))) (-4110 (((-417 $) $) NIL (|has| |#2| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-1599 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2186 (($ $ (-762)) NIL)) (-3291 (($ $ (-762)) NIL)) (-2855 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-450)))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-558)) "failed") $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) NIL (|has| |#2| (-1028 (-558)))) (((-3 (-1069) "failed") $) NIL)) (-3226 ((|#2| $) NIL) (((-406 (-558)) $) NIL (|has| |#2| (-1028 (-406 (-558))))) (((-558) $) NIL (|has| |#2| (-1028 (-558)))) (((-1069) $) NIL)) (-2862 (($ $ $ (-1069)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-1709 (($ $ $) NIL (|has| |#2| (-362)))) (-3905 (($ $) NIL)) (-1918 (((-679 (-558)) (-679 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) NIL (|has| |#2| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#2|)) (|:| |vec| (-1246 |#2|))) (-679 $) (-1246 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-2881 (($ $ $) NIL (|has| |#2| (-362)))) (-2567 (($ $ $) NIL)) (-3862 (($ $ $) NIL (|has| |#2| (-550)))) (-3343 (((-2 (|:| -3455 |#2|) (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#2| (-550)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-3199 (($ $) NIL (|has| |#2| (-450))) (($ $ (-1069)) NIL (|has| |#2| (-450)))) (-3894 (((-635 $) $) NIL)) (-2992 (((-112) $) NIL (|has| |#2| (-899)))) (-2704 (($ $ |#2| (-762) $) NIL)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) NIL (-12 (|has| (-1069) (-876 (-378))) (|has| |#2| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) NIL (-12 (|has| (-1069) (-876 (-558))) (|has| |#2| (-876 (-558)))))) (-2532 (((-762) $ $) NIL (|has| |#2| (-550)))) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-2521 (((-3 $ "failed") $) NIL (|has| |#2| (-1138)))) (-4068 (($ (-1159 |#2|) (-1069)) NIL) (($ (-1159 $) (-1069)) NIL)) (-4184 (($ $ (-762)) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-4056 (($ |#2| (-762)) 17) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-1069)) NIL) (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL)) (-3672 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-2142 (($ $ $) NIL (|has| |#2| (-841)))) (-2281 (($ $ $) NIL (|has| |#2| (-841)))) (-2776 (($ (-1 (-762) (-762)) $) NIL)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-4087 (((-1159 |#2|) $) NIL)) (-2135 (((-3 (-1069) "failed") $) NIL)) (-3867 (($ $) NIL)) (-3881 ((|#2| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-2510 (((-1145) $) NIL)) (-1710 (((-2 (|:| -2263 $) (|:| -1548 $)) $ (-762)) NIL)) (-2819 (((-3 (-635 $) "failed") $) NIL)) (-4195 (((-3 (-635 $) "failed") $) NIL)) (-3637 (((-3 (-2 (|:| |var| (-1069)) (|:| -1857 (-762))) "failed") $) NIL)) (-1337 (($ $) NIL (|has| |#2| (-38 (-406 (-558)))))) (-1823 (($) NIL (|has| |#2| (-1138)) CONST)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 ((|#2| $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#2| (-450)))) (-1544 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3232 (($ $ (-762) |#2| $) NIL)) (-2321 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) NIL (|has| |#2| (-899)))) (-3939 (((-417 $) $) NIL (|has| |#2| (-899)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#2| (-362)))) (-2861 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-1369 (($ $ (-635 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#2|) NIL) (($ $ (-635 (-1069)) (-635 |#2|)) NIL) (($ $ (-1069) $) NIL) (($ $ (-635 (-1069)) (-635 $)) NIL)) (-1562 (((-762) $) NIL (|has| |#2| (-362)))) (-2276 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-550))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-550)))) (-2397 (((-3 $ "failed") $ (-762)) NIL)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#2| (-362)))) (-3789 (($ $ (-1069)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-3780 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4263 (((-762) $) NIL) (((-762) $ (-1069)) NIL) (((-635 (-762)) $ (-635 (-1069))) NIL)) (-3441 (((-882 (-378)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#2| (-606 (-882 (-378)))))) (((-882 (-558)) $) NIL (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#2| (-606 (-882 (-558)))))) (((-534) $) NIL (-12 (|has| (-1069) (-606 (-534))) (|has| |#2| (-606 (-534)))))) (-3012 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-1069)) NIL (|has| |#2| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-899))))) (-2017 (((-3 $ "failed") $ $) NIL (|has| |#2| (-550))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#2| (-550)))) (-3940 (((-853) $) 13) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-1069)) NIL) (($ (-1242 |#1|)) 19) (($ (-406 (-558))) NIL (-3994 (|has| |#2| (-38 (-406 (-558)))) (|has| |#2| (-1028 (-406 (-558)))))) (($ $) NIL (|has| |#2| (-550)))) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-762)) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-1487 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-144)) (|has| |#2| (-899))) (|has| |#2| (-144))))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| |#2| (-171)))) (-2671 (((-112) $ $) NIL (|has| |#2| (-550)))) (-2207 (($) NIL T CONST)) (-2220 (($) 14 T CONST)) (-3042 (($ $ (-1069)) NIL) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) NIL) (($ $ (-1163)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1163) (-762)) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) NIL (|has| |#2| (-890 (-1163)))) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1757 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1708 (((-112) $ $) NIL)) (-1749 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#2| (-841)))) (-1805 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-406 (-558))) NIL (|has| |#2| (-38 (-406 (-558))))) (($ (-406 (-558)) $) NIL (|has| |#2| (-38 (-406 (-558))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1219 |#1| |#2|) (-13 (-1222 |#2|) (-608 (-1242 |#1|)) (-10 -8 (-15 -3232 ($ $ (-762) |#2| $)))) (-1163) (-1039)) (T -1219))
-((-3232 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1219 *4 *3)) (-14 *4 (-1163)) (-4 *3 (-1039)))))
-(-13 (-1222 |#2|) (-608 (-1242 |#1|)) (-10 -8 (-15 -3232 ($ $ (-762) |#2| $))))
-((-3397 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1220 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|))) (-1039) (-1222 |#1|) (-1039) (-1222 |#3|)) (T -1220))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1222 *6)) (-5 *1 (-1220 *5 *4 *6 *2)) (-4 *4 (-1222 *5)))))
-(-10 -7 (-15 -3397 (|#4| (-1 |#3| |#1|) |#2|)))
-((-4333 (((-1246 |#2|) $ (-762)) 114)) (-4078 (((-635 (-1069)) $) 15)) (-1285 (($ (-1159 |#2|)) 67)) (-2909 (((-762) $) NIL) (((-762) $ (-635 (-1069))) 18)) (-2418 (((-417 (-1159 $)) (-1159 $)) 184)) (-2018 (($ $) 174)) (-4110 (((-417 $) $) 172)) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 82)) (-2186 (($ $ (-762)) 71)) (-3291 (($ $ (-762)) 73)) (-2855 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3302 (((-3 |#2| "failed") $) 117) (((-3 (-406 (-558)) "failed") $) NIL) (((-3 (-558) "failed") $) NIL) (((-3 (-1069) "failed") $) NIL)) (-3226 ((|#2| $) 115) (((-406 (-558)) $) NIL) (((-558) $) NIL) (((-1069) $) NIL)) (-3862 (($ $ $) 151)) (-3343 (((-2 (|:| -3455 |#2|) (|:| -2263 $) (|:| -1548 $)) $ $) 153)) (-2532 (((-762) $ $) 169)) (-2521 (((-3 $ "failed") $) 123)) (-4056 (($ |#2| (-762)) NIL) (($ $ (-1069) (-762)) 47) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3672 (((-762) $) NIL) (((-762) $ (-1069)) 42) (((-635 (-762)) $ (-635 (-1069))) 43)) (-4087 (((-1159 |#2|) $) 59)) (-2135 (((-3 (-1069) "failed") $) 40)) (-1710 (((-2 (|:| -2263 $) (|:| -1548 $)) $ (-762)) 70)) (-1337 (($ $) 196)) (-1823 (($) 119)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 181)) (-2321 (((-417 (-1159 $)) (-1159 $)) 88)) (-2796 (((-417 (-1159 $)) (-1159 $)) 86)) (-3939 (((-417 $) $) 107)) (-1369 (($ $ (-635 (-293 $))) 39) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1069) |#2|) 31) (($ $ (-635 (-1069)) (-635 |#2|)) 28) (($ $ (-1069) $) 25) (($ $ (-635 (-1069)) (-635 $)) 23)) (-1562 (((-762) $) 187)) (-2276 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 190)) (-3780 (($ $ (-1069)) 140) (($ $ (-635 (-1069))) NIL) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL) (($ $ (-762)) NIL) (($ $) 138) (($ $ (-1163)) NIL) (($ $ (-635 (-1163))) NIL) (($ $ (-1163) (-762)) NIL) (($ $ (-635 (-1163)) (-635 (-762))) NIL) (($ $ (-1 |#2| |#2|) (-762)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4263 (((-762) $) NIL) (((-762) $ (-1069)) 16) (((-635 (-762)) $ (-635 (-1069))) 20)) (-3012 ((|#2| $) NIL) (($ $ (-1069)) 125)) (-2017 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#2|) NIL) (($ (-1069)) 51) (($ (-406 (-558))) NIL) (($ $) NIL)))
-(((-1221 |#1| |#2|) (-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -2276 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1562 ((-762) |#1|)) (-15 -3902 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -1337 (|#1| |#1|)) (-15 -2276 (|#2| (-406 |#1|) |#2|)) (-15 -2855 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3343 ((-2 (|:| -3455 |#2|) (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -2017 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -2017 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2532 ((-762) |#1| |#1|)) (-15 -2276 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3291 (|#1| |#1| (-762))) (-15 -2186 (|#1| |#1| (-762))) (-15 -1710 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| (-762))) (-15 -1285 (|#1| (-1159 |#2|))) (-15 -4087 ((-1159 |#2|) |#1|)) (-15 -4333 ((-1246 |#2|) |#1| (-762))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#2| |#1| |#2|)) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -2418 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2796 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2321 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3012 (|#1| |#1| (-1069))) (-15 -4078 ((-635 (-1069)) |#1|)) (-15 -2909 ((-762) |#1| (-635 (-1069)))) (-15 -2909 ((-762) |#1|)) (-15 -4056 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -4056 (|#1| |#1| (-1069) (-762))) (-15 -3672 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -3672 ((-762) |#1| (-1069))) (-15 -2135 ((-3 (-1069) "failed") |#1|)) (-15 -4263 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -4263 ((-762) |#1| (-1069))) (-15 -3940 (|#1| (-1069))) (-15 -3302 ((-3 (-1069) "failed") |#1|)) (-15 -3226 ((-1069) |#1|)) (-15 -1369 (|#1| |#1| (-635 (-1069)) (-635 |#1|))) (-15 -1369 (|#1| |#1| (-1069) |#1|)) (-15 -1369 (|#1| |#1| (-635 (-1069)) (-635 |#2|))) (-15 -1369 (|#1| |#1| (-1069) |#2|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4263 ((-762) |#1|)) (-15 -4056 (|#1| |#2| (-762))) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3672 ((-762) |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -3780 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1069) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1069)))) (-15 -3780 (|#1| |#1| (-1069))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|))) (-1222 |#2|) (-1039)) (T -1221))
-NIL
-(-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -4021 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -4110 ((-417 |#1|) |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -1823 (|#1|)) (-15 -2521 ((-3 |#1| "failed") |#1|)) (-15 -2276 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1562 ((-762) |#1|)) (-15 -3902 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -1337 (|#1| |#1|)) (-15 -2276 (|#2| (-406 |#1|) |#2|)) (-15 -2855 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3343 ((-2 (|:| -3455 |#2|) (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -2017 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -2017 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2532 ((-762) |#1| |#1|)) (-15 -2276 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3291 (|#1| |#1| (-762))) (-15 -2186 (|#1| |#1| (-762))) (-15 -1710 ((-2 (|:| -2263 |#1|) (|:| -1548 |#1|)) |#1| (-762))) (-15 -1285 (|#1| (-1159 |#2|))) (-15 -4087 ((-1159 |#2|) |#1|)) (-15 -4333 ((-1246 |#2|) |#1| (-762))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3780 (|#1| |#1| (-1 |#2| |#2|) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1163) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1163)))) (-15 -3780 (|#1| |#1| (-1163))) (-15 -3780 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-762))) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2276 (|#2| |#1| |#2|)) (-15 -3939 ((-417 |#1|) |#1|)) (-15 -2418 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2796 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -2321 ((-417 (-1159 |#1|)) (-1159 |#1|))) (-15 -1671 ((-3 (-635 (-1159 |#1|)) "failed") (-635 (-1159 |#1|)) (-1159 |#1|))) (-15 -3012 (|#1| |#1| (-1069))) (-15 -4078 ((-635 (-1069)) |#1|)) (-15 -2909 ((-762) |#1| (-635 (-1069)))) (-15 -2909 ((-762) |#1|)) (-15 -4056 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -4056 (|#1| |#1| (-1069) (-762))) (-15 -3672 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -3672 ((-762) |#1| (-1069))) (-15 -2135 ((-3 (-1069) "failed") |#1|)) (-15 -4263 ((-635 (-762)) |#1| (-635 (-1069)))) (-15 -4263 ((-762) |#1| (-1069))) (-15 -3940 (|#1| (-1069))) (-15 -3302 ((-3 (-1069) "failed") |#1|)) (-15 -3226 ((-1069) |#1|)) (-15 -1369 (|#1| |#1| (-635 (-1069)) (-635 |#1|))) (-15 -1369 (|#1| |#1| (-1069) |#1|)) (-15 -1369 (|#1| |#1| (-635 (-1069)) (-635 |#2|))) (-15 -1369 (|#1| |#1| (-1069) |#2|)) (-15 -1369 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -1369 (|#1| |#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| (-293 |#1|))) (-15 -1369 (|#1| |#1| (-635 (-293 |#1|)))) (-15 -4263 ((-762) |#1|)) (-15 -4056 (|#1| |#2| (-762))) (-15 -3302 ((-3 (-558) "failed") |#1|)) (-15 -3226 ((-558) |#1|)) (-15 -3302 ((-3 (-406 (-558)) "failed") |#1|)) (-15 -3226 ((-406 (-558)) |#1|)) (-15 -3226 (|#2| |#1|)) (-15 -3302 ((-3 |#2| "failed") |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3672 ((-762) |#1|)) (-15 -3012 (|#2| |#1|)) (-15 -3780 (|#1| |#1| (-635 (-1069)) (-635 (-762)))) (-15 -3780 (|#1| |#1| (-1069) (-762))) (-15 -3780 (|#1| |#1| (-635 (-1069)))) (-15 -3780 (|#1| |#1| (-1069))) (-15 -3940 (|#1| (-558))) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4333 (((-1246 |#1|) $ (-762)) 238)) (-4078 (((-635 (-1069)) $) 110)) (-1285 (($ (-1159 |#1|)) 236)) (-3907 (((-1159 $) $ (-1069)) 125) (((-1159 |#1|) $) 124)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 87 (|has| |#1| (-550)))) (-3244 (($ $) 88 (|has| |#1| (-550)))) (-4326 (((-112) $) 90 (|has| |#1| (-550)))) (-2909 (((-762) $) 112) (((-762) $ (-635 (-1069))) 111)) (-1868 (((-3 $ "failed") $ $) 19)) (-2531 (($ $ $) 223 (|has| |#1| (-550)))) (-2418 (((-417 (-1159 $)) (-1159 $)) 100 (|has| |#1| (-899)))) (-2018 (($ $) 98 (|has| |#1| (-450)))) (-4110 (((-417 $) $) 97 (|has| |#1| (-450)))) (-1671 (((-3 (-635 (-1159 $)) "failed") (-635 (-1159 $)) (-1159 $)) 103 (|has| |#1| (-899)))) (-1599 (((-112) $ $) 208 (|has| |#1| (-362)))) (-2186 (($ $ (-762)) 231)) (-3291 (($ $ (-762)) 230)) (-2855 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-450)))) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-558)) "failed") $) 161 (|has| |#1| (-1028 (-406 (-558))))) (((-3 (-558) "failed") $) 159 (|has| |#1| (-1028 (-558)))) (((-3 (-1069) "failed") $) 136)) (-3226 ((|#1| $) 163) (((-406 (-558)) $) 162 (|has| |#1| (-1028 (-406 (-558))))) (((-558) $) 160 (|has| |#1| (-1028 (-558)))) (((-1069) $) 137)) (-2862 (($ $ $ (-1069)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-1709 (($ $ $) 212 (|has| |#1| (-362)))) (-3905 (($ $) 154)) (-1918 (((-679 (-558)) (-679 $)) 134 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 (-558))) (|:| |vec| (-1246 (-558)))) (-679 $) (-1246 $)) 133 (|has| |#1| (-631 (-558)))) (((-2 (|:| -3702 (-679 |#1|)) (|:| |vec| (-1246 |#1|))) (-679 $) (-1246 $)) 132) (((-679 |#1|) (-679 $)) 131)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 211 (|has| |#1| (-362)))) (-2567 (($ $ $) 229)) (-3862 (($ $ $) 220 (|has| |#1| (-550)))) (-3343 (((-2 (|:| -3455 |#1|) (|:| -2263 $) (|:| -1548 $)) $ $) 219 (|has| |#1| (-550)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 206 (|has| |#1| (-362)))) (-3199 (($ $) 176 (|has| |#1| (-450))) (($ $ (-1069)) 105 (|has| |#1| (-450)))) (-3894 (((-635 $) $) 109)) (-2992 (((-112) $) 96 (|has| |#1| (-899)))) (-2704 (($ $ |#1| (-762) $) 172)) (-3193 (((-879 (-378) $) $ (-882 (-378)) (-879 (-378) $)) 84 (-12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378))))) (((-879 (-558) $) $ (-882 (-558)) (-879 (-558) $)) 83 (-12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))))) (-2532 (((-762) $ $) 224 (|has| |#1| (-550)))) (-3999 (((-112) $) 31)) (-2987 (((-762) $) 169)) (-2521 (((-3 $ "failed") $) 204 (|has| |#1| (-1138)))) (-4068 (($ (-1159 |#1|) (-1069)) 117) (($ (-1159 $) (-1069)) 116)) (-4184 (($ $ (-762)) 235)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 215 (|has| |#1| (-362)))) (-4033 (((-635 $) $) 126)) (-3594 (((-112) $) 152)) (-4056 (($ |#1| (-762)) 153) (($ $ (-1069) (-762)) 119) (($ $ (-635 (-1069)) (-635 (-762))) 118)) (-3447 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $ (-1069)) 120) (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 233)) (-3672 (((-762) $) 170) (((-762) $ (-1069)) 122) (((-635 (-762)) $ (-635 (-1069))) 121)) (-2142 (($ $ $) 79 (|has| |#1| (-841)))) (-2281 (($ $ $) 78 (|has| |#1| (-841)))) (-2776 (($ (-1 (-762) (-762)) $) 171)) (-3397 (($ (-1 |#1| |#1|) $) 151)) (-4087 (((-1159 |#1|) $) 237)) (-2135 (((-3 (-1069) "failed") $) 123)) (-3867 (($ $) 149)) (-3881 ((|#1| $) 148)) (-1500 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-2510 (((-1145) $) 9)) (-1710 (((-2 (|:| -2263 $) (|:| -1548 $)) $ (-762)) 232)) (-2819 (((-3 (-635 $) "failed") $) 114)) (-4195 (((-3 (-635 $) "failed") $) 115)) (-3637 (((-3 (-2 (|:| |var| (-1069)) (|:| -1857 (-762))) "failed") $) 113)) (-1337 (($ $) 216 (|has| |#1| (-38 (-406 (-558)))))) (-1823 (($) 203 (|has| |#1| (-1138)) CONST)) (-1688 (((-1107) $) 10)) (-3837 (((-112) $) 166)) (-3853 ((|#1| $) 167)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 95 (|has| |#1| (-450)))) (-1544 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-2321 (((-417 (-1159 $)) (-1159 $)) 102 (|has| |#1| (-899)))) (-2796 (((-417 (-1159 $)) (-1159 $)) 101 (|has| |#1| (-899)))) (-3939 (((-417 $) $) 99 (|has| |#1| (-899)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 213 (|has| |#1| (-362)))) (-2861 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 207 (|has| |#1| (-362)))) (-1369 (($ $ (-635 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ (-1069) |#1|) 141) (($ $ (-635 (-1069)) (-635 |#1|)) 140) (($ $ (-1069) $) 139) (($ $ (-635 (-1069)) (-635 $)) 138)) (-1562 (((-762) $) 209 (|has| |#1| (-362)))) (-2276 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-550))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-550)))) (-2397 (((-3 $ "failed") $ (-762)) 234)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 210 (|has| |#1| (-362)))) (-3789 (($ $ (-1069)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-3780 (($ $ (-1069)) 42) (($ $ (-635 (-1069))) 41) (($ $ (-1069) (-762)) 40) (($ $ (-635 (-1069)) (-635 (-762))) 39) (($ $ (-762)) 253) (($ $) 251) (($ $ (-1163)) 250 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 249 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 248 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 247 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4263 (((-762) $) 150) (((-762) $ (-1069)) 130) (((-635 (-762)) $ (-635 (-1069))) 129)) (-3441 (((-882 (-378)) $) 82 (-12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378)))))) (((-882 (-558)) $) 81 (-12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558)))))) (((-534) $) 80 (-12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))))) (-3012 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ (-1069)) 106 (|has| |#1| (-450)))) (-4277 (((-3 (-1246 $) "failed") (-679 $)) 104 (-2157 (|has| $ (-144)) (|has| |#1| (-899))))) (-2017 (((-3 $ "failed") $ $) 222 (|has| |#1| (-550))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-550)))) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 165) (($ (-1069)) 135) (($ (-406 (-558))) 72 (-3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558)))))) (($ $) 85 (|has| |#1| (-550)))) (-3712 (((-635 |#1|) $) 168)) (-3143 ((|#1| $ (-762)) 155) (($ $ (-1069) (-762)) 128) (($ $ (-635 (-1069)) (-635 (-762))) 127)) (-1487 (((-3 $ "failed") $) 73 (-3994 (-2157 (|has| $ (-144)) (|has| |#1| (-899))) (|has| |#1| (-144))))) (-2417 (((-762)) 28)) (-1664 (($ $ $ (-762)) 173 (|has| |#1| (-171)))) (-2671 (((-112) $ $) 89 (|has| |#1| (-550)))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-1069)) 38) (($ $ (-635 (-1069))) 37) (($ $ (-1069) (-762)) 36) (($ $ (-635 (-1069)) (-635 (-762))) 35) (($ $ (-762)) 254) (($ $) 252) (($ $ (-1163)) 246 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163))) 245 (|has| |#1| (-890 (-1163)))) (($ $ (-1163) (-762)) 244 (|has| |#1| (-890 (-1163)))) (($ $ (-635 (-1163)) (-635 (-762))) 243 (|has| |#1| (-890 (-1163)))) (($ $ (-1 |#1| |#1|) (-762)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1757 (((-112) $ $) 76 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 75 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 6)) (-1749 (((-112) $ $) 77 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 74 (|has| |#1| (-841)))) (-1805 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 158 (|has| |#1| (-38 (-406 (-558))))) (($ (-406 (-558)) $) 157 (|has| |#1| (-38 (-406 (-558))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1222 |#1|) (-139) (-1039)) (T -1222))
-((-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-1222 *4)) (-4 *4 (-1039)) (-5 *2 (-1246 *4)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-5 *2 (-1159 *3)))) (-1285 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1039)) (-4 *1 (-1222 *3)))) (-4184 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-2397 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3447 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1222 *3)))) (-1710 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1222 *4)))) (-2186 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-2567 (*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)))) (-3780 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))) (-2862 (*1 *2 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))) (-2276 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) (-2532 (*1 *2 *1 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550)) (-5 *2 (-762)))) (-2531 (*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-2017 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-2017 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) (-3862 (*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-3343 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -3455 *3) (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1222 *3)))) (-2855 (*1 *2 *1 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1222 *3)))) (-2276 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-1337 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))))
-(-13 (-939 |t#1| (-762) (-1069)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -4333 ((-1246 |t#1|) $ (-762))) (-15 -4087 ((-1159 |t#1|) $)) (-15 -1285 ($ (-1159 |t#1|))) (-15 -4184 ($ $ (-762))) (-15 -2397 ((-3 $ "failed") $ (-762))) (-15 -3447 ((-2 (|:| -2263 $) (|:| -1548 $)) $ $)) (-15 -1710 ((-2 (|:| -2263 $) (|:| -1548 $)) $ (-762))) (-15 -2186 ($ $ (-762))) (-15 -3291 ($ $ (-762))) (-15 -2567 ($ $ $)) (-15 -3780 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1138)) (-6 (-1138)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -3789 (|t#1| $)) (-15 -2862 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -2276 ((-406 $) (-406 $) (-406 $))) (-15 -2532 ((-762) $ $)) (-15 -2531 ($ $ $)) (-15 -2017 ((-3 $ "failed") $ $)) (-15 -2017 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -3862 ($ $ $)) (-15 -3343 ((-2 (|:| -3455 |t#1|) (|:| -2263 $) (|:| -1548 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-15 -2855 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4379) (-15 -2276 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (-15 -1337 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-762)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3994 (|has| |#1| (-1028 (-406 (-558)))) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 #2=(-1069)) . T) ((-608 |#1|) . T) ((-608 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-606 (-534)) -12 (|has| (-1069) (-606 (-534))) (|has| |#1| (-606 (-534)))) ((-606 (-882 (-378))) -12 (|has| (-1069) (-606 (-882 (-378)))) (|has| |#1| (-606 (-882 (-378))))) ((-606 (-882 (-558))) -12 (|has| (-1069) (-606 (-882 (-558)))) (|has| |#1| (-606 (-882 (-558))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-550)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #0#) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -3994 (|has| |#1| (-899)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-512 #2# |#1|) . T) ((-512 #2# $) . T) ((-512 $ $) . T) ((-550) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-638 #1#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-631 (-558)) |has| |#1| (-631 (-558))) ((-631 |#1|) . T) ((-708 #1#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-717) . T) ((-841) |has| |#1| (-841)) ((-890 #2#) . T) ((-890 (-1163)) |has| |#1| (-890 (-1163))) ((-876 (-378)) -12 (|has| (-1069) (-876 (-378))) (|has| |#1| (-876 (-378)))) ((-876 (-558)) -12 (|has| (-1069) (-876 (-558))) (|has| |#1| (-876 (-558)))) ((-939 |#1| #0# #2#) . T) ((-899) |has| |#1| (-899)) ((-910) |has| |#1| (-362)) ((-1028 (-406 (-558))) |has| |#1| (-1028 (-406 (-558)))) ((-1028 (-558)) |has| |#1| (-1028 (-558))) ((-1028 #2#) . T) ((-1028 |#1|) . T) ((-1045 #1#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-899)) (|has| |#1| (-550)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1138) |has| |#1| (-1138)) ((-1204) |has| |#1| (-899)))
-((-4078 (((-635 (-1069)) $) 28)) (-3905 (($ $) 25)) (-4056 (($ |#2| |#3|) NIL) (($ $ (-1069) |#3|) 22) (($ $ (-635 (-1069)) (-635 |#3|)) 21)) (-3867 (($ $) 14)) (-3881 ((|#2| $) 12)) (-4263 ((|#3| $) 10)))
-(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -4078 ((-635 (-1069)) |#1|)) (-15 -4056 (|#1| |#1| (-635 (-1069)) (-635 |#3|))) (-15 -4056 (|#1| |#1| (-1069) |#3|)) (-15 -3905 (|#1| |#1|)) (-15 -4056 (|#1| |#2| |#3|)) (-15 -4263 (|#3| |#1|)) (-15 -3867 (|#1| |#1|)) (-15 -3881 (|#2| |#1|))) (-1224 |#2| |#3|) (-1039) (-783)) (T -1223))
-NIL
-(-10 -8 (-15 -4078 ((-635 (-1069)) |#1|)) (-15 -4056 (|#1| |#1| (-635 (-1069)) (-635 |#3|))) (-15 -4056 (|#1| |#1| (-1069) |#3|)) (-15 -3905 (|#1| |#1|)) (-15 -4056 (|#1| |#2| |#3|)) (-15 -4263 (|#3| |#1|)) (-15 -3867 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 (-1069)) $) 77)) (-2317 (((-1163) $) 106)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-4057 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-3414 (((-1143 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3459 (((-112) $) 76)) (-2532 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-3999 (((-112) $) 31)) (-4184 (($ $ (-911)) 104)) (-3594 (((-112) $) 65)) (-4056 (($ |#1| |#2|) 64) (($ $ (-1069) |#2|) 79) (($ $ (-635 (-1069)) (-635 |#2|)) 78)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2319 (($ $ |#2|) 98)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-1369 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2276 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1099)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4263 ((|#2| $) 67)) (-1559 (($ $) 75)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3143 ((|#1| $ |#2|) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2814 ((|#1| $) 105)) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-1422 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-1224 |#1| |#2|) (-139) (-1039) (-783)) (T -1224))
-((-3414 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (-5 *2 (-1163)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))) (-4184 (*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-2532 (*1 *2 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-4057 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-4057 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-1422 (*1 *2 *1 *3) (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3940 (*2 (-1163)))) (-4 *2 (-1039)))) (-2319 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))) (-1369 (*1 *2 *1 *3) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3)))))
-(-13 (-963 |t#1| |t#2| (-1069)) (-10 -8 (-15 -3414 ((-1143 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2276 (|t#1| $ |t#2|)) (-15 -2317 ((-1163) $)) (-15 -2814 (|t#1| $)) (-15 -4184 ($ $ (-911))) (-15 -2532 (|t#2| $)) (-15 -2532 (|t#2| $ |t#2|)) (-15 -4057 ($ $ |t#2|)) (-15 -4057 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3940 (|t#1| (-1163)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1422 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2319 ($ $ |t#2|)) (IF (|has| |t#2| (-1099)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-890 (-1163))) (-6 (-890 (-1163))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1369 ((-1143 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #0#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1099)) ((-289) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-638 #0#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| |#2| (-1069)) . T) ((-1045 #0#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-2018 ((|#2| |#2|) 12)) (-4110 (((-417 |#2|) |#2|) 14)) (-1729 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))) 30)))
-(((-1225 |#1| |#2|) (-10 -7 (-15 -4110 ((-417 |#2|) |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -1729 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))))) (-550) (-13 (-1222 |#1|) (-550) (-10 -8 (-15 -1544 ($ $ $))))) (T -1225))
-((-1729 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-558)))) (-4 *4 (-13 (-1222 *3) (-550) (-10 -8 (-15 -1544 ($ $ $))))) (-4 *3 (-550)) (-5 *1 (-1225 *3 *4)))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-1222 *3) (-550) (-10 -8 (-15 -1544 ($ $ $))))))) (-4110 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-1222 *4) (-550) (-10 -8 (-15 -1544 ($ $ $))))))))
-(-10 -7 (-15 -4110 ((-417 |#2|) |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -1729 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))))))
-((-3397 (((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|)) 24)))
-(((-1226 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3397 ((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|)))) (-1039) (-1039) (-1163) (-1163) |#1| |#2|) (T -1226))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1231 *6 *8 *10)) (-5 *1 (-1226 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1163)))))
-(-10 -7 (-15 -3397 ((-1231 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1231 |#1| |#3| |#5|))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 (-1069)) $) 77)) (-2317 (((-1163) $) 106)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-4057 (($ $ (-406 (-558))) 101) (($ $ (-406 (-558)) (-406 (-558))) 100)) (-3414 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 108)) (-2277 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 165 (|has| |#1| (-362)))) (-4110 (((-417 $) $) 166 (|has| |#1| (-362)))) (-3948 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) 156 (|has| |#1| (-362)))) (-2254 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) 174)) (-2298 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) 17 T CONST)) (-1709 (($ $ $) 160 (|has| |#1| (-362)))) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 159 (|has| |#1| (-362)))) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-2992 (((-112) $) 167 (|has| |#1| (-362)))) (-3459 (((-112) $) 76)) (-3348 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-406 (-558)) $) 103) (((-406 (-558)) $ (-406 (-558))) 102)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) 104) (($ $ (-406 (-558))) 173)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-3594 (((-112) $) 65)) (-4056 (($ |#1| (-406 (-558))) 64) (($ $ (-1069) (-406 (-558))) 79) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) 78)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-4342 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-1500 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-2510 (((-1145) $) 9)) (-3823 (($ $) 168 (|has| |#1| (-362)))) (-1337 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3994 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-1544 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-3939 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 161 (|has| |#1| (-362)))) (-2319 (($ $ (-406 (-558))) 98)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-3944 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-1562 (((-762) $) 157 (|has| |#1| (-362)))) (-2276 ((|#1| $ (-406 (-558))) 107) (($ $ $) 84 (|has| (-406 (-558)) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 158 (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4263 (((-406 (-558)) $) 67)) (-2312 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 75)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3143 ((|#1| $ (-406 (-558))) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2814 ((|#1| $) 105)) (-4175 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2325 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-406 (-558))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-1227 |#1|) (-139) (-1039)) (T -1227))
-((-2095 (*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4)))) (-4 *4 (-1039)) (-4 *1 (-1227 *4)))) (-4184 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1227 *3)) (-4 *3 (-1039)))) (-1337 (*1 *1 *1) (-12 (-4 *1 (-1227 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))) (-1337 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185)) (-4 *3 (-38 (-406 (-558)))))) (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -4078 ((-635 *2) *3))) (|has| *3 (-15 -1337 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558)))))))))
-(-13 (-1224 |t#1| (-406 (-558))) (-10 -8 (-15 -2095 ($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |t#1|))))) (-15 -4184 ($ $ (-406 (-558)))) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $)) (IF (|has| |t#1| (-15 -1337 (|t#1| |t#1| (-1163)))) (IF (|has| |t#1| (-15 -4078 ((-635 (-1163)) |t#1|))) (-15 -1337 ($ $ (-1163))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1185)) (IF (|has| |t#1| (-949)) (IF (|has| |t#1| (-29 (-558))) (-15 -1337 ($ $ (-1163))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-992)) (-6 (-1185))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-558))) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-406 (-558)) (-1099)) ((-289) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1204) |has| |#1| (-362)) ((-1224 |#1| #0#) . T))
-((-3124 (((-112) $) 12)) (-3302 (((-3 |#3| "failed") $) 17)) (-3226 ((|#3| $) 14)))
-(((-1228 |#1| |#2| |#3|) (-10 -8 (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#3| |#1|)) (-15 -3124 ((-112) |#1|))) (-1229 |#2| |#3|) (-1039) (-1206 |#2|)) (T -1228))
-NIL
-(-10 -8 (-15 -3302 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#3| |#1|)) (-15 -3124 ((-112) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 (-1069)) $) 77)) (-2317 (((-1163) $) 106)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-4057 (($ $ (-406 (-558))) 101) (($ $ (-406 (-558)) (-406 (-558))) 100)) (-3414 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 108)) (-2277 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 165 (|has| |#1| (-362)))) (-4110 (((-417 $) $) 166 (|has| |#1| (-362)))) (-3948 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) 156 (|has| |#1| (-362)))) (-2254 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) 174)) (-2298 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#2| "failed") $) 185)) (-3226 ((|#2| $) 186)) (-1709 (($ $ $) 160 (|has| |#1| (-362)))) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-1623 (((-406 (-558)) $) 182)) (-2881 (($ $ $) 159 (|has| |#1| (-362)))) (-3801 (($ (-406 (-558)) |#2|) 183)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-2992 (((-112) $) 167 (|has| |#1| (-362)))) (-3459 (((-112) $) 76)) (-3348 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-406 (-558)) $) 103) (((-406 (-558)) $ (-406 (-558))) 102)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) 104) (($ $ (-406 (-558))) 173)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-3594 (((-112) $) 65)) (-4056 (($ |#1| (-406 (-558))) 64) (($ $ (-1069) (-406 (-558))) 79) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) 78)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-4342 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-1500 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-2422 ((|#2| $) 181)) (-4219 (((-3 |#2| "failed") $) 179)) (-3788 ((|#2| $) 180)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 168 (|has| |#1| (-362)))) (-1337 (($ $) 172 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 171 (-3994 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 153 (|has| |#1| (-362)))) (-1544 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-3939 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 161 (|has| |#1| (-362)))) (-2319 (($ $ (-406 (-558))) 98)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-3944 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-1562 (((-762) $) 157 (|has| |#1| (-362)))) (-2276 ((|#1| $ (-406 (-558))) 107) (($ $ $) 84 (|has| (-406 (-558)) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 158 (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4263 (((-406 (-558)) $) 67)) (-2312 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 75)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550)))) (-3143 ((|#1| $ (-406 (-558))) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2814 ((|#1| $) 105)) (-4175 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2325 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-406 (-558))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-1229 |#1| |#2|) (-139) (-1039) (-1206 |t#1|)) (T -1229))
-((-4263 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3)) (-5 *2 (-406 (-558))))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-4 *4 (-1039)) (-4 *1 (-1229 *4 *3)) (-4 *3 (-1206 *4)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3)) (-5 *2 (-406 (-558))))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))) (-4219 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))))
-(-13 (-1227 |t#1|) (-1028 |t#2|) (-608 |t#2|) (-10 -8 (-15 -3801 ($ (-406 (-558)) |t#2|)) (-15 -1623 ((-406 (-558)) $)) (-15 -2422 (|t#2| $)) (-15 -4263 ((-406 (-558)) $)) (-15 -3788 (|t#2| $)) (-15 -4219 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-558))) . T) ((-25) . T) ((-38 #1=(-406 (-558))) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 |#2|) . T) ((-608 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-406 (-558)) (-1099)) ((-289) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-638 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362))) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-910) |has| |#1| (-362)) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1028 |#2|) . T) ((-1045 #1#) -3994 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-558))))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1204) |has| |#1| (-362)) ((-1224 |#1| #0#) . T) ((-1227 |#1|) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 96)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-406 (-558))) 106) (($ $ (-406 (-558)) (-406 (-558))) 108)) (-3414 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) 51)) (-2277 (($ $) 180 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 156 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) 176 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 152 (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) 61)) (-2298 (($ $) 184 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 160 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) NIL)) (-3226 ((|#2| $) NIL)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) 79)) (-1623 (((-406 (-558)) $) 13)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3801 (($ (-406 (-558)) |#2|) 11)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-3459 (((-112) $) 68)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-406 (-558)) $) 103) (((-406 (-558)) $ (-406 (-558))) 104)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) 120) (($ $ (-406 (-558))) 118)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-406 (-558))) 31) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) 115)) (-4342 (($ $) 150 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2422 ((|#2| $) 12)) (-4219 (((-3 |#2| "failed") $) 41)) (-3788 ((|#2| $) 42)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) 93 (|has| |#1| (-362)))) (-1337 (($ $) 135 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 140 (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185)))))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-406 (-558))) 112)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3944 (($ $) 148 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-406 (-558))) 100) (($ $ $) 86 (|has| (-406 (-558)) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) 127 (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-4263 (((-406 (-558)) $) 16)) (-2312 (($ $) 186 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 162 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 182 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 158 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 178 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 154 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 110)) (-3940 (((-853) $) NIL) (($ (-558)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-558))) 128 (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3143 ((|#1| $ (-406 (-558))) 99)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) 117)) (-2814 ((|#1| $) 98)) (-4175 (($ $) 192 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 168 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) 188 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 164 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 196 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 172 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-406 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 198 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 174 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 194 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 170 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 190 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 166 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 21 T CONST)) (-2220 (($) 17 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1708 (((-112) $ $) 66)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-1796 (($ $) 131) (($ $ $) 72)) (-1785 (($ $ $) 70)) (** (($ $ (-911)) NIL) (($ $ (-762)) 76) (($ $ (-558)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 146 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1230 |#1| |#2|) (-1229 |#1| |#2|) (-1039) (-1206 |#1|)) (T -1230))
-NIL
-(-1229 |#1| |#2|)
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 11)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) NIL (|has| |#1| (-550)))) (-4057 (($ $ (-406 (-558))) NIL) (($ $ (-406 (-558)) (-406 (-558))) NIL)) (-3414 (((-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|))) $) NIL)) (-2277 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $) NIL (|has| |#1| (-362)))) (-4110 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1599 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2254 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-762) (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#1|)))) NIL)) (-2298 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1238 |#1| |#2| |#3|) "failed") $) 22)) (-3226 (((-1210 |#1| |#2| |#3|) $) NIL) (((-1238 |#1| |#2| |#3|) $) NIL)) (-1709 (($ $ $) NIL (|has| |#1| (-362)))) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-1623 (((-406 (-558)) $) 57)) (-2881 (($ $ $) NIL (|has| |#1| (-362)))) (-3801 (($ (-406 (-558)) (-1210 |#1| |#2| |#3|)) NIL)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-2992 (((-112) $) NIL (|has| |#1| (-362)))) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-406 (-558)) $) NIL) (((-406 (-558)) $ (-406 (-558))) NIL)) (-3999 (((-112) $) NIL)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) NIL) (($ $ (-406 (-558))) NIL)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-406 (-558))) 30) (($ $ (-1069) (-406 (-558))) NIL) (($ $ (-635 (-1069)) (-635 (-406 (-558)))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-4342 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-1500 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2422 (((-1210 |#1| |#2| |#3|) $) 60)) (-4219 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL)) (-3788 (((-1210 |#1| |#2| |#3|) $) NIL)) (-2510 (((-1145) $) NIL)) (-3823 (($ $) NIL (|has| |#1| (-362)))) (-1337 (($ $) 39 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) NIL (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 40 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) NIL (|has| |#1| (-362)))) (-1544 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3939 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3304 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) NIL (|has| |#1| (-362)))) (-2319 (($ $ (-406 (-558))) NIL)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3831 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3944 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))))) (-1562 (((-762) $) NIL (|has| |#1| (-362)))) (-2276 ((|#1| $ (-406 (-558))) NIL) (($ $ $) NIL (|has| (-406 (-558)) (-1099)))) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) NIL (|has| |#1| (-362)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $ (-1242 |#2|)) 38)) (-4263 (((-406 (-558)) $) NIL)) (-2312 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) NIL)) (-3940 (((-853) $) 88) (($ (-558)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1210 |#1| |#2| |#3|)) 16) (($ (-1238 |#1| |#2| |#3|)) 17) (($ (-1242 |#2|)) 36) (($ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550)))) (-3143 ((|#1| $ (-406 (-558))) NIL)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) 12)) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-406 (-558))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-558))))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 32 T CONST)) (-2220 (($) 26 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-558)) |#1|))))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 34)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ (-558)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1231 |#1| |#2| |#3|) (-13 (-1229 |#1| (-1210 |#1| |#2| |#3|)) (-1028 (-1238 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1231))
-((-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(-13 (-1229 |#1| (-1210 |#1| |#2| |#3|)) (-1028 (-1238 |#1| |#2| |#3|)) (-608 (-1242 |#2|)) (-10 -8 (-15 -3780 ($ $ (-1242 |#2|))) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 34)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL)) (-3244 (($ $) NIL)) (-4326 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 (-558) "failed") $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-558)))) (((-3 (-406 (-558)) "failed") $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-406 (-558))))) (((-3 (-1231 |#2| |#3| |#4|) "failed") $) 20)) (-3226 (((-558) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-558)))) (((-406 (-558)) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-1028 (-406 (-558))))) (((-1231 |#2| |#3| |#4|) $) NIL)) (-3905 (($ $) 35)) (-3248 (((-3 $ "failed") $) 25)) (-3199 (($ $) NIL (|has| (-1231 |#2| |#3| |#4|) (-450)))) (-2704 (($ $ (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) 11)) (-3594 (((-112) $) NIL)) (-4056 (($ (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-3672 (((-318 |#2| |#3| |#4|) $) NIL)) (-2776 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-3397 (($ (-1 (-1231 |#2| |#3| |#4|) (-1231 |#2| |#3| |#4|)) $) NIL)) (-1391 (((-3 (-834 |#2|) "failed") $) 74)) (-3867 (($ $) NIL)) (-3881 (((-1231 |#2| |#3| |#4|) $) 18)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3837 (((-112) $) NIL)) (-3853 (((-1231 |#2| |#3| |#4|) $) NIL)) (-2861 (((-3 $ "failed") $ (-1231 |#2| |#3| |#4|)) NIL (|has| (-1231 |#2| |#3| |#4|) (-550))) (((-3 $ "failed") $ $) NIL)) (-2495 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1145))) "failed") $) 57)) (-4263 (((-318 |#2| |#3| |#4|) $) 14)) (-3012 (((-1231 |#2| |#3| |#4|) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-450)))) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ (-1231 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-558))) NIL (-3994 (|has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558)))) (|has| (-1231 |#2| |#3| |#4|) (-1028 (-406 (-558))))))) (-3712 (((-635 (-1231 |#2| |#3| |#4|)) $) NIL)) (-3143 (((-1231 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-1487 (((-3 $ "failed") $) NIL (|has| (-1231 |#2| |#3| |#4|) (-144)))) (-2417 (((-762)) NIL)) (-1664 (($ $ $ (-762)) NIL (|has| (-1231 |#2| |#3| |#4|) (-171)))) (-2671 (((-112) $ $) NIL)) (-2207 (($) 62 T CONST)) (-2220 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ (-1231 |#2| |#3| |#4|)) NIL (|has| (-1231 |#2| |#3| |#4|) (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ (-1231 |#2| |#3| |#4|)) NIL) (($ (-1231 |#2| |#3| |#4|) $) NIL) (($ (-406 (-558)) $) NIL (|has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| (-1231 |#2| |#3| |#4|) (-38 (-406 (-558)))))))
-(((-1232 |#1| |#2| |#3| |#4|) (-13 (-325 (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-550) (-10 -8 (-15 -1391 ((-3 (-834 |#2|) "failed") $)) (-15 -2495 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1145))) "failed") $)))) (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)) (-13 (-27) (-1185) (-429 |#1|)) (-1163) |#2|) (T -1232))
-((-1391 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *2 (-834 *4)) (-5 *1 (-1232 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4))) (-2495 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4)))))) (|:| |%type| (-1145)))) (-5 *1 (-1232 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163)) (-14 *6 *4))))
-(-13 (-325 (-1231 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-550) (-10 -8 (-15 -1391 ((-3 (-834 |#2|) "failed") $)) (-15 -2495 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1231 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1145))) "failed") $))))
-((-2426 ((|#2| $) 28)) (-1611 ((|#2| $) 18)) (-2427 (($ $) 35)) (-1482 (($ $ (-558)) 63)) (-3651 (((-112) $ (-762)) 32)) (-3083 ((|#2| $ |#2|) 60)) (-2851 ((|#2| $ |#2|) 58)) (-4077 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3697 (($ $ (-635 $)) 59)) (-1601 ((|#2| $) 17)) (-3168 (($ $) NIL) (($ $ (-762)) 41)) (-1352 (((-635 $) $) 25)) (-2201 (((-112) $ $) 49)) (-4007 (((-112) $ (-762)) 31)) (-3212 (((-112) $ (-762)) 30)) (-3355 (((-112) $) 27)) (-1514 ((|#2| $) 23) (($ $ (-762)) 45)) (-2276 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1609 (((-112) $) 21)) (-3070 (($ $) 38)) (-4132 (($ $) 64)) (-2398 (((-762) $) 40)) (-4009 (($ $) 39)) (-2683 (($ $ $) 57) (($ |#2| $) NIL)) (-1384 (((-635 $) $) 26)) (-1708 (((-112) $ $) 47)) (-1596 (((-762) $) 34)))
-(((-1233 |#1| |#2|) (-10 -8 (-15 -1482 (|#1| |#1| (-558))) (-15 -4077 (|#2| |#1| "last" |#2|)) (-15 -2851 (|#2| |#1| |#2|)) (-15 -4077 (|#1| |#1| "rest" |#1|)) (-15 -4077 (|#2| |#1| "first" |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2398 ((-762) |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -1611 (|#2| |#1|)) (-15 -1601 (|#2| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -1514 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "last")) (-15 -1514 (|#2| |#1|)) (-15 -3168 (|#1| |#1| (-762))) (-15 -2276 (|#1| |#1| "rest")) (-15 -3168 (|#1| |#1|)) (-15 -2276 (|#2| |#1| "first")) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -3083 (|#2| |#1| |#2|)) (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -3697 (|#1| |#1| (-635 |#1|))) (-15 -2201 ((-112) |#1| |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2276 (|#2| |#1| "value")) (-15 -2426 (|#2| |#1|)) (-15 -3355 ((-112) |#1|)) (-15 -1352 ((-635 |#1|) |#1|)) (-15 -1384 ((-635 |#1|) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762)))) (-1234 |#2|) (-1200)) (T -1233))
-NIL
-(-10 -8 (-15 -1482 (|#1| |#1| (-558))) (-15 -4077 (|#2| |#1| "last" |#2|)) (-15 -2851 (|#2| |#1| |#2|)) (-15 -4077 (|#1| |#1| "rest" |#1|)) (-15 -4077 (|#2| |#1| "first" |#2|)) (-15 -4132 (|#1| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2398 ((-762) |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -1611 (|#2| |#1|)) (-15 -1601 (|#2| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -1514 (|#1| |#1| (-762))) (-15 -2276 (|#2| |#1| "last")) (-15 -1514 (|#2| |#1|)) (-15 -3168 (|#1| |#1| (-762))) (-15 -2276 (|#1| |#1| "rest")) (-15 -3168 (|#1| |#1|)) (-15 -2276 (|#2| |#1| "first")) (-15 -2683 (|#1| |#2| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -3083 (|#2| |#1| |#2|)) (-15 -4077 (|#2| |#1| "value" |#2|)) (-15 -3697 (|#1| |#1| (-635 |#1|))) (-15 -2201 ((-112) |#1| |#1|)) (-15 -1609 ((-112) |#1|)) (-15 -2276 (|#2| |#1| "value")) (-15 -2426 (|#2| |#1|)) (-15 -3355 ((-112) |#1|)) (-15 -1352 ((-635 |#1|) |#1|)) (-15 -1384 ((-635 |#1|) |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1596 ((-762) |#1|)) (-15 -3651 ((-112) |#1| (-762))) (-15 -4007 ((-112) |#1| (-762))) (-15 -3212 ((-112) |#1| (-762))))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-2426 ((|#1| $) 48)) (-1611 ((|#1| $) 65)) (-2427 (($ $) 67)) (-1482 (($ $ (-558)) 52 (|has| $ (-6 -4384)))) (-3651 (((-112) $ (-762)) 8)) (-3083 ((|#1| $ |#1|) 39 (|has| $ (-6 -4384)))) (-1649 (($ $ $) 56 (|has| $ (-6 -4384)))) (-2851 ((|#1| $ |#1|) 54 (|has| $ (-6 -4384)))) (-2444 ((|#1| $ |#1|) 58 (|has| $ (-6 -4384)))) (-4077 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4384))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4384))) (($ $ "rest" $) 55 (|has| $ (-6 -4384))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4384)))) (-3697 (($ $ (-635 $)) 41 (|has| $ (-6 -4384)))) (-1601 ((|#1| $) 66)) (-3457 (($) 7 T CONST)) (-3168 (($ $) 73) (($ $ (-762)) 71)) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-1352 (((-635 $) $) 50)) (-2201 (((-112) $ $) 42 (|has| |#1| (-1087)))) (-4007 (((-112) $ (-762)) 9)) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35)) (-3212 (((-112) $ (-762)) 10)) (-3783 (((-635 |#1|) $) 45)) (-3355 (((-112) $) 49)) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1514 ((|#1| $) 70) (($ $ (-762)) 68)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 76) (($ $ (-762)) 74)) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1904 (((-558) $ $) 44)) (-1609 (((-112) $) 46)) (-3070 (($ $) 62)) (-4132 (($ $) 59 (|has| $ (-6 -4384)))) (-2398 (((-762) $) 63)) (-4009 (($ $) 64)) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-4098 (($ $) 13)) (-1651 (($ $ $) 61 (|has| $ (-6 -4384))) (($ $ |#1|) 60 (|has| $ (-6 -4384)))) (-2683 (($ $ $) 78) (($ |#1| $) 77)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-1384 (((-635 $) $) 51)) (-4171 (((-112) $ $) 43 (|has| |#1| (-1087)))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1234 |#1|) (-139) (-1200)) (T -1234))
-((-2683 (*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2683 (*1 *1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-3168 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1514 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-2427 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-4009 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))) (-3070 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1651 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1651 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-4132 (*1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-2444 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-4077 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1649 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-4077 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4384)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))) (-2851 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-4077 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4384)) (-4 *1 (-1234 *3)) (-4 *3 (-1200)))))
-(-13 (-1000 |t#1|) (-10 -8 (-15 -2683 ($ $ $)) (-15 -2683 ($ |t#1| $)) (-15 -3156 (|t#1| $)) (-15 -2276 (|t#1| $ "first")) (-15 -3156 ($ $ (-762))) (-15 -3168 ($ $)) (-15 -2276 ($ $ "rest")) (-15 -3168 ($ $ (-762))) (-15 -1514 (|t#1| $)) (-15 -2276 (|t#1| $ "last")) (-15 -1514 ($ $ (-762))) (-15 -2427 ($ $)) (-15 -1601 (|t#1| $)) (-15 -1611 (|t#1| $)) (-15 -4009 ($ $)) (-15 -2398 ((-762) $)) (-15 -3070 ($ $)) (IF (|has| $ (-6 -4384)) (PROGN (-15 -1651 ($ $ $)) (-15 -1651 ($ $ |t#1|)) (-15 -4132 ($ $)) (-15 -2444 (|t#1| $ |t#1|)) (-15 -4077 (|t#1| $ "first" |t#1|)) (-15 -1649 ($ $ $)) (-15 -4077 ($ $ "rest" $)) (-15 -2851 (|t#1| $ |t#1|)) (-15 -4077 (|t#1| $ "last" |t#1|)) (-15 -1482 ($ $ (-558)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1087)) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-605 (-853)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-1000 |#1|) . T) ((-1087) |has| |#1| (-1087)) ((-1200) . T))
-((-3397 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1235 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| (-1 |#2| |#1|) |#3|))) (-1039) (-1039) (-1237 |#1|) (-1237 |#2|)) (T -1235))
-((-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1237 *6)) (-5 *1 (-1235 *5 *6 *4 *2)) (-4 *4 (-1237 *5)))))
-(-10 -7 (-15 -3397 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3124 (((-112) $) 15)) (-2277 (($ $) 91)) (-2131 (($ $) 67)) (-2254 (($ $) 87)) (-2109 (($ $) 63)) (-2298 (($ $) 95)) (-2158 (($ $) 71)) (-4342 (($ $) 61)) (-3944 (($ $) 59)) (-2312 (($ $) 97)) (-2170 (($ $) 73)) (-2289 (($ $) 93)) (-2146 (($ $) 69)) (-2265 (($ $) 89)) (-2120 (($ $) 65)) (-3940 (((-853) $) 47) (($ (-558)) NIL) (($ (-406 (-558))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4175 (($ $) 103)) (-2209 (($ $) 79)) (-2325 (($ $) 99)) (-2184 (($ $) 75)) (-4197 (($ $) 107)) (-2233 (($ $) 83)) (-2038 (($ $) 109)) (-2244 (($ $) 85)) (-4185 (($ $) 105)) (-2221 (($ $) 81)) (-4164 (($ $) 101)) (-2195 (($ $) 77)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-558))) 57)))
-(((-1236 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2131 (|#1| |#1|)) (-15 -2109 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2221 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4342 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -3124 ((-112) |#1|)) (-15 -3940 ((-853) |#1|))) (-1237 |#2|) (-1039)) (T -1236))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-406 (-558)))) (-15 -2131 (|#1| |#1|)) (-15 -2109 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2221 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2277 (|#1| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4342 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-406 (-558)))) (-15 -3940 (|#1| (-558))) (-15 ** (|#1| |#1| (-762))) (-15 ** (|#1| |#1| (-911))) (-15 -3124 ((-112) |#1|)) (-15 -3940 ((-853) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-4078 (((-635 (-1069)) $) 77)) (-2317 (((-1163) $) 106)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 54 (|has| |#1| (-550)))) (-3244 (($ $) 55 (|has| |#1| (-550)))) (-4326 (((-112) $) 57 (|has| |#1| (-550)))) (-4057 (($ $ (-762)) 101) (($ $ (-762) (-762)) 100)) (-3414 (((-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|))) $) 108)) (-2277 (($ $) 138 (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) 121 (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) 19)) (-3948 (($ $) 120 (|has| |#1| (-38 (-406 (-558)))))) (-2254 (($ $) 137 (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) 122 (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|)))) 158) (($ (-1143 |#1|)) 156)) (-2298 (($ $) 136 (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) 123 (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) 17 T CONST)) (-3905 (($ $) 63)) (-3248 (((-3 $ "failed") $) 33)) (-3148 (($ $) 155)) (-2584 (((-942 |#1|) $ (-762)) 153) (((-942 |#1|) $ (-762) (-762)) 152)) (-3459 (((-112) $) 76)) (-3348 (($) 148 (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-762) $) 103) (((-762) $ (-762)) 102)) (-3999 (((-112) $) 31)) (-2136 (($ $ (-558)) 119 (|has| |#1| (-38 (-406 (-558)))))) (-4184 (($ $ (-911)) 104)) (-1448 (($ (-1 |#1| (-558)) $) 154)) (-3594 (((-112) $) 65)) (-4056 (($ |#1| (-762)) 64) (($ $ (-1069) (-762)) 79) (($ $ (-635 (-1069)) (-635 (-762))) 78)) (-3397 (($ (-1 |#1| |#1|) $) 66)) (-4342 (($ $) 145 (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) 68)) (-3881 ((|#1| $) 69)) (-2510 (((-1145) $) 9)) (-1337 (($ $) 150 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 149 (-3994 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-949)) (|has| |#1| (-1185)) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-38 (-406 (-558)))))))) (-1688 (((-1107) $) 10)) (-2319 (($ $ (-762)) 98)) (-2861 (((-3 $ "failed") $ $) 53 (|has| |#1| (-550)))) (-3944 (($ $) 146 (|has| |#1| (-38 (-406 (-558)))))) (-1369 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-762)))))) (-2276 ((|#1| $ (-762)) 107) (($ $ $) 84 (|has| (-762) (-1099)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) 92 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163) (-762)) 91 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-635 (-1163))) 90 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163)) 89 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-762)) 87 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-4263 (((-762) $) 67)) (-2312 (($ $) 135 (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) 124 (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) 134 (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) 125 (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) 133 (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) 126 (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 75)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ (-406 (-558))) 60 (|has| |#1| (-38 (-406 (-558))))) (($ $) 52 (|has| |#1| (-550))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3712 (((-1143 |#1|) $) 157)) (-3143 ((|#1| $ (-762)) 62)) (-1487 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2417 (((-762)) 28)) (-2814 ((|#1| $) 105)) (-4175 (($ $) 144 (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) 132 (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) 56 (|has| |#1| (-550)))) (-2325 (($ $) 143 (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) 131 (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) 142 (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) 130 (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-762)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-762)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) 141 (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) 129 (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) 140 (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) 128 (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) 139 (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) 127 (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) 96 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163) (-762)) 95 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-635 (-1163))) 94 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-1163)) 93 (-12 (|has| |#1| (-890 (-1163))) (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (($ $ (-762)) 88 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 118 (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-558)) $) 59 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) 58 (|has| |#1| (-38 (-406 (-558)))))))
-(((-1237 |#1|) (-139) (-1039)) (T -1237))
-((-2095 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-762)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1237 *3)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-5 *2 (-1143 *3)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-4 *1 (-1237 *3)))) (-3148 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)))) (-1448 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1237 *3)) (-4 *3 (-1039)))) (-2584 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039)) (-5 *2 (-942 *4)))) (-2584 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039)) (-5 *2 (-942 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))) (-1337 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558)))))) (-1337 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185)) (-4 *3 (-38 (-406 (-558)))))) (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -4078 ((-635 *2) *3))) (|has| *3 (-15 -1337 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558)))))))))
-(-13 (-1224 |t#1| (-762)) (-10 -8 (-15 -2095 ($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |t#1|))))) (-15 -3712 ((-1143 |t#1|) $)) (-15 -2095 ($ (-1143 |t#1|))) (-15 -3148 ($ $)) (-15 -1448 ($ (-1 |t#1| (-558)) $)) (-15 -2584 ((-942 |t#1|) $ (-762))) (-15 -2584 ((-942 |t#1|) $ (-762) (-762))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-558)))) (PROGN (-15 -1337 ($ $)) (IF (|has| |t#1| (-15 -1337 (|t#1| |t#1| (-1163)))) (IF (|has| |t#1| (-15 -4078 ((-635 (-1163)) |t#1|))) (-15 -1337 ($ $ (-1163))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1185)) (IF (|has| |t#1| (-949)) (IF (|has| |t#1| (-29 (-558))) (-15 -1337 ($ $ (-1163))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-992)) (-6 (-1185))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-762)) . T) ((-25) . T) ((-38 #1=(-406 (-558))) |has| |#1| (-38 (-406 (-558)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-550)) ((-35) |has| |#1| (-38 (-406 (-558)))) ((-95) |has| |#1| (-38 (-406 (-558)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-608 #1#) |has| |#1| (-38 (-406 (-558)))) ((-608 (-558)) . T) ((-608 |#1|) |has| |#1| (-171)) ((-608 $) |has| |#1| (-550)) ((-605 (-853)) . T) ((-171) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-762) |#1|))) ((-283) |has| |#1| (-38 (-406 (-558)))) ((-285 $ $) |has| (-762) (-1099)) ((-289) |has| |#1| (-550)) ((-491) |has| |#1| (-38 (-406 (-558)))) ((-550) |has| |#1| (-550)) ((-638 #1#) |has| |#1| (-38 (-406 (-558)))) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #1#) |has| |#1| (-38 (-406 (-558)))) ((-708 |#1|) |has| |#1| (-171)) ((-708 $) |has| |#1| (-550)) ((-717) . T) ((-890 (-1163)) -12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163)))) ((-963 |#1| #0# (-1069)) . T) ((-992) |has| |#1| (-38 (-406 (-558)))) ((-1045 #1#) |has| |#1| (-38 (-406 (-558)))) ((-1045 |#1|) . T) ((-1045 $) -3994 (|has| |#1| (-550)) (|has| |#1| (-171))) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1185) |has| |#1| (-38 (-406 (-558)))) ((-1188) |has| |#1| (-38 (-406 (-558)))) ((-1224 |#1| #0#) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-4078 (((-635 (-1069)) $) NIL)) (-2317 (((-1163) $) 86)) (-4189 (((-1219 |#2| |#1|) $ (-762)) 73)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-3244 (($ $) NIL (|has| |#1| (-550)))) (-4326 (((-112) $) 136 (|has| |#1| (-550)))) (-4057 (($ $ (-762)) 121) (($ $ (-762) (-762)) 123)) (-3414 (((-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|))) $) 42)) (-2277 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2131 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1868 (((-3 $ "failed") $ $) NIL)) (-3948 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2254 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2095 (($ (-1143 (-2 (|:| |k| (-762)) (|:| |c| |#1|)))) 53) (($ (-1143 |#1|)) NIL)) (-2298 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3457 (($) NIL T CONST)) (-3308 (($ $) 127)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3148 (($ $) 134)) (-2584 (((-942 |#1|) $ (-762)) 63) (((-942 |#1|) $ (-762) (-762)) 65)) (-3459 (((-112) $) NIL)) (-3348 (($) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2532 (((-762) $) NIL) (((-762) $ (-762)) NIL)) (-3999 (((-112) $) NIL)) (-2100 (($ $) 111)) (-2136 (($ $ (-558)) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2212 (($ (-558) (-558) $) 129)) (-4184 (($ $ (-911)) 133)) (-1448 (($ (-1 |#1| (-558)) $) 105)) (-3594 (((-112) $) NIL)) (-4056 (($ |#1| (-762)) 15) (($ $ (-1069) (-762)) NIL) (($ $ (-635 (-1069)) (-635 (-762))) NIL)) (-3397 (($ (-1 |#1| |#1|) $) 93)) (-4342 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-3867 (($ $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-3113 (($ $) 109)) (-1479 (($ $) 107)) (-1404 (($ (-558) (-558) $) 131)) (-1337 (($ $) 144 (|has| |#1| (-38 (-406 (-558))))) (($ $ (-1163)) 150 (-3994 (-12 (|has| |#1| (-15 -1337 (|#1| |#1| (-1163)))) (|has| |#1| (-15 -4078 ((-635 (-1163)) |#1|))) (|has| |#1| (-38 (-406 (-558))))) (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-38 (-406 (-558)))) (|has| |#1| (-949)) (|has| |#1| (-1185))))) (($ $ (-1242 |#2|)) 145 (|has| |#1| (-38 (-406 (-558)))))) (-1688 (((-1107) $) NIL)) (-4148 (($ $ (-558) (-558)) 115)) (-2319 (($ $ (-762)) 117)) (-2861 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3944 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2344 (($ $) 113)) (-1369 (((-1143 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-762)))))) (-2276 ((|#1| $ (-762)) 90) (($ $ $) 125 (|has| (-762) (-1099)))) (-3780 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) 102 (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $ (-1242 |#2|)) 98)) (-4263 (((-762) $) NIL)) (-2312 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2289 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2146 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2265 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1559 (($ $) 119)) (-3940 (((-853) $) NIL) (($ (-558)) 24) (($ (-406 (-558))) 142 (|has| |#1| (-38 (-406 (-558))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1219 |#2| |#1|)) 79) (($ (-1242 |#2|)) 20)) (-3712 (((-1143 |#1|) $) NIL)) (-3143 ((|#1| $ (-762)) 89)) (-1487 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2417 (((-762)) NIL)) (-2814 ((|#1| $) 87)) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2209 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2671 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2325 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4197 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2233 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-1422 ((|#1| $ (-762)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-762)))) (|has| |#1| (-15 -3940 (|#1| (-1163))))))) (-2038 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2244 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4185 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2221 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-4164 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-406 (-558)))))) (-2207 (($) 17 T CONST)) (-2220 (($) 13 T CONST)) (-3042 (($ $ (-635 (-1163)) (-635 (-762))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163) (-762)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-635 (-1163))) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-1163)) NIL (-12 (|has| |#1| (-15 * (|#1| (-762) |#1|))) (|has| |#1| (-890 (-1163))))) (($ $ (-762)) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-762) |#1|))))) (-1708 (((-112) $ $) NIL)) (-1805 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) 101)) (-1785 (($ $ $) 18)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-558)) $) NIL (|has| |#1| (-38 (-406 (-558))))) (($ $ (-406 (-558))) NIL (|has| |#1| (-38 (-406 (-558)))))))
-(((-1238 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-10 -8 (-15 -3940 ($ (-1219 |#2| |#1|))) (-15 -4189 ((-1219 |#2| |#1|) $ (-762))) (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (-15 -1479 ($ $)) (-15 -3113 ($ $)) (-15 -2100 ($ $)) (-15 -2344 ($ $)) (-15 -4148 ($ $ (-558) (-558))) (-15 -3308 ($ $)) (-15 -2212 ($ (-558) (-558) $)) (-15 -1404 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|))) (-1039) (-1163) |#1|) (T -1238))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-1238 *3 *4 *5)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1238 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-1479 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-3113 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2344 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-4148 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3))) (-3308 (*1 *1 *1) (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163)) (-14 *4 *2))) (-2212 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3))) (-1404 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163)) (-14 *5 *3))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(-13 (-1237 |#1|) (-10 -8 (-15 -3940 ($ (-1219 |#2| |#1|))) (-15 -4189 ((-1219 |#2| |#1|) $ (-762))) (-15 -3940 ($ (-1242 |#2|))) (-15 -3780 ($ $ (-1242 |#2|))) (-15 -1479 ($ $)) (-15 -3113 ($ $)) (-15 -2100 ($ $)) (-15 -2344 ($ $)) (-15 -4148 ($ $ (-558) (-558))) (-15 -3308 ($ $)) (-15 -2212 ($ (-558) (-558) $)) (-15 -1404 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-406 (-558)))) (-15 -1337 ($ $ (-1242 |#2|))) |%noBranch|)))
-((-2160 (((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|))) 24)) (-3046 (((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2509 (((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|)) 13)) (-4289 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4344 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3301 ((|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|)) 54)) (-2173 (((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))) 61)) (-3610 ((|#2| |#2| |#2|) 43)))
-(((-1239 |#1| |#2|) (-10 -7 (-15 -2509 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -3046 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2160 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -3610 (|#2| |#2| |#2|)) (-15 -4344 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4289 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3301 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -2173 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))))) (-38 (-406 (-558))) (-1237 |#1|)) (T -1239))
-((-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6)))) (-4 *5 (-38 (-406 (-558)))) (-4 *6 (-1237 *5)) (-5 *2 (-635 *6)) (-5 *1 (-1239 *5 *6)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5)) (-4 *5 (-38 (-406 (-558)))) (-4 *2 (-1237 *5)) (-5 *1 (-1239 *5 *2)))) (-4289 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2)) (-4 *4 (-38 (-406 (-558)))))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2)) (-4 *4 (-38 (-406 (-558)))))) (-3610 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1237 *3)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1237 *4)) (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1239 *4 *5)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1237 *4)) (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1239 *4 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1237 *4)) (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1239 *4 *5)))))
-(-10 -7 (-15 -2509 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -3046 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2160 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -3610 (|#2| |#2| |#2|)) (-15 -4344 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4289 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3301 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -2173 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|))))))
-((-3469 ((|#2| |#4| (-762)) 30)) (-3016 ((|#4| |#2|) 25)) (-1983 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-550)))) (-1370 (((-1 |#4| (-635 |#4|)) |#3|) 46)))
-(((-1240 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3016 (|#4| |#2|)) (-15 -3469 (|#2| |#4| (-762))) (-15 -1370 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-550)) (-15 -1983 (|#4| (-406 |#2|))) |%noBranch|)) (-1039) (-1222 |#1|) (-646 |#2|) (-1237 |#1|)) (T -1240))
-((-1983 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-550)) (-4 *4 (-1039)) (-4 *2 (-1237 *4)) (-5 *1 (-1240 *4 *5 *6 *2)) (-4 *6 (-646 *5)))) (-1370 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-1222 *4)) (-5 *2 (-1 *6 (-635 *6))) (-5 *1 (-1240 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-1237 *4)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-1240 *5 *2 *6 *3)) (-4 *6 (-646 *2)) (-4 *3 (-1237 *5)))) (-3016 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-1222 *4)) (-4 *2 (-1237 *4)) (-5 *1 (-1240 *4 *3 *5 *2)) (-4 *5 (-646 *3)))))
-(-10 -7 (-15 -3016 (|#4| |#2|)) (-15 -3469 (|#2| |#4| (-762))) (-15 -1370 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-550)) (-15 -1983 (|#4| (-406 |#2|))) |%noBranch|))
-NIL
-(((-1241) (-139)) (T -1241))
-NIL
-(-13 (-10 -7 (-6 -1380)))
-((-3929 (((-112) $ $) NIL)) (-2317 (((-1163)) 12)) (-2510 (((-1145) $) 17)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 11) (((-1163) $) 8)) (-1708 (((-112) $ $) 14)))
-(((-1242 |#1|) (-13 (-1087) (-605 (-1163)) (-10 -8 (-15 -3940 ((-1163) $)) (-15 -2317 ((-1163))))) (-1163)) (T -1242))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2))) (-2317 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2))))
-(-13 (-1087) (-605 (-1163)) (-10 -8 (-15 -3940 ((-1163) $)) (-15 -2317 ((-1163)))))
-((-4237 (($ (-762)) 18)) (-3335 (((-679 |#2|) $ $) 40)) (-3408 ((|#2| $) 48)) (-2958 ((|#2| $) 47)) (-2823 ((|#2| $ $) 35)) (-3116 (($ $ $) 44)) (-1796 (($ $) 22) (($ $ $) 28)) (-1785 (($ $ $) 15)) (* (($ (-558) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1243 |#1| |#2|) (-10 -8 (-15 -3408 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -3116 (|#1| |#1| |#1|)) (-15 -3335 ((-679 |#2|) |#1| |#1|)) (-15 -2823 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -4237 (|#1| (-762))) (-15 -1785 (|#1| |#1| |#1|))) (-1244 |#2|) (-1200)) (T -1243))
-NIL
-(-10 -8 (-15 -3408 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -3116 (|#1| |#1| |#1|)) (-15 -3335 ((-679 |#2|) |#1| |#1|)) (-15 -2823 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1796 (|#1| |#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -4237 (|#1| (-762))) (-15 -1785 (|#1| |#1| |#1|)))
-((-3929 (((-112) $ $) 19 (|has| |#1| (-1087)))) (-4237 (($ (-762)) 112 (|has| |#1| (-23)))) (-3552 (((-1251) $ (-558) (-558)) 40 (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4384))) (($ $) 88 (-12 (|has| |#1| (-841)) (|has| $ (-6 -4384))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) 8)) (-4077 ((|#1| $ (-558) |#1|) 52 (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) 58 (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4383)))) (-3457 (($) 7 T CONST)) (-2240 (($ $) 90 (|has| $ (-6 -4384)))) (-1911 (($ $) 100)) (-3188 (($ $) 78 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-1488 (($ |#1| $) 77 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) 53 (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) 51)) (-4145 (((-558) (-1 (-112) |#1|) $) 97) (((-558) |#1| $) 96 (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) 95 (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) 30 (|has| $ (-6 -4383)))) (-3335 (((-679 |#1|) $ $) 105 (|has| |#1| (-1039)))) (-1395 (($ (-762) |#1|) 69)) (-4007 (((-112) $ (-762)) 9)) (-2192 (((-558) $) 43 (|has| (-558) (-841)))) (-2142 (($ $ $) 87 (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-3186 (((-558) $) 44 (|has| (-558) (-841)))) (-2281 (($ $ $) 86 (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3408 ((|#1| $) 102 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-3212 (((-112) $ (-762)) 10)) (-2958 ((|#1| $) 103 (-12 (|has| |#1| (-1039)) (|has| |#1| (-992))))) (-2510 (((-1145) $) 22 (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) 60) (($ $ $ (-558)) 59)) (-3051 (((-635 (-558)) $) 46)) (-2740 (((-112) (-558) $) 47)) (-1688 (((-1107) $) 21 (|has| |#1| (-1087)))) (-3156 ((|#1| $) 42 (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2830 (($ $ |#1|) 41 (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) 14)) (-2149 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) 48)) (-3711 (((-112) $) 11)) (-2876 (($) 12)) (-2276 ((|#1| $ (-558) |#1|) 50) ((|#1| $ (-558)) 49) (($ $ (-1213 (-558))) 63)) (-2823 ((|#1| $ $) 106 (|has| |#1| (-1039)))) (-3976 (($ $ (-558)) 62) (($ $ (-1213 (-558))) 61)) (-3116 (($ $ $) 104 (|has| |#1| (-1039)))) (-1698 (((-762) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4383))) (((-762) |#1| $) 28 (-12 (|has| |#1| (-1087)) (|has| $ (-6 -4383))))) (-2834 (($ $ $ (-558)) 91 (|has| $ (-6 -4384)))) (-4098 (($ $) 13)) (-3441 (((-534) $) 79 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 70)) (-2683 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-3940 (((-853) $) 18 (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) 84 (|has| |#1| (-841)))) (-1737 (((-112) $ $) 83 (|has| |#1| (-841)))) (-1708 (((-112) $ $) 20 (|has| |#1| (-1087)))) (-1749 (((-112) $ $) 85 (|has| |#1| (-841)))) (-1728 (((-112) $ $) 82 (|has| |#1| (-841)))) (-1796 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1785 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-558) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-717))) (($ $ |#1|) 107 (|has| |#1| (-717)))) (-1596 (((-762) $) 6 (|has| $ (-6 -4383)))))
-(((-1244 |#1|) (-139) (-1200)) (T -1244))
-((-1785 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-25)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1244 *3)) (-4 *3 (-23)) (-4 *3 (-1200)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21)))) (-1796 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717)))) (-2823 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))) (-3335 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-1039)) (-5 *2 (-679 *3)))) (-3116 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992)) (-4 *2 (-1039)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992)) (-4 *2 (-1039)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1785 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4237 ($ (-762))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1796 ($ $)) (-15 -1796 ($ $ $)) (-15 * ($ (-558) $))) |%noBranch|) (IF (|has| |t#1| (-717)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-15 -2823 (|t#1| $ $)) (-15 -3335 ((-679 |t#1|) $ $)) (-15 -3116 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-992)) (IF (|has| |t#1| (-1039)) (PROGN (-15 -2958 (|t#1| $)) (-15 -3408 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-605 (-853)) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841)) (|has| |#1| (-605 (-853)))) ((-150 |#1|) . T) ((-606 (-534)) |has| |#1| (-606 (-534))) ((-285 #0=(-558) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-596 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))) ((-641 |#1|) . T) ((-19 |#1|) . T) ((-841) |has| |#1| (-841)) ((-1087) -3994 (|has| |#1| (-1087)) (|has| |#1| (-841))) ((-1200) . T))
-((-3484 (((-1246 |#2|) (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|) 13)) (-3866 ((|#2| (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|) 15)) (-3397 (((-3 (-1246 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1246 |#1|)) 28) (((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|)) 18)))
-(((-1245 |#1| |#2|) (-10 -7 (-15 -3484 ((-1246 |#2|) (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3397 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (-15 -3397 ((-3 (-1246 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1246 |#1|)))) (-1200) (-1200)) (T -1245))
-((-3397 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6)))) (-3866 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1246 *5)) (-4 *5 (-1200)) (-4 *2 (-1200)) (-5 *1 (-1245 *5 *2)))) (-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1246 *6)) (-4 *6 (-1200)) (-4 *5 (-1200)) (-5 *2 (-1246 *5)) (-5 *1 (-1245 *6 *5)))))
-(-10 -7 (-15 -3484 ((-1246 |#2|) (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3866 (|#2| (-1 |#2| |#1| |#2|) (-1246 |#1|) |#2|)) (-15 -3397 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (-15 -3397 ((-3 (-1246 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1246 |#1|))))
-((-3929 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-4237 (($ (-762)) NIL (|has| |#1| (-23)))) (-3768 (($ (-635 |#1|)) 9)) (-3552 (((-1251) $ (-558) (-558)) NIL (|has| $ (-6 -4384)))) (-2878 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-841)))) (-3041 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4384))) (($ $) NIL (-12 (|has| $ (-6 -4384)) (|has| |#1| (-841))))) (-3648 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-841)))) (-3651 (((-112) $ (-762)) NIL)) (-4077 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384))) ((|#1| $ (-1213 (-558)) |#1|) NIL (|has| $ (-6 -4384)))) (-2072 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3457 (($) NIL T CONST)) (-2240 (($ $) NIL (|has| $ (-6 -4384)))) (-1911 (($ $) NIL)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-1488 (($ |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-3866 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4383))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4383)))) (-3683 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4384)))) (-3620 ((|#1| $ (-558)) NIL)) (-4145 (((-558) (-1 (-112) |#1|) $) NIL) (((-558) |#1| $) NIL (|has| |#1| (-1087))) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1087)))) (-2917 (((-635 |#1|) $) 15 (|has| $ (-6 -4383)))) (-3335 (((-679 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-1395 (($ (-762) |#1|) NIL)) (-4007 (((-112) $ (-762)) NIL)) (-2192 (((-558) $) NIL (|has| (-558) (-841)))) (-2142 (($ $ $) NIL (|has| |#1| (-841)))) (-3391 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-841)))) (-3486 (((-635 |#1|) $) NIL (|has| $ (-6 -4383)))) (-3764 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-3186 (((-558) $) NIL (|has| (-558) (-841)))) (-2281 (($ $ $) NIL (|has| |#1| (-841)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3408 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-3212 (((-112) $ (-762)) NIL)) (-2958 ((|#1| $) NIL (-12 (|has| |#1| (-992)) (|has| |#1| (-1039))))) (-2510 (((-1145) $) NIL (|has| |#1| (-1087)))) (-1363 (($ |#1| $ (-558)) NIL) (($ $ $ (-558)) NIL)) (-3051 (((-635 (-558)) $) NIL)) (-2740 (((-112) (-558) $) NIL)) (-1688 (((-1107) $) NIL (|has| |#1| (-1087)))) (-3156 ((|#1| $) NIL (|has| (-558) (-841)))) (-2820 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2830 (($ $ |#1|) NIL (|has| $ (-6 -4384)))) (-3314 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1087))))) (-3382 (((-112) $ $) NIL)) (-2149 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-4318 (((-635 |#1|) $) NIL)) (-3711 (((-112) $) NIL)) (-2876 (($) NIL)) (-2276 ((|#1| $ (-558) |#1|) NIL) ((|#1| $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-2823 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-3976 (($ $ (-558)) NIL) (($ $ (-1213 (-558))) NIL)) (-3116 (($ $ $) NIL (|has| |#1| (-1039)))) (-1698 (((-762) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383))) (((-762) |#1| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#1| (-1087))))) (-2834 (($ $ $ (-558)) NIL (|has| $ (-6 -4384)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) 19 (|has| |#1| (-606 (-534))))) (-3952 (($ (-635 |#1|)) 8)) (-2683 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-3940 (((-853) $) NIL (|has| |#1| (-605 (-853))))) (-2831 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4383)))) (-1757 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1737 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-1087)))) (-1749 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-841)))) (-1796 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1785 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-558) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-717))) (($ $ |#1|) NIL (|has| |#1| (-717)))) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1246 |#1|) (-13 (-1244 |#1|) (-10 -8 (-15 -3768 ($ (-635 |#1|))))) (-1200)) (T -1246))
-((-3768 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1246 *3)))))
-(-13 (-1244 |#1|) (-10 -8 (-15 -3768 ($ (-635 |#1|)))))
-((-3929 (((-112) $ $) NIL)) (-3153 (((-1145) $ (-1145)) 92) (((-1145) $ (-1145) (-1145)) 90) (((-1145) $ (-1145) (-635 (-1145))) 89)) (-3525 (($) 59)) (-4092 (((-1251) $ (-466) (-911)) 45)) (-3344 (((-1251) $ (-911) (-1145)) 75) (((-1251) $ (-911) (-864)) 76)) (-4360 (((-1251) $ (-911) (-378) (-378)) 48)) (-3473 (((-1251) $ (-1145)) 71)) (-1697 (((-1251) $ (-911) (-1145)) 80)) (-2780 (((-1251) $ (-911) (-378) (-378)) 49)) (-3598 (((-1251) $ (-911) (-911)) 46)) (-3133 (((-1251) $) 72)) (-1331 (((-1251) $ (-911) (-1145)) 79)) (-1371 (((-1251) $ (-466) (-911)) 31)) (-1358 (((-1251) $ (-911) (-1145)) 78)) (-3479 (((-635 (-262)) $) 23) (($ $ (-635 (-262))) 24)) (-3966 (((-1251) $ (-762) (-762)) 43)) (-3006 (($ $) 60) (($ (-466) (-635 (-262))) 61)) (-2510 (((-1145) $) NIL)) (-2176 (((-558) $) 38)) (-1688 (((-1107) $) NIL)) (-1415 (((-1246 (-3 (-466) "undefined")) $) 37)) (-3714 (((-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-558)) (|:| -2077 (-558)) (|:| |spline| (-558)) (|:| -1431 (-558)) (|:| |axesColor| (-864)) (|:| -3344 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558)))) $) 36)) (-3396 (((-1251) $ (-911) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-864) (-558) (-864) (-558)) 70)) (-2736 (((-635 (-933 (-224))) $) NIL)) (-3791 (((-466) $ (-911)) 33)) (-2242 (((-1251) $ (-762) (-762) (-911) (-911)) 40)) (-4225 (((-1251) $ (-1145)) 81)) (-2077 (((-1251) $ (-911) (-1145)) 77)) (-3940 (((-853) $) 87)) (-1464 (((-1251) $) 82)) (-1431 (((-1251) $ (-911) (-1145)) 73) (((-1251) $ (-911) (-864)) 74)) (-1708 (((-112) $ $) NIL)))
-(((-1247) (-13 (-1087) (-10 -8 (-15 -2736 ((-635 (-933 (-224))) $)) (-15 -3525 ($)) (-15 -3006 ($ $)) (-15 -3479 ((-635 (-262)) $)) (-15 -3479 ($ $ (-635 (-262)))) (-15 -3006 ($ (-466) (-635 (-262)))) (-15 -3396 ((-1251) $ (-911) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-864) (-558) (-864) (-558))) (-15 -3714 ((-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-558)) (|:| -2077 (-558)) (|:| |spline| (-558)) (|:| -1431 (-558)) (|:| |axesColor| (-864)) (|:| -3344 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558)))) $)) (-15 -1415 ((-1246 (-3 (-466) "undefined")) $)) (-15 -3473 ((-1251) $ (-1145))) (-15 -1371 ((-1251) $ (-466) (-911))) (-15 -3791 ((-466) $ (-911))) (-15 -1431 ((-1251) $ (-911) (-1145))) (-15 -1431 ((-1251) $ (-911) (-864))) (-15 -3344 ((-1251) $ (-911) (-1145))) (-15 -3344 ((-1251) $ (-911) (-864))) (-15 -1358 ((-1251) $ (-911) (-1145))) (-15 -1331 ((-1251) $ (-911) (-1145))) (-15 -2077 ((-1251) $ (-911) (-1145))) (-15 -4225 ((-1251) $ (-1145))) (-15 -1464 ((-1251) $)) (-15 -2242 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -2780 ((-1251) $ (-911) (-378) (-378))) (-15 -4360 ((-1251) $ (-911) (-378) (-378))) (-15 -1697 ((-1251) $ (-911) (-1145))) (-15 -3966 ((-1251) $ (-762) (-762))) (-15 -4092 ((-1251) $ (-466) (-911))) (-15 -3598 ((-1251) $ (-911) (-911))) (-15 -3153 ((-1145) $ (-1145))) (-15 -3153 ((-1145) $ (-1145) (-1145))) (-15 -3153 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -3133 ((-1251) $)) (-15 -2176 ((-558) $)) (-15 -3940 ((-853) $))))) (T -1247))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1247)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-635 (-933 (-224)))) (-5 *1 (-1247)))) (-3525 (*1 *1) (-5 *1 (-1247))) (-3006 (*1 *1 *1) (-5 *1 (-1247))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247)))) (-3479 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247)))) (-3006 (*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-635 (-262))) (-5 *1 (-1247)))) (-3396 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-911)) (-5 *4 (-224)) (-5 *5 (-558)) (-5 *6 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-558)) (|:| -2077 (-558)) (|:| |spline| (-558)) (|:| -1431 (-558)) (|:| |axesColor| (-864)) (|:| -3344 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558))))) (-5 *1 (-1247)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-1246 (-3 (-466) "undefined"))) (-5 *1 (-1247)))) (-3473 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1371 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-3791 (*1 *2 *1 *3) (-12 (-5 *3 (-911)) (-5 *2 (-466)) (-5 *1 (-1247)))) (-1431 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1431 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-3344 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-3344 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1358 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1331 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2077 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2242 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2780 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-4360 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-1697 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-3966 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-4092 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-3598 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))) (-3153 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247)))) (-3153 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247)))) (-3153 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1247)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1247)))))
-(-13 (-1087) (-10 -8 (-15 -2736 ((-635 (-933 (-224))) $)) (-15 -3525 ($)) (-15 -3006 ($ $)) (-15 -3479 ((-635 (-262)) $)) (-15 -3479 ($ $ (-635 (-262)))) (-15 -3006 ($ (-466) (-635 (-262)))) (-15 -3396 ((-1251) $ (-911) (-224) (-224) (-224) (-224) (-558) (-558) (-558) (-558) (-864) (-558) (-864) (-558))) (-15 -3714 ((-1246 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-558)) (|:| -2077 (-558)) (|:| |spline| (-558)) (|:| -1431 (-558)) (|:| |axesColor| (-864)) (|:| -3344 (-558)) (|:| |unitsColor| (-864)) (|:| |showing| (-558)))) $)) (-15 -1415 ((-1246 (-3 (-466) "undefined")) $)) (-15 -3473 ((-1251) $ (-1145))) (-15 -1371 ((-1251) $ (-466) (-911))) (-15 -3791 ((-466) $ (-911))) (-15 -1431 ((-1251) $ (-911) (-1145))) (-15 -1431 ((-1251) $ (-911) (-864))) (-15 -3344 ((-1251) $ (-911) (-1145))) (-15 -3344 ((-1251) $ (-911) (-864))) (-15 -1358 ((-1251) $ (-911) (-1145))) (-15 -1331 ((-1251) $ (-911) (-1145))) (-15 -2077 ((-1251) $ (-911) (-1145))) (-15 -4225 ((-1251) $ (-1145))) (-15 -1464 ((-1251) $)) (-15 -2242 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -2780 ((-1251) $ (-911) (-378) (-378))) (-15 -4360 ((-1251) $ (-911) (-378) (-378))) (-15 -1697 ((-1251) $ (-911) (-1145))) (-15 -3966 ((-1251) $ (-762) (-762))) (-15 -4092 ((-1251) $ (-466) (-911))) (-15 -3598 ((-1251) $ (-911) (-911))) (-15 -3153 ((-1145) $ (-1145))) (-15 -3153 ((-1145) $ (-1145) (-1145))) (-15 -3153 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -3133 ((-1251) $)) (-15 -2176 ((-558) $)) (-15 -3940 ((-853) $))))
-((-3929 (((-112) $ $) NIL)) (-3093 (((-1251) $ (-378)) 142) (((-1251) $ (-378) (-378) (-378)) 143)) (-3153 (((-1145) $ (-1145)) 150) (((-1145) $ (-1145) (-1145)) 148) (((-1145) $ (-1145) (-635 (-1145))) 147)) (-4011 (($) 50)) (-2606 (((-1251) $ (-378) (-378) (-378) (-378) (-378)) 118) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 116) (((-1251) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 117) (((-1251) $ (-558) (-558) (-378) (-378) (-378)) 119) (((-1251) $ (-378) (-378)) 120) (((-1251) $ (-378) (-378) (-378)) 127)) (-1640 (((-378)) 99) (((-378) (-378)) 100)) (-2339 (((-378)) 94) (((-378) (-378)) 96)) (-2699 (((-378)) 97) (((-378) (-378)) 98)) (-1552 (((-378)) 103) (((-378) (-378)) 104)) (-4285 (((-378)) 101) (((-378) (-378)) 102)) (-4360 (((-1251) $ (-378) (-378)) 144)) (-3473 (((-1251) $ (-1145)) 128)) (-1538 (((-1120 (-224)) $) 51) (($ $ (-1120 (-224))) 52)) (-3968 (((-1251) $ (-1145)) 156)) (-1736 (((-1251) $ (-1145)) 157)) (-3203 (((-1251) $ (-378) (-378)) 126) (((-1251) $ (-558) (-558)) 141)) (-3598 (((-1251) $ (-911) (-911)) 134)) (-3133 (((-1251) $) 114)) (-1509 (((-1251) $ (-1145)) 155)) (-1875 (((-1251) $ (-1145)) 111)) (-3479 (((-635 (-262)) $) 53) (($ $ (-635 (-262))) 54)) (-3966 (((-1251) $ (-762) (-762)) 133)) (-3050 (((-1251) $ (-762) (-933 (-224))) 162)) (-4186 (($ $) 56) (($ (-1120 (-224)) (-1145)) 57) (($ (-1120 (-224)) (-635 (-262))) 58)) (-3529 (((-1251) $ (-378) (-378) (-378)) 108)) (-2510 (((-1145) $) NIL)) (-2176 (((-558) $) 105)) (-4251 (((-1251) $ (-378)) 145)) (-2981 (((-1251) $ (-378)) 160)) (-1688 (((-1107) $) NIL)) (-2196 (((-1251) $ (-378)) 159)) (-3998 (((-1251) $ (-1145)) 113)) (-2242 (((-1251) $ (-762) (-762) (-911) (-911)) 132)) (-4291 (((-1251) $ (-1145)) 110)) (-4225 (((-1251) $ (-1145)) 112)) (-1567 (((-1251) $ (-156) (-156)) 131)) (-3940 (((-853) $) 139)) (-1464 (((-1251) $) 115)) (-3269 (((-1251) $ (-1145)) 158)) (-1431 (((-1251) $ (-1145)) 109)) (-1708 (((-112) $ $) NIL)))
-(((-1248) (-13 (-1087) (-10 -8 (-15 -2339 ((-378))) (-15 -2339 ((-378) (-378))) (-15 -2699 ((-378))) (-15 -2699 ((-378) (-378))) (-15 -1640 ((-378))) (-15 -1640 ((-378) (-378))) (-15 -4285 ((-378))) (-15 -4285 ((-378) (-378))) (-15 -1552 ((-378))) (-15 -1552 ((-378) (-378))) (-15 -4011 ($)) (-15 -4186 ($ $)) (-15 -4186 ($ (-1120 (-224)) (-1145))) (-15 -4186 ($ (-1120 (-224)) (-635 (-262)))) (-15 -1538 ((-1120 (-224)) $)) (-15 -1538 ($ $ (-1120 (-224)))) (-15 -3050 ((-1251) $ (-762) (-933 (-224)))) (-15 -3479 ((-635 (-262)) $)) (-15 -3479 ($ $ (-635 (-262)))) (-15 -3966 ((-1251) $ (-762) (-762))) (-15 -3598 ((-1251) $ (-911) (-911))) (-15 -3473 ((-1251) $ (-1145))) (-15 -2242 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -2606 ((-1251) $ (-378) (-378) (-378) (-378) (-378))) (-15 -2606 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -2606 ((-1251) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -2606 ((-1251) $ (-558) (-558) (-378) (-378) (-378))) (-15 -2606 ((-1251) $ (-378) (-378))) (-15 -2606 ((-1251) $ (-378) (-378) (-378))) (-15 -4225 ((-1251) $ (-1145))) (-15 -1431 ((-1251) $ (-1145))) (-15 -4291 ((-1251) $ (-1145))) (-15 -1875 ((-1251) $ (-1145))) (-15 -3998 ((-1251) $ (-1145))) (-15 -3203 ((-1251) $ (-378) (-378))) (-15 -3203 ((-1251) $ (-558) (-558))) (-15 -3093 ((-1251) $ (-378))) (-15 -3093 ((-1251) $ (-378) (-378) (-378))) (-15 -4360 ((-1251) $ (-378) (-378))) (-15 -1509 ((-1251) $ (-1145))) (-15 -2196 ((-1251) $ (-378))) (-15 -2981 ((-1251) $ (-378))) (-15 -3968 ((-1251) $ (-1145))) (-15 -1736 ((-1251) $ (-1145))) (-15 -3269 ((-1251) $ (-1145))) (-15 -3529 ((-1251) $ (-378) (-378) (-378))) (-15 -4251 ((-1251) $ (-378))) (-15 -3133 ((-1251) $)) (-15 -1567 ((-1251) $ (-156) (-156))) (-15 -3153 ((-1145) $ (-1145))) (-15 -3153 ((-1145) $ (-1145) (-1145))) (-15 -3153 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -1464 ((-1251) $)) (-15 -2176 ((-558) $))))) (T -1248))
-((-2339 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-2699 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1640 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-4285 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1552 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))) (-4011 (*1 *1) (-5 *1 (-1248))) (-4186 (*1 *1 *1) (-5 *1 (-1248))) (-4186 (*1 *1 *2 *3) (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1145)) (-5 *1 (-1248)))) (-4186 (*1 *1 *2 *3) (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-635 (-262))) (-5 *1 (-1248)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248)))) (-1538 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248)))) (-3050 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248)))) (-3479 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248)))) (-3966 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3598 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3473 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2242 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2606 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1248)))) (-2606 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2606 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-558)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2606 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2606 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1431 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1875 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3093 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3093 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-4360 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1509 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2981 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3968 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1736 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3269 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3529 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-4251 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))) (-1567 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1251)) (-5 *1 (-1248)))) (-3153 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248)))) (-3153 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248)))) (-3153 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1248)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1248)))))
-(-13 (-1087) (-10 -8 (-15 -2339 ((-378))) (-15 -2339 ((-378) (-378))) (-15 -2699 ((-378))) (-15 -2699 ((-378) (-378))) (-15 -1640 ((-378))) (-15 -1640 ((-378) (-378))) (-15 -4285 ((-378))) (-15 -4285 ((-378) (-378))) (-15 -1552 ((-378))) (-15 -1552 ((-378) (-378))) (-15 -4011 ($)) (-15 -4186 ($ $)) (-15 -4186 ($ (-1120 (-224)) (-1145))) (-15 -4186 ($ (-1120 (-224)) (-635 (-262)))) (-15 -1538 ((-1120 (-224)) $)) (-15 -1538 ($ $ (-1120 (-224)))) (-15 -3050 ((-1251) $ (-762) (-933 (-224)))) (-15 -3479 ((-635 (-262)) $)) (-15 -3479 ($ $ (-635 (-262)))) (-15 -3966 ((-1251) $ (-762) (-762))) (-15 -3598 ((-1251) $ (-911) (-911))) (-15 -3473 ((-1251) $ (-1145))) (-15 -2242 ((-1251) $ (-762) (-762) (-911) (-911))) (-15 -2606 ((-1251) $ (-378) (-378) (-378) (-378) (-378))) (-15 -2606 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -2606 ((-1251) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -2606 ((-1251) $ (-558) (-558) (-378) (-378) (-378))) (-15 -2606 ((-1251) $ (-378) (-378))) (-15 -2606 ((-1251) $ (-378) (-378) (-378))) (-15 -4225 ((-1251) $ (-1145))) (-15 -1431 ((-1251) $ (-1145))) (-15 -4291 ((-1251) $ (-1145))) (-15 -1875 ((-1251) $ (-1145))) (-15 -3998 ((-1251) $ (-1145))) (-15 -3203 ((-1251) $ (-378) (-378))) (-15 -3203 ((-1251) $ (-558) (-558))) (-15 -3093 ((-1251) $ (-378))) (-15 -3093 ((-1251) $ (-378) (-378) (-378))) (-15 -4360 ((-1251) $ (-378) (-378))) (-15 -1509 ((-1251) $ (-1145))) (-15 -2196 ((-1251) $ (-378))) (-15 -2981 ((-1251) $ (-378))) (-15 -3968 ((-1251) $ (-1145))) (-15 -1736 ((-1251) $ (-1145))) (-15 -3269 ((-1251) $ (-1145))) (-15 -3529 ((-1251) $ (-378) (-378) (-378))) (-15 -4251 ((-1251) $ (-378))) (-15 -3133 ((-1251) $)) (-15 -1567 ((-1251) $ (-156) (-156))) (-15 -3153 ((-1145) $ (-1145))) (-15 -3153 ((-1145) $ (-1145) (-1145))) (-15 -3153 ((-1145) $ (-1145) (-635 (-1145)))) (-15 -1464 ((-1251) $)) (-15 -2176 ((-558) $))))
-((-2986 (((-635 (-1145)) (-635 (-1145))) 94) (((-635 (-1145))) 90)) (-3081 (((-635 (-1145))) 88)) (-3402 (((-635 (-911)) (-635 (-911))) 63) (((-635 (-911))) 60)) (-3877 (((-635 (-762)) (-635 (-762))) 57) (((-635 (-762))) 53)) (-1591 (((-1251)) 65)) (-1474 (((-911) (-911)) 81) (((-911)) 80)) (-4358 (((-911) (-911)) 79) (((-911)) 78)) (-3282 (((-864) (-864)) 75) (((-864)) 74)) (-3593 (((-224)) 85) (((-224) (-378)) 87)) (-2181 (((-911)) 82) (((-911) (-911)) 83)) (-3463 (((-911) (-911)) 77) (((-911)) 76)) (-3943 (((-864) (-864)) 69) (((-864)) 67)) (-1754 (((-864) (-864)) 71) (((-864)) 70)) (-3394 (((-864) (-864)) 73) (((-864)) 72)))
-(((-1249) (-10 -7 (-15 -3943 ((-864))) (-15 -3943 ((-864) (-864))) (-15 -1754 ((-864))) (-15 -1754 ((-864) (-864))) (-15 -3394 ((-864))) (-15 -3394 ((-864) (-864))) (-15 -3282 ((-864))) (-15 -3282 ((-864) (-864))) (-15 -3463 ((-911))) (-15 -3463 ((-911) (-911))) (-15 -3877 ((-635 (-762)))) (-15 -3877 ((-635 (-762)) (-635 (-762)))) (-15 -3402 ((-635 (-911)))) (-15 -3402 ((-635 (-911)) (-635 (-911)))) (-15 -1591 ((-1251))) (-15 -2986 ((-635 (-1145)))) (-15 -2986 ((-635 (-1145)) (-635 (-1145)))) (-15 -3081 ((-635 (-1145)))) (-15 -4358 ((-911))) (-15 -1474 ((-911))) (-15 -4358 ((-911) (-911))) (-15 -1474 ((-911) (-911))) (-15 -2181 ((-911) (-911))) (-15 -2181 ((-911))) (-15 -3593 ((-224) (-378))) (-15 -3593 ((-224))))) (T -1249))
-((-3593 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1249)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1249)))) (-2181 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-1474 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-4358 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-1474 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-4358 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-3081 (*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))) (-2986 (*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))) (-2986 (*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))) (-1591 (*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1249)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249)))) (-3402 (*1 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249)))) (-3877 (*1 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-3463 (*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-3282 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-3394 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-1754 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))) (-3943 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
-(-10 -7 (-15 -3943 ((-864))) (-15 -3943 ((-864) (-864))) (-15 -1754 ((-864))) (-15 -1754 ((-864) (-864))) (-15 -3394 ((-864))) (-15 -3394 ((-864) (-864))) (-15 -3282 ((-864))) (-15 -3282 ((-864) (-864))) (-15 -3463 ((-911))) (-15 -3463 ((-911) (-911))) (-15 -3877 ((-635 (-762)))) (-15 -3877 ((-635 (-762)) (-635 (-762)))) (-15 -3402 ((-635 (-911)))) (-15 -3402 ((-635 (-911)) (-635 (-911)))) (-15 -1591 ((-1251))) (-15 -2986 ((-635 (-1145)))) (-15 -2986 ((-635 (-1145)) (-635 (-1145)))) (-15 -3081 ((-635 (-1145)))) (-15 -4358 ((-911))) (-15 -1474 ((-911))) (-15 -4358 ((-911) (-911))) (-15 -1474 ((-911) (-911))) (-15 -2181 ((-911) (-911))) (-15 -2181 ((-911))) (-15 -3593 ((-224) (-378))) (-15 -3593 ((-224))))
-((-2963 (((-466) (-635 (-635 (-933 (-224)))) (-635 (-262))) 21) (((-466) (-635 (-635 (-933 (-224))))) 20) (((-466) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262))) 19)) (-3401 (((-1247) (-635 (-635 (-933 (-224)))) (-635 (-262))) 27) (((-1247) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262))) 26)) (-3940 (((-1247) (-466)) 38)))
-(((-1250) (-10 -7 (-15 -2963 ((-466) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -2963 ((-466) (-635 (-635 (-933 (-224)))))) (-15 -2963 ((-466) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -3401 ((-1247) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -3401 ((-1247) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -3940 ((-1247) (-466))))) (T -1250))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1247)) (-5 *1 (-1250)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-1250)))) (-3401 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-1250)))) (-2963 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262))) (-5 *2 (-466)) (-5 *1 (-1250)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-466)) (-5 *1 (-1250)))) (-2963 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864)) (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-466)) (-5 *1 (-1250)))))
-(-10 -7 (-15 -2963 ((-466) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -2963 ((-466) (-635 (-635 (-933 (-224)))))) (-15 -2963 ((-466) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -3401 ((-1247) (-635 (-635 (-933 (-224)))) (-864) (-864) (-911) (-635 (-262)))) (-15 -3401 ((-1247) (-635 (-635 (-933 (-224)))) (-635 (-262)))) (-15 -3940 ((-1247) (-466))))
-((-1894 (($) 7)) (-3940 (((-853) $) 10)))
-(((-1251) (-13 (-605 (-853)) (-10 -8 (-15 -1894 ($))))) (T -1251))
-((-1894 (*1 *1) (-5 *1 (-1251))))
-(-13 (-605 (-853)) (-10 -8 (-15 -1894 ($))))
-((-1805 (($ $ |#2|) 10)))
-(((-1252 |#1| |#2|) (-10 -8 (-15 -1805 (|#1| |#1| |#2|))) (-1253 |#2|) (-362)) (T -1252))
-NIL
-(-10 -8 (-15 -1805 (|#1| |#1| |#2|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-2887 (((-133)) 28)) (-3940 (((-853) $) 11)) (-2207 (($) 18 T CONST)) (-1708 (((-112) $ $) 6)) (-1805 (($ $ |#1|) 29)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1253 |#1|) (-139) (-362)) (T -1253))
-((-1805 (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-362)))) (-2887 (*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
-(-13 (-708 |t#1|) (-10 -8 (-15 -1805 ($ $ |t#1|)) (-15 -2887 ((-133)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-708 |#1|) . T) ((-1045 |#1|) . T) ((-1087) . T))
-((-2733 (((-635 (-1194 |#1|)) (-1163) (-1194 |#1|)) 74)) (-3619 (((-1143 (-1143 (-942 |#1|))) (-1163) (-1143 (-942 |#1|))) 53)) (-4115 (((-1 (-1143 (-1194 |#1|)) (-1143 (-1194 |#1|))) (-762) (-1194 |#1|) (-1143 (-1194 |#1|))) 64)) (-1645 (((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762)) 55)) (-3420 (((-1 (-1159 (-942 |#1|)) (-942 |#1|)) (-1163)) 29)) (-1427 (((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762)) 54)))
-(((-1254 |#1|) (-10 -7 (-15 -1645 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -1427 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -3619 ((-1143 (-1143 (-942 |#1|))) (-1163) (-1143 (-942 |#1|)))) (-15 -3420 ((-1 (-1159 (-942 |#1|)) (-942 |#1|)) (-1163))) (-15 -2733 ((-635 (-1194 |#1|)) (-1163) (-1194 |#1|))) (-15 -4115 ((-1 (-1143 (-1194 |#1|)) (-1143 (-1194 |#1|))) (-762) (-1194 |#1|) (-1143 (-1194 |#1|))))) (-362)) (T -1254))
-((-4115 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-762)) (-4 *6 (-362)) (-5 *4 (-1194 *6)) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1254 *6)) (-5 *5 (-1143 *4)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-635 (-1194 *5))) (-5 *1 (-1254 *5)) (-5 *4 (-1194 *5)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1 (-1159 (-942 *4)) (-942 *4))) (-5 *1 (-1254 *4)) (-4 *4 (-362)))) (-3619 (*1 *2 *3 *4) (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-942 *5)))) (-5 *1 (-1254 *5)) (-5 *4 (-1143 (-942 *5))))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4)))) (-5 *1 (-1254 *4)) (-4 *4 (-362)))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4)))) (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
-(-10 -7 (-15 -1645 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -1427 ((-1 (-1143 (-942 |#1|)) (-1143 (-942 |#1|))) (-762))) (-15 -3619 ((-1143 (-1143 (-942 |#1|))) (-1163) (-1143 (-942 |#1|)))) (-15 -3420 ((-1 (-1159 (-942 |#1|)) (-942 |#1|)) (-1163))) (-15 -2733 ((-635 (-1194 |#1|)) (-1163) (-1194 |#1|))) (-15 -4115 ((-1 (-1143 (-1194 |#1|)) (-1143 (-1194 |#1|))) (-762) (-1194 |#1|) (-1143 (-1194 |#1|)))))
-((-2767 (((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|) 75)) (-2999 (((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) 74)))
-(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2999 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2767 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|))) (-348) (-1222 |#1|) (-1222 |#2|) (-408 |#2| |#3|)) (T -1255))
-((-2767 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3)) (-5 *2 (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-1255 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))) (-2999 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4)) (-5 *2 (-2 (|:| -2743 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
-(-10 -7 (-15 -2999 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -2767 ((-2 (|:| -2743 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)))
-((-3929 (((-112) $ $) NIL)) (-2036 (((-1122) $) 11)) (-4003 (((-1122) $) 9)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 19) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1256) (-13 (-1070) (-10 -8 (-15 -4003 ((-1122) $)) (-15 -2036 ((-1122) $))))) (T -1256))
-((-4003 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))))
-(-13 (-1070) (-10 -8 (-15 -4003 ((-1122) $)) (-15 -2036 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3814 (((-1122) $) 9)) (-3940 (((-853) $) 17) (($ (-1168)) NIL) (((-1168) $) NIL)) (-1708 (((-112) $ $) NIL)))
-(((-1257) (-13 (-1070) (-10 -8 (-15 -3814 ((-1122) $))))) (T -1257))
-((-3814 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1257)))))
-(-13 (-1070) (-10 -8 (-15 -3814 ((-1122) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 42)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) NIL)) (-3999 (((-112) $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3940 (((-853) $) 63) (($ (-558)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-2417 (((-762)) NIL)) (-3458 (((-1251) (-762)) 16)) (-2207 (($) 27 T CONST)) (-2220 (($) 66 T CONST)) (-1708 (((-112) $ $) 68)) (-1805 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1796 (($ $) 70) (($ $ $) NIL)) (-1785 (($ $ $) 46)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
-(((-1258 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1039) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1805 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3458 ((-1251) (-762))))) (-1039) (-841) (-784) (-939 |#1| |#3| |#2|) (-635 |#2|) (-635 (-762)) (-762)) (T -1258))
-((-1805 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1039)) (-4 *3 (-841)) (-4 *4 (-784)) (-14 *6 (-635 *3)) (-5 *1 (-1258 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-939 *2 *4 *3)) (-14 *7 (-635 (-762))) (-14 *8 (-762)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-4 *5 (-841)) (-4 *6 (-784)) (-14 *8 (-635 *5)) (-5 *2 (-1251)) (-5 *1 (-1258 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-939 *4 *6 *5)) (-14 *9 (-635 *3)) (-14 *10 *3))))
-(-13 (-1039) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1805 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3458 ((-1251) (-762)))))
-((-3929 (((-112) $ $) NIL)) (-2947 (((-635 (-2 (|:| -1464 $) (|:| -3229 (-635 |#4|)))) (-635 |#4|)) NIL)) (-3055 (((-635 $) (-635 |#4|)) 89)) (-4078 (((-635 |#3|) $) NIL)) (-3369 (((-112) $) NIL)) (-1852 (((-112) $) NIL (|has| |#1| (-550)))) (-2690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2299 ((|#4| |#4| $) NIL)) (-3648 (((-2 (|:| |under| $) (|:| -4259 $) (|:| |upper| $)) $ |#3|) NIL)) (-3651 (((-112) $ (-762)) NIL)) (-2072 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3457 (($) NIL T CONST)) (-3614 (((-112) $) NIL (|has| |#1| (-550)))) (-1293 (((-112) $ $) NIL (|has| |#1| (-550)))) (-2211 (((-112) $ $) NIL (|has| |#1| (-550)))) (-3554 (((-112) $) NIL (|has| |#1| (-550)))) (-2282 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-1542 (((-635 |#4|) (-635 |#4|) $) 25 (|has| |#1| (-550)))) (-4256 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-550)))) (-3302 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3226 (($ (-635 |#4|)) NIL)) (-3168 (((-3 $ "failed") $) 71)) (-2687 ((|#4| |#4| $) 76)) (-3188 (($ $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-1488 (($ |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1548 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1798 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2388 ((|#4| |#4| $) NIL)) (-3866 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4383))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4383))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4236 (((-2 (|:| -1464 (-635 |#4|)) (|:| -3229 (-635 |#4|))) $) NIL)) (-2917 (((-635 |#4|) $) NIL (|has| $ (-6 -4383)))) (-4228 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4346 ((|#3| $) 77)) (-4007 (((-112) $ (-762)) NIL)) (-3486 (((-635 |#4|) $) 29 (|has| $ (-6 -4383)))) (-3764 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087))))) (-2652 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-635 |#4|)) 35)) (-3674 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4384)))) (-3397 (($ (-1 |#4| |#4|) $) NIL)) (-2327 (((-635 |#3|) $) NIL)) (-3541 (((-112) |#3| $) NIL)) (-3212 (((-112) $ (-762)) NIL)) (-2510 (((-1145) $) NIL)) (-1514 (((-3 |#4| "failed") $) NIL)) (-2367 (((-635 |#4|) $) 51)) (-2643 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1401 ((|#4| |#4| $) 75)) (-3879 (((-112) $ $) 86)) (-1659 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-2857 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2224 ((|#4| |#4| $) NIL)) (-1688 (((-1107) $) NIL)) (-3156 (((-3 |#4| "failed") $) 70)) (-2820 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2562 (((-3 $ "failed") $ |#4|) NIL)) (-2319 (($ $ |#4|) NIL)) (-3314 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-1369 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087)))) (($ $ (-635 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1087))))) (-3382 (((-112) $ $) NIL)) (-3711 (((-112) $) 68)) (-2876 (($) 43)) (-4263 (((-762) $) NIL)) (-1698 (((-762) |#4| $) NIL (-12 (|has| $ (-6 -4383)) (|has| |#4| (-1087)))) (((-762) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-4098 (($ $) NIL)) (-3441 (((-534) $) NIL (|has| |#4| (-606 (-534))))) (-3952 (($ (-635 |#4|)) NIL)) (-3121 (($ $ |#3|) NIL)) (-2402 (($ $ |#3|) NIL)) (-2004 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-3940 (((-853) $) NIL) (((-635 |#4|) $) 58)) (-1435 (((-762) $) NIL (|has| |#3| (-367)))) (-1377 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-635 |#4|)) 42)) (-1549 (((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-635 $) (-635 |#4|)) 67)) (-3214 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3331 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2831 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4383)))) (-2669 (((-635 |#3|) $) NIL)) (-4062 (((-112) |#3| $) NIL)) (-1708 (((-112) $ $) NIL)) (-1596 (((-762) $) NIL (|has| $ (-6 -4383)))))
-(((-1259 |#1| |#2| |#3| |#4|) (-13 (-1193 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2652 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2652 ((-3 $ "failed") (-635 |#4|))) (-15 -1377 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1377 ((-3 $ "failed") (-635 |#4|))) (-15 -1549 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1549 ((-635 $) (-635 |#4|))))) (-550) (-784) (-841) (-1053 |#1| |#2| |#3|)) (T -1259))
-((-2652 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))) (-2652 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1259 *3 *4 *5 *6)))) (-1377 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))) (-1377 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1259 *3 *4 *5 *6)))) (-1549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-635 (-1259 *6 *7 *8 *9))) (-5 *1 (-1259 *6 *7 *8 *9)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-1259 *4 *5 *6 *7))) (-5 *1 (-1259 *4 *5 *6 *7)))))
-(-13 (-1193 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2652 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2652 ((-3 $ "failed") (-635 |#4|))) (-15 -1377 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1377 ((-3 $ "failed") (-635 |#4|))) (-15 -1549 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1549 ((-635 $) (-635 |#4|)))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-1868 (((-3 $ "failed") $ $) 19)) (-3457 (($) 17 T CONST)) (-3248 (((-3 $ "failed") $) 33)) (-3999 (((-112) $) 31)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#1|) 39)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
-(((-1260 |#1|) (-139) (-1039)) (T -1260))
-NIL
-(-13 (-1039) (-111 |t#1| |t#1|) (-608 |t#1|) (-10 -7 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-605 (-853)) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 |#1|) |has| |#1| (-171)) ((-717) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T))
-((-3929 (((-112) $ $) 59)) (-3124 (((-112) $) NIL)) (-2096 (((-635 |#1|) $) 45)) (-2368 (($ $ (-762)) 39)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1516 (($ $ (-762)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-3457 (($) NIL T CONST)) (-2978 (($ $ $) 62) (($ $ (-810 |#1|)) 48) (($ $ |#1|) 52)) (-3302 (((-3 (-810 |#1|) "failed") $) NIL)) (-3226 (((-810 |#1|) $) NIL)) (-3905 (($ $) 32)) (-3248 (((-3 $ "failed") $) NIL)) (-3979 (((-112) $) NIL)) (-3930 (($ $) NIL)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-2345 (($ (-810 |#1|) |#2|) 31)) (-3883 (($ $) 33)) (-3492 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) 12)) (-2628 (((-810 |#1|) $) NIL)) (-2027 (((-810 |#1|) $) 34)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-3422 (($ $ $) 61) (($ $ (-810 |#1|)) 50) (($ $ |#1|) 54)) (-2286 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3867 (((-810 |#1|) $) 28)) (-3881 ((|#2| $) 30)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-4263 (((-762) $) 36)) (-3000 (((-112) $) 40)) (-2010 ((|#2| $) NIL)) (-3940 (((-853) $) NIL) (($ (-810 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-558)) NIL)) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-810 |#1|)) NIL)) (-3455 ((|#2| $ $) 64) ((|#2| $ (-810 |#1|)) NIL)) (-2417 (((-762)) NIL)) (-2207 (($) 13 T CONST)) (-2220 (($) 15 T CONST)) (-3243 (((-635 (-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1708 (((-112) $ $) 38)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 22)) (** (($ $ (-762)) NIL) (($ $ (-911)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-810 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1261 |#1| |#2|) (-13 (-381 |#2| (-810 |#1|)) (-1267 |#1| |#2|)) (-841) (-1039)) (T -1261))
-NIL
-(-13 (-381 |#2| (-810 |#1|)) (-1267 |#1| |#2|))
-((-4342 ((|#3| |#3| (-762)) 23)) (-3944 ((|#3| |#3| (-762)) 27)) (-2132 ((|#3| |#3| |#3| (-762)) 28)))
-(((-1262 |#1| |#2| |#3|) (-10 -7 (-15 -3944 (|#3| |#3| (-762))) (-15 -4342 (|#3| |#3| (-762))) (-15 -2132 (|#3| |#3| |#3| (-762)))) (-13 (-1039) (-708 (-406 (-558)))) (-841) (-1267 |#2| |#1|)) (T -1262))
-((-2132 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558))))) (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))) (-4342 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558))))) (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558))))) (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))))
-(-10 -7 (-15 -3944 (|#3| |#3| (-762))) (-15 -4342 (|#3| |#3| (-762))) (-15 -2132 (|#3| |#3| |#3| (-762))))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2096 (((-635 |#1|) $) 41)) (-1868 (((-3 $ "failed") $ $) 19)) (-1516 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-762)) 43 (|has| |#2| (-171)))) (-3457 (($) 17 T CONST)) (-2978 (($ $ |#1|) 55) (($ $ (-810 |#1|)) 54) (($ $ $) 53)) (-3302 (((-3 (-810 |#1|) "failed") $) 65)) (-3226 (((-810 |#1|) $) 66)) (-3248 (((-3 $ "failed") $) 33)) (-3979 (((-112) $) 46)) (-3930 (($ $) 45)) (-3999 (((-112) $) 31)) (-3594 (((-112) $) 51)) (-2345 (($ (-810 |#1|) |#2|) 52)) (-3883 (($ $) 50)) (-3492 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) 61)) (-2628 (((-810 |#1|) $) 62)) (-3397 (($ (-1 |#2| |#2|) $) 42)) (-3422 (($ $ |#1|) 58) (($ $ (-810 |#1|)) 57) (($ $ $) 56)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-3000 (((-112) $) 48)) (-2010 ((|#2| $) 47)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#2|) 69) (($ (-810 |#1|)) 64) (($ |#1|) 49)) (-3455 ((|#2| $ (-810 |#1|)) 60) ((|#2| $ $) 59)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1263 |#1| |#2|) (-139) (-841) (-1039)) (T -1263))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-810 *3)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| |k| (-810 *3)) (|:| |c| *4))))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-810 *4)) (-4 *1 (-1263 *4 *2)) (-4 *4 (-841)) (-4 *2 (-1039)))) (-3455 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039)))) (-3422 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-3422 (*1 *1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-3422 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-2978 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-2978 (*1 *1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-2978 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-2345 (*1 *1 *2 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-841)) (-4 *1 (-1263 *4 *3)) (-4 *3 (-1039)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-112)))) (-3883 (*1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-3940 (*1 *1 *2) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-112)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-112)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))) (-1516 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)) (-4 *3 (-171)))) (-1516 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-4 *4 (-171)))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-635 *3)))))
-(-13 (-1039) (-1260 |t#2|) (-1028 (-810 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2628 ((-810 |t#1|) $)) (-15 -3492 ((-2 (|:| |k| (-810 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3455 (|t#2| $ (-810 |t#1|))) (-15 -3455 (|t#2| $ $)) (-15 -3422 ($ $ |t#1|)) (-15 -3422 ($ $ (-810 |t#1|))) (-15 -3422 ($ $ $)) (-15 -2978 ($ $ |t#1|)) (-15 -2978 ($ $ (-810 |t#1|))) (-15 -2978 ($ $ $)) (-15 -2345 ($ (-810 |t#1|) |t#2|)) (-15 -3594 ((-112) $)) (-15 -3883 ($ $)) (-15 -3940 ($ |t#1|)) (-15 -3000 ((-112) $)) (-15 -2010 (|t#2| $)) (-15 -3979 ((-112) $)) (-15 -3930 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -1516 ($ $ $)) (-15 -1516 ($ $ (-762)))) |%noBranch|) (-15 -3397 ($ (-1 |t#2| |t#2|) $)) (-15 -2096 ((-635 |t#1|) $)) (IF (|has| |t#2| (-6 -4376)) (-6 -4376) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 #0=(-810 |#1|)) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-638 |#2|) . T) ((-638 $) . T) ((-708 |#2|) |has| |#2| (-171)) ((-717) . T) ((-1028 #0#) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1260 |#2|) . T))
-((-1606 (((-112) $) 14)) (-4062 (((-112) $) 13)) (-3607 (($ $) 18) (($ $ (-762)) 19)))
-(((-1264 |#1| |#2|) (-10 -8 (-15 -3607 (|#1| |#1| (-762))) (-15 -3607 (|#1| |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -4062 ((-112) |#1|))) (-1265 |#2|) (-362)) (T -1264))
-NIL
-(-10 -8 (-15 -3607 (|#1| |#1| (-762))) (-15 -3607 (|#1| |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -4062 ((-112) |#1|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2008 (((-2 (|:| -3466 $) (|:| -4370 $) (|:| |associate| $)) $) 42)) (-3244 (($ $) 41)) (-4326 (((-112) $) 39)) (-1606 (((-112) $) 95)) (-4091 (((-762)) 91)) (-1868 (((-3 $ "failed") $ $) 19)) (-2018 (($ $) 74)) (-4110 (((-417 $) $) 73)) (-1599 (((-112) $ $) 60)) (-3457 (($) 17 T CONST)) (-3302 (((-3 |#1| "failed") $) 102)) (-3226 ((|#1| $) 103)) (-1709 (($ $ $) 56)) (-3248 (((-3 $ "failed") $) 33)) (-2881 (($ $ $) 57)) (-3238 (((-2 (|:| -3455 (-635 $)) (|:| -2461 $)) (-635 $)) 52)) (-4362 (($ $ (-762)) 88 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2992 (((-112) $) 72)) (-2532 (((-824 (-911)) $) 85 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3999 (((-112) $) 31)) (-2732 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-1500 (($ $ $) 47) (($ (-635 $)) 46)) (-2510 (((-1145) $) 9)) (-3823 (($ $) 71)) (-3743 (((-112) $) 94)) (-1688 (((-1107) $) 10)) (-4021 (((-1159 $) (-1159 $) (-1159 $)) 45)) (-1544 (($ $ $) 49) (($ (-635 $)) 48)) (-3939 (((-417 $) $) 75)) (-3670 (((-824 (-911))) 92)) (-3304 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2461 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2861 (((-3 $ "failed") $ $) 43)) (-3831 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1562 (((-762) $) 59)) (-3902 (((-2 (|:| -2263 $) (|:| -1548 $)) $ $) 58)) (-2551 (((-3 (-762) "failed") $ $) 86 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2887 (((-133)) 100)) (-4263 (((-824 (-911)) $) 93)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ $) 44) (($ (-406 (-558))) 67) (($ |#1|) 101)) (-1487 (((-3 $ "failed") $) 84 (-3994 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2417 (((-762)) 28)) (-2671 (((-112) $ $) 40)) (-4062 (((-112) $) 96)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-3607 (($ $) 90 (|has| |#1| (-367))) (($ $ (-762)) 89 (|has| |#1| (-367)))) (-1708 (((-112) $ $) 6)) (-1805 (($ $ $) 66) (($ $ |#1|) 99)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32) (($ $ (-558)) 70)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ $ (-406 (-558))) 69) (($ (-406 (-558)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
-(((-1265 |#1|) (-139) (-362)) (T -1265))
-((-4062 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911))))) (-3670 (*1 *2) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911))))) (-4091 (*1 *2) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-762)))) (-3607 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-3607 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-4 *3 (-367)))))
-(-13 (-362) (-1028 |t#1|) (-1253 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -4062 ((-112) $)) (-15 -1606 ((-112) $)) (-15 -3743 ((-112) $)) (-15 -4263 ((-824 (-911)) $)) (-15 -3670 ((-824 (-911)))) (-15 -4091 ((-762))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -3607 ($ $)) (-15 -3607 ($ $ (-762)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3994 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-608 #0#) . T) ((-608 (-558)) . T) ((-608 |#1|) . T) ((-608 $) . T) ((-605 (-853)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -3994 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-450) . T) ((-550) . T) ((-638 #0#) . T) ((-638 |#1|) . T) ((-638 $) . T) ((-708 #0#) . T) ((-708 |#1|) . T) ((-708 $) . T) ((-717) . T) ((-910) . T) ((-1028 |#1|) . T) ((-1045 #0#) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1204) . T) ((-1253 |#1|) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2096 (((-635 |#1|) $) 85)) (-2368 (($ $ (-762)) 88)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1516 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-762)) NIL (|has| |#2| (-171)))) (-3457 (($) NIL T CONST)) (-2978 (($ $ |#1|) NIL) (($ $ (-810 |#1|)) NIL) (($ $ $) NIL)) (-3302 (((-3 (-810 |#1|) "failed") $) NIL) (((-3 (-883 |#1|) "failed") $) NIL)) (-3226 (((-810 |#1|) $) NIL) (((-883 |#1|) $) NIL)) (-3905 (($ $) 87)) (-3248 (((-3 $ "failed") $) NIL)) (-3979 (((-112) $) 76)) (-3930 (($ $) 80)) (-1362 (($ $ $ (-762)) 89)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-2345 (($ (-810 |#1|) |#2|) NIL) (($ (-883 |#1|) |#2|) 25)) (-3883 (($ $) 102)) (-3492 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2628 (((-810 |#1|) $) NIL)) (-2027 (((-810 |#1|) $) NIL)) (-3397 (($ (-1 |#2| |#2|) $) NIL)) (-3422 (($ $ |#1|) NIL) (($ $ (-810 |#1|)) NIL) (($ $ $) NIL)) (-4342 (($ $ (-762)) 96 (|has| |#2| (-708 (-406 (-558)))))) (-2286 (((-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3867 (((-883 |#1|) $) 69)) (-3881 ((|#2| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3944 (($ $ (-762)) 93 (|has| |#2| (-708 (-406 (-558)))))) (-4263 (((-762) $) 86)) (-3000 (((-112) $) 70)) (-2010 ((|#2| $) 74)) (-3940 (((-853) $) 56) (($ (-558)) NIL) (($ |#2|) 50) (($ (-810 |#1|)) NIL) (($ |#1|) 58) (($ (-883 |#1|)) NIL) (($ (-654 |#1| |#2|)) 42) (((-1261 |#1| |#2|) $) 63) (((-1270 |#1| |#2|) $) 68)) (-3712 (((-635 |#2|) $) NIL)) (-3143 ((|#2| $ (-883 |#1|)) NIL)) (-3455 ((|#2| $ (-810 |#1|)) NIL) ((|#2| $ $) NIL)) (-2417 (((-762)) NIL)) (-2207 (($) 21 T CONST)) (-2220 (($) 24 T CONST)) (-3243 (((-635 (-2 (|:| |k| (-883 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4323 (((-3 (-654 |#1| |#2|) "failed") $) 101)) (-1708 (((-112) $ $) 64)) (-1796 (($ $) 95) (($ $ $) 94)) (-1785 (($ $ $) 20)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-883 |#1|)) NIL)))
-(((-1266 |#1| |#2|) (-13 (-1267 |#1| |#2|) (-381 |#2| (-883 |#1|)) (-10 -8 (-15 -3940 ($ (-654 |#1| |#2|))) (-15 -3940 ((-1261 |#1| |#2|) $)) (-15 -3940 ((-1270 |#1| |#2|) $)) (-15 -4323 ((-3 (-654 |#1| |#2|) "failed") $)) (-15 -1362 ($ $ $ (-762))) (IF (|has| |#2| (-708 (-406 (-558)))) (PROGN (-15 -3944 ($ $ (-762))) (-15 -4342 ($ $ (-762)))) |%noBranch|))) (-841) (-171)) (T -1266))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)) (-5 *1 (-1266 *3 *4)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1270 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-4323 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-1362 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))) (-4342 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))))
-(-13 (-1267 |#1| |#2|) (-381 |#2| (-883 |#1|)) (-10 -8 (-15 -3940 ($ (-654 |#1| |#2|))) (-15 -3940 ((-1261 |#1| |#2|) $)) (-15 -3940 ((-1270 |#1| |#2|) $)) (-15 -4323 ((-3 (-654 |#1| |#2|) "failed") $)) (-15 -1362 ($ $ $ (-762))) (IF (|has| |#2| (-708 (-406 (-558)))) (PROGN (-15 -3944 ($ $ (-762))) (-15 -4342 ($ $ (-762)))) |%noBranch|)))
-((-3929 (((-112) $ $) 7)) (-3124 (((-112) $) 16)) (-2096 (((-635 |#1|) $) 41)) (-2368 (($ $ (-762)) 74)) (-1868 (((-3 $ "failed") $ $) 19)) (-1516 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-762)) 43 (|has| |#2| (-171)))) (-3457 (($) 17 T CONST)) (-2978 (($ $ |#1|) 55) (($ $ (-810 |#1|)) 54) (($ $ $) 53)) (-3302 (((-3 (-810 |#1|) "failed") $) 65)) (-3226 (((-810 |#1|) $) 66)) (-3248 (((-3 $ "failed") $) 33)) (-3979 (((-112) $) 46)) (-3930 (($ $) 45)) (-3999 (((-112) $) 31)) (-3594 (((-112) $) 51)) (-2345 (($ (-810 |#1|) |#2|) 52)) (-3883 (($ $) 50)) (-3492 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) 61)) (-2628 (((-810 |#1|) $) 62)) (-2027 (((-810 |#1|) $) 76)) (-3397 (($ (-1 |#2| |#2|) $) 42)) (-3422 (($ $ |#1|) 58) (($ $ (-810 |#1|)) 57) (($ $ $) 56)) (-2510 (((-1145) $) 9)) (-1688 (((-1107) $) 10)) (-4263 (((-762) $) 75)) (-3000 (((-112) $) 48)) (-2010 ((|#2| $) 47)) (-3940 (((-853) $) 11) (($ (-558)) 29) (($ |#2|) 69) (($ (-810 |#1|)) 64) (($ |#1|) 49)) (-3455 ((|#2| $ (-810 |#1|)) 60) ((|#2| $ $) 59)) (-2417 (((-762)) 28)) (-2207 (($) 18 T CONST)) (-2220 (($) 30 T CONST)) (-1708 (((-112) $ $) 6)) (-1796 (($ $) 22) (($ $ $) 21)) (-1785 (($ $ $) 14)) (** (($ $ (-911)) 25) (($ $ (-762)) 32)) (* (($ (-911) $) 13) (($ (-762) $) 15) (($ (-558) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
-(((-1267 |#1| |#2|) (-139) (-841) (-1039)) (T -1267))
-((-2027 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-810 *3)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *2 (-762)))) (-2368 (*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))))
-(-13 (-1263 |t#1| |t#2|) (-10 -8 (-15 -2027 ((-810 |t#1|) $)) (-15 -4263 ((-762) $)) (-15 -2368 ($ $ (-762)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-558)) . T) ((-608 #0=(-810 |#1|)) . T) ((-608 |#2|) . T) ((-605 (-853)) . T) ((-638 |#2|) . T) ((-638 $) . T) ((-708 |#2|) |has| |#2| (-171)) ((-717) . T) ((-1028 #0#) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1099) . T) ((-1087) . T) ((-1260 |#2|) . T) ((-1263 |#1| |#2|) . T))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-2096 (((-635 (-1163)) $) NIL)) (-2920 (($ (-1261 (-1163) |#1|)) NIL)) (-2368 (($ $ (-762)) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1516 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-762)) NIL (|has| |#1| (-171)))) (-3457 (($) NIL T CONST)) (-2978 (($ $ (-1163)) NIL) (($ $ (-810 (-1163))) NIL) (($ $ $) NIL)) (-3302 (((-3 (-810 (-1163)) "failed") $) NIL)) (-3226 (((-810 (-1163)) $) NIL)) (-3248 (((-3 $ "failed") $) NIL)) (-3979 (((-112) $) NIL)) (-3930 (($ $) NIL)) (-3999 (((-112) $) NIL)) (-3594 (((-112) $) NIL)) (-2345 (($ (-810 (-1163)) |#1|) NIL)) (-3883 (($ $) NIL)) (-3492 (((-2 (|:| |k| (-810 (-1163))) (|:| |c| |#1|)) $) NIL)) (-2628 (((-810 (-1163)) $) NIL)) (-2027 (((-810 (-1163)) $) NIL)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-3422 (($ $ (-1163)) NIL) (($ $ (-810 (-1163))) NIL) (($ $ $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2040 (((-1261 (-1163) |#1|) $) NIL)) (-4263 (((-762) $) NIL)) (-3000 (((-112) $) NIL)) (-2010 ((|#1| $) NIL)) (-3940 (((-853) $) NIL) (($ (-558)) NIL) (($ |#1|) NIL) (($ (-810 (-1163))) NIL) (($ (-1163)) NIL)) (-3455 ((|#1| $ (-810 (-1163))) NIL) ((|#1| $ $) NIL)) (-2417 (((-762)) NIL)) (-2207 (($) NIL T CONST)) (-1550 (((-635 (-2 (|:| |k| (-1163)) (|:| |c| $))) $) NIL)) (-2220 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) NIL)) (** (($ $ (-911)) NIL) (($ $ (-762)) NIL)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1163) $) NIL)))
-(((-1268 |#1|) (-13 (-1267 (-1163) |#1|) (-10 -8 (-15 -2040 ((-1261 (-1163) |#1|) $)) (-15 -2920 ($ (-1261 (-1163) |#1|))) (-15 -1550 ((-635 (-2 (|:| |k| (-1163)) (|:| |c| $))) $)))) (-1039)) (T -1268))
-((-2040 (*1 *2 *1) (-12 (-5 *2 (-1261 (-1163) *3)) (-5 *1 (-1268 *3)) (-4 *3 (-1039)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-1261 (-1163) *3)) (-4 *3 (-1039)) (-5 *1 (-1268 *3)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-1163)) (|:| |c| (-1268 *3))))) (-5 *1 (-1268 *3)) (-4 *3 (-1039)))))
-(-13 (-1267 (-1163) |#1|) (-10 -8 (-15 -2040 ((-1261 (-1163) |#1|) $)) (-15 -2920 ($ (-1261 (-1163) |#1|))) (-15 -1550 ((-635 (-2 (|:| |k| (-1163)) (|:| |c| $))) $))))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) NIL)) (-1868 (((-3 $ "failed") $ $) NIL)) (-3457 (($) NIL T CONST)) (-3302 (((-3 |#2| "failed") $) NIL)) (-3226 ((|#2| $) NIL)) (-3905 (($ $) NIL)) (-3248 (((-3 $ "failed") $) 35)) (-3979 (((-112) $) 30)) (-3930 (($ $) 31)) (-3999 (((-112) $) NIL)) (-2987 (((-762) $) NIL)) (-4033 (((-635 $) $) NIL)) (-3594 (((-112) $) NIL)) (-2345 (($ |#2| |#1|) NIL)) (-2628 ((|#2| $) 19)) (-2027 ((|#2| $) 16)) (-3397 (($ (-1 |#1| |#1|) $) NIL)) (-2286 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3867 ((|#2| $) NIL)) (-3881 ((|#1| $) NIL)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-3000 (((-112) $) 27)) (-2010 ((|#1| $) 28)) (-3940 (((-853) $) 54) (($ (-558)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-3712 (((-635 |#1|) $) NIL)) (-3143 ((|#1| $ |#2|) NIL)) (-3455 ((|#1| $ |#2|) 24)) (-2417 (((-762)) 14)) (-2207 (($) 25 T CONST)) (-2220 (($) 11 T CONST)) (-3243 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1708 (((-112) $ $) 26)) (-1805 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-1796 (($ $) NIL) (($ $ $) NIL)) (-1785 (($ $ $) 43)) (** (($ $ (-911)) NIL) (($ $ (-762)) 45)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1596 (((-762) $) 15)))
-(((-1269 |#1| |#2|) (-13 (-1039) (-1260 |#1|) (-381 |#1| |#2|) (-608 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1596 ((-762) $)) (-15 -2027 (|#2| $)) (-15 -2628 (|#2| $)) (-15 -3905 ($ $)) (-15 -3455 (|#1| $ |#2|)) (-15 -3000 ((-112) $)) (-15 -2010 (|#1| $)) (-15 -3979 ((-112) $)) (-15 -3930 ($ $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1805 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4376)) (-6 -4376) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|) (IF (|has| |#1| (-6 -4381)) (-6 -4381) |%noBranch|))) (-1039) (-837)) (T -1269))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))) (-3397 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-1269 *3 *4)) (-4 *4 (-837)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-837)))) (-2027 (*1 *2 *1) (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))) (-2628 (*1 *2 *1) (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))) (-3455 (*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-837)))) (-2010 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-837)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))) (-1805 (*1 *1 *1 *2) (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1039)) (-4 *3 (-837)))))
-(-13 (-1039) (-1260 |#1|) (-381 |#1| |#2|) (-608 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1596 ((-762) $)) (-15 -2027 (|#2| $)) (-15 -2628 (|#2| $)) (-15 -3905 ($ $)) (-15 -3455 (|#1| $ |#2|)) (-15 -3000 ((-112) $)) (-15 -2010 (|#1| $)) (-15 -3979 ((-112) $)) (-15 -3930 ($ $)) (-15 -3397 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1805 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4376)) (-6 -4376) |%noBranch|) (IF (|has| |#1| (-6 -4380)) (-6 -4380) |%noBranch|) (IF (|has| |#1| (-6 -4381)) (-6 -4381) |%noBranch|)))
-((-3929 (((-112) $ $) 26)) (-3124 (((-112) $) NIL)) (-2096 (((-635 |#1|) $) 120)) (-2920 (($ (-1261 |#1| |#2|)) 44)) (-2368 (($ $ (-762)) 32)) (-1868 (((-3 $ "failed") $ $) NIL)) (-1516 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-762)) 46 (|has| |#2| (-171)))) (-3457 (($) NIL T CONST)) (-2978 (($ $ |#1|) 102) (($ $ (-810 |#1|)) 103) (($ $ $) 25)) (-3302 (((-3 (-810 |#1|) "failed") $) NIL)) (-3226 (((-810 |#1|) $) NIL)) (-3248 (((-3 $ "failed") $) 110)) (-3979 (((-112) $) 105)) (-3930 (($ $) 106)) (-3999 (((-112) $) NIL)) (-3594 (((-112) $) NIL)) (-2345 (($ (-810 |#1|) |#2|) 19)) (-3883 (($ $) NIL)) (-3492 (((-2 (|:| |k| (-810 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2628 (((-810 |#1|) $) 111)) (-2027 (((-810 |#1|) $) 114)) (-3397 (($ (-1 |#2| |#2|) $) 119)) (-3422 (($ $ |#1|) 100) (($ $ (-810 |#1|)) 101) (($ $ $) 56)) (-2510 (((-1145) $) NIL)) (-1688 (((-1107) $) NIL)) (-2040 (((-1261 |#1| |#2|) $) 84)) (-4263 (((-762) $) 117)) (-3000 (((-112) $) 70)) (-2010 ((|#2| $) 28)) (-3940 (((-853) $) 63) (($ (-558)) 77) (($ |#2|) 74) (($ (-810 |#1|)) 17) (($ |#1|) 73)) (-3455 ((|#2| $ (-810 |#1|)) 104) ((|#2| $ $) 27)) (-2417 (((-762)) 108)) (-2207 (($) 14 T CONST)) (-1550 (((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2220 (($) 29 T CONST)) (-1708 (((-112) $ $) 13)) (-1796 (($ $) 88) (($ $ $) 91)) (-1785 (($ $ $) 55)) (** (($ $ (-911)) NIL) (($ $ (-762)) 49)) (* (($ (-911) $) NIL) (($ (-762) $) 47) (($ (-558) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1270 |#1| |#2|) (-13 (-1267 |#1| |#2|) (-10 -8 (-15 -2040 ((-1261 |#1| |#2|) $)) (-15 -2920 ($ (-1261 |#1| |#2|))) (-15 -1550 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-841) (-1039)) (T -1270))
-((-2040 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1270 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)) (-5 *1 (-1270 *3 *4)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1270 *3 *4))))) (-5 *1 (-1270 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))))
-(-13 (-1267 |#1| |#2|) (-10 -8 (-15 -2040 ((-1261 |#1| |#2|) $)) (-15 -2920 ($ (-1261 |#1| |#2|))) (-15 -1550 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-3161 (((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-558)) 15) (((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|))) 11)))
-(((-1271 |#1|) (-10 -7 (-15 -3161 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -3161 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-558)))) (-1200)) (T -1271))
-((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-558)) (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1271 *5)) (-4 *5 (-1200)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1271 *4)) (-4 *4 (-1200)))))
-(-10 -7 (-15 -3161 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -3161 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-558))))
-((-1536 (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|))) 147) (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112)) 146) (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112)) 145) (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112) (-112)) 144) (((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-1036 |#1| |#2|)) 129)) (-2034 (((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|))) 71) (((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112)) 70) (((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112) (-112)) 69)) (-4110 (((-635 (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) (-1036 |#1| |#2|)) 60)) (-2805 (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|))) 114) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112)) 113) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112)) 112) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112) (-112)) 111) (((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|)) 106)) (-2904 (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|))) 119) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112)) 118) (((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112)) 117) (((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|)) 116)) (-3441 (((-635 (-771 |#1| (-855 |#3|))) (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) 97) (((-1159 (-1014 (-406 |#1|))) (-1159 |#1|)) 88) (((-942 (-1014 (-406 |#1|))) (-771 |#1| (-855 |#3|))) 95) (((-942 (-1014 (-406 |#1|))) (-942 |#1|)) 93) (((-771 |#1| (-855 |#3|)) (-771 |#1| (-855 |#2|))) 32)))
-(((-1272 |#1| |#2| |#3|) (-10 -7 (-15 -2034 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112) (-112))) (-15 -2034 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112))) (-15 -2034 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-1036 |#1| |#2|))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -4110 ((-635 (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) (-1036 |#1| |#2|))) (-15 -3441 ((-771 |#1| (-855 |#3|)) (-771 |#1| (-855 |#2|)))) (-15 -3441 ((-942 (-1014 (-406 |#1|))) (-942 |#1|))) (-15 -3441 ((-942 (-1014 (-406 |#1|))) (-771 |#1| (-855 |#3|)))) (-15 -3441 ((-1159 (-1014 (-406 |#1|))) (-1159 |#1|))) (-15 -3441 ((-635 (-771 |#1| (-855 |#3|))) (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))))) (-13 (-839) (-306) (-146) (-1012)) (-635 (-1163)) (-635 (-1163))) (T -1272))
-((-3441 (*1 *2 *3) (-12 (-5 *3 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6)))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-771 *4 (-855 *6)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-1159 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-1159 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-771 *4 (-855 *6))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163))) (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-771 *4 (-855 *5))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-771 *4 (-855 *6))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-2904 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-2805 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-2805 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-2805 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-1536 (*1 *2 *3) (-12 (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *4)) (|:| -2979 (-635 (-942 *4)))))) (-5 *1 (-1272 *4 *5 *6)) (-5 *3 (-635 (-942 *4))) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-1536 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5)))))) (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1536 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5)))))) (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1536 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5)))))) (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5))) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-2 (|:| -2347 (-1159 *4)) (|:| -2979 (-635 (-942 *4)))))) (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-1036 *4 *5))) (-5 *1 (-1272 *4 *5 *6)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))) (-2034 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012))) (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7)) (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163))))))
-(-10 -7 (-15 -2034 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112) (-112))) (-15 -2034 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)) (-112))) (-15 -2034 ((-635 (-1036 |#1| |#2|)) (-635 (-942 |#1|)))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-1036 |#1| |#2|))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)) (-112))) (-15 -1536 ((-635 (-2 (|:| -2347 (-1159 |#1|)) (|:| -2979 (-635 (-942 |#1|))))) (-635 (-942 |#1|)))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112) (-112))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -2805 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-1036 |#1| |#2|))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112) (-112))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)) (-112))) (-15 -2904 ((-635 (-635 (-1014 (-406 |#1|)))) (-635 (-942 |#1|)))) (-15 -4110 ((-635 (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|)))) (-1036 |#1| |#2|))) (-15 -3441 ((-771 |#1| (-855 |#3|)) (-771 |#1| (-855 |#2|)))) (-15 -3441 ((-942 (-1014 (-406 |#1|))) (-942 |#1|))) (-15 -3441 ((-942 (-1014 (-406 |#1|))) (-771 |#1| (-855 |#3|)))) (-15 -3441 ((-1159 (-1014 (-406 |#1|))) (-1159 |#1|))) (-15 -3441 ((-635 (-771 |#1| (-855 |#3|))) (-1133 |#1| (-529 (-855 |#3|)) (-855 |#3|) (-771 |#1| (-855 |#3|))))))
-((-2906 (((-3 (-1246 (-406 (-558))) "failed") (-1246 |#1|) |#1|) 21)) (-2483 (((-112) (-1246 |#1|)) 12)) (-3182 (((-3 (-1246 (-558)) "failed") (-1246 |#1|)) 16)))
-(((-1273 |#1|) (-10 -7 (-15 -2483 ((-112) (-1246 |#1|))) (-15 -3182 ((-3 (-1246 (-558)) "failed") (-1246 |#1|))) (-15 -2906 ((-3 (-1246 (-406 (-558))) "failed") (-1246 |#1|) |#1|))) (-631 (-558))) (T -1273))
-((-2906 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-1246 (-406 (-558)))) (-5 *1 (-1273 *4)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-1246 (-558))) (-5 *1 (-1273 *4)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-112)) (-5 *1 (-1273 *4)))))
-(-10 -7 (-15 -2483 ((-112) (-1246 |#1|))) (-15 -3182 ((-3 (-1246 (-558)) "failed") (-1246 |#1|))) (-15 -2906 ((-3 (-1246 (-406 (-558))) "failed") (-1246 |#1|) |#1|)))
-((-3929 (((-112) $ $) NIL)) (-3124 (((-112) $) 11)) (-1868 (((-3 $ "failed") $ $) NIL)) (-2507 (((-762)) 8)) (-3457 (($) NIL T CONST)) (-3248 (((-3 $ "failed") $) 43)) (-3692 (($) 36)) (-3999 (((-112) $) NIL)) (-2521 (((-3 $ "failed") $) 29)) (-1486 (((-911) $) 15)) (-2510 (((-1145) $) NIL)) (-1823 (($) 25 T CONST)) (-2349 (($ (-911)) 37)) (-1688 (((-1107) $) NIL)) (-3441 (((-558) $) 13)) (-3940 (((-853) $) 22) (($ (-558)) 19)) (-2417 (((-762)) 9)) (-2207 (($) 23 T CONST)) (-2220 (($) 24 T CONST)) (-1708 (((-112) $ $) 27)) (-1796 (($ $) 38) (($ $ $) 35)) (-1785 (($ $ $) 26)) (** (($ $ (-911)) NIL) (($ $ (-762)) 40)) (* (($ (-911) $) NIL) (($ (-762) $) NIL) (($ (-558) $) 32) (($ $ $) 31)))
-(((-1274 |#1|) (-13 (-171) (-367) (-606 (-558)) (-1138)) (-911)) (T -1274))
-NIL
-(-13 (-171) (-367) (-606 (-558)) (-1138))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3184428 3184433 3184438 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3184413 3184418 3184423 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3184398 3184403 3184408 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3184383 3184388 3184393 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1274 3183559 3184258 3184335 "ZMOD" 3184340 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1273 3182669 3182833 3183042 "ZLINDEP" 3183391 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1272 3171973 3173737 3175709 "ZDSOLVE" 3180799 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1271 3171219 3171360 3171549 "YSTREAM" 3171819 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1270 3169030 3170520 3170724 "XRPOLY" 3171062 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1269 3165618 3166901 3167476 "XPR" 3168502 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1268 3163374 3164949 3165153 "XPOLY" 3165449 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1267 3161165 3162499 3162554 "XPOLYC" 3162842 NIL XPOLYC (NIL T T) -9 NIL 3162955 NIL) (-1266 3157583 3159682 3160070 "XPBWPOLY" 3160823 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1265 3153494 3155746 3155788 "XF" 3156409 NIL XF (NIL T) -9 NIL 3156809 NIL) (-1264 3153115 3153203 3153372 "XF-" 3153377 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1263 3148449 3149704 3149759 "XFALG" 3151931 NIL XFALG (NIL T T) -9 NIL 3152720 NIL) (-1262 3147582 3147686 3147891 "XEXPPKG" 3148341 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1261 3145726 3147432 3147528 "XDPOLY" 3147533 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1260 3144671 3145237 3145280 "XALG" 3145285 NIL XALG (NIL T) -9 NIL 3145396 NIL) (-1259 3138140 3142648 3143142 "WUTSET" 3144263 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1258 3136431 3137192 3137515 "WP" 3137951 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1257 3136060 3136253 3136323 "WHILEAST" 3136383 T WHILEAST (NIL) -8 NIL NIL NIL) (-1256 3135559 3135777 3135871 "WHEREAST" 3135988 T WHEREAST (NIL) -8 NIL NIL NIL) (-1255 3134445 3134643 3134938 "WFFINTBS" 3135356 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1254 3132349 3132776 3133238 "WEIER" 3134017 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1253 3131496 3131920 3131962 "VSPACE" 3132098 NIL VSPACE (NIL T) -9 NIL 3132172 NIL) (-1252 3131334 3131361 3131452 "VSPACE-" 3131457 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1251 3131142 3131185 3131253 "VOID" 3131288 T VOID (NIL) -8 NIL NIL NIL) (-1250 3129278 3129637 3130043 "VIEW" 3130758 T VIEW (NIL) -7 NIL NIL NIL) (-1249 3125703 3126341 3127078 "VIEWDEF" 3128563 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1248 3115039 3117251 3119424 "VIEW3D" 3123552 T VIEW3D (NIL) -8 NIL NIL NIL) (-1247 3107321 3108950 3110529 "VIEW2D" 3113482 T VIEW2D (NIL) -8 NIL NIL NIL) (-1246 3102725 3107091 3107183 "VECTOR" 3107264 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1245 3101302 3101561 3101879 "VECTOR2" 3102455 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1244 3094829 3099086 3099129 "VECTCAT" 3100122 NIL VECTCAT (NIL T) -9 NIL 3100708 NIL) (-1243 3093843 3094097 3094487 "VECTCAT-" 3094492 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1242 3093324 3093494 3093614 "VARIABLE" 3093758 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1241 3093257 3093262 3093292 "UTYPE" 3093297 T UTYPE (NIL) -9 NIL NIL NIL) (-1240 3092087 3092241 3092503 "UTSODETL" 3093083 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1239 3089527 3089987 3090511 "UTSODE" 3091628 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1238 3081403 3087153 3087642 "UTS" 3089096 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1237 3072646 3077970 3078013 "UTSCAT" 3079125 NIL UTSCAT (NIL T) -9 NIL 3079882 NIL) (-1236 3070001 3070716 3071705 "UTSCAT-" 3071710 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1235 3069628 3069671 3069804 "UTS2" 3069952 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1234 3063901 3066466 3066509 "URAGG" 3068579 NIL URAGG (NIL T) -9 NIL 3069302 NIL) (-1233 3060840 3061703 3062826 "URAGG-" 3062831 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1232 3056564 3059454 3059926 "UPXSSING" 3060504 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1231 3048666 3055811 3056084 "UPXS" 3056349 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1230 3041779 3048570 3048642 "UPXSCONS" 3048647 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1229 3032024 3038774 3038836 "UPXSCCA" 3039410 NIL UPXSCCA (NIL T T) -9 NIL 3039643 NIL) (-1228 3031662 3031747 3031921 "UPXSCCA-" 3031926 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1227 3021760 3028283 3028326 "UPXSCAT" 3028974 NIL UPXSCAT (NIL T) -9 NIL 3029582 NIL) (-1226 3021190 3021269 3021448 "UPXS2" 3021675 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1225 3019844 3020097 3020448 "UPSQFREE" 3020933 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1224 3013632 3016646 3016701 "UPSCAT" 3017862 NIL UPSCAT (NIL T T) -9 NIL 3018636 NIL) (-1223 3012836 3013043 3013370 "UPSCAT-" 3013375 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1222 2998686 3006684 3006727 "UPOLYC" 3008828 NIL UPOLYC (NIL T) -9 NIL 3010049 NIL) (-1221 2990015 2992440 2995587 "UPOLYC-" 2995592 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1220 2989642 2989685 2989818 "UPOLYC2" 2989966 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1219 2981216 2989325 2989454 "UP" 2989561 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1218 2980555 2980662 2980826 "UPMP" 2981105 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1217 2980108 2980189 2980328 "UPDIVP" 2980468 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1216 2978676 2978925 2979241 "UPDECOMP" 2979857 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1215 2977911 2978023 2978208 "UPCDEN" 2978560 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1214 2977430 2977499 2977648 "UP2" 2977836 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1213 2975947 2976634 2976911 "UNISEG" 2977188 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1212 2975162 2975289 2975494 "UNISEG2" 2975790 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1211 2974222 2974402 2974628 "UNIFACT" 2974978 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1210 2958189 2973399 2973650 "ULS" 2974029 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1209 2946229 2958093 2958165 "ULSCONS" 2958170 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1208 2928845 2940787 2940849 "ULSCCAT" 2941487 NIL ULSCCAT (NIL T T) -9 NIL 2941775 NIL) (-1207 2927895 2928140 2928528 "ULSCCAT-" 2928533 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1206 2917770 2924207 2924250 "ULSCAT" 2925113 NIL ULSCAT (NIL T) -9 NIL 2925843 NIL) (-1205 2917200 2917279 2917458 "ULS2" 2917685 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1204 2915603 2916526 2916556 "UFD" 2916768 T UFD (NIL) -9 NIL 2916882 NIL) (-1203 2915397 2915443 2915538 "UFD-" 2915543 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1202 2914479 2914662 2914878 "UDVO" 2915203 T UDVO (NIL) -7 NIL NIL NIL) (-1201 2912295 2912704 2913175 "UDPO" 2914043 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1200 2912228 2912233 2912263 "TYPE" 2912268 T TYPE (NIL) -9 NIL NIL NIL) (-1199 2912015 2912183 2912214 "TYPEAST" 2912219 T TYPEAST (NIL) -8 NIL NIL NIL) (-1198 2910986 2911188 2911428 "TWOFACT" 2911809 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1197 2910058 2910395 2910630 "TUPLE" 2910786 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1196 2907749 2908268 2908807 "TUBETOOL" 2909541 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1195 2906598 2906803 2907044 "TUBE" 2907542 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1194 2901362 2905570 2905853 "TS" 2906350 NIL TS (NIL T) -8 NIL NIL NIL) (-1193 2890029 2894121 2894218 "TSETCAT" 2899487 NIL TSETCAT (NIL T T T T) -9 NIL 2901018 NIL) (-1192 2884764 2886361 2888252 "TSETCAT-" 2888257 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1191 2879027 2879873 2880815 "TRMANIP" 2883900 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1190 2878468 2878531 2878694 "TRIMAT" 2878959 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1189 2876264 2876501 2876865 "TRIGMNIP" 2878217 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1188 2875784 2875897 2875927 "TRIGCAT" 2876140 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1187 2875453 2875532 2875673 "TRIGCAT-" 2875678 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1186 2872350 2874311 2874592 "TREE" 2875207 NIL TREE (NIL T) -8 NIL NIL NIL) (-1185 2871624 2872152 2872182 "TRANFUN" 2872217 T TRANFUN (NIL) -9 NIL 2872283 NIL) (-1184 2870903 2871094 2871374 "TRANFUN-" 2871379 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1183 2870707 2870739 2870800 "TOPSP" 2870864 T TOPSP (NIL) -7 NIL NIL NIL) (-1182 2870055 2870170 2870324 "TOOLSIGN" 2870588 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1181 2868716 2869232 2869471 "TEXTFILE" 2869838 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1180 2866655 2867169 2867598 "TEX" 2868309 T TEX (NIL) -8 NIL NIL NIL) (-1179 2866436 2866467 2866539 "TEX1" 2866618 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1178 2866084 2866147 2866237 "TEMUTL" 2866368 T TEMUTL (NIL) -7 NIL NIL NIL) (-1177 2864238 2864518 2864843 "TBCMPPK" 2865807 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1176 2856126 2862398 2862454 "TBAGG" 2862854 NIL TBAGG (NIL T T) -9 NIL 2863065 NIL) (-1175 2851196 2852684 2854438 "TBAGG-" 2854443 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1174 2850580 2850687 2850832 "TANEXP" 2851085 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1173 2844081 2850437 2850530 "TABLE" 2850535 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1172 2843493 2843592 2843730 "TABLEAU" 2843978 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1171 2838101 2839321 2840569 "TABLBUMP" 2842279 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1170 2837529 2837629 2837757 "SYSTEM" 2837995 T SYSTEM (NIL) -7 NIL NIL NIL) (-1169 2833992 2834687 2835470 "SYSSOLP" 2836780 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1168 2830326 2831253 2831969 "SYNTAX" 2833298 T SYNTAX (NIL) -8 NIL NIL NIL) (-1167 2827484 2828086 2828718 "SYMTAB" 2829716 T SYMTAB (NIL) -8 NIL NIL NIL) (-1166 2822733 2823635 2824618 "SYMS" 2826523 T SYMS (NIL) -8 NIL NIL NIL) (-1165 2820005 2822191 2822421 "SYMPOLY" 2822538 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1164 2819522 2819597 2819720 "SYMFUNC" 2819917 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1163 2815574 2816834 2817647 "SYMBOL" 2818731 T SYMBOL (NIL) -8 NIL NIL NIL) (-1162 2809113 2810802 2812522 "SWITCH" 2813876 T SWITCH (NIL) -8 NIL NIL NIL) (-1161 2802383 2807934 2808237 "SUTS" 2808868 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2794484 2801630 2801903 "SUPXS" 2802168 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2786014 2794102 2794228 "SUP" 2794393 NIL SUP (NIL T) -8 NIL NIL NIL) (-1158 2785173 2785300 2785517 "SUPFRACF" 2785882 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1157 2784794 2784853 2784966 "SUP2" 2785108 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1156 2783207 2783481 2783844 "SUMRF" 2784493 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1155 2782521 2782587 2782786 "SUMFS" 2783128 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1154 2766528 2781698 2781949 "SULS" 2782328 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1153 2766157 2766350 2766420 "SUCHTAST" 2766480 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1152 2765479 2765682 2765822 "SUCH" 2766065 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1151 2759373 2760385 2761344 "SUBSPACE" 2764567 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1150 2758803 2758893 2759057 "SUBRESP" 2759261 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1149 2752172 2753468 2754779 "STTF" 2757539 NIL STTF (NIL T) -7 NIL NIL NIL) (-1148 2746345 2747465 2748612 "STTFNC" 2751072 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1147 2737660 2739527 2741321 "STTAYLOR" 2744586 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1146 2730904 2737524 2737607 "STRTBL" 2737612 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1145 2726295 2730859 2730890 "STRING" 2730895 T STRING (NIL) -8 NIL NIL NIL) (-1144 2721183 2725668 2725698 "STRICAT" 2725757 T STRICAT (NIL) -9 NIL 2725819 NIL) (-1143 2713993 2718802 2719413 "STREAM" 2720607 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1142 2713503 2713580 2713724 "STREAM3" 2713910 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1141 2712485 2712668 2712903 "STREAM2" 2713316 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1140 2712173 2712225 2712318 "STREAM1" 2712427 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1139 2711189 2711370 2711601 "STINPROD" 2711989 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1138 2710767 2710951 2710981 "STEP" 2711061 T STEP (NIL) -9 NIL 2711139 NIL) (-1137 2704310 2710666 2710743 "STBL" 2710748 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1136 2699484 2703531 2703574 "STAGG" 2703727 NIL STAGG (NIL T) -9 NIL 2703816 NIL) (-1135 2697186 2697788 2698660 "STAGG-" 2698665 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1134 2695381 2696956 2697048 "STACK" 2697129 NIL STACK (NIL T) -8 NIL NIL NIL) (-1133 2688106 2693522 2693978 "SREGSET" 2695011 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1132 2680532 2681900 2683413 "SRDCMPK" 2686712 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1131 2673499 2677972 2678002 "SRAGG" 2679305 T SRAGG (NIL) -9 NIL 2679913 NIL) (-1130 2672516 2672771 2673150 "SRAGG-" 2673155 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1129 2667011 2671463 2671884 "SQMATRIX" 2672142 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1128 2660760 2663729 2664456 "SPLTREE" 2666356 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1127 2656750 2657416 2658062 "SPLNODE" 2660186 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1126 2655797 2656030 2656060 "SPFCAT" 2656504 T SPFCAT (NIL) -9 NIL NIL NIL) (-1125 2654534 2654744 2655008 "SPECOUT" 2655555 T SPECOUT (NIL) -7 NIL NIL NIL) (-1124 2646186 2647930 2647960 "SPADXPT" 2652352 T SPADXPT (NIL) -9 NIL 2654386 NIL) (-1123 2645947 2645987 2646056 "SPADPRSR" 2646139 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1122 2644130 2645902 2645933 "SPADAST" 2645938 T SPADAST (NIL) -8 NIL NIL NIL) (-1121 2636101 2637848 2637891 "SPACEC" 2642264 NIL SPACEC (NIL T) -9 NIL 2644080 NIL) (-1120 2634272 2636033 2636082 "SPACE3" 2636087 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1119 2633024 2633195 2633486 "SORTPAK" 2634077 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1118 2631074 2631377 2631796 "SOLVETRA" 2632688 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1117 2630085 2630307 2630581 "SOLVESER" 2630847 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1116 2625305 2626186 2627188 "SOLVERAD" 2629137 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1115 2621120 2621729 2622458 "SOLVEFOR" 2624672 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1114 2615417 2620469 2620566 "SNTSCAT" 2620571 NIL SNTSCAT (NIL T T T T) -9 NIL 2620641 NIL) (-1113 2609560 2613740 2614131 "SMTS" 2615107 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1112 2604011 2609448 2609525 "SMP" 2609530 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1111 2602170 2602471 2602869 "SMITH" 2603708 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1110 2595065 2599221 2599324 "SMATCAT" 2600675 NIL SMATCAT (NIL NIL T T T) -9 NIL 2601225 NIL) (-1109 2592005 2592828 2594006 "SMATCAT-" 2594011 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1108 2589718 2591241 2591284 "SKAGG" 2591545 NIL SKAGG (NIL T) -9 NIL 2591680 NIL) (-1107 2586060 2589134 2589329 "SINT" 2589516 T SINT (NIL) -8 NIL NIL 2589689) (-1106 2585832 2585870 2585936 "SIMPAN" 2586016 T SIMPAN (NIL) -7 NIL NIL NIL) (-1105 2585139 2585367 2585507 "SIG" 2585714 T SIG (NIL) -8 NIL NIL NIL) (-1104 2583977 2584198 2584473 "SIGNRF" 2584898 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1103 2582782 2582933 2583224 "SIGNEF" 2583806 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1102 2582115 2582365 2582489 "SIGAST" 2582680 T SIGAST (NIL) -8 NIL NIL NIL) (-1101 2579805 2580259 2580765 "SHP" 2581656 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1100 2573711 2579706 2579782 "SHDP" 2579787 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1099 2573310 2573476 2573506 "SGROUP" 2573599 T SGROUP (NIL) -9 NIL 2573661 NIL) (-1098 2573168 2573194 2573267 "SGROUP-" 2573272 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1097 2570004 2570701 2571424 "SGCF" 2572467 T SGCF (NIL) -7 NIL NIL NIL) (-1096 2564399 2569451 2569548 "SFRTCAT" 2569553 NIL SFRTCAT (NIL T T T T) -9 NIL 2569592 NIL) (-1095 2557823 2558838 2559974 "SFRGCD" 2563382 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1094 2550951 2552022 2553208 "SFQCMPK" 2556756 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1093 2550573 2550662 2550772 "SFORT" 2550892 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1092 2549718 2550413 2550534 "SEXOF" 2550539 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1091 2548852 2549599 2549667 "SEX" 2549672 T SEX (NIL) -8 NIL NIL NIL) (-1090 2544391 2545080 2545175 "SEXCAT" 2548112 NIL SEXCAT (NIL T T T T T) -9 NIL 2548690 NIL) (-1089 2541571 2544325 2544373 "SET" 2544378 NIL SET (NIL T) -8 NIL NIL NIL) (-1088 2539822 2540284 2540589 "SETMN" 2541312 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1087 2539428 2539554 2539584 "SETCAT" 2539701 T SETCAT (NIL) -9 NIL 2539786 NIL) (-1086 2539208 2539260 2539359 "SETCAT-" 2539364 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1085 2535595 2537669 2537712 "SETAGG" 2538582 NIL SETAGG (NIL T) -9 NIL 2538922 NIL) (-1084 2535053 2535169 2535406 "SETAGG-" 2535411 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1083 2534523 2534749 2534850 "SEQAST" 2534974 T SEQAST (NIL) -8 NIL NIL NIL) (-1082 2533722 2534016 2534077 "SEGXCAT" 2534363 NIL SEGXCAT (NIL T T) -9 NIL 2534483 NIL) (-1081 2532778 2533388 2533570 "SEG" 2533575 NIL SEG (NIL T) -8 NIL NIL NIL) (-1080 2531757 2531971 2532014 "SEGCAT" 2532536 NIL SEGCAT (NIL T) -9 NIL 2532757 NIL) (-1079 2530806 2531136 2531336 "SEGBIND" 2531592 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1078 2530427 2530486 2530599 "SEGBIND2" 2530741 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1077 2530028 2530228 2530305 "SEGAST" 2530372 T SEGAST (NIL) -8 NIL NIL NIL) (-1076 2529247 2529373 2529577 "SEG2" 2529872 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1075 2528684 2529182 2529229 "SDVAR" 2529234 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1074 2520974 2528454 2528584 "SDPOL" 2528589 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1073 2519567 2519833 2520152 "SCPKG" 2520689 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1072 2518703 2518883 2519083 "SCOPE" 2519389 T SCOPE (NIL) -8 NIL NIL NIL) (-1071 2517924 2518057 2518236 "SCACHE" 2518558 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1070 2517596 2517756 2517786 "SASTCAT" 2517791 T SASTCAT (NIL) -9 NIL 2517804 NIL) (-1069 2517110 2517431 2517507 "SAOS" 2517542 T SAOS (NIL) -8 NIL NIL NIL) (-1068 2516675 2516710 2516883 "SAERFFC" 2517069 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1067 2510649 2516572 2516652 "SAE" 2516657 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1066 2510242 2510277 2510436 "SAEFACT" 2510608 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1065 2508563 2508877 2509278 "RURPK" 2509908 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1064 2507199 2507478 2507790 "RULESET" 2508397 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1063 2504386 2504889 2505354 "RULE" 2506880 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1062 2504025 2504180 2504263 "RULECOLD" 2504338 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1061 2503523 2503742 2503836 "RSTRCAST" 2503953 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1060 2498372 2499166 2500086 "RSETGCD" 2502722 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1059 2487629 2492681 2492778 "RSETCAT" 2496897 NIL RSETCAT (NIL T T T T) -9 NIL 2497994 NIL) (-1058 2485556 2486095 2486919 "RSETCAT-" 2486924 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1057 2477943 2479318 2480838 "RSDCMPK" 2484155 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1056 2475948 2476389 2476463 "RRCC" 2477549 NIL RRCC (NIL T T) -9 NIL 2477893 NIL) (-1055 2475299 2475473 2475752 "RRCC-" 2475757 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1054 2474769 2474995 2475096 "RPTAST" 2475220 T RPTAST (NIL) -8 NIL NIL NIL) (-1053 2448775 2458362 2458429 "RPOLCAT" 2469093 NIL RPOLCAT (NIL T T T) -9 NIL 2472252 NIL) (-1052 2440275 2442613 2445735 "RPOLCAT-" 2445740 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1051 2431322 2438486 2438968 "ROUTINE" 2439815 T ROUTINE (NIL) -8 NIL NIL NIL) (-1050 2428155 2430948 2431088 "ROMAN" 2431204 T ROMAN (NIL) -8 NIL NIL NIL) (-1049 2426430 2427015 2427275 "ROIRC" 2427960 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1048 2422823 2425066 2425096 "RNS" 2425400 T RNS (NIL) -9 NIL 2425673 NIL) (-1047 2421332 2421715 2422249 "RNS-" 2422324 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1046 2420781 2421163 2421193 "RNG" 2421198 T RNG (NIL) -9 NIL 2421219 NIL) (-1045 2420173 2420535 2420578 "RMODULE" 2420640 NIL RMODULE (NIL T) -9 NIL 2420682 NIL) (-1044 2419009 2419103 2419439 "RMCAT2" 2420074 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1043 2415886 2418355 2418652 "RMATRIX" 2418771 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1042 2408828 2411062 2411177 "RMATCAT" 2414536 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2415518 NIL) (-1041 2408203 2408350 2408657 "RMATCAT-" 2408662 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1040 2407770 2407845 2407973 "RINTERP" 2408122 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1039 2406903 2407423 2407453 "RING" 2407509 T RING (NIL) -9 NIL 2407595 NIL) (-1038 2406695 2406739 2406836 "RING-" 2406841 NIL RING- (NIL T) -8 NIL NIL NIL) (-1037 2405536 2405773 2406031 "RIDIST" 2406459 T RIDIST (NIL) -7 NIL NIL NIL) (-1036 2396852 2405004 2405210 "RGCHAIN" 2405384 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1035 2396228 2396608 2396649 "RGBCSPC" 2396707 NIL RGBCSPC (NIL T) -9 NIL 2396759 NIL) (-1034 2395412 2395767 2395808 "RGBCMDL" 2396040 NIL RGBCMDL (NIL T) -9 NIL 2396154 NIL) (-1033 2392406 2393020 2393690 "RF" 2394776 NIL RF (NIL T) -7 NIL NIL NIL) (-1032 2392052 2392115 2392218 "RFFACTOR" 2392337 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1031 2391777 2391812 2391909 "RFFACT" 2392011 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1030 2389894 2390258 2390640 "RFDIST" 2391417 T RFDIST (NIL) -7 NIL NIL NIL) (-1029 2389347 2389439 2389602 "RETSOL" 2389796 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1028 2388983 2389063 2389106 "RETRACT" 2389239 NIL RETRACT (NIL T) -9 NIL 2389326 NIL) (-1027 2388832 2388857 2388944 "RETRACT-" 2388949 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1026 2388461 2388654 2388724 "RETAST" 2388784 T RETAST (NIL) -8 NIL NIL NIL) (-1025 2381315 2388114 2388241 "RESULT" 2388356 T RESULT (NIL) -8 NIL NIL NIL) (-1024 2379941 2380584 2380783 "RESRING" 2381218 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1023 2379577 2379626 2379724 "RESLATC" 2379878 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1022 2379283 2379317 2379424 "REPSQ" 2379536 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1021 2376705 2377285 2377887 "REP" 2378703 T REP (NIL) -7 NIL NIL NIL) (-1020 2376403 2376437 2376548 "REPDB" 2376664 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1019 2370313 2371692 2372915 "REP2" 2375215 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1018 2366690 2367371 2368179 "REP1" 2369540 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1017 2359416 2364831 2365287 "REGSET" 2366320 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1016 2358229 2358564 2358814 "REF" 2359201 NIL REF (NIL T) -8 NIL NIL NIL) (-1015 2357606 2357709 2357876 "REDORDER" 2358113 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1014 2353611 2356819 2357046 "RECLOS" 2357434 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1013 2352663 2352844 2353059 "REALSOLV" 2353418 T REALSOLV (NIL) -7 NIL NIL NIL) (-1012 2352509 2352550 2352580 "REAL" 2352585 T REAL (NIL) -9 NIL 2352620 NIL) (-1011 2348992 2349794 2350678 "REAL0Q" 2351674 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1010 2344593 2345581 2346642 "REAL0" 2347973 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1009 2344091 2344310 2344404 "RDUCEAST" 2344521 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1008 2343496 2343568 2343775 "RDIV" 2344013 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1007 2342564 2342738 2342951 "RDIST" 2343318 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1006 2341161 2341448 2341820 "RDETRS" 2342272 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1005 2338973 2339427 2339965 "RDETR" 2340703 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1004 2337584 2337862 2338266 "RDEEFS" 2338689 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1003 2336079 2336385 2336817 "RDEEF" 2337272 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1002 2330340 2333215 2333245 "RCFIELD" 2334540 T RCFIELD (NIL) -9 NIL 2335270 NIL) (-1001 2328404 2328908 2329604 "RCFIELD-" 2329679 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1000 2324720 2326505 2326548 "RCAGG" 2327632 NIL RCAGG (NIL T) -9 NIL 2328097 NIL) (-999 2324350 2324444 2324605 "RCAGG-" 2324610 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-998 2323690 2323802 2323965 "RATRET" 2324234 NIL RATRET (NIL T) -7 NIL NIL NIL) (-997 2323247 2323314 2323433 "RATFACT" 2323618 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-996 2322562 2322682 2322832 "RANDSRC" 2323117 T RANDSRC (NIL) -7 NIL NIL NIL) (-995 2322299 2322343 2322414 "RADUTIL" 2322511 T RADUTIL (NIL) -7 NIL NIL NIL) (-994 2315461 2321141 2321449 "RADIX" 2322023 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-993 2307118 2315305 2315433 "RADFF" 2315438 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-992 2306770 2306845 2306873 "RADCAT" 2307030 T RADCAT (NIL) -9 NIL NIL NIL) (-991 2306555 2306603 2306700 "RADCAT-" 2306705 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-990 2304706 2306330 2306419 "QUEUE" 2306499 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-989 2301282 2304643 2304688 "QUAT" 2304693 NIL QUAT (NIL T) -8 NIL NIL NIL) (-988 2300920 2300963 2301090 "QUATCT2" 2301233 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-987 2294667 2297969 2298009 "QUATCAT" 2298789 NIL QUATCAT (NIL T) -9 NIL 2299555 NIL) (-986 2290811 2291848 2293235 "QUATCAT-" 2293329 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-985 2288331 2289895 2289936 "QUAGG" 2290311 NIL QUAGG (NIL T) -9 NIL 2290486 NIL) (-984 2287963 2288156 2288224 "QQUTAST" 2288283 T QQUTAST (NIL) -8 NIL NIL NIL) (-983 2286888 2287361 2287533 "QFORM" 2287835 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-982 2278100 2283305 2283345 "QFCAT" 2284003 NIL QFCAT (NIL T) -9 NIL 2285004 NIL) (-981 2273672 2274873 2276464 "QFCAT-" 2276558 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-980 2273310 2273353 2273480 "QFCAT2" 2273623 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-979 2272770 2272880 2273010 "QEQUAT" 2273200 T QEQUAT (NIL) -8 NIL NIL NIL) (-978 2265918 2266989 2268173 "QCMPACK" 2271703 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-977 2263494 2263915 2264343 "QALGSET" 2265573 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-976 2262739 2262913 2263145 "QALGSET2" 2263314 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-975 2261430 2261653 2261970 "PWFFINTB" 2262512 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-974 2259612 2259780 2260134 "PUSHVAR" 2261244 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-973 2255530 2256584 2256625 "PTRANFN" 2258509 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-972 2253932 2254223 2254545 "PTPACK" 2255241 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-971 2253564 2253621 2253730 "PTFUNC2" 2253869 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-970 2248091 2252436 2252477 "PTCAT" 2252773 NIL PTCAT (NIL T) -9 NIL 2252926 NIL) (-969 2247749 2247784 2247908 "PSQFR" 2248050 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-968 2246344 2246642 2246976 "PSEUDLIN" 2247447 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-967 2233114 2235478 2237802 "PSETPK" 2244104 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-966 2226158 2228872 2228968 "PSETCAT" 2231989 NIL PSETCAT (NIL T T T T) -9 NIL 2232803 NIL) (-965 2223994 2224628 2225449 "PSETCAT-" 2225454 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-964 2223343 2223508 2223536 "PSCURVE" 2223804 T PSCURVE (NIL) -9 NIL 2223971 NIL) (-963 2219699 2221181 2221246 "PSCAT" 2222090 NIL PSCAT (NIL T T T) -9 NIL 2222330 NIL) (-962 2218762 2218978 2219378 "PSCAT-" 2219383 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-961 2217494 2218127 2218332 "PRTITION" 2218577 T PRTITION (NIL) -8 NIL NIL NIL) (-960 2216996 2217215 2217307 "PRTDAST" 2217422 T PRTDAST (NIL) -8 NIL NIL NIL) (-959 2206094 2208300 2210488 "PRS" 2214858 NIL PRS (NIL T T) -7 NIL NIL NIL) (-958 2203952 2205444 2205484 "PRQAGG" 2205667 NIL PRQAGG (NIL T) -9 NIL 2205769 NIL) (-957 2203338 2203567 2203595 "PROPLOG" 2203780 T PROPLOG (NIL) -9 NIL 2203902 NIL) (-956 2200508 2201152 2201616 "PROPFRML" 2202906 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-955 2199968 2200078 2200208 "PROPERTY" 2200398 T PROPERTY (NIL) -8 NIL NIL NIL) (-954 2194053 2198134 2198954 "PRODUCT" 2199194 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-953 2191366 2193511 2193745 "PR" 2193864 NIL PR (NIL T T) -8 NIL NIL NIL) (-952 2191162 2191194 2191253 "PRINT" 2191327 T PRINT (NIL) -7 NIL NIL NIL) (-951 2190502 2190619 2190771 "PRIMES" 2191042 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-950 2188567 2188968 2189434 "PRIMELT" 2190081 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-949 2188296 2188345 2188373 "PRIMCAT" 2188497 T PRIMCAT (NIL) -9 NIL NIL NIL) (-948 2184457 2188234 2188279 "PRIMARR" 2188284 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-947 2183464 2183642 2183870 "PRIMARR2" 2184275 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-946 2183107 2183163 2183274 "PREASSOC" 2183402 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-945 2182582 2182715 2182743 "PPCURVE" 2182948 T PPCURVE (NIL) -9 NIL 2183084 NIL) (-944 2182204 2182377 2182460 "PORTNUM" 2182519 T PORTNUM (NIL) -8 NIL NIL NIL) (-943 2179563 2179962 2180554 "POLYROOT" 2181785 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-942 2173508 2179167 2179327 "POLY" 2179436 NIL POLY (NIL T) -8 NIL NIL NIL) (-941 2172891 2172949 2173183 "POLYLIFT" 2173444 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-940 2169166 2169615 2170244 "POLYCATQ" 2172436 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-939 2155983 2161341 2161406 "POLYCAT" 2164920 NIL POLYCAT (NIL T T T) -9 NIL 2166848 NIL) (-938 2149433 2151294 2153678 "POLYCAT-" 2153683 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-937 2149020 2149088 2149208 "POLY2UP" 2149359 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-936 2148652 2148709 2148818 "POLY2" 2148957 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-935 2147337 2147576 2147852 "POLUTIL" 2148426 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-934 2145692 2145969 2146300 "POLTOPOL" 2147059 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-933 2141210 2145628 2145674 "POINT" 2145679 NIL POINT (NIL T) -8 NIL NIL NIL) (-932 2139397 2139754 2140129 "PNTHEORY" 2140855 T PNTHEORY (NIL) -7 NIL NIL NIL) (-931 2137816 2138113 2138525 "PMTOOLS" 2139095 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-930 2137409 2137487 2137604 "PMSYM" 2137732 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-929 2136919 2136988 2137162 "PMQFCAT" 2137334 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-928 2136274 2136384 2136540 "PMPRED" 2136796 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-927 2135670 2135756 2135917 "PMPREDFS" 2136175 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-926 2134313 2134521 2134906 "PMPLCAT" 2135432 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-925 2133845 2133924 2134076 "PMLSAGG" 2134228 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-924 2133320 2133396 2133577 "PMKERNEL" 2133763 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-923 2132937 2133012 2133125 "PMINS" 2133239 NIL PMINS (NIL T) -7 NIL NIL NIL) (-922 2132365 2132434 2132650 "PMFS" 2132862 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-921 2131593 2131711 2131916 "PMDOWN" 2132242 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-920 2130756 2130915 2131097 "PMASS" 2131431 T PMASS (NIL) -7 NIL NIL NIL) (-919 2130030 2130141 2130304 "PMASSFS" 2130642 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-918 2129685 2129753 2129847 "PLOTTOOL" 2129956 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-917 2124307 2125496 2126644 "PLOT" 2128557 T PLOT (NIL) -8 NIL NIL NIL) (-916 2120121 2121155 2122076 "PLOT3D" 2123406 T PLOT3D (NIL) -8 NIL NIL NIL) (-915 2119033 2119210 2119445 "PLOT1" 2119925 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-914 2094427 2099099 2103950 "PLEQN" 2114299 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-913 2093745 2093867 2094047 "PINTERP" 2094292 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-912 2093438 2093485 2093588 "PINTERPA" 2093692 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-911 2092686 2093207 2093294 "PI" 2093334 T PI (NIL) -8 NIL NIL 2093401) (-910 2091083 2092024 2092052 "PID" 2092234 T PID (NIL) -9 NIL 2092368 NIL) (-909 2090808 2090845 2090933 "PICOERCE" 2091040 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-908 2090128 2090267 2090443 "PGROEB" 2090664 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-907 2085715 2086529 2087434 "PGE" 2089243 T PGE (NIL) -7 NIL NIL NIL) (-906 2083839 2084085 2084451 "PGCD" 2085432 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-905 2083177 2083280 2083441 "PFRPAC" 2083723 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-904 2079857 2081725 2082078 "PFR" 2082856 NIL PFR (NIL T) -8 NIL NIL NIL) (-903 2078246 2078490 2078815 "PFOTOOLS" 2079604 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-902 2076779 2077018 2077369 "PFOQ" 2078003 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-901 2075252 2075464 2075827 "PFO" 2076563 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-900 2071840 2075141 2075210 "PF" 2075215 NIL PF (NIL NIL) -8 NIL NIL NIL) (-899 2069274 2070511 2070539 "PFECAT" 2071124 T PFECAT (NIL) -9 NIL 2071508 NIL) (-898 2068719 2068873 2069087 "PFECAT-" 2069092 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-897 2067323 2067574 2067875 "PFBRU" 2068468 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-896 2065190 2065541 2065973 "PFBR" 2066974 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-895 2061106 2062566 2063242 "PERM" 2064547 NIL PERM (NIL T) -8 NIL NIL NIL) (-894 2056372 2057313 2058183 "PERMGRP" 2060269 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-893 2054504 2055435 2055476 "PERMCAT" 2055922 NIL PERMCAT (NIL T) -9 NIL 2056227 NIL) (-892 2054157 2054198 2054322 "PERMAN" 2054457 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-891 2051693 2053822 2053944 "PENDTREE" 2054068 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-890 2049786 2050520 2050561 "PDRING" 2051218 NIL PDRING (NIL T) -9 NIL 2051504 NIL) (-889 2048889 2049107 2049469 "PDRING-" 2049474 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-888 2046131 2046882 2047550 "PDEPROB" 2048241 T PDEPROB (NIL) -8 NIL NIL NIL) (-887 2043678 2044180 2044735 "PDEPACK" 2045596 T PDEPACK (NIL) -7 NIL NIL NIL) (-886 2042590 2042780 2043031 "PDECOMP" 2043477 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-885 2040195 2041012 2041040 "PDECAT" 2041827 T PDECAT (NIL) -9 NIL 2042540 NIL) (-884 2039946 2039979 2040069 "PCOMP" 2040156 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-883 2038151 2038747 2039044 "PBWLB" 2039675 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-882 2030656 2032224 2033562 "PATTERN" 2036834 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-881 2030288 2030345 2030454 "PATTERN2" 2030593 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-880 2028045 2028433 2028890 "PATTERN1" 2029877 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-879 2025440 2025994 2026475 "PATRES" 2027610 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-878 2025004 2025071 2025203 "PATRES2" 2025367 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-877 2022887 2023292 2023699 "PATMATCH" 2024671 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-876 2022423 2022606 2022647 "PATMAB" 2022754 NIL PATMAB (NIL T) -9 NIL 2022837 NIL) (-875 2020968 2021277 2021535 "PATLRES" 2022228 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-874 2020514 2020637 2020678 "PATAB" 2020683 NIL PATAB (NIL T) -9 NIL 2020855 NIL) (-873 2017995 2018527 2019100 "PARTPERM" 2019961 T PARTPERM (NIL) -7 NIL NIL NIL) (-872 2017616 2017679 2017781 "PARSURF" 2017926 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-871 2017248 2017305 2017414 "PARSU2" 2017553 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-870 2017012 2017052 2017119 "PARSER" 2017201 T PARSER (NIL) -7 NIL NIL NIL) (-869 2016633 2016696 2016798 "PARSCURV" 2016943 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-868 2016265 2016322 2016431 "PARSC2" 2016570 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-867 2015904 2015962 2016059 "PARPCURV" 2016201 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-866 2015536 2015593 2015702 "PARPC2" 2015841 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-865 2015056 2015142 2015261 "PAN2EXPR" 2015437 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-864 2013862 2014177 2014405 "PALETTE" 2014848 T PALETTE (NIL) -8 NIL NIL NIL) (-863 2012330 2012867 2013227 "PAIR" 2013548 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-862 2006236 2011589 2011783 "PADICRC" 2012185 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-861 1999500 2005582 2005766 "PADICRAT" 2006084 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-860 1997850 1999437 1999482 "PADIC" 1999487 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-859 1995060 1996590 1996630 "PADICCT" 1997211 NIL PADICCT (NIL NIL) -9 NIL 1997493 NIL) (-858 1994017 1994217 1994485 "PADEPAC" 1994847 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-857 1993229 1993362 1993568 "PADE" 1993879 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-856 1991651 1992437 1992717 "OWP" 1993033 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-855 1990724 1991256 1991428 "OVAR" 1991519 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-854 1989988 1990109 1990270 "OUT" 1990583 T OUT (NIL) -7 NIL NIL NIL) (-853 1978895 1981097 1983297 "OUTFORM" 1987808 T OUTFORM (NIL) -8 NIL NIL NIL) (-852 1978311 1978492 1978619 "OUTBFILE" 1978788 T OUTBFILE (NIL) -8 NIL NIL NIL) (-851 1977933 1978021 1978049 "OUTBCON" 1978205 T OUTBCON (NIL) -9 NIL 1978295 NIL) (-850 1977776 1977810 1977885 "OUTBCON-" 1977890 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-849 1977184 1977505 1977594 "OSI" 1977707 T OSI (NIL) -8 NIL NIL NIL) (-848 1976740 1977052 1977080 "OSGROUP" 1977085 T OSGROUP (NIL) -9 NIL 1977107 NIL) (-847 1975485 1975712 1975997 "ORTHPOL" 1976487 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-846 1973071 1975320 1975441 "OREUP" 1975446 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-845 1970509 1972762 1972889 "ORESUP" 1973013 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-844 1968037 1968537 1969098 "OREPCTO" 1969998 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-843 1961861 1964028 1964069 "OREPCAT" 1966417 NIL OREPCAT (NIL T) -9 NIL 1967521 NIL) (-842 1959008 1959790 1960848 "OREPCAT-" 1960853 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-841 1958185 1958457 1958485 "ORDSET" 1958794 T ORDSET (NIL) -9 NIL 1958958 NIL) (-840 1957704 1957826 1958019 "ORDSET-" 1958024 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-839 1956338 1957095 1957123 "ORDRING" 1957325 T ORDRING (NIL) -9 NIL 1957450 NIL) (-838 1955983 1956077 1956221 "ORDRING-" 1956226 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-837 1955389 1955826 1955854 "ORDMON" 1955859 T ORDMON (NIL) -9 NIL 1955880 NIL) (-836 1954551 1954698 1954893 "ORDFUNS" 1955238 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-835 1953915 1954308 1954336 "ORDFIN" 1954401 T ORDFIN (NIL) -9 NIL 1954475 NIL) (-834 1950507 1952501 1952910 "ORDCOMP" 1953539 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-833 1949773 1949900 1950086 "ORDCOMP2" 1950367 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-832 1946381 1947264 1948078 "OPTPROB" 1948979 T OPTPROB (NIL) -8 NIL NIL NIL) (-831 1943183 1943822 1944526 "OPTPACK" 1945697 T OPTPACK (NIL) -7 NIL NIL NIL) (-830 1940896 1941636 1941664 "OPTCAT" 1942483 T OPTCAT (NIL) -9 NIL 1943133 NIL) (-829 1940339 1940573 1940678 "OPSIG" 1940811 T OPSIG (NIL) -8 NIL NIL NIL) (-828 1940107 1940146 1940212 "OPQUERY" 1940293 T OPQUERY (NIL) -7 NIL NIL NIL) (-827 1937273 1938418 1938922 "OP" 1939636 NIL OP (NIL T) -8 NIL NIL NIL) (-826 1936808 1936979 1937020 "OPERCAT" 1937155 NIL OPERCAT (NIL T) -9 NIL 1937223 NIL) (-825 1936654 1936681 1936767 "OPERCAT-" 1936772 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-824 1933499 1935451 1935820 "ONECOMP" 1936318 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-823 1932804 1932919 1933093 "ONECOMP2" 1933371 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-822 1932223 1932329 1932459 "OMSERVER" 1932694 T OMSERVER (NIL) -7 NIL NIL NIL) (-821 1929111 1931663 1931703 "OMSAGG" 1931764 NIL OMSAGG (NIL T) -9 NIL 1931828 NIL) (-820 1927734 1927997 1928279 "OMPKG" 1928849 T OMPKG (NIL) -7 NIL NIL NIL) (-819 1927164 1927267 1927295 "OM" 1927594 T OM (NIL) -9 NIL NIL NIL) (-818 1925746 1926713 1926882 "OMLO" 1927045 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-817 1924671 1924818 1925045 "OMEXPR" 1925572 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-816 1923989 1924217 1924353 "OMERR" 1924555 T OMERR (NIL) -8 NIL NIL NIL) (-815 1923167 1923410 1923570 "OMERRK" 1923849 T OMERRK (NIL) -8 NIL NIL NIL) (-814 1922645 1922844 1922952 "OMENC" 1923079 T OMENC (NIL) -8 NIL NIL NIL) (-813 1916540 1917725 1918896 "OMDEV" 1921494 T OMDEV (NIL) -8 NIL NIL NIL) (-812 1915609 1915780 1915974 "OMCONN" 1916366 T OMCONN (NIL) -8 NIL NIL NIL) (-811 1914230 1915172 1915200 "OINTDOM" 1915205 T OINTDOM (NIL) -9 NIL 1915226 NIL) (-810 1910036 1911220 1911936 "OFMONOID" 1913546 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-809 1909474 1909973 1910018 "ODVAR" 1910023 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-808 1906932 1909219 1909374 "ODR" 1909379 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-807 1899276 1906708 1906834 "ODPOL" 1906839 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-806 1893152 1899148 1899253 "ODP" 1899258 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-805 1891918 1892133 1892408 "ODETOOLS" 1892926 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-804 1888887 1889543 1890259 "ODESYS" 1891251 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-803 1883769 1884677 1885702 "ODERTRIC" 1887962 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-802 1883195 1883277 1883471 "ODERED" 1883681 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-801 1880083 1880631 1881308 "ODERAT" 1882618 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-800 1877043 1877507 1878104 "ODEPRRIC" 1879612 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-799 1875013 1875582 1876068 "ODEPROB" 1876577 T ODEPROB (NIL) -8 NIL NIL NIL) (-798 1871535 1872018 1872665 "ODEPRIM" 1874492 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-797 1870784 1870886 1871146 "ODEPAL" 1871427 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-796 1866946 1867737 1868601 "ODEPACK" 1869940 T ODEPACK (NIL) -7 NIL NIL NIL) (-795 1865979 1866086 1866315 "ODEINT" 1866835 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-794 1860080 1861505 1862952 "ODEIFTBL" 1864552 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-793 1855415 1856201 1857160 "ODEEF" 1859239 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-792 1854750 1854839 1855069 "ODECONST" 1855320 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-791 1852901 1853536 1853564 "ODECAT" 1854169 T ODECAT (NIL) -9 NIL 1854700 NIL) (-790 1849808 1852613 1852732 "OCT" 1852814 NIL OCT (NIL T) -8 NIL NIL NIL) (-789 1849446 1849489 1849616 "OCTCT2" 1849759 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-788 1844220 1846620 1846660 "OC" 1847757 NIL OC (NIL T) -9 NIL 1848615 NIL) (-787 1841447 1842195 1843185 "OC-" 1843279 NIL OC- (NIL T T) -8 NIL NIL NIL) (-786 1840825 1841267 1841295 "OCAMON" 1841300 T OCAMON (NIL) -9 NIL 1841321 NIL) (-785 1840382 1840697 1840725 "OASGP" 1840730 T OASGP (NIL) -9 NIL 1840750 NIL) (-784 1839669 1840132 1840160 "OAMONS" 1840200 T OAMONS (NIL) -9 NIL 1840243 NIL) (-783 1839109 1839516 1839544 "OAMON" 1839549 T OAMON (NIL) -9 NIL 1839569 NIL) (-782 1838413 1838905 1838933 "OAGROUP" 1838938 T OAGROUP (NIL) -9 NIL 1838958 NIL) (-781 1838103 1838153 1838241 "NUMTUBE" 1838357 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-780 1831676 1833194 1834730 "NUMQUAD" 1836587 T NUMQUAD (NIL) -7 NIL NIL NIL) (-779 1827432 1828420 1829445 "NUMODE" 1830671 T NUMODE (NIL) -7 NIL NIL NIL) (-778 1824813 1825667 1825695 "NUMINT" 1826618 T NUMINT (NIL) -9 NIL 1827382 NIL) (-777 1823761 1823958 1824176 "NUMFMT" 1824615 T NUMFMT (NIL) -7 NIL NIL NIL) (-776 1810120 1813065 1815597 "NUMERIC" 1821268 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-775 1804517 1809569 1809664 "NTSCAT" 1809669 NIL NTSCAT (NIL T T T T) -9 NIL 1809708 NIL) (-774 1803711 1803876 1804069 "NTPOLFN" 1804356 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-773 1791551 1800536 1801348 "NSUP" 1802932 NIL NSUP (NIL T) -8 NIL NIL NIL) (-772 1791183 1791240 1791349 "NSUP2" 1791488 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-771 1781180 1790957 1791090 "NSMP" 1791095 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-770 1779612 1779913 1780270 "NREP" 1780868 NIL NREP (NIL T) -7 NIL NIL NIL) (-769 1778203 1778455 1778813 "NPCOEF" 1779355 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-768 1777269 1777384 1777600 "NORMRETR" 1778084 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-767 1775310 1775600 1776009 "NORMPK" 1776977 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-766 1774995 1775023 1775147 "NORMMA" 1775276 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-765 1774822 1774952 1774981 "NONE" 1774986 T NONE (NIL) -8 NIL NIL NIL) (-764 1774611 1774640 1774709 "NONE1" 1774786 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-763 1774094 1774156 1774342 "NODE1" 1774543 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-762 1772365 1773188 1773443 "NNI" 1773790 T NNI (NIL) -8 NIL NIL 1774025) (-761 1770785 1771098 1771462 "NLINSOL" 1772033 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-760 1767053 1768021 1768920 "NIPROB" 1769906 T NIPROB (NIL) -8 NIL NIL NIL) (-759 1765810 1766044 1766346 "NFINTBAS" 1766815 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-758 1765250 1765460 1765501 "NETCLT" 1765673 NIL NETCLT (NIL T) -9 NIL 1765755 NIL) (-757 1763958 1764189 1764470 "NCODIV" 1765018 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-756 1763720 1763757 1763832 "NCNTFRAC" 1763915 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-755 1761900 1762264 1762684 "NCEP" 1763345 NIL NCEP (NIL T) -7 NIL NIL NIL) (-754 1760811 1761550 1761578 "NASRING" 1761688 T NASRING (NIL) -9 NIL 1761762 NIL) (-753 1760606 1760650 1760744 "NASRING-" 1760749 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-752 1759759 1760258 1760286 "NARNG" 1760403 T NARNG (NIL) -9 NIL 1760494 NIL) (-751 1759451 1759518 1759652 "NARNG-" 1759657 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-750 1758330 1758537 1758772 "NAGSP" 1759236 T NAGSP (NIL) -7 NIL NIL NIL) (-749 1749602 1751286 1752959 "NAGS" 1756677 T NAGS (NIL) -7 NIL NIL NIL) (-748 1748150 1748458 1748789 "NAGF07" 1749291 T NAGF07 (NIL) -7 NIL NIL NIL) (-747 1742688 1743979 1745286 "NAGF04" 1746863 T NAGF04 (NIL) -7 NIL NIL NIL) (-746 1735656 1737270 1738903 "NAGF02" 1741075 T NAGF02 (NIL) -7 NIL NIL NIL) (-745 1730880 1731980 1733097 "NAGF01" 1734559 T NAGF01 (NIL) -7 NIL NIL NIL) (-744 1724508 1726074 1727659 "NAGE04" 1729315 T NAGE04 (NIL) -7 NIL NIL NIL) (-743 1715677 1717798 1719928 "NAGE02" 1722398 T NAGE02 (NIL) -7 NIL NIL NIL) (-742 1711630 1712577 1713541 "NAGE01" 1714733 T NAGE01 (NIL) -7 NIL NIL NIL) (-741 1709425 1709959 1710517 "NAGD03" 1711092 T NAGD03 (NIL) -7 NIL NIL NIL) (-740 1701175 1703103 1705057 "NAGD02" 1707491 T NAGD02 (NIL) -7 NIL NIL NIL) (-739 1694986 1696411 1697851 "NAGD01" 1699755 T NAGD01 (NIL) -7 NIL NIL NIL) (-738 1691195 1692017 1692854 "NAGC06" 1694169 T NAGC06 (NIL) -7 NIL NIL NIL) (-737 1689660 1689992 1690348 "NAGC05" 1690859 T NAGC05 (NIL) -7 NIL NIL NIL) (-736 1689036 1689155 1689299 "NAGC02" 1689536 T NAGC02 (NIL) -7 NIL NIL NIL) (-735 1688096 1688653 1688693 "NAALG" 1688772 NIL NAALG (NIL T) -9 NIL 1688833 NIL) (-734 1687931 1687960 1688050 "NAALG-" 1688055 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-733 1681881 1682989 1684176 "MULTSQFR" 1686827 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-732 1681200 1681275 1681459 "MULTFACT" 1681793 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-731 1674293 1678163 1678216 "MTSCAT" 1679286 NIL MTSCAT (NIL T T) -9 NIL 1679800 NIL) (-730 1674005 1674059 1674151 "MTHING" 1674233 NIL MTHING (NIL T) -7 NIL NIL NIL) (-729 1673797 1673830 1673890 "MSYSCMD" 1673965 T MSYSCMD (NIL) -7 NIL NIL NIL) (-728 1669909 1672552 1672872 "MSET" 1673510 NIL MSET (NIL T) -8 NIL NIL NIL) (-727 1667004 1669470 1669511 "MSETAGG" 1669516 NIL MSETAGG (NIL T) -9 NIL 1669550 NIL) (-726 1662887 1664383 1665128 "MRING" 1666304 NIL MRING (NIL T T) -8 NIL NIL NIL) (-725 1662453 1662520 1662651 "MRF2" 1662814 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-724 1662071 1662106 1662250 "MRATFAC" 1662412 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-723 1659683 1659978 1660409 "MPRFF" 1661776 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-722 1653743 1659537 1659634 "MPOLY" 1659639 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-721 1653233 1653268 1653476 "MPCPF" 1653702 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-720 1652747 1652790 1652974 "MPC3" 1653184 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-719 1651942 1652023 1652244 "MPC2" 1652662 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-718 1650243 1650580 1650970 "MONOTOOL" 1651602 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-717 1649494 1649785 1649813 "MONOID" 1650032 T MONOID (NIL) -9 NIL 1650179 NIL) (-716 1649040 1649159 1649340 "MONOID-" 1649345 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-715 1639899 1645807 1645866 "MONOGEN" 1646540 NIL MONOGEN (NIL T T) -9 NIL 1646996 NIL) (-714 1637117 1637852 1638852 "MONOGEN-" 1638971 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-713 1635976 1636396 1636424 "MONADWU" 1636816 T MONADWU (NIL) -9 NIL 1637054 NIL) (-712 1635348 1635507 1635755 "MONADWU-" 1635760 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-711 1634733 1634951 1634979 "MONAD" 1635186 T MONAD (NIL) -9 NIL 1635298 NIL) (-710 1634418 1634496 1634628 "MONAD-" 1634633 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-709 1632734 1633331 1633610 "MOEBIUS" 1634171 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-708 1632126 1632504 1632544 "MODULE" 1632549 NIL MODULE (NIL T) -9 NIL 1632575 NIL) (-707 1631694 1631790 1631980 "MODULE-" 1631985 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-706 1629409 1630058 1630385 "MODRING" 1631518 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-705 1626395 1627514 1628035 "MODOP" 1628938 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-704 1625010 1625462 1625739 "MODMONOM" 1626258 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-703 1614817 1623301 1623715 "MODMON" 1624647 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-702 1612008 1613661 1613937 "MODFIELD" 1614692 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-701 1611012 1611289 1611479 "MMLFORM" 1611838 T MMLFORM (NIL) -8 NIL NIL NIL) (-700 1610538 1610581 1610760 "MMAP" 1610963 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-699 1608755 1609488 1609529 "MLO" 1609952 NIL MLO (NIL T) -9 NIL 1610194 NIL) (-698 1606122 1606637 1607239 "MLIFT" 1608236 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-697 1605513 1605597 1605751 "MKUCFUNC" 1606033 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-696 1605112 1605182 1605305 "MKRECORD" 1605436 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-695 1604160 1604321 1604549 "MKFUNC" 1604923 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-694 1603548 1603652 1603808 "MKFLCFN" 1604043 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-693 1603091 1603458 1603517 "MKCHSET" 1603522 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-692 1602368 1602470 1602655 "MKBCFUNC" 1602984 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-691 1599110 1601922 1602058 "MINT" 1602252 T MINT (NIL) -8 NIL NIL NIL) (-690 1597922 1598165 1598442 "MHROWRED" 1598865 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-689 1593348 1596457 1596862 "MFLOAT" 1597537 T MFLOAT (NIL) -8 NIL NIL NIL) (-688 1592705 1592781 1592952 "MFINFACT" 1593260 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-687 1589020 1589868 1590752 "MESH" 1591841 T MESH (NIL) -7 NIL NIL NIL) (-686 1587410 1587722 1588075 "MDDFACT" 1588707 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-685 1584252 1586569 1586610 "MDAGG" 1586865 NIL MDAGG (NIL T) -9 NIL 1587008 NIL) (-684 1574030 1583545 1583752 "MCMPLX" 1584065 T MCMPLX (NIL) -8 NIL NIL NIL) (-683 1573171 1573317 1573517 "MCDEN" 1573879 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-682 1571061 1571331 1571711 "MCALCFN" 1572901 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-681 1569986 1570226 1570459 "MAYBE" 1570867 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-680 1567598 1568121 1568683 "MATSTOR" 1569457 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-679 1563604 1566970 1567218 "MATRIX" 1567383 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-678 1559373 1560077 1560813 "MATLIN" 1562961 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-677 1549527 1552665 1552742 "MATCAT" 1557622 NIL MATCAT (NIL T T T) -9 NIL 1559039 NIL) (-676 1545891 1546904 1548260 "MATCAT-" 1548265 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-675 1544485 1544638 1544971 "MATCAT2" 1545726 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-674 1542597 1542921 1543305 "MAPPKG3" 1544160 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-673 1541578 1541751 1541973 "MAPPKG2" 1542421 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-672 1540077 1540361 1540688 "MAPPKG1" 1541284 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-671 1539183 1539483 1539660 "MAPPAST" 1539920 T MAPPAST (NIL) -8 NIL NIL NIL) (-670 1538794 1538852 1538975 "MAPHACK3" 1539119 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-669 1538386 1538447 1538561 "MAPHACK2" 1538726 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-668 1537824 1537927 1538069 "MAPHACK1" 1538277 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-667 1535930 1536524 1536828 "MAGMA" 1537552 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-666 1535436 1535654 1535745 "MACROAST" 1535859 T MACROAST (NIL) -8 NIL NIL NIL) (-665 1531903 1533675 1534136 "M3D" 1535008 NIL M3D (NIL T) -8 NIL NIL NIL) (-664 1526057 1530272 1530313 "LZSTAGG" 1531095 NIL LZSTAGG (NIL T) -9 NIL 1531390 NIL) (-663 1522031 1523188 1524645 "LZSTAGG-" 1524650 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-662 1519145 1519922 1520409 "LWORD" 1521576 NIL LWORD (NIL T) -8 NIL NIL NIL) (-661 1518748 1518949 1519024 "LSTAST" 1519090 T LSTAST (NIL) -8 NIL NIL NIL) (-660 1511949 1518519 1518653 "LSQM" 1518658 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-659 1511173 1511312 1511540 "LSPP" 1511804 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-658 1508985 1509286 1509742 "LSMP" 1510862 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-657 1505764 1506438 1507168 "LSMP1" 1508287 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-656 1499689 1504931 1504972 "LSAGG" 1505034 NIL LSAGG (NIL T) -9 NIL 1505112 NIL) (-655 1496384 1497308 1498521 "LSAGG-" 1498526 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-654 1494010 1495528 1495777 "LPOLY" 1496179 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-653 1493592 1493677 1493800 "LPEFRAC" 1493919 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-652 1491939 1492686 1492939 "LO" 1493424 NIL LO (NIL T T T) -8 NIL NIL NIL) (-651 1491591 1491703 1491731 "LOGIC" 1491842 T LOGIC (NIL) -9 NIL 1491923 NIL) (-650 1491453 1491476 1491547 "LOGIC-" 1491552 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-649 1490646 1490786 1490979 "LODOOPS" 1491309 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-648 1488104 1490562 1490628 "LODO" 1490633 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-647 1486642 1486877 1487230 "LODOF" 1487851 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-646 1482998 1485395 1485436 "LODOCAT" 1485874 NIL LODOCAT (NIL T) -9 NIL 1486085 NIL) (-645 1482731 1482789 1482916 "LODOCAT-" 1482921 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-644 1480086 1482572 1482690 "LODO2" 1482695 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-643 1477556 1480023 1480068 "LODO1" 1480073 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-642 1476416 1476581 1476893 "LODEEF" 1477379 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-641 1471702 1474546 1474587 "LNAGG" 1475534 NIL LNAGG (NIL T) -9 NIL 1475978 NIL) (-640 1470849 1471063 1471405 "LNAGG-" 1471410 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-639 1467012 1467774 1468413 "LMOPS" 1470264 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-638 1466407 1466769 1466810 "LMODULE" 1466871 NIL LMODULE (NIL T) -9 NIL 1466913 NIL) (-637 1463653 1466052 1466175 "LMDICT" 1466317 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-636 1463379 1463561 1463621 "LITERAL" 1463626 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-635 1456606 1462325 1462623 "LIST" 1463114 NIL LIST (NIL T) -8 NIL NIL NIL) (-634 1456131 1456205 1456344 "LIST3" 1456526 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-633 1455138 1455316 1455544 "LIST2" 1455949 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-632 1453272 1453584 1453983 "LIST2MAP" 1454785 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-631 1452002 1452638 1452679 "LINEXP" 1452934 NIL LINEXP (NIL T) -9 NIL 1453083 NIL) (-630 1450649 1450909 1451206 "LINDEP" 1451754 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-629 1447416 1448135 1448912 "LIMITRF" 1449904 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-628 1445692 1445987 1446403 "LIMITPS" 1447111 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-627 1440147 1445203 1445431 "LIE" 1445513 NIL LIE (NIL T T) -8 NIL NIL NIL) (-626 1439196 1439639 1439679 "LIECAT" 1439819 NIL LIECAT (NIL T) -9 NIL 1439970 NIL) (-625 1439037 1439064 1439152 "LIECAT-" 1439157 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-624 1431649 1438486 1438651 "LIB" 1438892 T LIB (NIL) -8 NIL NIL NIL) (-623 1427286 1428167 1429102 "LGROBP" 1430766 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-622 1425152 1425426 1425788 "LF" 1427007 NIL LF (NIL T T) -7 NIL NIL NIL) (-621 1423992 1424684 1424712 "LFCAT" 1424919 T LFCAT (NIL) -9 NIL 1425058 NIL) (-620 1420896 1421524 1422212 "LEXTRIPK" 1423356 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-619 1417667 1418466 1418969 "LEXP" 1420476 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-618 1417170 1417388 1417480 "LETAST" 1417595 T LETAST (NIL) -8 NIL NIL NIL) (-617 1415568 1415881 1416282 "LEADCDET" 1416852 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-616 1414758 1414832 1415061 "LAZM3PK" 1415489 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-615 1409713 1412835 1413373 "LAUPOL" 1414270 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-614 1409278 1409322 1409490 "LAPLACE" 1409663 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-613 1407252 1408379 1408630 "LA" 1409111 NIL LA (NIL T T T) -8 NIL NIL NIL) (-612 1406333 1406883 1406924 "LALG" 1406986 NIL LALG (NIL T) -9 NIL 1407045 NIL) (-611 1406047 1406106 1406242 "LALG-" 1406247 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-610 1405882 1405906 1405947 "KVTFROM" 1406009 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-609 1404685 1405099 1405328 "KTVLOGIC" 1405673 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-608 1404520 1404544 1404585 "KRCFROM" 1404647 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-607 1403424 1403611 1403910 "KOVACIC" 1404320 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-606 1403259 1403283 1403324 "KONVERT" 1403386 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-605 1403094 1403118 1403159 "KOERCE" 1403221 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-604 1400828 1401588 1401981 "KERNEL" 1402733 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-603 1400330 1400411 1400541 "KERNEL2" 1400742 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-602 1394181 1398869 1398923 "KDAGG" 1399300 NIL KDAGG (NIL T T) -9 NIL 1399506 NIL) (-601 1393710 1393834 1394039 "KDAGG-" 1394044 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1386885 1393371 1393526 "KAFILE" 1393588 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-599 1381340 1386396 1386624 "JORDAN" 1386706 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-598 1380746 1380989 1381110 "JOINAST" 1381239 T JOINAST (NIL) -8 NIL NIL NIL) (-597 1380592 1380651 1380706 "JAVACODE" 1380711 T JAVACODE (NIL) -8 NIL NIL NIL) (-596 1376891 1378797 1378851 "IXAGG" 1379780 NIL IXAGG (NIL T T) -9 NIL 1380239 NIL) (-595 1375810 1376116 1376535 "IXAGG-" 1376540 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-594 1371390 1375732 1375791 "IVECTOR" 1375796 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-593 1370156 1370393 1370659 "ITUPLE" 1371157 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-592 1368592 1368769 1369075 "ITRIGMNP" 1369978 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-591 1367337 1367541 1367824 "ITFUN3" 1368368 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-590 1366969 1367026 1367135 "ITFUN2" 1367274 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-589 1364806 1365831 1366130 "ITAYLOR" 1366703 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-588 1353789 1358943 1360106 "ISUPS" 1363676 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-587 1352893 1353033 1353269 "ISUMP" 1353636 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-586 1348157 1352694 1352773 "ISTRING" 1352846 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-585 1347660 1347878 1347970 "ISAST" 1348085 T ISAST (NIL) -8 NIL NIL NIL) (-584 1346870 1346951 1347167 "IRURPK" 1347574 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-583 1345806 1346007 1346247 "IRSN" 1346650 T IRSN (NIL) -7 NIL NIL NIL) (-582 1343835 1344190 1344626 "IRRF2F" 1345444 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-581 1343582 1343620 1343696 "IRREDFFX" 1343791 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-580 1342197 1342456 1342755 "IROOT" 1343315 NIL IROOT (NIL T) -7 NIL NIL NIL) (-579 1338829 1339881 1340573 "IR" 1341537 NIL IR (NIL T) -8 NIL NIL NIL) (-578 1336442 1336937 1337503 "IR2" 1338307 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-577 1335514 1335627 1335848 "IR2F" 1336325 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-576 1335305 1335339 1335399 "IPRNTPK" 1335474 T IPRNTPK (NIL) -7 NIL NIL NIL) (-575 1331924 1335194 1335263 "IPF" 1335268 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-574 1330287 1331849 1331906 "IPADIC" 1331911 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-573 1329627 1329847 1329977 "IP4ADDR" 1330177 T IP4ADDR (NIL) -8 NIL NIL NIL) (-572 1329127 1329331 1329441 "IOMODE" 1329537 T IOMODE (NIL) -8 NIL NIL NIL) (-571 1328475 1328724 1328851 "IOBFILE" 1329020 T IOBFILE (NIL) -8 NIL NIL NIL) (-570 1328216 1328379 1328407 "IOBCON" 1328412 T IOBCON (NIL) -9 NIL 1328433 NIL) (-569 1327713 1327771 1327961 "INVLAPLA" 1328152 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-568 1317362 1319715 1322101 "INTTR" 1325377 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-567 1313706 1314448 1315312 "INTTOOLS" 1316547 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-566 1313292 1313383 1313500 "INTSLPE" 1313609 T INTSLPE (NIL) -7 NIL NIL NIL) (-565 1311287 1313215 1313274 "INTRVL" 1313279 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-564 1308889 1309401 1309976 "INTRF" 1310772 NIL INTRF (NIL T) -7 NIL NIL NIL) (-563 1308300 1308397 1308539 "INTRET" 1308787 NIL INTRET (NIL T) -7 NIL NIL NIL) (-562 1306297 1306686 1307156 "INTRAT" 1307908 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-561 1303525 1304108 1304734 "INTPM" 1305782 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-560 1300228 1300827 1301572 "INTPAF" 1302911 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-559 1295407 1296369 1297420 "INTPACK" 1299197 T INTPACK (NIL) -7 NIL NIL NIL) (-558 1292319 1295136 1295263 "INT" 1295300 T INT (NIL) -8 NIL NIL NIL) (-557 1291571 1291723 1291931 "INTHERTR" 1292161 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-556 1291010 1291090 1291278 "INTHERAL" 1291485 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-555 1288856 1289299 1289756 "INTHEORY" 1290573 T INTHEORY (NIL) -7 NIL NIL NIL) (-554 1280164 1281785 1283564 "INTG0" 1287208 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-553 1260737 1265527 1270337 "INTFTBL" 1275374 T INTFTBL (NIL) -8 NIL NIL NIL) (-552 1259986 1260124 1260297 "INTFACT" 1260596 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-551 1257371 1257817 1258381 "INTEF" 1259540 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-550 1255838 1256543 1256571 "INTDOM" 1256872 T INTDOM (NIL) -9 NIL 1257079 NIL) (-549 1255207 1255381 1255623 "INTDOM-" 1255628 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-548 1251702 1253591 1253645 "INTCAT" 1254444 NIL INTCAT (NIL T) -9 NIL 1254764 NIL) (-547 1251175 1251277 1251405 "INTBIT" 1251594 T INTBIT (NIL) -7 NIL NIL NIL) (-546 1249846 1250000 1250314 "INTALG" 1251020 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-545 1249303 1249393 1249563 "INTAF" 1249750 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-544 1242757 1249113 1249253 "INTABL" 1249258 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-543 1237772 1240446 1240474 "INS" 1241408 T INS (NIL) -9 NIL 1242073 NIL) (-542 1235012 1235783 1236757 "INS-" 1236830 NIL INS- (NIL T) -8 NIL NIL NIL) (-541 1233787 1234014 1234312 "INPSIGN" 1234765 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-540 1232905 1233022 1233219 "INPRODPF" 1233667 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-539 1231799 1231916 1232153 "INPRODFF" 1232785 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-538 1230799 1230951 1231211 "INNMFACT" 1231635 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-537 1229996 1230093 1230281 "INMODGCD" 1230698 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-536 1228505 1228749 1229073 "INFSP" 1229741 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-535 1227689 1227806 1227989 "INFPROD0" 1228385 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-534 1224571 1225754 1226269 "INFORM" 1227182 T INFORM (NIL) -8 NIL NIL NIL) (-533 1224181 1224241 1224339 "INFORM1" 1224506 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-532 1223704 1223793 1223907 "INFINITY" 1224087 T INFINITY (NIL) -7 NIL NIL NIL) (-531 1223155 1223424 1223525 "INETCLTS" 1223623 T INETCLTS (NIL) -8 NIL NIL NIL) (-530 1221772 1222021 1222342 "INEP" 1222903 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-529 1221048 1221669 1221734 "INDE" 1221739 NIL INDE (NIL T) -8 NIL NIL NIL) (-528 1220612 1220680 1220797 "INCRMAPS" 1220975 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-527 1219625 1219881 1220087 "INBFILE" 1220426 T INBFILE (NIL) -8 NIL NIL NIL) (-526 1214936 1215861 1216805 "INBFF" 1218713 NIL INBFF (NIL T) -7 NIL NIL NIL) (-525 1214590 1214671 1214699 "INBCON" 1214837 T INBCON (NIL) -9 NIL 1214920 NIL) (-524 1214433 1214467 1214542 "INBCON-" 1214547 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-523 1213935 1214154 1214246 "INAST" 1214361 T INAST (NIL) -8 NIL NIL NIL) (-522 1213389 1213614 1213720 "IMPTAST" 1213849 T IMPTAST (NIL) -8 NIL NIL NIL) (-521 1209883 1213233 1213337 "IMATRIX" 1213342 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-520 1208595 1208718 1209033 "IMATQF" 1209739 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-519 1206815 1207042 1207379 "IMATLIN" 1208351 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-518 1201441 1206739 1206797 "ILIST" 1206802 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-517 1199394 1201301 1201414 "IIARRAY2" 1201419 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-516 1194827 1199305 1199369 "IFF" 1199374 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-515 1194201 1194444 1194560 "IFAST" 1194731 T IFAST (NIL) -8 NIL NIL NIL) (-514 1189244 1193493 1193681 "IFARRAY" 1194058 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-513 1188451 1189148 1189221 "IFAMON" 1189226 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-512 1188035 1188100 1188154 "IEVALAB" 1188361 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-511 1187710 1187778 1187938 "IEVALAB-" 1187943 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-510 1187368 1187624 1187687 "IDPO" 1187692 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-509 1186645 1187257 1187332 "IDPOAMS" 1187337 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-508 1185979 1186534 1186609 "IDPOAM" 1186614 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-507 1185064 1185314 1185367 "IDPC" 1185780 NIL IDPC (NIL T T) -9 NIL 1185929 NIL) (-506 1184560 1184956 1185029 "IDPAM" 1185034 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-505 1183963 1184452 1184525 "IDPAG" 1184530 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-504 1183731 1183878 1183928 "IDENT" 1183933 T IDENT (NIL) -8 NIL NIL NIL) (-503 1179986 1180834 1181729 "IDECOMP" 1182888 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-502 1172860 1173909 1174956 "IDEAL" 1179022 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-501 1172024 1172136 1172335 "ICDEN" 1172744 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-500 1171123 1171504 1171651 "ICARD" 1171897 T ICARD (NIL) -8 NIL NIL NIL) (-499 1169183 1169496 1169901 "IBPTOOLS" 1170800 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-498 1164817 1168803 1168916 "IBITS" 1169102 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-497 1161540 1162116 1162811 "IBATOOL" 1164234 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-496 1159320 1159781 1160314 "IBACHIN" 1161075 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-495 1157197 1159166 1159269 "IARRAY2" 1159274 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-494 1153350 1157123 1157180 "IARRAY1" 1157185 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-493 1147344 1151762 1152243 "IAN" 1152889 T IAN (NIL) -8 NIL NIL NIL) (-492 1146855 1146912 1147085 "IALGFACT" 1147281 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-491 1146383 1146496 1146524 "HYPCAT" 1146731 T HYPCAT (NIL) -9 NIL NIL NIL) (-490 1145921 1146038 1146224 "HYPCAT-" 1146229 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-489 1145543 1145716 1145799 "HOSTNAME" 1145858 T HOSTNAME (NIL) -8 NIL NIL NIL) (-488 1145388 1145425 1145466 "HOMOTOP" 1145471 NIL HOMOTOP (NIL T) -9 NIL 1145504 NIL) (-487 1142067 1143398 1143439 "HOAGG" 1144420 NIL HOAGG (NIL T) -9 NIL 1145099 NIL) (-486 1140661 1141060 1141586 "HOAGG-" 1141591 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-485 1134703 1140258 1140406 "HEXADEC" 1140533 T HEXADEC (NIL) -8 NIL NIL NIL) (-484 1133451 1133673 1133936 "HEUGCD" 1134480 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-483 1132554 1133288 1133418 "HELLFDIV" 1133423 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-482 1130782 1132331 1132419 "HEAP" 1132498 NIL HEAP (NIL T) -8 NIL NIL NIL) (-481 1130073 1130334 1130468 "HEADAST" 1130668 T HEADAST (NIL) -8 NIL NIL NIL) (-480 1123993 1129988 1130050 "HDP" 1130055 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-479 1117744 1123628 1123780 "HDMP" 1123894 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-478 1117069 1117208 1117372 "HB" 1117600 T HB (NIL) -7 NIL NIL NIL) (-477 1110566 1116915 1117019 "HASHTBL" 1117024 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-476 1110069 1110287 1110379 "HASAST" 1110494 T HASAST (NIL) -8 NIL NIL NIL) (-475 1107881 1109691 1109873 "HACKPI" 1109907 T HACKPI (NIL) -8 NIL NIL NIL) (-474 1103576 1107734 1107847 "GTSET" 1107852 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-473 1097102 1103454 1103552 "GSTBL" 1103557 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-472 1089415 1096133 1096398 "GSERIES" 1096893 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-471 1088582 1088973 1089001 "GROUP" 1089204 T GROUP (NIL) -9 NIL 1089338 NIL) (-470 1087948 1088107 1088358 "GROUP-" 1088363 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-469 1086317 1086636 1087023 "GROEBSOL" 1087625 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-468 1085257 1085519 1085570 "GRMOD" 1086099 NIL GRMOD (NIL T T) -9 NIL 1086267 NIL) (-467 1085025 1085061 1085189 "GRMOD-" 1085194 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-466 1080351 1081379 1082379 "GRIMAGE" 1084045 T GRIMAGE (NIL) -8 NIL NIL NIL) (-465 1078818 1079078 1079402 "GRDEF" 1080047 T GRDEF (NIL) -7 NIL NIL NIL) (-464 1078262 1078378 1078519 "GRAY" 1078697 T GRAY (NIL) -7 NIL NIL NIL) (-463 1077475 1077855 1077906 "GRALG" 1078059 NIL GRALG (NIL T T) -9 NIL 1078152 NIL) (-462 1077136 1077209 1077372 "GRALG-" 1077377 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-461 1073940 1076721 1076899 "GPOLSET" 1077043 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-460 1073294 1073351 1073609 "GOSPER" 1073877 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-459 1069053 1069732 1070258 "GMODPOL" 1072993 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-458 1068058 1068242 1068480 "GHENSEL" 1068865 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-457 1062109 1062952 1063979 "GENUPS" 1067142 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-456 1061806 1061857 1061946 "GENUFACT" 1062052 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-455 1061218 1061295 1061460 "GENPGCD" 1061724 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-454 1060692 1060727 1060940 "GENMFACT" 1061177 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-453 1059260 1059515 1059822 "GENEEZ" 1060435 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-452 1053173 1058871 1059033 "GDMP" 1059183 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-451 1042550 1046944 1048050 "GCNAALG" 1052156 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-450 1040977 1041805 1041833 "GCDDOM" 1042088 T GCDDOM (NIL) -9 NIL 1042245 NIL) (-449 1040447 1040574 1040789 "GCDDOM-" 1040794 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-448 1039119 1039304 1039608 "GB" 1040226 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-447 1027739 1030065 1032457 "GBINTERN" 1036810 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-446 1025576 1025868 1026289 "GBF" 1027414 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-445 1024357 1024522 1024789 "GBEUCLID" 1025392 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-444 1023706 1023831 1023980 "GAUSSFAC" 1024228 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-443 1022073 1022375 1022689 "GALUTIL" 1023425 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-442 1020381 1020655 1020979 "GALPOLYU" 1021800 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-441 1017746 1018036 1018443 "GALFACTU" 1020078 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-440 1009552 1011051 1012659 "GALFACT" 1016178 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-439 1006940 1007598 1007626 "FVFUN" 1008782 T FVFUN (NIL) -9 NIL 1009502 NIL) (-438 1006206 1006388 1006416 "FVC" 1006707 T FVC (NIL) -9 NIL 1006890 NIL) (-437 1005848 1006003 1006084 "FUNCTION" 1006158 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-436 1003619 1004170 1004636 "FT" 1005402 T FT (NIL) -8 NIL NIL NIL) (-435 1002437 1002920 1003123 "FTEM" 1003436 T FTEM (NIL) -8 NIL NIL NIL) (-434 1000693 1000982 1001386 "FSUPFACT" 1002128 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-433 999090 999379 999711 "FST" 1000381 T FST (NIL) -8 NIL NIL NIL) (-432 998261 998367 998562 "FSRED" 998972 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-431 996940 997195 997549 "FSPRMELT" 997976 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-430 994025 994463 994962 "FSPECF" 996503 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-429 976085 984528 984568 "FS" 988416 NIL FS (NIL T) -9 NIL 990705 NIL) (-428 964735 967725 971781 "FS-" 972078 NIL FS- (NIL T T) -8 NIL NIL NIL) (-427 964249 964303 964480 "FSINT" 964676 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-426 962576 963242 963545 "FSERIES" 964028 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-425 961590 961706 961937 "FSCINT" 962456 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-424 957824 960534 960575 "FSAGG" 960945 NIL FSAGG (NIL T) -9 NIL 961204 NIL) (-423 955586 956187 956983 "FSAGG-" 957078 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-422 954628 954771 954998 "FSAGG2" 955439 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-421 952283 952562 953116 "FS2UPS" 954346 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-420 951865 951908 952063 "FS2" 952234 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-419 950722 950893 951202 "FS2EXPXP" 951690 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-418 950148 950263 950415 "FRUTIL" 950602 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-417 941603 945643 947001 "FR" 948822 NIL FR (NIL T) -8 NIL NIL NIL) (-416 936678 939321 939361 "FRNAALG" 940757 NIL FRNAALG (NIL T) -9 NIL 941364 NIL) (-415 932356 933427 934702 "FRNAALG-" 935452 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-414 931994 932037 932164 "FRNAAF2" 932307 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-413 930401 930848 931143 "FRMOD" 931806 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-412 928180 928784 929101 "FRIDEAL" 930192 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-411 927375 927462 927751 "FRIDEAL2" 928087 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-410 926508 926922 926963 "FRETRCT" 926968 NIL FRETRCT (NIL T) -9 NIL 927144 NIL) (-409 925620 925851 926202 "FRETRCT-" 926207 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-408 922832 924008 924067 "FRAMALG" 924949 NIL FRAMALG (NIL T T) -9 NIL 925241 NIL) (-407 920966 921421 922051 "FRAMALG-" 922274 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-406 914924 920441 920717 "FRAC" 920722 NIL FRAC (NIL T) -8 NIL NIL NIL) (-405 914560 914617 914724 "FRAC2" 914861 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-404 914196 914253 914360 "FR2" 914497 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-403 908869 911721 911749 "FPS" 912868 T FPS (NIL) -9 NIL 913425 NIL) (-402 908318 908427 908591 "FPS-" 908737 NIL FPS- (NIL T) -8 NIL NIL NIL) (-401 905772 907407 907435 "FPC" 907660 T FPC (NIL) -9 NIL 907802 NIL) (-400 905565 905605 905702 "FPC-" 905707 NIL FPC- (NIL T) -8 NIL NIL NIL) (-399 904443 905053 905094 "FPATMAB" 905099 NIL FPATMAB (NIL T) -9 NIL 905251 NIL) (-398 902143 902619 903045 "FPARFRAC" 904080 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-397 897537 898035 898717 "FORTRAN" 901575 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-396 895253 895753 896292 "FORT" 897018 T FORT (NIL) -7 NIL NIL NIL) (-395 892929 893491 893519 "FORTFN" 894579 T FORTFN (NIL) -9 NIL 895203 NIL) (-394 892693 892743 892771 "FORTCAT" 892830 T FORTCAT (NIL) -9 NIL 892892 NIL) (-393 890826 891309 891699 "FORMULA" 892323 T FORMULA (NIL) -8 NIL NIL NIL) (-392 890614 890644 890713 "FORMULA1" 890790 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-391 890137 890189 890362 "FORDER" 890556 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-390 889233 889397 889590 "FOP" 889964 T FOP (NIL) -7 NIL NIL NIL) (-389 887841 888513 888687 "FNLA" 889115 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-388 886596 886985 887013 "FNCAT" 887473 T FNCAT (NIL) -9 NIL 887733 NIL) (-387 886162 886555 886583 "FNAME" 886588 T FNAME (NIL) -8 NIL NIL NIL) (-386 884825 885754 885782 "FMTC" 885787 T FMTC (NIL) -9 NIL 885823 NIL) (-385 881187 882348 882977 "FMONOID" 884229 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-384 880406 880929 881078 "FM" 881083 NIL FM (NIL T T) -8 NIL NIL NIL) (-383 877830 878476 878504 "FMFUN" 879648 T FMFUN (NIL) -9 NIL 880356 NIL) (-382 877099 877280 877308 "FMC" 877598 T FMC (NIL) -9 NIL 877780 NIL) (-381 874293 875127 875181 "FMCAT" 876376 NIL FMCAT (NIL T T) -9 NIL 876871 NIL) (-380 873186 874059 874159 "FM1" 874238 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-379 870960 871376 871870 "FLOATRP" 872737 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-378 864584 868689 869310 "FLOAT" 870359 T FLOAT (NIL) -8 NIL NIL NIL) (-377 862022 862522 863100 "FLOATCP" 864051 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-376 860831 861635 861676 "FLINEXP" 861681 NIL FLINEXP (NIL T) -9 NIL 861774 NIL) (-375 859985 860220 860548 "FLINEXP-" 860553 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-374 859061 859205 859429 "FLASORT" 859837 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-373 856278 857120 857172 "FLALG" 858399 NIL FLALG (NIL T T) -9 NIL 858866 NIL) (-372 850062 853764 853805 "FLAGG" 855067 NIL FLAGG (NIL T) -9 NIL 855719 NIL) (-371 848788 849127 849617 "FLAGG-" 849622 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-370 847830 847973 848200 "FLAGG2" 848641 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 844805 845779 845838 "FINRALG" 846966 NIL FINRALG (NIL T T) -9 NIL 847474 NIL) (-368 843965 844194 844533 "FINRALG-" 844538 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-367 843371 843584 843612 "FINITE" 843808 T FINITE (NIL) -9 NIL 843915 NIL) (-366 835829 837990 838030 "FINAALG" 841697 NIL FINAALG (NIL T) -9 NIL 843150 NIL) (-365 831170 832211 833355 "FINAALG-" 834734 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-364 830565 830925 831028 "FILE" 831100 NIL FILE (NIL T) -8 NIL NIL NIL) (-363 829249 829561 829615 "FILECAT" 830299 NIL FILECAT (NIL T T) -9 NIL 830515 NIL) (-362 827117 828611 828639 "FIELD" 828679 T FIELD (NIL) -9 NIL 828759 NIL) (-361 825737 826122 826633 "FIELD-" 826638 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-360 823615 824372 824719 "FGROUP" 825423 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-359 822705 822869 823089 "FGLMICPK" 823447 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-358 818572 822630 822687 "FFX" 822692 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-357 818173 818234 818369 "FFSLPE" 818505 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-356 814166 814945 815741 "FFPOLY" 817409 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-355 813670 813706 813915 "FFPOLY2" 814124 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-354 809556 813589 813652 "FFP" 813657 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-353 804989 809467 809531 "FF" 809536 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 800150 804332 804522 "FFNBX" 804843 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-351 795124 799285 799543 "FFNBP" 800004 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-350 789792 794408 794619 "FFNB" 794957 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-349 788624 788822 789137 "FFINTBAS" 789589 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-348 784852 787031 787059 "FFIELDC" 787679 T FFIELDC (NIL) -9 NIL 788055 NIL) (-347 783515 783885 784382 "FFIELDC-" 784387 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-346 783085 783130 783254 "FFHOM" 783457 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-345 780783 781267 781784 "FFF" 782600 NIL FFF (NIL T) -7 NIL NIL NIL) (-344 776436 780525 780626 "FFCGX" 780726 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-343 772103 776168 776275 "FFCGP" 776379 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-342 767321 771830 771938 "FFCG" 772039 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-341 749154 758192 758278 "FFCAT" 763443 NIL FFCAT (NIL T T T) -9 NIL 764894 NIL) (-340 744352 745399 746713 "FFCAT-" 747943 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-339 743763 743806 744041 "FFCAT2" 744303 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-338 732975 736735 737955 "FEXPR" 742615 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-337 731975 732410 732451 "FEVALAB" 732535 NIL FEVALAB (NIL T) -9 NIL 732796 NIL) (-336 731134 731344 731682 "FEVALAB-" 731687 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-335 729727 730517 730720 "FDIV" 731033 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-334 726793 727508 727623 "FDIVCAT" 729191 NIL FDIVCAT (NIL T T T T) -9 NIL 729628 NIL) (-333 726555 726582 726752 "FDIVCAT-" 726757 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-332 725775 725862 726139 "FDIV2" 726462 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-331 724461 724720 725009 "FCPAK1" 725506 T FCPAK1 (NIL) -7 NIL NIL NIL) (-330 723589 723961 724102 "FCOMP" 724352 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-329 707326 710739 714277 "FC" 720071 T FC (NIL) -8 NIL NIL NIL) (-328 699905 703890 703930 "FAXF" 705732 NIL FAXF (NIL T) -9 NIL 706424 NIL) (-327 697184 697839 698664 "FAXF-" 699129 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-326 692284 696560 696736 "FARRAY" 697041 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-325 687537 689569 689622 "FAMR" 690645 NIL FAMR (NIL T T) -9 NIL 691105 NIL) (-324 686427 686729 687164 "FAMR-" 687169 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-323 685623 686349 686402 "FAMONOID" 686407 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-322 683435 684119 684172 "FAMONC" 685113 NIL FAMONC (NIL T T) -9 NIL 685499 NIL) (-321 682127 683189 683326 "FAGROUP" 683331 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-320 679922 680241 680644 "FACUTIL" 681808 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-319 679021 679206 679428 "FACTFUNC" 679732 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-318 671426 678272 678484 "EXPUPXS" 678877 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-317 668909 669449 670035 "EXPRTUBE" 670860 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-316 665103 665695 666432 "EXPRODE" 668248 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-315 650477 663758 664186 "EXPR" 664707 NIL EXPR (NIL T) -8 NIL NIL NIL) (-314 644884 645471 646284 "EXPR2UPS" 649775 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-313 644520 644577 644684 "EXPR2" 644821 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-312 635925 643652 643949 "EXPEXPAN" 644357 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-311 635752 635882 635911 "EXIT" 635916 T EXIT (NIL) -8 NIL NIL NIL) (-310 635259 635476 635567 "EXITAST" 635681 T EXITAST (NIL) -8 NIL NIL NIL) (-309 634886 634948 635061 "EVALCYC" 635191 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-308 634427 634545 634586 "EVALAB" 634756 NIL EVALAB (NIL T) -9 NIL 634860 NIL) (-307 633908 634030 634251 "EVALAB-" 634256 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-306 631376 632644 632672 "EUCDOM" 633227 T EUCDOM (NIL) -9 NIL 633577 NIL) (-305 629781 630223 630813 "EUCDOM-" 630818 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-304 617321 620079 622829 "ESTOOLS" 627051 T ESTOOLS (NIL) -7 NIL NIL NIL) (-303 616953 617010 617119 "ESTOOLS2" 617258 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-302 616704 616746 616826 "ESTOOLS1" 616905 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-301 610609 612337 612365 "ES" 615133 T ES (NIL) -9 NIL 616542 NIL) (-300 605557 606843 608660 "ES-" 608824 NIL ES- (NIL T) -8 NIL NIL NIL) (-299 601932 602692 603472 "ESCONT" 604797 T ESCONT (NIL) -7 NIL NIL NIL) (-298 601677 601709 601791 "ESCONT1" 601894 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-297 601352 601402 601502 "ES2" 601621 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-296 600982 601040 601149 "ES1" 601288 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-295 600198 600327 600503 "ERROR" 600826 T ERROR (NIL) -7 NIL NIL NIL) (-294 593701 600057 600148 "EQTBL" 600153 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-293 586258 589015 590464 "EQ" 592285 NIL -3297 (NIL T) -8 NIL NIL NIL) (-292 585890 585947 586056 "EQ2" 586195 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-291 581182 582228 583321 "EP" 584829 NIL EP (NIL T) -7 NIL NIL NIL) (-290 579764 580065 580382 "ENV" 580885 T ENV (NIL) -8 NIL NIL NIL) (-289 578943 579463 579491 "ENTIRER" 579496 T ENTIRER (NIL) -9 NIL 579542 NIL) (-288 575445 576898 577268 "EMR" 578742 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-287 574589 574774 574828 "ELTAGG" 575208 NIL ELTAGG (NIL T T) -9 NIL 575419 NIL) (-286 574308 574370 574511 "ELTAGG-" 574516 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-285 574097 574126 574180 "ELTAB" 574264 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-284 573223 573369 573568 "ELFUTS" 573948 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-283 572965 573021 573049 "ELEMFUN" 573154 T ELEMFUN (NIL) -9 NIL NIL NIL) (-282 572835 572856 572924 "ELEMFUN-" 572929 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-281 567726 570935 570976 "ELAGG" 571916 NIL ELAGG (NIL T) -9 NIL 572379 NIL) (-280 566011 566445 567108 "ELAGG-" 567113 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-279 564668 564948 565243 "ELABEXPR" 565736 T ELABEXPR (NIL) -8 NIL NIL NIL) (-278 557534 559335 560162 "EFUPXS" 563944 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-277 550984 552785 553595 "EFULS" 556810 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-276 548406 548764 549243 "EFSTRUC" 550616 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-275 537478 539043 540603 "EF" 546921 NIL EF (NIL T T) -7 NIL NIL NIL) (-274 536579 536963 537112 "EAB" 537349 T EAB (NIL) -8 NIL NIL NIL) (-273 535788 536538 536566 "E04UCFA" 536571 T E04UCFA (NIL) -8 NIL NIL NIL) (-272 534997 535747 535775 "E04NAFA" 535780 T E04NAFA (NIL) -8 NIL NIL NIL) (-271 534206 534956 534984 "E04MBFA" 534989 T E04MBFA (NIL) -8 NIL NIL NIL) (-270 533415 534165 534193 "E04JAFA" 534198 T E04JAFA (NIL) -8 NIL NIL NIL) (-269 532626 533374 533402 "E04GCFA" 533407 T E04GCFA (NIL) -8 NIL NIL NIL) (-268 531837 532585 532613 "E04FDFA" 532618 T E04FDFA (NIL) -8 NIL NIL NIL) (-267 531046 531796 531824 "E04DGFA" 531829 T E04DGFA (NIL) -8 NIL NIL NIL) (-266 525224 526571 527935 "E04AGNT" 529702 T E04AGNT (NIL) -7 NIL NIL NIL) (-265 523930 524410 524450 "DVARCAT" 524925 NIL DVARCAT (NIL T) -9 NIL 525124 NIL) (-264 523134 523346 523660 "DVARCAT-" 523665 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-263 516034 522933 523062 "DSMP" 523067 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-262 510844 511979 513047 "DROPT" 514986 T DROPT (NIL) -8 NIL NIL NIL) (-261 510509 510568 510666 "DROPT1" 510779 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-260 505624 506750 507887 "DROPT0" 509392 T DROPT0 (NIL) -7 NIL NIL NIL) (-259 503969 504294 504680 "DRAWPT" 505258 T DRAWPT (NIL) -7 NIL NIL NIL) (-258 498556 499479 500558 "DRAW" 502943 NIL DRAW (NIL T) -7 NIL NIL NIL) (-257 498189 498242 498360 "DRAWHACK" 498497 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-256 496920 497189 497480 "DRAWCX" 497918 T DRAWCX (NIL) -7 NIL NIL NIL) (-255 496436 496504 496655 "DRAWCURV" 496846 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-254 486907 488866 490981 "DRAWCFUN" 494341 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-253 483720 485602 485643 "DQAGG" 486272 NIL DQAGG (NIL T) -9 NIL 486545 NIL) (-252 471999 478698 478781 "DPOLCAT" 480633 NIL DPOLCAT (NIL T T T T) -9 NIL 481178 NIL) (-251 466838 468184 470142 "DPOLCAT-" 470147 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-250 459993 466699 466797 "DPMO" 466802 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-249 453051 459773 459940 "DPMM" 459945 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-248 452715 452970 453018 "DOMCTOR" 453023 T DOMCTOR (NIL) -8 NIL NIL NIL) (-247 452010 452237 452374 "DOMAIN" 452598 T DOMAIN (NIL) -8 NIL NIL NIL) (-246 445761 451645 451797 "DMP" 451911 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-245 445361 445417 445561 "DLP" 445699 NIL DLP (NIL T) -7 NIL NIL NIL) (-244 439231 444688 444878 "DLIST" 445203 NIL DLIST (NIL T) -8 NIL NIL NIL) (-243 436075 438084 438125 "DLAGG" 438675 NIL DLAGG (NIL T) -9 NIL 438905 NIL) (-242 434888 435518 435546 "DIVRING" 435638 T DIVRING (NIL) -9 NIL 435721 NIL) (-241 434125 434315 434615 "DIVRING-" 434620 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-240 432227 432584 432990 "DISPLAY" 433739 T DISPLAY (NIL) -7 NIL NIL NIL) (-239 426169 432141 432204 "DIRPROD" 432209 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 425017 425220 425485 "DIRPROD2" 425962 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-237 414280 420232 420285 "DIRPCAT" 420695 NIL DIRPCAT (NIL NIL T) -9 NIL 421535 NIL) (-236 411606 412248 413129 "DIRPCAT-" 413466 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-235 410893 411053 411239 "DIOSP" 411440 T DIOSP (NIL) -7 NIL NIL NIL) (-234 407595 409805 409846 "DIOPS" 410280 NIL DIOPS (NIL T) -9 NIL 410509 NIL) (-233 407144 407258 407449 "DIOPS-" 407454 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-232 406036 406630 406658 "DIFRING" 406845 T DIFRING (NIL) -9 NIL 406955 NIL) (-231 405682 405759 405911 "DIFRING-" 405916 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-230 403487 404725 404766 "DIFEXT" 405129 NIL DIFEXT (NIL T) -9 NIL 405423 NIL) (-229 401772 402200 402866 "DIFEXT-" 402871 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-228 399094 401304 401345 "DIAGG" 401350 NIL DIAGG (NIL T) -9 NIL 401370 NIL) (-227 398478 398635 398887 "DIAGG-" 398892 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-226 393943 397437 397714 "DHMATRIX" 398247 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-225 389555 390464 391474 "DFSFUN" 392953 T DFSFUN (NIL) -7 NIL NIL NIL) (-224 384671 388486 388798 "DFLOAT" 389263 T DFLOAT (NIL) -8 NIL NIL NIL) (-223 382899 383180 383576 "DFINTTLS" 384379 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-222 379964 380920 381320 "DERHAM" 382565 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-221 377813 379739 379828 "DEQUEUE" 379908 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-220 377028 377161 377357 "DEGRED" 377675 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-219 373423 374168 375021 "DEFINTRF" 376256 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-218 370950 371419 372018 "DEFINTEF" 372942 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-217 370327 370570 370685 "DEFAST" 370855 T DEFAST (NIL) -8 NIL NIL NIL) (-216 364369 369924 370072 "DECIMAL" 370199 T DECIMAL (NIL) -8 NIL NIL NIL) (-215 361881 362339 362845 "DDFACT" 363913 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-214 361477 361520 361671 "DBLRESP" 361832 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-213 359376 359710 360070 "DBASE" 361244 NIL DBASE (NIL T) -8 NIL NIL NIL) (-212 358645 358856 359002 "DATAARY" 359275 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-211 357778 358604 358632 "D03FAFA" 358637 T D03FAFA (NIL) -8 NIL NIL NIL) (-210 356912 357737 357765 "D03EEFA" 357770 T D03EEFA (NIL) -8 NIL NIL NIL) (-209 354862 355328 355817 "D03AGNT" 356443 T D03AGNT (NIL) -7 NIL NIL NIL) (-208 354178 354821 354849 "D02EJFA" 354854 T D02EJFA (NIL) -8 NIL NIL NIL) (-207 353494 354137 354165 "D02CJFA" 354170 T D02CJFA (NIL) -8 NIL NIL NIL) (-206 352810 353453 353481 "D02BHFA" 353486 T D02BHFA (NIL) -8 NIL NIL NIL) (-205 352126 352769 352797 "D02BBFA" 352802 T D02BBFA (NIL) -8 NIL NIL NIL) (-204 345324 346912 348518 "D02AGNT" 350540 T D02AGNT (NIL) -7 NIL NIL NIL) (-203 343093 343615 344161 "D01WGTS" 344798 T D01WGTS (NIL) -7 NIL NIL NIL) (-202 342188 343052 343080 "D01TRNS" 343085 T D01TRNS (NIL) -8 NIL NIL NIL) (-201 341283 342147 342175 "D01GBFA" 342180 T D01GBFA (NIL) -8 NIL NIL NIL) (-200 340378 341242 341270 "D01FCFA" 341275 T D01FCFA (NIL) -8 NIL NIL NIL) (-199 339473 340337 340365 "D01ASFA" 340370 T D01ASFA (NIL) -8 NIL NIL NIL) (-198 338568 339432 339460 "D01AQFA" 339465 T D01AQFA (NIL) -8 NIL NIL NIL) (-197 337663 338527 338555 "D01APFA" 338560 T D01APFA (NIL) -8 NIL NIL NIL) (-196 336758 337622 337650 "D01ANFA" 337655 T D01ANFA (NIL) -8 NIL NIL NIL) (-195 335853 336717 336745 "D01AMFA" 336750 T D01AMFA (NIL) -8 NIL NIL NIL) (-194 334948 335812 335840 "D01ALFA" 335845 T D01ALFA (NIL) -8 NIL NIL NIL) (-193 334043 334907 334935 "D01AKFA" 334940 T D01AKFA (NIL) -8 NIL NIL NIL) (-192 333138 334002 334030 "D01AJFA" 334035 T D01AJFA (NIL) -8 NIL NIL NIL) (-191 326435 327986 329547 "D01AGNT" 331597 T D01AGNT (NIL) -7 NIL NIL NIL) (-190 325772 325900 326052 "CYCLOTOM" 326303 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-189 322507 323220 323947 "CYCLES" 325065 T CYCLES (NIL) -7 NIL NIL NIL) (-188 321819 321953 322124 "CVMP" 322368 NIL CVMP (NIL T) -7 NIL NIL NIL) (-187 319590 319848 320224 "CTRIGMNP" 321547 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-186 319313 319549 319577 "CTOR" 319582 T CTOR (NIL) -8 NIL NIL NIL) (-185 318849 319044 319145 "CTORKIND" 319232 T CTORKIND (NIL) -8 NIL NIL NIL) (-184 318320 318548 318576 "CTORCAT" 318696 T CTORCAT (NIL) -9 NIL 318779 NIL) (-183 318015 318095 318221 "CTORCAT-" 318226 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-182 317531 317718 317816 "CTORCALL" 317937 T CTORCALL (NIL) -8 NIL NIL NIL) (-181 316905 317004 317157 "CSTTOOLS" 317428 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-180 312704 313361 314119 "CRFP" 316217 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-179 312206 312425 312517 "CRCEAST" 312632 T CRCEAST (NIL) -8 NIL NIL NIL) (-178 311253 311438 311666 "CRAPACK" 312010 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-177 310637 310738 310942 "CPMATCH" 311129 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-176 310362 310390 310496 "CPIMA" 310603 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-175 306726 307398 308116 "COORDSYS" 309697 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-174 306110 306239 306389 "CONTOUR" 306596 T CONTOUR (NIL) -8 NIL NIL NIL) (-173 302036 304113 304605 "CONTFRAC" 305650 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-172 301916 301937 301965 "CONDUIT" 302002 T CONDUIT (NIL) -9 NIL NIL NIL) (-171 301089 301609 301637 "COMRING" 301642 T COMRING (NIL) -9 NIL 301694 NIL) (-170 300170 300447 300631 "COMPPROP" 300925 T COMPPROP (NIL) -8 NIL NIL NIL) (-169 299831 299866 299994 "COMPLPAT" 300129 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-168 289888 299640 299749 "COMPLEX" 299754 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 289524 289581 289688 "COMPLEX2" 289825 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-166 289242 289277 289375 "COMPFACT" 289483 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-165 273415 283635 283675 "COMPCAT" 284679 NIL COMPCAT (NIL T) -9 NIL 286064 NIL) (-164 262931 265854 269481 "COMPCAT-" 269837 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-163 262660 262688 262791 "COMMUPC" 262897 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-162 262455 262488 262547 "COMMONOP" 262621 T COMMONOP (NIL) -7 NIL NIL NIL) (-161 262038 262206 262293 "COMM" 262388 T COMM (NIL) -8 NIL NIL NIL) (-160 261642 261842 261917 "COMMAAST" 261983 T COMMAAST (NIL) -8 NIL NIL NIL) (-159 260891 261085 261113 "COMBOPC" 261451 T COMBOPC (NIL) -9 NIL 261626 NIL) (-158 259787 259997 260239 "COMBINAT" 260681 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-157 255985 256558 257198 "COMBF" 259209 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-156 254771 255101 255336 "COLOR" 255770 T COLOR (NIL) -8 NIL NIL NIL) (-155 254274 254492 254584 "COLONAST" 254699 T COLONAST (NIL) -8 NIL NIL NIL) (-154 253914 253961 254086 "CMPLXRT" 254221 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-153 253389 253614 253713 "CLLCTAST" 253835 T CLLCTAST (NIL) -8 NIL NIL NIL) (-152 248891 249919 250999 "CLIP" 252329 T CLIP (NIL) -7 NIL NIL NIL) (-151 247273 247997 248236 "CLIF" 248718 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-150 243495 245419 245460 "CLAGG" 246389 NIL CLAGG (NIL T) -9 NIL 246925 NIL) (-149 241917 242374 242957 "CLAGG-" 242962 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-148 241461 241546 241686 "CINTSLPE" 241826 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-147 238962 239433 239981 "CHVAR" 240989 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-146 238205 238725 238753 "CHARZ" 238758 T CHARZ (NIL) -9 NIL 238773 NIL) (-145 237959 237999 238077 "CHARPOL" 238159 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-144 237086 237639 237667 "CHARNZ" 237714 T CHARNZ (NIL) -9 NIL 237770 NIL) (-143 235075 235776 236111 "CHAR" 236771 T CHAR (NIL) -8 NIL NIL NIL) (-142 234801 234862 234890 "CFCAT" 235001 T CFCAT (NIL) -9 NIL NIL NIL) (-141 234046 234157 234339 "CDEN" 234685 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-140 230038 233199 233479 "CCLASS" 233786 T CCLASS (NIL) -8 NIL NIL NIL) (-139 229345 229488 229651 "CATEGORY" 229895 T -10 (NIL) -8 NIL NIL NIL) (-138 229009 229264 229312 "CATCTOR" 229317 T CATCTOR (NIL) -8 NIL NIL NIL) (-137 228483 228709 228808 "CATAST" 228930 T CATAST (NIL) -8 NIL NIL NIL) (-136 227986 228204 228296 "CASEAST" 228411 T CASEAST (NIL) -8 NIL NIL NIL) (-135 223038 224015 224768 "CARTEN" 227289 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 222146 222294 222515 "CARTEN2" 222885 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-133 220488 221296 221553 "CARD" 221909 T CARD (NIL) -8 NIL NIL NIL) (-132 220091 220292 220367 "CAPSLAST" 220433 T CAPSLAST (NIL) -8 NIL NIL NIL) (-131 219463 219791 219819 "CACHSET" 219951 T CACHSET (NIL) -9 NIL 220028 NIL) (-130 218959 219255 219283 "CABMON" 219333 T CABMON (NIL) -9 NIL 219389 NIL) (-129 218107 218505 218641 "BYTE" 218804 T BYTE (NIL) -8 NIL NIL 218920) (-128 213516 217575 217738 "BYTEBUF" 217964 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211073 213208 213315 "BTREE" 213442 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208571 210721 210843 "BTOURN" 210983 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205988 208041 208082 "BTCAT" 208150 NIL BTCAT (NIL T) -9 NIL 208227 NIL) (-124 205655 205735 205884 "BTCAT-" 205889 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200947 204798 204826 "BTAGG" 205048 T BTAGG (NIL) -9 NIL 205209 NIL) (-122 200437 200562 200768 "BTAGG-" 200773 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197481 199715 199930 "BSTREE" 200254 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196619 196745 196929 "BRILL" 197337 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193318 195345 195386 "BRAGG" 196035 NIL BRAGG (NIL T) -9 NIL 196293 NIL) (-118 191847 192253 192808 "BRAGG-" 192813 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185111 191193 191377 "BPADICRT" 191695 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183461 185048 185093 "BPADIC" 185098 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183159 183189 183303 "BOUNDZRO" 183425 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178674 179765 180632 "BOP" 182312 T BOP (NIL) -8 NIL NIL NIL) (-113 176295 176739 177259 "BOP1" 178187 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 174997 175719 175912 "BOOLEAN" 176122 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861 NIL) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339 NIL) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390 NIL) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236 NIL) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802 NIL) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437 NIL) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856 NIL) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283 NIL) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332 NIL) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2735 ((|#1| $) 44)) (-1630 (((-112) $ (-765)) 8)) (-1965 (($) 7 T CONST)) (-3760 ((|#1| |#1| $) 46)) (-3297 ((|#1| $) 45)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3211 ((|#1| $) 39)) (-3671 (($ |#1| $) 40)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-3522 ((|#1| $) 41)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-1404 (((-765) $) 43)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) 42)) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1111 |#1|) (-139) (-1205)) (T -1111))
+((-3760 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4390) (-15 -3760 (|t#1| |t#1| $)) (-15 -3297 (|t#1| $)) (-15 -2735 (|t#1| $)) (-15 -1404 ((-765) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-1744 ((|#3| $) 76)) (-4017 (((-3 (-561) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3938 (((-561) $) NIL) (((-406 (-561)) $) NIL) ((|#3| $) 37)) (-3602 (((-682 (-561)) (-682 $)) NIL) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) 73) (((-682 |#3|) (-682 $)) 65)) (-3238 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-1382 ((|#3| $) 78)) (-1886 ((|#4| $) 32)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ |#3|) 16)) (** (($ $ (-914)) NIL) (($ $ (-765)) 15) (($ $ (-561)) 82)))
+(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 -1382 (|#3| |#1|)) (-15 -1744 (|#3| |#1|)) (-15 -1886 (|#4| |#1|)) (-15 -3602 ((-682 |#3|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -4022 (|#1| |#3|)) (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3938 (|#3| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4022 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -4022 ((-856) |#1|))) (-1113 |#2| |#3| |#4| |#5|) (-765) (-1042) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1112))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-561))) (-15 -1382 (|#3| |#1|)) (-15 -1744 (|#3| |#1|)) (-15 -1886 (|#4| |#1|)) (-15 -3602 ((-682 |#3|) (-682 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 |#1|) (-1253 |#1|))) (-15 -3602 ((-682 (-561)) (-682 |#1|))) (-15 -4022 (|#1| |#3|)) (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3938 (|#3| |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -3238 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4022 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1744 ((|#2| $) 71)) (-1810 (((-112) $) 111)) (-2249 (((-3 $ "failed") $ $) 19)) (-2487 (((-112) $) 109)) (-1630 (((-112) $ (-765)) 101)) (-3539 (($ |#2|) 74)) (-1965 (($) 17 T CONST)) (-1298 (($ $) 128 (|has| |#2| (-306)))) (-3845 ((|#3| $ (-561)) 123)) (-4017 (((-3 (-561) "failed") $) 86 (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) 83 (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) 80)) (-3938 (((-561) $) 85 (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) 82 (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) 81)) (-3602 (((-682 (-561)) (-682 $)) 78 (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 77 (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 76) (((-682 |#2|) (-682 $)) 75)) (-3466 (((-3 $ "failed") $) 33)) (-1569 (((-765) $) 129 (|has| |#2| (-553)))) (-4344 ((|#2| $ (-561) (-561)) 121)) (-3571 (((-638 |#2|) $) 94 (|has| $ (-6 -4390)))) (-3113 (((-112) $) 31)) (-3370 (((-765) $) 130 (|has| |#2| (-553)))) (-2542 (((-638 |#4|) $) 131 (|has| |#2| (-553)))) (-1513 (((-765) $) 117)) (-1526 (((-765) $) 118)) (-3744 (((-112) $ (-765)) 102)) (-2093 ((|#2| $) 66 (|has| |#2| (-6 (-4392 "*"))))) (-3514 (((-561) $) 113)) (-2804 (((-561) $) 115)) (-1305 (((-638 |#2|) $) 93 (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390))))) (-3089 (((-561) $) 114)) (-1709 (((-561) $) 116)) (-2855 (($ (-638 (-638 |#2|))) 108)) (-2065 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3971 (((-638 (-638 |#2|)) $) 119)) (-2230 (((-112) $ (-765)) 103)) (-1764 (((-1148) $) 9)) (-4222 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-1714 (((-1110) $) 10)) (-1756 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-553)))) (-2123 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) 107)) (-1928 (((-112) $) 104)) (-3170 (($) 105)) (-2277 ((|#2| $ (-561) (-561) |#2|) 122) ((|#2| $ (-561) (-561)) 120)) (-3238 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-765)) 51) (($ $ (-638 (-1166)) (-638 (-765))) 44 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) 42 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-1382 ((|#2| $) 70)) (-2450 (($ (-638 |#2|)) 73)) (-2182 (((-112) $) 110)) (-1886 ((|#3| $) 72)) (-2622 ((|#2| $) 67 (|has| |#2| (-6 (-4392 "*"))))) (-1724 (((-765) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4390))) (((-765) |#2| $) 92 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 106)) (-2745 ((|#4| $ (-561)) 124)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 84 (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) 79)) (-4259 (((-765)) 28)) (-3715 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4390)))) (-4247 (((-112) $) 112)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-765)) 49) (($ $ (-638 (-1166)) (-638 (-765))) 48 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) 46 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 64 (|has| |#2| (-362)))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-3498 (((-765) $) 100 (|has| $ (-6 -4390)))))
+(((-1113 |#1| |#2| |#3| |#4|) (-139) (-765) (-1042) (-237 |t#1| |t#2|) (-237 |t#1| |t#2|)) (T -1113))
+((-3539 (*1 *1 *2) (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-638 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042)))) (-4222 (*1 *1 *1) (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))))
+(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1045 |t#1| |t#1| |t#2| |t#3| |t#4|) (-410 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-711 |t#2|)) |%noBranch|) (-15 -3539 ($ |t#2|)) (-15 -2450 ($ (-638 |t#2|))) (-15 -1886 (|t#3| $)) (-15 -1744 (|t#2| $)) (-15 -1382 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4392 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2622 (|t#2| $)) (-15 -2093 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -4222 ((-3 $ "failed") $)) (-15 ** ($ $ (-561)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4392 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 #0=(-406 (-561))) |has| |#2| (-1031 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-376 |#2|) . T) ((-410 |#2|) . T) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-641 |#2|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#2| (-634 (-561))) ((-634 |#2|) . T) ((-711 |#2|) -4007 (|has| |#2| (-171)) (|has| |#2| (-6 (-4392 "*")))) ((-720) . T) ((-893 (-1166)) |has| |#2| (-893 (-1166))) ((-1045 |#1| |#1| |#2| |#3| |#4|) . T) ((-1031 #0#) |has| |#2| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#2| (-1031 (-561))) ((-1031 |#2|) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1205) . T))
+((-1725 ((|#4| |#4|) 70)) (-2404 ((|#4| |#4|) 65)) (-1768 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|))) |#4| |#3|) 78)) (-2422 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3858 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1114 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2404 (|#4| |#4|)) (-15 -3858 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1725 (|#4| |#4|)) (-15 -2422 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1768 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|))) |#4| |#3|))) (-306) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -1114))
+((-1768 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4)))) (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))) (-2422 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-1725 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-3858 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
+(-10 -7 (-15 -2404 (|#4| |#4|)) (-15 -3858 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1725 (|#4| |#4|)) (-15 -2422 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1768 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3711 (-638 |#3|))) |#4| |#3|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 17)) (-1412 (((-638 |#2|) $) 158)) (-1620 (((-1162 $) $ |#2|) 53) (((-1162 |#1|) $) 42)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 107 (|has| |#1| (-553)))) (-2851 (($ $) 109 (|has| |#1| (-553)))) (-3359 (((-112) $) 111 (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 |#2|)) 191)) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) 155) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 |#2| "failed") $) NIL)) (-3938 ((|#1| $) 153) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) ((|#2| $) NIL)) (-3051 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-1619 (($ $) 195)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) 81)) (-2401 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-529 |#2|) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#1| (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#1| (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-3113 (((-112) $) 19)) (-2067 (((-765) $) 26)) (-1401 (($ (-1162 |#1|) |#2|) 47) (($ (-1162 $) |#2|) 63)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) 32)) (-1387 (($ |#1| (-529 |#2|)) 70) (($ $ |#2| (-765)) 51) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ |#2|) NIL)) (-2393 (((-529 |#2|) $) 185) (((-765) $ |#2|) 186) (((-638 (-765)) $ (-638 |#2|)) 187)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) 119)) (-1358 (((-3 |#2| "failed") $) 160)) (-1578 (($ $) 194)) (-1590 ((|#1| $) 36)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| |#2|) (|:| -4196 (-765))) "failed") $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) 33)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 137 (|has| |#1| (-450)))) (-1623 (($ (-638 $)) 142 (|has| |#1| (-450))) (($ $ $) 129 (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#1| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-902)))) (-1756 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-553)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-638 |#2|) (-638 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-638 |#2|) (-638 $)) 175)) (-2553 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-3238 (($ $ |#2|) 193) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-2894 (((-529 |#2|) $) 181) (((-765) $ |#2|) 177) (((-638 (-765)) $ (-638 |#2|)) 179)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| |#1| (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| |#1| (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| |#1| (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-3609 ((|#1| $) 125 (|has| |#1| (-450))) (($ $ |#2|) 128 (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-4022 (((-856) $) 148) (($ (-561)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-553))) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-2742 (((-638 |#1|) $) 151)) (-2634 ((|#1| $ (-529 |#2|)) 72) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) 78)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) 114 (|has| |#1| (-553)))) (-2211 (($) 12 T CONST)) (-2222 (($) 14 T CONST)) (-3122 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) 96)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-1824 (($ $) 84) (($ $ $) 94)) (-1813 (($ $ $) 48)) (** (($ $ (-914)) 101) (($ $ (-765)) 99)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 87) (($ $ $) 64) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-1115 |#1| |#2|) (-942 |#1| (-529 |#2|) |#2|) (-1042) (-844)) (T -1115))
+NIL
+(-942 |#1| (-529 |#2|) |#2|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 |#2|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2978 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 116 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4172 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 112 (|has| |#1| (-38 (-406 (-561)))))) (-3009 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-3373 (((-945 |#1|) $ (-765)) NIL) (((-945 |#1|) $ (-765) (-765)) NIL)) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-765) $ |#2|) NIL) (((-765) $ |#2| (-765)) NIL)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2092 (((-112) $) NIL)) (-1387 (($ $ (-638 |#2|) (-638 (-529 |#2|))) NIL) (($ $ |#2| (-529 |#2|)) NIL) (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 55) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4348 (($ $) 110 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1842 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-1503 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-561)))))) (-1416 (($ $ (-765)) 13)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3440 (($ $) 108 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (($ $ |#2| $) 94) (($ $ (-638 |#2|) (-638 $)) 87) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL)) (-3238 (($ $ |#2|) 97) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-2894 (((-529 |#2|) $) NIL)) (-2254 (((-1 (-1146 |#3|) |#3|) (-638 |#2|) (-638 (-1146 |#3|))) 76)) (-3021 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 118 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 114 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 15)) (-4022 (((-856) $) 179) (($ (-561)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-553))) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#2|) 62) (($ |#3|) 60)) (-2634 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL) ((|#3| $ (-765)) 38)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-3055 (($ $) 152 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 156 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-2125 (($ $) 158 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 154 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 150 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 47 T CONST)) (-2222 (($) 54 T CONST)) (-3122 (($ $ |#2|) NIL) (($ $ (-638 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-638 |#2|) (-638 (-765))) NIL)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 58)) (** (($ $ (-914)) NIL) (($ $ (-765)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 100 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 57) (($ $ (-406 (-561))) 105 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 103 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
+(((-1116 |#1| |#2| |#3|) (-13 (-734 |#1| |#2|) (-10 -8 (-15 -2634 (|#3| $ (-765))) (-15 -4022 ($ |#2|)) (-15 -4022 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2254 ((-1 (-1146 |#3|) |#3|) (-638 |#2|) (-638 (-1146 |#3|)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $ |#2| |#1|)) (-15 -1503 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1042) (-844) (-942 |#1| (-529 |#2|) |#2|)) (T -1116))
+((-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-942 *4 (-529 *5) *5)) (-5 *1 (-1116 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4022 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-942 *3 (-529 *2) *2)))) (-4022 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-942 *3 (-529 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-942 *3 (-529 *4) *4)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1146 *7))) (-4 *6 (-844)) (-4 *7 (-942 *5 (-529 *6) *6)) (-4 *5 (-1042)) (-5 *2 (-1 (-1146 *7) *7)) (-5 *1 (-1116 *5 *6 *7)))) (-1842 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-942 *3 (-529 *2) *2)))) (-1503 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5)) (-4 *5 (-942 *4 (-529 *3) *3)))))
+(-13 (-734 |#1| |#2|) (-10 -8 (-15 -2634 (|#3| $ (-765))) (-15 -4022 ($ |#2|)) (-15 -4022 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2254 ((-1 (-1146 |#3|) |#3|) (-638 |#2|) (-638 (-1146 |#3|)))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $ |#2| |#1|)) (-15 -1503 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-4011 (((-112) $ $) 7)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) 85)) (-3047 (((-638 $) (-638 |#4|)) 86) (((-638 $) (-638 |#4|) (-112)) 111)) (-1412 (((-638 |#3|) $) 33)) (-1978 (((-112) $) 26)) (-2701 (((-112) $) 17 (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) 101) (((-112) $) 97)) (-2427 ((|#4| |#4| $) 92)) (-1591 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| $) 126)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) 27)) (-1630 (((-112) $ (-765)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) 79)) (-1965 (($) 45 T CONST)) (-2002 (((-112) $) 22 (|has| |#1| (-553)))) (-1951 (((-112) $ $) 24 (|has| |#1| (-553)))) (-2959 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1361 (((-112) $) 25 (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1825 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) 36)) (-3938 (($ (-638 |#4|)) 35)) (-1445 (((-3 $ "failed") $) 82)) (-3320 ((|#4| |#4| $) 89)) (-1472 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3372 ((|#4| |#4| $) 87)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) 105)) (-3871 (((-112) |#4| $) 136)) (-2639 (((-112) |#4| $) 133)) (-1786 (((-112) |#4| $) 137) (((-112) $) 134)) (-3571 (((-638 |#4|) $) 52 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) 104) (((-112) $) 103)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) 43)) (-1305 (((-638 |#4|) $) 53 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 47)) (-2209 (((-638 |#3|) $) 32)) (-2866 (((-112) |#3| $) 31)) (-2230 (((-112) $ (-765)) 42)) (-1764 (((-1148) $) 9)) (-2987 (((-3 |#4| (-638 $)) |#4| |#4| $) 128)) (-1631 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| |#4| $) 127)) (-1520 (((-3 |#4| "failed") $) 83)) (-3316 (((-638 $) |#4| $) 129)) (-4021 (((-3 (-112) (-638 $)) |#4| $) 132)) (-1924 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2579 (((-638 $) |#4| $) 125) (((-638 $) (-638 |#4|) $) 124) (((-638 $) (-638 |#4|) (-638 $)) 123) (((-638 $) |#4| (-638 $)) 122)) (-2961 (($ |#4| $) 117) (($ (-638 |#4|) $) 116)) (-1981 (((-638 |#4|) $) 107)) (-2153 (((-112) |#4| $) 99) (((-112) $) 95)) (-1829 ((|#4| |#4| $) 90)) (-3863 (((-112) $ $) 110)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-1714 (((-1110) $) 10)) (-1433 (((-3 |#4| "failed") $) 84)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2916 (((-3 $ "failed") $ |#4|) 78)) (-1416 (($ $ |#4|) 77) (((-638 $) |#4| $) 115) (((-638 $) |#4| (-638 $)) 114) (((-638 $) (-638 |#4|) $) 113) (((-638 $) (-638 |#4|) (-638 $)) 112)) (-2123 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) 38)) (-1928 (((-112) $) 41)) (-3170 (($) 40)) (-2894 (((-765) $) 106)) (-1724 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4390)))) (-4187 (($ $) 39)) (-4174 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 60)) (-1755 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-2074 (($ $) 88)) (-1967 (($ $ |#3|) 29)) (-4022 (((-856) $) 11) (((-638 |#4|) $) 37)) (-4161 (((-765) $) 76 (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-2930 (((-638 $) |#4| $) 121) (((-638 $) |#4| (-638 $)) 120) (((-638 $) (-638 |#4|) $) 119) (((-638 $) (-638 |#4|) (-638 $)) 118)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) 81)) (-2827 (((-112) |#4| $) 135)) (-1751 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3498 (((-765) $) 46 (|has| $ (-6 -4390)))))
+(((-1117 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1117))
+NIL
+(-13 (-1099 |t#1| |t#2| |t#3| |t#4|) (-778 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-778 |#1| |#2| |#3| |#4|) . T) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1198 |#1| |#2| |#3| |#4|) . T) ((-1205) . T))
+((-3867 (((-638 |#2|) |#1|) 12)) (-3000 (((-638 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-638 |#2|) |#1|) 49)) (-1926 (((-638 |#2|) |#2| |#2| |#2|) 36) (((-638 |#2|) |#1|) 47)) (-2117 ((|#2| |#1|) 43)) (-4062 (((-2 (|:| |solns| (-638 |#2|)) (|:| |maps| (-638 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3350 (((-638 |#2|) |#2| |#2|) 35) (((-638 |#2|) |#1|) 46)) (-2936 (((-638 |#2|) |#2| |#2| |#2| |#2|) 37) (((-638 |#2|) |#1|) 48)) (-1675 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-2657 ((|#2| |#2| |#2| |#2|) 40)) (-4275 ((|#2| |#2| |#2|) 39)) (-4249 ((|#2| |#2| |#2| |#2| |#2|) 41)))
+(((-1118 |#1| |#2|) (-10 -7 (-15 -3867 ((-638 |#2|) |#1|)) (-15 -2117 (|#2| |#1|)) (-15 -4062 ((-2 (|:| |solns| (-638 |#2|)) (|:| |maps| (-638 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3350 ((-638 |#2|) |#1|)) (-15 -1926 ((-638 |#2|) |#1|)) (-15 -2936 ((-638 |#2|) |#1|)) (-15 -3000 ((-638 |#2|) |#1|)) (-15 -3350 ((-638 |#2|) |#2| |#2|)) (-15 -1926 ((-638 |#2|) |#2| |#2| |#2|)) (-15 -2936 ((-638 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3000 ((-638 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4275 (|#2| |#2| |#2|)) (-15 -2657 (|#2| |#2| |#2| |#2|)) (-15 -4249 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1675 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1229 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (T -1118))
+((-1675 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-4249 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-2657 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-4275 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3000 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-2936 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-1926 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3350 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3000 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-1926 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-4062 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-2 (|:| |solns| (-638 *5)) (|:| |maps| (-638 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1118 *3 *5)) (-4 *3 (-1229 *5)))) (-2117 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561))))))) (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -3867 ((-638 |#2|) |#1|)) (-15 -2117 (|#2| |#1|)) (-15 -4062 ((-2 (|:| |solns| (-638 |#2|)) (|:| |maps| (-638 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3350 ((-638 |#2|) |#1|)) (-15 -1926 ((-638 |#2|) |#1|)) (-15 -2936 ((-638 |#2|) |#1|)) (-15 -3000 ((-638 |#2|) |#1|)) (-15 -3350 ((-638 |#2|) |#2| |#2|)) (-15 -1926 ((-638 |#2|) |#2| |#2| |#2|)) (-15 -2936 ((-638 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3000 ((-638 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4275 (|#2| |#2| |#2|)) (-15 -2657 (|#2| |#2| |#2| |#2|)) (-15 -4249 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1675 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-4053 (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|))))) 95) (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166))) 94) (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|)))) 92) (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 90) (((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|)))) 75) (((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))) (-1166)) 76) (((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|))) 70) (((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)) (-1166)) 59)) (-4279 (((-638 (-638 (-315 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 88) (((-638 (-315 |#1|)) (-406 (-945 |#1|)) (-1166)) 43)) (-3093 (((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-406 (-945 |#1|)) (-1166)) 98) (((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166)) 97)))
+(((-1119 |#1|) (-10 -7 (-15 -4053 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -4053 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)))) (-15 -4053 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -4053 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4279 ((-638 (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -4279 ((-638 (-638 (-315 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -3093 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -3093 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-406 (-945 |#1|)) (-1166)))) (-13 (-306) (-844) (-146))) (T -1119))
+((-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-315 *5)))) (-5 *1 (-1119 *5)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-315 *5))) (-5 *1 (-1119 *5)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-638 (-293 (-406 (-945 *4))))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-293 (-406 (-945 *5))))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-638 (-406 (-945 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-293 (-406 (-945 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1119 *4)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1119 *5)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1119 *4)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1119 *5)))))
+(-10 -7 (-15 -4053 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)) (-1166))) (-15 -4053 ((-638 (-293 (-315 |#1|))) (-406 (-945 |#1|)))) (-15 -4053 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -4053 ((-638 (-293 (-315 |#1|))) (-293 (-406 (-945 |#1|))))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-406 (-945 |#1|))))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -4053 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -4279 ((-638 (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -4279 ((-638 (-638 (-315 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -3093 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -3093 ((-1155 (-638 (-315 |#1|)) (-638 (-293 (-315 |#1|)))) (-406 (-945 |#1|)) (-1166))))
+((-3542 (((-406 (-1162 (-315 |#1|))) (-1253 (-315 |#1|)) (-406 (-1162 (-315 |#1|))) (-561)) 29)) (-3257 (((-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|)))) 40)))
+(((-1120 |#1|) (-10 -7 (-15 -3257 ((-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))))) (-15 -3542 ((-406 (-1162 (-315 |#1|))) (-1253 (-315 |#1|)) (-406 (-1162 (-315 |#1|))) (-561)))) (-13 (-553) (-844))) (T -1120))
+((-3542 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1162 (-315 *5)))) (-5 *3 (-1253 (-315 *5))) (-5 *4 (-561)) (-4 *5 (-13 (-553) (-844))) (-5 *1 (-1120 *5)))) (-3257 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1162 (-315 *3)))) (-4 *3 (-13 (-553) (-844))) (-5 *1 (-1120 *3)))))
+(-10 -7 (-15 -3257 ((-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))) (-406 (-1162 (-315 |#1|))))) (-15 -3542 ((-406 (-1162 (-315 |#1|))) (-1253 (-315 |#1|)) (-406 (-1162 (-315 |#1|))) (-561))))
+((-3867 (((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-315 |#1|))) (-638 (-1166))) 222) (((-638 (-293 (-315 |#1|))) (-315 |#1|) (-1166)) 20) (((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1166)) 26) (((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|))) 25) (((-638 (-293 (-315 |#1|))) (-315 |#1|)) 21)))
+(((-1121 |#1|) (-10 -7 (-15 -3867 ((-638 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -3867 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -3867 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1166))) (-15 -3867 ((-638 (-293 (-315 |#1|))) (-315 |#1|) (-1166))) (-15 -3867 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-315 |#1|))) (-638 (-1166))))) (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (T -1121))
+((-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1166))) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1121 *5)) (-5 *3 (-638 (-293 (-315 *5)))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-315 *5)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-293 (-315 *5))))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-293 (-315 *4))))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146))) (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-315 *4)))))
+(-10 -7 (-15 -3867 ((-638 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -3867 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -3867 ((-638 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1166))) (-15 -3867 ((-638 (-293 (-315 |#1|))) (-315 |#1|) (-1166))) (-15 -3867 ((-638 (-638 (-293 (-315 |#1|)))) (-638 (-293 (-315 |#1|))) (-638 (-1166)))))
+((-2757 ((|#2| |#2|) 20 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-4337 ((|#2| |#2|) 19 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
+(((-1122 |#1| |#2|) (-10 -7 (-15 -4337 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2757 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -4337 (|#2| |#2|)) (-15 -2757 (|#2| |#2|))) |%noBranch|)) (-1205) (-13 (-599 (-561) |#1|) (-10 -7 (-6 -4390) (-6 -4391)))) (T -1122))
+((-2757 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4390) (-6 -4391)))))) (-4337 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4390) (-6 -4391)))))) (-2757 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4390) (-6 -4391)))))) (-4337 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4390) (-6 -4391)))))))
+(-10 -7 (-15 -4337 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2757 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -4337 (|#2| |#2|)) (-15 -2757 (|#2| |#2|))) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-3583 (((-1154 3 |#1|) $) 107)) (-2875 (((-112) $) 72)) (-3063 (($ $ (-638 (-936 |#1|))) 20) (($ $ (-638 (-638 |#1|))) 75) (($ (-638 (-936 |#1|))) 74) (((-638 (-936 |#1|)) $) 73)) (-1713 (((-112) $) 41)) (-3376 (($ $ (-936 |#1|)) 46) (($ $ (-638 |#1|)) 51) (($ $ (-765)) 53) (($ (-936 |#1|)) 47) (((-936 |#1|) $) 45)) (-2673 (((-2 (|:| -1836 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 105)) (-2341 (((-765) $) 26)) (-3668 (((-765) $) 25)) (-3967 (($ $ (-765) (-936 |#1|)) 39)) (-3127 (((-112) $) 82)) (-1523 (($ $ (-638 (-638 (-936 |#1|))) (-638 (-170)) (-170)) 89) (($ $ (-638 (-638 (-638 |#1|))) (-638 (-170)) (-170)) 91) (($ $ (-638 (-638 (-936 |#1|))) (-112) (-112)) 85) (($ $ (-638 (-638 (-638 |#1|))) (-112) (-112)) 93) (($ (-638 (-638 (-936 |#1|)))) 86) (($ (-638 (-638 (-936 |#1|))) (-112) (-112)) 87) (((-638 (-638 (-936 |#1|))) $) 84)) (-1407 (($ (-638 $)) 28) (($ $ $) 29)) (-3977 (((-638 (-170)) $) 102)) (-1678 (((-638 (-936 |#1|)) $) 96)) (-1785 (((-638 (-638 (-170))) $) 101)) (-4320 (((-638 (-638 (-638 (-936 |#1|)))) $) NIL)) (-4211 (((-638 (-638 (-638 (-765)))) $) 99)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2506 (((-765) $ (-638 (-936 |#1|))) 37)) (-3823 (((-112) $) 54)) (-3851 (($ $ (-638 (-936 |#1|))) 56) (($ $ (-638 (-638 |#1|))) 62) (($ (-638 (-936 |#1|))) 57) (((-638 (-936 |#1|)) $) 55)) (-3681 (($) 23) (($ (-1154 3 |#1|)) 24)) (-4187 (($ $) 35)) (-2027 (((-638 $) $) 34)) (-1993 (($ (-638 $)) 31)) (-3241 (((-638 $) $) 33)) (-4022 (((-856) $) 111)) (-1469 (((-112) $) 64)) (-3224 (($ $ (-638 (-936 |#1|))) 66) (($ $ (-638 (-638 |#1|))) 69) (($ (-638 (-936 |#1|))) 67) (((-638 (-936 |#1|)) $) 65)) (-4023 (($ $) 106)) (-1733 (((-112) $ $) NIL)))
+(((-1123 |#1|) (-1124 |#1|) (-1042)) (T -1123))
+NIL
+(-1124 |#1|)
+((-4011 (((-112) $ $) 7)) (-3583 (((-1154 3 |#1|) $) 13)) (-2875 (((-112) $) 29)) (-3063 (($ $ (-638 (-936 |#1|))) 33) (($ $ (-638 (-638 |#1|))) 32) (($ (-638 (-936 |#1|))) 31) (((-638 (-936 |#1|)) $) 30)) (-1713 (((-112) $) 44)) (-3376 (($ $ (-936 |#1|)) 49) (($ $ (-638 |#1|)) 48) (($ $ (-765)) 47) (($ (-936 |#1|)) 46) (((-936 |#1|) $) 45)) (-2673 (((-2 (|:| -1836 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 15)) (-2341 (((-765) $) 58)) (-3668 (((-765) $) 59)) (-3967 (($ $ (-765) (-936 |#1|)) 50)) (-3127 (((-112) $) 21)) (-1523 (($ $ (-638 (-638 (-936 |#1|))) (-638 (-170)) (-170)) 28) (($ $ (-638 (-638 (-638 |#1|))) (-638 (-170)) (-170)) 27) (($ $ (-638 (-638 (-936 |#1|))) (-112) (-112)) 26) (($ $ (-638 (-638 (-638 |#1|))) (-112) (-112)) 25) (($ (-638 (-638 (-936 |#1|)))) 24) (($ (-638 (-638 (-936 |#1|))) (-112) (-112)) 23) (((-638 (-638 (-936 |#1|))) $) 22)) (-1407 (($ (-638 $)) 57) (($ $ $) 56)) (-3977 (((-638 (-170)) $) 16)) (-1678 (((-638 (-936 |#1|)) $) 20)) (-1785 (((-638 (-638 (-170))) $) 17)) (-4320 (((-638 (-638 (-638 (-936 |#1|)))) $) 18)) (-4211 (((-638 (-638 (-638 (-765)))) $) 19)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2506 (((-765) $ (-638 (-936 |#1|))) 51)) (-3823 (((-112) $) 39)) (-3851 (($ $ (-638 (-936 |#1|))) 43) (($ $ (-638 (-638 |#1|))) 42) (($ (-638 (-936 |#1|))) 41) (((-638 (-936 |#1|)) $) 40)) (-3681 (($) 61) (($ (-1154 3 |#1|)) 60)) (-4187 (($ $) 52)) (-2027 (((-638 $) $) 53)) (-1993 (($ (-638 $)) 55)) (-3241 (((-638 $) $) 54)) (-4022 (((-856) $) 11)) (-1469 (((-112) $) 34)) (-3224 (($ $ (-638 (-936 |#1|))) 38) (($ $ (-638 (-638 |#1|))) 37) (($ (-638 (-936 |#1|))) 36) (((-638 (-936 |#1|)) $) 35)) (-4023 (($ $) 14)) (-1733 (((-112) $ $) 6)))
+(((-1124 |#1|) (-139) (-1042)) (T -1124))
+((-4022 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-856)))) (-3681 (*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-3681 (*1 *1 *2) (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-1407 (*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3241 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))) (-2027 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))) (-4187 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-2506 (*1 *2 *1 *3) (-12 (-5 *3 (-638 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-3967 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3851 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3851 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3224 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3224 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-1523 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-638 (-936 *5)))) (-5 *3 (-638 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-1523 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-638 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-1523 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-1523 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 *3)))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-1523 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042)) (-4 *1 (-1124 *4)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-936 *3)))))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-638 (-765))))))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-638 (-936 *3))))))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-170)))))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-170))))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -1836 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765)))))) (-4023 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3)))))
+(-13 (-1090) (-10 -8 (-15 -3681 ($)) (-15 -3681 ($ (-1154 3 |t#1|))) (-15 -3668 ((-765) $)) (-15 -2341 ((-765) $)) (-15 -1407 ($ (-638 $))) (-15 -1407 ($ $ $)) (-15 -1993 ($ (-638 $))) (-15 -3241 ((-638 $) $)) (-15 -2027 ((-638 $) $)) (-15 -4187 ($ $)) (-15 -2506 ((-765) $ (-638 (-936 |t#1|)))) (-15 -3967 ($ $ (-765) (-936 |t#1|))) (-15 -3376 ($ $ (-936 |t#1|))) (-15 -3376 ($ $ (-638 |t#1|))) (-15 -3376 ($ $ (-765))) (-15 -3376 ($ (-936 |t#1|))) (-15 -3376 ((-936 |t#1|) $)) (-15 -1713 ((-112) $)) (-15 -3851 ($ $ (-638 (-936 |t#1|)))) (-15 -3851 ($ $ (-638 (-638 |t#1|)))) (-15 -3851 ($ (-638 (-936 |t#1|)))) (-15 -3851 ((-638 (-936 |t#1|)) $)) (-15 -3823 ((-112) $)) (-15 -3224 ($ $ (-638 (-936 |t#1|)))) (-15 -3224 ($ $ (-638 (-638 |t#1|)))) (-15 -3224 ($ (-638 (-936 |t#1|)))) (-15 -3224 ((-638 (-936 |t#1|)) $)) (-15 -1469 ((-112) $)) (-15 -3063 ($ $ (-638 (-936 |t#1|)))) (-15 -3063 ($ $ (-638 (-638 |t#1|)))) (-15 -3063 ($ (-638 (-936 |t#1|)))) (-15 -3063 ((-638 (-936 |t#1|)) $)) (-15 -2875 ((-112) $)) (-15 -1523 ($ $ (-638 (-638 (-936 |t#1|))) (-638 (-170)) (-170))) (-15 -1523 ($ $ (-638 (-638 (-638 |t#1|))) (-638 (-170)) (-170))) (-15 -1523 ($ $ (-638 (-638 (-936 |t#1|))) (-112) (-112))) (-15 -1523 ($ $ (-638 (-638 (-638 |t#1|))) (-112) (-112))) (-15 -1523 ($ (-638 (-638 (-936 |t#1|))))) (-15 -1523 ($ (-638 (-638 (-936 |t#1|))) (-112) (-112))) (-15 -1523 ((-638 (-638 (-936 |t#1|))) $)) (-15 -3127 ((-112) $)) (-15 -1678 ((-638 (-936 |t#1|)) $)) (-15 -4211 ((-638 (-638 (-638 (-765)))) $)) (-15 -4320 ((-638 (-638 (-638 (-936 |t#1|)))) $)) (-15 -1785 ((-638 (-638 (-170))) $)) (-15 -3977 ((-638 (-170)) $)) (-15 -2673 ((-2 (|:| -1836 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $)) (-15 -4023 ($ $)) (-15 -3583 ((-1154 3 |t#1|) $)) (-15 -4022 ((-856) $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 176) (($ (-1171)) NIL) (((-1171) $) 7)) (-2201 (((-112) $ (|[\|\|]| (-522))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-669))) 25) (((-112) $ (|[\|\|]| (-1263))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1105))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-674))) 49) (((-112) $ (|[\|\|]| (-515))) 53) (((-112) $ (|[\|\|]| (-1057))) 57) (((-112) $ (|[\|\|]| (-1264))) 61) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-664))) 73) (((-112) $ (|[\|\|]| (-310))) 77) (((-112) $ (|[\|\|]| (-1029))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-963))) 89) (((-112) $ (|[\|\|]| (-1064))) 93) (((-112) $ (|[\|\|]| (-1080))) 97) (((-112) $ (|[\|\|]| (-1086))) 101) (((-112) $ (|[\|\|]| (-621))) 105) (((-112) $ (|[\|\|]| (-1156))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-476))) 121) (((-112) $ (|[\|\|]| (-588))) 125) (((-112) $ (|[\|\|]| (-504))) 131) (((-112) $ (|[\|\|]| (-1148))) 135) (((-112) $ (|[\|\|]| (-561))) 139)) (-4217 (((-522) $) 18) (((-217) $) 22) (((-669) $) 26) (((-1263) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1105) $) 42) (((-96) $) 46) (((-674) $) 50) (((-515) $) 54) (((-1057) $) 58) (((-1264) $) 62) (((-523) $) 66) (((-153) $) 70) (((-664) $) 74) (((-310) $) 78) (((-1029) $) 82) (((-179) $) 86) (((-963) $) 90) (((-1064) $) 94) (((-1080) $) 98) (((-1086) $) 102) (((-621) $) 106) (((-1156) $) 110) (((-155) $) 114) (((-136) $) 118) (((-476) $) 122) (((-588) $) 126) (((-504) $) 132) (((-1148) $) 136) (((-561) $) 140)) (-1733 (((-112) $ $) NIL)))
+(((-1125) (-1127)) (T -1125))
+NIL
+(-1127)
+((-2294 (((-638 (-1171)) (-1148)) 9)))
+(((-1126) (-10 -7 (-15 -2294 ((-638 (-1171)) (-1148))))) (T -1126))
+((-2294 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-1126)))))
+(-10 -7 (-15 -2294 ((-638 (-1171)) (-1148))))
+((-4011 (((-112) $ $) 7)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-2201 (((-112) $ (|[\|\|]| (-522))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-669))) 76) (((-112) $ (|[\|\|]| (-1263))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1105))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-674))) 64) (((-112) $ (|[\|\|]| (-515))) 62) (((-112) $ (|[\|\|]| (-1057))) 60) (((-112) $ (|[\|\|]| (-1264))) 58) (((-112) $ (|[\|\|]| (-523))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-664))) 52) (((-112) $ (|[\|\|]| (-310))) 50) (((-112) $ (|[\|\|]| (-1029))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-963))) 44) (((-112) $ (|[\|\|]| (-1064))) 42) (((-112) $ (|[\|\|]| (-1080))) 40) (((-112) $ (|[\|\|]| (-1086))) 38) (((-112) $ (|[\|\|]| (-621))) 36) (((-112) $ (|[\|\|]| (-1156))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-476))) 28) (((-112) $ (|[\|\|]| (-588))) 26) (((-112) $ (|[\|\|]| (-504))) 24) (((-112) $ (|[\|\|]| (-1148))) 22) (((-112) $ (|[\|\|]| (-561))) 20)) (-4217 (((-522) $) 79) (((-217) $) 77) (((-669) $) 75) (((-1263) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1105) $) 67) (((-96) $) 65) (((-674) $) 63) (((-515) $) 61) (((-1057) $) 59) (((-1264) $) 57) (((-523) $) 55) (((-153) $) 53) (((-664) $) 51) (((-310) $) 49) (((-1029) $) 47) (((-179) $) 45) (((-963) $) 43) (((-1064) $) 41) (((-1080) $) 39) (((-1086) $) 37) (((-621) $) 35) (((-1156) $) 33) (((-155) $) 31) (((-136) $) 29) (((-476) $) 27) (((-588) $) 25) (((-504) $) 23) (((-1148) $) 21) (((-561) $) 19)) (-1733 (((-112) $ $) 6)))
+(((-1127) (-139)) (T -1127))
+((-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1263))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1263)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1105)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-310)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1080)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148)))) (-2201 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-561)))))
+(-13 (-1073) (-1248) (-10 -8 (-15 -2201 ((-112) $ (|[\|\|]| (-522)))) (-15 -4217 ((-522) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-217)))) (-15 -4217 ((-217) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-669)))) (-15 -4217 ((-669) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1263)))) (-15 -4217 ((-1263) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-137)))) (-15 -4217 ((-137) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-132)))) (-15 -4217 ((-132) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1105)))) (-15 -4217 ((-1105) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-96)))) (-15 -4217 ((-96) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-674)))) (-15 -4217 ((-674) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-515)))) (-15 -4217 ((-515) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1057)))) (-15 -4217 ((-1057) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1264)))) (-15 -4217 ((-1264) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-523)))) (-15 -4217 ((-523) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-153)))) (-15 -4217 ((-153) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-664)))) (-15 -4217 ((-664) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-310)))) (-15 -4217 ((-310) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1029)))) (-15 -4217 ((-1029) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-179)))) (-15 -4217 ((-179) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-963)))) (-15 -4217 ((-963) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1064)))) (-15 -4217 ((-1064) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1080)))) (-15 -4217 ((-1080) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1086)))) (-15 -4217 ((-1086) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-621)))) (-15 -4217 ((-621) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1156)))) (-15 -4217 ((-1156) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-155)))) (-15 -4217 ((-155) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-136)))) (-15 -4217 ((-136) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-476)))) (-15 -4217 ((-476) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-588)))) (-15 -4217 ((-588) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-504)))) (-15 -4217 ((-504) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-1148)))) (-15 -4217 ((-1148) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-561)))) (-15 -4217 ((-561) $))))
+(((-93) . T) ((-102) . T) ((-611 #0=(-1171)) . T) ((-608 (-856)) . T) ((-608 #0#) . T) ((-488 #0#) . T) ((-1090) . T) ((-1073) . T) ((-1248) . T))
+((-2276 (((-1258) (-638 (-856))) 23) (((-1258) (-856)) 22)) (-3888 (((-1258) (-638 (-856))) 21) (((-1258) (-856)) 20)) (-2633 (((-1258) (-638 (-856))) 19) (((-1258) (-856)) 11) (((-1258) (-1148) (-856)) 17)))
+(((-1128) (-10 -7 (-15 -2633 ((-1258) (-1148) (-856))) (-15 -2633 ((-1258) (-856))) (-15 -3888 ((-1258) (-856))) (-15 -2276 ((-1258) (-856))) (-15 -2633 ((-1258) (-638 (-856)))) (-15 -3888 ((-1258) (-638 (-856)))) (-15 -2276 ((-1258) (-638 (-856)))))) (T -1128))
+((-2276 (*1 *2 *3) (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1258)) (-5 *1 (-1128)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1258)) (-5 *1 (-1128)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1258)) (-5 *1 (-1128)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128)))))
+(-10 -7 (-15 -2633 ((-1258) (-1148) (-856))) (-15 -2633 ((-1258) (-856))) (-15 -3888 ((-1258) (-856))) (-15 -2276 ((-1258) (-856))) (-15 -2633 ((-1258) (-638 (-856)))) (-15 -3888 ((-1258) (-638 (-856)))) (-15 -2276 ((-1258) (-638 (-856)))))
+((-3196 (($ $ $) 10)) (-2054 (($ $) 9)) (-2974 (($ $ $) 13)) (-3717 (($ $ $) 15)) (-3005 (($ $ $) 12)) (-1436 (($ $ $) 14)) (-2096 (($ $) 17)) (-1887 (($ $) 16)) (-3749 (($ $) 6)) (-3758 (($ $ $) 11) (($ $) 7)) (-3882 (($ $ $) 8)))
+(((-1129) (-139)) (T -1129))
+((-2096 (*1 *1 *1) (-4 *1 (-1129))) (-1887 (*1 *1 *1) (-4 *1 (-1129))) (-3717 (*1 *1 *1 *1) (-4 *1 (-1129))) (-1436 (*1 *1 *1 *1) (-4 *1 (-1129))) (-2974 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3005 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3758 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3196 (*1 *1 *1 *1) (-4 *1 (-1129))) (-2054 (*1 *1 *1) (-4 *1 (-1129))) (-3882 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3758 (*1 *1 *1) (-4 *1 (-1129))) (-3749 (*1 *1 *1) (-4 *1 (-1129))))
+(-13 (-10 -8 (-15 -3749 ($ $)) (-15 -3758 ($ $)) (-15 -3882 ($ $ $)) (-15 -2054 ($ $)) (-15 -3196 ($ $ $)) (-15 -3758 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -2974 ($ $ $)) (-15 -1436 ($ $ $)) (-15 -3717 ($ $ $)) (-15 -1887 ($ $)) (-15 -2096 ($ $))))
+((-4011 (((-112) $ $) 42)) (-2484 ((|#1| $) 16)) (-3933 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-3957 (((-112) $) 18)) (-3231 (($ $ |#1|) 29)) (-2967 (($ $ (-112)) 31)) (-4288 (($ $) 32)) (-2816 (($ $ |#2|) 30)) (-1764 (((-1148) $) NIL)) (-1845 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-1714 (((-1110) $) NIL)) (-1928 (((-112) $) 15)) (-3170 (($) 11)) (-4187 (($ $) 28)) (-4031 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -1510 |#2|))) 22) (((-638 $) (-638 (-2 (|:| |val| |#1|) (|:| -1510 |#2|)))) 25) (((-638 $) |#1| (-638 |#2|)) 27)) (-3334 ((|#2| $) 17)) (-4022 (((-856) $) 51)) (-1733 (((-112) $ $) 40)))
+(((-1130 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -3170 ($)) (-15 -1928 ((-112) $)) (-15 -2484 (|#1| $)) (-15 -3334 (|#2| $)) (-15 -3957 ((-112) $)) (-15 -4031 ($ |#1| |#2| (-112))) (-15 -4031 ($ |#1| |#2|)) (-15 -4031 ($ (-2 (|:| |val| |#1|) (|:| -1510 |#2|)))) (-15 -4031 ((-638 $) (-638 (-2 (|:| |val| |#1|) (|:| -1510 |#2|))))) (-15 -4031 ((-638 $) |#1| (-638 |#2|))) (-15 -4187 ($ $)) (-15 -3231 ($ $ |#1|)) (-15 -2816 ($ $ |#2|)) (-15 -2967 ($ $ (-112))) (-15 -4288 ($ $)) (-15 -1845 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3933 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1090) (-34)) (-13 (-1090) (-34))) (T -1130))
+((-3170 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-2484 (*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *2 *3)) (-4 *3 (-13 (-1090) (-34))))) (-3334 (*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1090) (-34))))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-4031 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4031 (*1 *1 *2 *3) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1510 *4))) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1130 *3 *4)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-638 (-2 (|:| |val| *4) (|:| -1510 *5)))) (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-638 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *4 (-638 *5)) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-638 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-13 (-1090) (-34))))) (-4187 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-3231 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-2816 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1090) (-34))) (-4 *2 (-13 (-1090) (-34))))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-4288 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-1845 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *5 *6)))) (-3933 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34))))))
+(-13 (-1090) (-10 -8 (-15 -3170 ($)) (-15 -1928 ((-112) $)) (-15 -2484 (|#1| $)) (-15 -3334 (|#2| $)) (-15 -3957 ((-112) $)) (-15 -4031 ($ |#1| |#2| (-112))) (-15 -4031 ($ |#1| |#2|)) (-15 -4031 ($ (-2 (|:| |val| |#1|) (|:| -1510 |#2|)))) (-15 -4031 ((-638 $) (-638 (-2 (|:| |val| |#1|) (|:| -1510 |#2|))))) (-15 -4031 ((-638 $) |#1| (-638 |#2|))) (-15 -4187 ($ $)) (-15 -3231 ($ $ |#1|)) (-15 -2816 ($ $ |#2|)) (-15 -2967 ($ $ (-112))) (-15 -4288 ($ $)) (-15 -1845 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3933 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-4011 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-2484 (((-1130 |#1| |#2|) $) 26)) (-4340 (($ $) 76)) (-2384 (((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-2274 (($ $ $ (-638 (-1130 |#1| |#2|))) 90) (($ $ $ (-638 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1630 (((-112) $ (-765)) NIL)) (-1969 (((-1130 |#1| |#2|) $ (-1130 |#1| |#2|)) 43 (|has| $ (-6 -4391)))) (-4167 (((-1130 |#1| |#2|) $ "value" (-1130 |#1| |#2|)) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-3783 (((-638 (-2 (|:| |val| |#1|) (|:| -1510 |#2|))) $) 80)) (-3999 (($ (-1130 |#1| |#2|) $) 39)) (-1489 (($ (-1130 |#1| |#2|) $) 31)) (-3571 (((-638 (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 51)) (-3666 (((-112) (-1130 |#1| |#2|) $) 82)) (-2726 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 (-1130 |#1| |#2|)) $) 55 (|has| $ (-6 -4390)))) (-4087 (((-112) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-1130 |#1| |#2|) (-1090))))) (-2065 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 47 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 46)) (-2230 (((-112) $ (-765)) NIL)) (-3884 (((-638 (-1130 |#1| |#2|)) $) 53)) (-3067 (((-112) $) 42)) (-1764 (((-1148) $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-1714 (((-1110) $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-4009 (((-3 $ "failed") $) 75)) (-2123 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-1130 |#1| |#2|)))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090)))) (($ $ (-293 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090)))) (($ $ (-1130 |#1| |#2|) (-1130 |#1| |#2|)) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090)))) (($ $ (-638 (-1130 |#1| |#2|)) (-638 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1090))))) (-3016 (((-112) $ $) 50)) (-1928 (((-112) $) 23)) (-3170 (($) 25)) (-2277 (((-1130 |#1| |#2|) $ "value") NIL)) (-2004 (((-561) $ $) NIL)) (-3849 (((-112) $) 44)) (-1724 (((-765) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4390))) (((-765) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-1130 |#1| |#2|) (-1090))))) (-4187 (($ $) 49)) (-4031 (($ (-1130 |#1| |#2|)) 10) (($ |#1| |#2| (-638 $)) 13) (($ |#1| |#2| (-638 (-1130 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-638 |#2|)) 18)) (-3766 (((-638 |#2|) $) 81)) (-4022 (((-856) $) 73 (|has| (-1130 |#1| |#2|) (-608 (-856))))) (-4257 (((-638 $) $) 29)) (-3123 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1090)))) (-3715 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 64 (|has| (-1130 |#1| |#2|) (-1090)))) (-3498 (((-765) $) 58 (|has| $ (-6 -4390)))))
+(((-1131 |#1| |#2|) (-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4391) (-6 -4390) (-15 -4009 ((-3 $ "failed") $)) (-15 -4340 ($ $)) (-15 -4031 ($ (-1130 |#1| |#2|))) (-15 -4031 ($ |#1| |#2| (-638 $))) (-15 -4031 ($ |#1| |#2| (-638 (-1130 |#1| |#2|)))) (-15 -4031 ($ |#1| |#2| |#1| (-638 |#2|))) (-15 -3766 ((-638 |#2|) $)) (-15 -3783 ((-638 (-2 (|:| |val| |#1|) (|:| -1510 |#2|))) $)) (-15 -3666 ((-112) (-1130 |#1| |#2|) $)) (-15 -2384 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1489 ($ (-1130 |#1| |#2|) $)) (-15 -3999 ($ (-1130 |#1| |#2|) $)) (-15 -2274 ($ $ $ (-638 (-1130 |#1| |#2|)))) (-15 -2274 ($ $ $ (-638 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1090) (-34)) (-13 (-1090) (-34))) (T -1131))
+((-4009 (*1 *1 *1) (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4340 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-4031 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-638 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))))) (-4031 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-638 (-1130 *2 *3))) (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34))) (-5 *1 (-1131 *2 *3)))) (-4031 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-638 *3)) (-4 *3 (-13 (-1090) (-34))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34))))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-638 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4)))) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))) (-3666 (*1 *2 *3 *1) (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)))) (-2384 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *5 *6)))) (-1489 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-2274 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-638 (-1130 *3 *4))) (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))) (-2274 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34))) (-5 *1 (-1131 *4 *5)))))
+(-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4391) (-6 -4390) (-15 -4009 ((-3 $ "failed") $)) (-15 -4340 ($ $)) (-15 -4031 ($ (-1130 |#1| |#2|))) (-15 -4031 ($ |#1| |#2| (-638 $))) (-15 -4031 ($ |#1| |#2| (-638 (-1130 |#1| |#2|)))) (-15 -4031 ($ |#1| |#2| |#1| (-638 |#2|))) (-15 -3766 ((-638 |#2|) $)) (-15 -3783 ((-638 (-2 (|:| |val| |#1|) (|:| -1510 |#2|))) $)) (-15 -3666 ((-112) (-1130 |#1| |#2|) $)) (-15 -2384 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1489 ($ (-1130 |#1| |#2|) $)) (-15 -3999 ($ (-1130 |#1| |#2|) $)) (-15 -2274 ($ $ $ (-638 (-1130 |#1| |#2|)))) (-15 -2274 ($ $ $ (-638 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1820 (($ $) NIL)) (-1744 ((|#2| $) NIL)) (-1810 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1545 (($ (-682 |#2|)) 50)) (-2487 (((-112) $) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-3539 (($ |#2|) 10)) (-1965 (($) NIL T CONST)) (-1298 (($ $) 63 (|has| |#2| (-306)))) (-3845 (((-239 |#1| |#2|) $ (-561)) 36)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 |#2| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) ((|#2| $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) 77)) (-1569 (((-765) $) 65 (|has| |#2| (-553)))) (-4344 ((|#2| $ (-561) (-561)) NIL)) (-3571 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3113 (((-112) $) NIL)) (-3370 (((-765) $) 67 (|has| |#2| (-553)))) (-2542 (((-638 (-239 |#1| |#2|)) $) 71 (|has| |#2| (-553)))) (-1513 (((-765) $) NIL)) (-1470 (($ |#2|) 20)) (-1526 (((-765) $) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-2093 ((|#2| $) 61 (|has| |#2| (-6 (-4392 "*"))))) (-3514 (((-561) $) NIL)) (-2804 (((-561) $) NIL)) (-1305 (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-3089 (((-561) $) NIL)) (-1709 (((-561) $) NIL)) (-2855 (($ (-638 (-638 |#2|))) 31)) (-2065 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3971 (((-638 (-638 |#2|)) $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-4222 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-1714 (((-1110) $) NIL)) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553)))) (-2123 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ (-561) (-561) |#2|) NIL) ((|#2| $ (-561) (-561)) NIL)) (-3238 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1382 ((|#2| $) NIL)) (-2450 (($ (-638 |#2|)) 44)) (-2182 (((-112) $) NIL)) (-1886 (((-239 |#1| |#2|) $) NIL)) (-2622 ((|#2| $) 59 (|has| |#2| (-6 (-4392 "*"))))) (-1724 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-4187 (($ $) NIL)) (-4174 (((-534) $) 86 (|has| |#2| (-609 (-534))))) (-2745 (((-239 |#1| |#2|) $ (-561)) 38)) (-4022 (((-856) $) 41) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#2| (-1031 (-406 (-561))))) (($ |#2|) NIL) (((-682 |#2|) $) 46)) (-4259 (((-765)) 18)) (-3715 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4247 (((-112) $) NIL)) (-2211 (($) 12 T CONST)) (-2222 (($) 15 T CONST)) (-3122 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) 57) (($ $ (-561)) 76 (|has| |#2| (-362)))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 53) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 55)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1132 |#1| |#2|) (-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -1470 ($ |#2|)) (-15 -1820 ($ $)) (-15 -1545 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4392 "*"))) (-6 -4379) |%noBranch|) (IF (|has| |#2| (-6 (-4392 "*"))) (IF (|has| |#2| (-6 -4387)) (-6 -4387) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|))) (-765) (-1042)) (T -1132))
+((-1470 (*1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042)))) (-1820 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042)))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-765)))))
+(-13 (-1113 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -1470 ($ |#2|)) (-15 -1820 ($ $)) (-15 -1545 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4392 "*"))) (-6 -4379) |%noBranch|) (IF (|has| |#2| (-6 (-4392 "*"))) (IF (|has| |#2| (-6 -4387)) (-6 -4387) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-534))) (-6 (-609 (-534))) |%noBranch|)))
+((-2265 (($ $) 19)) (-1855 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-3834 (((-112) $ $) 24)) (-2773 (($ $) 17)) (-2277 (((-143) $ (-561) (-143)) NIL) (((-143) $ (-561)) NIL) (($ $ (-1220 (-561))) NIL) (($ $ $) 29)) (-4022 (($ (-143)) 27) (((-856) $) NIL)))
+(((-1133 |#1|) (-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -1855 (|#1| |#1| (-140))) (-15 -1855 (|#1| |#1| (-143))) (-15 -4022 (|#1| (-143))) (-15 -3834 ((-112) |#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -2277 ((-143) |#1| (-561))) (-15 -2277 ((-143) |#1| (-561) (-143)))) (-1134)) (T -1133))
+NIL
+(-10 -8 (-15 -4022 ((-856) |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -1855 (|#1| |#1| (-140))) (-15 -1855 (|#1| |#1| (-143))) (-15 -4022 (|#1| (-143))) (-15 -3834 ((-112) |#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2773 (|#1| |#1|)) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -2277 ((-143) |#1| (-561))) (-15 -2277 ((-143) |#1| (-561) (-143))))
+((-4011 (((-112) $ $) 19 (|has| (-143) (-1090)))) (-1818 (($ $) 120)) (-2265 (($ $) 121)) (-1855 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-3814 (((-112) $ $) 118)) (-3791 (((-112) $ $ (-561)) 117)) (-2321 (((-638 $) $ (-143)) 110) (((-638 $) $ (-140)) 109)) (-4268 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-3702 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4391))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4391))))) (-1289 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-1630 (((-112) $ (-765)) 8)) (-4167 (((-143) $ (-561) (-143)) 52 (|has| $ (-6 -4391))) (((-143) $ (-1220 (-561)) (-143)) 58 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-1921 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-4075 (($ $) 90 (|has| $ (-6 -4391)))) (-2638 (($ $) 100)) (-3358 (($ $ (-1220 (-561)) $) 114)) (-1472 (($ $) 78 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ (-143) $) 77 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4390)))) (-3185 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4390))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4390)))) (-2073 (((-143) $ (-561) (-143)) 53 (|has| $ (-6 -4391)))) (-4344 (((-143) $ (-561)) 51)) (-3834 (((-112) $ $) 119)) (-4235 (((-561) (-1 (-112) (-143)) $) 97) (((-561) (-143) $) 96 (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) 95 (|has| (-143) (-1090))) (((-561) $ $ (-561)) 113) (((-561) (-140) $ (-561)) 112)) (-3571 (((-638 (-143)) $) 30 (|has| $ (-6 -4390)))) (-1470 (($ (-765) (-143)) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3443 (($ $ $) 87 (|has| (-143) (-844)))) (-1407 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-1305 (((-638 (-143)) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2986 (($ $ $) 86 (|has| (-143) (-844)))) (-4234 (((-112) $ $ (-143)) 115)) (-3778 (((-765) $ $ (-143)) 116)) (-2065 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-4040 (($ $) 122)) (-2773 (($ $) 123)) (-2230 (((-112) $ (-765)) 10)) (-1931 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-1764 (((-1148) $) 22 (|has| (-143) (-1090)))) (-3312 (($ (-143) $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21 (|has| (-143) (-1090)))) (-1433 (((-143) $) 42 (|has| (-561) (-844)))) (-1330 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-1799 (($ $ (-143)) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-2658 (((-638 (-143)) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 (((-143) $ (-561) (-143)) 50) (((-143) $ (-561)) 49) (($ $ (-1220 (-561))) 63) (($ $ $) 102)) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-1724 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4390))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390))))) (-1365 (($ $ $ (-561)) 91 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| (-143) (-609 (-534))))) (-4031 (($ (-638 (-143))) 70)) (-2725 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (($ (-143)) 111) (((-856) $) 18 (|has| (-143) (-608 (-856))))) (-3715 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) 84 (|has| (-143) (-844)))) (-1762 (((-112) $ $) 83 (|has| (-143) (-844)))) (-1733 (((-112) $ $) 20 (|has| (-143) (-1090)))) (-1773 (((-112) $ $) 85 (|has| (-143) (-844)))) (-1754 (((-112) $ $) 82 (|has| (-143) (-844)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1134) (-139)) (T -1134))
+((-2773 (*1 *1 *1) (-4 *1 (-1134))) (-4040 (*1 *1 *1) (-4 *1 (-1134))) (-2265 (*1 *1 *1) (-4 *1 (-1134))) (-1818 (*1 *1 *1) (-4 *1 (-1134))) (-3834 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3814 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3791 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-561)) (-5 *2 (-112)))) (-3778 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765)))) (-4234 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112)))) (-3358 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1220 (-561))))) (-4235 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)))) (-4235 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)) (-5 *3 (-140)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1134)))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-638 *1)) (-4 *1 (-1134)))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-638 *1)) (-4 *1 (-1134)))) (-1855 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-1855 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-1931 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-1931 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-1921 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-1921 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-2277 (*1 *1 *1 *1) (-4 *1 (-1134))))
+(-13 (-19 (-143)) (-10 -8 (-15 -2773 ($ $)) (-15 -4040 ($ $)) (-15 -2265 ($ $)) (-15 -1818 ($ $)) (-15 -3834 ((-112) $ $)) (-15 -3814 ((-112) $ $)) (-15 -3791 ((-112) $ $ (-561))) (-15 -3778 ((-765) $ $ (-143))) (-15 -4234 ((-112) $ $ (-143))) (-15 -3358 ($ $ (-1220 (-561)) $)) (-15 -4235 ((-561) $ $ (-561))) (-15 -4235 ((-561) (-140) $ (-561))) (-15 -4022 ($ (-143))) (-15 -2321 ((-638 $) $ (-143))) (-15 -2321 ((-638 $) $ (-140))) (-15 -1855 ($ $ (-143))) (-15 -1855 ($ $ (-140))) (-15 -1931 ($ $ (-143))) (-15 -1931 ($ $ (-140))) (-15 -1921 ($ $ (-143))) (-15 -1921 ($ $ (-140))) (-15 -2277 ($ $ $))))
+(((-34) . T) ((-102) -4007 (|has| (-143) (-1090)) (|has| (-143) (-844))) ((-608 (-856)) -4007 (|has| (-143) (-1090)) (|has| (-143) (-844)) (|has| (-143) (-608 (-856)))) ((-150 #0=(-143)) . T) ((-609 (-534)) |has| (-143) (-609 (-534))) ((-285 #1=(-561) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-372 #0#) . T) ((-487 #0#) . T) ((-599 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-644 #0#) . T) ((-19 #0#) . T) ((-844) |has| (-143) (-844)) ((-1090) -4007 (|has| (-143) (-1090)) (|has| (-143) (-844))) ((-1205) . T))
+((-4100 (((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-765)) 93)) (-3525 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765)) 54)) (-2797 (((-1258) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-765)) 85)) (-2676 (((-765) (-638 |#4|) (-638 |#5|)) 27)) (-2796 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765)) 56) (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765) (-112)) 58)) (-2091 (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112)) 77)) (-4174 (((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) 80)) (-1598 (((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|) 53)) (-2697 (((-765) (-638 |#4|) (-638 |#5|)) 19)))
+(((-1135 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2697 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -2676 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -1598 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4100 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-765))) (-15 -4174 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -2797 ((-1258) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -1135))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1258)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1135 *4 *5 *6 *7 *8)))) (-4100 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-638 *11)) (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1510 *11)))))) (-5 *6 (-765)) (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1510 *11)))) (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1135 *7 *8 *9 *10 *11)))) (-2091 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-2091 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-2796 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-2796 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-2796 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1135 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3)))) (-3525 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3525 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-1598 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-638 *4)) (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-2676 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2697 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -2676 ((-765) (-638 |#4|) (-638 |#5|))) (-15 -1598 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -3525 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5| (-765))) (-15 -2796 ((-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) |#4| |#5|)) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112))) (-15 -2091 ((-638 |#5|) (-638 |#4|) (-638 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4100 ((-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-638 |#4|) (-638 |#5|) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-2 (|:| |done| (-638 |#5|)) (|:| |todo| (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))))) (-765))) (-15 -4174 ((-1148) (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|)))) (-15 -2797 ((-1258) (-638 (-2 (|:| |val| (-638 |#4|)) (|:| -1510 |#5|))) (-765))))
+((-4011 (((-112) $ $) NIL)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3047 (((-638 $) (-638 |#4|)) 110) (((-638 $) (-638 |#4|) (-112)) 111) (((-638 $) (-638 |#4|) (-112) (-112)) 109) (((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112)) 112)) (-1412 (((-638 |#3|) $) NIL)) (-1978 (((-112) $) NIL)) (-2701 (((-112) $) NIL (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2427 ((|#4| |#4| $) NIL)) (-1591 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| $) 84)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) 62)) (-1965 (($) NIL T CONST)) (-2002 (((-112) $) 27 (|has| |#1| (-553)))) (-1951 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1361 (((-112) $) NIL (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1825 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3938 (($ (-638 |#4|)) NIL)) (-1445 (((-3 $ "failed") $) 40)) (-3320 ((|#4| |#4| $) 65)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-1489 (($ |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3372 ((|#4| |#4| $) NIL)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) NIL)) (-3871 (((-112) |#4| $) NIL)) (-2639 (((-112) |#4| $) NIL)) (-1786 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1403 (((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)) 124)) (-3571 (((-638 |#4|) $) 17 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#4|) $) 18 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-2065 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 22)) (-2209 (((-638 |#3|) $) NIL)) (-2866 (((-112) |#3| $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-2987 (((-3 |#4| (-638 $)) |#4| |#4| $) NIL)) (-1631 (((-638 (-2 (|:| |val| |#4|) (|:| -1510 $))) |#4| |#4| $) 103)) (-1520 (((-3 |#4| "failed") $) 38)) (-3316 (((-638 $) |#4| $) 88)) (-4021 (((-3 (-112) (-638 $)) |#4| $) NIL)) (-1924 (((-638 (-2 (|:| |val| (-112)) (|:| -1510 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-2579 (((-638 $) |#4| $) 107) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 108) (((-638 $) |#4| (-638 $)) NIL)) (-3178 (((-638 $) (-638 |#4|) (-112) (-112) (-112)) 119)) (-2961 (($ |#4| $) 75) (($ (-638 |#4|) $) 76) (((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-1981 (((-638 |#4|) $) NIL)) (-2153 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1829 ((|#4| |#4| $) NIL)) (-3863 (((-112) $ $) NIL)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-3 |#4| "failed") $) 36)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2916 (((-3 $ "failed") $ |#4|) 48)) (-1416 (($ $ |#4|) NIL) (((-638 $) |#4| $) 90) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) 86)) (-2123 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 16)) (-3170 (($) 14)) (-2894 (((-765) $) NIL)) (-1724 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) 13)) (-4174 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 21)) (-1755 (($ $ |#3|) 43)) (-2794 (($ $ |#3|) 44)) (-2074 (($ $) NIL)) (-1967 (($ $ |#3|) NIL)) (-4022 (((-856) $) 32) (((-638 |#4|) $) 41)) (-4161 (((-765) $) NIL (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-2930 (((-638 $) |#4| $) 54) (((-638 $) |#4| (-638 $)) NIL) (((-638 $) (-638 |#4|) $) NIL) (((-638 $) (-638 |#4|) (-638 $)) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) NIL)) (-2827 (((-112) |#4| $) NIL)) (-1751 (((-112) |#3| $) 61)) (-1733 (((-112) $ $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1136 |#1| |#2| |#3| |#4|) (-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2961 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -3178 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1403 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1136))
+((-2961 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-3047 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-3178 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-1403 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-638 *8)) (|:| |towers| (-638 (-1136 *5 *6 *7 *8))))) (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
+(-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2961 ((-638 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112))) (-15 -3047 ((-638 $) (-638 |#4|) (-112) (-112) (-112) (-112))) (-15 -3178 ((-638 $) (-638 |#4|) (-112) (-112) (-112))) (-15 -1403 ((-2 (|:| |val| (-638 |#4|)) (|:| |towers| (-638 $))) (-638 |#4|) (-112) (-112)))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2735 ((|#1| $) 34)) (-2385 (($ (-638 |#1|)) 39)) (-1630 (((-112) $ (-765)) NIL)) (-1965 (($) NIL T CONST)) (-3760 ((|#1| |#1| $) 36)) (-3297 ((|#1| $) 32)) (-3571 (((-638 |#1|) $) 18 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 22)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3211 ((|#1| $) 35)) (-3671 (($ |#1| $) 37)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-3522 ((|#1| $) 33)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 31)) (-3170 (($) 38)) (-1404 (((-765) $) 29)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 27)) (-4022 (((-856) $) 14 (|has| |#1| (-608 (-856))))) (-3025 (($ (-638 |#1|)) NIL)) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 17 (|has| |#1| (-1090)))) (-3498 (((-765) $) 30 (|has| $ (-6 -4390)))))
+(((-1137 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -2385 ($ (-638 |#1|))))) (-1205)) (T -1137))
+((-2385 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1137 *3)))))
+(-13 (-1111 |#1|) (-10 -8 (-15 -2385 ($ (-638 |#1|)))))
+((-4167 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1220 (-561)) |#2|) 43) ((|#2| $ (-561) |#2|) 40)) (-3032 (((-112) $) 11)) (-2065 (($ (-1 |#2| |#2|) $) 38)) (-1433 ((|#2| $) NIL) (($ $ (-765)) 16)) (-1799 (($ $ |#2|) 39)) (-2667 (((-112) $) 10)) (-2277 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1220 (-561))) 30) ((|#2| $ (-561)) 22) ((|#2| $ (-561) |#2|) NIL)) (-4173 (($ $ $) 46) (($ $ |#2|) NIL)) (-2725 (($ $ $) 32) (($ |#2| $) NIL) (($ (-638 $)) 35) (($ $ |#2|) NIL)))
+(((-1138 |#1| |#2|) (-10 -8 (-15 -3032 ((-112) |#1|)) (-15 -2667 ((-112) |#1|)) (-15 -4167 (|#2| |#1| (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561))) (-15 -1799 (|#1| |#1| |#2|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -4167 (|#2| |#1| (-1220 (-561)) |#2|)) (-15 -4167 (|#2| |#1| "last" |#2|)) (-15 -4167 (|#1| |#1| "rest" |#1|)) (-15 -4167 (|#2| |#1| "first" |#2|)) (-15 -4173 (|#1| |#1| |#2|)) (-15 -4173 (|#1| |#1| |#1|)) (-15 -2277 (|#2| |#1| "last")) (-15 -2277 (|#1| |#1| "rest")) (-15 -1433 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "first")) (-15 -1433 (|#2| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#1|)) (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -2277 (|#2| |#1| "value")) (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|))) (-1139 |#2|) (-1205)) (T -1138))
+NIL
+(-10 -8 (-15 -3032 ((-112) |#1|)) (-15 -2667 ((-112) |#1|)) (-15 -4167 (|#2| |#1| (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561) |#2|)) (-15 -2277 (|#2| |#1| (-561))) (-15 -1799 (|#1| |#1| |#2|)) (-15 -2725 (|#1| |#1| |#2|)) (-15 -2725 (|#1| (-638 |#1|))) (-15 -2277 (|#1| |#1| (-1220 (-561)))) (-15 -4167 (|#2| |#1| (-1220 (-561)) |#2|)) (-15 -4167 (|#2| |#1| "last" |#2|)) (-15 -4167 (|#1| |#1| "rest" |#1|)) (-15 -4167 (|#2| |#1| "first" |#2|)) (-15 -4173 (|#1| |#1| |#2|)) (-15 -4173 (|#1| |#1| |#1|)) (-15 -2277 (|#2| |#1| "last")) (-15 -2277 (|#1| |#1| "rest")) (-15 -1433 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "first")) (-15 -1433 (|#2| |#1|)) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#1|)) (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -2277 (|#2| |#1| "value")) (-15 -2065 (|#1| (-1 |#2| |#2|) |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-2295 ((|#1| $) 65)) (-3129 (($ $) 67)) (-3024 (((-1258) $ (-561) (-561)) 97 (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) 52 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-1353 (($ $ $) 56 (|has| $ (-6 -4391)))) (-1726 ((|#1| $ |#1|) 54 (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) 58 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4391))) (($ $ "rest" $) 55 (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 117 (|has| $ (-6 -4391))) ((|#1| $ (-561) |#1|) 86 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4390)))) (-2285 ((|#1| $) 66)) (-1965 (($) 7 T CONST)) (-1445 (($ $) 73) (($ $ (-765)) 71)) (-1472 (($ $) 99 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4390))) (($ |#1| $) 100 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2073 ((|#1| $ (-561) |#1|) 85 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 87)) (-3032 (((-112) $) 83)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-1470 (($ (-765) |#1|) 108)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 95 (|has| (-561) (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 94 (|has| (-561) (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2230 (((-112) $ (-765)) 10)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1520 ((|#1| $) 70) (($ $ (-765)) 68)) (-3312 (($ $ $ (-561)) 116) (($ |#1| $ (-561)) 115)) (-2451 (((-638 (-561)) $) 92)) (-1390 (((-112) (-561) $) 91)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 76) (($ $ (-765)) 74)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-1799 (($ $ |#1|) 96 (|has| $ (-6 -4391)))) (-2667 (((-112) $) 84)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 90)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1220 (-561))) 112) ((|#1| $ (-561)) 89) ((|#1| $ (-561) |#1|) 88)) (-2004 (((-561) $ $) 44)) (-2849 (($ $ (-1220 (-561))) 114) (($ $ (-561)) 113)) (-3849 (((-112) $) 46)) (-3222 (($ $) 62)) (-4364 (($ $) 59 (|has| $ (-6 -4391)))) (-1624 (((-765) $) 63)) (-2883 (($ $) 64)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4174 (((-534) $) 98 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 107)) (-4173 (($ $ $) 61 (|has| $ (-6 -4391))) (($ $ |#1|) 60 (|has| $ (-6 -4391)))) (-2725 (($ $ $) 78) (($ |#1| $) 77) (($ (-638 $)) 110) (($ $ |#1|) 109)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1139 |#1|) (-139) (-1205)) (T -1139))
+((-2667 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
+(-13 (-1241 |t#1|) (-644 |t#1|) (-10 -8 (-15 -2667 ((-112) $)) (-15 -3032 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T) ((-1241 |#1|) . T))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3024 (((-1258) $ |#1| |#1|) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#2| $ |#1| |#2|) NIL)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) NIL)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) NIL)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) NIL)) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 ((|#1| $) NIL (|has| |#1| (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 ((|#1| $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2017 (((-638 |#1|) $) NIL)) (-2857 (((-112) |#1| $) NIL)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2451 (((-638 |#1|) $) NIL)) (-1390 (((-112) |#1| $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#2| $) NIL (|has| |#1| (-844)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1140 |#1| |#2| |#3|) (-1181 |#1| |#2|) (-1090) (-1090) |#2|) (T -1140))
+NIL
+(-1181 |#1| |#2|)
+((-4011 (((-112) $ $) 7)) (-1663 (((-3 $ "failed") $) 13)) (-1764 (((-1148) $) 9)) (-3721 (($) 14 T CONST)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11)) (-1733 (((-112) $ $) 6)))
+(((-1141) (-139)) (T -1141))
+((-3721 (*1 *1) (-4 *1 (-1141))) (-1663 (*1 *1 *1) (|partial| -4 *1 (-1141))))
+(-13 (-1090) (-10 -8 (-15 -3721 ($) -1514) (-15 -1663 ((-3 $ "failed") $))))
+(((-102) . T) ((-608 (-856)) . T) ((-1090) . T))
+((-2289 (((-1146 |#1|) (-1146 |#1|)) 17)) (-2459 (((-1146 |#1|) (-1146 |#1|)) 13)) (-2000 (((-1146 |#1|) (-1146 |#1|) (-561) (-561)) 20)) (-1300 (((-1146 |#1|) (-1146 |#1|)) 15)))
+(((-1142 |#1|) (-10 -7 (-15 -2459 ((-1146 |#1|) (-1146 |#1|))) (-15 -1300 ((-1146 |#1|) (-1146 |#1|))) (-15 -2289 ((-1146 |#1|) (-1146 |#1|))) (-15 -2000 ((-1146 |#1|) (-1146 |#1|) (-561) (-561)))) (-13 (-553) (-146))) (T -1142))
+((-2000 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-1142 *4)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1142 *3)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1142 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1142 *3)))))
+(-10 -7 (-15 -2459 ((-1146 |#1|) (-1146 |#1|))) (-15 -1300 ((-1146 |#1|) (-1146 |#1|))) (-15 -2289 ((-1146 |#1|) (-1146 |#1|))) (-15 -2000 ((-1146 |#1|) (-1146 |#1|) (-561) (-561))))
+((-2725 (((-1146 |#1|) (-1146 (-1146 |#1|))) 15)))
+(((-1143 |#1|) (-10 -7 (-15 -2725 ((-1146 |#1|) (-1146 (-1146 |#1|))))) (-1205)) (T -1143))
+((-2725 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1143 *4)) (-4 *4 (-1205)))))
+(-10 -7 (-15 -2725 ((-1146 |#1|) (-1146 (-1146 |#1|)))))
+((-3130 (((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)) 25)) (-3185 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)) 26)) (-4120 (((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 16)))
+(((-1144 |#1| |#2|) (-10 -7 (-15 -4120 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (-15 -3130 ((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))) (-15 -3185 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|)))) (-1205) (-1205)) (T -1144))
+((-3185 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1146 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-1144 *5 *2)))) (-3130 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1146 *6)) (-4 *6 (-1205)) (-4 *3 (-1205)) (-5 *2 (-1146 *3)) (-5 *1 (-1144 *6 *3)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6)))))
+(-10 -7 (-15 -4120 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (-15 -3130 ((-1146 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))) (-15 -3185 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1146 |#1|))))
+((-4120 (((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|)) 21)))
+(((-1145 |#1| |#2| |#3|) (-10 -7 (-15 -4120 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|)))) (-1205) (-1205) (-1205)) (T -1145))
+((-4120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-1146 *7)) (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8)) (-5 *1 (-1145 *6 *7 *8)))))
+(-10 -7 (-15 -4120 ((-1146 |#3|) (-1 |#3| |#1| |#2|) (-1146 |#1|) (-1146 |#2|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) NIL)) (-2295 ((|#1| $) NIL)) (-3129 (($ $) 51)) (-3024 (((-1258) $ (-561) (-561)) 76 (|has| $ (-6 -4391)))) (-4255 (($ $ (-561)) 110 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-3704 (((-856) $) 40 (|has| |#1| (-1090)))) (-3037 (((-112)) 39 (|has| |#1| (-1090)))) (-1969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4391)))) (-1353 (($ $ $) 98 (|has| $ (-6 -4391))) (($ $ (-561) $) 122)) (-1726 ((|#1| $ |#1|) 107 (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) 102 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4391))) (($ $ "rest" $) 106 (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 89 (|has| $ (-6 -4391))) ((|#1| $ (-561) |#1|) 55 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 58)) (-2285 ((|#1| $) NIL)) (-1965 (($) NIL T CONST)) (-3263 (($ $) 14)) (-1445 (($ $) 28) (($ $ (-765)) 88)) (-2408 (((-112) (-638 |#1|) $) 116 (|has| |#1| (-1090)))) (-2048 (($ (-638 |#1|)) 112)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) 57)) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-3032 (((-112) $) NIL)) (-3571 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-3472 (((-1258) (-561) $) 121 (|has| |#1| (-1090)))) (-2678 (((-765) $) 118)) (-1940 (((-638 $) $) NIL)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1470 (($ (-765) |#1|) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2230 (((-112) $ (-765)) NIL)) (-3884 (((-638 |#1|) $) NIL)) (-3067 (((-112) $) NIL)) (-4176 (($ $) 90)) (-2258 (((-112) $) 13)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1520 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-3312 (($ $ $ (-561)) NIL) (($ |#1| $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) 74)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2097 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1616 ((|#1| $) 10)) (-1433 ((|#1| $) 27) (($ $ (-765)) 49)) (-1857 (((-2 (|:| |cycle?| (-112)) (|:| -2107 (-765)) (|:| |period| (-765))) (-765) $) 24)) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ (-1 (-112) |#1|) $) 126)) (-3546 (($ (-1 (-112) |#1|) $) 127)) (-1799 (($ $ |#1|) 68 (|has| $ (-6 -4391)))) (-1416 (($ $ (-561)) 31)) (-2667 (((-112) $) 72)) (-2075 (((-112) $) 12)) (-4299 (((-112) $) 117)) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 20)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) 15)) (-3170 (($) 44)) (-2277 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1220 (-561))) NIL) ((|#1| $ (-561)) 54) ((|#1| $ (-561) |#1|) NIL)) (-2004 (((-561) $ $) 48)) (-2849 (($ $ (-1220 (-561))) NIL) (($ $ (-561)) NIL)) (-1455 (($ (-1 $)) 47)) (-3849 (((-112) $) 69)) (-3222 (($ $) 70)) (-4364 (($ $) 99 (|has| $ (-6 -4391)))) (-1624 (((-765) $) NIL)) (-2883 (($ $) NIL)) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 43)) (-4174 (((-534) $) NIL (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 53)) (-3927 (($ |#1| $) 97)) (-4173 (($ $ $) 100 (|has| $ (-6 -4391))) (($ $ |#1|) 101 (|has| $ (-6 -4391)))) (-2725 (($ $ $) 78) (($ |#1| $) 45) (($ (-638 $)) 83) (($ $ |#1|) 77)) (-1897 (($ $) 50)) (-4022 (($ (-638 |#1|)) 111) (((-856) $) 41 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) NIL)) (-3123 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 114 (|has| |#1| (-1090)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1146 |#1|) (-13 (-667 |#1|) (-611 (-638 |#1|)) (-10 -8 (-6 -4391) (-15 -2048 ($ (-638 |#1|))) (IF (|has| |#1| (-1090)) (-15 -2408 ((-112) (-638 |#1|) $)) |%noBranch|) (-15 -1857 ((-2 (|:| |cycle?| (-112)) (|:| -2107 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -1455 ($ (-1 $))) (-15 -3927 ($ |#1| $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3472 ((-1258) (-561) $)) (-15 -3704 ((-856) $)) (-15 -3037 ((-112)))) |%noBranch|) (-15 -1353 ($ $ (-561) $)) (-15 -2097 ($ (-1 |#1|))) (-15 -2097 ($ (-1 |#1| |#1|) |#1|)) (-15 -3538 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)))) (-1205)) (T -1146))
+((-2048 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-2408 (*1 *2 *3 *1) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-4 *4 (-1205)) (-5 *2 (-112)) (-5 *1 (-1146 *4)))) (-1857 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2107 (-765)) (|:| |period| (-765)))) (-5 *1 (-1146 *4)) (-4 *4 (-1205)) (-5 *3 (-765)))) (-1455 (*1 *1 *2) (-12 (-5 *2 (-1 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1205)))) (-3927 (*1 *1 *2 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1205)))) (-3472 (*1 *2 *3 *1) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-1146 *4)) (-4 *4 (-1090)) (-4 *4 (-1205)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1146 *3)) (-4 *3 (-1090)) (-4 *3 (-1205)))) (-3037 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3)) (-4 *3 (-1090)) (-4 *3 (-1205)))) (-1353 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1146 *3)) (-4 *3 (-1205)))) (-2097 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-2097 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-3538 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
+(-13 (-667 |#1|) (-611 (-638 |#1|)) (-10 -8 (-6 -4391) (-15 -2048 ($ (-638 |#1|))) (IF (|has| |#1| (-1090)) (-15 -2408 ((-112) (-638 |#1|) $)) |%noBranch|) (-15 -1857 ((-2 (|:| |cycle?| (-112)) (|:| -2107 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -1455 ($ (-1 $))) (-15 -3927 ($ |#1| $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3472 ((-1258) (-561) $)) (-15 -3704 ((-856) $)) (-15 -3037 ((-112)))) |%noBranch|) (-15 -1353 ($ $ (-561) $)) (-15 -2097 ($ (-1 |#1|))) (-15 -2097 ($ (-1 |#1| |#1|) |#1|)) (-15 -3538 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $))))
+((-4011 (((-112) $ $) 19)) (-1818 (($ $) 120)) (-2265 (($ $) 121)) (-1855 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-3814 (((-112) $ $) 118)) (-3791 (((-112) $ $ (-561)) 117)) (-3595 (($ (-561)) 127)) (-2321 (((-638 $) $ (-143)) 110) (((-638 $) $ (-140)) 109)) (-4268 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-3702 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4391))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4391))))) (-1289 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-1630 (((-112) $ (-765)) 8)) (-4167 (((-143) $ (-561) (-143)) 52 (|has| $ (-6 -4391))) (((-143) $ (-1220 (-561)) (-143)) 58 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-1921 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-4075 (($ $) 90 (|has| $ (-6 -4391)))) (-2638 (($ $) 100)) (-3358 (($ $ (-1220 (-561)) $) 114)) (-1472 (($ $) 78 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ (-143) $) 77 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4390)))) (-3185 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4390))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4390)))) (-2073 (((-143) $ (-561) (-143)) 53 (|has| $ (-6 -4391)))) (-4344 (((-143) $ (-561)) 51)) (-3834 (((-112) $ $) 119)) (-4235 (((-561) (-1 (-112) (-143)) $) 97) (((-561) (-143) $) 96 (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) 95 (|has| (-143) (-1090))) (((-561) $ $ (-561)) 113) (((-561) (-140) $ (-561)) 112)) (-3571 (((-638 (-143)) $) 30 (|has| $ (-6 -4390)))) (-1470 (($ (-765) (-143)) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3443 (($ $ $) 87 (|has| (-143) (-844)))) (-1407 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-1305 (((-638 (-143)) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2986 (($ $ $) 86 (|has| (-143) (-844)))) (-4234 (((-112) $ $ (-143)) 115)) (-3778 (((-765) $ $ (-143)) 116)) (-2065 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-4040 (($ $) 122)) (-2773 (($ $) 123)) (-2230 (((-112) $ (-765)) 10)) (-1931 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-1764 (((-1148) $) 22)) (-3312 (($ (-143) $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21)) (-1433 (((-143) $) 42 (|has| (-561) (-844)))) (-1330 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-1799 (($ $ (-143)) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-2658 (((-638 (-143)) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 (((-143) $ (-561) (-143)) 50) (((-143) $ (-561)) 49) (($ $ (-1220 (-561))) 63) (($ $ $) 102)) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-1724 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4390))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1090)) (|has| $ (-6 -4390))))) (-1365 (($ $ $ (-561)) 91 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| (-143) (-609 (-534))))) (-4031 (($ (-638 (-143))) 70)) (-2725 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (($ (-143)) 111) (((-856) $) 18)) (-3715 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4390)))) (-3677 (((-1148) $) 131) (((-1148) $ (-112)) 130) (((-1258) (-816) $) 129) (((-1258) (-816) $ (-112)) 128)) (-1782 (((-112) $ $) 84 (|has| (-143) (-844)))) (-1762 (((-112) $ $) 83 (|has| (-143) (-844)))) (-1733 (((-112) $ $) 20)) (-1773 (((-112) $ $) 85 (|has| (-143) (-844)))) (-1754 (((-112) $ $) 82 (|has| (-143) (-844)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1147) (-139)) (T -1147))
+((-3595 (*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1147)))))
+(-13 (-1134) (-1090) (-822) (-10 -8 (-15 -3595 ($ (-561)))))
+(((-34) . T) ((-102) . T) ((-608 (-856)) . T) ((-150 #0=(-143)) . T) ((-609 (-534)) |has| (-143) (-609 (-534))) ((-285 #1=(-561) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-372 #0#) . T) ((-487 #0#) . T) ((-599 #1# #0#) . T) ((-512 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))) ((-644 #0#) . T) ((-19 #0#) . T) ((-822) . T) ((-844) |has| (-143) (-844)) ((-1090) . T) ((-1134) . T) ((-1205) . T))
+((-4011 (((-112) $ $) NIL)) (-1818 (($ $) NIL)) (-2265 (($ $) NIL)) (-1855 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-3814 (((-112) $ $) NIL)) (-3791 (((-112) $ $ (-561)) NIL)) (-3595 (($ (-561)) 7)) (-2321 (((-638 $) $ (-143)) NIL) (((-638 $) $ (-140)) NIL)) (-4268 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-3702 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| (-143) (-844))))) (-1289 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 (((-143) $ (-561) (-143)) NIL (|has| $ (-6 -4391))) (((-143) $ (-1220 (-561)) (-143)) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-1921 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-3358 (($ $ (-1220 (-561)) $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-1489 (($ (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4390))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4390)))) (-2073 (((-143) $ (-561) (-143)) NIL (|has| $ (-6 -4391)))) (-4344 (((-143) $ (-561)) NIL)) (-3834 (((-112) $ $) NIL)) (-4235 (((-561) (-1 (-112) (-143)) $) NIL) (((-561) (-143) $) NIL (|has| (-143) (-1090))) (((-561) (-143) $ (-561)) NIL (|has| (-143) (-1090))) (((-561) $ $ (-561)) NIL) (((-561) (-140) $ (-561)) NIL)) (-3571 (((-638 (-143)) $) NIL (|has| $ (-6 -4390)))) (-1470 (($ (-765) (-143)) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| (-143) (-844)))) (-1407 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-1305 (((-638 (-143)) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| (-143) (-844)))) (-4234 (((-112) $ $ (-143)) NIL)) (-3778 (((-765) $ $ (-143)) NIL)) (-2065 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-4040 (($ $) NIL)) (-2773 (($ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1931 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-1764 (((-1148) $) NIL)) (-3312 (($ (-143) $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-143) $) NIL (|has| (-561) (-844)))) (-1330 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-1799 (($ $ (-143)) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090)))) (($ $ (-638 (-143)) (-638 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-2658 (((-638 (-143)) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 (((-143) $ (-561) (-143)) NIL) (((-143) $ (-561)) NIL) (($ $ (-1220 (-561))) NIL) (($ $ $) NIL)) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1724 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-143) (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-143) (-609 (-534))))) (-4031 (($ (-638 (-143))) NIL)) (-2725 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (($ (-143)) NIL) (((-856) $) NIL)) (-3715 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4390)))) (-3677 (((-1148) $) 18) (((-1148) $ (-112)) 20) (((-1258) (-816) $) 21) (((-1258) (-816) $ (-112)) 22)) (-1782 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1762 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| (-143) (-844)))) (-1754 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1148) (-1147)) (T -1148))
+NIL
+(-1147)
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL)) (-3024 (((-1258) $ (-1148) (-1148)) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-1148) |#1|) NIL)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#1| "failed") (-1148) $) NIL)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#1| "failed") (-1148) $) NIL)) (-1489 (($ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-1148)) NIL)) (-3571 (((-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-1148) $) NIL (|has| (-1148) (-844)))) (-1305 (((-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-2017 (((-638 (-1148)) $) NIL)) (-2857 (((-112) (-1148) $) NIL)) (-3211 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL)) (-2451 (((-638 (-1148)) $) NIL)) (-1390 (((-112) (-1148) $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-1433 ((|#1| $) NIL (|has| (-1148) (-844)))) (-1330 (((-3 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) "failed") (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ $ (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL (-12 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-308 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-1148)) NIL) ((|#1| $ (-1148) |#1|) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-608 (-856))) (|has| |#1| (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 (-1148)) (|:| -2654 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1149 |#1|) (-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4390))) (-1090)) (T -1149))
+NIL
+(-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4390)))
+((-3838 (((-1146 |#1|) (-1146 |#1|)) 77)) (-3466 (((-3 (-1146 |#1|) "failed") (-1146 |#1|)) 37)) (-1611 (((-1146 |#1|) (-406 (-561)) (-1146 |#1|)) 121 (|has| |#1| (-38 (-406 (-561)))))) (-1364 (((-1146 |#1|) |#1| (-1146 |#1|)) 127 (|has| |#1| (-362)))) (-1536 (((-1146 |#1|) (-1146 |#1|)) 90)) (-3789 (((-1146 (-561)) (-561)) 57)) (-1956 (((-1146 |#1|) (-1146 (-1146 |#1|))) 109 (|has| |#1| (-38 (-406 (-561)))))) (-2768 (((-1146 |#1|) (-561) (-561) (-1146 |#1|)) 95)) (-3044 (((-1146 |#1|) |#1| (-561)) 45)) (-3098 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 60)) (-1369 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 124 (|has| |#1| (-362)))) (-2901 (((-1146 |#1|) |#1| (-1 (-1146 |#1|))) 108 (|has| |#1| (-38 (-406 (-561)))))) (-3237 (((-1146 |#1|) (-1 |#1| (-561)) |#1| (-1 (-1146 |#1|))) 125 (|has| |#1| (-362)))) (-2417 (((-1146 |#1|) (-1146 |#1|)) 89)) (-1302 (((-1146 |#1|) (-1146 |#1|)) 76)) (-3079 (((-1146 |#1|) (-561) (-561) (-1146 |#1|)) 96)) (-1842 (((-1146 |#1|) |#1| (-1146 |#1|)) 105 (|has| |#1| (-38 (-406 (-561)))))) (-4071 (((-1146 (-561)) (-561)) 56)) (-2549 (((-1146 |#1|) |#1|) 59)) (-3441 (((-1146 |#1|) (-1146 |#1|) (-561) (-561)) 92)) (-1668 (((-1146 |#1|) (-1 |#1| (-561)) (-1146 |#1|)) 66)) (-1756 (((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|)) 35)) (-1543 (((-1146 |#1|) (-1146 |#1|)) 91)) (-1444 (((-1146 |#1|) (-1146 |#1|) |#1|) 71)) (-4147 (((-1146 |#1|) (-1146 |#1|)) 62)) (-2127 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 72)) (-4022 (((-1146 |#1|) |#1|) 67)) (-1986 (((-1146 |#1|) (-1146 (-1146 |#1|))) 82)) (-1833 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 36)) (-1824 (((-1146 |#1|) (-1146 |#1|)) 21) (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 23)) (-1813 (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 17)) (* (((-1146 |#1|) (-1146 |#1|) |#1|) 29) (((-1146 |#1|) |#1| (-1146 |#1|)) 26) (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 27)))
+(((-1150 |#1|) (-10 -7 (-15 -1813 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1824 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1824 ((-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -1756 ((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|))) (-15 -1833 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3466 ((-3 (-1146 |#1|) "failed") (-1146 |#1|))) (-15 -3044 ((-1146 |#1|) |#1| (-561))) (-15 -4071 ((-1146 (-561)) (-561))) (-15 -3789 ((-1146 (-561)) (-561))) (-15 -2549 ((-1146 |#1|) |#1|)) (-15 -3098 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4147 ((-1146 |#1|) (-1146 |#1|))) (-15 -1668 ((-1146 |#1|) (-1 |#1| (-561)) (-1146 |#1|))) (-15 -4022 ((-1146 |#1|) |#1|)) (-15 -1444 ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -2127 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1302 ((-1146 |#1|) (-1146 |#1|))) (-15 -3838 ((-1146 |#1|) (-1146 |#1|))) (-15 -1986 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -2417 ((-1146 |#1|) (-1146 |#1|))) (-15 -1536 ((-1146 |#1|) (-1146 |#1|))) (-15 -1543 ((-1146 |#1|) (-1146 |#1|))) (-15 -3441 ((-1146 |#1|) (-1146 |#1|) (-561) (-561))) (-15 -2768 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (-15 -3079 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 -2901 ((-1146 |#1|) |#1| (-1 (-1146 |#1|)))) (-15 -1956 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -1611 ((-1146 |#1|) (-406 (-561)) (-1146 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1369 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3237 ((-1146 |#1|) (-1 |#1| (-561)) |#1| (-1 (-1146 |#1|)))) (-15 -1364 ((-1146 |#1|) |#1| (-1146 |#1|)))) |%noBranch|)) (-1042)) (T -1150))
+((-1364 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-561))) (-5 *5 (-1 (-1146 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1611 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042)) (-5 *3 (-406 (-561))) (-5 *1 (-1150 *4)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1146 *3))) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))) (-1842 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3079 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-2768 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-3441 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-2417 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-1042)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1302 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-2127 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1444 (*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4022 (*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-1668 (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *4)) (-5 *3 (-1 *4 (-561))) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3098 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-2549 (*1 *2 *3) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3789 (*1 *2 *3) (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-561)))) (-4071 (*1 *2 *3) (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-561)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3466 (*1 *2 *2) (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1833 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1756 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1824 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(-10 -7 (-15 -1813 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1824 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1824 ((-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 * ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 * ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -1756 ((-3 (-1146 |#1|) "failed") (-1146 |#1|) (-1146 |#1|))) (-15 -1833 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3466 ((-3 (-1146 |#1|) "failed") (-1146 |#1|))) (-15 -3044 ((-1146 |#1|) |#1| (-561))) (-15 -4071 ((-1146 (-561)) (-561))) (-15 -3789 ((-1146 (-561)) (-561))) (-15 -2549 ((-1146 |#1|) |#1|)) (-15 -3098 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4147 ((-1146 |#1|) (-1146 |#1|))) (-15 -1668 ((-1146 |#1|) (-1 |#1| (-561)) (-1146 |#1|))) (-15 -4022 ((-1146 |#1|) |#1|)) (-15 -1444 ((-1146 |#1|) (-1146 |#1|) |#1|)) (-15 -2127 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -1302 ((-1146 |#1|) (-1146 |#1|))) (-15 -3838 ((-1146 |#1|) (-1146 |#1|))) (-15 -1986 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -2417 ((-1146 |#1|) (-1146 |#1|))) (-15 -1536 ((-1146 |#1|) (-1146 |#1|))) (-15 -1543 ((-1146 |#1|) (-1146 |#1|))) (-15 -3441 ((-1146 |#1|) (-1146 |#1|) (-561) (-561))) (-15 -2768 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (-15 -3079 ((-1146 |#1|) (-561) (-561) (-1146 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ((-1146 |#1|) |#1| (-1146 |#1|))) (-15 -2901 ((-1146 |#1|) |#1| (-1 (-1146 |#1|)))) (-15 -1956 ((-1146 |#1|) (-1146 (-1146 |#1|)))) (-15 -1611 ((-1146 |#1|) (-406 (-561)) (-1146 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1369 ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -3237 ((-1146 |#1|) (-1 |#1| (-561)) |#1| (-1 (-1146 |#1|)))) (-15 -1364 ((-1146 |#1|) |#1| (-1146 |#1|)))) |%noBranch|))
+((-2978 (((-1146 |#1|) (-1146 |#1|)) 57)) (-4064 (((-1146 |#1|) (-1146 |#1|)) 39)) (-4172 (((-1146 |#1|) (-1146 |#1|)) 53)) (-4041 (((-1146 |#1|) (-1146 |#1|)) 35)) (-3009 (((-1146 |#1|) (-1146 |#1|)) 60)) (-4085 (((-1146 |#1|) (-1146 |#1|)) 42)) (-4348 (((-1146 |#1|) (-1146 |#1|)) 31)) (-3440 (((-1146 |#1|) (-1146 |#1|)) 27)) (-3021 (((-1146 |#1|) (-1146 |#1|)) 61)) (-4095 (((-1146 |#1|) (-1146 |#1|)) 43)) (-2995 (((-1146 |#1|) (-1146 |#1|)) 58)) (-4073 (((-1146 |#1|) (-1146 |#1|)) 40)) (-2968 (((-1146 |#1|) (-1146 |#1|)) 55)) (-4054 (((-1146 |#1|) (-1146 |#1|)) 37)) (-3055 (((-1146 |#1|) (-1146 |#1|)) 65)) (-4132 (((-1146 |#1|) (-1146 |#1|)) 47)) (-3031 (((-1146 |#1|) (-1146 |#1|)) 63)) (-4105 (((-1146 |#1|) (-1146 |#1|)) 45)) (-3081 (((-1146 |#1|) (-1146 |#1|)) 68)) (-4149 (((-1146 |#1|) (-1146 |#1|)) 50)) (-2125 (((-1146 |#1|) (-1146 |#1|)) 69)) (-4160 (((-1146 |#1|) (-1146 |#1|)) 51)) (-3066 (((-1146 |#1|) (-1146 |#1|)) 67)) (-4142 (((-1146 |#1|) (-1146 |#1|)) 49)) (-3043 (((-1146 |#1|) (-1146 |#1|)) 66)) (-4117 (((-1146 |#1|) (-1146 |#1|)) 48)) (** (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 33)))
+(((-1151 |#1|) (-10 -7 (-15 -3440 ((-1146 |#1|) (-1146 |#1|))) (-15 -4348 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4041 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4064 ((-1146 |#1|) (-1146 |#1|))) (-15 -4073 ((-1146 |#1|) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4095 ((-1146 |#1|) (-1146 |#1|))) (-15 -4105 ((-1146 |#1|) (-1146 |#1|))) (-15 -4117 ((-1146 |#1|) (-1146 |#1|))) (-15 -4132 ((-1146 |#1|) (-1146 |#1|))) (-15 -4142 ((-1146 |#1|) (-1146 |#1|))) (-15 -4149 ((-1146 |#1|) (-1146 |#1|))) (-15 -4160 ((-1146 |#1|) (-1146 |#1|))) (-15 -4172 ((-1146 |#1|) (-1146 |#1|))) (-15 -2968 ((-1146 |#1|) (-1146 |#1|))) (-15 -2978 ((-1146 |#1|) (-1146 |#1|))) (-15 -2995 ((-1146 |#1|) (-1146 |#1|))) (-15 -3009 ((-1146 |#1|) (-1146 |#1|))) (-15 -3021 ((-1146 |#1|) (-1146 |#1|))) (-15 -3031 ((-1146 |#1|) (-1146 |#1|))) (-15 -3043 ((-1146 |#1|) (-1146 |#1|))) (-15 -3055 ((-1146 |#1|) (-1146 |#1|))) (-15 -3066 ((-1146 |#1|) (-1146 |#1|))) (-15 -3081 ((-1146 |#1|) (-1146 |#1|))) (-15 -2125 ((-1146 |#1|) (-1146 |#1|)))) (-38 (-406 (-561)))) (T -1151))
+((-2125 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3055 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-2995 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-2978 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-2968 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4172 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4142 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4132 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4117 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4095 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-4348 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1151 *3)))))
+(-10 -7 (-15 -3440 ((-1146 |#1|) (-1146 |#1|))) (-15 -4348 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4041 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4064 ((-1146 |#1|) (-1146 |#1|))) (-15 -4073 ((-1146 |#1|) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4095 ((-1146 |#1|) (-1146 |#1|))) (-15 -4105 ((-1146 |#1|) (-1146 |#1|))) (-15 -4117 ((-1146 |#1|) (-1146 |#1|))) (-15 -4132 ((-1146 |#1|) (-1146 |#1|))) (-15 -4142 ((-1146 |#1|) (-1146 |#1|))) (-15 -4149 ((-1146 |#1|) (-1146 |#1|))) (-15 -4160 ((-1146 |#1|) (-1146 |#1|))) (-15 -4172 ((-1146 |#1|) (-1146 |#1|))) (-15 -2968 ((-1146 |#1|) (-1146 |#1|))) (-15 -2978 ((-1146 |#1|) (-1146 |#1|))) (-15 -2995 ((-1146 |#1|) (-1146 |#1|))) (-15 -3009 ((-1146 |#1|) (-1146 |#1|))) (-15 -3021 ((-1146 |#1|) (-1146 |#1|))) (-15 -3031 ((-1146 |#1|) (-1146 |#1|))) (-15 -3043 ((-1146 |#1|) (-1146 |#1|))) (-15 -3055 ((-1146 |#1|) (-1146 |#1|))) (-15 -3066 ((-1146 |#1|) (-1146 |#1|))) (-15 -3081 ((-1146 |#1|) (-1146 |#1|))) (-15 -2125 ((-1146 |#1|) (-1146 |#1|))))
+((-2978 (((-1146 |#1|) (-1146 |#1|)) 100)) (-4064 (((-1146 |#1|) (-1146 |#1|)) 64)) (-2898 (((-2 (|:| -4172 (-1146 |#1|)) (|:| -2968 (-1146 |#1|))) (-1146 |#1|)) 96)) (-4172 (((-1146 |#1|) (-1146 |#1|)) 97)) (-4139 (((-2 (|:| -4041 (-1146 |#1|)) (|:| -4054 (-1146 |#1|))) (-1146 |#1|)) 53)) (-4041 (((-1146 |#1|) (-1146 |#1|)) 54)) (-3009 (((-1146 |#1|) (-1146 |#1|)) 102)) (-4085 (((-1146 |#1|) (-1146 |#1|)) 71)) (-4348 (((-1146 |#1|) (-1146 |#1|)) 39)) (-3440 (((-1146 |#1|) (-1146 |#1|)) 36)) (-3021 (((-1146 |#1|) (-1146 |#1|)) 103)) (-4095 (((-1146 |#1|) (-1146 |#1|)) 72)) (-2995 (((-1146 |#1|) (-1146 |#1|)) 101)) (-4073 (((-1146 |#1|) (-1146 |#1|)) 67)) (-2968 (((-1146 |#1|) (-1146 |#1|)) 98)) (-4054 (((-1146 |#1|) (-1146 |#1|)) 55)) (-3055 (((-1146 |#1|) (-1146 |#1|)) 111)) (-4132 (((-1146 |#1|) (-1146 |#1|)) 86)) (-3031 (((-1146 |#1|) (-1146 |#1|)) 105)) (-4105 (((-1146 |#1|) (-1146 |#1|)) 82)) (-3081 (((-1146 |#1|) (-1146 |#1|)) 115)) (-4149 (((-1146 |#1|) (-1146 |#1|)) 90)) (-2125 (((-1146 |#1|) (-1146 |#1|)) 117)) (-4160 (((-1146 |#1|) (-1146 |#1|)) 92)) (-3066 (((-1146 |#1|) (-1146 |#1|)) 113)) (-4142 (((-1146 |#1|) (-1146 |#1|)) 88)) (-3043 (((-1146 |#1|) (-1146 |#1|)) 107)) (-4117 (((-1146 |#1|) (-1146 |#1|)) 84)) (** (((-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) 40)))
+(((-1152 |#1|) (-10 -7 (-15 -3440 ((-1146 |#1|) (-1146 |#1|))) (-15 -4348 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4139 ((-2 (|:| -4041 (-1146 |#1|)) (|:| -4054 (-1146 |#1|))) (-1146 |#1|))) (-15 -4041 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4064 ((-1146 |#1|) (-1146 |#1|))) (-15 -4073 ((-1146 |#1|) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4095 ((-1146 |#1|) (-1146 |#1|))) (-15 -4105 ((-1146 |#1|) (-1146 |#1|))) (-15 -4117 ((-1146 |#1|) (-1146 |#1|))) (-15 -4132 ((-1146 |#1|) (-1146 |#1|))) (-15 -4142 ((-1146 |#1|) (-1146 |#1|))) (-15 -4149 ((-1146 |#1|) (-1146 |#1|))) (-15 -4160 ((-1146 |#1|) (-1146 |#1|))) (-15 -2898 ((-2 (|:| -4172 (-1146 |#1|)) (|:| -2968 (-1146 |#1|))) (-1146 |#1|))) (-15 -4172 ((-1146 |#1|) (-1146 |#1|))) (-15 -2968 ((-1146 |#1|) (-1146 |#1|))) (-15 -2978 ((-1146 |#1|) (-1146 |#1|))) (-15 -2995 ((-1146 |#1|) (-1146 |#1|))) (-15 -3009 ((-1146 |#1|) (-1146 |#1|))) (-15 -3021 ((-1146 |#1|) (-1146 |#1|))) (-15 -3031 ((-1146 |#1|) (-1146 |#1|))) (-15 -3043 ((-1146 |#1|) (-1146 |#1|))) (-15 -3055 ((-1146 |#1|) (-1146 |#1|))) (-15 -3066 ((-1146 |#1|) (-1146 |#1|))) (-15 -3081 ((-1146 |#1|) (-1146 |#1|))) (-15 -2125 ((-1146 |#1|) (-1146 |#1|)))) (-38 (-406 (-561)))) (T -1152))
+((-2125 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3055 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-2995 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-2978 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-2968 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4172 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-2898 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-2 (|:| -4172 (-1146 *4)) (|:| -2968 (-1146 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4142 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4132 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4117 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4095 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-2 (|:| -4041 (-1146 *4)) (|:| -4054 (-1146 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-4348 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1152 *3)))))
+(-10 -7 (-15 -3440 ((-1146 |#1|) (-1146 |#1|))) (-15 -4348 ((-1146 |#1|) (-1146 |#1|))) (-15 ** ((-1146 |#1|) (-1146 |#1|) (-1146 |#1|))) (-15 -4139 ((-2 (|:| -4041 (-1146 |#1|)) (|:| -4054 (-1146 |#1|))) (-1146 |#1|))) (-15 -4041 ((-1146 |#1|) (-1146 |#1|))) (-15 -4054 ((-1146 |#1|) (-1146 |#1|))) (-15 -4064 ((-1146 |#1|) (-1146 |#1|))) (-15 -4073 ((-1146 |#1|) (-1146 |#1|))) (-15 -4085 ((-1146 |#1|) (-1146 |#1|))) (-15 -4095 ((-1146 |#1|) (-1146 |#1|))) (-15 -4105 ((-1146 |#1|) (-1146 |#1|))) (-15 -4117 ((-1146 |#1|) (-1146 |#1|))) (-15 -4132 ((-1146 |#1|) (-1146 |#1|))) (-15 -4142 ((-1146 |#1|) (-1146 |#1|))) (-15 -4149 ((-1146 |#1|) (-1146 |#1|))) (-15 -4160 ((-1146 |#1|) (-1146 |#1|))) (-15 -2898 ((-2 (|:| -4172 (-1146 |#1|)) (|:| -2968 (-1146 |#1|))) (-1146 |#1|))) (-15 -4172 ((-1146 |#1|) (-1146 |#1|))) (-15 -2968 ((-1146 |#1|) (-1146 |#1|))) (-15 -2978 ((-1146 |#1|) (-1146 |#1|))) (-15 -2995 ((-1146 |#1|) (-1146 |#1|))) (-15 -3009 ((-1146 |#1|) (-1146 |#1|))) (-15 -3021 ((-1146 |#1|) (-1146 |#1|))) (-15 -3031 ((-1146 |#1|) (-1146 |#1|))) (-15 -3043 ((-1146 |#1|) (-1146 |#1|))) (-15 -3055 ((-1146 |#1|) (-1146 |#1|))) (-15 -3066 ((-1146 |#1|) (-1146 |#1|))) (-15 -3081 ((-1146 |#1|) (-1146 |#1|))) (-15 -2125 ((-1146 |#1|) (-1146 |#1|))))
+((-2649 (((-951 |#2|) |#2| |#2|) 35)) (-2401 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306)))))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -2649 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -2401 (|#2| |#2| |#1|)) |%noBranch|)) (-553) (-1229 |#1|)) (T -1153))
+((-2401 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-553)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1229 *3)))) (-2649 (*1 *2 *3 *3) (-12 (-4 *4 (-553)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -2649 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -2401 (|#2| |#2| |#1|)) |%noBranch|))
+((-4011 (((-112) $ $) NIL)) (-3090 (($ $ (-638 (-765))) 66)) (-3583 (($) 25)) (-2864 (($ $) 41)) (-1301 (((-638 $) $) 50)) (-2031 (((-112) $) 16)) (-4170 (((-638 (-936 |#2|)) $) 73)) (-2809 (($ $) 67)) (-3374 (((-765) $) 36)) (-1470 (($) 24)) (-1609 (($ $ (-638 (-765)) (-936 |#2|)) 59) (($ $ (-638 (-765)) (-765)) 60) (($ $ (-765) (-936 |#2|)) 62)) (-1407 (($ $ $) 47) (($ (-638 $)) 49)) (-3346 (((-765) $) 74)) (-3067 (((-112) $) 15)) (-1764 (((-1148) $) NIL)) (-1529 (((-112) $) 17)) (-1714 (((-1110) $) NIL)) (-1362 (((-170) $) 72)) (-2055 (((-936 |#2|) $) 68)) (-2403 (((-765) $) 69)) (-3108 (((-112) $) 71)) (-4322 (($ $ (-638 (-765)) (-170)) 65)) (-4212 (($ $) 42)) (-4022 (((-856) $) 85)) (-3690 (($ $ (-638 (-765)) (-112)) 64)) (-4257 (((-638 $) $) 11)) (-2753 (($ $ (-765)) 35)) (-2853 (($ $) 31)) (-1525 (($ $ $ (-936 |#2|) (-765)) 55)) (-3015 (($ $ (-936 |#2|)) 54)) (-4307 (($ $ (-638 (-765)) (-936 |#2|)) 53) (($ $ (-638 (-765)) (-765)) 57) (((-765) $ (-936 |#2|)) 58)) (-1733 (((-112) $ $) 79)))
+(((-1154 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -3067 ((-112) $)) (-15 -2031 ((-112) $)) (-15 -1529 ((-112) $)) (-15 -1470 ($)) (-15 -3583 ($)) (-15 -2853 ($ $)) (-15 -2753 ($ $ (-765))) (-15 -4257 ((-638 $) $)) (-15 -3374 ((-765) $)) (-15 -2864 ($ $)) (-15 -4212 ($ $)) (-15 -1407 ($ $ $)) (-15 -1407 ($ (-638 $))) (-15 -1301 ((-638 $) $)) (-15 -4307 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -3015 ($ $ (-936 |#2|))) (-15 -1525 ($ $ $ (-936 |#2|) (-765))) (-15 -1609 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -4307 ($ $ (-638 (-765)) (-765))) (-15 -1609 ($ $ (-638 (-765)) (-765))) (-15 -4307 ((-765) $ (-936 |#2|))) (-15 -1609 ($ $ (-765) (-936 |#2|))) (-15 -3690 ($ $ (-638 (-765)) (-112))) (-15 -4322 ($ $ (-638 (-765)) (-170))) (-15 -3090 ($ $ (-638 (-765)))) (-15 -2055 ((-936 |#2|) $)) (-15 -2403 ((-765) $)) (-15 -3108 ((-112) $)) (-15 -1362 ((-170) $)) (-15 -3346 ((-765) $)) (-15 -2809 ($ $)) (-15 -4170 ((-638 (-936 |#2|)) $)))) (-914) (-1042)) (T -1154))
+((-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1470 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-3583 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-2853 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-2753 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2864 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-1407 (*1 *1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-4307 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-3015 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)))) (-1525 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-1609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-4307 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-1609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-1609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))) (-3690 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-4322 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-638 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)) (-4 *5 (-1042)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))) (-2809 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-638 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914)) (-4 *4 (-1042)))))
+(-13 (-1090) (-10 -8 (-15 -3067 ((-112) $)) (-15 -2031 ((-112) $)) (-15 -1529 ((-112) $)) (-15 -1470 ($)) (-15 -3583 ($)) (-15 -2853 ($ $)) (-15 -2753 ($ $ (-765))) (-15 -4257 ((-638 $) $)) (-15 -3374 ((-765) $)) (-15 -2864 ($ $)) (-15 -4212 ($ $)) (-15 -1407 ($ $ $)) (-15 -1407 ($ (-638 $))) (-15 -1301 ((-638 $) $)) (-15 -4307 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -3015 ($ $ (-936 |#2|))) (-15 -1525 ($ $ $ (-936 |#2|) (-765))) (-15 -1609 ($ $ (-638 (-765)) (-936 |#2|))) (-15 -4307 ($ $ (-638 (-765)) (-765))) (-15 -1609 ($ $ (-638 (-765)) (-765))) (-15 -4307 ((-765) $ (-936 |#2|))) (-15 -1609 ($ $ (-765) (-936 |#2|))) (-15 -3690 ($ $ (-638 (-765)) (-112))) (-15 -4322 ($ $ (-638 (-765)) (-170))) (-15 -3090 ($ $ (-638 (-765)))) (-15 -2055 ((-936 |#2|) $)) (-15 -2403 ((-765) $)) (-15 -3108 ((-112) $)) (-15 -1362 ((-170) $)) (-15 -3346 ((-765) $)) (-15 -2809 ($ $)) (-15 -4170 ((-638 (-936 |#2|)) $))))
+((-4011 (((-112) $ $) NIL)) (-4306 ((|#2| $) 11)) (-4293 ((|#1| $) 10)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4031 (($ |#1| |#2|) 9)) (-4022 (((-856) $) 16)) (-1733 (((-112) $ $) NIL)))
+(((-1155 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -4031 ($ |#1| |#2|)) (-15 -4293 (|#1| $)) (-15 -4306 (|#2| $)))) (-1090) (-1090)) (T -1155))
+((-4031 (*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-4293 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1090)))) (-4306 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1090)))))
+(-13 (-1090) (-10 -8 (-15 -4031 ($ |#1| |#2|)) (-15 -4293 (|#1| $)) (-15 -4306 (|#2| $))))
+((-4011 (((-112) $ $) NIL)) (-3648 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1156) (-13 (-1073) (-10 -8 (-15 -3648 ((-1125) $))))) (T -1156))
+((-3648 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156)))))
+(-13 (-1073) (-10 -8 (-15 -3648 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 11)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-2851 (($ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3359 (((-112) $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3411 (($ $ (-561)) NIL) (($ $ (-561) (-561)) 66)) (-2457 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) NIL)) (-3718 (((-1164 |#1| |#2| |#3|) $) 36)) (-2893 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 29)) (-1482 (((-1164 |#1| |#2| |#3|) $) 30)) (-2978 (($ $) 107 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 83 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) 103 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 79 (|has| |#1| (-38 (-406 (-561)))))) (-2666 (((-561) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3406 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) NIL)) (-3009 (($ $) 111 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 87 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1166) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-561) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-3938 (((-1164 |#1| |#2| |#3|) $) 131) (((-1166) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-561)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-561) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-2911 (($ $) 34) (($ (-561) $) 35)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-1164 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 (-1164 |#1| |#2| |#3|))) (|:| |vec| (-1253 (-1164 |#1| |#2| |#3|)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362))))) (-3466 (((-3 $ "failed") $) 48)) (-1435 (((-406 (-945 |#1|)) $ (-561)) 65 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 67 (|has| |#1| (-553)))) (-1332 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3201 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3281 (((-112) $) 25)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-561))) (|has| |#1| (-362))))) (-4163 (((-561) $) NIL) (((-561) $ (-561)) 24)) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL (|has| |#1| (-362)))) (-4030 (((-1164 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1663 (((-3 $ "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-2110 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3244 (($ $ (-914)) NIL)) (-2279 (($ (-1 |#1| (-561)) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-561)) 18) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-3443 (($ $ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-2986 (($ $ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4348 (($ $) 72 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-561) (-1164 |#1| |#2| |#3|)) 33)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-1842 (($ $) 70 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1249 |#2|)) 71 (|has| |#1| (-38 (-406 (-561)))))) (-3721 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3841 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1388 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-561)) 145)) (-1756 (((-3 $ "failed") $ $) 49 (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3440 (($ $) 73 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-293 (-1164 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1164 |#1| |#2| |#3|)) (-638 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-561)) NIL) (($ $ $) 54 (|has| (-561) (-1102))) (($ $ (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1249 |#2|)) 51) (($ $ (-765)) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 50 (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-2861 (($ $) NIL (|has| |#1| (-362)))) (-4045 (((-1164 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-2894 (((-561) $) 37)) (-3021 (($ $) 113 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 89 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 109 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 85 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 105 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 81 (|has| |#1| (-38 (-406 (-561)))))) (-4174 (((-534) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-885 (-378)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1897 (($ $) NIL)) (-4022 (((-856) $) 149) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1164 |#1| |#2| |#3|)) 27) (($ (-1249 |#2|)) 23) (($ (-1166)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553)))) (($ (-406 (-561))) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-561))))))) (-2634 ((|#1| $ (-561)) 68)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) 12)) (-2432 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3055 (($ $) 119 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 95 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3031 (($ $) 115 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 91 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 99 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-561)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 101 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 97 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 117 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 93 (|has| |#1| (-38 (-406 (-561)))))) (-3749 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-2211 (($) 20 T CONST)) (-2222 (($) 16 T CONST)) (-3122 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1782 (((-112) $ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1762 (((-112) $ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1754 (((-112) $ $) NIL (-4007 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 21)) (** (($ $ (-914)) NIL) (($ $ (-765)) 53) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 128 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1164 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1157 |#1| |#2| |#3|) (-13 (-1215 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1157))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1215 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|)))
+((-1647 ((|#2| |#2| (-1082 |#2|)) 26) ((|#2| |#2| (-1166)) 28)))
+(((-1158 |#1| |#2|) (-10 -7 (-15 -1647 (|#2| |#2| (-1166))) (-15 -1647 (|#2| |#2| (-1082 |#2|)))) (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-429 |#1|) (-159) (-27) (-1190))) (T -1158))
+((-1647 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190))) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1158 *4 *2)))) (-1647 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190))))))
+(-10 -7 (-15 -1647 (|#2| |#2| (-1166))) (-15 -1647 (|#2| |#2| (-1082 |#2|))))
+((-1647 (((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1082 (-406 (-945 |#1|)))) 31) (((-406 (-945 |#1|)) (-945 |#1|) (-1082 (-945 |#1|))) 44) (((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1166)) 33) (((-406 (-945 |#1|)) (-945 |#1|) (-1166)) 36)))
+(((-1159 |#1|) (-10 -7 (-15 -1647 ((-406 (-945 |#1|)) (-945 |#1|) (-1166))) (-15 -1647 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -1647 ((-406 (-945 |#1|)) (-945 |#1|) (-1082 (-945 |#1|)))) (-15 -1647 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1082 (-406 (-945 |#1|)))))) (-13 (-553) (-844) (-1031 (-561)))) (T -1159))
+((-1647 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5))) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1159 *5)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-945 *5))) (-5 *3 (-945 *5)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-406 *3)) (-5 *1 (-1159 *5)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-3 (-406 (-945 *5)) (-315 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-406 (-945 *5))))) (-1647 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-406 (-945 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-945 *5)))))
+(-10 -7 (-15 -1647 ((-406 (-945 |#1|)) (-945 |#1|) (-1166))) (-15 -1647 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1166))) (-15 -1647 ((-406 (-945 |#1|)) (-945 |#1|) (-1082 (-945 |#1|)))) (-15 -1647 ((-3 (-406 (-945 |#1|)) (-315 |#1|)) (-406 (-945 |#1|)) (-1082 (-406 (-945 |#1|))))))
+((-4120 (((-1162 |#2|) (-1 |#2| |#1|) (-1162 |#1|)) 13)))
+(((-1160 |#1| |#2|) (-10 -7 (-15 -4120 ((-1162 |#2|) (-1 |#2| |#1|) (-1162 |#1|)))) (-1042) (-1042)) (T -1160))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-1162 *6)) (-5 *1 (-1160 *5 *6)))))
+(-10 -7 (-15 -4120 ((-1162 |#2|) (-1 |#2| |#1|) (-1162 |#1|))))
+((-3422 (((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|))) 51)) (-1657 (((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|))) 52)))
+(((-1161 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|)))) (-15 -3422 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|))))) (-787) (-844) (-450) (-942 |#3| |#1| |#2|)) (T -1161))
+((-3422 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7)))) (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7))))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7)))) (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7))))))
+(-10 -7 (-15 -1657 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|)))) (-15 -3422 ((-417 (-1162 (-406 |#4|))) (-1162 (-406 |#4|)))))
+((-4011 (((-112) $ $) 136)) (-2800 (((-112) $) 27)) (-1557 (((-1253 |#1|) $ (-765)) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-4110 (($ (-1162 |#1|)) NIL)) (-1620 (((-1162 $) $ (-1072)) 58) (((-1162 |#1|) $) 47)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) 131 (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2645 (($ $ $) 125 (|has| |#1| (-553)))) (-4046 (((-417 (-1162 $)) (-1162 $)) 71 (|has| |#1| (-902)))) (-1591 (($ $) NIL (|has| |#1| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 91 (|has| |#1| (-902)))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3784 (($ $ (-765)) 39)) (-2239 (($ $ (-765)) 40)) (-1301 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL)) (-3938 ((|#1| $) NIL) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-1072) $) NIL)) (-3051 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) 56)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-3293 (($ $ $) 103)) (-4034 (($ $ $) NIL (|has| |#1| (-553)))) (-3806 (((-2 (|:| -4188 |#1|) (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-553)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2401 (($ $) 132 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-765) $) 45)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-1572 (((-856) $ (-856)) 116)) (-4163 (((-765) $ $) NIL (|has| |#1| (-553)))) (-3113 (((-112) $) 30)) (-2067 (((-765) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-1401 (($ (-1162 |#1|) (-1072)) 49) (($ (-1162 $) (-1072)) 65)) (-3244 (($ $ (-765)) 32)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) 63) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-1072)) NIL) (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 120)) (-2393 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-3524 (($ (-1 (-765) (-765)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3434 (((-1162 |#1|) $) NIL)) (-1358 (((-3 (-1072) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) 52)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-1764 (((-1148) $) NIL)) (-3597 (((-2 (|:| -1307 $) (|:| -1693 $)) $ (-765)) 38)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-1072)) (|:| -4196 (-765))) "failed") $) NIL)) (-1842 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3721 (($) NIL (|has| |#1| (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) 31)) (-1561 ((|#1| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 79 (|has| |#1| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-450))) (($ $ $) 134 (|has| |#1| (-450)))) (-3446 (($ $ (-765) |#1| $) 98)) (-3396 (((-417 (-1162 $)) (-1162 $)) 77 (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 76 (|has| |#1| (-902)))) (-1657 (((-417 $) $) 84 (|has| |#1| (-902)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1756 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-638 (-1072)) (-638 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-553)))) (-1853 (((-3 $ "failed") $ (-765)) 35)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 137 (|has| |#1| (-362)))) (-2553 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-3238 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2894 (((-765) $) 54) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) 129 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-902))))) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-553)))) (-4022 (((-856) $) 117) (($ (-561)) NIL) (($ |#1|) 53) (($ (-1072)) NIL) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) 25 (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) 15 T CONST)) (-2222 (($) 16 T CONST)) (-3122 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) 96)) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1833 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 66)) (** (($ $ (-914)) 14) (($ $ (-765)) 12)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 24) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
+(((-1162 |#1|) (-13 (-1229 |#1|) (-10 -8 (-15 -1572 ((-856) $ (-856))) (-15 -3446 ($ $ (-765) |#1| $)))) (-1042)) (T -1162))
+((-1572 (*1 *2 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1162 *3)) (-4 *3 (-1042)))) (-3446 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1162 *3)) (-4 *3 (-1042)))))
+(-13 (-1229 |#1|) (-10 -8 (-15 -1572 ((-856) $ (-856))) (-15 -3446 ($ $ (-765) |#1| $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 11)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-2457 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) NIL)) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3009 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 36)) (-3938 (((-1157 |#1| |#2| |#3|) $) NIL) (((-1164 |#1| |#2| |#3|) $) NIL)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2068 (((-406 (-561)) $) 55)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-1515 (($ (-406 (-561)) (-1157 |#1| |#2| |#3|)) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) NIL)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-406 (-561))) 20) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3700 (((-1157 |#1| |#2| |#3|) $) 41)) (-2755 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL)) (-1499 (((-1157 |#1| |#2| |#3|) $) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-1842 (($ $) 39 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1249 |#2|)) 40 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-406 (-561))) NIL)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $ (-1249 |#2|)) 38)) (-2894 (((-406 (-561)) $) NIL)) (-3021 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) NIL)) (-4022 (((-856) $) 58) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1157 |#1| |#2| |#3|)) 30) (($ (-1164 |#1| |#2| |#3|)) 31) (($ (-1249 |#2|)) 26) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-2634 ((|#1| $ (-406 (-561))) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) 12)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 22 T CONST)) (-2222 (($) 16 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 24)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1163 |#1| |#2| |#3|) (-13 (-1236 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1249 |#2|)) (-10 -8 (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1163))
+((-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1236 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1249 |#2|)) (-10 -8 (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 124)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 115)) (-4227 (((-1226 |#2| |#1|) $ (-765)) 62)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-765)) 78) (($ $ (-765) (-765)) 75)) (-2457 (((-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 101)) (-2978 (($ $) 168 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4172 (($ $) 164 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 114) (($ (-1146 |#1|)) 109)) (-3009 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) 23)) (-2594 (($ $) 26)) (-3373 (((-945 |#1|) $ (-765)) 74) (((-945 |#1|) $ (-765) (-765)) 76)) (-3281 (((-112) $) 119)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-765) $) 121) (((-765) $ (-765)) 123)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) NIL)) (-2279 (($ (-1 |#1| (-561)) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) 13) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4348 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1842 (($ $) 128 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1249 |#2|)) 129 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-1416 (($ $ (-765)) 15)) (-1756 (((-3 $ "failed") $ $) 24 (|has| |#1| (-553)))) (-3440 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-2277 ((|#1| $ (-765)) 118) (($ $ $) 127 (|has| (-765) (-1102)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1249 |#2|)) 29)) (-2894 (((-765) $) NIL)) (-3021 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 150 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 166 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) NIL)) (-4022 (((-856) $) 200) (($ (-561)) NIL) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1226 |#2| |#1|)) 50) (($ (-1249 |#2|)) 32)) (-2742 (((-1146 |#1|) $) 97)) (-2634 ((|#1| $ (-765)) 117)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) 53)) (-3055 (($ $) 180 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 156 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 152 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 184 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-765)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 182 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 158 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 154 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 17 T CONST)) (-2222 (($) 19 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) 193)) (-1813 (($ $ $) 31)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 136 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1164 |#1| |#2| |#3|) (-13 (-1244 |#1|) (-10 -8 (-15 -4022 ($ (-1226 |#2| |#1|))) (-15 -4227 ((-1226 |#2| |#1|) $ (-765))) (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1164))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1226 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1226 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1244 |#1|) (-10 -8 (-15 -4022 ($ (-1226 |#2| |#1|))) (-15 -4227 ((-1226 |#2| |#1|) $ (-765))) (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|)))
+((-4022 (((-856) $) 27) (($ (-1166)) 29)) (-4007 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 40)) (-3995 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 33) (($ $) 34)) (-4327 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 35)) (-4316 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 37)) (-4302 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 36)) (-4289 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 38)) (-3328 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 39)))
+(((-1165) (-13 (-608 (-856)) (-10 -8 (-15 -4022 ($ (-1166))) (-15 -4327 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4302 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4316 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4289 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4007 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3328 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3995 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3995 ($ $))))) (T -1165))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1165)))) (-4327 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4302 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4316 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4289 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-4007 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3328 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3995 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3995 (*1 *1 *1) (-5 *1 (-1165))))
+(-13 (-608 (-856)) (-10 -8 (-15 -4022 ($ (-1166))) (-15 -4327 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4302 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4316 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4289 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4007 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3328 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3995 ($ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3995 ($ $))))
+((-4011 (((-112) $ $) NIL)) (-1695 (($ $ (-638 (-856))) 59)) (-3828 (($ $ (-638 (-856))) 57)) (-3595 (((-1148) $) 84)) (-3627 (((-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856)))) $) 87)) (-3587 (((-112) $) 22)) (-1450 (($ $ (-638 (-638 (-856)))) 56) (($ $ (-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856))))) 82)) (-1965 (($) 123 T CONST)) (-4165 (((-1258)) 105)) (-3631 (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 66) (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 73)) (-1470 (($) 94) (($ $) 100)) (-3269 (($ $) 83)) (-3443 (($ $ $) NIL)) (-2986 (($ $ $) NIL)) (-3708 (((-638 $) $) 106)) (-1764 (((-1148) $) 89)) (-1714 (((-1110) $) NIL)) (-2277 (($ $ (-638 (-856))) 58)) (-4174 (((-534) $) 46) (((-1166) $) 47) (((-885 (-561)) $) 77) (((-885 (-378)) $) 75)) (-4022 (((-856) $) 53) (($ (-1148)) 48)) (-1439 (($ $ (-638 (-856))) 60)) (-3677 (((-1148) $) 33) (((-1148) $ (-112)) 34) (((-1258) (-816) $) 35) (((-1258) (-816) $ (-112)) 36)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 49)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) 50)))
+(((-1166) (-13 (-844) (-609 (-534)) (-822) (-609 (-1166)) (-611 (-1148)) (-609 (-885 (-561))) (-609 (-885 (-378))) (-879 (-561)) (-879 (-378)) (-10 -8 (-15 -1470 ($)) (-15 -1470 ($ $)) (-15 -4165 ((-1258))) (-15 -3269 ($ $)) (-15 -3587 ((-112) $)) (-15 -3627 ((-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856)))) $)) (-15 -1450 ($ $ (-638 (-638 (-856))))) (-15 -1450 ($ $ (-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856)))))) (-15 -3828 ($ $ (-638 (-856)))) (-15 -1695 ($ $ (-638 (-856)))) (-15 -1439 ($ $ (-638 (-856)))) (-15 -2277 ($ $ (-638 (-856)))) (-15 -3595 ((-1148) $)) (-15 -3708 ((-638 $) $)) (-15 -1965 ($) -1514)))) (T -1166))
+((-1470 (*1 *1) (-5 *1 (-1166))) (-1470 (*1 *1 *1) (-5 *1 (-1166))) (-4165 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1166)))) (-3269 (*1 *1 *1) (-5 *1 (-1166))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856))))) (-5 *1 (-1166)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-1166)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856))))) (-5 *1 (-1166)))) (-3828 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-1439 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1166)))) (-1965 (*1 *1) (-5 *1 (-1166))))
+(-13 (-844) (-609 (-534)) (-822) (-609 (-1166)) (-611 (-1148)) (-609 (-885 (-561))) (-609 (-885 (-378))) (-879 (-561)) (-879 (-378)) (-10 -8 (-15 -1470 ($)) (-15 -1470 ($ $)) (-15 -4165 ((-1258))) (-15 -3269 ($ $)) (-15 -3587 ((-112) $)) (-15 -3627 ((-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856)))) $)) (-15 -1450 ($ $ (-638 (-638 (-856))))) (-15 -1450 ($ $ (-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856))) (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856))) (|:| |args| (-638 (-856)))))) (-15 -3828 ($ $ (-638 (-856)))) (-15 -1695 ($ $ (-638 (-856)))) (-15 -1439 ($ $ (-638 (-856)))) (-15 -2277 ($ $ (-638 (-856)))) (-15 -3595 ((-1148) $)) (-15 -3708 ((-638 $) $)) (-15 -1965 ($) -1514)))
+((-2100 (((-1253 |#1|) |#1| (-914)) 16) (((-1253 |#1|) (-638 |#1|)) 20)))
+(((-1167 |#1|) (-10 -7 (-15 -2100 ((-1253 |#1|) (-638 |#1|))) (-15 -2100 ((-1253 |#1|) |#1| (-914)))) (-1042)) (T -1167))
+((-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-1253 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1042)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)) (-5 *1 (-1167 *4)))))
+(-10 -7 (-15 -2100 ((-1253 |#1|) (-638 |#1|))) (-15 -2100 ((-1253 |#1|) |#1| (-914))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| |#1| (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#1| (-1031 (-406 (-561))))) (((-3 |#1| "failed") $) NIL)) (-3938 (((-561) $) NIL (|has| |#1| (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| |#1| (-1031 (-406 (-561))))) ((|#1| $) NIL)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-450)))) (-2103 (($ $ |#1| (-964) $) NIL)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-964)) NIL)) (-2393 (((-964) $) NIL)) (-3524 (($ (-1 (-964) (-964)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#1| $) NIL)) (-3446 (($ $ (-964) |#1| $) NIL (-12 (|has| (-964) (-130)) (|has| |#1| (-553))))) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-553)))) (-2894 (((-964) $) NIL)) (-3609 ((|#1| $) NIL (|has| |#1| (-450)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) NIL) (($ (-406 (-561))) NIL (-4007 (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-1031 (-406 (-561))))))) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ (-964)) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2211 (($) 9 T CONST)) (-2222 (($) 14 T CONST)) (-1733 (((-112) $ $) 16)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 19)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1168 |#1|) (-13 (-325 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| (-964) (-130)) (-15 -3446 ($ $ (-964) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4388)) (-6 -4388) |%noBranch|))) (-1042)) (T -1168))
+((-3446 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
+(-13 (-325 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-553)) (IF (|has| (-964) (-130)) (-15 -3446 ($ $ (-964) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4388)) (-6 -4388) |%noBranch|)))
+((-2425 (((-1170) (-1166) $) 25)) (-3155 (($) 29)) (-2414 (((-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-1166) $) 22)) (-1642 (((-1258) (-1166) (-3 (|:| |fst| (-433)) (|:| -2609 "void")) $) 41) (((-1258) (-1166) (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) 42) (((-1258) (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) 43)) (-1493 (((-1258) (-1166)) 58)) (-4269 (((-1258) (-1166) $) 55) (((-1258) (-1166)) 56) (((-1258)) 57)) (-3070 (((-1258) (-1166)) 37)) (-3723 (((-1166)) 36)) (-3170 (($) 34)) (-2557 (((-436) (-1166) (-436) (-1166) $) 45) (((-436) (-638 (-1166)) (-436) (-1166) $) 49) (((-436) (-1166) (-436)) 46) (((-436) (-1166) (-436) (-1166)) 50)) (-1651 (((-1166)) 35)) (-4022 (((-856) $) 28)) (-2360 (((-1258)) 30) (((-1258) (-1166)) 33)) (-3502 (((-638 (-1166)) (-1166) $) 24)) (-2672 (((-1258) (-1166) (-638 (-1166)) $) 38) (((-1258) (-1166) (-638 (-1166))) 39) (((-1258) (-638 (-1166))) 40)))
+(((-1169) (-13 (-608 (-856)) (-10 -8 (-15 -3155 ($)) (-15 -2360 ((-1258))) (-15 -2360 ((-1258) (-1166))) (-15 -2557 ((-436) (-1166) (-436) (-1166) $)) (-15 -2557 ((-436) (-638 (-1166)) (-436) (-1166) $)) (-15 -2557 ((-436) (-1166) (-436))) (-15 -2557 ((-436) (-1166) (-436) (-1166))) (-15 -3070 ((-1258) (-1166))) (-15 -1651 ((-1166))) (-15 -3723 ((-1166))) (-15 -2672 ((-1258) (-1166) (-638 (-1166)) $)) (-15 -2672 ((-1258) (-1166) (-638 (-1166)))) (-15 -2672 ((-1258) (-638 (-1166)))) (-15 -1642 ((-1258) (-1166) (-3 (|:| |fst| (-433)) (|:| -2609 "void")) $)) (-15 -1642 ((-1258) (-1166) (-3 (|:| |fst| (-433)) (|:| -2609 "void")))) (-15 -1642 ((-1258) (-3 (|:| |fst| (-433)) (|:| -2609 "void")))) (-15 -4269 ((-1258) (-1166) $)) (-15 -4269 ((-1258) (-1166))) (-15 -4269 ((-1258))) (-15 -1493 ((-1258) (-1166))) (-15 -3170 ($)) (-15 -2414 ((-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-1166) $)) (-15 -3502 ((-638 (-1166)) (-1166) $)) (-15 -2425 ((-1170) (-1166) $))))) (T -1169))
+((-3155 (*1 *1) (-5 *1 (-1169))) (-2360 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1169)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-2557 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-2557 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *4 (-1166)) (-5 *1 (-1169)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-2557 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-1651 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-3723 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-2672 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-1642 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-1642 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-4269 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-4269 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1169)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))) (-3170 (*1 *1) (-5 *1 (-1169))) (-2414 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *1 (-1169)))) (-3502 (*1 *2 *3 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166)))) (-2425 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -3155 ($)) (-15 -2360 ((-1258))) (-15 -2360 ((-1258) (-1166))) (-15 -2557 ((-436) (-1166) (-436) (-1166) $)) (-15 -2557 ((-436) (-638 (-1166)) (-436) (-1166) $)) (-15 -2557 ((-436) (-1166) (-436))) (-15 -2557 ((-436) (-1166) (-436) (-1166))) (-15 -3070 ((-1258) (-1166))) (-15 -1651 ((-1166))) (-15 -3723 ((-1166))) (-15 -2672 ((-1258) (-1166) (-638 (-1166)) $)) (-15 -2672 ((-1258) (-1166) (-638 (-1166)))) (-15 -2672 ((-1258) (-638 (-1166)))) (-15 -1642 ((-1258) (-1166) (-3 (|:| |fst| (-433)) (|:| -2609 "void")) $)) (-15 -1642 ((-1258) (-1166) (-3 (|:| |fst| (-433)) (|:| -2609 "void")))) (-15 -1642 ((-1258) (-3 (|:| |fst| (-433)) (|:| -2609 "void")))) (-15 -4269 ((-1258) (-1166) $)) (-15 -4269 ((-1258) (-1166))) (-15 -4269 ((-1258))) (-15 -1493 ((-1258) (-1166))) (-15 -3170 ($)) (-15 -2414 ((-3 (|:| |fst| (-433)) (|:| -2609 "void")) (-1166) $)) (-15 -3502 ((-638 (-1166)) (-1166) $)) (-15 -2425 ((-1170) (-1166) $))))
+((-4271 (((-638 (-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) $) 59)) (-4014 (((-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))) (-433) $) 43)) (-2212 (($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-436))))) 17)) (-1493 (((-1258) $) 67)) (-1603 (((-638 (-1166)) $) 22)) (-1795 (((-1094) $) 55)) (-3547 (((-436) (-1166) $) 27)) (-3486 (((-638 (-1166)) $) 30)) (-3170 (($) 19)) (-2557 (((-436) (-638 (-1166)) (-436) $) 25) (((-436) (-1166) (-436) $) 24)) (-4022 (((-856) $) 9) (((-1178 (-1166) (-436)) $) 13)))
+(((-1170) (-13 (-608 (-856)) (-10 -8 (-15 -4022 ((-1178 (-1166) (-436)) $)) (-15 -3170 ($)) (-15 -2557 ((-436) (-638 (-1166)) (-436) $)) (-15 -2557 ((-436) (-1166) (-436) $)) (-15 -3547 ((-436) (-1166) $)) (-15 -1603 ((-638 (-1166)) $)) (-15 -4014 ((-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))) (-433) $)) (-15 -3486 ((-638 (-1166)) $)) (-15 -4271 ((-638 (-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) $)) (-15 -1795 ((-1094) $)) (-15 -1493 ((-1258) $)) (-15 -2212 ($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-436))))))))) (T -1170))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-1178 (-1166) (-436))) (-5 *1 (-1170)))) (-3170 (*1 *1) (-5 *1 (-1170))) (-2557 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *1 (-1170)))) (-2557 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1170)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-436)) (-5 *1 (-1170)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))) (-4014 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) (-5 *1 (-1170)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))))) (-5 *1 (-1170)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1170)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1170)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-436))))) (-5 *1 (-1170)))))
+(-13 (-608 (-856)) (-10 -8 (-15 -4022 ((-1178 (-1166) (-436)) $)) (-15 -3170 ($)) (-15 -2557 ((-436) (-638 (-1166)) (-436) $)) (-15 -2557 ((-436) (-1166) (-436) $)) (-15 -3547 ((-436) (-1166) $)) (-15 -1603 ((-638 (-1166)) $)) (-15 -4014 ((-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))) (-433) $)) (-15 -3486 ((-638 (-1166)) $)) (-15 -4271 ((-638 (-638 (-3 (|:| -3269 (-1166)) (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))) $)) (-15 -1795 ((-1094) $)) (-15 -1493 ((-1258) $)) (-15 -2212 ($ (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-436))))))))
+((-4011 (((-112) $ $) NIL)) (-4017 (((-3 (-561) "failed") $) 29) (((-3 (-224) "failed") $) 35) (((-3 (-1166) "failed") $) 41) (((-3 (-1148) "failed") $) 47)) (-3938 (((-561) $) 30) (((-224) $) 36) (((-1166) $) 42) (((-1148) $) 48)) (-4352 (((-112) $) 53)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1483 (((-3 (-561) (-224) (-1166) (-1148) $) $) 55)) (-2251 (((-638 $) $) 57)) (-4174 (((-1094) $) 24) (($ (-1094)) 25)) (-3795 (((-112) $) 56)) (-4022 (((-856) $) 23) (($ (-561)) 26) (($ (-224)) 32) (($ (-1166)) 38) (($ (-1148)) 44) (((-534) $) 59) (((-561) $) 31) (((-224) $) 37) (((-1166) $) 43) (((-1148) $) 49)) (-2201 (((-112) $ (|[\|\|]| (-561))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1166))) 19) (((-112) $ (|[\|\|]| (-1148))) 16)) (-2237 (($ (-1166) (-638 $)) 51) (($ $ (-638 $)) 52)) (-4217 (((-561) $) 27) (((-224) $) 33) (((-1166) $) 39) (((-1148) $) 45)) (-1733 (((-112) $ $) 7)))
+(((-1171) (-13 (-1248) (-1090) (-1031 (-561)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-534)) (-10 -8 (-15 -4174 ((-1094) $)) (-15 -4174 ($ (-1094))) (-15 -4022 ((-561) $)) (-15 -4217 ((-561) $)) (-15 -4022 ((-224) $)) (-15 -4217 ((-224) $)) (-15 -4022 ((-1166) $)) (-15 -4217 ((-1166) $)) (-15 -4022 ((-1148) $)) (-15 -4217 ((-1148) $)) (-15 -2237 ($ (-1166) (-638 $))) (-15 -2237 ($ $ (-638 $))) (-15 -4352 ((-112) $)) (-15 -1483 ((-3 (-561) (-224) (-1166) (-1148) $) $)) (-15 -2251 ((-638 $) $)) (-15 -3795 ((-112) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-561)))) (-15 -2201 ((-112) $ (|[\|\|]| (-224)))) (-15 -2201 ((-112) $ (|[\|\|]| (-1166)))) (-15 -2201 ((-112) $ (|[\|\|]| (-1148))))))) (T -1171))
+((-4174 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1171)))) (-4174 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1171)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-1171))) (-5 *1 (-1171)))) (-2237 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-3 (-561) (-224) (-1166) (-1148) (-1171))) (-5 *1 (-1171)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171)))))
+(-13 (-1248) (-1090) (-1031 (-561)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-534)) (-10 -8 (-15 -4174 ((-1094) $)) (-15 -4174 ($ (-1094))) (-15 -4022 ((-561) $)) (-15 -4217 ((-561) $)) (-15 -4022 ((-224) $)) (-15 -4217 ((-224) $)) (-15 -4022 ((-1166) $)) (-15 -4217 ((-1166) $)) (-15 -4022 ((-1148) $)) (-15 -4217 ((-1148) $)) (-15 -2237 ($ (-1166) (-638 $))) (-15 -2237 ($ $ (-638 $))) (-15 -4352 ((-112) $)) (-15 -1483 ((-3 (-561) (-224) (-1166) (-1148) $) $)) (-15 -2251 ((-638 $) $)) (-15 -3795 ((-112) $)) (-15 -2201 ((-112) $ (|[\|\|]| (-561)))) (-15 -2201 ((-112) $ (|[\|\|]| (-224)))) (-15 -2201 ((-112) $ (|[\|\|]| (-1166)))) (-15 -2201 ((-112) $ (|[\|\|]| (-1148))))))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) 10)) (-1332 (($) 14)) (-3443 (($ $ $) NIL) (($) 7 T CONST)) (-2986 (($ $ $) NIL) (($) 8 T CONST)) (-3198 (((-914) $) 13)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) 12)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-1172 |#1|) (-838) (-914)) (T -1172))
+NIL
+(-838)
+((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1965 (($) 9)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) 7 T CONST)) (-2986 (($ $ $) NIL) (($) 8 T CONST)) (-3198 (((-914) $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3006 (($ $ $) 11)) (-2992 (($ $ $) 10)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-1173 |#1|) (-13 (-838) (-10 -8 (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($)))) (-914)) (T -1173))
+((-2992 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914)))) (-3006 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914)))) (-1965 (*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914)))))
+(-13 (-838) (-10 -8 (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($))))
+((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
+((-2460 (((-638 (-638 (-945 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 57)) (-3867 (((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|)))) 69) (((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|))) 65) (((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166)) 70) (((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166)) 64) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|))))) 93) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|)))) 92) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166))) 94) (((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))) (-638 (-1166))) 91)))
+(((-1174 |#1|) (-10 -7 (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))))) (-15 -2460 ((-638 (-638 (-945 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166))))) (-553)) (T -1174))
+((-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-945 *5)))) (-5 *1 (-1174 *5)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-293 (-406 (-945 *4)))))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-406 (-945 *4))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-293 (-406 (-945 *5)))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-406 (-945 *5))))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-1174 *4)) (-5 *3 (-638 (-293 (-406 (-945 *4))))))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-638 (-406 (-945 *4)))) (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-1174 *4)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-1174 *5)) (-5 *3 (-638 (-293 (-406 (-945 *5))))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166))) (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-1174 *5)))))
+(-10 -7 (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))) (-638 (-1166)))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-406 (-945 |#1|))))) (-15 -3867 ((-638 (-638 (-293 (-406 (-945 |#1|))))) (-638 (-293 (-406 (-945 |#1|)))))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)) (-1166))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))) (-1166))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-406 (-945 |#1|)))) (-15 -3867 ((-638 (-293 (-406 (-945 |#1|)))) (-293 (-406 (-945 |#1|))))) (-15 -2460 ((-638 (-638 (-945 |#1|))) (-638 (-406 (-945 |#1|))) (-638 (-1166)))))
+((-2727 (((-1148)) 7)) (-2546 (((-1148)) 9)) (-2436 (((-1258) (-1148)) 11)) (-3890 (((-1148)) 8)))
+(((-1175) (-10 -7 (-15 -2727 ((-1148))) (-15 -3890 ((-1148))) (-15 -2546 ((-1148))) (-15 -2436 ((-1258) (-1148))))) (T -1175))
+((-2436 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1175)))) (-2546 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-3890 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-2727 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
+(-10 -7 (-15 -2727 ((-1148))) (-15 -3890 ((-1148))) (-15 -2546 ((-1148))) (-15 -2436 ((-1258) (-1148))))
+((-2174 (((-638 (-638 |#1|)) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|)))) 38)) (-1498 (((-638 (-638 (-638 |#1|))) (-638 (-638 |#1|))) 24)) (-2523 (((-1177 (-638 |#1|)) (-638 |#1|)) 34)) (-1734 (((-638 (-638 |#1|)) (-638 |#1|)) 30)) (-3968 (((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 (-638 (-638 |#1|)))) 37)) (-2329 (((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 |#1|) (-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|)))) 36)) (-4093 (((-638 (-638 |#1|)) (-638 (-638 |#1|))) 28)) (-4222 (((-638 |#1|) (-638 |#1|)) 31)) (-3940 (((-638 (-638 (-638 |#1|))) (-638 |#1|) (-638 (-638 (-638 |#1|)))) 18)) (-3008 (((-638 (-638 (-638 |#1|))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 (-638 |#1|)))) 16)) (-2798 (((-2 (|:| |fs| (-112)) (|:| |sd| (-638 |#1|)) (|:| |td| (-638 (-638 |#1|)))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 |#1|))) 14)) (-1779 (((-638 (-638 |#1|)) (-638 (-638 (-638 |#1|)))) 39)) (-1321 (((-638 (-638 |#1|)) (-1177 (-638 |#1|))) 41)))
+(((-1176 |#1|) (-10 -7 (-15 -2798 ((-2 (|:| |fs| (-112)) (|:| |sd| (-638 |#1|)) (|:| |td| (-638 (-638 |#1|)))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 |#1|)))) (-15 -3008 ((-638 (-638 (-638 |#1|))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -3940 ((-638 (-638 (-638 |#1|))) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -2174 ((-638 (-638 |#1|)) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -1779 ((-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -1321 ((-638 (-638 |#1|)) (-1177 (-638 |#1|)))) (-15 -1498 ((-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)))) (-15 -2523 ((-1177 (-638 |#1|)) (-638 |#1|))) (-15 -4093 ((-638 (-638 |#1|)) (-638 (-638 |#1|)))) (-15 -1734 ((-638 (-638 |#1|)) (-638 |#1|))) (-15 -4222 ((-638 |#1|) (-638 |#1|))) (-15 -2329 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 |#1|) (-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))))) (-15 -3968 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 (-638 (-638 |#1|)))))) (-844)) (T -1176))
+((-3968 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-2 (|:| |f1| (-638 *4)) (|:| |f2| (-638 (-638 (-638 *4)))) (|:| |f3| (-638 (-638 *4))) (|:| |f4| (-638 (-638 (-638 *4)))))) (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 (-638 *4)))))) (-2329 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-844)) (-5 *3 (-638 *6)) (-5 *5 (-638 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-638 *5)) (|:| |f3| *5) (|:| |f4| (-638 *5)))) (-5 *1 (-1176 *6)) (-5 *4 (-638 *5)))) (-4222 (*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-1734 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-638 *4)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-2523 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-1177 (-638 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-638 *4)))) (-1498 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 (-638 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 *4))))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-1177 (-638 *4))) (-4 *4 (-844)) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)) (-4 *4 (-844)))) (-2174 (*1 *2 *2 *3) (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4))) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-3940 (*1 *2 *3 *2) (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-638 *4)) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-3008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-638 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5)))) (-2798 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-638 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-638 *4)))) (-5 *1 (-1176 *6)) (-5 *5 (-638 *4)))))
+(-10 -7 (-15 -2798 ((-2 (|:| |fs| (-112)) (|:| |sd| (-638 |#1|)) (|:| |td| (-638 (-638 |#1|)))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 |#1|)))) (-15 -3008 ((-638 (-638 (-638 |#1|))) (-1 (-112) |#1| |#1|) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -3940 ((-638 (-638 (-638 |#1|))) (-638 |#1|) (-638 (-638 (-638 |#1|))))) (-15 -2174 ((-638 (-638 |#1|)) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -1779 ((-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))))) (-15 -1321 ((-638 (-638 |#1|)) (-1177 (-638 |#1|)))) (-15 -1498 ((-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)))) (-15 -2523 ((-1177 (-638 |#1|)) (-638 |#1|))) (-15 -4093 ((-638 (-638 |#1|)) (-638 (-638 |#1|)))) (-15 -1734 ((-638 (-638 |#1|)) (-638 |#1|))) (-15 -4222 ((-638 |#1|) (-638 |#1|))) (-15 -2329 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 |#1|) (-638 (-638 (-638 |#1|))) (-638 (-638 |#1|)) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))) (-638 (-638 (-638 |#1|))))) (-15 -3968 ((-2 (|:| |f1| (-638 |#1|)) (|:| |f2| (-638 (-638 (-638 |#1|)))) (|:| |f3| (-638 (-638 |#1|))) (|:| |f4| (-638 (-638 (-638 |#1|))))) (-638 (-638 (-638 |#1|))))))
+((-3313 (($ (-638 (-638 |#1|))) 10)) (-3971 (((-638 (-638 |#1|)) $) 11)) (-4022 (((-856) $) 26)))
+(((-1177 |#1|) (-10 -8 (-15 -3313 ($ (-638 (-638 |#1|)))) (-15 -3971 ((-638 (-638 |#1|)) $)) (-15 -4022 ((-856) $))) (-1090)) (T -1177))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1177 *3)) (-4 *3 (-1090)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1090)))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-1177 *3)))))
+(-10 -8 (-15 -3313 ($ (-638 (-638 |#1|)))) (-15 -3971 ((-638 (-638 |#1|)) $)) (-15 -4022 ((-856) $)))
+((-4011 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1456 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3024 (((-1258) $ |#1| |#1|) NIL (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#2| $ |#1| |#2|) NIL)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) NIL)) (-1965 (($) NIL T CONST)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) NIL)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) NIL)) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) NIL)) (-3975 ((|#1| $) NIL (|has| |#1| (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-638 |#2|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2780 ((|#1| $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2017 (((-638 |#1|) $) NIL)) (-2857 (((-112) |#1| $) NIL)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2451 (((-638 |#1|) $) NIL)) (-1390 (((-112) |#1| $) NIL)) (-1714 (((-1110) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1433 ((|#2| $) NIL (|has| |#1| (-844)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL)) (-1799 (($ $ |#2|) NIL (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3579 (($) NIL) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) NIL (-12 (|has| $ (-6 -4390)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-4022 (((-856) $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856))) (|has| |#2| (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) NIL)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) NIL (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) NIL (-4007 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1178 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390))) (-1090) (-1090)) (T -1178))
+NIL
+(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4390)))
+((-3205 ((|#1| (-638 |#1|)) 32)) (-3657 ((|#1| |#1| (-561)) 18)) (-3536 (((-1162 |#1|) |#1| (-914)) 15)))
+(((-1179 |#1|) (-10 -7 (-15 -3205 (|#1| (-638 |#1|))) (-15 -3536 ((-1162 |#1|) |#1| (-914))) (-15 -3657 (|#1| |#1| (-561)))) (-362)) (T -1179))
+((-3657 (*1 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-914)) (-5 *2 (-1162 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-362)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
+(-10 -7 (-15 -3205 (|#1| (-638 |#1|))) (-15 -3536 ((-1162 |#1|) |#1| (-914))) (-15 -3657 (|#1| |#1| (-561))))
+((-1456 (($) 10) (($ (-638 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)))) 14)) (-3999 (($ (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3571 (((-638 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) 39) (((-638 |#3|) $) 41)) (-2065 (($ (-1 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4120 (($ (-1 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3211 (((-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) $) 54)) (-3671 (($ (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) $) 16)) (-2451 (((-638 |#2|) $) 19)) (-1390 (((-112) |#2| $) 59)) (-1330 (((-3 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) "failed") (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) 58)) (-3522 (((-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) $) 63)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2658 (((-638 |#3|) $) 43)) (-2277 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) NIL) (((-765) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) $) NIL) (((-765) |#3| $) NIL) (((-765) (-1 (-112) |#3|) $) 67)) (-4022 (((-856) $) 27)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1733 (((-112) $ $) 49)))
+(((-1180 |#1| |#2| |#3|) (-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -4120 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1456 (|#1| (-638 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))))) (-15 -1456 (|#1|)) (-15 -4120 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1724 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -3571 ((-638 |#3|) |#1|)) (-15 -1724 ((-765) |#3| |#1|)) (-15 -2277 (|#3| |#1| |#2| |#3|)) (-15 -2277 (|#3| |#1| |#2|)) (-15 -2658 ((-638 |#3|) |#1|)) (-15 -1390 ((-112) |#2| |#1|)) (-15 -2451 ((-638 |#2|) |#1|)) (-15 -3999 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3999 (|#1| (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -3999 (|#1| (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -1330 ((-3 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) "failed") (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -3211 ((-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -3671 (|#1| (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -3522 ((-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -1724 ((-765) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -3571 ((-638 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -1724 ((-765) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -2123 ((-112) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -3715 ((-112) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -2065 (|#1| (-1 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -4120 (|#1| (-1 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|))) (-1181 |#2| |#3|) (-1090) (-1090)) (T -1180))
+NIL
+(-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4022 ((-856) |#1|)) (-15 -4120 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1456 (|#1| (-638 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))))) (-15 -1456 (|#1|)) (-15 -4120 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2065 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3715 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2123 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1724 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -3571 ((-638 |#3|) |#1|)) (-15 -1724 ((-765) |#3| |#1|)) (-15 -2277 (|#3| |#1| |#2| |#3|)) (-15 -2277 (|#3| |#1| |#2|)) (-15 -2658 ((-638 |#3|) |#1|)) (-15 -1390 ((-112) |#2| |#1|)) (-15 -2451 ((-638 |#2|) |#1|)) (-15 -3999 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3999 (|#1| (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -3999 (|#1| (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -1330 ((-3 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) "failed") (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -3211 ((-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -3671 (|#1| (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -3522 ((-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -1724 ((-765) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) |#1|)) (-15 -3571 ((-638 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -1724 ((-765) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -2123 ((-112) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -3715 ((-112) (-1 (-112) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -2065 (|#1| (-1 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)) (-15 -4120 (|#1| (-1 (-2 (|:| -2252 |#2|) (|:| -2654 |#3|)) (-2 (|:| -2252 |#2|) (|:| -2654 |#3|))) |#1|)))
+((-4011 (((-112) $ $) 19 (-4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-1456 (($) 72) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 71)) (-3024 (((-1258) $ |#1| |#1|) 99 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#2| $ |#1| |#2|) 73)) (-3388 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 45 (|has| $ (-6 -4390)))) (-3556 (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 55 (|has| $ (-6 -4390)))) (-1485 (((-3 |#2| "failed") |#1| $) 61)) (-1965 (($) 7 T CONST)) (-1472 (($ $) 58 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390))))) (-3999 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 47 (|has| $ (-6 -4390))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 46 (|has| $ (-6 -4390))) (((-3 |#2| "failed") |#1| $) 62)) (-1489 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 54 (|has| $ (-6 -4390)))) (-3185 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 56 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 53 (|has| $ (-6 -4390))) (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 52 (|has| $ (-6 -4390)))) (-2073 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4391)))) (-4344 ((|#2| $ |#1|) 88)) (-3571 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 30 (|has| $ (-6 -4390))) (((-638 |#2|) $) 79 (|has| $ (-6 -4390)))) (-3744 (((-112) $ (-765)) 9)) (-3975 ((|#1| $) 96 (|has| |#1| (-844)))) (-1305 (((-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 29 (|has| $ (-6 -4390))) (((-638 |#2|) $) 80 (|has| $ (-6 -4390)))) (-4087 (((-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390))))) (-2780 ((|#1| $) 95 (|has| |#1| (-844)))) (-2065 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 34 (|has| $ (-6 -4391))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4391)))) (-4120 (($ (-1 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2230 (((-112) $ (-765)) 10)) (-1764 (((-1148) $) 22 (-4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-2017 (((-638 |#1|) $) 63)) (-2857 (((-112) |#1| $) 64)) (-3211 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 39)) (-3671 (($ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 40)) (-2451 (((-638 |#1|) $) 93)) (-1390 (((-112) |#1| $) 92)) (-1714 (((-1110) $) 21 (-4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-1433 ((|#2| $) 97 (|has| |#1| (-844)))) (-1330 (((-3 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) "failed") (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 51)) (-1799 (($ $ |#2|) 98 (|has| $ (-6 -4391)))) (-3522 (((-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 41)) (-2123 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 32 (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))))) 26 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-293 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 25 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) 24 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 23 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)))) (($ $ (-638 |#2|) (-638 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090)))) (($ $ (-638 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4390)) (|has| |#2| (-1090))))) (-2658 (((-638 |#2|) $) 91)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3579 (($) 49) (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 48)) (-1724 (((-765) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 31 (|has| $ (-6 -4390))) (((-765) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| $ (-6 -4390)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4390)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 59 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))))) (-4031 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 50)) (-4022 (((-856) $) 18 (-4007 (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856)))))) (-3025 (($ (-638 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) 42)) (-3715 (((-112) (-1 (-112) (-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) $) 33 (|has| $ (-6 -4390))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (-4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1181 |#1| |#2|) (-139) (-1090) (-1090)) (T -1181))
+((-4167 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-1456 (*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1456 (*1 *1 *2) (-12 (-5 *2 (-638 (-2 (|:| -2252 *3) (|:| -2654 *4)))) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *1 (-1181 *3 *4)))) (-4120 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))))
+(-13 (-605 |t#1| |t#2|) (-599 |t#1| |t#2|) (-10 -8 (-15 -4167 (|t#2| $ |t#1| |t#2|)) (-15 -1456 ($)) (-15 -1456 ($ (-638 (-2 (|:| -2252 |t#1|) (|:| -2654 |t#2|))))) (-15 -4120 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2252 |#1|) (|:| -2654 |#2|))) . T) ((-102) -4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-608 (-856)) -4007 (|has| |#2| (-1090)) (|has| |#2| (-608 (-856))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-608 (-856)))) ((-150 #0#) . T) ((-609 (-534)) |has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-609 (-534))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-487 #0#) . T) ((-487 |#2|) . T) ((-599 |#1| |#2|) . T) ((-512 #0# #0#) -12 (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-308 (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)))) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1090))) ((-605 |#1| |#2|) . T) ((-1090) -4007 (|has| |#2| (-1090)) (|has| (-2 (|:| -2252 |#1|) (|:| -2654 |#2|)) (-1090))) ((-1205) . T))
+((-3191 (((-112)) 24)) (-1317 (((-1258) (-1148)) 26)) (-3489 (((-112)) 36)) (-3261 (((-1258)) 34)) (-3978 (((-1258) (-1148) (-1148)) 25)) (-1425 (((-112)) 37)) (-3671 (((-1258) |#1| |#2|) 44)) (-1323 (((-1258)) 20)) (-3001 (((-3 |#2| "failed") |#1|) 42)) (-2150 (((-1258)) 35)))
+(((-1182 |#1| |#2|) (-10 -7 (-15 -1323 ((-1258))) (-15 -3978 ((-1258) (-1148) (-1148))) (-15 -1317 ((-1258) (-1148))) (-15 -3261 ((-1258))) (-15 -2150 ((-1258))) (-15 -3191 ((-112))) (-15 -3489 ((-112))) (-15 -1425 ((-112))) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3671 ((-1258) |#1| |#2|))) (-1090) (-1090)) (T -1182))
+((-3671 (*1 *2 *3 *4) (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3001 (*1 *2 *3) (|partial| -12 (-4 *2 (-1090)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1090)))) (-1425 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3489 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3191 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-2150 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3261 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)))) (-3978 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)))) (-1323 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))))
+(-10 -7 (-15 -1323 ((-1258))) (-15 -3978 ((-1258) (-1148) (-1148))) (-15 -1317 ((-1258) (-1148))) (-15 -3261 ((-1258))) (-15 -2150 ((-1258))) (-15 -3191 ((-112))) (-15 -3489 ((-112))) (-15 -1425 ((-112))) (-15 -3001 ((-3 |#2| "failed") |#1|)) (-15 -3671 ((-1258) |#1| |#2|)))
+((-1524 (((-1148) (-1148)) 18)) (-1702 (((-52) (-1148)) 21)))
+(((-1183) (-10 -7 (-15 -1702 ((-52) (-1148))) (-15 -1524 ((-1148) (-1148))))) (T -1183))
+((-1524 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-1183)))))
+(-10 -7 (-15 -1702 ((-52) (-1148))) (-15 -1524 ((-1148) (-1148))))
+((-4022 (((-1185) |#1|) 11)))
+(((-1184 |#1|) (-10 -7 (-15 -4022 ((-1185) |#1|))) (-1090)) (T -1184))
+((-4022 (*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-1184 *3)) (-4 *3 (-1090)))))
+(-10 -7 (-15 -4022 ((-1185) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-1496 (((-638 (-1148)) $) 34)) (-3555 (((-638 (-1148)) $ (-638 (-1148))) 37)) (-1740 (((-638 (-1148)) $ (-638 (-1148))) 36)) (-2470 (((-638 (-1148)) $ (-638 (-1148))) 38)) (-4058 (((-638 (-1148)) $) 33)) (-1470 (($) 22)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1585 (((-638 (-1148)) $) 35)) (-1491 (((-1258) $ (-561)) 29) (((-1258) $) 30)) (-4174 (($ (-856) (-561)) 26) (($ (-856) (-561) (-856)) NIL)) (-4022 (((-856) $) 40) (($ (-856)) 24)) (-1733 (((-112) $ $) NIL)))
+(((-1185) (-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4174 ($ (-856) (-561))) (-15 -4174 ($ (-856) (-561) (-856))) (-15 -1491 ((-1258) $ (-561))) (-15 -1491 ((-1258) $)) (-15 -1585 ((-638 (-1148)) $)) (-15 -1496 ((-638 (-1148)) $)) (-15 -1470 ($)) (-15 -4058 ((-638 (-1148)) $)) (-15 -2470 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -3555 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1740 ((-638 (-1148)) $ (-638 (-1148))))))) (T -1185))
+((-4174 (*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185)))) (-4174 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185)))) (-1491 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-1185)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1185)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1470 (*1 *1) (-5 *1 (-1185))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-2470 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-3555 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))) (-1740 (*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
+(-13 (-1090) (-611 (-856)) (-10 -8 (-15 -4174 ($ (-856) (-561))) (-15 -4174 ($ (-856) (-561) (-856))) (-15 -1491 ((-1258) $ (-561))) (-15 -1491 ((-1258) $)) (-15 -1585 ((-638 (-1148)) $)) (-15 -1496 ((-638 (-1148)) $)) (-15 -1470 ($)) (-15 -4058 ((-638 (-1148)) $)) (-15 -2470 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -3555 ((-638 (-1148)) $ (-638 (-1148)))) (-15 -1740 ((-638 (-1148)) $ (-638 (-1148))))))
+((-4011 (((-112) $ $) NIL)) (-2881 (((-1148) $ (-1148)) 17) (((-1148) $) 16)) (-3974 (((-1148) $ (-1148)) 15)) (-2462 (($ $ (-1148)) NIL)) (-2217 (((-3 (-1148) "failed") $) 11)) (-2562 (((-1148) $) 8)) (-2909 (((-3 (-1148) "failed") $) 12)) (-2669 (((-1148) $) 9)) (-3333 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3269 (((-387) $) NIL)) (-1764 (((-1148) $) NIL)) (-3647 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4324 (((-112) $) 18)) (-4022 (((-856) $) NIL)) (-2836 (($ $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1186) (-13 (-363 (-387) (-1148)) (-10 -8 (-15 -2881 ((-1148) $ (-1148))) (-15 -2881 ((-1148) $)) (-15 -2562 ((-1148) $)) (-15 -2217 ((-3 (-1148) "failed") $)) (-15 -2909 ((-3 (-1148) "failed") $)) (-15 -4324 ((-112) $))))) (T -1186))
+((-2881 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-2217 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-2909 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))))
+(-13 (-363 (-387) (-1148)) (-10 -8 (-15 -2881 ((-1148) $ (-1148))) (-15 -2881 ((-1148) $)) (-15 -2562 ((-1148) $)) (-15 -2217 ((-3 (-1148) "failed") $)) (-15 -2909 ((-3 (-1148) "failed") $)) (-15 -4324 ((-112) $))))
+((-2666 (((-3 (-561) "failed") |#1|) 19)) (-3901 (((-3 (-561) "failed") |#1|) 14)) (-3248 (((-561) (-1148)) 28)))
+(((-1187 |#1|) (-10 -7 (-15 -2666 ((-3 (-561) "failed") |#1|)) (-15 -3901 ((-3 (-561) "failed") |#1|)) (-15 -3248 ((-561) (-1148)))) (-1042)) (T -1187))
+((-3248 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-1187 *4)) (-4 *4 (-1042)))) (-3901 (*1 *2 *3) (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))) (-2666 (*1 *2 *3) (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
+(-10 -7 (-15 -2666 ((-3 (-561) "failed") |#1|)) (-15 -3901 ((-3 (-561) "failed") |#1|)) (-15 -3248 ((-561) (-1148))))
+((-2327 (((-1123 (-224))) 9)))
+(((-1188) (-10 -7 (-15 -2327 ((-1123 (-224)))))) (T -1188))
+((-2327 (*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188)))))
+(-10 -7 (-15 -2327 ((-1123 (-224)))))
+((-4067 (($) 11)) (-3055 (($ $) 35)) (-3031 (($ $) 33)) (-4105 (($ $) 25)) (-3081 (($ $) 17)) (-2125 (($ $) 15)) (-3066 (($ $) 19)) (-4142 (($ $) 30)) (-3043 (($ $) 34)) (-4117 (($ $) 29)))
+(((-1189 |#1|) (-10 -8 (-15 -4067 (|#1|)) (-15 -3055 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2125 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -4117 (|#1| |#1|))) (-1190)) (T -1189))
+NIL
+(-10 -8 (-15 -4067 (|#1|)) (-15 -3055 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2125 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)))
+((-2978 (($ $) 26)) (-4064 (($ $) 11)) (-4172 (($ $) 27)) (-4041 (($ $) 10)) (-3009 (($ $) 28)) (-4085 (($ $) 9)) (-4067 (($) 16)) (-4348 (($ $) 19)) (-3440 (($ $) 18)) (-3021 (($ $) 29)) (-4095 (($ $) 8)) (-2995 (($ $) 30)) (-4073 (($ $) 7)) (-2968 (($ $) 31)) (-4054 (($ $) 6)) (-3055 (($ $) 20)) (-4132 (($ $) 32)) (-3031 (($ $) 21)) (-4105 (($ $) 33)) (-3081 (($ $) 22)) (-4149 (($ $) 34)) (-2125 (($ $) 23)) (-4160 (($ $) 35)) (-3066 (($ $) 24)) (-4142 (($ $) 36)) (-3043 (($ $) 25)) (-4117 (($ $) 37)) (** (($ $ $) 17)))
+(((-1190) (-139)) (T -1190))
+((-4067 (*1 *1) (-4 *1 (-1190))))
+(-13 (-1193) (-95) (-491) (-35) (-283) (-10 -8 (-15 -4067 ($))))
+(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-1193) . T))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2484 ((|#1| $) 17)) (-3091 (($ |#1| (-638 $)) 23) (($ (-638 |#1|)) 27) (($ |#1|) 25)) (-1630 (((-112) $ (-765)) 47)) (-1969 ((|#1| $ |#1|) 14 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 13 (|has| $ (-6 -4391)))) (-1965 (($) NIL T CONST)) (-3571 (((-638 |#1|) $) 51 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 42)) (-2726 (((-112) $ $) 32 (|has| |#1| (-1090)))) (-3744 (((-112) $ (-765)) 40)) (-1305 (((-638 |#1|) $) 52 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2065 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 22)) (-2230 (((-112) $ (-765)) 39)) (-3884 (((-638 |#1|) $) 36)) (-3067 (((-112) $) 35)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2123 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 73)) (-1928 (((-112) $) 9)) (-3170 (($) 10)) (-2277 ((|#1| $ "value") NIL)) (-2004 (((-561) $ $) 31)) (-4355 (((-638 $) $) 58)) (-2297 (((-112) $ $) 76)) (-3013 (((-638 $) $) 71)) (-1521 (($ $) 72)) (-3849 (((-112) $) 55)) (-1724 (((-765) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4390))) (((-765) |#1| $) 16 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-4187 (($ $) 57)) (-4022 (((-856) $) 60 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 12)) (-3123 (((-112) $ $) 29 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 28 (|has| |#1| (-1090)))) (-3498 (((-765) $) 38 (|has| $ (-6 -4390)))))
+(((-1191 |#1|) (-13 (-1003 |#1|) (-10 -8 (-6 -4390) (-6 -4391) (-15 -3091 ($ |#1| (-638 $))) (-15 -3091 ($ (-638 |#1|))) (-15 -3091 ($ |#1|)) (-15 -3849 ((-112) $)) (-15 -1521 ($ $)) (-15 -3013 ((-638 $) $)) (-15 -2297 ((-112) $ $)) (-15 -4355 ((-638 $) $)))) (-1090)) (T -1191))
+((-3849 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))) (-3091 (*1 *1 *2 *3) (-12 (-5 *3 (-638 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1090)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-1191 *3)))) (-3091 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090)))) (-1521 (*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))) (-2297 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
+(-13 (-1003 |#1|) (-10 -8 (-6 -4390) (-6 -4391) (-15 -3091 ($ |#1| (-638 $))) (-15 -3091 ($ (-638 |#1|))) (-15 -3091 ($ |#1|)) (-15 -3849 ((-112) $)) (-15 -1521 ($ $)) (-15 -3013 ((-638 $) $)) (-15 -2297 ((-112) $ $)) (-15 -4355 ((-638 $) $))))
+((-4064 (($ $) 15)) (-4085 (($ $) 12)) (-4095 (($ $) 10)) (-4073 (($ $) 17)))
+(((-1192 |#1|) (-10 -8 (-15 -4073 (|#1| |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4064 (|#1| |#1|))) (-1193)) (T -1192))
+NIL
+(-10 -8 (-15 -4073 (|#1| |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4064 (|#1| |#1|)))
+((-4064 (($ $) 11)) (-4041 (($ $) 10)) (-4085 (($ $) 9)) (-4095 (($ $) 8)) (-4073 (($ $) 7)) (-4054 (($ $) 6)))
+(((-1193) (-139)) (T -1193))
+((-4064 (*1 *1 *1) (-4 *1 (-1193))) (-4041 (*1 *1 *1) (-4 *1 (-1193))) (-4085 (*1 *1 *1) (-4 *1 (-1193))) (-4095 (*1 *1 *1) (-4 *1 (-1193))) (-4073 (*1 *1 *1) (-4 *1 (-1193))) (-4054 (*1 *1 *1) (-4 *1 (-1193))))
+(-13 (-10 -8 (-15 -4054 ($ $)) (-15 -4073 ($ $)) (-15 -4095 ($ $)) (-15 -4085 ($ $)) (-15 -4041 ($ $)) (-15 -4064 ($ $))))
+((-2455 ((|#2| |#2|) 88)) (-3134 (((-112) |#2|) 26)) (-1673 ((|#2| |#2|) 30)) (-1684 ((|#2| |#2|) 32)) (-2347 ((|#2| |#2| (-1166)) 83) ((|#2| |#2|) 84)) (-3698 (((-168 |#2|) |#2|) 28)) (-4010 ((|#2| |#2| (-1166)) 85) ((|#2| |#2|) 86)))
+(((-1194 |#1| |#2|) (-10 -7 (-15 -2347 (|#2| |#2|)) (-15 -2347 (|#2| |#2| (-1166))) (-15 -4010 (|#2| |#2|)) (-15 -4010 (|#2| |#2| (-1166))) (-15 -2455 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -3134 ((-112) |#2|)) (-15 -3698 ((-168 |#2|) |#2|))) (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))) (-13 (-27) (-1190) (-429 |#1|))) (T -1194))
+((-3698 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-168 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-3134 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *2 (-112)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *4))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-4010 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-4010 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))) (-2347 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
+(-10 -7 (-15 -2347 (|#2| |#2|)) (-15 -2347 (|#2| |#2| (-1166))) (-15 -4010 (|#2| |#2|)) (-15 -4010 (|#2| |#2| (-1166))) (-15 -2455 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -3134 ((-112) |#2|)) (-15 -3698 ((-168 |#2|) |#2|)))
+((-4004 ((|#4| |#4| |#1|) 27)) (-3714 ((|#4| |#4| |#1|) 28)))
+(((-1195 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4004 (|#4| |#4| |#1|)) (-15 -3714 (|#4| |#4| |#1|))) (-553) (-372 |#1|) (-372 |#1|) (-680 |#1| |#2| |#3|)) (T -1195))
+((-3714 (*1 *2 *2 *3) (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))) (-4004 (*1 *2 *2 *3) (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
+(-10 -7 (-15 -4004 (|#4| |#4| |#1|)) (-15 -3714 (|#4| |#4| |#1|)))
+((-2815 ((|#2| |#2|) 133)) (-2094 ((|#2| |#2|) 130)) (-2362 ((|#2| |#2|) 121)) (-2119 ((|#2| |#2|) 118)) (-1495 ((|#2| |#2|) 126)) (-3289 ((|#2| |#2|) 114)) (-2165 ((|#2| |#2|) 43)) (-2112 ((|#2| |#2|) 94)) (-3699 ((|#2| |#2|) 74)) (-2946 ((|#2| |#2|) 128)) (-2352 ((|#2| |#2|) 116)) (-4333 ((|#2| |#2|) 138)) (-2323 ((|#2| |#2|) 136)) (-1402 ((|#2| |#2|) 137)) (-3509 ((|#2| |#2|) 135)) (-1674 ((|#2| |#2|) 148)) (-3059 ((|#2| |#2|) 30 (-12 (|has| |#2| (-609 (-885 |#1|))) (|has| |#2| (-879 |#1|)) (|has| |#1| (-609 (-885 |#1|))) (|has| |#1| (-879 |#1|))))) (-1802 ((|#2| |#2|) 75)) (-4032 ((|#2| |#2|) 139)) (-3529 ((|#2| |#2|) 140)) (-2997 ((|#2| |#2|) 127)) (-2278 ((|#2| |#2|) 115)) (-1392 ((|#2| |#2|) 134)) (-1570 ((|#2| |#2|) 132)) (-1765 ((|#2| |#2|) 122)) (-3480 ((|#2| |#2|) 120)) (-2507 ((|#2| |#2|) 124)) (-1326 ((|#2| |#2|) 112)))
+(((-1196 |#1| |#2|) (-10 -7 (-15 -3529 (|#2| |#2|)) (-15 -3699 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -1326 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -2997 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2119 (|#2| |#2|)) (-15 -2094 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -2323 (|#2| |#2|)) (-15 -1402 (|#2| |#2|)) (-15 -4333 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-885 |#1|))) (IF (|has| |#2| (-609 (-885 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -3059 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-844) (-450)) (-13 (-429 |#1|) (-1190))) (T -1196))
+((-3059 (*1 *2 *2) (-12 (-4 *3 (-609 (-885 *3))) (-4 *3 (-879 *3)) (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-609 (-885 *3))) (-4 *2 (-879 *3)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4333 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1402 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2323 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2094 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2119 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3289 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2997 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1326 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2165 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3699 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))) (-3529 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-429 *3) (-1190))))))
+(-10 -7 (-15 -3529 (|#2| |#2|)) (-15 -3699 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -1326 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -2997 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2119 (|#2| |#2|)) (-15 -2094 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -2323 (|#2| |#2|)) (-15 -1402 (|#2| |#2|)) (-15 -4333 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-885 |#1|))) (IF (|has| |#2| (-609 (-885 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -3059 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3010 (((-112) |#5| $) 59) (((-112) $) 101)) (-2427 ((|#5| |#5| $) 74)) (-3556 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-3150 (((-638 |#5|) (-638 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-4017 (((-3 $ "failed") (-638 |#5|)) 125)) (-1445 (((-3 $ "failed") $) 111)) (-3320 ((|#5| |#5| $) 93)) (-2095 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-3372 ((|#5| |#5| $) 97)) (-3185 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-1405 (((-2 (|:| -1461 (-638 |#5|)) (|:| -3333 (-638 |#5|))) $) 54)) (-3033 (((-112) |#5| $) 57) (((-112) $) 102)) (-2783 ((|#4| $) 107)) (-1520 (((-3 |#5| "failed") $) 109)) (-1981 (((-638 |#5|) $) 48)) (-2153 (((-112) |#5| $) 66) (((-112) $) 106)) (-1829 ((|#5| |#5| $) 80)) (-3863 (((-112) $ $) 26)) (-4033 (((-112) |#5| $) 62) (((-112) $) 104)) (-4118 ((|#5| |#5| $) 77)) (-1433 (((-3 |#5| "failed") $) 108)) (-1416 (($ $ |#5|) 126)) (-2894 (((-765) $) 51)) (-4031 (($ (-638 |#5|)) 123)) (-1755 (($ $ |#4|) 121)) (-2794 (($ $ |#4|) 120)) (-2074 (($ $) 119)) (-4022 (((-856) $) NIL) (((-638 |#5|) $) 112)) (-4161 (((-765) $) 129)) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-2024 (((-112) $ (-1 (-112) |#5| (-638 |#5|))) 99)) (-2524 (((-638 |#4|) $) 114)) (-1751 (((-112) |#4| $) 117)) (-1733 (((-112) $ $) 19)))
+(((-1197 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4161 ((-765) |#1|)) (-15 -1416 (|#1| |#1| |#5|)) (-15 -3556 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1751 ((-112) |#4| |#1|)) (-15 -2524 ((-638 |#4|) |#1|)) (-15 -1445 ((-3 |#1| "failed") |#1|)) (-15 -1520 ((-3 |#5| "failed") |#1|)) (-15 -1433 ((-3 |#5| "failed") |#1|)) (-15 -3372 (|#5| |#5| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -3320 (|#5| |#5| |#1|)) (-15 -1829 (|#5| |#5| |#1|)) (-15 -4118 (|#5| |#5| |#1|)) (-15 -2427 (|#5| |#5| |#1|)) (-15 -3150 ((-638 |#5|) (-638 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3185 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2153 ((-112) |#1|)) (-15 -4033 ((-112) |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -2024 ((-112) |#1| (-1 (-112) |#5| (-638 |#5|)))) (-15 -2153 ((-112) |#5| |#1|)) (-15 -4033 ((-112) |#5| |#1|)) (-15 -3010 ((-112) |#5| |#1|)) (-15 -2095 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3033 ((-112) |#1|)) (-15 -3033 ((-112) |#5| |#1|)) (-15 -1405 ((-2 (|:| -1461 (-638 |#5|)) (|:| -3333 (-638 |#5|))) |#1|)) (-15 -2894 ((-765) |#1|)) (-15 -1981 ((-638 |#5|) |#1|)) (-15 -2874 ((-3 (-2 (|:| |bas| |#1|) (|:| -2735 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2874 ((-3 (-2 (|:| |bas| |#1|) (|:| -2735 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3863 ((-112) |#1| |#1|)) (-15 -1755 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -2783 (|#4| |#1|)) (-15 -4017 ((-3 |#1| "failed") (-638 |#5|))) (-15 -4022 ((-638 |#5|) |#1|)) (-15 -4031 (|#1| (-638 |#5|))) (-15 -3185 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3556 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-1198 |#2| |#3| |#4| |#5|) (-553) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1197))
+NIL
+(-10 -8 (-15 -4161 ((-765) |#1|)) (-15 -1416 (|#1| |#1| |#5|)) (-15 -3556 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1751 ((-112) |#4| |#1|)) (-15 -2524 ((-638 |#4|) |#1|)) (-15 -1445 ((-3 |#1| "failed") |#1|)) (-15 -1520 ((-3 |#5| "failed") |#1|)) (-15 -1433 ((-3 |#5| "failed") |#1|)) (-15 -3372 (|#5| |#5| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -3320 (|#5| |#5| |#1|)) (-15 -1829 (|#5| |#5| |#1|)) (-15 -4118 (|#5| |#5| |#1|)) (-15 -2427 (|#5| |#5| |#1|)) (-15 -3150 ((-638 |#5|) (-638 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3185 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2153 ((-112) |#1|)) (-15 -4033 ((-112) |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -2024 ((-112) |#1| (-1 (-112) |#5| (-638 |#5|)))) (-15 -2153 ((-112) |#5| |#1|)) (-15 -4033 ((-112) |#5| |#1|)) (-15 -3010 ((-112) |#5| |#1|)) (-15 -2095 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3033 ((-112) |#1|)) (-15 -3033 ((-112) |#5| |#1|)) (-15 -1405 ((-2 (|:| -1461 (-638 |#5|)) (|:| -3333 (-638 |#5|))) |#1|)) (-15 -2894 ((-765) |#1|)) (-15 -1981 ((-638 |#5|) |#1|)) (-15 -2874 ((-3 (-2 (|:| |bas| |#1|) (|:| -2735 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2874 ((-3 (-2 (|:| |bas| |#1|) (|:| -2735 (-638 |#5|))) "failed") (-638 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3863 ((-112) |#1| |#1|)) (-15 -1755 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -2783 (|#4| |#1|)) (-15 -4017 ((-3 |#1| "failed") (-638 |#5|))) (-15 -4022 ((-638 |#5|) |#1|)) (-15 -4031 (|#1| (-638 |#5|))) (-15 -3185 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3556 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3185 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4022 ((-856) |#1|)) (-15 -1733 ((-112) |#1| |#1|)))
+((-4011 (((-112) $ $) 7)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) 85)) (-3047 (((-638 $) (-638 |#4|)) 86)) (-1412 (((-638 |#3|) $) 33)) (-1978 (((-112) $) 26)) (-2701 (((-112) $) 17 (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) 101) (((-112) $) 97)) (-2427 ((|#4| |#4| $) 92)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) 27)) (-1630 (((-112) $ (-765)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) 79)) (-1965 (($) 45 T CONST)) (-2002 (((-112) $) 22 (|has| |#1| (-553)))) (-1951 (((-112) $ $) 24 (|has| |#1| (-553)))) (-2959 (((-112) $ $) 23 (|has| |#1| (-553)))) (-1361 (((-112) $) 25 (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1825 (((-638 |#4|) (-638 |#4|) $) 18 (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) 19 (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) 36)) (-3938 (($ (-638 |#4|)) 35)) (-1445 (((-3 $ "failed") $) 82)) (-3320 ((|#4| |#4| $) 89)) (-1472 (($ $) 68 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#4| $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3372 ((|#4| |#4| $) 87)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) 105)) (-3571 (((-638 |#4|) $) 52 (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) 104) (((-112) $) 103)) (-2783 ((|#3| $) 34)) (-3744 (((-112) $ (-765)) 43)) (-1305 (((-638 |#4|) $) 53 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) 47)) (-2209 (((-638 |#3|) $) 32)) (-2866 (((-112) |#3| $) 31)) (-2230 (((-112) $ (-765)) 42)) (-1764 (((-1148) $) 9)) (-1520 (((-3 |#4| "failed") $) 83)) (-1981 (((-638 |#4|) $) 107)) (-2153 (((-112) |#4| $) 99) (((-112) $) 95)) (-1829 ((|#4| |#4| $) 90)) (-3863 (((-112) $ $) 110)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-1714 (((-1110) $) 10)) (-1433 (((-3 |#4| "failed") $) 84)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2916 (((-3 $ "failed") $ |#4|) 78)) (-1416 (($ $ |#4|) 77)) (-2123 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) 38)) (-1928 (((-112) $) 41)) (-3170 (($) 40)) (-2894 (((-765) $) 106)) (-1724 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4390)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4390)))) (-4187 (($ $) 39)) (-4174 (((-534) $) 69 (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) 60)) (-1755 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-2074 (($ $) 88)) (-1967 (($ $ |#3|) 29)) (-4022 (((-856) $) 11) (((-638 |#4|) $) 37)) (-4161 (((-765) $) 76 (|has| |#3| (-367)))) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) 98)) (-3715 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) 81)) (-1751 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3498 (((-765) $) 46 (|has| $ (-6 -4390)))))
+(((-1198 |#1| |#2| |#3| |#4|) (-139) (-553) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1198))
+((-3863 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-2874 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2735 (-638 *8)))) (-5 *3 (-638 *8)) (-4 *1 (-1198 *5 *6 *7 *8)))) (-2874 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2735 (-638 *9)))) (-5 *3 (-638 *9)) (-4 *1 (-1198 *6 *7 *8 *9)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *6)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-2 (|:| -1461 (-638 *6)) (|:| -3333 (-638 *6)))))) (-3033 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-2095 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1198 *5 *6 *7 *3)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)))) (-3010 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4033 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2153 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-2024 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-638 *7))) (-4 *1 (-1198 *4 *5 *6 *7)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-3185 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1198 *5 *6 *7 *2)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *2 (-1056 *5 *6 *7)))) (-3150 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1198 *5 *6 *7 *8)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)))) (-2427 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4118 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1829 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3320 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-3372 (*1 *2 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1)) (-4 *1 (-1198 *4 *5 *6 *7)))) (-1296 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-638 (-2 (|:| -1461 *1) (|:| -3333 (-638 *7))))) (-5 *3 (-638 *7)) (-4 *1 (-1198 *4 *5 *6 *7)))) (-1433 (*1 *2 *1) (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1520 (*1 *2 *1) (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1445 (*1 *1 *1) (|partial| -12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))) (-1751 (*1 *2 *3 *1) (-12 (-4 *1 (-1198 *4 *5 *3 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-3556 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1198 *4 *5 *3 *2)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3)))) (-2916 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-1416 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-765)))))
+(-13 (-969 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4390) (-6 -4391) (-15 -3863 ((-112) $ $)) (-15 -2874 ((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |t#4|))) "failed") (-638 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2874 ((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |t#4|))) "failed") (-638 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1981 ((-638 |t#4|) $)) (-15 -2894 ((-765) $)) (-15 -1405 ((-2 (|:| -1461 (-638 |t#4|)) (|:| -3333 (-638 |t#4|))) $)) (-15 -3033 ((-112) |t#4| $)) (-15 -3033 ((-112) $)) (-15 -2095 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3010 ((-112) |t#4| $)) (-15 -4033 ((-112) |t#4| $)) (-15 -2153 ((-112) |t#4| $)) (-15 -2024 ((-112) $ (-1 (-112) |t#4| (-638 |t#4|)))) (-15 -3010 ((-112) $)) (-15 -4033 ((-112) $)) (-15 -2153 ((-112) $)) (-15 -3185 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3150 ((-638 |t#4|) (-638 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2427 (|t#4| |t#4| $)) (-15 -4118 (|t#4| |t#4| $)) (-15 -1829 (|t#4| |t#4| $)) (-15 -3320 (|t#4| |t#4| $)) (-15 -2074 ($ $)) (-15 -3372 (|t#4| |t#4| $)) (-15 -3047 ((-638 $) (-638 |t#4|))) (-15 -1296 ((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |t#4|)))) (-638 |t#4|))) (-15 -1433 ((-3 |t#4| "failed") $)) (-15 -1520 ((-3 |t#4| "failed") $)) (-15 -1445 ((-3 $ "failed") $)) (-15 -2524 ((-638 |t#3|) $)) (-15 -1751 ((-112) |t#3| $)) (-15 -3556 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2916 ((-3 $ "failed") $ |t#4|)) (-15 -1416 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -4161 ((-765) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-608 (-638 |#4|)) . T) ((-608 (-856)) . T) ((-150 |#4|) . T) ((-609 (-534)) |has| |#4| (-609 (-534))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1205) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1166)) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4172 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3009 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-3373 (((-945 |#1|) $ (-765)) 16) (((-945 |#1|) $ (-765) (-765)) NIL)) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-765) $ (-1166)) NIL) (((-765) $ (-1166) (-765)) NIL)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2092 (((-112) $) NIL)) (-1387 (($ $ (-638 (-1166)) (-638 (-529 (-1166)))) NIL) (($ $ (-1166) (-529 (-1166))) NIL) (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1842 (($ $ (-1166)) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-1503 (($ (-1 $) (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1416 (($ $ (-765)) NIL)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1444 (($ $ (-1166) $) NIL) (($ $ (-638 (-1166)) (-638 $)) NIL) (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL)) (-3238 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-2894 (((-529 (-1166)) $) NIL)) (-3021 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-553))) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-1166)) NIL) (($ (-945 |#1|)) NIL)) (-2634 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (((-945 |#1|) $ (-765)) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) NIL T CONST)) (-2222 (($) NIL T CONST)) (-3122 (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1199 |#1|) (-13 (-734 |#1| (-1166)) (-10 -8 (-15 -2634 ((-945 |#1|) $ (-765))) (-15 -4022 ($ (-1166))) (-15 -4022 ($ (-945 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $ (-1166) |#1|)) (-15 -1503 ($ (-1 $) (-1166) |#1|))) |%noBranch|))) (-1042)) (T -1199))
+((-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-945 *4)) (-5 *1 (-1199 *4)) (-4 *4 (-1042)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-1042)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-5 *1 (-1199 *3)))) (-1842 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))) (-1503 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1199 *4))) (-5 *3 (-1166)) (-5 *1 (-1199 *4)) (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))))
+(-13 (-734 |#1| (-1166)) (-10 -8 (-15 -2634 ((-945 |#1|) $ (-765))) (-15 -4022 ($ (-1166))) (-15 -4022 ($ (-945 |#1|))) (IF (|has| |#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $ (-1166) |#1|)) (-15 -1503 ($ (-1 $) (-1166) |#1|))) |%noBranch|)))
+((-2534 (($ |#1| (-638 (-638 (-936 (-224)))) (-112)) 18)) (-2979 (((-112) $ (-112)) 17)) (-2722 (((-112) $) 16)) (-1580 (((-638 (-638 (-936 (-224)))) $) 13)) (-1579 ((|#1| $) 8)) (-3869 (((-112) $) 15)))
+(((-1200 |#1|) (-10 -8 (-15 -1579 (|#1| $)) (-15 -1580 ((-638 (-638 (-936 (-224)))) $)) (-15 -3869 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -2979 ((-112) $ (-112))) (-15 -2534 ($ |#1| (-638 (-638 (-936 (-224)))) (-112)))) (-967)) (T -1200))
+((-2534 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-112)) (-5 *1 (-1200 *2)) (-4 *2 (-967)))) (-2979 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-1579 (*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
+(-10 -8 (-15 -1579 (|#1| $)) (-15 -1580 ((-638 (-638 (-936 (-224)))) $)) (-15 -3869 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -2979 ((-112) $ (-112))) (-15 -2534 ($ |#1| (-638 (-638 (-936 (-224)))) (-112))))
+((-2923 (((-936 (-224)) (-936 (-224))) 25)) (-3376 (((-936 (-224)) (-224) (-224) (-224) (-224)) 10)) (-4363 (((-638 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-638 (-638 (-224)))) 35)) (-1327 (((-224) (-936 (-224)) (-936 (-224))) 21)) (-2307 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 22)) (-3387 (((-638 (-638 (-224))) (-561)) 31)) (-1824 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 20)) (-1813 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 19)) (* (((-936 (-224)) (-224) (-936 (-224))) 18)))
+(((-1201) (-10 -7 (-15 -3376 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -1813 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -1824 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -1327 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -2307 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -2923 ((-936 (-224)) (-936 (-224)))) (-15 -3387 ((-638 (-638 (-224))) (-561))) (-15 -4363 ((-638 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-638 (-638 (-224))))))) (T -1201))
+((-4363 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-638 (-638 (-224)))) (-5 *4 (-224)) (-5 *2 (-638 (-936 *4))) (-5 *1 (-1201)) (-5 *3 (-936 *4)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-561)) (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-1201)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-2307 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-1327 (*1 *2 *3 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201)))) (-1824 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201)))) (-3376 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224)))))
+(-10 -7 (-15 -3376 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -1813 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -1824 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -1327 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -2307 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -2923 ((-936 (-224)) (-936 (-224)))) (-15 -3387 ((-638 (-638 (-224))) (-561))) (-15 -4363 ((-638 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-638 (-638 (-224))))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-3556 ((|#1| $ (-765)) 13)) (-3617 (((-765) $) 12)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-4022 (((-951 |#1|) $) 10) (($ (-951 |#1|)) 9) (((-856) $) 23 (|has| |#1| (-608 (-856))))) (-1733 (((-112) $ $) 16 (|has| |#1| (-1090)))))
+(((-1202 |#1|) (-13 (-488 (-951 |#1|)) (-10 -8 (-15 -3556 (|#1| $ (-765))) (-15 -3617 ((-765) $)) (IF (|has| |#1| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|))) (-1205)) (T -1202))
+((-3556 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1205)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1205)))))
+(-13 (-488 (-951 |#1|)) (-10 -8 (-15 -3556 (|#1| $ (-765))) (-15 -3617 ((-765) $)) (IF (|has| |#1| (-608 (-856))) (-6 (-608 (-856))) |%noBranch|) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|)))
+((-3342 (((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)) (-561)) 80)) (-2131 (((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|))) 74)) (-2465 (((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|))) 59)))
+(((-1203 |#1|) (-10 -7 (-15 -2131 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -2465 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -3342 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)) (-561)))) (-348)) (T -1203))
+((-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-561)) (-4 *5 (-348)) (-5 *2 (-417 (-1162 (-1162 *5)))) (-5 *1 (-1203 *5)) (-5 *3 (-1162 (-1162 *5))))) (-2465 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))))
+(-10 -7 (-15 -2131 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -2465 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)))) (-15 -3342 ((-417 (-1162 (-1162 |#1|))) (-1162 (-1162 |#1|)) (-561))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 9) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1204) (-1073)) (T -1204))
+NIL
+(-1073)
+NIL
+(((-1205) (-139)) (T -1205))
+NIL
+(-13 (-10 -7 (-6 -1378)))
+((-2195 (((-112)) 14)) (-3515 (((-1258) (-638 |#1|) (-638 |#1|)) 18) (((-1258) (-638 |#1|)) 19)) (-3744 (((-112) |#1| |#1|) 31 (|has| |#1| (-844)))) (-2230 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-3770 ((|#1| (-638 |#1|)) 32 (|has| |#1| (-844))) ((|#1| (-638 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-3436 (((-2 (|:| -1866 (-638 |#1|)) (|:| -2541 (-638 |#1|)))) 16)))
+(((-1206 |#1|) (-10 -7 (-15 -3515 ((-1258) (-638 |#1|))) (-15 -3515 ((-1258) (-638 |#1|) (-638 |#1|))) (-15 -3436 ((-2 (|:| -1866 (-638 |#1|)) (|:| -2541 (-638 |#1|))))) (-15 -2230 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2230 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3770 (|#1| (-638 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2195 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -3770 (|#1| (-638 |#1|))) (-15 -3744 ((-112) |#1| |#1|))) |%noBranch|)) (-1090)) (T -1206))
+((-3744 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844)) (-4 *3 (-1090)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-844)) (-5 *1 (-1206 *2)))) (-2195 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2)) (-4 *2 (-1090)))) (-2230 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1090)) (-5 *2 (-112)) (-5 *1 (-1206 *3)))) (-2230 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))) (-3436 (*1 *2) (-12 (-5 *2 (-2 (|:| -1866 (-638 *3)) (|:| -2541 (-638 *3)))) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))) (-3515 (*1 *2 *3 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1258)) (-5 *1 (-1206 *4)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1258)) (-5 *1 (-1206 *4)))))
+(-10 -7 (-15 -3515 ((-1258) (-638 |#1|))) (-15 -3515 ((-1258) (-638 |#1|) (-638 |#1|))) (-15 -3436 ((-2 (|:| -1866 (-638 |#1|)) (|:| -2541 (-638 |#1|))))) (-15 -2230 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2230 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3770 (|#1| (-638 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2195 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -3770 (|#1| (-638 |#1|))) (-15 -3744 ((-112) |#1| |#1|))) |%noBranch|))
+((-4181 (((-1258) (-638 (-1166)) (-638 (-1166))) 13) (((-1258) (-638 (-1166))) 11)) (-3793 (((-1258)) 14)) (-3390 (((-2 (|:| -2541 (-638 (-1166))) (|:| -1866 (-638 (-1166))))) 18)))
+(((-1207) (-10 -7 (-15 -4181 ((-1258) (-638 (-1166)))) (-15 -4181 ((-1258) (-638 (-1166)) (-638 (-1166)))) (-15 -3390 ((-2 (|:| -2541 (-638 (-1166))) (|:| -1866 (-638 (-1166)))))) (-15 -3793 ((-1258))))) (T -1207))
+((-3793 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1207)))) (-3390 (*1 *2) (-12 (-5 *2 (-2 (|:| -2541 (-638 (-1166))) (|:| -1866 (-638 (-1166))))) (-5 *1 (-1207)))) (-4181 (*1 *2 *3 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1258)) (-5 *1 (-1207)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1258)) (-5 *1 (-1207)))))
+(-10 -7 (-15 -4181 ((-1258) (-638 (-1166)))) (-15 -4181 ((-1258) (-638 (-1166)) (-638 (-1166)))) (-15 -3390 ((-2 (|:| -2541 (-638 (-1166))) (|:| -1866 (-638 (-1166)))))) (-15 -3793 ((-1258))))
+((-1591 (($ $) 17)) (-2737 (((-112) $) 24)))
+(((-1208 |#1|) (-10 -8 (-15 -1591 (|#1| |#1|)) (-15 -2737 ((-112) |#1|))) (-1209)) (T -1208))
+NIL
+(-10 -8 (-15 -1591 (|#1| |#1|)) (-15 -2737 ((-112) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 52)) (-3422 (((-417 $) $) 53)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-2737 (((-112) $) 54)) (-3113 (((-112) $) 31)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1657 (((-417 $) $) 51)) (-1756 (((-3 $ "failed") $ $) 43)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44)) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24)))
+(((-1209) (-139)) (T -1209))
+((-2737 (*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209)))) (-1591 (*1 *1 *1) (-4 *1 (-1209))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209)))))
+(-13 (-450) (-10 -8 (-15 -2737 ((-112) $)) (-15 -3422 ((-417 $) $)) (-15 -1591 ($ $)) (-15 -1657 ((-417 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-553) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1965 (($) NIL)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-3198 (((-914) $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3006 (($ $ $) NIL)) (-2992 (($ $ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-1210) (-13 (-838) (-10 -8 (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($))))) (T -1210))
+((-2992 (*1 *1 *1 *1) (-5 *1 (-1210))) (-3006 (*1 *1 *1 *1) (-5 *1 (-1210))) (-1965 (*1 *1) (-5 *1 (-1210))))
+(-13 (-838) (-10 -8 (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($))))
+((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
+((-4011 (((-112) $ $) NIL)) (-1393 (((-765)) NIL)) (-1965 (($) NIL)) (-1332 (($) NIL)) (-3443 (($ $ $) NIL) (($) NIL T CONST)) (-2986 (($ $ $) NIL) (($) NIL T CONST)) (-3198 (((-914) $) NIL)) (-1764 (((-1148) $) NIL)) (-2413 (($ (-914)) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) NIL)) (-3006 (($ $ $) NIL)) (-2992 (($ $ $) NIL)) (-1782 (((-112) $ $) NIL)) (-1762 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL)) (-1754 (((-112) $ $) NIL)))
+(((-1211) (-13 (-838) (-10 -8 (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($))))) (T -1211))
+((-2992 (*1 *1 *1 *1) (-5 *1 (-1211))) (-3006 (*1 *1 *1 *1) (-5 *1 (-1211))) (-1965 (*1 *1) (-5 *1 (-1211))))
+(-13 (-838) (-10 -8 (-15 -2992 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -1965 ($))))
+((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
+((-4120 (((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|)) 23)))
+(((-1212 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4120 ((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1212))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1217 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1217 *6 *8 *10)) (-5 *1 (-1212 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166)))))
+(-10 -7 (-15 -4120 ((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 (-1072)) $) 77)) (-2389 (((-1166) $) 106)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-3411 (($ $ (-561)) 101) (($ $ (-561) (-561)) 100)) (-2457 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 108)) (-2978 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 165 (|has| |#1| (-362)))) (-3422 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1665 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4172 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 176)) (-3009 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) 17 T CONST)) (-1793 (($ $ $) 160 (|has| |#1| (-362)))) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-1435 (((-406 (-945 |#1|)) $ (-561)) 174 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 173 (|has| |#1| (-553)))) (-1774 (($ $ $) 159 (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2737 (((-112) $) 167 (|has| |#1| (-362)))) (-3281 (((-112) $) 76)) (-4067 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-561) $) 103) (((-561) $ (-561)) 102)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) 104)) (-2279 (($ (-1 |#1| (-561)) $) 175)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-2092 (((-112) $) 65)) (-1387 (($ |#1| (-561)) 64) (($ $ (-1072) (-561)) 79) (($ $ (-638 (-1072)) (-638 (-561))) 78)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-4348 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1582 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1764 (((-1148) $) 9)) (-1540 (($ $) 168 (|has| |#1| (-362)))) (-1842 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4007 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1623 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1657 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 161 (|has| |#1| (-362)))) (-1416 (($ $ (-561)) 98)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3440 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-561)))))) (-3569 (((-765) $) 157 (|has| |#1| (-362)))) (-2277 ((|#1| $ (-561)) 107) (($ $ $) 84 (|has| (-561) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 158 (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-2894 (((-561) $) 67)) (-3021 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 75)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-2634 ((|#1| $ (-561)) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-2262 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3031 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-561)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-561) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-1213 |#1|) (-139) (-1042)) (T -1213))
+((-3406 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1213 *3)))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1213 *3)) (-4 *3 (-1042)))) (-1435 (*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1213 *4)) (-4 *4 (-1042)) (-4 *4 (-553)) (-5 *2 (-406 (-945 *4))))) (-1435 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-4 *1 (-1213 *4)) (-4 *4 (-1042)) (-4 *4 (-553)) (-5 *2 (-406 (-945 *4))))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))) (-1842 (*1 *1 *1 *2) (-4007 (-12 (-5 *2 (-1166)) (-4 *1 (-1213 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-561)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1213 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -1412 ((-638 *2) *3))) (|has| *3 (-15 -1842 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561)))))))))
+(-13 (-1231 |t#1| (-561)) (-10 -8 (-15 -3406 ($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |t#1|))))) (-15 -2279 ($ (-1 |t#1| (-561)) $)) (IF (|has| |t#1| (-553)) (PROGN (-15 -1435 ((-406 (-945 |t#1|)) $ (-561))) (-15 -1435 ((-406 (-945 |t#1|)) $ (-561) (-561)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $)) (IF (|has| |t#1| (-15 -1842 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -1412 ((-638 (-1166)) |t#1|))) (-15 -1842 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-952)) (IF (|has| |t#1| (-29 (-561))) (-15 -1842 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-561)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-561) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-561) (-1102)) ((-289) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1209) |has| |#1| (-362)) ((-1231 |#1| #0#) . T))
+((-2800 (((-112) $) 12)) (-4017 (((-3 |#3| "failed") $) 17) (((-3 (-1166) "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL)) (-3938 ((|#3| $) 14) (((-1166) $) NIL) (((-406 (-561)) $) NIL) (((-561) $) NIL)))
+(((-1214 |#1| |#2| |#3|) (-10 -8 (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-1166) "failed") |#1|)) (-15 -3938 ((-1166) |#1|)) (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3938 (|#3| |#1|)) (-15 -2800 ((-112) |#1|))) (-1215 |#2| |#3|) (-1042) (-1244 |#2|)) (T -1214))
+NIL
+(-10 -8 (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -4017 ((-3 (-1166) "failed") |#1|)) (-15 -3938 ((-1166) |#1|)) (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3938 (|#3| |#1|)) (-15 -2800 ((-112) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2949 ((|#2| $) 231 (-2170 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1412 (((-638 (-1072)) $) 77)) (-2389 (((-1166) $) 106)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-3411 (($ $ (-561)) 101) (($ $ (-561) (-561)) 100)) (-2457 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 108)) (-3718 ((|#2| $) 267)) (-2893 (((-3 |#2| "failed") $) 263)) (-1482 ((|#2| $) 264)) (-2978 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) 19)) (-4046 (((-417 (-1162 $)) (-1162 $)) 240 (-2170 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1591 (($ $) 165 (|has| |#1| (-362)))) (-3422 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1665 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 237 (-2170 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1671 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4172 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-2666 (((-561) $) 249 (-2170 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3406 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 176)) (-3009 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#2| "failed") $) 270) (((-3 (-561) "failed") $) 260 (-2170 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) 258 (-2170 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-1166) "failed") $) 242 (-2170 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-3938 ((|#2| $) 271) (((-561) $) 259 (-2170 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-406 (-561)) $) 257 (-2170 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-1166) $) 241 (-2170 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-2911 (($ $) 266) (($ (-561) $) 265)) (-1793 (($ $ $) 160 (|has| |#1| (-362)))) (-1619 (($ $) 63)) (-3602 (((-682 |#2|) (-682 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 219 (-2170 (|has| |#2| (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) 218 (-2170 (|has| |#2| (-634 (-561))) (|has| |#1| (-362))))) (-3466 (((-3 $ "failed") $) 33)) (-1435 (((-406 (-945 |#1|)) $ (-561)) 174 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 173 (|has| |#1| (-553)))) (-1332 (($) 233 (-2170 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-1774 (($ $ $) 159 (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2737 (((-112) $) 167 (|has| |#1| (-362)))) (-3201 (((-112) $) 247 (-2170 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3281 (((-112) $) 76)) (-4067 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 225 (-2170 (|has| |#2| (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 224 (-2170 (|has| |#2| (-879 (-561))) (|has| |#1| (-362))))) (-4163 (((-561) $) 103) (((-561) $ (-561)) 102)) (-3113 (((-112) $) 31)) (-3458 (($ $) 229 (|has| |#1| (-362)))) (-4030 ((|#2| $) 227 (|has| |#1| (-362)))) (-2556 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-1663 (((-3 $ "failed") $) 261 (-2170 (|has| |#2| (-1141)) (|has| |#1| (-362))))) (-2110 (((-112) $) 248 (-2170 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3244 (($ $ (-914)) 104)) (-2279 (($ (-1 |#1| (-561)) $) 175)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-2092 (((-112) $) 65)) (-1387 (($ |#1| (-561)) 64) (($ $ (-1072) (-561)) 79) (($ $ (-638 (-1072)) (-638 (-561))) 78)) (-3443 (($ $ $) 251 (-2170 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-2986 (($ $ $) 252 (-2170 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4120 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-4348 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1582 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1499 (($ (-561) |#2|) 268)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 168 (|has| |#1| (-362)))) (-1842 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4007 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-3721 (($) 262 (-2170 (|has| |#2| (-1141)) (|has| |#1| (-362))) CONST)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1623 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-3841 (($ $) 232 (-2170 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1388 ((|#2| $) 235 (-2170 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3396 (((-417 (-1162 $)) (-1162 $)) 238 (-2170 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-3449 (((-417 (-1162 $)) (-1162 $)) 239 (-2170 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1657 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 161 (|has| |#1| (-362)))) (-1416 (($ $ (-561)) 98)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3440 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) |#2|) 212 (-2170 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 |#2|)) 211 (-2170 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-293 |#2|))) 210 (-2170 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) 209 (-2170 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-2170 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-638 |#2|) (-638 |#2|)) 207 (-2170 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-3569 (((-765) $) 157 (|has| |#1| (-362)))) (-2277 ((|#1| $ (-561)) 107) (($ $ $) 84 (|has| (-561) (-1102))) (($ $ |#2|) 206 (-2170 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 158 (|has| |#1| (-362)))) (-3238 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 216 (|has| |#1| (-362))) (($ $ (-765)) 87 (-4007 (-2170 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 85 (-4007 (-2170 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) 92 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166) (-765)) 91 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-638 (-1166))) 90 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166)) 89 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))))) (-2861 (($ $) 230 (|has| |#1| (-362)))) (-4045 ((|#2| $) 228 (|has| |#1| (-362)))) (-2894 (((-561) $) 67)) (-3021 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-4174 (((-224) $) 246 (-2170 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-378) $) 245 (-2170 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-534) $) 244 (-2170 (|has| |#2| (-609 (-534))) (|has| |#1| (-362)))) (((-885 (-378)) $) 223 (-2170 (|has| |#2| (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) 222 (-2170 (|has| |#2| (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 236 (-2170 (-2170 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#1| (-362))))) (-1897 (($ $) 75)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1166)) 243 (-2170 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362)))) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-2634 ((|#1| $ (-561)) 62)) (-1760 (((-3 $ "failed") $) 51 (-4007 (-2170 (-4007 (|has| |#2| (-144)) (-2170 (|has| $ (-144)) (|has| |#2| (-902)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-4259 (((-765)) 28)) (-2262 ((|#1| $) 105)) (-2432 ((|#2| $) 234 (-2170 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3031 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-561)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-3749 (($ $) 250 (-2170 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 214 (|has| |#1| (-362))) (($ $ (-765)) 88 (-4007 (-2170 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 86 (-4007 (-2170 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) 96 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166) (-765)) 95 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-638 (-1166))) 94 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))))) (($ $ (-1166)) 93 (-4007 (-2170 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))))) (-1782 (((-112) $ $) 254 (-2170 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1762 (((-112) $ $) 255 (-2170 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 253 (-2170 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1754 (((-112) $ $) 256 (-2170 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-1215 |#1| |#2|) (-139) (-1042) (-1244 |t#1|)) (T -1215))
+((-2894 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1244 *3)) (-5 *2 (-561)))) (-1499 (*1 *1 *2 *3) (-12 (-5 *2 (-561)) (-4 *4 (-1042)) (-4 *1 (-1215 *4 *3)) (-4 *3 (-1244 *4)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1244 *3)))) (-2911 (*1 *1 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1244 *2)))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1244 *3)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1244 *3)))) (-2893 (*1 *2 *1) (|partial| -12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1244 *3)))))
+(-13 (-1213 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -1499 ($ (-561) |t#2|)) (-15 -2894 ((-561) $)) (-15 -3718 (|t#2| $)) (-15 -2911 ($ $)) (-15 -2911 ($ (-561) $)) (-15 -1482 (|t#2| $)) (-15 -2893 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-985 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-561)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -4007 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -4007 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-611 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 #2=(-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) ((-609 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) ((-609 (-534)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-885 (-561))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -4007 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-561) |#1|)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-561) (-1102)) ((-289) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-512 (-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|))) ((-512 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-553) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 |#2|) |has| |#1| (-362)) ((-641 $) . T) ((-634 (-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-561)))) ((-634 |#2|) |has| |#1| (-362)) ((-711 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 |#2|) |has| |#1| (-362)) ((-711 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-785) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-788) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-789) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-814) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-842) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-844) -4007 (-12 (|has| |#1| (-362)) (|has| |#2| (-844))) (-12 (|has| |#1| (-362)) (|has| |#2| (-814)))) ((-893 (-1166)) -4007 (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))) ((-879 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-378)))) ((-879 (-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-561)))) ((-877 |#2|) |has| |#1| (-362)) ((-902) -12 (|has| |#1| (-362)) (|has| |#2| (-902))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-985 |#2|) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1015) -12 (|has| |#1| (-362)) (|has| |#2| (-1015))) ((-1031 (-406 (-561))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))) ((-1031 (-561)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-561)))) ((-1031 #2#) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-1031 |#2|) . T) ((-1048 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 |#2|) |has| |#1| (-362)) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) -12 (|has| |#1| (-362)) (|has| |#2| (-1141))) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1205) |has| |#1| (-362)) ((-1209) |has| |#1| (-362)) ((-1213 |#1|) . T) ((-1231 |#1| #0#) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 70)) (-2949 ((|#2| $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 88)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-561)) 97) (($ $ (-561) (-561)) 99)) (-2457 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) 47)) (-3718 ((|#2| $) 11)) (-2893 (((-3 |#2| "failed") $) 30)) (-1482 ((|#2| $) 31)) (-2978 (($ $) 192 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 168 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) 188 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 164 (|has| |#1| (-38 (-406 (-561)))))) (-2666 (((-561) $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3406 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) 57)) (-3009 (($ $) 196 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) 144) (((-3 (-561) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-1166) "failed") $) NIL (-12 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-3938 ((|#2| $) 143) (((-561) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-406 (-561)) $) NIL (-12 (|has| |#2| (-1031 (-561))) (|has| |#1| (-362)))) (((-1166) $) NIL (-12 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-2911 (($ $) 61) (($ (-561) $) 24)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3602 (((-682 |#2|) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-561))) (|has| |#1| (-362))))) (-3466 (((-3 $ "failed") $) 77)) (-1435 (((-406 (-945 |#1|)) $ (-561)) 112 (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) 114 (|has| |#1| (-553)))) (-1332 (($) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3201 (((-112) $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3281 (((-112) $) 64)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| |#2| (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| |#2| (-879 (-561))) (|has| |#1| (-362))))) (-4163 (((-561) $) 93) (((-561) $ (-561)) 95)) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL (|has| |#1| (-362)))) (-4030 ((|#2| $) 151 (|has| |#1| (-362)))) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1663 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1141)) (|has| |#1| (-362))))) (-2110 (((-112) $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3244 (($ $ (-914)) 136)) (-2279 (($ (-1 |#1| (-561)) $) 132)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-561)) 19) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-3443 (($ $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-2986 (($ $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4120 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-4348 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-561) |#2|) 10)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 145 (|has| |#1| (-362)))) (-1842 (($ $) 214 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 219 (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190)))))) (-3721 (($) NIL (-12 (|has| |#2| (-1141)) (|has| |#1| (-362))) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3841 (($ $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1388 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-561)) 126)) (-1756 (((-3 $ "failed") $ $) 116 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3440 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) |#2|) NIL (-12 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 |#2|)) NIL (-12 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-638 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-638 |#2|) (-638 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-561)) 91) (($ $ $) 79 (|has| (-561) (-1102))) (($ $ |#2|) NIL (-12 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4007 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 137 (-4007 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) 140 (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-2861 (($ $) NIL (|has| |#1| (-362)))) (-4045 ((|#2| $) 152 (|has| |#1| (-362)))) (-2894 (((-561) $) 12)) (-3021 (($ $) 198 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 194 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 190 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 166 (|has| |#1| (-38 (-406 (-561)))))) (-4174 (((-224) $) NIL (-12 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| |#2| (-1015)) (|has| |#1| (-362)))) (((-534) $) NIL (-12 (|has| |#2| (-609 (-534))) (|has| |#1| (-362)))) (((-885 (-378)) $) NIL (-12 (|has| |#2| (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) NIL (-12 (|has| |#2| (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902)) (|has| |#1| (-362))))) (-1897 (($ $) 124)) (-4022 (((-856) $) 244) (($ (-561)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1166)) NIL (-12 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362)))) (($ (-406 (-561))) 155 (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-2634 ((|#1| $ (-561)) 74)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#2| (-902)) (|has| |#1| (-362))) (-12 (|has| |#2| (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-4259 (((-765)) 142)) (-2262 ((|#1| $) 90)) (-2432 ((|#2| $) NIL (-12 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3055 (($ $) 204 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 180 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) 200 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 208 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 184 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-561)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 210 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 206 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 182 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 202 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-3749 (($ $) NIL (-12 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-2211 (($) 13 T CONST)) (-2222 (($) 17 T CONST)) (-3122 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4007 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) NIL (-4007 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1782 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1762 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) 63)) (-1773 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1754 (((-112) $ $) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-1824 (($ $) 213) (($ $ $) 68)) (-1813 (($ $ $) 66)) (** (($ $ (-914)) NIL) (($ $ (-765)) 73) (($ $ (-561)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1216 |#1| |#2|) (-1215 |#1| |#2|) (-1042) (-1244 |#1|)) (T -1216))
+NIL
+(-1215 |#1| |#2|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2949 (((-1245 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 10)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-2851 (($ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3359 (((-112) $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3411 (($ $ (-561)) NIL) (($ $ (-561) (-561)) NIL)) (-2457 (((-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|))) $) NIL)) (-3718 (((-1245 |#1| |#2| |#3|) $) NIL)) (-2893 (((-3 (-1245 |#1| |#2| |#3|) "failed") $) NIL)) (-1482 (((-1245 |#1| |#2| |#3|) $) NIL)) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2666 (((-561) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3406 (($ (-1146 (-2 (|:| |k| (-561)) (|:| |c| |#1|)))) NIL)) (-3009 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-1245 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1166) "failed") $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-561)) "failed") $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-3 (-561) "failed") $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-3938 (((-1245 |#1| |#2| |#3|) $) NIL) (((-1166) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-561)) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362)))) (((-561) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))))) (-2911 (($ $) NIL) (($ (-561) $) NIL)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-1245 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 (-1245 |#1| |#2| |#3|))) (|:| |vec| (-1253 (-1245 |#1| |#2| |#3|)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362)))) (((-682 (-561)) (-682 $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-634 (-561))) (|has| |#1| (-362))))) (-3466 (((-3 $ "failed") $) NIL)) (-1435 (((-406 (-945 |#1|)) $ (-561)) NIL (|has| |#1| (-553))) (((-406 (-945 |#1|)) $ (-561) (-561)) NIL (|has| |#1| (-553)))) (-1332 (($) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3201 (((-112) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-879 (-378))) (|has| |#1| (-362)))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-879 (-561))) (|has| |#1| (-362))))) (-4163 (((-561) $) NIL) (((-561) $ (-561)) NIL)) (-3113 (((-112) $) NIL)) (-3458 (($ $) NIL (|has| |#1| (-362)))) (-4030 (((-1245 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1663 (((-3 $ "failed") $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-2110 (((-112) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3244 (($ $ (-914)) NIL)) (-2279 (($ (-1 |#1| (-561)) $) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-561)) 17) (($ $ (-1072) (-561)) NIL) (($ $ (-638 (-1072)) (-638 (-561))) NIL)) (-3443 (($ $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-2986 (($ $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4348 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-561) (-1245 |#1| |#2| |#3|)) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-1842 (($ $) 25 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1249 |#2|)) 26 (|has| |#1| (-38 (-406 (-561)))))) (-3721 (($) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3841 (($ $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1388 (((-1245 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-561)) NIL)) (-1756 (((-3 $ "failed") $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-561))))) (($ $ (-1166) (-1245 |#1| |#2| |#3|)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-512 (-1166) (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1166)) (-638 (-1245 |#1| |#2| |#3|))) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-512 (-1166) (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-293 (-1245 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-308 (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1245 |#1| |#2| |#3|))) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-308 (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-308 (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-638 (-1245 |#1| |#2| |#3|)) (-638 (-1245 |#1| |#2| |#3|))) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-308 (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-561)) NIL) (($ $ $) NIL (|has| (-561) (-1102))) (($ $ (-1245 |#1| |#2| |#3|)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-285 (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-1 (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1249 |#2|)) 24) (($ $ (-765)) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) 23 (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-2861 (($ $) NIL (|has| |#1| (-362)))) (-4045 (((-1245 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-2894 (((-561) $) NIL)) (-3021 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4174 (((-534) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-609 (-534))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1015)) (|has| |#1| (-362)))) (((-885 (-378)) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-609 (-885 (-378)))) (|has| |#1| (-362)))) (((-885 (-561)) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-609 (-885 (-561)))) (|has| |#1| (-362))))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))))) (-1897 (($ $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1245 |#1| |#2| |#3|)) NIL) (($ (-1249 |#2|)) 22) (($ (-1166)) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553)))) (($ (-406 (-561))) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-1031 (-561))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-561))))))) (-2634 ((|#1| $ (-561)) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) 11)) (-2432 (((-1245 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-902)) (|has| |#1| (-362))) (|has| |#1| (-553))))) (-3031 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-561)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-561)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3749 (($ $) NIL (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-2211 (($) 19 T CONST)) (-2222 (($) 15 T CONST)) (-3122 (($ $ (-1 (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-561) |#1|))))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-638 (-1166))) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166)))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-561) |#1|))) (|has| |#1| (-893 (-1166))))))) (-1782 (((-112) $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1762 (((-112) $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1754 (((-112) $ $) NIL (-4007 (-12 (|has| (-1245 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1245 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1245 |#1| |#2| |#3|) (-1245 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 20)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1245 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1245 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1217 |#1| |#2| |#3|) (-13 (-1215 |#1| (-1245 |#1| |#2| |#3|)) (-10 -8 (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1217))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1215 |#1| (-1245 |#1| |#2| |#3|)) (-10 -8 (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|)))
+((-3920 (((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112)) 12)) (-2494 (((-417 |#1|) |#1|) 22)) (-1657 (((-417 |#1|) |#1|) 21)))
+(((-1218 |#1|) (-10 -7 (-15 -1657 ((-417 |#1|) |#1|)) (-15 -2494 ((-417 |#1|) |#1|)) (-15 -3920 ((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112)))) (-1229 (-561))) (T -1218))
+((-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561))))))) (-5 *1 (-1218 *3)) (-4 *3 (-1229 (-561))))) (-2494 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1218 *3)) (-4 *3 (-1229 (-561))))) (-1657 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1218 *3)) (-4 *3 (-1229 (-561))))))
+(-10 -7 (-15 -1657 ((-417 |#1|) |#1|)) (-15 -2494 ((-417 |#1|) |#1|)) (-15 -3920 ((-2 (|:| |contp| (-561)) (|:| -4282 (-638 (-2 (|:| |irr| |#1|) (|:| -2449 (-561)))))) |#1| (-112))))
+((-4120 (((-1146 |#2|) (-1 |#2| |#1|) (-1220 |#1|)) 23 (|has| |#1| (-842))) (((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|)) 17)))
+(((-1219 |#1| |#2|) (-10 -7 (-15 -4120 ((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) (IF (|has| |#1| (-842)) (-15 -4120 ((-1146 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) |%noBranch|)) (-1205) (-1205)) (T -1219))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-842)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1146 *6)) (-5 *1 (-1219 *5 *6)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1220 *6)) (-5 *1 (-1219 *5 *6)))))
+(-10 -7 (-15 -4120 ((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) (IF (|has| |#1| (-842)) (-15 -4120 ((-1146 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) |%noBranch|))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2629 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4120 (((-1146 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-842)))) (-1866 ((|#1| $) 14)) (-1745 ((|#1| $) 10)) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-1757 (((-561) $) 18)) (-2541 ((|#1| $) 17)) (-2019 ((|#1| $) 11)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-2468 (((-112) $) 16)) (-3529 (((-1146 |#1|) $) 38 (|has| |#1| (-842))) (((-1146 |#1|) (-638 $)) 37 (|has| |#1| (-842)))) (-4174 (($ |#1|) 25)) (-4022 (($ (-1084 |#1|)) 24) (((-856) $) 34 (|has| |#1| (-1090)))) (-3848 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1497 (($ $ (-561)) 13)) (-1733 (((-112) $ $) 27 (|has| |#1| (-1090)))))
+(((-1220 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -3848 ($ |#1|)) (-15 -2629 ($ |#1|)) (-15 -4022 ($ (-1084 |#1|))) (-15 -2468 ((-112) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1146 |#1|))) |%noBranch|))) (-1205)) (T -1220))
+((-3848 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1205)))) (-2629 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1205)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-1205)) (-5 *1 (-1220 *3)))) (-2468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1205)))))
+(-13 (-1083 |#1|) (-10 -8 (-15 -3848 ($ |#1|)) (-15 -2629 ($ |#1|)) (-15 -4022 ($ (-1084 |#1|))) (-15 -2468 ((-112) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1146 |#1|))) |%noBranch|)))
+((-4120 (((-1226 |#3| |#4|) (-1 |#4| |#2|) (-1226 |#1| |#2|)) 15)))
+(((-1221 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 ((-1226 |#3| |#4|) (-1 |#4| |#2|) (-1226 |#1| |#2|)))) (-1166) (-1042) (-1166) (-1042)) (T -1221))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1226 *5 *6)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1226 *7 *8)) (-5 *1 (-1221 *5 *6 *7 *8)) (-14 *7 (-1166)))))
+(-10 -7 (-15 -4120 ((-1226 |#3| |#4|) (-1 |#4| |#2|) (-1226 |#1| |#2|))))
+((-3961 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4237 ((|#1| |#3|) 13)) (-3799 ((|#3| |#3|) 19)))
+(((-1222 |#1| |#2| |#3|) (-10 -7 (-15 -4237 (|#1| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3961 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-553) (-985 |#1|) (-1229 |#2|)) (T -1222))
+((-3961 (*1 *2 *3) (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1222 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-1222 *3 *4 *2)) (-4 *2 (-1229 *4)))) (-4237 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-1222 *2 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -4237 (|#1| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3961 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1941 (((-3 |#2| "failed") |#2| (-765) |#1|) 29)) (-4216 (((-3 |#2| "failed") |#2| (-765)) 30)) (-1411 (((-3 (-2 (|:| -1605 |#2|) (|:| -1621 |#2|)) "failed") |#2|) 42)) (-4283 (((-638 |#2|) |#2|) 44)) (-2903 (((-3 |#2| "failed") |#2| |#2|) 39)))
+(((-1223 |#1| |#2|) (-10 -7 (-15 -4216 ((-3 |#2| "failed") |#2| (-765))) (-15 -1941 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -2903 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1411 ((-3 (-2 (|:| -1605 |#2|) (|:| -1621 |#2|)) "failed") |#2|)) (-15 -4283 ((-638 |#2|) |#2|))) (-13 (-553) (-146)) (-1229 |#1|)) (T -1223))
+((-4283 (*1 *2 *3) (-12 (-4 *4 (-13 (-553) (-146))) (-5 *2 (-638 *3)) (-5 *1 (-1223 *4 *3)) (-4 *3 (-1229 *4)))) (-1411 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-553) (-146))) (-5 *2 (-2 (|:| -1605 *3) (|:| -1621 *3))) (-5 *1 (-1223 *4 *3)) (-4 *3 (-1229 *4)))) (-2903 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-1229 *3)))) (-1941 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-1223 *4 *2)) (-4 *2 (-1229 *4)))) (-4216 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-1223 *4 *2)) (-4 *2 (-1229 *4)))))
+(-10 -7 (-15 -4216 ((-3 |#2| "failed") |#2| (-765))) (-15 -1941 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -2903 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1411 ((-3 (-2 (|:| -1605 |#2|) (|:| -1621 |#2|)) "failed") |#2|)) (-15 -4283 ((-638 |#2|) |#2|)))
+((-2256 (((-3 (-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) "failed") |#2| |#2|) 31)))
+(((-1224 |#1| |#2|) (-10 -7 (-15 -2256 ((-3 (-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) "failed") |#2| |#2|))) (-553) (-1229 |#1|)) (T -1224))
+((-2256 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-1224 *4 *3)) (-4 *3 (-1229 *4)))))
+(-10 -7 (-15 -2256 ((-3 (-2 (|:| -1307 |#2|) (|:| -1693 |#2|)) "failed") |#2| |#2|)))
+((-2969 ((|#2| |#2| |#2|) 19)) (-1943 ((|#2| |#2| |#2|) 30)) (-2129 ((|#2| |#2| |#2| (-765) (-765)) 36)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -2969 (|#2| |#2| |#2|)) (-15 -1943 (|#2| |#2| |#2|)) (-15 -2129 (|#2| |#2| |#2| (-765) (-765)))) (-1042) (-1229 |#1|)) (T -1225))
+((-2129 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4)))) (-1943 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1229 *3)))) (-2969 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1229 *3)))))
+(-10 -7 (-15 -2969 (|#2| |#2| |#2|)) (-15 -1943 (|#2| |#2| |#2|)) (-15 -2129 (|#2| |#2| |#2| (-765) (-765))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1557 (((-1253 |#2|) $ (-765)) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-4110 (($ (-1162 |#2|)) NIL)) (-1620 (((-1162 $) $ (-1072)) NIL) (((-1162 |#2|) $) NIL)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#2| (-553)))) (-2851 (($ $) NIL (|has| |#2| (-553)))) (-3359 (((-112) $) NIL (|has| |#2| (-553)))) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-1072))) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-2645 (($ $ $) NIL (|has| |#2| (-553)))) (-4046 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1591 (($ $) NIL (|has| |#2| (-450)))) (-3422 (((-417 $) $) NIL (|has| |#2| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1671 (((-112) $ $) NIL (|has| |#2| (-362)))) (-3784 (($ $ (-765)) NIL)) (-2239 (($ $ (-765)) NIL)) (-1301 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-450)))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-561)) "failed") $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) NIL (|has| |#2| (-1031 (-561)))) (((-3 (-1072) "failed") $) NIL)) (-3938 ((|#2| $) NIL) (((-406 (-561)) $) NIL (|has| |#2| (-1031 (-406 (-561))))) (((-561) $) NIL (|has| |#2| (-1031 (-561)))) (((-1072) $) NIL)) (-3051 (($ $ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-1793 (($ $ $) NIL (|has| |#2| (-362)))) (-1619 (($ $) NIL)) (-3602 (((-682 (-561)) (-682 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-1774 (($ $ $) NIL (|has| |#2| (-362)))) (-3293 (($ $ $) NIL)) (-4034 (($ $ $) NIL (|has| |#2| (-553)))) (-3806 (((-2 (|:| -4188 |#2|) (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-553)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#2| (-362)))) (-2401 (($ $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-1602 (((-638 $) $) NIL)) (-2737 (((-112) $) NIL (|has| |#2| (-902)))) (-2103 (($ $ |#2| (-765) $) NIL)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) NIL (-12 (|has| (-1072) (-879 (-378))) (|has| |#2| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) NIL (-12 (|has| (-1072) (-879 (-561))) (|has| |#2| (-879 (-561)))))) (-4163 (((-765) $ $) NIL (|has| |#2| (-553)))) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-1663 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-1401 (($ (-1162 |#2|) (-1072)) NIL) (($ (-1162 $) (-1072)) NIL)) (-3244 (($ $ (-765)) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-1387 (($ |#2| (-765)) 17) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-1072)) NIL) (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL)) (-2393 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-3443 (($ $ $) NIL (|has| |#2| (-844)))) (-2986 (($ $ $) NIL (|has| |#2| (-844)))) (-3524 (($ (-1 (-765) (-765)) $) NIL)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-3434 (((-1162 |#2|) $) NIL)) (-1358 (((-3 (-1072) "failed") $) NIL)) (-1578 (($ $) NIL)) (-1590 ((|#2| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-1764 (((-1148) $) NIL)) (-3597 (((-2 (|:| -1307 $) (|:| -1693 $)) $ (-765)) NIL)) (-3638 (((-3 (-638 $) "failed") $) NIL)) (-1664 (((-3 (-638 $) "failed") $) NIL)) (-3431 (((-3 (-2 (|:| |var| (-1072)) (|:| -4196 (-765))) "failed") $) NIL)) (-1842 (($ $) NIL (|has| |#2| (-38 (-406 (-561)))))) (-3721 (($) NIL (|has| |#2| (-1141)) CONST)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 ((|#2| $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#2| (-450)))) (-1623 (($ (-638 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3446 (($ $ (-765) |#2| $) NIL)) (-3396 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) NIL (|has| |#2| (-902)))) (-1657 (((-417 $) $) NIL (|has| |#2| (-902)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#2| (-362)))) (-1756 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-553))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#2| (-362)))) (-1444 (($ $ (-638 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#2|) NIL) (($ $ (-638 (-1072)) (-638 |#2|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-638 (-1072)) (-638 $)) NIL)) (-3569 (((-765) $) NIL (|has| |#2| (-362)))) (-2277 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-553))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-553)))) (-1853 (((-3 $ "failed") $ (-765)) NIL)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-362)))) (-2553 (($ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-3238 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2894 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-638 (-765)) $ (-638 (-1072))) NIL)) (-4174 (((-885 (-378)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#2| (-609 (-885 (-378)))))) (((-885 (-561)) $) NIL (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#2| (-609 (-885 (-561)))))) (((-534) $) NIL (-12 (|has| (-1072) (-609 (-534))) (|has| |#2| (-609 (-534)))))) (-3609 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-902))))) (-1993 (((-3 $ "failed") $ $) NIL (|has| |#2| (-553))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#2| (-553)))) (-4022 (((-856) $) 13) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-1072)) NIL) (($ (-1249 |#1|)) 19) (($ (-406 (-561))) NIL (-4007 (|has| |#2| (-38 (-406 (-561)))) (|has| |#2| (-1031 (-406 (-561)))))) (($ $) NIL (|has| |#2| (-553)))) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-1760 (((-3 $ "failed") $) NIL (-4007 (-12 (|has| $ (-144)) (|has| |#2| (-902))) (|has| |#2| (-144))))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-3168 (((-112) $ $) NIL (|has| |#2| (-553)))) (-2211 (($) NIL T CONST)) (-2222 (($) 14 T CONST)) (-3122 (($ $ (-1072)) NIL) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1782 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1733 (((-112) $ $) NIL)) (-1773 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#2| (-844)))) (-1833 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-406 (-561))) NIL (|has| |#2| (-38 (-406 (-561))))) (($ (-406 (-561)) $) NIL (|has| |#2| (-38 (-406 (-561))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1226 |#1| |#2|) (-13 (-1229 |#2|) (-611 (-1249 |#1|)) (-10 -8 (-15 -3446 ($ $ (-765) |#2| $)))) (-1166) (-1042)) (T -1226))
+((-3446 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1226 *4 *3)) (-14 *4 (-1166)) (-4 *3 (-1042)))))
+(-13 (-1229 |#2|) (-611 (-1249 |#1|)) (-10 -8 (-15 -3446 ($ $ (-765) |#2| $))))
+((-4120 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|))) (-1042) (-1229 |#1|) (-1042) (-1229 |#3|)) (T -1227))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1229 *6)) (-5 *1 (-1227 *5 *4 *6 *2)) (-4 *4 (-1229 *5)))))
+(-10 -7 (-15 -4120 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1557 (((-1253 |#2|) $ (-765)) 114)) (-1412 (((-638 (-1072)) $) 15)) (-4110 (($ (-1162 |#2|)) 67)) (-2710 (((-765) $) NIL) (((-765) $ (-638 (-1072))) 18)) (-4046 (((-417 (-1162 $)) (-1162 $)) 184)) (-1591 (($ $) 174)) (-3422 (((-417 $) $) 172)) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 82)) (-3784 (($ $ (-765)) 71)) (-2239 (($ $ (-765)) 73)) (-1301 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-4017 (((-3 |#2| "failed") $) 117) (((-3 (-406 (-561)) "failed") $) NIL) (((-3 (-561) "failed") $) NIL) (((-3 (-1072) "failed") $) NIL)) (-3938 ((|#2| $) 115) (((-406 (-561)) $) NIL) (((-561) $) NIL) (((-1072) $) NIL)) (-4034 (($ $ $) 151)) (-3806 (((-2 (|:| -4188 |#2|) (|:| -1307 $) (|:| -1693 $)) $ $) 153)) (-4163 (((-765) $ $) 169)) (-1663 (((-3 $ "failed") $) 123)) (-1387 (($ |#2| (-765)) NIL) (($ $ (-1072) (-765)) 47) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-2393 (((-765) $) NIL) (((-765) $ (-1072)) 42) (((-638 (-765)) $ (-638 (-1072))) 43)) (-3434 (((-1162 |#2|) $) 59)) (-1358 (((-3 (-1072) "failed") $) 40)) (-3597 (((-2 (|:| -1307 $) (|:| -1693 $)) $ (-765)) 70)) (-1842 (($ $) 196)) (-3721 (($) 119)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 181)) (-3396 (((-417 (-1162 $)) (-1162 $)) 88)) (-3449 (((-417 (-1162 $)) (-1162 $)) 86)) (-1657 (((-417 $) $) 107)) (-1444 (($ $ (-638 (-293 $))) 39) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-638 $) (-638 $)) NIL) (($ $ (-1072) |#2|) 31) (($ $ (-638 (-1072)) (-638 |#2|)) 28) (($ $ (-1072) $) 25) (($ $ (-638 (-1072)) (-638 $)) 23)) (-3569 (((-765) $) 187)) (-2277 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 190)) (-3238 (($ $ (-1072)) 140) (($ $ (-638 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL) (($ $ (-765)) NIL) (($ $) 138) (($ $ (-1166)) NIL) (($ $ (-638 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-638 (-1166)) (-638 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2894 (((-765) $) NIL) (((-765) $ (-1072)) 16) (((-638 (-765)) $ (-638 (-1072))) 20)) (-3609 ((|#2| $) NIL) (($ $ (-1072)) 125)) (-1993 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#2|) NIL) (($ (-1072)) 51) (($ (-406 (-561))) NIL) (($ $) NIL)))
+(((-1228 |#1| |#2|) (-10 -8 (-15 -4022 (|#1| |#1|)) (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -2277 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -3569 ((-765) |#1|)) (-15 -1971 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -2277 (|#2| (-406 |#1|) |#2|)) (-15 -1301 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3806 ((-2 (|:| -4188 |#2|) (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -4034 (|#1| |#1| |#1|)) (-15 -1993 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -1993 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4163 ((-765) |#1| |#1|)) (-15 -2277 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2239 (|#1| |#1| (-765))) (-15 -3784 (|#1| |#1| (-765))) (-15 -3597 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| (-765))) (-15 -4110 (|#1| (-1162 |#2|))) (-15 -3434 ((-1162 |#2|) |#1|)) (-15 -1557 ((-1253 |#2|) |#1| (-765))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -2277 (|#1| |#1| |#1|)) (-15 -2277 (|#2| |#1| |#2|)) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -4046 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3449 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3396 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -3609 (|#1| |#1| (-1072))) (-15 -1412 ((-638 (-1072)) |#1|)) (-15 -2710 ((-765) |#1| (-638 (-1072)))) (-15 -2710 ((-765) |#1|)) (-15 -1387 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -1387 (|#1| |#1| (-1072) (-765))) (-15 -2393 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -2393 ((-765) |#1| (-1072))) (-15 -1358 ((-3 (-1072) "failed") |#1|)) (-15 -2894 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -2894 ((-765) |#1| (-1072))) (-15 -4022 (|#1| (-1072))) (-15 -4017 ((-3 (-1072) "failed") |#1|)) (-15 -3938 ((-1072) |#1|)) (-15 -1444 (|#1| |#1| (-638 (-1072)) (-638 |#1|))) (-15 -1444 (|#1| |#1| (-1072) |#1|)) (-15 -1444 (|#1| |#1| (-638 (-1072)) (-638 |#2|))) (-15 -1444 (|#1| |#1| (-1072) |#2|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2894 ((-765) |#1|)) (-15 -1387 (|#1| |#2| (-765))) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -2393 ((-765) |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -3238 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1072) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1072)))) (-15 -3238 (|#1| |#1| (-1072))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|))) (-1229 |#2|) (-1042)) (T -1228))
+NIL
+(-10 -8 (-15 -4022 (|#1| |#1|)) (-15 -2064 ((-1162 |#1|) (-1162 |#1|) (-1162 |#1|))) (-15 -3422 ((-417 |#1|) |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -3721 (|#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -2277 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -3569 ((-765) |#1|)) (-15 -1971 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -2277 (|#2| (-406 |#1|) |#2|)) (-15 -1301 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3806 ((-2 (|:| -4188 |#2|) (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -4034 (|#1| |#1| |#1|)) (-15 -1993 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -1993 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4163 ((-765) |#1| |#1|)) (-15 -2277 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2239 (|#1| |#1| (-765))) (-15 -3784 (|#1| |#1| (-765))) (-15 -3597 ((-2 (|:| -1307 |#1|) (|:| -1693 |#1|)) |#1| (-765))) (-15 -4110 (|#1| (-1162 |#2|))) (-15 -3434 ((-1162 |#2|) |#1|)) (-15 -1557 ((-1253 |#2|) |#1| (-765))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3238 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1166) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1166)))) (-15 -3238 (|#1| |#1| (-1166))) (-15 -3238 (|#1| |#1|)) (-15 -3238 (|#1| |#1| (-765))) (-15 -2277 (|#1| |#1| |#1|)) (-15 -2277 (|#2| |#1| |#2|)) (-15 -1657 ((-417 |#1|) |#1|)) (-15 -4046 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3449 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3396 ((-417 (-1162 |#1|)) (-1162 |#1|))) (-15 -3184 ((-3 (-638 (-1162 |#1|)) "failed") (-638 (-1162 |#1|)) (-1162 |#1|))) (-15 -3609 (|#1| |#1| (-1072))) (-15 -1412 ((-638 (-1072)) |#1|)) (-15 -2710 ((-765) |#1| (-638 (-1072)))) (-15 -2710 ((-765) |#1|)) (-15 -1387 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -1387 (|#1| |#1| (-1072) (-765))) (-15 -2393 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -2393 ((-765) |#1| (-1072))) (-15 -1358 ((-3 (-1072) "failed") |#1|)) (-15 -2894 ((-638 (-765)) |#1| (-638 (-1072)))) (-15 -2894 ((-765) |#1| (-1072))) (-15 -4022 (|#1| (-1072))) (-15 -4017 ((-3 (-1072) "failed") |#1|)) (-15 -3938 ((-1072) |#1|)) (-15 -1444 (|#1| |#1| (-638 (-1072)) (-638 |#1|))) (-15 -1444 (|#1| |#1| (-1072) |#1|)) (-15 -1444 (|#1| |#1| (-638 (-1072)) (-638 |#2|))) (-15 -1444 (|#1| |#1| (-1072) |#2|)) (-15 -1444 (|#1| |#1| (-638 |#1|) (-638 |#1|))) (-15 -1444 (|#1| |#1| |#1| |#1|)) (-15 -1444 (|#1| |#1| (-293 |#1|))) (-15 -1444 (|#1| |#1| (-638 (-293 |#1|)))) (-15 -2894 ((-765) |#1|)) (-15 -1387 (|#1| |#2| (-765))) (-15 -4017 ((-3 (-561) "failed") |#1|)) (-15 -3938 ((-561) |#1|)) (-15 -4017 ((-3 (-406 (-561)) "failed") |#1|)) (-15 -3938 ((-406 (-561)) |#1|)) (-15 -3938 (|#2| |#1|)) (-15 -4017 ((-3 |#2| "failed") |#1|)) (-15 -4022 (|#1| |#2|)) (-15 -2393 ((-765) |#1|)) (-15 -3609 (|#2| |#1|)) (-15 -3238 (|#1| |#1| (-638 (-1072)) (-638 (-765)))) (-15 -3238 (|#1| |#1| (-1072) (-765))) (-15 -3238 (|#1| |#1| (-638 (-1072)))) (-15 -3238 (|#1| |#1| (-1072))) (-15 -4022 (|#1| (-561))) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1557 (((-1253 |#1|) $ (-765)) 238)) (-1412 (((-638 (-1072)) $) 110)) (-4110 (($ (-1162 |#1|)) 236)) (-1620 (((-1162 $) $ (-1072)) 125) (((-1162 |#1|) $) 124)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 87 (|has| |#1| (-553)))) (-2851 (($ $) 88 (|has| |#1| (-553)))) (-3359 (((-112) $) 90 (|has| |#1| (-553)))) (-2710 (((-765) $) 112) (((-765) $ (-638 (-1072))) 111)) (-2249 (((-3 $ "failed") $ $) 19)) (-2645 (($ $ $) 223 (|has| |#1| (-553)))) (-4046 (((-417 (-1162 $)) (-1162 $)) 100 (|has| |#1| (-902)))) (-1591 (($ $) 98 (|has| |#1| (-450)))) (-3422 (((-417 $) $) 97 (|has| |#1| (-450)))) (-3184 (((-3 (-638 (-1162 $)) "failed") (-638 (-1162 $)) (-1162 $)) 103 (|has| |#1| (-902)))) (-1671 (((-112) $ $) 208 (|has| |#1| (-362)))) (-3784 (($ $ (-765)) 231)) (-2239 (($ $ (-765)) 230)) (-1301 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-450)))) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-561)) "failed") $) 161 (|has| |#1| (-1031 (-406 (-561))))) (((-3 (-561) "failed") $) 159 (|has| |#1| (-1031 (-561)))) (((-3 (-1072) "failed") $) 136)) (-3938 ((|#1| $) 163) (((-406 (-561)) $) 162 (|has| |#1| (-1031 (-406 (-561))))) (((-561) $) 160 (|has| |#1| (-1031 (-561)))) (((-1072) $) 137)) (-3051 (($ $ $ (-1072)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-1793 (($ $ $) 212 (|has| |#1| (-362)))) (-1619 (($ $) 154)) (-3602 (((-682 (-561)) (-682 $)) 134 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 (-561))) (|:| |vec| (-1253 (-561)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-561)))) (((-2 (|:| -3327 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 211 (|has| |#1| (-362)))) (-3293 (($ $ $) 229)) (-4034 (($ $ $) 220 (|has| |#1| (-553)))) (-3806 (((-2 (|:| -4188 |#1|) (|:| -1307 $) (|:| -1693 $)) $ $) 219 (|has| |#1| (-553)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 206 (|has| |#1| (-362)))) (-2401 (($ $) 176 (|has| |#1| (-450))) (($ $ (-1072)) 105 (|has| |#1| (-450)))) (-1602 (((-638 $) $) 109)) (-2737 (((-112) $) 96 (|has| |#1| (-902)))) (-2103 (($ $ |#1| (-765) $) 172)) (-3631 (((-882 (-378) $) $ (-885 (-378)) (-882 (-378) $)) 84 (-12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378))))) (((-882 (-561) $) $ (-885 (-561)) (-882 (-561) $)) 83 (-12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))))) (-4163 (((-765) $ $) 224 (|has| |#1| (-553)))) (-3113 (((-112) $) 31)) (-2067 (((-765) $) 169)) (-1663 (((-3 $ "failed") $) 204 (|has| |#1| (-1141)))) (-1401 (($ (-1162 |#1|) (-1072)) 117) (($ (-1162 $) (-1072)) 116)) (-3244 (($ $ (-765)) 235)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 215 (|has| |#1| (-362)))) (-3371 (((-638 $) $) 126)) (-2092 (((-112) $) 152)) (-1387 (($ |#1| (-765)) 153) (($ $ (-1072) (-765)) 119) (($ $ (-638 (-1072)) (-638 (-765))) 118)) (-2551 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $ (-1072)) 120) (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 233)) (-2393 (((-765) $) 170) (((-765) $ (-1072)) 122) (((-638 (-765)) $ (-638 (-1072))) 121)) (-3443 (($ $ $) 79 (|has| |#1| (-844)))) (-2986 (($ $ $) 78 (|has| |#1| (-844)))) (-3524 (($ (-1 (-765) (-765)) $) 171)) (-4120 (($ (-1 |#1| |#1|) $) 151)) (-3434 (((-1162 |#1|) $) 237)) (-1358 (((-3 (-1072) "failed") $) 123)) (-1578 (($ $) 149)) (-1590 ((|#1| $) 148)) (-1582 (($ (-638 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-1764 (((-1148) $) 9)) (-3597 (((-2 (|:| -1307 $) (|:| -1693 $)) $ (-765)) 232)) (-3638 (((-3 (-638 $) "failed") $) 114)) (-1664 (((-3 (-638 $) "failed") $) 115)) (-3431 (((-3 (-2 (|:| |var| (-1072)) (|:| -4196 (-765))) "failed") $) 113)) (-1842 (($ $) 216 (|has| |#1| (-38 (-406 (-561)))))) (-3721 (($) 203 (|has| |#1| (-1141)) CONST)) (-1714 (((-1110) $) 10)) (-1551 (((-112) $) 166)) (-1561 ((|#1| $) 167)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 95 (|has| |#1| (-450)))) (-1623 (($ (-638 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3396 (((-417 (-1162 $)) (-1162 $)) 102 (|has| |#1| (-902)))) (-3449 (((-417 (-1162 $)) (-1162 $)) 101 (|has| |#1| (-902)))) (-1657 (((-417 $) $) 99 (|has| |#1| (-902)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 213 (|has| |#1| (-362)))) (-1756 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-553))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 207 (|has| |#1| (-362)))) (-1444 (($ $ (-638 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-638 $) (-638 $)) 142) (($ $ (-1072) |#1|) 141) (($ $ (-638 (-1072)) (-638 |#1|)) 140) (($ $ (-1072) $) 139) (($ $ (-638 (-1072)) (-638 $)) 138)) (-3569 (((-765) $) 209 (|has| |#1| (-362)))) (-2277 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-553))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-553)))) (-1853 (((-3 $ "failed") $ (-765)) 234)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 210 (|has| |#1| (-362)))) (-2553 (($ $ (-1072)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-3238 (($ $ (-1072)) 42) (($ $ (-638 (-1072))) 41) (($ $ (-1072) (-765)) 40) (($ $ (-638 (-1072)) (-638 (-765))) 39) (($ $ (-765)) 253) (($ $) 251) (($ $ (-1166)) 250 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 249 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 248 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 247 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2894 (((-765) $) 150) (((-765) $ (-1072)) 130) (((-638 (-765)) $ (-638 (-1072))) 129)) (-4174 (((-885 (-378)) $) 82 (-12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378)))))) (((-885 (-561)) $) 81 (-12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561)))))) (((-534) $) 80 (-12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))))) (-3609 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ (-1072)) 106 (|has| |#1| (-450)))) (-3552 (((-3 (-1253 $) "failed") (-682 $)) 104 (-2170 (|has| $ (-144)) (|has| |#1| (-902))))) (-1993 (((-3 $ "failed") $ $) 222 (|has| |#1| (-553))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-553)))) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 165) (($ (-1072)) 135) (($ (-406 (-561))) 72 (-4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561)))))) (($ $) 85 (|has| |#1| (-553)))) (-2742 (((-638 |#1|) $) 168)) (-2634 ((|#1| $ (-765)) 155) (($ $ (-1072) (-765)) 128) (($ $ (-638 (-1072)) (-638 (-765))) 127)) (-1760 (((-3 $ "failed") $) 73 (-4007 (-2170 (|has| $ (-144)) (|has| |#1| (-902))) (|has| |#1| (-144))))) (-4259 (((-765)) 28)) (-1711 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-3168 (((-112) $ $) 89 (|has| |#1| (-553)))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-1072)) 38) (($ $ (-638 (-1072))) 37) (($ $ (-1072) (-765)) 36) (($ $ (-638 (-1072)) (-638 (-765))) 35) (($ $ (-765)) 254) (($ $) 252) (($ $ (-1166)) 246 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166))) 245 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 244 (|has| |#1| (-893 (-1166)))) (($ $ (-638 (-1166)) (-638 (-765))) 243 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1782 (((-112) $ $) 76 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 75 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 6)) (-1773 (((-112) $ $) 77 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 74 (|has| |#1| (-844)))) (-1833 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 158 (|has| |#1| (-38 (-406 (-561))))) (($ (-406 (-561)) $) 157 (|has| |#1| (-38 (-406 (-561))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1229 |#1|) (-139) (-1042)) (T -1229))
+((-1557 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-5 *2 (-1162 *3)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-1042)) (-4 *1 (-1229 *3)))) (-3244 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-1853 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1229 *3)))) (-3597 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1229 *4)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-2239 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-3293 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)))) (-3238 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-3051 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-2277 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-553)))) (-4163 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-553)) (-5 *2 (-765)))) (-2645 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-1993 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-1993 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-553)))) (-4034 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))) (-3806 (*1 *2 *1 *1) (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -4188 *3) (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1229 *3)))) (-1301 (*1 *2 *1 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1229 *3)))) (-2277 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))))
+(-13 (-942 |t#1| (-765) (-1072)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -1557 ((-1253 |t#1|) $ (-765))) (-15 -3434 ((-1162 |t#1|) $)) (-15 -4110 ($ (-1162 |t#1|))) (-15 -3244 ($ $ (-765))) (-15 -1853 ((-3 $ "failed") $ (-765))) (-15 -2551 ((-2 (|:| -1307 $) (|:| -1693 $)) $ $)) (-15 -3597 ((-2 (|:| -1307 $) (|:| -1693 $)) $ (-765))) (-15 -3784 ($ $ (-765))) (-15 -2239 ($ $ (-765))) (-15 -3293 ($ $ $)) (-15 -3238 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2553 (|t#1| $)) (-15 -3051 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -2277 ((-406 $) (-406 $) (-406 $))) (-15 -4163 ((-765) $ $)) (-15 -2645 ($ $ $)) (-15 -1993 ((-3 $ "failed") $ $)) (-15 -1993 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -4034 ($ $ $)) (-15 -3806 ((-2 (|:| -4188 |t#1|) (|:| -1307 $) (|:| -1693 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-15 -1301 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4386) (-15 -2277 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (-15 -1842 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-765)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4007 (|has| |#1| (-1031 (-406 (-561)))) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 #2=(-1072)) . T) ((-611 |#1|) . T) ((-611 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-534)) -12 (|has| (-1072) (-609 (-534))) (|has| |#1| (-609 (-534)))) ((-609 (-885 (-378))) -12 (|has| (-1072) (-609 (-885 (-378)))) (|has| |#1| (-609 (-885 (-378))))) ((-609 (-885 (-561))) -12 (|has| (-1072) (-609 (-885 (-561)))) (|has| |#1| (-609 (-885 (-561))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-553)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #0#) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-450) -4007 (|has| |#1| (-902)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-512 #2# |#1|) . T) ((-512 #2# $) . T) ((-512 $ $) . T) ((-553) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-641 #1#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-561)) |has| |#1| (-634 (-561))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 #2#) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-378)) -12 (|has| (-1072) (-879 (-378))) (|has| |#1| (-879 (-378)))) ((-879 (-561)) -12 (|has| (-1072) (-879 (-561))) (|has| |#1| (-879 (-561)))) ((-942 |#1| #0# #2#) . T) ((-902) |has| |#1| (-902)) ((-913) |has| |#1| (-362)) ((-1031 (-406 (-561))) |has| |#1| (-1031 (-406 (-561)))) ((-1031 (-561)) |has| |#1| (-1031 (-561))) ((-1031 #2#) . T) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-902)) (|has| |#1| (-553)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1141) |has| |#1| (-1141)) ((-1209) |has| |#1| (-902)))
+((-1412 (((-638 (-1072)) $) 28)) (-1619 (($ $) 25)) (-1387 (($ |#2| |#3|) NIL) (($ $ (-1072) |#3|) 22) (($ $ (-638 (-1072)) (-638 |#3|)) 21)) (-1578 (($ $) 14)) (-1590 ((|#2| $) 12)) (-2894 ((|#3| $) 10)))
+(((-1230 |#1| |#2| |#3|) (-10 -8 (-15 -1412 ((-638 (-1072)) |#1|)) (-15 -1387 (|#1| |#1| (-638 (-1072)) (-638 |#3|))) (-15 -1387 (|#1| |#1| (-1072) |#3|)) (-15 -1619 (|#1| |#1|)) (-15 -1387 (|#1| |#2| |#3|)) (-15 -2894 (|#3| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -1590 (|#2| |#1|))) (-1231 |#2| |#3|) (-1042) (-786)) (T -1230))
+NIL
+(-10 -8 (-15 -1412 ((-638 (-1072)) |#1|)) (-15 -1387 (|#1| |#1| (-638 (-1072)) (-638 |#3|))) (-15 -1387 (|#1| |#1| (-1072) |#3|)) (-15 -1619 (|#1| |#1|)) (-15 -1387 (|#1| |#2| |#3|)) (-15 -2894 (|#3| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -1590 (|#2| |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 (-1072)) $) 77)) (-2389 (((-1166) $) 106)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-3411 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-2457 (((-1146 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-3281 (((-112) $) 76)) (-4163 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-3113 (((-112) $) 31)) (-3244 (($ $ (-914)) 104)) (-2092 (((-112) $) 65)) (-1387 (($ |#1| |#2|) 64) (($ $ (-1072) |#2|) 79) (($ $ (-638 (-1072)) (-638 |#2|)) 78)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-1416 (($ $ |#2|) 98)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-1444 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2277 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1102)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2894 ((|#2| $) 67)) (-1897 (($ $) 75)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2634 ((|#1| $ |#2|) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-2262 ((|#1| $) 105)) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-1417 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-1231 |#1| |#2|) (-139) (-1042) (-786)) (T -1231))
+((-2457 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1146 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2277 (*1 *2 *1 *3) (-12 (-4 *1 (-1231 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1166)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-1231 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-3244 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4163 (*1 *2 *1 *2) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-3411 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1417 (*1 *2 *1 *3) (-12 (-4 *1 (-1231 *2 *3)) (-4 *3 (-786)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4022 (*2 (-1166)))) (-4 *2 (-1042)))) (-1416 (*1 *1 *1 *2) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1444 (*1 *2 *1 *3) (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1146 *3)))))
+(-13 (-966 |t#1| |t#2| (-1072)) (-10 -8 (-15 -2457 ((-1146 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2277 (|t#1| $ |t#2|)) (-15 -2389 ((-1166) $)) (-15 -2262 (|t#1| $)) (-15 -3244 ($ $ (-914))) (-15 -4163 (|t#2| $)) (-15 -4163 (|t#2| $ |t#2|)) (-15 -3411 ($ $ |t#2|)) (-15 -3411 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4022 (|t#1| (-1166)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1417 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1416 ($ $ |t#2|)) (IF (|has| |t#2| (-1102)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1444 ((-1146 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #0#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1102)) ((-289) |has| |#1| (-553)) ((-553) |has| |#1| (-553)) ((-641 #0#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| |#2| (-1072)) . T) ((-1048 #0#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-1591 ((|#2| |#2|) 12)) (-3422 (((-417 |#2|) |#2|) 14)) (-1968 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561)))) 30)))
+(((-1232 |#1| |#2|) (-10 -7 (-15 -3422 ((-417 |#2|) |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1968 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561)))))) (-553) (-13 (-1229 |#1|) (-553) (-10 -8 (-15 -1623 ($ $ $))))) (T -1232))
+((-1968 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-561)))) (-4 *4 (-13 (-1229 *3) (-553) (-10 -8 (-15 -1623 ($ $ $))))) (-4 *3 (-553)) (-5 *1 (-1232 *3 *4)))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-553)) (-5 *1 (-1232 *3 *2)) (-4 *2 (-13 (-1229 *3) (-553) (-10 -8 (-15 -1623 ($ $ $))))))) (-3422 (*1 *2 *3) (-12 (-4 *4 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-1232 *4 *3)) (-4 *3 (-13 (-1229 *4) (-553) (-10 -8 (-15 -1623 ($ $ $))))))))
+(-10 -7 (-15 -3422 ((-417 |#2|) |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1968 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-561))))))
+((-4120 (((-1238 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1238 |#1| |#3| |#5|)) 24)))
+(((-1233 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4120 ((-1238 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1238 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1233))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1238 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1238 *6 *8 *10)) (-5 *1 (-1233 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166)))))
+(-10 -7 (-15 -4120 ((-1238 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1238 |#1| |#3| |#5|))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 (-1072)) $) 77)) (-2389 (((-1166) $) 106)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-3411 (($ $ (-406 (-561))) 101) (($ $ (-406 (-561)) (-406 (-561))) 100)) (-2457 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 108)) (-2978 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 165 (|has| |#1| (-362)))) (-3422 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1665 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4172 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) 174)) (-3009 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) 17 T CONST)) (-1793 (($ $ $) 160 (|has| |#1| (-362)))) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 159 (|has| |#1| (-362)))) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2737 (((-112) $) 167 (|has| |#1| (-362)))) (-3281 (((-112) $) 76)) (-4067 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-406 (-561)) $) 103) (((-406 (-561)) $ (-406 (-561))) 102)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) 104) (($ $ (-406 (-561))) 173)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-2092 (((-112) $) 65)) (-1387 (($ |#1| (-406 (-561))) 64) (($ $ (-1072) (-406 (-561))) 79) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) 78)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-4348 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1582 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1764 (((-1148) $) 9)) (-1540 (($ $) 168 (|has| |#1| (-362)))) (-1842 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4007 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1623 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1657 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 161 (|has| |#1| (-362)))) (-1416 (($ $ (-406 (-561))) 98)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3440 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-3569 (((-765) $) 157 (|has| |#1| (-362)))) (-2277 ((|#1| $ (-406 (-561))) 107) (($ $ $) 84 (|has| (-406 (-561)) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 158 (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-2894 (((-406 (-561)) $) 67)) (-3021 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 75)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-2634 ((|#1| $ (-406 (-561))) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-2262 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3031 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-406 (-561))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-1234 |#1|) (-139) (-1042)) (T -1234))
+((-3406 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4)))) (-4 *4 (-1042)) (-4 *1 (-1234 *4)))) (-3244 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1234 *3)) (-4 *3 (-1042)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))) (-1842 (*1 *1 *1 *2) (-4007 (-12 (-5 *2 (-1166)) (-4 *1 (-1234 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-561)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1234 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -1412 ((-638 *2) *3))) (|has| *3 (-15 -1842 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561)))))))))
+(-13 (-1231 |t#1| (-406 (-561))) (-10 -8 (-15 -3406 ($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |t#1|))))) (-15 -3244 ($ $ (-406 (-561)))) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $)) (IF (|has| |t#1| (-15 -1842 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -1412 ((-638 (-1166)) |t#1|))) (-15 -1842 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-952)) (IF (|has| |t#1| (-29 (-561))) (-15 -1842 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-561))) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-406 (-561)) (-1102)) ((-289) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1209) |has| |#1| (-362)) ((-1231 |#1| #0#) . T))
+((-2800 (((-112) $) 12)) (-4017 (((-3 |#3| "failed") $) 17)) (-3938 ((|#3| $) 14)))
+(((-1235 |#1| |#2| |#3|) (-10 -8 (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3938 (|#3| |#1|)) (-15 -2800 ((-112) |#1|))) (-1236 |#2| |#3|) (-1042) (-1213 |#2|)) (T -1235))
+NIL
+(-10 -8 (-15 -4017 ((-3 |#3| "failed") |#1|)) (-15 -3938 (|#3| |#1|)) (-15 -2800 ((-112) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 (-1072)) $) 77)) (-2389 (((-1166) $) 106)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-3411 (($ $ (-406 (-561))) 101) (($ $ (-406 (-561)) (-406 (-561))) 100)) (-2457 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 108)) (-2978 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 165 (|has| |#1| (-362)))) (-3422 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1665 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4172 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) 174)) (-3009 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#2| "failed") $) 185)) (-3938 ((|#2| $) 186)) (-1793 (($ $ $) 160 (|has| |#1| (-362)))) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-2068 (((-406 (-561)) $) 182)) (-1774 (($ $ $) 159 (|has| |#1| (-362)))) (-1515 (($ (-406 (-561)) |#2|) 183)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 154 (|has| |#1| (-362)))) (-2737 (((-112) $) 167 (|has| |#1| (-362)))) (-3281 (((-112) $) 76)) (-4067 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-406 (-561)) $) 103) (((-406 (-561)) $ (-406 (-561))) 102)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) 104) (($ $ (-406 (-561))) 173)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 163 (|has| |#1| (-362)))) (-2092 (((-112) $) 65)) (-1387 (($ |#1| (-406 (-561))) 64) (($ $ (-1072) (-406 (-561))) 79) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) 78)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-4348 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1582 (($ (-638 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3700 ((|#2| $) 181)) (-2755 (((-3 |#2| "failed") $) 179)) (-1499 ((|#2| $) 180)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 168 (|has| |#1| (-362)))) (-1842 (($ $) 172 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 171 (-4007 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 153 (|has| |#1| (-362)))) (-1623 (($ (-638 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1657 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 161 (|has| |#1| (-362)))) (-1416 (($ $ (-406 (-561))) 98)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 155 (|has| |#1| (-362)))) (-3440 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-3569 (((-765) $) 157 (|has| |#1| (-362)))) (-2277 ((|#1| $ (-406 (-561))) 107) (($ $ $) 84 (|has| (-406 (-561)) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 158 (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-2894 (((-406 (-561)) $) 67)) (-3021 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 75)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553)))) (-2634 ((|#1| $ (-406 (-561))) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-2262 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3031 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-406 (-561))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-1236 |#1| |#2|) (-139) (-1042) (-1213 |t#1|)) (T -1236))
+((-2894 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1213 *3)) (-5 *2 (-406 (-561))))) (-1515 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-4 *4 (-1042)) (-4 *1 (-1236 *4 *3)) (-4 *3 (-1213 *4)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1213 *3)) (-5 *2 (-406 (-561))))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1213 *3)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1213 *3)))) (-2755 (*1 *2 *1) (|partial| -12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1213 *3)))))
+(-13 (-1234 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -1515 ($ (-406 (-561)) |t#2|)) (-15 -2068 ((-406 (-561)) $)) (-15 -3700 (|t#2| $)) (-15 -2894 ((-406 (-561)) $)) (-15 -1499 (|t#2| $)) (-15 -2755 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-561))) . T) ((-25) . T) ((-38 #1=(-406 (-561))) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-406 (-561)) (-1102)) ((-289) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-641 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-913) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1031 |#2|) . T) ((-1048 #1#) -4007 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-561))))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1209) |has| |#1| (-362)) ((-1231 |#1| #0#) . T) ((-1234 |#1|) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 96)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-406 (-561))) 106) (($ $ (-406 (-561)) (-406 (-561))) 108)) (-2457 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) 51)) (-2978 (($ $) 180 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 156 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) 176 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 152 (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) 61)) (-3009 (($ $) 184 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 160 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) NIL)) (-3938 ((|#2| $) NIL)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) 79)) (-2068 (((-406 (-561)) $) 13)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-1515 (($ (-406 (-561)) |#2|) 11)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3281 (((-112) $) 68)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-406 (-561)) $) 103) (((-406 (-561)) $ (-406 (-561))) 104)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) 120) (($ $ (-406 (-561))) 118)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-406 (-561))) 31) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) 115)) (-4348 (($ $) 150 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3700 ((|#2| $) 12)) (-2755 (((-3 |#2| "failed") $) 41)) (-1499 ((|#2| $) 42)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) 93 (|has| |#1| (-362)))) (-1842 (($ $) 135 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 140 (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190)))))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-406 (-561))) 112)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3440 (($ $) 148 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-406 (-561))) 100) (($ $ $) 86 (|has| (-406 (-561)) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) 127 (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-2894 (((-406 (-561)) $) 16)) (-3021 (($ $) 186 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 162 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 182 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 158 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 178 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 154 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 110)) (-4022 (((-856) $) NIL) (($ (-561)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-561))) 128 (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-2634 ((|#1| $ (-406 (-561))) 99)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) 117)) (-2262 ((|#1| $) 98)) (-3055 (($ $) 192 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 168 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) 188 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 164 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 196 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 172 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-406 (-561))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 198 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 174 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 194 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 170 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 190 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 166 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 21 T CONST)) (-2222 (($) 17 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1733 (((-112) $ $) 66)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-1824 (($ $) 131) (($ $ $) 72)) (-1813 (($ $ $) 70)) (** (($ $ (-914)) NIL) (($ $ (-765)) 76) (($ $ (-561)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 146 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1237 |#1| |#2|) (-1236 |#1| |#2|) (-1042) (-1213 |#1|)) (T -1237))
+NIL
+(-1236 |#1| |#2|)
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 11)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) NIL (|has| |#1| (-553)))) (-3411 (($ $ (-406 (-561))) NIL) (($ $ (-406 (-561)) (-406 (-561))) NIL)) (-2457 (((-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|))) $) NIL)) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-362)))) (-3422 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1671 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4172 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-765) (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#1|)))) NIL)) (-3009 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-1217 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1245 |#1| |#2| |#3|) "failed") $) 22)) (-3938 (((-1217 |#1| |#2| |#3|) $) NIL) (((-1245 |#1| |#2| |#3|) $) NIL)) (-1793 (($ $ $) NIL (|has| |#1| (-362)))) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2068 (((-406 (-561)) $) 57)) (-1774 (($ $ $) NIL (|has| |#1| (-362)))) (-1515 (($ (-406 (-561)) (-1217 |#1| |#2| |#3|)) NIL)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) NIL (|has| |#1| (-362)))) (-2737 (((-112) $) NIL (|has| |#1| (-362)))) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-406 (-561)) $) NIL) (((-406 (-561)) $ (-406 (-561))) NIL)) (-3113 (((-112) $) NIL)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) NIL) (($ $ (-406 (-561))) NIL)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-406 (-561))) 30) (($ $ (-1072) (-406 (-561))) NIL) (($ $ (-638 (-1072)) (-638 (-406 (-561)))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4348 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1582 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3700 (((-1217 |#1| |#2| |#3|) $) 60)) (-2755 (((-3 (-1217 |#1| |#2| |#3|) "failed") $) NIL)) (-1499 (((-1217 |#1| |#2| |#3|) $) NIL)) (-1764 (((-1148) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-362)))) (-1842 (($ $) 39 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) NIL (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1249 |#2|)) 40 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) NIL (|has| |#1| (-362)))) (-1623 (($ (-638 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1657 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4252 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) NIL (|has| |#1| (-362)))) (-1416 (($ $ (-406 (-561))) NIL)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-2118 (((-3 (-638 $) "failed") (-638 $) $) NIL (|has| |#1| (-362)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))))) (-3569 (((-765) $) NIL (|has| |#1| (-362)))) (-2277 ((|#1| $ (-406 (-561))) NIL) (($ $ $) NIL (|has| (-406 (-561)) (-1102)))) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-362)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $ (-1249 |#2|)) 38)) (-2894 (((-406 (-561)) $) NIL)) (-3021 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) NIL)) (-4022 (((-856) $) 88) (($ (-561)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1217 |#1| |#2| |#3|)) 16) (($ (-1245 |#1| |#2| |#3|)) 17) (($ (-1249 |#2|)) 36) (($ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553)))) (-2634 ((|#1| $ (-406 (-561))) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) 12)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-406 (-561))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-561))))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 32 T CONST)) (-2222 (($) 26 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-561)) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 34)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ (-561)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1238 |#1| |#2| |#3|) (-13 (-1236 |#1| (-1217 |#1| |#2| |#3|)) (-1031 (-1245 |#1| |#2| |#3|)) (-611 (-1249 |#2|)) (-10 -8 (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1238))
+((-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1236 |#1| (-1217 |#1| |#2| |#3|)) (-1031 (-1245 |#1| |#2| |#3|)) (-611 (-1249 |#2|)) (-10 -8 (-15 -3238 ($ $ (-1249 |#2|))) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 34)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL)) (-2851 (($ $) NIL)) (-3359 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 (-561) "failed") $) NIL (|has| (-1238 |#2| |#3| |#4|) (-1031 (-561)))) (((-3 (-406 (-561)) "failed") $) NIL (|has| (-1238 |#2| |#3| |#4|) (-1031 (-406 (-561))))) (((-3 (-1238 |#2| |#3| |#4|) "failed") $) 20)) (-3938 (((-561) $) NIL (|has| (-1238 |#2| |#3| |#4|) (-1031 (-561)))) (((-406 (-561)) $) NIL (|has| (-1238 |#2| |#3| |#4|) (-1031 (-406 (-561))))) (((-1238 |#2| |#3| |#4|) $) NIL)) (-1619 (($ $) 35)) (-3466 (((-3 $ "failed") $) 25)) (-2401 (($ $) NIL (|has| (-1238 |#2| |#3| |#4|) (-450)))) (-2103 (($ $ (-1238 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) 11)) (-2092 (((-112) $) NIL)) (-1387 (($ (-1238 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-2393 (((-318 |#2| |#3| |#4|) $) NIL)) (-3524 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-4120 (($ (-1 (-1238 |#2| |#3| |#4|) (-1238 |#2| |#3| |#4|)) $) NIL)) (-1788 (((-3 (-837 |#2|) "failed") $) 74)) (-1578 (($ $) NIL)) (-1590 (((-1238 |#2| |#3| |#4|) $) 18)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-1551 (((-112) $) NIL)) (-1561 (((-1238 |#2| |#3| |#4|) $) NIL)) (-1756 (((-3 $ "failed") $ (-1238 |#2| |#3| |#4|)) NIL (|has| (-1238 |#2| |#3| |#4|) (-553))) (((-3 $ "failed") $ $) NIL)) (-3060 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1238 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $) 57)) (-2894 (((-318 |#2| |#3| |#4|) $) 14)) (-3609 (((-1238 |#2| |#3| |#4|) $) NIL (|has| (-1238 |#2| |#3| |#4|) (-450)))) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ (-1238 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-561))) NIL (-4007 (|has| (-1238 |#2| |#3| |#4|) (-38 (-406 (-561)))) (|has| (-1238 |#2| |#3| |#4|) (-1031 (-406 (-561))))))) (-2742 (((-638 (-1238 |#2| |#3| |#4|)) $) NIL)) (-2634 (((-1238 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-1238 |#2| |#3| |#4|) (-144)))) (-4259 (((-765)) NIL)) (-1711 (($ $ $ (-765)) NIL (|has| (-1238 |#2| |#3| |#4|) (-171)))) (-3168 (((-112) $ $) NIL)) (-2211 (($) 62 T CONST)) (-2222 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ (-1238 |#2| |#3| |#4|)) NIL (|has| (-1238 |#2| |#3| |#4|) (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ (-1238 |#2| |#3| |#4|)) NIL) (($ (-1238 |#2| |#3| |#4|) $) NIL) (($ (-406 (-561)) $) NIL (|has| (-1238 |#2| |#3| |#4|) (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| (-1238 |#2| |#3| |#4|) (-38 (-406 (-561)))))))
+(((-1239 |#1| |#2| |#3| |#4|) (-13 (-325 (-1238 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-553) (-10 -8 (-15 -1788 ((-3 (-837 |#2|) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1238 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $)))) (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)) (-13 (-27) (-1190) (-429 |#1|)) (-1166) |#2|) (T -1239))
+((-1788 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *2 (-837 *4)) (-5 *1 (-1239 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4))) (-3060 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1238 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4)))))) (|:| |%type| (-1148)))) (-5 *1 (-1239 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166)) (-14 *6 *4))))
+(-13 (-325 (-1238 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-553) (-10 -8 (-15 -1788 ((-3 (-837 |#2|) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1238 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $))))
+((-2484 ((|#2| $) 28)) (-2295 ((|#2| $) 18)) (-3129 (($ $) 35)) (-4255 (($ $ (-561)) 63)) (-1630 (((-112) $ (-765)) 32)) (-1969 ((|#2| $ |#2|) 60)) (-1726 ((|#2| $ |#2|) 58)) (-4167 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3894 (($ $ (-638 $)) 59)) (-2285 ((|#2| $) 17)) (-1445 (($ $) NIL) (($ $ (-765)) 41)) (-1940 (((-638 $) $) 25)) (-2726 (((-112) $ $) 49)) (-3744 (((-112) $ (-765)) 31)) (-2230 (((-112) $ (-765)) 30)) (-3067 (((-112) $) 27)) (-1520 ((|#2| $) 23) (($ $ (-765)) 45)) (-2277 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3849 (((-112) $) 21)) (-3222 (($ $) 38)) (-4364 (($ $) 64)) (-1624 (((-765) $) 40)) (-2883 (($ $) 39)) (-2725 (($ $ $) 57) (($ |#2| $) NIL)) (-4257 (((-638 $) $) 26)) (-1733 (((-112) $ $) 47)) (-3498 (((-765) $) 34)))
+(((-1240 |#1| |#2|) (-10 -8 (-15 -4255 (|#1| |#1| (-561))) (-15 -4167 (|#2| |#1| "last" |#2|)) (-15 -1726 (|#2| |#1| |#2|)) (-15 -4167 (|#1| |#1| "rest" |#1|)) (-15 -4167 (|#2| |#1| "first" |#2|)) (-15 -4364 (|#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -1624 ((-765) |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2295 (|#2| |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -1520 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "last")) (-15 -1520 (|#2| |#1|)) (-15 -1445 (|#1| |#1| (-765))) (-15 -2277 (|#1| |#1| "rest")) (-15 -1445 (|#1| |#1|)) (-15 -2277 (|#2| |#1| "first")) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#1|)) (-15 -1969 (|#2| |#1| |#2|)) (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -3894 (|#1| |#1| (-638 |#1|))) (-15 -2726 ((-112) |#1| |#1|)) (-15 -3849 ((-112) |#1|)) (-15 -2277 (|#2| |#1| "value")) (-15 -2484 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -1940 ((-638 |#1|) |#1|)) (-15 -4257 ((-638 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765)))) (-1241 |#2|) (-1205)) (T -1240))
+NIL
+(-10 -8 (-15 -4255 (|#1| |#1| (-561))) (-15 -4167 (|#2| |#1| "last" |#2|)) (-15 -1726 (|#2| |#1| |#2|)) (-15 -4167 (|#1| |#1| "rest" |#1|)) (-15 -4167 (|#2| |#1| "first" |#2|)) (-15 -4364 (|#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -1624 ((-765) |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2295 (|#2| |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -1520 (|#1| |#1| (-765))) (-15 -2277 (|#2| |#1| "last")) (-15 -1520 (|#2| |#1|)) (-15 -1445 (|#1| |#1| (-765))) (-15 -2277 (|#1| |#1| "rest")) (-15 -1445 (|#1| |#1|)) (-15 -2277 (|#2| |#1| "first")) (-15 -2725 (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1| |#1|)) (-15 -1969 (|#2| |#1| |#2|)) (-15 -4167 (|#2| |#1| "value" |#2|)) (-15 -3894 (|#1| |#1| (-638 |#1|))) (-15 -2726 ((-112) |#1| |#1|)) (-15 -3849 ((-112) |#1|)) (-15 -2277 (|#2| |#1| "value")) (-15 -2484 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -1940 ((-638 |#1|) |#1|)) (-15 -4257 ((-638 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3498 ((-765) |#1|)) (-15 -1630 ((-112) |#1| (-765))) (-15 -3744 ((-112) |#1| (-765))) (-15 -2230 ((-112) |#1| (-765))))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2484 ((|#1| $) 48)) (-2295 ((|#1| $) 65)) (-3129 (($ $) 67)) (-4255 (($ $ (-561)) 52 (|has| $ (-6 -4391)))) (-1630 (((-112) $ (-765)) 8)) (-1969 ((|#1| $ |#1|) 39 (|has| $ (-6 -4391)))) (-1353 (($ $ $) 56 (|has| $ (-6 -4391)))) (-1726 ((|#1| $ |#1|) 54 (|has| $ (-6 -4391)))) (-3861 ((|#1| $ |#1|) 58 (|has| $ (-6 -4391)))) (-4167 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4391))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4391))) (($ $ "rest" $) 55 (|has| $ (-6 -4391))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4391)))) (-3894 (($ $ (-638 $)) 41 (|has| $ (-6 -4391)))) (-2285 ((|#1| $) 66)) (-1965 (($) 7 T CONST)) (-1445 (($ $) 73) (($ $ (-765)) 71)) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-1940 (((-638 $) $) 50)) (-2726 (((-112) $ $) 42 (|has| |#1| (-1090)))) (-3744 (((-112) $ (-765)) 9)) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35)) (-2230 (((-112) $ (-765)) 10)) (-3884 (((-638 |#1|) $) 45)) (-3067 (((-112) $) 49)) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-1520 ((|#1| $) 70) (($ $ (-765)) 68)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 76) (($ $ (-765)) 74)) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2004 (((-561) $ $) 44)) (-3849 (((-112) $) 46)) (-3222 (($ $) 62)) (-4364 (($ $) 59 (|has| $ (-6 -4391)))) (-1624 (((-765) $) 63)) (-2883 (($ $) 64)) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-4187 (($ $) 13)) (-4173 (($ $ $) 61 (|has| $ (-6 -4391))) (($ $ |#1|) 60 (|has| $ (-6 -4391)))) (-2725 (($ $ $) 78) (($ |#1| $) 77)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-4257 (((-638 $) $) 51)) (-3123 (((-112) $ $) 43 (|has| |#1| (-1090)))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1241 |#1|) (-139) (-1205)) (T -1241))
+((-2725 (*1 *1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-2725 (*1 *1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1241 *3)) (-4 *3 (-1205)))) (-1445 (*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1241 *3)) (-4 *3 (-1205)))) (-1445 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1241 *3)) (-4 *3 (-1205)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-1520 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1241 *3)) (-4 *3 (-1205)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-2295 (*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-2883 (*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-1241 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-4173 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-4173 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-4364 (*1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-3861 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-4167 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-1353 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-4167 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4391)) (-4 *1 (-1241 *3)) (-4 *3 (-1205)))) (-1726 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-4167 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-561)) (|has| *1 (-6 -4391)) (-4 *1 (-1241 *3)) (-4 *3 (-1205)))))
+(-13 (-1003 |t#1|) (-10 -8 (-15 -2725 ($ $ $)) (-15 -2725 ($ |t#1| $)) (-15 -1433 (|t#1| $)) (-15 -2277 (|t#1| $ "first")) (-15 -1433 ($ $ (-765))) (-15 -1445 ($ $)) (-15 -2277 ($ $ "rest")) (-15 -1445 ($ $ (-765))) (-15 -1520 (|t#1| $)) (-15 -2277 (|t#1| $ "last")) (-15 -1520 ($ $ (-765))) (-15 -3129 ($ $)) (-15 -2285 (|t#1| $)) (-15 -2295 (|t#1| $)) (-15 -2883 ($ $)) (-15 -1624 ((-765) $)) (-15 -3222 ($ $)) (IF (|has| $ (-6 -4391)) (PROGN (-15 -4173 ($ $ $)) (-15 -4173 ($ $ |t#1|)) (-15 -4364 ($ $)) (-15 -3861 (|t#1| $ |t#1|)) (-15 -4167 (|t#1| $ "first" |t#1|)) (-15 -1353 ($ $ $)) (-15 -4167 ($ $ "rest" $)) (-15 -1726 (|t#1| $ |t#1|)) (-15 -4167 (|t#1| $ "last" |t#1|)) (-15 -4255 ($ $ (-561)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1090)) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-608 (-856)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-1003 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1205) . T))
+((-4120 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1242 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| (-1 |#2| |#1|) |#3|))) (-1042) (-1042) (-1244 |#1|) (-1244 |#2|)) (T -1242))
+((-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1244 *6)) (-5 *1 (-1242 *5 *6 *4 *2)) (-4 *4 (-1244 *5)))))
+(-10 -7 (-15 -4120 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2800 (((-112) $) 15)) (-2978 (($ $) 91)) (-4064 (($ $) 67)) (-4172 (($ $) 87)) (-4041 (($ $) 63)) (-3009 (($ $) 95)) (-4085 (($ $) 71)) (-4348 (($ $) 61)) (-3440 (($ $) 59)) (-3021 (($ $) 97)) (-4095 (($ $) 73)) (-2995 (($ $) 93)) (-4073 (($ $) 69)) (-2968 (($ $) 89)) (-4054 (($ $) 65)) (-4022 (((-856) $) 47) (($ (-561)) NIL) (($ (-406 (-561))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3055 (($ $) 103)) (-4132 (($ $) 79)) (-3031 (($ $) 99)) (-4105 (($ $) 75)) (-3081 (($ $) 107)) (-4149 (($ $) 83)) (-2125 (($ $) 109)) (-4160 (($ $) 85)) (-3066 (($ $) 105)) (-4142 (($ $) 81)) (-3043 (($ $) 101)) (-4117 (($ $) 77)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-561))) 57)))
+(((-1243 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -4064 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4054 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -2125 (|#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -2800 ((-112) |#1|)) (-15 -4022 ((-856) |#1|))) (-1244 |#2|) (-1042)) (T -1243))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-406 (-561)))) (-15 -4064 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -4085 (|#1| |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4054 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -2125 (|#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4022 (|#1| |#2|)) (-15 -4022 (|#1| |#1|)) (-15 -4022 (|#1| (-406 (-561)))) (-15 -4022 (|#1| (-561))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-914))) (-15 -2800 ((-112) |#1|)) (-15 -4022 ((-856) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1412 (((-638 (-1072)) $) 77)) (-2389 (((-1166) $) 106)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 54 (|has| |#1| (-553)))) (-2851 (($ $) 55 (|has| |#1| (-553)))) (-3359 (((-112) $) 57 (|has| |#1| (-553)))) (-3411 (($ $ (-765)) 101) (($ $ (-765) (-765)) 100)) (-2457 (((-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 108)) (-2978 (($ $) 138 (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) 121 (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) 19)) (-1665 (($ $) 120 (|has| |#1| (-38 (-406 (-561)))))) (-4172 (($ $) 137 (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) 122 (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 158) (($ (-1146 |#1|)) 156)) (-3009 (($ $) 136 (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) 123 (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) 17 T CONST)) (-1619 (($ $) 63)) (-3466 (((-3 $ "failed") $) 33)) (-2594 (($ $) 155)) (-3373 (((-945 |#1|) $ (-765)) 153) (((-945 |#1|) $ (-765) (-765)) 152)) (-3281 (((-112) $) 76)) (-4067 (($) 148 (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-765) $) 103) (((-765) $ (-765)) 102)) (-3113 (((-112) $) 31)) (-2556 (($ $ (-561)) 119 (|has| |#1| (-38 (-406 (-561)))))) (-3244 (($ $ (-914)) 104)) (-2279 (($ (-1 |#1| (-561)) $) 154)) (-2092 (((-112) $) 65)) (-1387 (($ |#1| (-765)) 64) (($ $ (-1072) (-765)) 79) (($ $ (-638 (-1072)) (-638 (-765))) 78)) (-4120 (($ (-1 |#1| |#1|) $) 66)) (-4348 (($ $) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) 68)) (-1590 ((|#1| $) 69)) (-1764 (((-1148) $) 9)) (-1842 (($ $) 150 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 149 (-4007 (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-952)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-561)))))))) (-1714 (((-1110) $) 10)) (-1416 (($ $ (-765)) 98)) (-1756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-553)))) (-3440 (($ $) 146 (|has| |#1| (-38 (-406 (-561)))))) (-1444 (((-1146 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-2277 ((|#1| $ (-765)) 107) (($ $ $) 84 (|has| (-765) (-1102)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-638 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-2894 (((-765) $) 67)) (-3021 (($ $) 135 (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) 124 (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) 134 (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) 125 (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) 133 (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) 126 (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 75)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ (-406 (-561))) 60 (|has| |#1| (-38 (-406 (-561))))) (($ $) 52 (|has| |#1| (-553))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2742 (((-1146 |#1|) $) 157)) (-2634 ((|#1| $ (-765)) 62)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-4259 (((-765)) 28)) (-2262 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) 132 (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) 56 (|has| |#1| (-553)))) (-3031 (($ $) 143 (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) 131 (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) 142 (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) 130 (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-765)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) 141 (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) 129 (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) 128 (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) 139 (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) 127 (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-638 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 118 (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-561)) $) 59 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) 58 (|has| |#1| (-38 (-406 (-561)))))))
+(((-1244 |#1|) (-139) (-1042)) (T -1244))
+((-3406 (*1 *1 *2) (-12 (-5 *2 (-1146 (-2 (|:| |k| (-765)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1244 *3)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1042)) (-5 *2 (-1146 *3)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-4 *1 (-1244 *3)))) (-2594 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1042)))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1244 *3)) (-4 *3 (-1042)))) (-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1244 *4)) (-4 *4 (-1042)) (-5 *2 (-945 *4)))) (-3373 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1244 *4)) (-4 *4 (-1042)) (-5 *2 (-945 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561)))))) (-1842 (*1 *1 *1 *2) (-4007 (-12 (-5 *2 (-1166)) (-4 *1 (-1244 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-561)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1244 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -1412 ((-638 *2) *3))) (|has| *3 (-15 -1842 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561)))))))))
+(-13 (-1231 |t#1| (-765)) (-10 -8 (-15 -3406 ($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |t#1|))))) (-15 -2742 ((-1146 |t#1|) $)) (-15 -3406 ($ (-1146 |t#1|))) (-15 -2594 ($ $)) (-15 -2279 ($ (-1 |t#1| (-561)) $)) (-15 -3373 ((-945 |t#1|) $ (-765))) (-15 -3373 ((-945 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-561)))) (PROGN (-15 -1842 ($ $)) (IF (|has| |t#1| (-15 -1842 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -1412 ((-638 (-1166)) |t#1|))) (-15 -1842 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-952)) (IF (|has| |t#1| (-29 (-561))) (-15 -1842 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-765)) . T) ((-25) . T) ((-38 #1=(-406 (-561))) |has| |#1| (-38 (-406 (-561)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-553)) ((-35) |has| |#1| (-38 (-406 (-561)))) ((-95) |has| |#1| (-38 (-406 (-561)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-561)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-561)))) ((-611 (-561)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-553)) ((-608 (-856)) . T) ((-171) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-765) |#1|))) ((-283) |has| |#1| (-38 (-406 (-561)))) ((-285 $ $) |has| (-765) (-1102)) ((-289) |has| |#1| (-553)) ((-491) |has| |#1| (-38 (-406 (-561)))) ((-553) |has| |#1| (-553)) ((-641 #1#) |has| |#1| (-38 (-406 (-561)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-561)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-553)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166)))) ((-966 |#1| #0# (-1072)) . T) ((-995) |has| |#1| (-38 (-406 (-561)))) ((-1048 #1#) |has| |#1| (-38 (-406 (-561)))) ((-1048 |#1|) . T) ((-1048 $) -4007 (|has| |#1| (-553)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1190) |has| |#1| (-38 (-406 (-561)))) ((-1193) |has| |#1| (-38 (-406 (-561)))) ((-1231 |#1| #0#) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-1412 (((-638 (-1072)) $) NIL)) (-2389 (((-1166) $) 86)) (-4227 (((-1226 |#2| |#1|) $ (-765)) 73)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) NIL (|has| |#1| (-553)))) (-2851 (($ $) NIL (|has| |#1| (-553)))) (-3359 (((-112) $) 136 (|has| |#1| (-553)))) (-3411 (($ $ (-765)) 121) (($ $ (-765) (-765)) 123)) (-2457 (((-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 42)) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4064 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2249 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4172 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3406 (($ (-1146 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 53) (($ (-1146 |#1|)) NIL)) (-3009 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4085 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1965 (($) NIL T CONST)) (-3838 (($ $) 127)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-2594 (($ $) 134)) (-3373 (((-945 |#1|) $ (-765)) 63) (((-945 |#1|) $ (-765) (-765)) 65)) (-3281 (((-112) $) NIL)) (-4067 (($) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4163 (((-765) $) NIL) (((-765) $ (-765)) NIL)) (-3113 (((-112) $) NIL)) (-1536 (($ $) 111)) (-2556 (($ $ (-561)) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2768 (($ (-561) (-561) $) 129)) (-3244 (($ $ (-914)) 133)) (-2279 (($ (-1 |#1| (-561)) $) 105)) (-2092 (((-112) $) NIL)) (-1387 (($ |#1| (-765)) 15) (($ $ (-1072) (-765)) NIL) (($ $ (-638 (-1072)) (-638 (-765))) NIL)) (-4120 (($ (-1 |#1| |#1|) $) 93)) (-4348 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1578 (($ $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-2417 (($ $) 109)) (-1302 (($ $) 107)) (-3079 (($ (-561) (-561) $) 131)) (-1842 (($ $) 144 (|has| |#1| (-38 (-406 (-561))))) (($ $ (-1166)) 150 (-4007 (-12 (|has| |#1| (-15 -1842 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -1412 ((-638 (-1166)) |#1|))) (|has| |#1| (-38 (-406 (-561))))) (-12 (|has| |#1| (-29 (-561))) (|has| |#1| (-38 (-406 (-561)))) (|has| |#1| (-952)) (|has| |#1| (-1190))))) (($ $ (-1249 |#2|)) 145 (|has| |#1| (-38 (-406 (-561)))))) (-1714 (((-1110) $) NIL)) (-3441 (($ $ (-561) (-561)) 115)) (-1416 (($ $ (-765)) 117)) (-1756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-553)))) (-3440 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1543 (($ $) 113)) (-1444 (((-1146 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-2277 ((|#1| $ (-765)) 90) (($ $ $) 125 (|has| (-765) (-1102)))) (-3238 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) 102 (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1249 |#2|)) 98)) (-2894 (((-765) $) NIL)) (-3021 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4095 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2995 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4073 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2968 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4054 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1897 (($ $) 119)) (-4022 (((-856) $) NIL) (($ (-561)) 24) (($ (-406 (-561))) 142 (|has| |#1| (-38 (-406 (-561))))) (($ $) NIL (|has| |#1| (-553))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1226 |#2| |#1|)) 79) (($ (-1249 |#2|)) 20)) (-2742 (((-1146 |#1|) $) NIL)) (-2634 ((|#1| $ (-765)) 89)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-4259 (((-765)) NIL)) (-2262 ((|#1| $) 87)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4132 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3168 (((-112) $ $) NIL (|has| |#1| (-553)))) (-3031 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4105 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4149 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-1417 ((|#1| $ (-765)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4022 (|#1| (-1166))))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4160 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4142 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-3043 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-4117 (($ $) NIL (|has| |#1| (-38 (-406 (-561)))))) (-2211 (($) 17 T CONST)) (-2222 (($) 13 T CONST)) (-3122 (($ $ (-638 (-1166)) (-638 (-765))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-638 (-1166))) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-15 * (|#1| (-765) |#1|))) (|has| |#1| (-893 (-1166))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1833 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) 101)) (-1813 (($ $ $) 18)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-561)) $) NIL (|has| |#1| (-38 (-406 (-561))))) (($ $ (-406 (-561))) NIL (|has| |#1| (-38 (-406 (-561)))))))
+(((-1245 |#1| |#2| |#3|) (-13 (-1244 |#1|) (-10 -8 (-15 -4022 ($ (-1226 |#2| |#1|))) (-15 -4227 ((-1226 |#2| |#1|) $ (-765))) (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (-15 -1302 ($ $)) (-15 -2417 ($ $)) (-15 -1536 ($ $)) (-15 -1543 ($ $)) (-15 -3441 ($ $ (-561) (-561))) (-15 -3838 ($ $)) (-15 -2768 ($ (-561) (-561) $)) (-15 -3079 ($ (-561) (-561) $)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1245))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-1226 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1245 *3 *4 *5)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1226 *5 *4)) (-5 *1 (-1245 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-1302 (*1 *1 *1) (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-1536 (*1 *1 *1) (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-1543 (*1 *1 *1) (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-3441 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-2768 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-3079 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(-13 (-1244 |#1|) (-10 -8 (-15 -4022 ($ (-1226 |#2| |#1|))) (-15 -4227 ((-1226 |#2| |#1|) $ (-765))) (-15 -4022 ($ (-1249 |#2|))) (-15 -3238 ($ $ (-1249 |#2|))) (-15 -1302 ($ $)) (-15 -2417 ($ $)) (-15 -1536 ($ $)) (-15 -1543 ($ $)) (-15 -3441 ($ $ (-561) (-561))) (-15 -3838 ($ $)) (-15 -2768 ($ (-561) (-561) $)) (-15 -3079 ($ (-561) (-561) $)) (IF (|has| |#1| (-38 (-406 (-561)))) (-15 -1842 ($ $ (-1249 |#2|))) |%noBranch|)))
+((-1541 (((-1 (-1146 |#1|) (-638 (-1146 |#1|))) (-1 |#2| (-638 |#2|))) 24)) (-3594 (((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4342 (((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|)) 13)) (-1834 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2233 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2070 ((|#2| (-1 |#2| (-638 |#2|)) (-638 |#1|)) 54)) (-3035 (((-638 |#2|) (-638 |#1|) (-638 (-1 |#2| (-638 |#2|)))) 61)) (-1522 ((|#2| |#2| |#2|) 43)))
+(((-1246 |#1| |#2|) (-10 -7 (-15 -4342 ((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|))) (-15 -3594 ((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1541 ((-1 (-1146 |#1|) (-638 (-1146 |#1|))) (-1 |#2| (-638 |#2|)))) (-15 -1522 (|#2| |#2| |#2|)) (-15 -2233 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1834 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2070 (|#2| (-1 |#2| (-638 |#2|)) (-638 |#1|))) (-15 -3035 ((-638 |#2|) (-638 |#1|) (-638 (-1 |#2| (-638 |#2|)))))) (-38 (-406 (-561))) (-1244 |#1|)) (T -1246))
+((-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 (-1 *6 (-638 *6)))) (-4 *5 (-38 (-406 (-561)))) (-4 *6 (-1244 *5)) (-5 *2 (-638 *6)) (-5 *1 (-1246 *5 *6)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-638 *2))) (-5 *4 (-638 *5)) (-4 *5 (-38 (-406 (-561)))) (-4 *2 (-1244 *5)) (-5 *1 (-1246 *5 *2)))) (-1834 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-1246 *4 *2)) (-4 *4 (-38 (-406 (-561)))))) (-2233 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-1246 *4 *2)) (-4 *4 (-38 (-406 (-561)))))) (-1522 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1246 *3 *2)) (-4 *2 (-1244 *3)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-638 *5))) (-4 *5 (-1244 *4)) (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-638 (-1146 *4)))) (-5 *1 (-1246 *4 *5)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-1146 *4) (-1146 *4))) (-5 *1 (-1246 *4 *5)))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1244 *4)) (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1246 *4 *5)))))
+(-10 -7 (-15 -4342 ((-1 (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2|))) (-15 -3594 ((-1 (-1146 |#1|) (-1146 |#1|) (-1146 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1541 ((-1 (-1146 |#1|) (-638 (-1146 |#1|))) (-1 |#2| (-638 |#2|)))) (-15 -1522 (|#2| |#2| |#2|)) (-15 -2233 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1834 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2070 (|#2| (-1 |#2| (-638 |#2|)) (-638 |#1|))) (-15 -3035 ((-638 |#2|) (-638 |#1|) (-638 (-1 |#2| (-638 |#2|))))))
+((-3109 ((|#2| |#4| (-765)) 30)) (-1944 ((|#4| |#2|) 25)) (-4239 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-553)))) (-3771 (((-1 |#4| (-638 |#4|)) |#3|) 46)))
+(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1944 (|#4| |#2|)) (-15 -3109 (|#2| |#4| (-765))) (-15 -3771 ((-1 |#4| (-638 |#4|)) |#3|)) (IF (|has| |#1| (-553)) (-15 -4239 (|#4| (-406 |#2|))) |%noBranch|)) (-1042) (-1229 |#1|) (-649 |#2|) (-1244 |#1|)) (T -1247))
+((-4239 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-553)) (-4 *4 (-1042)) (-4 *2 (-1244 *4)) (-5 *1 (-1247 *4 *5 *6 *2)) (-4 *6 (-649 *5)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-1229 *4)) (-5 *2 (-1 *6 (-638 *6))) (-5 *1 (-1247 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-1244 *4)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-1247 *5 *2 *6 *3)) (-4 *6 (-649 *2)) (-4 *3 (-1244 *5)))) (-1944 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-1229 *4)) (-4 *2 (-1244 *4)) (-5 *1 (-1247 *4 *3 *5 *2)) (-4 *5 (-649 *3)))))
+(-10 -7 (-15 -1944 (|#4| |#2|)) (-15 -3109 (|#2| |#4| (-765))) (-15 -3771 ((-1 |#4| (-638 |#4|)) |#3|)) (IF (|has| |#1| (-553)) (-15 -4239 (|#4| (-406 |#2|))) |%noBranch|))
+NIL
+(((-1248) (-139)) (T -1248))
+NIL
+(-13 (-10 -7 (-6 -1378)))
+((-4011 (((-112) $ $) NIL)) (-2389 (((-1166)) 12)) (-1764 (((-1148) $) 17)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 11) (((-1166) $) 8)) (-1733 (((-112) $ $) 14)))
+(((-1249 |#1|) (-13 (-1090) (-608 (-1166)) (-10 -8 (-15 -4022 ((-1166) $)) (-15 -2389 ((-1166))))) (-1166)) (T -1249))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1249 *3)) (-14 *3 *2))) (-2389 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1249 *3)) (-14 *3 *2))))
+(-13 (-1090) (-608 (-1166)) (-10 -8 (-15 -4022 ((-1166) $)) (-15 -2389 ((-1166)))))
+((-2888 (($ (-765)) 18)) (-2802 (((-682 |#2|) $ $) 40)) (-3216 ((|#2| $) 48)) (-3617 ((|#2| $) 47)) (-1327 ((|#2| $ $) 35)) (-2307 (($ $ $) 44)) (-1824 (($ $) 22) (($ $ $) 28)) (-1813 (($ $ $) 15)) (* (($ (-561) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1250 |#1| |#2|) (-10 -8 (-15 -3216 (|#2| |#1|)) (-15 -3617 (|#2| |#1|)) (-15 -2307 (|#1| |#1| |#1|)) (-15 -2802 ((-682 |#2|) |#1| |#1|)) (-15 -1327 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -2888 (|#1| (-765))) (-15 -1813 (|#1| |#1| |#1|))) (-1251 |#2|) (-1205)) (T -1250))
+NIL
+(-10 -8 (-15 -3216 (|#2| |#1|)) (-15 -3617 (|#2| |#1|)) (-15 -2307 (|#1| |#1| |#1|)) (-15 -2802 ((-682 |#2|) |#1| |#1|)) (-15 -1327 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-561) |#1|)) (-15 -1824 (|#1| |#1| |#1|)) (-15 -1824 (|#1| |#1|)) (-15 -2888 (|#1| (-765))) (-15 -1813 (|#1| |#1| |#1|)))
+((-4011 (((-112) $ $) 19 (|has| |#1| (-1090)))) (-2888 (($ (-765)) 112 (|has| |#1| (-23)))) (-3024 (((-1258) $ (-561) (-561)) 40 (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4391))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4391))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) 8)) (-4167 ((|#1| $ (-561) |#1|) 52 (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) 58 (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4390)))) (-1965 (($) 7 T CONST)) (-4075 (($ $) 90 (|has| $ (-6 -4391)))) (-2638 (($ $) 100)) (-1472 (($ $) 78 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1489 (($ |#1| $) 77 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) 53 (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) 51)) (-4235 (((-561) (-1 (-112) |#1|) $) 97) (((-561) |#1| $) 96 (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) 95 (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) 30 (|has| $ (-6 -4390)))) (-2802 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-1470 (($ (-765) |#1|) 69)) (-3744 (((-112) $ (-765)) 9)) (-3975 (((-561) $) 43 (|has| (-561) (-844)))) (-3443 (($ $ $) 87 (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-2780 (((-561) $) 44 (|has| (-561) (-844)))) (-2986 (($ $ $) 86 (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3216 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-2230 (((-112) $ (-765)) 10)) (-3617 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-1764 (((-1148) $) 22 (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) 60) (($ $ $ (-561)) 59)) (-2451 (((-638 (-561)) $) 46)) (-1390 (((-112) (-561) $) 47)) (-1714 (((-1110) $) 21 (|has| |#1| (-1090)))) (-1433 ((|#1| $) 42 (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1799 (($ $ |#1|) 41 (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) 14)) (-3703 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) 48)) (-1928 (((-112) $) 11)) (-3170 (($) 12)) (-2277 ((|#1| $ (-561) |#1|) 50) ((|#1| $ (-561)) 49) (($ $ (-1220 (-561))) 63)) (-1327 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-2849 (($ $ (-561)) 62) (($ $ (-1220 (-561))) 61)) (-2307 (($ $ $) 104 (|has| |#1| (-1042)))) (-1724 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4390))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4390))))) (-1365 (($ $ $ (-561)) 91 (|has| $ (-6 -4391)))) (-4187 (($ $) 13)) (-4174 (((-534) $) 79 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 70)) (-2725 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-638 $)) 65)) (-4022 (((-856) $) 18 (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) 84 (|has| |#1| (-844)))) (-1762 (((-112) $ $) 83 (|has| |#1| (-844)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1090)))) (-1773 (((-112) $ $) 85 (|has| |#1| (-844)))) (-1754 (((-112) $ $) 82 (|has| |#1| (-844)))) (-1824 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1813 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-561) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-3498 (((-765) $) 6 (|has| $ (-6 -4390)))))
+(((-1251 |#1|) (-139) (-1205)) (T -1251))
+((-1813 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-25)))) (-2888 (*1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1251 *3)) (-4 *3 (-23)) (-4 *3 (-1205)))) (-1824 (*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-21)))) (-1824 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-4 *1 (-1251 *3)) (-4 *3 (-1205)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-720)))) (-1327 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))) (-2802 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1205)) (-4 *3 (-1042)) (-5 *2 (-682 *3)))) (-2307 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-995)) (-4 *2 (-1042)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-995)) (-4 *2 (-1042)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1813 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2888 ($ (-765))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1824 ($ $)) (-15 -1824 ($ $ $)) (-15 * ($ (-561) $))) |%noBranch|) (IF (|has| |t#1| (-720)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-15 -1327 (|t#1| $ $)) (-15 -2802 ((-682 |t#1|) $ $)) (-15 -2307 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-995)) (IF (|has| |t#1| (-1042)) (PROGN (-15 -3617 (|t#1| $)) (-15 -3216 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-608 (-856)) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844)) (|has| |#1| (-608 (-856)))) ((-150 |#1|) . T) ((-609 (-534)) |has| |#1| (-609 (-534))) ((-285 #0=(-561) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-372 |#1|) . T) ((-487 |#1|) . T) ((-599 #0# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1090) -4007 (|has| |#1| (-1090)) (|has| |#1| (-844))) ((-1205) . T))
+((-3130 (((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|) 13)) (-3185 ((|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|) 15)) (-4120 (((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|)) 28) (((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 18)))
+(((-1252 |#1| |#2|) (-10 -7 (-15 -3130 ((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4120 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (-15 -4120 ((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|)))) (-1205) (-1205)) (T -1252))
+((-4120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6)))) (-3185 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1253 *5)) (-4 *5 (-1205)) (-4 *2 (-1205)) (-5 *1 (-1252 *5 *2)))) (-3130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1253 *6)) (-4 *6 (-1205)) (-4 *5 (-1205)) (-5 *2 (-1253 *5)) (-5 *1 (-1252 *6 *5)))))
+(-10 -7 (-15 -3130 ((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -3185 (|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4120 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (-15 -4120 ((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|))))
+((-4011 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-2888 (($ (-765)) NIL (|has| |#1| (-23)))) (-3213 (($ (-638 |#1|)) 9)) (-3024 (((-1258) $ (-561) (-561)) NIL (|has| $ (-6 -4391)))) (-4268 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-3702 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4391))) (($ $) NIL (-12 (|has| $ (-6 -4391)) (|has| |#1| (-844))))) (-1289 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1630 (((-112) $ (-765)) NIL)) (-4167 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391))) ((|#1| $ (-1220 (-561)) |#1|) NIL (|has| $ (-6 -4391)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1965 (($) NIL T CONST)) (-4075 (($ $) NIL (|has| $ (-6 -4391)))) (-2638 (($ $) NIL)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1489 (($ |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-3185 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4390))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4390)))) (-2073 ((|#1| $ (-561) |#1|) NIL (|has| $ (-6 -4391)))) (-4344 ((|#1| $ (-561)) NIL)) (-4235 (((-561) (-1 (-112) |#1|) $) NIL) (((-561) |#1| $) NIL (|has| |#1| (-1090))) (((-561) |#1| $ (-561)) NIL (|has| |#1| (-1090)))) (-3571 (((-638 |#1|) $) 15 (|has| $ (-6 -4390)))) (-2802 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-1470 (($ (-765) |#1|) NIL)) (-3744 (((-112) $ (-765)) NIL)) (-3975 (((-561) $) NIL (|has| (-561) (-844)))) (-3443 (($ $ $) NIL (|has| |#1| (-844)))) (-1407 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-1305 (((-638 |#1|) $) NIL (|has| $ (-6 -4390)))) (-4087 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2780 (((-561) $) NIL (|has| (-561) (-844)))) (-2986 (($ $ $) NIL (|has| |#1| (-844)))) (-2065 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3216 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-2230 (((-112) $ (-765)) NIL)) (-3617 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-1764 (((-1148) $) NIL (|has| |#1| (-1090)))) (-3312 (($ |#1| $ (-561)) NIL) (($ $ $ (-561)) NIL)) (-2451 (((-638 (-561)) $) NIL)) (-1390 (((-112) (-561) $) NIL)) (-1714 (((-1110) $) NIL (|has| |#1| (-1090)))) (-1433 ((|#1| $) NIL (|has| (-561) (-844)))) (-1330 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1799 (($ $ |#1|) NIL (|has| $ (-6 -4391)))) (-2123 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090)))) (($ $ (-638 |#1|) (-638 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1090))))) (-3016 (((-112) $ $) NIL)) (-3703 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-2658 (((-638 |#1|) $) NIL)) (-1928 (((-112) $) NIL)) (-3170 (($) NIL)) (-2277 ((|#1| $ (-561) |#1|) NIL) ((|#1| $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-1327 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2849 (($ $ (-561)) NIL) (($ $ (-1220 (-561))) NIL)) (-2307 (($ $ $) NIL (|has| |#1| (-1042)))) (-1724 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#1| (-1090))))) (-1365 (($ $ $ (-561)) NIL (|has| $ (-6 -4391)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) 19 (|has| |#1| (-609 (-534))))) (-4031 (($ (-638 |#1|)) 8)) (-2725 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-638 $)) NIL)) (-4022 (((-856) $) NIL (|has| |#1| (-608 (-856))))) (-3715 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4390)))) (-1782 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1762 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1090)))) (-1773 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1754 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1824 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1813 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-561) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1253 |#1|) (-13 (-1251 |#1|) (-10 -8 (-15 -3213 ($ (-638 |#1|))))) (-1205)) (T -1253))
+((-3213 (*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1253 *3)))))
+(-13 (-1251 |#1|) (-10 -8 (-15 -3213 ($ (-638 |#1|)))))
+((-4011 (((-112) $ $) NIL)) (-2632 (((-1148) $ (-1148)) 92) (((-1148) $ (-1148) (-1148)) 90) (((-1148) $ (-1148) (-638 (-1148))) 89)) (-2567 (($) 59)) (-4182 (((-1258) $ (-466) (-914)) 45)) (-3437 (((-1258) $ (-914) (-1148)) 75) (((-1258) $ (-914) (-867)) 76)) (-3807 (((-1258) $ (-914) (-378) (-378)) 48)) (-3562 (((-1258) $ (-1148)) 71)) (-1723 (((-1258) $ (-914) (-1148)) 80)) (-3917 (((-1258) $ (-914) (-378) (-378)) 49)) (-3621 (((-1258) $ (-914) (-914)) 46)) (-2611 (((-1258) $) 72)) (-1604 (((-1258) $ (-914) (-1148)) 79)) (-4056 (((-1258) $ (-466) (-914)) 31)) (-1836 (((-1258) $ (-914) (-1148)) 78)) (-3566 (((-638 (-262)) $) 23) (($ $ (-638 (-262))) 24)) (-2394 (((-1258) $ (-765) (-765)) 43)) (-3543 (($ $) 60) (($ (-466) (-638 (-262))) 61)) (-1764 (((-1148) $) NIL)) (-2252 (((-561) $) 38)) (-1714 (((-1110) $) NIL)) (-1564 (((-1253 (-3 (-466) "undefined")) $) 37)) (-3271 (((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1836 (-561)) (|:| -2253 (-561)) (|:| |spline| (-561)) (|:| -3585 (-561)) (|:| |axesColor| (-867)) (|:| -3437 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561)))) $) 36)) (-3620 (((-1258) $ (-914) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-867) (-561) (-867) (-561)) 70)) (-2007 (((-638 (-936 (-224))) $) NIL)) (-2490 (((-466) $ (-914)) 33)) (-3416 (((-1258) $ (-765) (-765) (-914) (-914)) 40)) (-2637 (((-1258) $ (-1148)) 81)) (-2253 (((-1258) $ (-914) (-1148)) 77)) (-4022 (((-856) $) 87)) (-1461 (((-1258) $) 82)) (-3585 (((-1258) $ (-914) (-1148)) 73) (((-1258) $ (-914) (-867)) 74)) (-1733 (((-112) $ $) NIL)))
+(((-1254) (-13 (-1090) (-10 -8 (-15 -2007 ((-638 (-936 (-224))) $)) (-15 -2567 ($)) (-15 -3543 ($ $)) (-15 -3566 ((-638 (-262)) $)) (-15 -3566 ($ $ (-638 (-262)))) (-15 -3543 ($ (-466) (-638 (-262)))) (-15 -3620 ((-1258) $ (-914) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-867) (-561) (-867) (-561))) (-15 -3271 ((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1836 (-561)) (|:| -2253 (-561)) (|:| |spline| (-561)) (|:| -3585 (-561)) (|:| |axesColor| (-867)) (|:| -3437 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561)))) $)) (-15 -1564 ((-1253 (-3 (-466) "undefined")) $)) (-15 -3562 ((-1258) $ (-1148))) (-15 -4056 ((-1258) $ (-466) (-914))) (-15 -2490 ((-466) $ (-914))) (-15 -3585 ((-1258) $ (-914) (-1148))) (-15 -3585 ((-1258) $ (-914) (-867))) (-15 -3437 ((-1258) $ (-914) (-1148))) (-15 -3437 ((-1258) $ (-914) (-867))) (-15 -1836 ((-1258) $ (-914) (-1148))) (-15 -1604 ((-1258) $ (-914) (-1148))) (-15 -2253 ((-1258) $ (-914) (-1148))) (-15 -2637 ((-1258) $ (-1148))) (-15 -1461 ((-1258) $)) (-15 -3416 ((-1258) $ (-765) (-765) (-914) (-914))) (-15 -3917 ((-1258) $ (-914) (-378) (-378))) (-15 -3807 ((-1258) $ (-914) (-378) (-378))) (-15 -1723 ((-1258) $ (-914) (-1148))) (-15 -2394 ((-1258) $ (-765) (-765))) (-15 -4182 ((-1258) $ (-466) (-914))) (-15 -3621 ((-1258) $ (-914) (-914))) (-15 -2632 ((-1148) $ (-1148))) (-15 -2632 ((-1148) $ (-1148) (-1148))) (-15 -2632 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -2611 ((-1258) $)) (-15 -2252 ((-561) $)) (-15 -4022 ((-856) $))))) (T -1254))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1254)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-638 (-936 (-224)))) (-5 *1 (-1254)))) (-2567 (*1 *1) (-5 *1 (-1254))) (-3543 (*1 *1 *1) (-5 *1 (-1254))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1254)))) (-3566 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1254)))) (-3543 (*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-638 (-262))) (-5 *1 (-1254)))) (-3620 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-914)) (-5 *4 (-224)) (-5 *5 (-561)) (-5 *6 (-867)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1836 (-561)) (|:| -2253 (-561)) (|:| |spline| (-561)) (|:| -3585 (-561)) (|:| |axesColor| (-867)) (|:| -3437 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561))))) (-5 *1 (-1254)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-1253 (-3 (-466) "undefined"))) (-5 *1 (-1254)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-4056 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-2490 (*1 *2 *1 *3) (-12 (-5 *3 (-914)) (-5 *2 (-466)) (-5 *1 (-1254)))) (-3585 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3585 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3437 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3437 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-1836 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-1604 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-2253 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-2637 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3416 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3917 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3807 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-1723 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-2394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-4182 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-3621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254)))) (-2632 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1254)))) (-2632 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1254)))) (-2632 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1254)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1254)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1254)))))
+(-13 (-1090) (-10 -8 (-15 -2007 ((-638 (-936 (-224))) $)) (-15 -2567 ($)) (-15 -3543 ($ $)) (-15 -3566 ((-638 (-262)) $)) (-15 -3566 ($ $ (-638 (-262)))) (-15 -3543 ($ (-466) (-638 (-262)))) (-15 -3620 ((-1258) $ (-914) (-224) (-224) (-224) (-224) (-561) (-561) (-561) (-561) (-867) (-561) (-867) (-561))) (-15 -3271 ((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1836 (-561)) (|:| -2253 (-561)) (|:| |spline| (-561)) (|:| -3585 (-561)) (|:| |axesColor| (-867)) (|:| -3437 (-561)) (|:| |unitsColor| (-867)) (|:| |showing| (-561)))) $)) (-15 -1564 ((-1253 (-3 (-466) "undefined")) $)) (-15 -3562 ((-1258) $ (-1148))) (-15 -4056 ((-1258) $ (-466) (-914))) (-15 -2490 ((-466) $ (-914))) (-15 -3585 ((-1258) $ (-914) (-1148))) (-15 -3585 ((-1258) $ (-914) (-867))) (-15 -3437 ((-1258) $ (-914) (-1148))) (-15 -3437 ((-1258) $ (-914) (-867))) (-15 -1836 ((-1258) $ (-914) (-1148))) (-15 -1604 ((-1258) $ (-914) (-1148))) (-15 -2253 ((-1258) $ (-914) (-1148))) (-15 -2637 ((-1258) $ (-1148))) (-15 -1461 ((-1258) $)) (-15 -3416 ((-1258) $ (-765) (-765) (-914) (-914))) (-15 -3917 ((-1258) $ (-914) (-378) (-378))) (-15 -3807 ((-1258) $ (-914) (-378) (-378))) (-15 -1723 ((-1258) $ (-914) (-1148))) (-15 -2394 ((-1258) $ (-765) (-765))) (-15 -4182 ((-1258) $ (-466) (-914))) (-15 -3621 ((-1258) $ (-914) (-914))) (-15 -2632 ((-1148) $ (-1148))) (-15 -2632 ((-1148) $ (-1148) (-1148))) (-15 -2632 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -2611 ((-1258) $)) (-15 -2252 ((-561) $)) (-15 -4022 ((-856) $))))
+((-4011 (((-112) $ $) NIL)) (-1891 (((-1258) $ (-378)) 142) (((-1258) $ (-378) (-378) (-378)) 143)) (-2632 (((-1148) $ (-1148)) 150) (((-1148) $ (-1148) (-1148)) 148) (((-1148) $ (-1148) (-638 (-1148))) 147)) (-1737 (($) 50)) (-2953 (((-1258) $ (-378) (-378) (-378) (-378) (-378)) 118) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 116) (((-1258) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 117) (((-1258) $ (-561) (-561) (-378) (-378) (-378)) 119) (((-1258) $ (-378) (-378)) 120) (((-1258) $ (-378) (-378) (-378)) 127)) (-1617 (((-378)) 99) (((-378) (-378)) 100)) (-3965 (((-378)) 94) (((-378) (-378)) 96)) (-3921 (((-378)) 97) (((-378) (-378)) 98)) (-2221 (((-378)) 103) (((-378) (-378)) 104)) (-3132 (((-378)) 101) (((-378) (-378)) 102)) (-3807 (((-1258) $ (-378) (-378)) 144)) (-3562 (((-1258) $ (-1148)) 128)) (-3583 (((-1123 (-224)) $) 51) (($ $ (-1123 (-224))) 52)) (-2980 (((-1258) $ (-1148)) 156)) (-4036 (((-1258) $ (-1148)) 157)) (-1294 (((-1258) $ (-378) (-378)) 126) (((-1258) $ (-561) (-561)) 141)) (-3621 (((-1258) $ (-914) (-914)) 134)) (-2611 (((-1258) $) 114)) (-3611 (((-1258) $ (-1148)) 155)) (-2621 (((-1258) $ (-1148)) 111)) (-3566 (((-638 (-262)) $) 53) (($ $ (-638 (-262))) 54)) (-2394 (((-1258) $ (-765) (-765)) 133)) (-3967 (((-1258) $ (-765) (-936 (-224))) 162)) (-1735 (($ $) 56) (($ (-1123 (-224)) (-1148)) 57) (($ (-1123 (-224)) (-638 (-262))) 58)) (-4313 (((-1258) $ (-378) (-378) (-378)) 108)) (-1764 (((-1148) $) NIL)) (-2252 (((-561) $) 105)) (-2599 (((-1258) $ (-378)) 145)) (-2580 (((-1258) $ (-378)) 160)) (-1714 (((-1110) $) NIL)) (-4309 (((-1258) $ (-378)) 159)) (-3564 (((-1258) $ (-1148)) 113)) (-3416 (((-1258) $ (-765) (-765) (-914) (-914)) 132)) (-2186 (((-1258) $ (-1148)) 110)) (-2637 (((-1258) $ (-1148)) 112)) (-4097 (((-1258) $ (-156) (-156)) 131)) (-4022 (((-856) $) 139)) (-1461 (((-1258) $) 115)) (-2878 (((-1258) $ (-1148)) 158)) (-3585 (((-1258) $ (-1148)) 109)) (-1733 (((-112) $ $) NIL)))
+(((-1255) (-13 (-1090) (-10 -8 (-15 -3965 ((-378))) (-15 -3965 ((-378) (-378))) (-15 -3921 ((-378))) (-15 -3921 ((-378) (-378))) (-15 -1617 ((-378))) (-15 -1617 ((-378) (-378))) (-15 -3132 ((-378))) (-15 -3132 ((-378) (-378))) (-15 -2221 ((-378))) (-15 -2221 ((-378) (-378))) (-15 -1737 ($)) (-15 -1735 ($ $)) (-15 -1735 ($ (-1123 (-224)) (-1148))) (-15 -1735 ($ (-1123 (-224)) (-638 (-262)))) (-15 -3583 ((-1123 (-224)) $)) (-15 -3583 ($ $ (-1123 (-224)))) (-15 -3967 ((-1258) $ (-765) (-936 (-224)))) (-15 -3566 ((-638 (-262)) $)) (-15 -3566 ($ $ (-638 (-262)))) (-15 -2394 ((-1258) $ (-765) (-765))) (-15 -3621 ((-1258) $ (-914) (-914))) (-15 -3562 ((-1258) $ (-1148))) (-15 -3416 ((-1258) $ (-765) (-765) (-914) (-914))) (-15 -2953 ((-1258) $ (-378) (-378) (-378) (-378) (-378))) (-15 -2953 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -2953 ((-1258) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -2953 ((-1258) $ (-561) (-561) (-378) (-378) (-378))) (-15 -2953 ((-1258) $ (-378) (-378))) (-15 -2953 ((-1258) $ (-378) (-378) (-378))) (-15 -2637 ((-1258) $ (-1148))) (-15 -3585 ((-1258) $ (-1148))) (-15 -2186 ((-1258) $ (-1148))) (-15 -2621 ((-1258) $ (-1148))) (-15 -3564 ((-1258) $ (-1148))) (-15 -1294 ((-1258) $ (-378) (-378))) (-15 -1294 ((-1258) $ (-561) (-561))) (-15 -1891 ((-1258) $ (-378))) (-15 -1891 ((-1258) $ (-378) (-378) (-378))) (-15 -3807 ((-1258) $ (-378) (-378))) (-15 -3611 ((-1258) $ (-1148))) (-15 -4309 ((-1258) $ (-378))) (-15 -2580 ((-1258) $ (-378))) (-15 -2980 ((-1258) $ (-1148))) (-15 -4036 ((-1258) $ (-1148))) (-15 -2878 ((-1258) $ (-1148))) (-15 -4313 ((-1258) $ (-378) (-378) (-378))) (-15 -2599 ((-1258) $ (-378))) (-15 -2611 ((-1258) $)) (-15 -4097 ((-1258) $ (-156) (-156))) (-15 -2632 ((-1148) $ (-1148))) (-15 -2632 ((-1148) $ (-1148) (-1148))) (-15 -2632 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -1461 ((-1258) $)) (-15 -2252 ((-561) $))))) (T -1255))
+((-3965 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-3965 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-3921 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-1617 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-3132 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-2221 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))) (-1737 (*1 *1) (-5 *1 (-1255))) (-1735 (*1 *1 *1) (-5 *1 (-1255))) (-1735 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1255)))) (-1735 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-638 (-262))) (-5 *1 (-1255)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1255)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1255)))) (-3967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255)))) (-3566 (*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255)))) (-2394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3416 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2953 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1255)))) (-2953 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2953 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-561)) (-5 *4 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2953 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2953 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2637 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3585 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2186 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-1294 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-1294 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-1891 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-1891 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3807 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2580 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2980 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2878 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-4313 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2599 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1255)))) (-4097 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2632 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255)))) (-2632 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255)))) (-2632 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1255)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1255)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1255)))))
+(-13 (-1090) (-10 -8 (-15 -3965 ((-378))) (-15 -3965 ((-378) (-378))) (-15 -3921 ((-378))) (-15 -3921 ((-378) (-378))) (-15 -1617 ((-378))) (-15 -1617 ((-378) (-378))) (-15 -3132 ((-378))) (-15 -3132 ((-378) (-378))) (-15 -2221 ((-378))) (-15 -2221 ((-378) (-378))) (-15 -1737 ($)) (-15 -1735 ($ $)) (-15 -1735 ($ (-1123 (-224)) (-1148))) (-15 -1735 ($ (-1123 (-224)) (-638 (-262)))) (-15 -3583 ((-1123 (-224)) $)) (-15 -3583 ($ $ (-1123 (-224)))) (-15 -3967 ((-1258) $ (-765) (-936 (-224)))) (-15 -3566 ((-638 (-262)) $)) (-15 -3566 ($ $ (-638 (-262)))) (-15 -2394 ((-1258) $ (-765) (-765))) (-15 -3621 ((-1258) $ (-914) (-914))) (-15 -3562 ((-1258) $ (-1148))) (-15 -3416 ((-1258) $ (-765) (-765) (-914) (-914))) (-15 -2953 ((-1258) $ (-378) (-378) (-378) (-378) (-378))) (-15 -2953 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -2953 ((-1258) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -2953 ((-1258) $ (-561) (-561) (-378) (-378) (-378))) (-15 -2953 ((-1258) $ (-378) (-378))) (-15 -2953 ((-1258) $ (-378) (-378) (-378))) (-15 -2637 ((-1258) $ (-1148))) (-15 -3585 ((-1258) $ (-1148))) (-15 -2186 ((-1258) $ (-1148))) (-15 -2621 ((-1258) $ (-1148))) (-15 -3564 ((-1258) $ (-1148))) (-15 -1294 ((-1258) $ (-378) (-378))) (-15 -1294 ((-1258) $ (-561) (-561))) (-15 -1891 ((-1258) $ (-378))) (-15 -1891 ((-1258) $ (-378) (-378) (-378))) (-15 -3807 ((-1258) $ (-378) (-378))) (-15 -3611 ((-1258) $ (-1148))) (-15 -4309 ((-1258) $ (-378))) (-15 -2580 ((-1258) $ (-378))) (-15 -2980 ((-1258) $ (-1148))) (-15 -4036 ((-1258) $ (-1148))) (-15 -2878 ((-1258) $ (-1148))) (-15 -4313 ((-1258) $ (-378) (-378) (-378))) (-15 -2599 ((-1258) $ (-378))) (-15 -2611 ((-1258) $)) (-15 -4097 ((-1258) $ (-156) (-156))) (-15 -2632 ((-1148) $ (-1148))) (-15 -2632 ((-1148) $ (-1148) (-1148))) (-15 -2632 ((-1148) $ (-1148) (-638 (-1148)))) (-15 -1461 ((-1258) $)) (-15 -2252 ((-561) $))))
+((-2447 (((-638 (-1148)) (-638 (-1148))) 94) (((-638 (-1148))) 90)) (-1339 (((-638 (-1148))) 88)) (-3821 (((-638 (-914)) (-638 (-914))) 63) (((-638 (-914))) 60)) (-2452 (((-638 (-765)) (-638 (-765))) 57) (((-638 (-765))) 53)) (-1780 (((-1258)) 65)) (-2240 (((-914) (-914)) 81) (((-914)) 80)) (-3286 (((-914) (-914)) 79) (((-914)) 78)) (-2847 (((-867) (-867)) 75) (((-867)) 74)) (-2504 (((-224)) 85) (((-224) (-378)) 87)) (-2088 (((-914)) 82) (((-914) (-914)) 83)) (-3026 (((-914) (-914)) 77) (((-914)) 76)) (-2140 (((-867) (-867)) 69) (((-867)) 67)) (-2738 (((-867) (-867)) 71) (((-867)) 70)) (-1958 (((-867) (-867)) 73) (((-867)) 72)))
+(((-1256) (-10 -7 (-15 -2140 ((-867))) (-15 -2140 ((-867) (-867))) (-15 -2738 ((-867))) (-15 -2738 ((-867) (-867))) (-15 -1958 ((-867))) (-15 -1958 ((-867) (-867))) (-15 -2847 ((-867))) (-15 -2847 ((-867) (-867))) (-15 -3026 ((-914))) (-15 -3026 ((-914) (-914))) (-15 -2452 ((-638 (-765)))) (-15 -2452 ((-638 (-765)) (-638 (-765)))) (-15 -3821 ((-638 (-914)))) (-15 -3821 ((-638 (-914)) (-638 (-914)))) (-15 -1780 ((-1258))) (-15 -2447 ((-638 (-1148)))) (-15 -2447 ((-638 (-1148)) (-638 (-1148)))) (-15 -1339 ((-638 (-1148)))) (-15 -3286 ((-914))) (-15 -2240 ((-914))) (-15 -3286 ((-914) (-914))) (-15 -2240 ((-914) (-914))) (-15 -2088 ((-914) (-914))) (-15 -2088 ((-914))) (-15 -2504 ((-224) (-378))) (-15 -2504 ((-224))))) (T -1256))
+((-2504 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1256)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1256)))) (-2088 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-2240 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-3286 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-1339 (*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1256)))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1256)))) (-2447 (*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1256)))) (-1780 (*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1256)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1256)))) (-3821 (*1 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1256)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1256)))) (-2452 (*1 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1256)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-3026 (*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))) (-2847 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))) (-1958 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))) (-2738 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))) (-2738 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))) (-2140 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))) (-2140 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))))
+(-10 -7 (-15 -2140 ((-867))) (-15 -2140 ((-867) (-867))) (-15 -2738 ((-867))) (-15 -2738 ((-867) (-867))) (-15 -1958 ((-867))) (-15 -1958 ((-867) (-867))) (-15 -2847 ((-867))) (-15 -2847 ((-867) (-867))) (-15 -3026 ((-914))) (-15 -3026 ((-914) (-914))) (-15 -2452 ((-638 (-765)))) (-15 -2452 ((-638 (-765)) (-638 (-765)))) (-15 -3821 ((-638 (-914)))) (-15 -3821 ((-638 (-914)) (-638 (-914)))) (-15 -1780 ((-1258))) (-15 -2447 ((-638 (-1148)))) (-15 -2447 ((-638 (-1148)) (-638 (-1148)))) (-15 -1339 ((-638 (-1148)))) (-15 -3286 ((-914))) (-15 -2240 ((-914))) (-15 -3286 ((-914) (-914))) (-15 -2240 ((-914) (-914))) (-15 -2088 ((-914) (-914))) (-15 -2088 ((-914))) (-15 -2504 ((-224) (-378))) (-15 -2504 ((-224))))
+((-2207 (((-466) (-638 (-638 (-936 (-224)))) (-638 (-262))) 21) (((-466) (-638 (-638 (-936 (-224))))) 20) (((-466) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262))) 19)) (-1975 (((-1254) (-638 (-638 (-936 (-224)))) (-638 (-262))) 27) (((-1254) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262))) 26)) (-4022 (((-1254) (-466)) 38)))
+(((-1257) (-10 -7 (-15 -2207 ((-466) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -2207 ((-466) (-638 (-638 (-936 (-224)))))) (-15 -2207 ((-466) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -1975 ((-1254) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -1975 ((-1254) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -4022 ((-1254) (-466))))) (T -1257))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1254)) (-5 *1 (-1257)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-1257)))) (-1975 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-1257)))) (-2207 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262))) (-5 *2 (-466)) (-5 *1 (-1257)))) (-2207 (*1 *2 *3) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-466)) (-5 *1 (-1257)))) (-2207 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-466)) (-5 *1 (-1257)))))
+(-10 -7 (-15 -2207 ((-466) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -2207 ((-466) (-638 (-638 (-936 (-224)))))) (-15 -2207 ((-466) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -1975 ((-1254) (-638 (-638 (-936 (-224)))) (-867) (-867) (-914) (-638 (-262)))) (-15 -1975 ((-1254) (-638 (-638 (-936 (-224)))) (-638 (-262)))) (-15 -4022 ((-1254) (-466))))
+((-2609 (($) 7)) (-4022 (((-856) $) 10)))
+(((-1258) (-13 (-608 (-856)) (-10 -8 (-15 -2609 ($))))) (T -1258))
+((-2609 (*1 *1) (-5 *1 (-1258))))
+(-13 (-608 (-856)) (-10 -8 (-15 -2609 ($))))
+((-1833 (($ $ |#2|) 10)))
+(((-1259 |#1| |#2|) (-10 -8 (-15 -1833 (|#1| |#1| |#2|))) (-1260 |#2|) (-362)) (T -1259))
+NIL
+(-10 -8 (-15 -1833 (|#1| |#1| |#2|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3084 (((-133)) 28)) (-4022 (((-856) $) 11)) (-2211 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1833 (($ $ |#1|) 29)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1260 |#1|) (-139) (-362)) (T -1260))
+((-1833 (*1 *1 *1 *2) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-362)))) (-3084 (*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
+(-13 (-711 |t#1|) (-10 -8 (-15 -1833 ($ $ |t#1|)) (-15 -3084 ((-133)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1090) . T))
+((-3186 (((-638 (-1199 |#1|)) (-1166) (-1199 |#1|)) 74)) (-3156 (((-1146 (-1146 (-945 |#1|))) (-1166) (-1146 (-945 |#1|))) 53)) (-2860 (((-1 (-1146 (-1199 |#1|)) (-1146 (-1199 |#1|))) (-765) (-1199 |#1|) (-1146 (-1199 |#1|))) 64)) (-2283 (((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765)) 55)) (-1727 (((-1 (-1162 (-945 |#1|)) (-945 |#1|)) (-1166)) 29)) (-3321 (((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765)) 54)))
+(((-1261 |#1|) (-10 -7 (-15 -2283 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -3321 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -3156 ((-1146 (-1146 (-945 |#1|))) (-1166) (-1146 (-945 |#1|)))) (-15 -1727 ((-1 (-1162 (-945 |#1|)) (-945 |#1|)) (-1166))) (-15 -3186 ((-638 (-1199 |#1|)) (-1166) (-1199 |#1|))) (-15 -2860 ((-1 (-1146 (-1199 |#1|)) (-1146 (-1199 |#1|))) (-765) (-1199 |#1|) (-1146 (-1199 |#1|))))) (-362)) (T -1261))
+((-2860 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1199 *6)) (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1261 *6)) (-5 *5 (-1146 *4)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-638 (-1199 *5))) (-5 *1 (-1261 *5)) (-5 *4 (-1199 *5)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1162 (-945 *4)) (-945 *4))) (-5 *1 (-1261 *4)) (-4 *4 (-362)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1146 (-1146 (-945 *5)))) (-5 *1 (-1261 *5)) (-5 *4 (-1146 (-945 *5))))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4)))) (-5 *1 (-1261 *4)) (-4 *4 (-362)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4)))) (-5 *1 (-1261 *4)) (-4 *4 (-362)))))
+(-10 -7 (-15 -2283 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -3321 ((-1 (-1146 (-945 |#1|)) (-1146 (-945 |#1|))) (-765))) (-15 -3156 ((-1146 (-1146 (-945 |#1|))) (-1166) (-1146 (-945 |#1|)))) (-15 -1727 ((-1 (-1162 (-945 |#1|)) (-945 |#1|)) (-1166))) (-15 -3186 ((-638 (-1199 |#1|)) (-1166) (-1199 |#1|))) (-15 -2860 ((-1 (-1146 (-1199 |#1|)) (-1146 (-1199 |#1|))) (-765) (-1199 |#1|) (-1146 (-1199 |#1|)))))
+((-2529 (((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 75)) (-1625 (((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 74)))
+(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1625 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -2529 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|))) (-348) (-1229 |#1|) (-1229 |#2|) (-408 |#2| |#3|)) (T -1262))
+((-2529 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) (-5 *2 (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-1262 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))) (-1625 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -3711 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-1262 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
+(-10 -7 (-15 -1625 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -2529 ((-2 (|:| -3711 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)))
+((-4011 (((-112) $ $) NIL)) (-3045 (((-1125) $) 11)) (-2770 (((-1125) $) 9)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1263) (-13 (-1073) (-10 -8 (-15 -2770 ((-1125) $)) (-15 -3045 ((-1125) $))))) (T -1263))
+((-2770 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1263)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1263)))))
+(-13 (-1073) (-10 -8 (-15 -2770 ((-1125) $)) (-15 -3045 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3334 (((-1125) $) 9)) (-4022 (((-856) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-1733 (((-112) $ $) NIL)))
+(((-1264) (-13 (-1073) (-10 -8 (-15 -3334 ((-1125) $))))) (T -1264))
+((-3334 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
+(-13 (-1073) (-10 -8 (-15 -3334 ((-1125) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 42)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL)) (-3113 (((-112) $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-4022 (((-856) $) 63) (($ (-561)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-4259 (((-765)) NIL)) (-3636 (((-1258) (-765)) 16)) (-2211 (($) 27 T CONST)) (-2222 (($) 66 T CONST)) (-1733 (((-112) $ $) 68)) (-1833 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1824 (($ $) 70) (($ $ $) NIL)) (-1813 (($ $ $) 46)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171)))))
+(((-1265 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1833 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3636 ((-1258) (-765))))) (-1042) (-844) (-787) (-942 |#1| |#3| |#2|) (-638 |#2|) (-638 (-765)) (-765)) (T -1265))
+((-1833 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-787)) (-14 *6 (-638 *3)) (-5 *1 (-1265 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-942 *2 *4 *3)) (-14 *7 (-638 (-765))) (-14 *8 (-765)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-14 *8 (-638 *5)) (-5 *2 (-1258)) (-5 *1 (-1265 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-942 *4 *6 *5)) (-14 *9 (-638 *3)) (-14 *10 *3))))
+(-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1833 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3636 ((-1258) (-765)))))
+((-4011 (((-112) $ $) NIL)) (-1296 (((-638 (-2 (|:| -1461 $) (|:| -3333 (-638 |#4|)))) (-638 |#4|)) NIL)) (-3047 (((-638 $) (-638 |#4|)) 89)) (-1412 (((-638 |#3|) $) NIL)) (-1978 (((-112) $) NIL)) (-2701 (((-112) $) NIL (|has| |#1| (-553)))) (-3010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2427 ((|#4| |#4| $) NIL)) (-1289 (((-2 (|:| |under| $) (|:| -1388 $) (|:| |upper| $)) $ |#3|) NIL)) (-1630 (((-112) $ (-765)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1965 (($) NIL T CONST)) (-2002 (((-112) $) NIL (|has| |#1| (-553)))) (-1951 (((-112) $ $) NIL (|has| |#1| (-553)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-553)))) (-1361 (((-112) $) NIL (|has| |#1| (-553)))) (-3150 (((-638 |#4|) (-638 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-1825 (((-638 |#4|) (-638 |#4|) $) 25 (|has| |#1| (-553)))) (-3712 (((-638 |#4|) (-638 |#4|) $) NIL (|has| |#1| (-553)))) (-4017 (((-3 $ "failed") (-638 |#4|)) NIL)) (-3938 (($ (-638 |#4|)) NIL)) (-1445 (((-3 $ "failed") $) 71)) (-3320 ((|#4| |#4| $) 76)) (-1472 (($ $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-1489 (($ |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1693 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-2095 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3372 ((|#4| |#4| $) NIL)) (-3185 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4390))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4390))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1405 (((-2 (|:| -1461 (-638 |#4|)) (|:| -3333 (-638 |#4|))) $) NIL)) (-3571 (((-638 |#4|) $) NIL (|has| $ (-6 -4390)))) (-3033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2783 ((|#3| $) 77)) (-3744 (((-112) $ (-765)) NIL)) (-1305 (((-638 |#4|) $) 29 (|has| $ (-6 -4390)))) (-4087 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090))))) (-3733 (((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-638 |#4|)) 35)) (-2065 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4391)))) (-4120 (($ (-1 |#4| |#4|) $) NIL)) (-2209 (((-638 |#3|) $) NIL)) (-2866 (((-112) |#3| $) NIL)) (-2230 (((-112) $ (-765)) NIL)) (-1764 (((-1148) $) NIL)) (-1520 (((-3 |#4| "failed") $) NIL)) (-1981 (((-638 |#4|) $) 51)) (-2153 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1829 ((|#4| |#4| $) 75)) (-3863 (((-112) $ $) 86)) (-4318 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-553)))) (-4033 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-1714 (((-1110) $) NIL)) (-1433 (((-3 |#4| "failed") $) 70)) (-1330 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2916 (((-3 $ "failed") $ |#4|) NIL)) (-1416 (($ $ |#4|) NIL)) (-2123 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-1444 (($ $ (-638 |#4|) (-638 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090)))) (($ $ (-638 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1090))))) (-3016 (((-112) $ $) NIL)) (-1928 (((-112) $) 68)) (-3170 (($) 43)) (-2894 (((-765) $) NIL)) (-1724 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4390)) (|has| |#4| (-1090)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-4187 (($ $) NIL)) (-4174 (((-534) $) NIL (|has| |#4| (-609 (-534))))) (-4031 (($ (-638 |#4|)) NIL)) (-1755 (($ $ |#3|) NIL)) (-2794 (($ $ |#3|) NIL)) (-2074 (($ $) NIL)) (-1967 (($ $ |#3|) NIL)) (-4022 (((-856) $) NIL) (((-638 |#4|) $) 58)) (-4161 (((-765) $) NIL (|has| |#3| (-367)))) (-3030 (((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-638 |#4|)) 42)) (-1420 (((-638 $) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-638 $) (-638 |#4|)) 67)) (-2874 (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2735 (-638 |#4|))) "failed") (-638 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2024 (((-112) $ (-1 (-112) |#4| (-638 |#4|))) NIL)) (-3715 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4390)))) (-2524 (((-638 |#3|) $) NIL)) (-1751 (((-112) |#3| $) NIL)) (-1733 (((-112) $ $) NIL)) (-3498 (((-765) $) NIL (|has| $ (-6 -4390)))))
+(((-1266 |#1| |#2| |#3| |#4|) (-13 (-1198 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3733 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3733 ((-3 $ "failed") (-638 |#4|))) (-15 -3030 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3030 ((-3 $ "failed") (-638 |#4|))) (-15 -1420 ((-638 $) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1420 ((-638 $) (-638 |#4|))))) (-553) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1266))
+((-3733 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1266 *5 *6 *7 *8)))) (-3733 (*1 *1 *2) (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1266 *3 *4 *5 *6)))) (-3030 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1266 *5 *6 *7 *8)))) (-3030 (*1 *1 *2) (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1266 *3 *4 *5 *6)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-638 (-1266 *6 *7 *8 *9))) (-5 *1 (-1266 *6 *7 *8 *9)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-1266 *4 *5 *6 *7))) (-5 *1 (-1266 *4 *5 *6 *7)))))
+(-13 (-1198 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3733 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3733 ((-3 $ "failed") (-638 |#4|))) (-15 -3030 ((-3 $ "failed") (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3030 ((-3 $ "failed") (-638 |#4|))) (-15 -1420 ((-638 $) (-638 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1420 ((-638 $) (-638 |#4|)))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2249 (((-3 $ "failed") $ $) 19)) (-1965 (($) 17 T CONST)) (-3466 (((-3 $ "failed") $) 33)) (-3113 (((-112) $) 31)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#1|) 39)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
+(((-1267 |#1|) (-139) (-1042)) (T -1267))
+NIL
+(-13 (-1042) (-111 |t#1| |t#1|) (-611 |t#1|) (-10 -7 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-608 (-856)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T))
+((-4011 (((-112) $ $) 59)) (-2800 (((-112) $) NIL)) (-2813 (((-638 |#1|) $) 45)) (-2733 (($ $ (-765)) 39)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ (-765)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-1965 (($) NIL T CONST)) (-1852 (($ $ $) 62) (($ $ (-813 |#1|)) 48) (($ $ |#1|) 52)) (-4017 (((-3 (-813 |#1|) "failed") $) NIL)) (-3938 (((-813 |#1|) $) NIL)) (-1619 (($ $) 32)) (-3466 (((-3 $ "failed") $) NIL)) (-3986 (((-112) $) NIL)) (-3829 (($ $) NIL)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-3044 (($ (-813 |#1|) |#2|) 31)) (-2597 (($ $) 33)) (-3777 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 12)) (-2954 (((-813 |#1|) $) NIL)) (-2764 (((-813 |#1|) $) 34)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-3831 (($ $ $) 61) (($ $ (-813 |#1|)) 50) (($ $ |#1|) 54)) (-4343 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1578 (((-813 |#1|) $) 28)) (-1590 ((|#2| $) 30)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-2894 (((-765) $) 36)) (-3330 (((-112) $) 40)) (-1514 ((|#2| $) NIL)) (-4022 (((-856) $) NIL) (($ (-813 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-561)) NIL)) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-813 |#1|)) NIL)) (-4188 ((|#2| $ $) 64) ((|#2| $ (-813 |#1|)) NIL)) (-4259 (((-765)) NIL)) (-2211 (($) 13 T CONST)) (-2222 (($) 15 T CONST)) (-3126 (((-638 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1733 (((-112) $ $) 38)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 22)) (** (($ $ (-765)) NIL) (($ $ (-914)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-813 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1268 |#1| |#2|) (-13 (-381 |#2| (-813 |#1|)) (-1274 |#1| |#2|)) (-844) (-1042)) (T -1268))
+NIL
+(-13 (-381 |#2| (-813 |#1|)) (-1274 |#1| |#2|))
+((-4348 ((|#3| |#3| (-765)) 23)) (-3440 ((|#3| |#3| (-765)) 27)) (-1945 ((|#3| |#3| |#3| (-765)) 28)))
+(((-1269 |#1| |#2| |#3|) (-10 -7 (-15 -3440 (|#3| |#3| (-765))) (-15 -4348 (|#3| |#3| (-765))) (-15 -1945 (|#3| |#3| |#3| (-765)))) (-13 (-1042) (-711 (-406 (-561)))) (-844) (-1274 |#2| |#1|)) (T -1269))
+((-1945 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561))))) (-4 *5 (-844)) (-5 *1 (-1269 *4 *5 *2)) (-4 *2 (-1274 *5 *4)))) (-4348 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561))))) (-4 *5 (-844)) (-5 *1 (-1269 *4 *5 *2)) (-4 *2 (-1274 *5 *4)))) (-3440 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561))))) (-4 *5 (-844)) (-5 *1 (-1269 *4 *5 *2)) (-4 *2 (-1274 *5 *4)))))
+(-10 -7 (-15 -3440 (|#3| |#3| (-765))) (-15 -4348 (|#3| |#3| (-765))) (-15 -1945 (|#3| |#3| |#3| (-765))))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2813 (((-638 |#1|) $) 41)) (-2249 (((-3 $ "failed") $ $) 19)) (-3984 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-1965 (($) 17 T CONST)) (-1852 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-4017 (((-3 (-813 |#1|) "failed") $) 65)) (-3938 (((-813 |#1|) $) 66)) (-3466 (((-3 $ "failed") $) 33)) (-3986 (((-112) $) 46)) (-3829 (($ $) 45)) (-3113 (((-112) $) 31)) (-2092 (((-112) $) 51)) (-3044 (($ (-813 |#1|) |#2|) 52)) (-2597 (($ $) 50)) (-3777 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-2954 (((-813 |#1|) $) 62)) (-4120 (($ (-1 |#2| |#2|) $) 42)) (-3831 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-3330 (((-112) $) 48)) (-1514 ((|#2| $) 47)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4188 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1270 |#1| |#2|) (-139) (-844) (-1042)) (T -1270))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-2954 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4))))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-813 *4)) (-4 *1 (-1270 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-4188 (*1 *2 *1 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-3831 (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-1852 (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-1852 (*1 *1 *1 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-3044 (*1 *1 *2 *3) (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1270 *4 *3)) (-4 *3 (-1042)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-2597 (*1 *1 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4022 (*1 *1 *2) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-3829 (*1 *1 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)) (-4 *3 (-171)))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-4 *4 (-171)))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-638 *3)))))
+(-13 (-1042) (-1267 |t#2|) (-1031 (-813 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2954 ((-813 |t#1|) $)) (-15 -3777 ((-2 (|:| |k| (-813 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4188 (|t#2| $ (-813 |t#1|))) (-15 -4188 (|t#2| $ $)) (-15 -3831 ($ $ |t#1|)) (-15 -3831 ($ $ (-813 |t#1|))) (-15 -3831 ($ $ $)) (-15 -1852 ($ $ |t#1|)) (-15 -1852 ($ $ (-813 |t#1|))) (-15 -1852 ($ $ $)) (-15 -3044 ($ (-813 |t#1|) |t#2|)) (-15 -2092 ((-112) $)) (-15 -2597 ($ $)) (-15 -4022 ($ |t#1|)) (-15 -3330 ((-112) $)) (-15 -1514 (|t#2| $)) (-15 -3986 ((-112) $)) (-15 -3829 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -3984 ($ $ $)) (-15 -3984 ($ $ (-765)))) |%noBranch|) (-15 -4120 ($ (-1 |t#2| |t#2|) $)) (-15 -2813 ((-638 |t#1|) $)) (IF (|has| |t#2| (-6 -4383)) (-6 -4383) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 #0=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #0#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1267 |#2|) . T))
+((-3356 (((-112) $) 14)) (-1751 (((-112) $) 13)) (-4285 (($ $) 18) (($ $ (-765)) 19)))
+(((-1271 |#1| |#2|) (-10 -8 (-15 -4285 (|#1| |#1| (-765))) (-15 -4285 (|#1| |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1751 ((-112) |#1|))) (-1272 |#2|) (-362)) (T -1271))
+NIL
+(-10 -8 (-15 -4285 (|#1| |#1| (-765))) (-15 -4285 (|#1| |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1751 ((-112) |#1|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-1769 (((-2 (|:| -3027 $) (|:| -4377 $) (|:| |associate| $)) $) 42)) (-2851 (($ $) 41)) (-3359 (((-112) $) 39)) (-3356 (((-112) $) 95)) (-2368 (((-765)) 91)) (-2249 (((-3 $ "failed") $ $) 19)) (-1591 (($ $) 74)) (-3422 (((-417 $) $) 73)) (-1671 (((-112) $ $) 60)) (-1965 (($) 17 T CONST)) (-4017 (((-3 |#1| "failed") $) 102)) (-3938 ((|#1| $) 103)) (-1793 (($ $ $) 56)) (-3466 (((-3 $ "failed") $) 33)) (-1774 (($ $ $) 57)) (-2371 (((-2 (|:| -4188 (-638 $)) (|:| -3158 $)) (-638 $)) 52)) (-1575 (($ $ (-765)) 88 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2737 (((-112) $) 72)) (-4163 (((-827 (-914)) $) 85 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3113 (((-112) $) 31)) (-2563 (((-3 (-638 $) "failed") (-638 $) $) 53)) (-1582 (($ $ $) 47) (($ (-638 $)) 46)) (-1764 (((-1148) $) 9)) (-1540 (($ $) 71)) (-1792 (((-112) $) 94)) (-1714 (((-1110) $) 10)) (-2064 (((-1162 $) (-1162 $) (-1162 $)) 45)) (-1623 (($ $ $) 49) (($ (-638 $)) 48)) (-1657 (((-417 $) $) 75)) (-4150 (((-827 (-914))) 92)) (-4252 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3158 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1756 (((-3 $ "failed") $ $) 43)) (-2118 (((-3 (-638 $) "failed") (-638 $) $) 51)) (-3569 (((-765) $) 59)) (-1971 (((-2 (|:| -1307 $) (|:| -1693 $)) $ $) 58)) (-1913 (((-3 (-765) "failed") $ $) 86 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3084 (((-133)) 100)) (-2894 (((-827 (-914)) $) 93)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ $) 44) (($ (-406 (-561))) 67) (($ |#1|) 101)) (-1760 (((-3 $ "failed") $) 84 (-4007 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4259 (((-765)) 28)) (-3168 (((-112) $ $) 40)) (-1751 (((-112) $) 96)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-4285 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-1733 (((-112) $ $) 6)) (-1833 (($ $ $) 66) (($ $ |#1|) 99)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32) (($ $ (-561)) 70)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ $ (-406 (-561))) 69) (($ (-406 (-561)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+(((-1272 |#1|) (-139) (-362)) (T -1272))
+((-1751 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914))))) (-4150 (*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914))))) (-2368 (*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-765)))) (-4285 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-4 *3 (-367)))))
+(-13 (-362) (-1031 |t#1|) (-1260 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -1751 ((-112) $)) (-15 -3356 ((-112) $)) (-15 -1792 ((-112) $)) (-15 -2894 ((-827 (-914)) $)) (-15 -4150 ((-827 (-914)))) (-15 -2368 ((-765))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -4285 ($ $)) (-15 -4285 ($ $ (-765)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-561))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4007 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #0#) . T) ((-611 (-561)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-856)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -4007 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-450) . T) ((-553) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #0#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-913) . T) ((-1031 |#1|) . T) ((-1048 #0#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1209) . T) ((-1260 |#1|) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2813 (((-638 |#1|) $) 85)) (-2733 (($ $ (-765)) 88)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-765)) NIL (|has| |#2| (-171)))) (-1965 (($) NIL T CONST)) (-1852 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-4017 (((-3 (-813 |#1|) "failed") $) NIL) (((-3 (-886 |#1|) "failed") $) NIL)) (-3938 (((-813 |#1|) $) NIL) (((-886 |#1|) $) NIL)) (-1619 (($ $) 87)) (-3466 (((-3 $ "failed") $) NIL)) (-3986 (((-112) $) 76)) (-3829 (($ $) 80)) (-3615 (($ $ $ (-765)) 89)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-3044 (($ (-813 |#1|) |#2|) NIL) (($ (-886 |#1|) |#2|) 25)) (-2597 (($ $) 102)) (-3777 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2954 (((-813 |#1|) $) NIL)) (-2764 (((-813 |#1|) $) NIL)) (-4120 (($ (-1 |#2| |#2|) $) NIL)) (-3831 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-4348 (($ $ (-765)) 96 (|has| |#2| (-711 (-406 (-561)))))) (-4343 (((-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1578 (((-886 |#1|) $) 69)) (-1590 ((|#2| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3440 (($ $ (-765)) 93 (|has| |#2| (-711 (-406 (-561)))))) (-2894 (((-765) $) 86)) (-3330 (((-112) $) 70)) (-1514 ((|#2| $) 74)) (-4022 (((-856) $) 56) (($ (-561)) NIL) (($ |#2|) 50) (($ (-813 |#1|)) NIL) (($ |#1|) 58) (($ (-886 |#1|)) NIL) (($ (-657 |#1| |#2|)) 42) (((-1268 |#1| |#2|) $) 63) (((-1277 |#1| |#2|) $) 68)) (-2742 (((-638 |#2|) $) NIL)) (-2634 ((|#2| $ (-886 |#1|)) NIL)) (-4188 ((|#2| $ (-813 |#1|)) NIL) ((|#2| $ $) NIL)) (-4259 (((-765)) NIL)) (-2211 (($) 21 T CONST)) (-2222 (($) 24 T CONST)) (-3126 (((-638 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3314 (((-3 (-657 |#1| |#2|) "failed") $) 101)) (-1733 (((-112) $ $) 64)) (-1824 (($ $) 95) (($ $ $) 94)) (-1813 (($ $ $) 20)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-886 |#1|)) NIL)))
+(((-1273 |#1| |#2|) (-13 (-1274 |#1| |#2|) (-381 |#2| (-886 |#1|)) (-10 -8 (-15 -4022 ($ (-657 |#1| |#2|))) (-15 -4022 ((-1268 |#1| |#2|) $)) (-15 -4022 ((-1277 |#1| |#2|) $)) (-15 -3314 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -3615 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-561)))) (PROGN (-15 -3440 ($ $ (-765))) (-15 -4348 ($ $ (-765)))) |%noBranch|))) (-844) (-171)) (T -1273))
+((-4022 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-1273 *3 *4)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1268 *3 *4)) (-5 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-3314 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-3615 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-3440 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1273 *3 *4)) (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))) (-4348 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1273 *3 *4)) (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))))
+(-13 (-1274 |#1| |#2|) (-381 |#2| (-886 |#1|)) (-10 -8 (-15 -4022 ($ (-657 |#1| |#2|))) (-15 -4022 ((-1268 |#1| |#2|) $)) (-15 -4022 ((-1277 |#1| |#2|) $)) (-15 -3314 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -3615 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-561)))) (PROGN (-15 -3440 ($ $ (-765))) (-15 -4348 ($ $ (-765)))) |%noBranch|)))
+((-4011 (((-112) $ $) 7)) (-2800 (((-112) $) 16)) (-2813 (((-638 |#1|) $) 41)) (-2733 (($ $ (-765)) 74)) (-2249 (((-3 $ "failed") $ $) 19)) (-3984 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-1965 (($) 17 T CONST)) (-1852 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-4017 (((-3 (-813 |#1|) "failed") $) 65)) (-3938 (((-813 |#1|) $) 66)) (-3466 (((-3 $ "failed") $) 33)) (-3986 (((-112) $) 46)) (-3829 (($ $) 45)) (-3113 (((-112) $) 31)) (-2092 (((-112) $) 51)) (-3044 (($ (-813 |#1|) |#2|) 52)) (-2597 (($ $) 50)) (-3777 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-2954 (((-813 |#1|) $) 62)) (-2764 (((-813 |#1|) $) 76)) (-4120 (($ (-1 |#2| |#2|) $) 42)) (-3831 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-1764 (((-1148) $) 9)) (-1714 (((-1110) $) 10)) (-2894 (((-765) $) 75)) (-3330 (((-112) $) 48)) (-1514 ((|#2| $) 47)) (-4022 (((-856) $) 11) (($ (-561)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4188 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-4259 (((-765)) 28)) (-2211 (($) 18 T CONST)) (-2222 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1824 (($ $) 22) (($ $ $) 21)) (-1813 (($ $ $) 14)) (** (($ $ (-914)) 25) (($ $ (-765)) 32)) (* (($ (-914) $) 13) (($ (-765) $) 15) (($ (-561) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+(((-1274 |#1| |#2|) (-139) (-844) (-1042)) (T -1274))
+((-2764 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-2733 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
+(-13 (-1270 |t#1| |t#2|) (-10 -8 (-15 -2764 ((-813 |t#1|) $)) (-15 -2894 ((-765) $)) (-15 -2733 ($ $ (-765)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-561)) . T) ((-611 #0=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-856)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #0#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1090) . T) ((-1267 |#2|) . T) ((-1270 |#1| |#2|) . T))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2813 (((-638 (-1166)) $) NIL)) (-3855 (($ (-1268 (-1166) |#1|)) NIL)) (-2733 (($ $ (-765)) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-765)) NIL (|has| |#1| (-171)))) (-1965 (($) NIL T CONST)) (-1852 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-4017 (((-3 (-813 (-1166)) "failed") $) NIL)) (-3938 (((-813 (-1166)) $) NIL)) (-3466 (((-3 $ "failed") $) NIL)) (-3986 (((-112) $) NIL)) (-3829 (($ $) NIL)) (-3113 (((-112) $) NIL)) (-2092 (((-112) $) NIL)) (-3044 (($ (-813 (-1166)) |#1|) NIL)) (-2597 (($ $) NIL)) (-3777 (((-2 (|:| |k| (-813 (-1166))) (|:| |c| |#1|)) $) NIL)) (-2954 (((-813 (-1166)) $) NIL)) (-2764 (((-813 (-1166)) $) NIL)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-3831 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3529 (((-1268 (-1166) |#1|) $) NIL)) (-2894 (((-765) $) NIL)) (-3330 (((-112) $) NIL)) (-1514 ((|#1| $) NIL)) (-4022 (((-856) $) NIL) (($ (-561)) NIL) (($ |#1|) NIL) (($ (-813 (-1166))) NIL) (($ (-1166)) NIL)) (-4188 ((|#1| $ (-813 (-1166))) NIL) ((|#1| $ $) NIL)) (-4259 (((-765)) NIL)) (-2211 (($) NIL T CONST)) (-4044 (((-638 (-2 (|:| |k| (-1166)) (|:| |c| $))) $) NIL)) (-2222 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) NIL)) (** (($ $ (-914)) NIL) (($ $ (-765)) NIL)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1166) $) NIL)))
+(((-1275 |#1|) (-13 (-1274 (-1166) |#1|) (-10 -8 (-15 -3529 ((-1268 (-1166) |#1|) $)) (-15 -3855 ($ (-1268 (-1166) |#1|))) (-15 -4044 ((-638 (-2 (|:| |k| (-1166)) (|:| |c| $))) $)))) (-1042)) (T -1275))
+((-3529 (*1 *2 *1) (-12 (-5 *2 (-1268 (-1166) *3)) (-5 *1 (-1275 *3)) (-4 *3 (-1042)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-1268 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1275 *3)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| (-1166)) (|:| |c| (-1275 *3))))) (-5 *1 (-1275 *3)) (-4 *3 (-1042)))))
+(-13 (-1274 (-1166) |#1|) (-10 -8 (-15 -3529 ((-1268 (-1166) |#1|) $)) (-15 -3855 ($ (-1268 (-1166) |#1|))) (-15 -4044 ((-638 (-2 (|:| |k| (-1166)) (|:| |c| $))) $))))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) NIL)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1965 (($) NIL T CONST)) (-4017 (((-3 |#2| "failed") $) NIL)) (-3938 ((|#2| $) NIL)) (-1619 (($ $) NIL)) (-3466 (((-3 $ "failed") $) 35)) (-3986 (((-112) $) 30)) (-3829 (($ $) 31)) (-3113 (((-112) $) NIL)) (-2067 (((-765) $) NIL)) (-3371 (((-638 $) $) NIL)) (-2092 (((-112) $) NIL)) (-3044 (($ |#2| |#1|) NIL)) (-2954 ((|#2| $) 19)) (-2764 ((|#2| $) 16)) (-4120 (($ (-1 |#1| |#1|) $) NIL)) (-4343 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1578 ((|#2| $) NIL)) (-1590 ((|#1| $) NIL)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3330 (((-112) $) 27)) (-1514 ((|#1| $) 28)) (-4022 (((-856) $) 54) (($ (-561)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-2742 (((-638 |#1|) $) NIL)) (-2634 ((|#1| $ |#2|) NIL)) (-4188 ((|#1| $ |#2|) 24)) (-4259 (((-765)) 14)) (-2211 (($) 25 T CONST)) (-2222 (($) 11 T CONST)) (-3126 (((-638 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1733 (((-112) $ $) 26)) (-1833 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-1824 (($ $) NIL) (($ $ $) NIL)) (-1813 (($ $ $) 43)) (** (($ $ (-914)) NIL) (($ $ (-765)) 45)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3498 (((-765) $) 15)))
+(((-1276 |#1| |#2|) (-13 (-1042) (-1267 |#1|) (-381 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3498 ((-765) $)) (-15 -2764 (|#2| $)) (-15 -2954 (|#2| $)) (-15 -1619 ($ $)) (-15 -4188 (|#1| $ |#2|)) (-15 -3330 ((-112) $)) (-15 -1514 (|#1| $)) (-15 -3986 ((-112) $)) (-15 -3829 ($ $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1833 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4383)) (-6 -4383) |%noBranch|) (IF (|has| |#1| (-6 -4387)) (-6 -4387) |%noBranch|) (IF (|has| |#1| (-6 -4388)) (-6 -4388) |%noBranch|))) (-1042) (-840)) (T -1276))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4120 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-1276 *3 *4)) (-4 *4 (-840)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-2764 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1276 *3 *2)) (-4 *3 (-1042)))) (-2954 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1276 *3 *2)) (-4 *3 (-1042)))) (-4188 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-1276 *2 *3)) (-4 *3 (-840)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-1514 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-1276 *2 *3)) (-4 *3 (-840)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-3829 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-1833 (*1 *1 *1 *2) (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(-13 (-1042) (-1267 |#1|) (-381 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3498 ((-765) $)) (-15 -2764 (|#2| $)) (-15 -2954 (|#2| $)) (-15 -1619 ($ $)) (-15 -4188 (|#1| $ |#2|)) (-15 -3330 ((-112) $)) (-15 -1514 (|#1| $)) (-15 -3986 ((-112) $)) (-15 -3829 ($ $)) (-15 -4120 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1833 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4383)) (-6 -4383) |%noBranch|) (IF (|has| |#1| (-6 -4387)) (-6 -4387) |%noBranch|) (IF (|has| |#1| (-6 -4388)) (-6 -4388) |%noBranch|)))
+((-4011 (((-112) $ $) 26)) (-2800 (((-112) $) NIL)) (-2813 (((-638 |#1|) $) 120)) (-3855 (($ (-1268 |#1| |#2|)) 44)) (-2733 (($ $ (-765)) 32)) (-2249 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-765)) 46 (|has| |#2| (-171)))) (-1965 (($) NIL T CONST)) (-1852 (($ $ |#1|) 102) (($ $ (-813 |#1|)) 103) (($ $ $) 25)) (-4017 (((-3 (-813 |#1|) "failed") $) NIL)) (-3938 (((-813 |#1|) $) NIL)) (-3466 (((-3 $ "failed") $) 110)) (-3986 (((-112) $) 105)) (-3829 (($ $) 106)) (-3113 (((-112) $) NIL)) (-2092 (((-112) $) NIL)) (-3044 (($ (-813 |#1|) |#2|) 19)) (-2597 (($ $) NIL)) (-3777 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2954 (((-813 |#1|) $) 111)) (-2764 (((-813 |#1|) $) 114)) (-4120 (($ (-1 |#2| |#2|) $) 119)) (-3831 (($ $ |#1|) 100) (($ $ (-813 |#1|)) 101) (($ $ $) 56)) (-1764 (((-1148) $) NIL)) (-1714 (((-1110) $) NIL)) (-3529 (((-1268 |#1| |#2|) $) 84)) (-2894 (((-765) $) 117)) (-3330 (((-112) $) 70)) (-1514 ((|#2| $) 28)) (-4022 (((-856) $) 63) (($ (-561)) 77) (($ |#2|) 74) (($ (-813 |#1|)) 17) (($ |#1|) 73)) (-4188 ((|#2| $ (-813 |#1|)) 104) ((|#2| $ $) 27)) (-4259 (((-765)) 108)) (-2211 (($) 14 T CONST)) (-4044 (((-638 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2222 (($) 29 T CONST)) (-1733 (((-112) $ $) 13)) (-1824 (($ $) 88) (($ $ $) 91)) (-1813 (($ $ $) 55)) (** (($ $ (-914)) NIL) (($ $ (-765)) 49)) (* (($ (-914) $) NIL) (($ (-765) $) 47) (($ (-561) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1277 |#1| |#2|) (-13 (-1274 |#1| |#2|) (-10 -8 (-15 -3529 ((-1268 |#1| |#2|) $)) (-15 -3855 ($ (-1268 |#1| |#2|))) (-15 -4044 ((-638 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-844) (-1042)) (T -1277))
+((-3529 (*1 *2 *1) (-12 (-5 *2 (-1268 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-1268 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *1 (-1277 *3 *4)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-638 (-2 (|:| |k| *3) (|:| |c| (-1277 *3 *4))))) (-5 *1 (-1277 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
+(-13 (-1274 |#1| |#2|) (-10 -8 (-15 -3529 ((-1268 |#1| |#2|) $)) (-15 -3855 ($ (-1268 |#1| |#2|))) (-15 -4044 ((-638 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-3187 (((-638 (-1146 |#1|)) (-1 (-638 (-1146 |#1|)) (-638 (-1146 |#1|))) (-561)) 15) (((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|))) 11)))
+(((-1278 |#1|) (-10 -7 (-15 -3187 ((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|)))) (-15 -3187 ((-638 (-1146 |#1|)) (-1 (-638 (-1146 |#1|)) (-638 (-1146 |#1|))) (-561)))) (-1205)) (T -1278))
+((-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-638 (-1146 *5)) (-638 (-1146 *5)))) (-5 *4 (-561)) (-5 *2 (-638 (-1146 *5))) (-5 *1 (-1278 *5)) (-4 *5 (-1205)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1 (-1146 *4) (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1278 *4)) (-4 *4 (-1205)))))
+(-10 -7 (-15 -3187 ((-1146 |#1|) (-1 (-1146 |#1|) (-1146 |#1|)))) (-15 -3187 ((-638 (-1146 |#1|)) (-1 (-638 (-1146 |#1|)) (-638 (-1146 |#1|))) (-561))))
+((-3378 (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|))) 147) (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112)) 146) (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112)) 145) (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112) (-112)) 144) (((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-1039 |#1| |#2|)) 129)) (-4270 (((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|))) 71) (((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112)) 70) (((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112) (-112)) 69)) (-3422 (((-638 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|)) 60)) (-1748 (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|))) 114) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112)) 113) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112)) 112) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112) (-112)) 111) (((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 106)) (-2018 (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|))) 119) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112)) 118) (((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112)) 117) (((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 116)) (-4174 (((-638 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) 97) (((-1162 (-1017 (-406 |#1|))) (-1162 |#1|)) 88) (((-945 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|))) 95) (((-945 (-1017 (-406 |#1|))) (-945 |#1|)) 93) (((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|))) 32)))
+(((-1279 |#1| |#2| |#3|) (-10 -7 (-15 -4270 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112) (-112))) (-15 -4270 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112))) (-15 -4270 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-1039 |#1| |#2|))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -3422 ((-638 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4174 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4174 ((-945 (-1017 (-406 |#1|))) (-945 |#1|))) (-15 -4174 ((-945 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4174 ((-1162 (-1017 (-406 |#1|))) (-1162 |#1|))) (-15 -4174 ((-638 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))))) (-13 (-842) (-306) (-146) (-1015)) (-638 (-1166)) (-638 (-1166))) (T -1279))
+((-4174 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-774 *4 (-858 *6)))) (-5 *1 (-1279 *4 *5 *6)) (-14 *5 (-638 (-1166))))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1162 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-1162 (-1017 (-406 *4)))) (-5 *1 (-1279 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *6))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166))) (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1279 *4 *5 *6)) (-14 *5 (-638 (-1166))))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1279 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *5))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))) (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1279 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-2018 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-2018 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1279 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-1748 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-1748 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-3378 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *4)) (|:| -3969 (-638 (-945 *4)))))) (-5 *1 (-1279 *4 *5 *6)) (-5 *3 (-638 (-945 *4))) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5)))))) (-5 *1 (-1279 *5 *6 *7)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-3378 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5)))))) (-5 *1 (-1279 *5 *6 *7)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-3378 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5)))))) (-5 *1 (-1279 *5 *6 *7)) (-5 *3 (-638 (-945 *5))) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-2 (|:| -3682 (-1162 *4)) (|:| -3969 (-638 (-945 *4)))))) (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166))))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-1039 *4 *5))) (-5 *1 (-1279 *4 *5 *6)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))) (-4270 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1279 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))) (-4270 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015))) (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1279 *5 *6 *7)) (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166))))))
+(-10 -7 (-15 -4270 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112) (-112))) (-15 -4270 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)) (-112))) (-15 -4270 ((-638 (-1039 |#1| |#2|)) (-638 (-945 |#1|)))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-1039 |#1| |#2|))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)) (-112))) (-15 -3378 ((-638 (-2 (|:| -3682 (-1162 |#1|)) (|:| -3969 (-638 (-945 |#1|))))) (-638 (-945 |#1|)))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112) (-112))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -1748 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112) (-112))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)) (-112))) (-15 -2018 ((-638 (-638 (-1017 (-406 |#1|)))) (-638 (-945 |#1|)))) (-15 -3422 ((-638 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4174 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4174 ((-945 (-1017 (-406 |#1|))) (-945 |#1|))) (-15 -4174 ((-945 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4174 ((-1162 (-1017 (-406 |#1|))) (-1162 |#1|))) (-15 -4174 ((-638 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|))))))
+((-2981 (((-3 (-1253 (-406 (-561))) "failed") (-1253 |#1|) |#1|) 21)) (-1790 (((-112) (-1253 |#1|)) 12)) (-3349 (((-3 (-1253 (-561)) "failed") (-1253 |#1|)) 16)))
+(((-1280 |#1|) (-10 -7 (-15 -1790 ((-112) (-1253 |#1|))) (-15 -3349 ((-3 (-1253 (-561)) "failed") (-1253 |#1|))) (-15 -2981 ((-3 (-1253 (-406 (-561))) "failed") (-1253 |#1|) |#1|))) (-634 (-561))) (T -1280))
+((-2981 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-1253 (-406 (-561)))) (-5 *1 (-1280 *4)))) (-3349 (*1 *2 *3) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-1253 (-561))) (-5 *1 (-1280 *4)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-112)) (-5 *1 (-1280 *4)))))
+(-10 -7 (-15 -1790 ((-112) (-1253 |#1|))) (-15 -3349 ((-3 (-1253 (-561)) "failed") (-1253 |#1|))) (-15 -2981 ((-3 (-1253 (-406 (-561))) "failed") (-1253 |#1|) |#1|)))
+((-4011 (((-112) $ $) NIL)) (-2800 (((-112) $) 11)) (-2249 (((-3 $ "failed") $ $) NIL)) (-1393 (((-765)) 8)) (-1965 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) 43)) (-1332 (($) 36)) (-3113 (((-112) $) NIL)) (-1663 (((-3 $ "failed") $) 29)) (-3198 (((-914) $) 15)) (-1764 (((-1148) $) NIL)) (-3721 (($) 25 T CONST)) (-2413 (($ (-914)) 37)) (-1714 (((-1110) $) NIL)) (-4174 (((-561) $) 13)) (-4022 (((-856) $) 22) (($ (-561)) 19)) (-4259 (((-765)) 9)) (-2211 (($) 23 T CONST)) (-2222 (($) 24 T CONST)) (-1733 (((-112) $ $) 27)) (-1824 (($ $) 38) (($ $ $) 35)) (-1813 (($ $ $) 26)) (** (($ $ (-914)) NIL) (($ $ (-765)) 40)) (* (($ (-914) $) NIL) (($ (-765) $) NIL) (($ (-561) $) 32) (($ $ $) 31)))
+(((-1281 |#1|) (-13 (-171) (-367) (-609 (-561)) (-1141)) (-914)) (T -1281))
+NIL
+(-13 (-171) (-367) (-609 (-561)) (-1141))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3189391 3189396 3189401 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3189376 3189381 3189386 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3189361 3189366 3189371 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3189346 3189351 3189356 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1281 3188522 3189221 3189298 "ZMOD" 3189303 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1280 3187632 3187796 3188005 "ZLINDEP" 3188354 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1279 3176936 3178700 3180672 "ZDSOLVE" 3185762 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1278 3176182 3176323 3176512 "YSTREAM" 3176782 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1277 3173993 3175483 3175687 "XRPOLY" 3176025 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1276 3170581 3171864 3172439 "XPR" 3173465 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1275 3168337 3169912 3170116 "XPOLY" 3170412 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1274 3166128 3167462 3167517 "XPOLYC" 3167805 NIL XPOLYC (NIL T T) -9 NIL 3167918 NIL) (-1273 3162546 3164645 3165033 "XPBWPOLY" 3165786 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1272 3158457 3160709 3160751 "XF" 3161372 NIL XF (NIL T) -9 NIL 3161772 NIL) (-1271 3158078 3158166 3158335 "XF-" 3158340 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1270 3153412 3154667 3154722 "XFALG" 3156894 NIL XFALG (NIL T T) -9 NIL 3157683 NIL) (-1269 3152545 3152649 3152854 "XEXPPKG" 3153304 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1268 3150689 3152395 3152491 "XDPOLY" 3152496 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1267 3149634 3150200 3150243 "XALG" 3150248 NIL XALG (NIL T) -9 NIL 3150359 NIL) (-1266 3143103 3147611 3148105 "WUTSET" 3149226 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1265 3141394 3142155 3142478 "WP" 3142914 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1264 3141023 3141216 3141286 "WHILEAST" 3141346 T WHILEAST (NIL) -8 NIL NIL NIL) (-1263 3140522 3140740 3140834 "WHEREAST" 3140951 T WHEREAST (NIL) -8 NIL NIL NIL) (-1262 3139408 3139606 3139901 "WFFINTBS" 3140319 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1261 3137312 3137739 3138201 "WEIER" 3138980 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1260 3136459 3136883 3136925 "VSPACE" 3137061 NIL VSPACE (NIL T) -9 NIL 3137135 NIL) (-1259 3136297 3136324 3136415 "VSPACE-" 3136420 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1258 3136105 3136148 3136216 "VOID" 3136251 T VOID (NIL) -8 NIL NIL NIL) (-1257 3134241 3134600 3135006 "VIEW" 3135721 T VIEW (NIL) -7 NIL NIL NIL) (-1256 3130666 3131304 3132041 "VIEWDEF" 3133526 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1255 3120002 3122214 3124387 "VIEW3D" 3128515 T VIEW3D (NIL) -8 NIL NIL NIL) (-1254 3112284 3113913 3115492 "VIEW2D" 3118445 T VIEW2D (NIL) -8 NIL NIL NIL) (-1253 3107688 3112054 3112146 "VECTOR" 3112227 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1252 3106265 3106524 3106842 "VECTOR2" 3107418 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1251 3099792 3104049 3104092 "VECTCAT" 3105085 NIL VECTCAT (NIL T) -9 NIL 3105671 NIL) (-1250 3098806 3099060 3099450 "VECTCAT-" 3099455 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1249 3098287 3098457 3098577 "VARIABLE" 3098721 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1248 3098220 3098225 3098255 "UTYPE" 3098260 T UTYPE (NIL) -9 NIL NIL NIL) (-1247 3097050 3097204 3097466 "UTSODETL" 3098046 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1246 3094490 3094950 3095474 "UTSODE" 3096591 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1245 3086366 3092116 3092605 "UTS" 3094059 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1244 3077609 3082933 3082976 "UTSCAT" 3084088 NIL UTSCAT (NIL T) -9 NIL 3084845 NIL) (-1243 3074964 3075679 3076668 "UTSCAT-" 3076673 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1242 3074591 3074634 3074767 "UTS2" 3074915 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1241 3068864 3071429 3071472 "URAGG" 3073542 NIL URAGG (NIL T) -9 NIL 3074265 NIL) (-1240 3065803 3066666 3067789 "URAGG-" 3067794 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1239 3061527 3064417 3064889 "UPXSSING" 3065467 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1238 3053629 3060774 3061047 "UPXS" 3061312 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1237 3046742 3053533 3053605 "UPXSCONS" 3053610 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1236 3036987 3043737 3043799 "UPXSCCA" 3044373 NIL UPXSCCA (NIL T T) -9 NIL 3044606 NIL) (-1235 3036625 3036710 3036884 "UPXSCCA-" 3036889 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1234 3026723 3033246 3033289 "UPXSCAT" 3033937 NIL UPXSCAT (NIL T) -9 NIL 3034545 NIL) (-1233 3026153 3026232 3026411 "UPXS2" 3026638 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1232 3024807 3025060 3025411 "UPSQFREE" 3025896 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1231 3018595 3021609 3021664 "UPSCAT" 3022825 NIL UPSCAT (NIL T T) -9 NIL 3023599 NIL) (-1230 3017799 3018006 3018333 "UPSCAT-" 3018338 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1229 3003649 3011647 3011690 "UPOLYC" 3013791 NIL UPOLYC (NIL T) -9 NIL 3015012 NIL) (-1228 2994978 2997403 3000550 "UPOLYC-" 3000555 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1227 2994605 2994648 2994781 "UPOLYC2" 2994929 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1226 2986179 2994288 2994417 "UP" 2994524 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1225 2985518 2985625 2985789 "UPMP" 2986068 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1224 2985071 2985152 2985291 "UPDIVP" 2985431 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1223 2983639 2983888 2984204 "UPDECOMP" 2984820 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1222 2982874 2982986 2983171 "UPCDEN" 2983523 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1221 2982393 2982462 2982611 "UP2" 2982799 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1220 2980910 2981597 2981874 "UNISEG" 2982151 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1219 2980125 2980252 2980457 "UNISEG2" 2980753 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1218 2979185 2979365 2979591 "UNIFACT" 2979941 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1217 2963152 2978362 2978613 "ULS" 2978992 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1216 2951192 2963056 2963128 "ULSCONS" 2963133 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1215 2933808 2945750 2945812 "ULSCCAT" 2946450 NIL ULSCCAT (NIL T T) -9 NIL 2946738 NIL) (-1214 2932858 2933103 2933491 "ULSCCAT-" 2933496 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1213 2922733 2929170 2929213 "ULSCAT" 2930076 NIL ULSCAT (NIL T) -9 NIL 2930806 NIL) (-1212 2922163 2922242 2922421 "ULS2" 2922648 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1211 2921299 2921774 2921875 "UINT32" 2921986 T UINT32 (NIL) -8 NIL NIL 2922065) (-1210 2920435 2920910 2921011 "UINT16" 2921122 T UINT16 (NIL) -8 NIL NIL 2921201) (-1209 2918838 2919761 2919791 "UFD" 2920003 T UFD (NIL) -9 NIL 2920117 NIL) (-1208 2918632 2918678 2918773 "UFD-" 2918778 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1207 2917714 2917897 2918113 "UDVO" 2918438 T UDVO (NIL) -7 NIL NIL NIL) (-1206 2915530 2915939 2916410 "UDPO" 2917278 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1205 2915463 2915468 2915498 "TYPE" 2915503 T TYPE (NIL) -9 NIL NIL NIL) (-1204 2915250 2915418 2915449 "TYPEAST" 2915454 T TYPEAST (NIL) -8 NIL NIL NIL) (-1203 2914221 2914423 2914663 "TWOFACT" 2915044 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1202 2913293 2913630 2913865 "TUPLE" 2914021 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1201 2910984 2911503 2912042 "TUBETOOL" 2912776 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1200 2909833 2910038 2910279 "TUBE" 2910777 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1199 2904597 2908805 2909088 "TS" 2909585 NIL TS (NIL T) -8 NIL NIL NIL) (-1198 2893264 2897356 2897453 "TSETCAT" 2902722 NIL TSETCAT (NIL T T T T) -9 NIL 2904253 NIL) (-1197 2887999 2889596 2891487 "TSETCAT-" 2891492 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1196 2882262 2883108 2884050 "TRMANIP" 2887135 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1195 2881703 2881766 2881929 "TRIMAT" 2882194 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1194 2879499 2879736 2880100 "TRIGMNIP" 2881452 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1193 2879019 2879132 2879162 "TRIGCAT" 2879375 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1192 2878688 2878767 2878908 "TRIGCAT-" 2878913 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1191 2875585 2877546 2877827 "TREE" 2878442 NIL TREE (NIL T) -8 NIL NIL NIL) (-1190 2874859 2875387 2875417 "TRANFUN" 2875452 T TRANFUN (NIL) -9 NIL 2875518 NIL) (-1189 2874138 2874329 2874609 "TRANFUN-" 2874614 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1188 2873942 2873974 2874035 "TOPSP" 2874099 T TOPSP (NIL) -7 NIL NIL NIL) (-1187 2873290 2873405 2873559 "TOOLSIGN" 2873823 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1186 2871951 2872467 2872706 "TEXTFILE" 2873073 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1185 2869890 2870404 2870833 "TEX" 2871544 T TEX (NIL) -8 NIL NIL NIL) (-1184 2869671 2869702 2869774 "TEX1" 2869853 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1183 2869319 2869382 2869472 "TEMUTL" 2869603 T TEMUTL (NIL) -7 NIL NIL NIL) (-1182 2867473 2867753 2868078 "TBCMPPK" 2869042 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1181 2859361 2865633 2865689 "TBAGG" 2866089 NIL TBAGG (NIL T T) -9 NIL 2866300 NIL) (-1180 2854431 2855919 2857673 "TBAGG-" 2857678 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1179 2853815 2853922 2854067 "TANEXP" 2854320 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1178 2847316 2853672 2853765 "TABLE" 2853770 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1177 2846728 2846827 2846965 "TABLEAU" 2847213 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1176 2841336 2842556 2843804 "TABLBUMP" 2845514 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1175 2840764 2840864 2840992 "SYSTEM" 2841230 T SYSTEM (NIL) -7 NIL NIL NIL) (-1174 2837227 2837922 2838705 "SYSSOLP" 2840015 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1173 2836284 2836751 2836864 "SYSNNI" 2837050 NIL SYSNNI (NIL NIL) -8 NIL NIL 2837129) (-1172 2835737 2836142 2836184 "SYSINT" 2836189 NIL SYSINT (NIL NIL) -8 NIL NIL 2836197) (-1171 2832071 2832998 2833714 "SYNTAX" 2835043 T SYNTAX (NIL) -8 NIL NIL NIL) (-1170 2829229 2829831 2830463 "SYMTAB" 2831461 T SYMTAB (NIL) -8 NIL NIL NIL) (-1169 2824478 2825380 2826363 "SYMS" 2828268 T SYMS (NIL) -8 NIL NIL NIL) (-1168 2821750 2823936 2824166 "SYMPOLY" 2824283 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1167 2821267 2821342 2821465 "SYMFUNC" 2821662 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1166 2817319 2818579 2819392 "SYMBOL" 2820476 T SYMBOL (NIL) -8 NIL NIL NIL) (-1165 2810858 2812547 2814267 "SWITCH" 2815621 T SWITCH (NIL) -8 NIL NIL NIL) (-1164 2804128 2809679 2809982 "SUTS" 2810613 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1163 2796229 2803375 2803648 "SUPXS" 2803913 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1162 2787759 2795847 2795973 "SUP" 2796138 NIL SUP (NIL T) -8 NIL NIL NIL) (-1161 2786918 2787045 2787262 "SUPFRACF" 2787627 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1160 2786539 2786598 2786711 "SUP2" 2786853 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1159 2784952 2785226 2785589 "SUMRF" 2786238 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1158 2784266 2784332 2784531 "SUMFS" 2784873 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1157 2768273 2783443 2783694 "SULS" 2784073 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1156 2767902 2768095 2768165 "SUCHTAST" 2768225 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1155 2767224 2767427 2767567 "SUCH" 2767810 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1154 2761118 2762130 2763089 "SUBSPACE" 2766312 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1153 2760548 2760638 2760802 "SUBRESP" 2761006 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1152 2753917 2755213 2756524 "STTF" 2759284 NIL STTF (NIL T) -7 NIL NIL NIL) (-1151 2748090 2749210 2750357 "STTFNC" 2752817 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1150 2739405 2741272 2743066 "STTAYLOR" 2746331 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1149 2732649 2739269 2739352 "STRTBL" 2739357 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1148 2728040 2732604 2732635 "STRING" 2732640 T STRING (NIL) -8 NIL NIL NIL) (-1147 2722928 2727413 2727443 "STRICAT" 2727502 T STRICAT (NIL) -9 NIL 2727564 NIL) (-1146 2715738 2720547 2721158 "STREAM" 2722352 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1145 2715248 2715325 2715469 "STREAM3" 2715655 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1144 2714230 2714413 2714648 "STREAM2" 2715061 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1143 2713918 2713970 2714063 "STREAM1" 2714172 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1142 2712934 2713115 2713346 "STINPROD" 2713734 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1141 2712512 2712696 2712726 "STEP" 2712806 T STEP (NIL) -9 NIL 2712884 NIL) (-1140 2706055 2712411 2712488 "STBL" 2712493 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1139 2701229 2705276 2705319 "STAGG" 2705472 NIL STAGG (NIL T) -9 NIL 2705561 NIL) (-1138 2698931 2699533 2700405 "STAGG-" 2700410 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1137 2697126 2698701 2698793 "STACK" 2698874 NIL STACK (NIL T) -8 NIL NIL NIL) (-1136 2689851 2695267 2695723 "SREGSET" 2696756 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1135 2682277 2683645 2685158 "SRDCMPK" 2688457 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1134 2675244 2679717 2679747 "SRAGG" 2681050 T SRAGG (NIL) -9 NIL 2681658 NIL) (-1133 2674261 2674516 2674895 "SRAGG-" 2674900 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1132 2668756 2673208 2673629 "SQMATRIX" 2673887 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1131 2662505 2665474 2666201 "SPLTREE" 2668101 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1130 2658495 2659161 2659807 "SPLNODE" 2661931 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1129 2657542 2657775 2657805 "SPFCAT" 2658249 T SPFCAT (NIL) -9 NIL NIL NIL) (-1128 2656279 2656489 2656753 "SPECOUT" 2657300 T SPECOUT (NIL) -7 NIL NIL NIL) (-1127 2647931 2649675 2649705 "SPADXPT" 2654097 T SPADXPT (NIL) -9 NIL 2656131 NIL) (-1126 2647692 2647732 2647801 "SPADPRSR" 2647884 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1125 2645875 2647647 2647678 "SPADAST" 2647683 T SPADAST (NIL) -8 NIL NIL NIL) (-1124 2637846 2639593 2639636 "SPACEC" 2644009 NIL SPACEC (NIL T) -9 NIL 2645825 NIL) (-1123 2636017 2637778 2637827 "SPACE3" 2637832 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1122 2634769 2634940 2635231 "SORTPAK" 2635822 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1121 2632819 2633122 2633541 "SOLVETRA" 2634433 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1120 2631830 2632052 2632326 "SOLVESER" 2632592 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1119 2627050 2627931 2628933 "SOLVERAD" 2630882 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1118 2622865 2623474 2624203 "SOLVEFOR" 2626417 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1117 2617162 2622214 2622311 "SNTSCAT" 2622316 NIL SNTSCAT (NIL T T T T) -9 NIL 2622386 NIL) (-1116 2611305 2615485 2615876 "SMTS" 2616852 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1115 2605756 2611193 2611270 "SMP" 2611275 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1114 2603915 2604216 2604614 "SMITH" 2605453 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1113 2596810 2600966 2601069 "SMATCAT" 2602420 NIL SMATCAT (NIL NIL T T T) -9 NIL 2602970 NIL) (-1112 2593750 2594573 2595751 "SMATCAT-" 2595756 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1111 2591463 2592986 2593029 "SKAGG" 2593290 NIL SKAGG (NIL T) -9 NIL 2593425 NIL) (-1110 2587805 2590879 2591074 "SINT" 2591261 T SINT (NIL) -8 NIL NIL 2591434) (-1109 2587577 2587615 2587681 "SIMPAN" 2587761 T SIMPAN (NIL) -7 NIL NIL NIL) (-1108 2586884 2587112 2587252 "SIG" 2587459 T SIG (NIL) -8 NIL NIL NIL) (-1107 2585722 2585943 2586218 "SIGNRF" 2586643 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1106 2584527 2584678 2584969 "SIGNEF" 2585551 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1105 2583860 2584110 2584234 "SIGAST" 2584425 T SIGAST (NIL) -8 NIL NIL NIL) (-1104 2581550 2582004 2582510 "SHP" 2583401 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1103 2575456 2581451 2581527 "SHDP" 2581532 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1102 2575055 2575221 2575251 "SGROUP" 2575344 T SGROUP (NIL) -9 NIL 2575406 NIL) (-1101 2574913 2574939 2575012 "SGROUP-" 2575017 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1100 2571749 2572446 2573169 "SGCF" 2574212 T SGCF (NIL) -7 NIL NIL NIL) (-1099 2566144 2571196 2571293 "SFRTCAT" 2571298 NIL SFRTCAT (NIL T T T T) -9 NIL 2571337 NIL) (-1098 2559568 2560583 2561719 "SFRGCD" 2565127 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1097 2552696 2553767 2554953 "SFQCMPK" 2558501 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1096 2552318 2552407 2552517 "SFORT" 2552637 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1095 2551463 2552158 2552279 "SEXOF" 2552284 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1094 2550597 2551344 2551412 "SEX" 2551417 T SEX (NIL) -8 NIL NIL NIL) (-1093 2546136 2546825 2546920 "SEXCAT" 2549857 NIL SEXCAT (NIL T T T T T) -9 NIL 2550435 NIL) (-1092 2543316 2546070 2546118 "SET" 2546123 NIL SET (NIL T) -8 NIL NIL NIL) (-1091 2541567 2542029 2542334 "SETMN" 2543057 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1090 2541173 2541299 2541329 "SETCAT" 2541446 T SETCAT (NIL) -9 NIL 2541531 NIL) (-1089 2540953 2541005 2541104 "SETCAT-" 2541109 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1088 2537340 2539414 2539457 "SETAGG" 2540327 NIL SETAGG (NIL T) -9 NIL 2540667 NIL) (-1087 2536798 2536914 2537151 "SETAGG-" 2537156 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1086 2536268 2536494 2536595 "SEQAST" 2536719 T SEQAST (NIL) -8 NIL NIL NIL) (-1085 2535467 2535761 2535822 "SEGXCAT" 2536108 NIL SEGXCAT (NIL T T) -9 NIL 2536228 NIL) (-1084 2534523 2535133 2535315 "SEG" 2535320 NIL SEG (NIL T) -8 NIL NIL NIL) (-1083 2533502 2533716 2533759 "SEGCAT" 2534281 NIL SEGCAT (NIL T) -9 NIL 2534502 NIL) (-1082 2532551 2532881 2533081 "SEGBIND" 2533337 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1081 2532172 2532231 2532344 "SEGBIND2" 2532486 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1080 2531773 2531973 2532050 "SEGAST" 2532117 T SEGAST (NIL) -8 NIL NIL NIL) (-1079 2530992 2531118 2531322 "SEG2" 2531617 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1078 2530429 2530927 2530974 "SDVAR" 2530979 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1077 2522719 2530199 2530329 "SDPOL" 2530334 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1076 2521312 2521578 2521897 "SCPKG" 2522434 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1075 2520448 2520628 2520828 "SCOPE" 2521134 T SCOPE (NIL) -8 NIL NIL NIL) (-1074 2519669 2519802 2519981 "SCACHE" 2520303 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1073 2519341 2519501 2519531 "SASTCAT" 2519536 T SASTCAT (NIL) -9 NIL 2519549 NIL) (-1072 2518855 2519176 2519252 "SAOS" 2519287 T SAOS (NIL) -8 NIL NIL NIL) (-1071 2518420 2518455 2518628 "SAERFFC" 2518814 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1070 2512394 2518317 2518397 "SAE" 2518402 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1069 2511987 2512022 2512181 "SAEFACT" 2512353 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1068 2510308 2510622 2511023 "RURPK" 2511653 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1067 2508944 2509223 2509535 "RULESET" 2510142 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1066 2506131 2506634 2507099 "RULE" 2508625 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1065 2505770 2505925 2506008 "RULECOLD" 2506083 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1064 2505268 2505487 2505581 "RSTRCAST" 2505698 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1063 2500117 2500911 2501831 "RSETGCD" 2504467 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1062 2489374 2494426 2494523 "RSETCAT" 2498642 NIL RSETCAT (NIL T T T T) -9 NIL 2499739 NIL) (-1061 2487301 2487840 2488664 "RSETCAT-" 2488669 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1060 2479688 2481063 2482583 "RSDCMPK" 2485900 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2477693 2478134 2478208 "RRCC" 2479294 NIL RRCC (NIL T T) -9 NIL 2479638 NIL) (-1058 2477044 2477218 2477497 "RRCC-" 2477502 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1057 2476514 2476740 2476841 "RPTAST" 2476965 T RPTAST (NIL) -8 NIL NIL NIL) (-1056 2450520 2460107 2460174 "RPOLCAT" 2470838 NIL RPOLCAT (NIL T T T) -9 NIL 2473997 NIL) (-1055 2442020 2444358 2447480 "RPOLCAT-" 2447485 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1054 2433067 2440231 2440713 "ROUTINE" 2441560 T ROUTINE (NIL) -8 NIL NIL NIL) (-1053 2429900 2432693 2432833 "ROMAN" 2432949 T ROMAN (NIL) -8 NIL NIL NIL) (-1052 2428175 2428760 2429020 "ROIRC" 2429705 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1051 2424568 2426811 2426841 "RNS" 2427145 T RNS (NIL) -9 NIL 2427418 NIL) (-1050 2423077 2423460 2423994 "RNS-" 2424069 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1049 2422526 2422908 2422938 "RNG" 2422943 T RNG (NIL) -9 NIL 2422964 NIL) (-1048 2421918 2422280 2422323 "RMODULE" 2422385 NIL RMODULE (NIL T) -9 NIL 2422427 NIL) (-1047 2420754 2420848 2421184 "RMCAT2" 2421819 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1046 2417631 2420100 2420397 "RMATRIX" 2420516 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1045 2410573 2412807 2412922 "RMATCAT" 2416281 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2417263 NIL) (-1044 2409948 2410095 2410402 "RMATCAT-" 2410407 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1043 2409515 2409590 2409718 "RINTERP" 2409867 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1042 2408648 2409168 2409198 "RING" 2409254 T RING (NIL) -9 NIL 2409340 NIL) (-1041 2408440 2408484 2408581 "RING-" 2408586 NIL RING- (NIL T) -8 NIL NIL NIL) (-1040 2407281 2407518 2407776 "RIDIST" 2408204 T RIDIST (NIL) -7 NIL NIL NIL) (-1039 2398597 2406749 2406955 "RGCHAIN" 2407129 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1038 2397973 2398353 2398394 "RGBCSPC" 2398452 NIL RGBCSPC (NIL T) -9 NIL 2398504 NIL) (-1037 2397157 2397512 2397553 "RGBCMDL" 2397785 NIL RGBCMDL (NIL T) -9 NIL 2397899 NIL) (-1036 2394151 2394765 2395435 "RF" 2396521 NIL RF (NIL T) -7 NIL NIL NIL) (-1035 2393797 2393860 2393963 "RFFACTOR" 2394082 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1034 2393522 2393557 2393654 "RFFACT" 2393756 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1033 2391639 2392003 2392385 "RFDIST" 2393162 T RFDIST (NIL) -7 NIL NIL NIL) (-1032 2391092 2391184 2391347 "RETSOL" 2391541 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1031 2390728 2390808 2390851 "RETRACT" 2390984 NIL RETRACT (NIL T) -9 NIL 2391071 NIL) (-1030 2390577 2390602 2390689 "RETRACT-" 2390694 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1029 2390206 2390399 2390469 "RETAST" 2390529 T RETAST (NIL) -8 NIL NIL NIL) (-1028 2383060 2389859 2389986 "RESULT" 2390101 T RESULT (NIL) -8 NIL NIL NIL) (-1027 2381686 2382329 2382528 "RESRING" 2382963 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1026 2381322 2381371 2381469 "RESLATC" 2381623 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1025 2381028 2381062 2381169 "REPSQ" 2381281 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1024 2378450 2379030 2379632 "REP" 2380448 T REP (NIL) -7 NIL NIL NIL) (-1023 2378148 2378182 2378293 "REPDB" 2378409 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1022 2372058 2373437 2374660 "REP2" 2376960 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1021 2368435 2369116 2369924 "REP1" 2371285 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1020 2361161 2366576 2367032 "REGSET" 2368065 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1019 2359974 2360309 2360559 "REF" 2360946 NIL REF (NIL T) -8 NIL NIL NIL) (-1018 2359351 2359454 2359621 "REDORDER" 2359858 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1017 2355356 2358564 2358791 "RECLOS" 2359179 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1016 2354408 2354589 2354804 "REALSOLV" 2355163 T REALSOLV (NIL) -7 NIL NIL NIL) (-1015 2354254 2354295 2354325 "REAL" 2354330 T REAL (NIL) -9 NIL 2354365 NIL) (-1014 2350737 2351539 2352423 "REAL0Q" 2353419 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1013 2346338 2347326 2348387 "REAL0" 2349718 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1012 2345836 2346055 2346149 "RDUCEAST" 2346266 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1011 2345241 2345313 2345520 "RDIV" 2345758 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1010 2344309 2344483 2344696 "RDIST" 2345063 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1009 2342906 2343193 2343565 "RDETRS" 2344017 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1008 2340718 2341172 2341710 "RDETR" 2342448 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1007 2339329 2339607 2340011 "RDEEFS" 2340434 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1006 2337824 2338130 2338562 "RDEEF" 2339017 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1005 2332085 2334960 2334990 "RCFIELD" 2336285 T RCFIELD (NIL) -9 NIL 2337015 NIL) (-1004 2330149 2330653 2331349 "RCFIELD-" 2331424 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1003 2326465 2328250 2328293 "RCAGG" 2329377 NIL RCAGG (NIL T) -9 NIL 2329842 NIL) (-1002 2326093 2326187 2326350 "RCAGG-" 2326355 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1001 2325428 2325540 2325705 "RATRET" 2325977 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1000 2324981 2325048 2325169 "RATFACT" 2325356 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-999 2324296 2324416 2324566 "RANDSRC" 2324851 T RANDSRC (NIL) -7 NIL NIL NIL) (-998 2324033 2324077 2324148 "RADUTIL" 2324245 T RADUTIL (NIL) -7 NIL NIL NIL) (-997 2317195 2322875 2323183 "RADIX" 2323757 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-996 2308852 2317039 2317167 "RADFF" 2317172 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-995 2308504 2308579 2308607 "RADCAT" 2308764 T RADCAT (NIL) -9 NIL NIL NIL) (-994 2308289 2308337 2308434 "RADCAT-" 2308439 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-993 2306440 2308064 2308153 "QUEUE" 2308233 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-992 2303016 2306377 2306422 "QUAT" 2306427 NIL QUAT (NIL T) -8 NIL NIL NIL) (-991 2302654 2302697 2302824 "QUATCT2" 2302967 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-990 2296401 2299703 2299743 "QUATCAT" 2300523 NIL QUATCAT (NIL T) -9 NIL 2301289 NIL) (-989 2292545 2293582 2294969 "QUATCAT-" 2295063 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-988 2290065 2291629 2291670 "QUAGG" 2292045 NIL QUAGG (NIL T) -9 NIL 2292220 NIL) (-987 2289697 2289890 2289958 "QQUTAST" 2290017 T QQUTAST (NIL) -8 NIL NIL NIL) (-986 2288622 2289095 2289267 "QFORM" 2289569 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-985 2279834 2285039 2285079 "QFCAT" 2285737 NIL QFCAT (NIL T) -9 NIL 2286738 NIL) (-984 2275406 2276607 2278198 "QFCAT-" 2278292 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-983 2275044 2275087 2275214 "QFCAT2" 2275357 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-982 2274504 2274614 2274744 "QEQUAT" 2274934 T QEQUAT (NIL) -8 NIL NIL NIL) (-981 2267652 2268723 2269907 "QCMPACK" 2273437 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-980 2265228 2265649 2266077 "QALGSET" 2267307 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-979 2264473 2264647 2264879 "QALGSET2" 2265048 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-978 2263164 2263387 2263704 "PWFFINTB" 2264246 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-977 2261346 2261514 2261868 "PUSHVAR" 2262978 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-976 2257264 2258318 2258359 "PTRANFN" 2260243 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-975 2255666 2255957 2256279 "PTPACK" 2256975 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-974 2255298 2255355 2255464 "PTFUNC2" 2255603 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-973 2249825 2254170 2254211 "PTCAT" 2254507 NIL PTCAT (NIL T) -9 NIL 2254660 NIL) (-972 2249483 2249518 2249642 "PSQFR" 2249784 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-971 2248078 2248376 2248710 "PSEUDLIN" 2249181 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-970 2234848 2237212 2239536 "PSETPK" 2245838 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-969 2227892 2230606 2230702 "PSETCAT" 2233723 NIL PSETCAT (NIL T T T T) -9 NIL 2234537 NIL) (-968 2225728 2226362 2227183 "PSETCAT-" 2227188 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-967 2225077 2225242 2225270 "PSCURVE" 2225538 T PSCURVE (NIL) -9 NIL 2225705 NIL) (-966 2221433 2222915 2222980 "PSCAT" 2223824 NIL PSCAT (NIL T T T) -9 NIL 2224064 NIL) (-965 2220496 2220712 2221112 "PSCAT-" 2221117 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-964 2219228 2219861 2220066 "PRTITION" 2220311 T PRTITION (NIL) -8 NIL NIL NIL) (-963 2218730 2218949 2219041 "PRTDAST" 2219156 T PRTDAST (NIL) -8 NIL NIL NIL) (-962 2207828 2210034 2212222 "PRS" 2216592 NIL PRS (NIL T T) -7 NIL NIL NIL) (-961 2205686 2207178 2207218 "PRQAGG" 2207401 NIL PRQAGG (NIL T) -9 NIL 2207503 NIL) (-960 2205072 2205301 2205329 "PROPLOG" 2205514 T PROPLOG (NIL) -9 NIL 2205636 NIL) (-959 2202242 2202886 2203350 "PROPFRML" 2204640 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-958 2201702 2201812 2201942 "PROPERTY" 2202132 T PROPERTY (NIL) -8 NIL NIL NIL) (-957 2195787 2199868 2200688 "PRODUCT" 2200928 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-956 2193100 2195245 2195479 "PR" 2195598 NIL PR (NIL T T) -8 NIL NIL NIL) (-955 2192896 2192928 2192987 "PRINT" 2193061 T PRINT (NIL) -7 NIL NIL NIL) (-954 2192236 2192353 2192505 "PRIMES" 2192776 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-953 2190301 2190702 2191168 "PRIMELT" 2191815 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-952 2190030 2190079 2190107 "PRIMCAT" 2190231 T PRIMCAT (NIL) -9 NIL NIL NIL) (-951 2186191 2189968 2190013 "PRIMARR" 2190018 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-950 2185198 2185376 2185604 "PRIMARR2" 2186009 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-949 2184841 2184897 2185008 "PREASSOC" 2185136 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-948 2184316 2184449 2184477 "PPCURVE" 2184682 T PPCURVE (NIL) -9 NIL 2184818 NIL) (-947 2183938 2184111 2184194 "PORTNUM" 2184253 T PORTNUM (NIL) -8 NIL NIL NIL) (-946 2181297 2181696 2182288 "POLYROOT" 2183519 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-945 2175242 2180901 2181061 "POLY" 2181170 NIL POLY (NIL T) -8 NIL NIL NIL) (-944 2174625 2174683 2174917 "POLYLIFT" 2175178 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-943 2170900 2171349 2171978 "POLYCATQ" 2174170 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-942 2157717 2163075 2163140 "POLYCAT" 2166654 NIL POLYCAT (NIL T T T) -9 NIL 2168582 NIL) (-941 2151167 2153028 2155412 "POLYCAT-" 2155417 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-940 2150754 2150822 2150942 "POLY2UP" 2151093 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-939 2150386 2150443 2150552 "POLY2" 2150691 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-938 2149071 2149310 2149586 "POLUTIL" 2150160 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-937 2147426 2147703 2148034 "POLTOPOL" 2148793 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-936 2142944 2147362 2147408 "POINT" 2147413 NIL POINT (NIL T) -8 NIL NIL NIL) (-935 2141131 2141488 2141863 "PNTHEORY" 2142589 T PNTHEORY (NIL) -7 NIL NIL NIL) (-934 2139550 2139847 2140259 "PMTOOLS" 2140829 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-933 2139143 2139221 2139338 "PMSYM" 2139466 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-932 2138653 2138722 2138896 "PMQFCAT" 2139068 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-931 2138008 2138118 2138274 "PMPRED" 2138530 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-930 2137404 2137490 2137651 "PMPREDFS" 2137909 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-929 2136047 2136255 2136640 "PMPLCAT" 2137166 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-928 2135579 2135658 2135810 "PMLSAGG" 2135962 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-927 2135054 2135130 2135311 "PMKERNEL" 2135497 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-926 2134671 2134746 2134859 "PMINS" 2134973 NIL PMINS (NIL T) -7 NIL NIL NIL) (-925 2134099 2134168 2134384 "PMFS" 2134596 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-924 2133327 2133445 2133650 "PMDOWN" 2133976 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-923 2132490 2132649 2132831 "PMASS" 2133165 T PMASS (NIL) -7 NIL NIL NIL) (-922 2131764 2131875 2132038 "PMASSFS" 2132376 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-921 2131419 2131487 2131581 "PLOTTOOL" 2131690 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-920 2126041 2127230 2128378 "PLOT" 2130291 T PLOT (NIL) -8 NIL NIL NIL) (-919 2121855 2122889 2123810 "PLOT3D" 2125140 T PLOT3D (NIL) -8 NIL NIL NIL) (-918 2120767 2120944 2121179 "PLOT1" 2121659 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-917 2096161 2100833 2105684 "PLEQN" 2116033 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-916 2095479 2095601 2095781 "PINTERP" 2096026 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-915 2095172 2095219 2095322 "PINTERPA" 2095426 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-914 2094420 2094941 2095028 "PI" 2095068 T PI (NIL) -8 NIL NIL 2095135) (-913 2092817 2093758 2093786 "PID" 2093968 T PID (NIL) -9 NIL 2094102 NIL) (-912 2092542 2092579 2092667 "PICOERCE" 2092774 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-911 2091862 2092001 2092177 "PGROEB" 2092398 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-910 2087449 2088263 2089168 "PGE" 2090977 T PGE (NIL) -7 NIL NIL NIL) (-909 2085573 2085819 2086185 "PGCD" 2087166 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-908 2084911 2085014 2085175 "PFRPAC" 2085457 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-907 2081591 2083459 2083812 "PFR" 2084590 NIL PFR (NIL T) -8 NIL NIL NIL) (-906 2079980 2080224 2080549 "PFOTOOLS" 2081338 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-905 2078513 2078752 2079103 "PFOQ" 2079737 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-904 2076986 2077198 2077561 "PFO" 2078297 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-903 2073574 2076875 2076944 "PF" 2076949 NIL PF (NIL NIL) -8 NIL NIL NIL) (-902 2071008 2072245 2072273 "PFECAT" 2072858 T PFECAT (NIL) -9 NIL 2073242 NIL) (-901 2070453 2070607 2070821 "PFECAT-" 2070826 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-900 2069057 2069308 2069609 "PFBRU" 2070202 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-899 2066924 2067275 2067707 "PFBR" 2068708 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-898 2062840 2064300 2064976 "PERM" 2066281 NIL PERM (NIL T) -8 NIL NIL NIL) (-897 2058106 2059047 2059917 "PERMGRP" 2062003 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-896 2056238 2057169 2057210 "PERMCAT" 2057656 NIL PERMCAT (NIL T) -9 NIL 2057961 NIL) (-895 2055891 2055932 2056056 "PERMAN" 2056191 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-894 2053427 2055556 2055678 "PENDTREE" 2055802 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-893 2051520 2052254 2052295 "PDRING" 2052952 NIL PDRING (NIL T) -9 NIL 2053238 NIL) (-892 2050623 2050841 2051203 "PDRING-" 2051208 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-891 2047865 2048616 2049284 "PDEPROB" 2049975 T PDEPROB (NIL) -8 NIL NIL NIL) (-890 2045412 2045914 2046469 "PDEPACK" 2047330 T PDEPACK (NIL) -7 NIL NIL NIL) (-889 2044324 2044514 2044765 "PDECOMP" 2045211 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-888 2041929 2042746 2042774 "PDECAT" 2043561 T PDECAT (NIL) -9 NIL 2044274 NIL) (-887 2041680 2041713 2041803 "PCOMP" 2041890 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-886 2039885 2040481 2040778 "PBWLB" 2041409 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-885 2032390 2033958 2035296 "PATTERN" 2038568 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-884 2032022 2032079 2032188 "PATTERN2" 2032327 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-883 2029779 2030167 2030624 "PATTERN1" 2031611 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-882 2027174 2027728 2028209 "PATRES" 2029344 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-881 2026738 2026805 2026937 "PATRES2" 2027101 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-880 2024621 2025026 2025433 "PATMATCH" 2026405 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-879 2024157 2024340 2024381 "PATMAB" 2024488 NIL PATMAB (NIL T) -9 NIL 2024571 NIL) (-878 2022702 2023011 2023269 "PATLRES" 2023962 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-877 2022248 2022371 2022412 "PATAB" 2022417 NIL PATAB (NIL T) -9 NIL 2022589 NIL) (-876 2019729 2020261 2020834 "PARTPERM" 2021695 T PARTPERM (NIL) -7 NIL NIL NIL) (-875 2019350 2019413 2019515 "PARSURF" 2019660 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-874 2018982 2019039 2019148 "PARSU2" 2019287 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-873 2018746 2018786 2018853 "PARSER" 2018935 T PARSER (NIL) -7 NIL NIL NIL) (-872 2018367 2018430 2018532 "PARSCURV" 2018677 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-871 2017999 2018056 2018165 "PARSC2" 2018304 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-870 2017638 2017696 2017793 "PARPCURV" 2017935 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-869 2017270 2017327 2017436 "PARPC2" 2017575 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-868 2016790 2016876 2016995 "PAN2EXPR" 2017171 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-867 2015596 2015911 2016139 "PALETTE" 2016582 T PALETTE (NIL) -8 NIL NIL NIL) (-866 2014064 2014601 2014961 "PAIR" 2015282 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-865 2007970 2013323 2013517 "PADICRC" 2013919 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-864 2001234 2007316 2007500 "PADICRAT" 2007818 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-863 1999584 2001171 2001216 "PADIC" 2001221 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-862 1996794 1998324 1998364 "PADICCT" 1998945 NIL PADICCT (NIL NIL) -9 NIL 1999227 NIL) (-861 1995751 1995951 1996219 "PADEPAC" 1996581 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-860 1994963 1995096 1995302 "PADE" 1995613 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-859 1993385 1994171 1994451 "OWP" 1994767 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-858 1992458 1992990 1993162 "OVAR" 1993253 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-857 1991722 1991843 1992004 "OUT" 1992317 T OUT (NIL) -7 NIL NIL NIL) (-856 1980629 1982831 1985031 "OUTFORM" 1989542 T OUTFORM (NIL) -8 NIL NIL NIL) (-855 1980045 1980226 1980353 "OUTBFILE" 1980522 T OUTBFILE (NIL) -8 NIL NIL NIL) (-854 1979667 1979755 1979783 "OUTBCON" 1979939 T OUTBCON (NIL) -9 NIL 1980029 NIL) (-853 1979510 1979544 1979619 "OUTBCON-" 1979624 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-852 1978918 1979239 1979328 "OSI" 1979441 T OSI (NIL) -8 NIL NIL NIL) (-851 1978474 1978786 1978814 "OSGROUP" 1978819 T OSGROUP (NIL) -9 NIL 1978841 NIL) (-850 1977219 1977446 1977731 "ORTHPOL" 1978221 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-849 1974805 1977054 1977175 "OREUP" 1977180 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-848 1972243 1974496 1974623 "ORESUP" 1974747 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-847 1969771 1970271 1970832 "OREPCTO" 1971732 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-846 1963595 1965762 1965803 "OREPCAT" 1968151 NIL OREPCAT (NIL T) -9 NIL 1969255 NIL) (-845 1960742 1961524 1962582 "OREPCAT-" 1962587 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-844 1959919 1960191 1960219 "ORDSET" 1960528 T ORDSET (NIL) -9 NIL 1960692 NIL) (-843 1959438 1959560 1959753 "ORDSET-" 1959758 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-842 1958072 1958829 1958857 "ORDRING" 1959059 T ORDRING (NIL) -9 NIL 1959184 NIL) (-841 1957717 1957811 1957955 "ORDRING-" 1957960 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-840 1957123 1957560 1957588 "ORDMON" 1957593 T ORDMON (NIL) -9 NIL 1957614 NIL) (-839 1956285 1956432 1956627 "ORDFUNS" 1956972 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-838 1955649 1956042 1956070 "ORDFIN" 1956135 T ORDFIN (NIL) -9 NIL 1956209 NIL) (-837 1952241 1954235 1954644 "ORDCOMP" 1955273 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-836 1951507 1951634 1951820 "ORDCOMP2" 1952101 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-835 1948115 1948998 1949812 "OPTPROB" 1950713 T OPTPROB (NIL) -8 NIL NIL NIL) (-834 1944917 1945556 1946260 "OPTPACK" 1947431 T OPTPACK (NIL) -7 NIL NIL NIL) (-833 1942630 1943370 1943398 "OPTCAT" 1944217 T OPTCAT (NIL) -9 NIL 1944867 NIL) (-832 1942073 1942307 1942412 "OPSIG" 1942545 T OPSIG (NIL) -8 NIL NIL NIL) (-831 1941841 1941880 1941946 "OPQUERY" 1942027 T OPQUERY (NIL) -7 NIL NIL NIL) (-830 1939007 1940152 1940656 "OP" 1941370 NIL OP (NIL T) -8 NIL NIL NIL) (-829 1938542 1938713 1938754 "OPERCAT" 1938889 NIL OPERCAT (NIL T) -9 NIL 1938957 NIL) (-828 1938388 1938415 1938501 "OPERCAT-" 1938506 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-827 1935233 1937185 1937554 "ONECOMP" 1938052 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-826 1934538 1934653 1934827 "ONECOMP2" 1935105 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-825 1933957 1934063 1934193 "OMSERVER" 1934428 T OMSERVER (NIL) -7 NIL NIL NIL) (-824 1930845 1933397 1933437 "OMSAGG" 1933498 NIL OMSAGG (NIL T) -9 NIL 1933562 NIL) (-823 1929468 1929731 1930013 "OMPKG" 1930583 T OMPKG (NIL) -7 NIL NIL NIL) (-822 1928898 1929001 1929029 "OM" 1929328 T OM (NIL) -9 NIL NIL NIL) (-821 1927480 1928447 1928616 "OMLO" 1928779 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-820 1926405 1926552 1926779 "OMEXPR" 1927306 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-819 1925723 1925951 1926087 "OMERR" 1926289 T OMERR (NIL) -8 NIL NIL NIL) (-818 1924901 1925144 1925304 "OMERRK" 1925583 T OMERRK (NIL) -8 NIL NIL NIL) (-817 1924379 1924578 1924686 "OMENC" 1924813 T OMENC (NIL) -8 NIL NIL NIL) (-816 1918274 1919459 1920630 "OMDEV" 1923228 T OMDEV (NIL) -8 NIL NIL NIL) (-815 1917343 1917514 1917708 "OMCONN" 1918100 T OMCONN (NIL) -8 NIL NIL NIL) (-814 1915964 1916906 1916934 "OINTDOM" 1916939 T OINTDOM (NIL) -9 NIL 1916960 NIL) (-813 1911770 1912954 1913670 "OFMONOID" 1915280 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-812 1911208 1911707 1911752 "ODVAR" 1911757 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-811 1908666 1910953 1911108 "ODR" 1911113 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-810 1901010 1908442 1908568 "ODPOL" 1908573 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-809 1894886 1900882 1900987 "ODP" 1900992 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-808 1893652 1893867 1894142 "ODETOOLS" 1894660 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-807 1890621 1891277 1891993 "ODESYS" 1892985 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-806 1885503 1886411 1887436 "ODERTRIC" 1889696 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-805 1884929 1885011 1885205 "ODERED" 1885415 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-804 1881817 1882365 1883042 "ODERAT" 1884352 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-803 1878777 1879241 1879838 "ODEPRRIC" 1881346 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-802 1876747 1877316 1877802 "ODEPROB" 1878311 T ODEPROB (NIL) -8 NIL NIL NIL) (-801 1873269 1873752 1874399 "ODEPRIM" 1876226 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-800 1872518 1872620 1872880 "ODEPAL" 1873161 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-799 1868680 1869471 1870335 "ODEPACK" 1871674 T ODEPACK (NIL) -7 NIL NIL NIL) (-798 1867713 1867820 1868049 "ODEINT" 1868569 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-797 1861814 1863239 1864686 "ODEIFTBL" 1866286 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-796 1857149 1857935 1858894 "ODEEF" 1860973 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-795 1856484 1856573 1856803 "ODECONST" 1857054 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-794 1854635 1855270 1855298 "ODECAT" 1855903 T ODECAT (NIL) -9 NIL 1856434 NIL) (-793 1851542 1854347 1854466 "OCT" 1854548 NIL OCT (NIL T) -8 NIL NIL NIL) (-792 1851180 1851223 1851350 "OCTCT2" 1851493 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-791 1845954 1848354 1848394 "OC" 1849491 NIL OC (NIL T) -9 NIL 1850349 NIL) (-790 1843181 1843929 1844919 "OC-" 1845013 NIL OC- (NIL T T) -8 NIL NIL NIL) (-789 1842559 1843001 1843029 "OCAMON" 1843034 T OCAMON (NIL) -9 NIL 1843055 NIL) (-788 1842116 1842431 1842459 "OASGP" 1842464 T OASGP (NIL) -9 NIL 1842484 NIL) (-787 1841403 1841866 1841894 "OAMONS" 1841934 T OAMONS (NIL) -9 NIL 1841977 NIL) (-786 1840843 1841250 1841278 "OAMON" 1841283 T OAMON (NIL) -9 NIL 1841303 NIL) (-785 1840147 1840639 1840667 "OAGROUP" 1840672 T OAGROUP (NIL) -9 NIL 1840692 NIL) (-784 1839837 1839887 1839975 "NUMTUBE" 1840091 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-783 1833410 1834928 1836464 "NUMQUAD" 1838321 T NUMQUAD (NIL) -7 NIL NIL NIL) (-782 1829166 1830154 1831179 "NUMODE" 1832405 T NUMODE (NIL) -7 NIL NIL NIL) (-781 1826547 1827401 1827429 "NUMINT" 1828352 T NUMINT (NIL) -9 NIL 1829116 NIL) (-780 1825495 1825692 1825910 "NUMFMT" 1826349 T NUMFMT (NIL) -7 NIL NIL NIL) (-779 1811854 1814799 1817331 "NUMERIC" 1823002 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-778 1806251 1811303 1811398 "NTSCAT" 1811403 NIL NTSCAT (NIL T T T T) -9 NIL 1811442 NIL) (-777 1805445 1805610 1805803 "NTPOLFN" 1806090 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-776 1793285 1802270 1803082 "NSUP" 1804666 NIL NSUP (NIL T) -8 NIL NIL NIL) (-775 1792917 1792974 1793083 "NSUP2" 1793222 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-774 1782914 1792691 1792824 "NSMP" 1792829 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-773 1781346 1781647 1782004 "NREP" 1782602 NIL NREP (NIL T) -7 NIL NIL NIL) (-772 1779937 1780189 1780547 "NPCOEF" 1781089 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-771 1779003 1779118 1779334 "NORMRETR" 1779818 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-770 1777044 1777334 1777743 "NORMPK" 1778711 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-769 1776729 1776757 1776881 "NORMMA" 1777010 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-768 1776556 1776686 1776715 "NONE" 1776720 T NONE (NIL) -8 NIL NIL NIL) (-767 1776345 1776374 1776443 "NONE1" 1776520 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-766 1775828 1775890 1776076 "NODE1" 1776277 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-765 1774099 1774922 1775177 "NNI" 1775524 T NNI (NIL) -8 NIL NIL 1775759) (-764 1772519 1772832 1773196 "NLINSOL" 1773767 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-763 1768787 1769755 1770654 "NIPROB" 1771640 T NIPROB (NIL) -8 NIL NIL NIL) (-762 1767544 1767778 1768080 "NFINTBAS" 1768549 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-761 1766984 1767194 1767235 "NETCLT" 1767407 NIL NETCLT (NIL T) -9 NIL 1767489 NIL) (-760 1765692 1765923 1766204 "NCODIV" 1766752 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-759 1765454 1765491 1765566 "NCNTFRAC" 1765649 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-758 1763634 1763998 1764418 "NCEP" 1765079 NIL NCEP (NIL T) -7 NIL NIL NIL) (-757 1762545 1763284 1763312 "NASRING" 1763422 T NASRING (NIL) -9 NIL 1763496 NIL) (-756 1762340 1762384 1762478 "NASRING-" 1762483 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-755 1761493 1761992 1762020 "NARNG" 1762137 T NARNG (NIL) -9 NIL 1762228 NIL) (-754 1761185 1761252 1761386 "NARNG-" 1761391 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-753 1760064 1760271 1760506 "NAGSP" 1760970 T NAGSP (NIL) -7 NIL NIL NIL) (-752 1751336 1753020 1754693 "NAGS" 1758411 T NAGS (NIL) -7 NIL NIL NIL) (-751 1749884 1750192 1750523 "NAGF07" 1751025 T NAGF07 (NIL) -7 NIL NIL NIL) (-750 1744422 1745713 1747020 "NAGF04" 1748597 T NAGF04 (NIL) -7 NIL NIL NIL) (-749 1737390 1739004 1740637 "NAGF02" 1742809 T NAGF02 (NIL) -7 NIL NIL NIL) (-748 1732614 1733714 1734831 "NAGF01" 1736293 T NAGF01 (NIL) -7 NIL NIL NIL) (-747 1726242 1727808 1729393 "NAGE04" 1731049 T NAGE04 (NIL) -7 NIL NIL NIL) (-746 1717411 1719532 1721662 "NAGE02" 1724132 T NAGE02 (NIL) -7 NIL NIL NIL) (-745 1713364 1714311 1715275 "NAGE01" 1716467 T NAGE01 (NIL) -7 NIL NIL NIL) (-744 1711159 1711693 1712251 "NAGD03" 1712826 T NAGD03 (NIL) -7 NIL NIL NIL) (-743 1702909 1704837 1706791 "NAGD02" 1709225 T NAGD02 (NIL) -7 NIL NIL NIL) (-742 1696720 1698145 1699585 "NAGD01" 1701489 T NAGD01 (NIL) -7 NIL NIL NIL) (-741 1692929 1693751 1694588 "NAGC06" 1695903 T NAGC06 (NIL) -7 NIL NIL NIL) (-740 1691394 1691726 1692082 "NAGC05" 1692593 T NAGC05 (NIL) -7 NIL NIL NIL) (-739 1690770 1690889 1691033 "NAGC02" 1691270 T NAGC02 (NIL) -7 NIL NIL NIL) (-738 1689830 1690387 1690427 "NAALG" 1690506 NIL NAALG (NIL T) -9 NIL 1690567 NIL) (-737 1689665 1689694 1689784 "NAALG-" 1689789 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-736 1683615 1684723 1685910 "MULTSQFR" 1688561 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-735 1682934 1683009 1683193 "MULTFACT" 1683527 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-734 1676027 1679897 1679950 "MTSCAT" 1681020 NIL MTSCAT (NIL T T) -9 NIL 1681534 NIL) (-733 1675739 1675793 1675885 "MTHING" 1675967 NIL MTHING (NIL T) -7 NIL NIL NIL) (-732 1675531 1675564 1675624 "MSYSCMD" 1675699 T MSYSCMD (NIL) -7 NIL NIL NIL) (-731 1671643 1674286 1674606 "MSET" 1675244 NIL MSET (NIL T) -8 NIL NIL NIL) (-730 1668738 1671204 1671245 "MSETAGG" 1671250 NIL MSETAGG (NIL T) -9 NIL 1671284 NIL) (-729 1664621 1666117 1666862 "MRING" 1668038 NIL MRING (NIL T T) -8 NIL NIL NIL) (-728 1664187 1664254 1664385 "MRF2" 1664548 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-727 1663805 1663840 1663984 "MRATFAC" 1664146 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-726 1661417 1661712 1662143 "MPRFF" 1663510 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-725 1655477 1661271 1661368 "MPOLY" 1661373 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-724 1654967 1655002 1655210 "MPCPF" 1655436 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-723 1654481 1654524 1654708 "MPC3" 1654918 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-722 1653676 1653757 1653978 "MPC2" 1654396 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-721 1651977 1652314 1652704 "MONOTOOL" 1653336 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-720 1651228 1651519 1651547 "MONOID" 1651766 T MONOID (NIL) -9 NIL 1651913 NIL) (-719 1650774 1650893 1651074 "MONOID-" 1651079 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-718 1641633 1647541 1647600 "MONOGEN" 1648274 NIL MONOGEN (NIL T T) -9 NIL 1648730 NIL) (-717 1638851 1639586 1640586 "MONOGEN-" 1640705 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-716 1637710 1638130 1638158 "MONADWU" 1638550 T MONADWU (NIL) -9 NIL 1638788 NIL) (-715 1637082 1637241 1637489 "MONADWU-" 1637494 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-714 1636467 1636685 1636713 "MONAD" 1636920 T MONAD (NIL) -9 NIL 1637032 NIL) (-713 1636152 1636230 1636362 "MONAD-" 1636367 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-712 1634468 1635065 1635344 "MOEBIUS" 1635905 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-711 1633860 1634238 1634278 "MODULE" 1634283 NIL MODULE (NIL T) -9 NIL 1634309 NIL) (-710 1633428 1633524 1633714 "MODULE-" 1633719 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-709 1631143 1631792 1632119 "MODRING" 1633252 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-708 1628129 1629248 1629769 "MODOP" 1630672 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-707 1626744 1627196 1627473 "MODMONOM" 1627992 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-706 1616551 1625035 1625449 "MODMON" 1626381 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-705 1613742 1615395 1615671 "MODFIELD" 1616426 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-704 1612746 1613023 1613213 "MMLFORM" 1613572 T MMLFORM (NIL) -8 NIL NIL NIL) (-703 1612272 1612315 1612494 "MMAP" 1612697 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-702 1610489 1611222 1611263 "MLO" 1611686 NIL MLO (NIL T) -9 NIL 1611928 NIL) (-701 1607856 1608371 1608973 "MLIFT" 1609970 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-700 1607247 1607331 1607485 "MKUCFUNC" 1607767 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-699 1606846 1606916 1607039 "MKRECORD" 1607170 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-698 1605894 1606055 1606283 "MKFUNC" 1606657 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-697 1605282 1605386 1605542 "MKFLCFN" 1605777 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-696 1604825 1605192 1605251 "MKCHSET" 1605256 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-695 1604102 1604204 1604389 "MKBCFUNC" 1604718 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-694 1600844 1603656 1603792 "MINT" 1603986 T MINT (NIL) -8 NIL NIL NIL) (-693 1599656 1599899 1600176 "MHROWRED" 1600599 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-692 1595082 1598191 1598596 "MFLOAT" 1599271 T MFLOAT (NIL) -8 NIL NIL NIL) (-691 1594439 1594515 1594686 "MFINFACT" 1594994 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-690 1590754 1591602 1592486 "MESH" 1593575 T MESH (NIL) -7 NIL NIL NIL) (-689 1589144 1589456 1589809 "MDDFACT" 1590441 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-688 1585986 1588303 1588344 "MDAGG" 1588599 NIL MDAGG (NIL T) -9 NIL 1588742 NIL) (-687 1575764 1585279 1585486 "MCMPLX" 1585799 T MCMPLX (NIL) -8 NIL NIL NIL) (-686 1574905 1575051 1575251 "MCDEN" 1575613 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-685 1572795 1573065 1573445 "MCALCFN" 1574635 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-684 1571720 1571960 1572193 "MAYBE" 1572601 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-683 1569332 1569855 1570417 "MATSTOR" 1571191 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-682 1565338 1568704 1568952 "MATRIX" 1569117 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-681 1561107 1561811 1562547 "MATLIN" 1564695 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-680 1551261 1554399 1554476 "MATCAT" 1559356 NIL MATCAT (NIL T T T) -9 NIL 1560773 NIL) (-679 1547625 1548638 1549994 "MATCAT-" 1549999 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-678 1546219 1546372 1546705 "MATCAT2" 1547460 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-677 1544331 1544655 1545039 "MAPPKG3" 1545894 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-676 1543312 1543485 1543707 "MAPPKG2" 1544155 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-675 1541811 1542095 1542422 "MAPPKG1" 1543018 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-674 1540917 1541217 1541394 "MAPPAST" 1541654 T MAPPAST (NIL) -8 NIL NIL NIL) (-673 1540528 1540586 1540709 "MAPHACK3" 1540853 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-672 1540120 1540181 1540295 "MAPHACK2" 1540460 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-671 1539558 1539661 1539803 "MAPHACK1" 1540011 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-670 1537664 1538258 1538562 "MAGMA" 1539286 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-669 1537170 1537388 1537479 "MACROAST" 1537593 T MACROAST (NIL) -8 NIL NIL NIL) (-668 1533637 1535409 1535870 "M3D" 1536742 NIL M3D (NIL T) -8 NIL NIL NIL) (-667 1527791 1532006 1532047 "LZSTAGG" 1532829 NIL LZSTAGG (NIL T) -9 NIL 1533124 NIL) (-666 1523765 1524922 1526379 "LZSTAGG-" 1526384 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-665 1520879 1521656 1522143 "LWORD" 1523310 NIL LWORD (NIL T) -8 NIL NIL NIL) (-664 1520482 1520683 1520758 "LSTAST" 1520824 T LSTAST (NIL) -8 NIL NIL NIL) (-663 1513683 1520253 1520387 "LSQM" 1520392 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-662 1512907 1513046 1513274 "LSPP" 1513538 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-661 1510719 1511020 1511476 "LSMP" 1512596 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-660 1507498 1508172 1508902 "LSMP1" 1510021 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-659 1501423 1506665 1506706 "LSAGG" 1506768 NIL LSAGG (NIL T) -9 NIL 1506846 NIL) (-658 1498118 1499042 1500255 "LSAGG-" 1500260 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-657 1495744 1497262 1497511 "LPOLY" 1497913 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-656 1495326 1495411 1495534 "LPEFRAC" 1495653 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-655 1493673 1494420 1494673 "LO" 1495158 NIL LO (NIL T T T) -8 NIL NIL NIL) (-654 1493325 1493437 1493465 "LOGIC" 1493576 T LOGIC (NIL) -9 NIL 1493657 NIL) (-653 1493187 1493210 1493281 "LOGIC-" 1493286 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-652 1492380 1492520 1492713 "LODOOPS" 1493043 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-651 1489838 1492296 1492362 "LODO" 1492367 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-650 1488376 1488611 1488964 "LODOF" 1489585 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-649 1484732 1487129 1487170 "LODOCAT" 1487608 NIL LODOCAT (NIL T) -9 NIL 1487819 NIL) (-648 1484465 1484523 1484650 "LODOCAT-" 1484655 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-647 1481820 1484306 1484424 "LODO2" 1484429 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-646 1479290 1481757 1481802 "LODO1" 1481807 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-645 1478150 1478315 1478627 "LODEEF" 1479113 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-644 1473436 1476280 1476321 "LNAGG" 1477268 NIL LNAGG (NIL T) -9 NIL 1477712 NIL) (-643 1472583 1472797 1473139 "LNAGG-" 1473144 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-642 1468746 1469508 1470147 "LMOPS" 1471998 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-641 1468141 1468503 1468544 "LMODULE" 1468605 NIL LMODULE (NIL T) -9 NIL 1468647 NIL) (-640 1465387 1467786 1467909 "LMDICT" 1468051 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-639 1465113 1465295 1465355 "LITERAL" 1465360 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-638 1458340 1464059 1464357 "LIST" 1464848 NIL LIST (NIL T) -8 NIL NIL NIL) (-637 1457865 1457939 1458078 "LIST3" 1458260 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-636 1456872 1457050 1457278 "LIST2" 1457683 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-635 1455006 1455318 1455717 "LIST2MAP" 1456519 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-634 1453736 1454372 1454413 "LINEXP" 1454668 NIL LINEXP (NIL T) -9 NIL 1454817 NIL) (-633 1452383 1452643 1452940 "LINDEP" 1453488 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-632 1449150 1449869 1450646 "LIMITRF" 1451638 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-631 1447426 1447721 1448137 "LIMITPS" 1448845 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-630 1441881 1446937 1447165 "LIE" 1447247 NIL LIE (NIL T T) -8 NIL NIL NIL) (-629 1440930 1441373 1441413 "LIECAT" 1441553 NIL LIECAT (NIL T) -9 NIL 1441704 NIL) (-628 1440771 1440798 1440886 "LIECAT-" 1440891 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-627 1433383 1440220 1440385 "LIB" 1440626 T LIB (NIL) -8 NIL NIL NIL) (-626 1429020 1429901 1430836 "LGROBP" 1432500 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-625 1426886 1427160 1427522 "LF" 1428741 NIL LF (NIL T T) -7 NIL NIL NIL) (-624 1425726 1426418 1426446 "LFCAT" 1426653 T LFCAT (NIL) -9 NIL 1426792 NIL) (-623 1422630 1423258 1423946 "LEXTRIPK" 1425090 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-622 1419401 1420200 1420703 "LEXP" 1422210 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-621 1418904 1419122 1419214 "LETAST" 1419329 T LETAST (NIL) -8 NIL NIL NIL) (-620 1417302 1417615 1418016 "LEADCDET" 1418586 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-619 1416492 1416566 1416795 "LAZM3PK" 1417223 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-618 1411447 1414569 1415107 "LAUPOL" 1416004 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-617 1411012 1411056 1411224 "LAPLACE" 1411397 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-616 1408986 1410113 1410364 "LA" 1410845 NIL LA (NIL T T T) -8 NIL NIL NIL) (-615 1408067 1408617 1408658 "LALG" 1408720 NIL LALG (NIL T) -9 NIL 1408779 NIL) (-614 1407781 1407840 1407976 "LALG-" 1407981 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-613 1407616 1407640 1407681 "KVTFROM" 1407743 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-612 1406419 1406833 1407062 "KTVLOGIC" 1407407 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-611 1406254 1406278 1406319 "KRCFROM" 1406381 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-610 1405158 1405345 1405644 "KOVACIC" 1406054 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-609 1404993 1405017 1405058 "KONVERT" 1405120 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-608 1404828 1404852 1404893 "KOERCE" 1404955 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-607 1402562 1403322 1403715 "KERNEL" 1404467 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-606 1402064 1402145 1402275 "KERNEL2" 1402476 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-605 1395915 1400603 1400657 "KDAGG" 1401034 NIL KDAGG (NIL T T) -9 NIL 1401240 NIL) (-604 1395444 1395568 1395773 "KDAGG-" 1395778 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1388619 1395105 1395260 "KAFILE" 1395322 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-602 1383074 1388130 1388358 "JORDAN" 1388440 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-601 1382480 1382723 1382844 "JOINAST" 1382973 T JOINAST (NIL) -8 NIL NIL NIL) (-600 1382326 1382385 1382440 "JAVACODE" 1382445 T JAVACODE (NIL) -8 NIL NIL NIL) (-599 1378625 1380531 1380585 "IXAGG" 1381514 NIL IXAGG (NIL T T) -9 NIL 1381973 NIL) (-598 1377544 1377850 1378269 "IXAGG-" 1378274 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-597 1373124 1377466 1377525 "IVECTOR" 1377530 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-596 1371890 1372127 1372393 "ITUPLE" 1372891 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-595 1370326 1370503 1370809 "ITRIGMNP" 1371712 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-594 1369071 1369275 1369558 "ITFUN3" 1370102 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-593 1368703 1368760 1368869 "ITFUN2" 1369008 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-592 1366540 1367565 1367864 "ITAYLOR" 1368437 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-591 1355523 1360677 1361840 "ISUPS" 1365410 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-590 1354627 1354767 1355003 "ISUMP" 1355370 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-589 1349891 1354428 1354507 "ISTRING" 1354580 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-588 1349394 1349612 1349704 "ISAST" 1349819 T ISAST (NIL) -8 NIL NIL NIL) (-587 1348604 1348685 1348901 "IRURPK" 1349308 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-586 1347540 1347741 1347981 "IRSN" 1348384 T IRSN (NIL) -7 NIL NIL NIL) (-585 1345569 1345924 1346360 "IRRF2F" 1347178 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-584 1345316 1345354 1345430 "IRREDFFX" 1345525 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-583 1343931 1344190 1344489 "IROOT" 1345049 NIL IROOT (NIL T) -7 NIL NIL NIL) (-582 1340563 1341615 1342307 "IR" 1343271 NIL IR (NIL T) -8 NIL NIL NIL) (-581 1338176 1338671 1339237 "IR2" 1340041 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-580 1337248 1337361 1337582 "IR2F" 1338059 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-579 1337039 1337073 1337133 "IPRNTPK" 1337208 T IPRNTPK (NIL) -7 NIL NIL NIL) (-578 1333658 1336928 1336997 "IPF" 1337002 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-577 1332021 1333583 1333640 "IPADIC" 1333645 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-576 1331361 1331581 1331711 "IP4ADDR" 1331911 T IP4ADDR (NIL) -8 NIL NIL NIL) (-575 1330861 1331065 1331175 "IOMODE" 1331271 T IOMODE (NIL) -8 NIL NIL NIL) (-574 1330209 1330458 1330585 "IOBFILE" 1330754 T IOBFILE (NIL) -8 NIL NIL NIL) (-573 1329963 1330113 1330141 "IOBCON" 1330146 T IOBCON (NIL) -9 NIL 1330167 NIL) (-572 1329460 1329518 1329708 "INVLAPLA" 1329899 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-571 1319109 1321462 1323848 "INTTR" 1327124 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-570 1315453 1316195 1317059 "INTTOOLS" 1318294 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-569 1315039 1315130 1315247 "INTSLPE" 1315356 T INTSLPE (NIL) -7 NIL NIL NIL) (-568 1313034 1314962 1315021 "INTRVL" 1315026 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-567 1310636 1311148 1311723 "INTRF" 1312519 NIL INTRF (NIL T) -7 NIL NIL NIL) (-566 1310047 1310144 1310286 "INTRET" 1310534 NIL INTRET (NIL T) -7 NIL NIL NIL) (-565 1308044 1308433 1308903 "INTRAT" 1309655 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-564 1305272 1305855 1306481 "INTPM" 1307529 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-563 1301975 1302574 1303319 "INTPAF" 1304658 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-562 1297154 1298116 1299167 "INTPACK" 1300944 T INTPACK (NIL) -7 NIL NIL NIL) (-561 1294066 1296883 1297010 "INT" 1297047 T INT (NIL) -8 NIL NIL NIL) (-560 1293318 1293470 1293678 "INTHERTR" 1293908 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-559 1292757 1292837 1293025 "INTHERAL" 1293232 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-558 1290603 1291046 1291503 "INTHEORY" 1292320 T INTHEORY (NIL) -7 NIL NIL NIL) (-557 1281911 1283532 1285311 "INTG0" 1288955 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-556 1262484 1267274 1272084 "INTFTBL" 1277121 T INTFTBL (NIL) -8 NIL NIL NIL) (-555 1261733 1261871 1262044 "INTFACT" 1262343 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-554 1259118 1259564 1260128 "INTEF" 1261287 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-553 1257585 1258290 1258318 "INTDOM" 1258619 T INTDOM (NIL) -9 NIL 1258826 NIL) (-552 1256954 1257128 1257370 "INTDOM-" 1257375 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-551 1253449 1255338 1255392 "INTCAT" 1256191 NIL INTCAT (NIL T) -9 NIL 1256511 NIL) (-550 1252922 1253024 1253152 "INTBIT" 1253341 T INTBIT (NIL) -7 NIL NIL NIL) (-549 1251593 1251747 1252061 "INTALG" 1252767 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-548 1251050 1251140 1251310 "INTAF" 1251497 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-547 1244504 1250860 1251000 "INTABL" 1251005 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-546 1243964 1244377 1244405 "INT8" 1244410 T INT8 (NIL) -8 NIL NIL 1244418) (-545 1243423 1243836 1243864 "INT32" 1243869 T INT32 (NIL) -8 NIL NIL 1243877) (-544 1242882 1243295 1243323 "INT16" 1243328 T INT16 (NIL) -8 NIL NIL 1243336) (-543 1237897 1240571 1240599 "INS" 1241533 T INS (NIL) -9 NIL 1242198 NIL) (-542 1235137 1235908 1236882 "INS-" 1236955 NIL INS- (NIL T) -8 NIL NIL NIL) (-541 1233912 1234139 1234437 "INPSIGN" 1234890 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-540 1233030 1233147 1233344 "INPRODPF" 1233792 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-539 1231924 1232041 1232278 "INPRODFF" 1232910 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-538 1230924 1231076 1231336 "INNMFACT" 1231760 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-537 1230121 1230218 1230406 "INMODGCD" 1230823 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-536 1228630 1228874 1229198 "INFSP" 1229866 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-535 1227814 1227931 1228114 "INFPROD0" 1228510 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-534 1224696 1225879 1226394 "INFORM" 1227307 T INFORM (NIL) -8 NIL NIL NIL) (-533 1224306 1224366 1224464 "INFORM1" 1224631 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-532 1223829 1223918 1224032 "INFINITY" 1224212 T INFINITY (NIL) -7 NIL NIL NIL) (-531 1223280 1223549 1223650 "INETCLTS" 1223748 T INETCLTS (NIL) -8 NIL NIL NIL) (-530 1221897 1222146 1222467 "INEP" 1223028 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-529 1221173 1221794 1221859 "INDE" 1221864 NIL INDE (NIL T) -8 NIL NIL NIL) (-528 1220737 1220805 1220922 "INCRMAPS" 1221100 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-527 1219750 1220006 1220212 "INBFILE" 1220551 T INBFILE (NIL) -8 NIL NIL NIL) (-526 1215061 1215986 1216930 "INBFF" 1218838 NIL INBFF (NIL T) -7 NIL NIL NIL) (-525 1214715 1214796 1214824 "INBCON" 1214962 T INBCON (NIL) -9 NIL 1215045 NIL) (-524 1214558 1214592 1214667 "INBCON-" 1214672 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-523 1214060 1214279 1214371 "INAST" 1214486 T INAST (NIL) -8 NIL NIL NIL) (-522 1213514 1213739 1213845 "IMPTAST" 1213974 T IMPTAST (NIL) -8 NIL NIL NIL) (-521 1210008 1213358 1213462 "IMATRIX" 1213467 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-520 1208720 1208843 1209158 "IMATQF" 1209864 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-519 1206940 1207167 1207504 "IMATLIN" 1208476 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-518 1201566 1206864 1206922 "ILIST" 1206927 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-517 1199519 1201426 1201539 "IIARRAY2" 1201544 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-516 1194952 1199430 1199494 "IFF" 1199499 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-515 1194326 1194569 1194685 "IFAST" 1194856 T IFAST (NIL) -8 NIL NIL NIL) (-514 1189369 1193618 1193806 "IFARRAY" 1194183 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-513 1188576 1189273 1189346 "IFAMON" 1189351 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-512 1188160 1188225 1188279 "IEVALAB" 1188486 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-511 1187835 1187903 1188063 "IEVALAB-" 1188068 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-510 1187493 1187749 1187812 "IDPO" 1187817 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-509 1186770 1187382 1187457 "IDPOAMS" 1187462 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-508 1186104 1186659 1186734 "IDPOAM" 1186739 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-507 1185189 1185439 1185492 "IDPC" 1185905 NIL IDPC (NIL T T) -9 NIL 1186054 NIL) (-506 1184685 1185081 1185154 "IDPAM" 1185159 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-505 1184088 1184577 1184650 "IDPAG" 1184655 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-504 1183856 1184003 1184053 "IDENT" 1184058 T IDENT (NIL) -8 NIL NIL NIL) (-503 1180111 1180959 1181854 "IDECOMP" 1183013 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-502 1172985 1174034 1175081 "IDEAL" 1179147 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-501 1172149 1172261 1172460 "ICDEN" 1172869 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-500 1171248 1171629 1171776 "ICARD" 1172022 T ICARD (NIL) -8 NIL NIL NIL) (-499 1169308 1169621 1170026 "IBPTOOLS" 1170925 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-498 1164942 1168928 1169041 "IBITS" 1169227 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-497 1161665 1162241 1162936 "IBATOOL" 1164359 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-496 1159445 1159906 1160439 "IBACHIN" 1161200 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-495 1157322 1159291 1159394 "IARRAY2" 1159399 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-494 1153475 1157248 1157305 "IARRAY1" 1157310 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-493 1147469 1151887 1152368 "IAN" 1153014 T IAN (NIL) -8 NIL NIL NIL) (-492 1146980 1147037 1147210 "IALGFACT" 1147406 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-491 1146508 1146621 1146649 "HYPCAT" 1146856 T HYPCAT (NIL) -9 NIL NIL NIL) (-490 1146046 1146163 1146349 "HYPCAT-" 1146354 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-489 1145668 1145841 1145924 "HOSTNAME" 1145983 T HOSTNAME (NIL) -8 NIL NIL NIL) (-488 1145513 1145550 1145591 "HOMOTOP" 1145596 NIL HOMOTOP (NIL T) -9 NIL 1145629 NIL) (-487 1142192 1143523 1143564 "HOAGG" 1144545 NIL HOAGG (NIL T) -9 NIL 1145224 NIL) (-486 1140786 1141185 1141711 "HOAGG-" 1141716 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-485 1134828 1140383 1140531 "HEXADEC" 1140658 T HEXADEC (NIL) -8 NIL NIL NIL) (-484 1133576 1133798 1134061 "HEUGCD" 1134605 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-483 1132679 1133413 1133543 "HELLFDIV" 1133548 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-482 1130907 1132456 1132544 "HEAP" 1132623 NIL HEAP (NIL T) -8 NIL NIL NIL) (-481 1130198 1130459 1130593 "HEADAST" 1130793 T HEADAST (NIL) -8 NIL NIL NIL) (-480 1124118 1130113 1130175 "HDP" 1130180 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-479 1117869 1123753 1123905 "HDMP" 1124019 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-478 1117194 1117333 1117497 "HB" 1117725 T HB (NIL) -7 NIL NIL NIL) (-477 1110691 1117040 1117144 "HASHTBL" 1117149 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-476 1110194 1110412 1110504 "HASAST" 1110619 T HASAST (NIL) -8 NIL NIL NIL) (-475 1108006 1109816 1109998 "HACKPI" 1110032 T HACKPI (NIL) -8 NIL NIL NIL) (-474 1103701 1107859 1107972 "GTSET" 1107977 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-473 1097227 1103579 1103677 "GSTBL" 1103682 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-472 1089540 1096258 1096523 "GSERIES" 1097018 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-471 1088707 1089098 1089126 "GROUP" 1089329 T GROUP (NIL) -9 NIL 1089463 NIL) (-470 1088073 1088232 1088483 "GROUP-" 1088488 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-469 1086442 1086761 1087148 "GROEBSOL" 1087750 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-468 1085382 1085644 1085695 "GRMOD" 1086224 NIL GRMOD (NIL T T) -9 NIL 1086392 NIL) (-467 1085150 1085186 1085314 "GRMOD-" 1085319 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-466 1080476 1081504 1082504 "GRIMAGE" 1084170 T GRIMAGE (NIL) -8 NIL NIL NIL) (-465 1078943 1079203 1079527 "GRDEF" 1080172 T GRDEF (NIL) -7 NIL NIL NIL) (-464 1078387 1078503 1078644 "GRAY" 1078822 T GRAY (NIL) -7 NIL NIL NIL) (-463 1077600 1077980 1078031 "GRALG" 1078184 NIL GRALG (NIL T T) -9 NIL 1078277 NIL) (-462 1077261 1077334 1077497 "GRALG-" 1077502 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-461 1074065 1076846 1077024 "GPOLSET" 1077168 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-460 1073419 1073476 1073734 "GOSPER" 1074002 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-459 1069178 1069857 1070383 "GMODPOL" 1073118 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-458 1068183 1068367 1068605 "GHENSEL" 1068990 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-457 1062234 1063077 1064104 "GENUPS" 1067267 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-456 1061931 1061982 1062071 "GENUFACT" 1062177 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-455 1061343 1061420 1061585 "GENPGCD" 1061849 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-454 1060817 1060852 1061065 "GENMFACT" 1061302 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-453 1059385 1059640 1059947 "GENEEZ" 1060560 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-452 1053298 1058996 1059158 "GDMP" 1059308 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-451 1042675 1047069 1048175 "GCNAALG" 1052281 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-450 1041102 1041930 1041958 "GCDDOM" 1042213 T GCDDOM (NIL) -9 NIL 1042370 NIL) (-449 1040572 1040699 1040914 "GCDDOM-" 1040919 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-448 1039244 1039429 1039733 "GB" 1040351 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-447 1027864 1030190 1032582 "GBINTERN" 1036935 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-446 1025701 1025993 1026414 "GBF" 1027539 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-445 1024482 1024647 1024914 "GBEUCLID" 1025517 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-444 1023831 1023956 1024105 "GAUSSFAC" 1024353 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-443 1022198 1022500 1022814 "GALUTIL" 1023550 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-442 1020506 1020780 1021104 "GALPOLYU" 1021925 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-441 1017871 1018161 1018568 "GALFACTU" 1020203 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-440 1009677 1011176 1012784 "GALFACT" 1016303 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-439 1007065 1007723 1007751 "FVFUN" 1008907 T FVFUN (NIL) -9 NIL 1009627 NIL) (-438 1006331 1006513 1006541 "FVC" 1006832 T FVC (NIL) -9 NIL 1007015 NIL) (-437 1005973 1006128 1006209 "FUNCTION" 1006283 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-436 1003744 1004295 1004761 "FT" 1005527 T FT (NIL) -8 NIL NIL NIL) (-435 1002562 1003045 1003248 "FTEM" 1003561 T FTEM (NIL) -8 NIL NIL NIL) (-434 1000818 1001107 1001511 "FSUPFACT" 1002253 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-433 999215 999504 999836 "FST" 1000506 T FST (NIL) -8 NIL NIL NIL) (-432 998386 998492 998687 "FSRED" 999097 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-431 997065 997320 997674 "FSPRMELT" 998101 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-430 994150 994588 995087 "FSPECF" 996628 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-429 976210 984653 984693 "FS" 988541 NIL FS (NIL T) -9 NIL 990830 NIL) (-428 964860 967850 971906 "FS-" 972203 NIL FS- (NIL T T) -8 NIL NIL NIL) (-427 964374 964428 964605 "FSINT" 964801 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-426 962701 963367 963670 "FSERIES" 964153 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-425 961715 961831 962062 "FSCINT" 962581 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-424 957949 960659 960700 "FSAGG" 961070 NIL FSAGG (NIL T) -9 NIL 961329 NIL) (-423 955711 956312 957108 "FSAGG-" 957203 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-422 954753 954896 955123 "FSAGG2" 955564 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-421 952408 952687 953241 "FS2UPS" 954471 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-420 951990 952033 952188 "FS2" 952359 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-419 950847 951018 951327 "FS2EXPXP" 951815 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-418 950273 950388 950540 "FRUTIL" 950727 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-417 941728 945768 947126 "FR" 948947 NIL FR (NIL T) -8 NIL NIL NIL) (-416 936803 939446 939486 "FRNAALG" 940882 NIL FRNAALG (NIL T) -9 NIL 941489 NIL) (-415 932481 933552 934827 "FRNAALG-" 935577 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-414 932119 932162 932289 "FRNAAF2" 932432 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-413 930526 930973 931268 "FRMOD" 931931 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-412 928305 928909 929226 "FRIDEAL" 930317 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-411 927500 927587 927876 "FRIDEAL2" 928212 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-410 926633 927047 927088 "FRETRCT" 927093 NIL FRETRCT (NIL T) -9 NIL 927269 NIL) (-409 925745 925976 926327 "FRETRCT-" 926332 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-408 922957 924133 924192 "FRAMALG" 925074 NIL FRAMALG (NIL T T) -9 NIL 925366 NIL) (-407 921091 921546 922176 "FRAMALG-" 922399 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-406 915049 920566 920842 "FRAC" 920847 NIL FRAC (NIL T) -8 NIL NIL NIL) (-405 914685 914742 914849 "FRAC2" 914986 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-404 914321 914378 914485 "FR2" 914622 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-403 908994 911846 911874 "FPS" 912993 T FPS (NIL) -9 NIL 913550 NIL) (-402 908443 908552 908716 "FPS-" 908862 NIL FPS- (NIL T) -8 NIL NIL NIL) (-401 905897 907532 907560 "FPC" 907785 T FPC (NIL) -9 NIL 907927 NIL) (-400 905690 905730 905827 "FPC-" 905832 NIL FPC- (NIL T) -8 NIL NIL NIL) (-399 904568 905178 905219 "FPATMAB" 905224 NIL FPATMAB (NIL T) -9 NIL 905376 NIL) (-398 902268 902744 903170 "FPARFRAC" 904205 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-397 897662 898160 898842 "FORTRAN" 901700 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-396 895378 895878 896417 "FORT" 897143 T FORT (NIL) -7 NIL NIL NIL) (-395 893054 893616 893644 "FORTFN" 894704 T FORTFN (NIL) -9 NIL 895328 NIL) (-394 892818 892868 892896 "FORTCAT" 892955 T FORTCAT (NIL) -9 NIL 893017 NIL) (-393 890951 891434 891824 "FORMULA" 892448 T FORMULA (NIL) -8 NIL NIL NIL) (-392 890739 890769 890838 "FORMULA1" 890915 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-391 890262 890314 890487 "FORDER" 890681 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-390 889358 889522 889715 "FOP" 890089 T FOP (NIL) -7 NIL NIL NIL) (-389 887966 888638 888812 "FNLA" 889240 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-388 886721 887110 887138 "FNCAT" 887598 T FNCAT (NIL) -9 NIL 887858 NIL) (-387 886287 886680 886708 "FNAME" 886713 T FNAME (NIL) -8 NIL NIL NIL) (-386 884950 885879 885907 "FMTC" 885912 T FMTC (NIL) -9 NIL 885948 NIL) (-385 881312 882473 883102 "FMONOID" 884354 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-384 880531 881054 881203 "FM" 881208 NIL FM (NIL T T) -8 NIL NIL NIL) (-383 877955 878601 878629 "FMFUN" 879773 T FMFUN (NIL) -9 NIL 880481 NIL) (-382 877224 877405 877433 "FMC" 877723 T FMC (NIL) -9 NIL 877905 NIL) (-381 874418 875252 875306 "FMCAT" 876501 NIL FMCAT (NIL T T) -9 NIL 876996 NIL) (-380 873311 874184 874284 "FM1" 874363 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-379 871085 871501 871995 "FLOATRP" 872862 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-378 864709 868814 869435 "FLOAT" 870484 T FLOAT (NIL) -8 NIL NIL NIL) (-377 862147 862647 863225 "FLOATCP" 864176 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-376 860956 861760 861801 "FLINEXP" 861806 NIL FLINEXP (NIL T) -9 NIL 861899 NIL) (-375 860110 860345 860673 "FLINEXP-" 860678 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-374 859186 859330 859554 "FLASORT" 859962 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-373 856403 857245 857297 "FLALG" 858524 NIL FLALG (NIL T T) -9 NIL 858991 NIL) (-372 850187 853889 853930 "FLAGG" 855192 NIL FLAGG (NIL T) -9 NIL 855844 NIL) (-371 848913 849252 849742 "FLAGG-" 849747 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-370 847955 848098 848325 "FLAGG2" 848766 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 844930 845904 845963 "FINRALG" 847091 NIL FINRALG (NIL T T) -9 NIL 847599 NIL) (-368 844090 844319 844658 "FINRALG-" 844663 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-367 843496 843709 843737 "FINITE" 843933 T FINITE (NIL) -9 NIL 844040 NIL) (-366 835954 838115 838155 "FINAALG" 841822 NIL FINAALG (NIL T) -9 NIL 843275 NIL) (-365 831295 832336 833480 "FINAALG-" 834859 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-364 830690 831050 831153 "FILE" 831225 NIL FILE (NIL T) -8 NIL NIL NIL) (-363 829374 829686 829740 "FILECAT" 830424 NIL FILECAT (NIL T T) -9 NIL 830640 NIL) (-362 827242 828736 828764 "FIELD" 828804 T FIELD (NIL) -9 NIL 828884 NIL) (-361 825862 826247 826758 "FIELD-" 826763 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-360 823740 824497 824844 "FGROUP" 825548 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-359 822830 822994 823214 "FGLMICPK" 823572 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-358 818697 822755 822812 "FFX" 822817 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-357 818298 818359 818494 "FFSLPE" 818630 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-356 814291 815070 815866 "FFPOLY" 817534 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-355 813795 813831 814040 "FFPOLY2" 814249 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-354 809681 813714 813777 "FFP" 813782 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-353 805114 809592 809656 "FF" 809661 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 800275 804457 804647 "FFNBX" 804968 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-351 795249 799410 799668 "FFNBP" 800129 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-350 789917 794533 794744 "FFNB" 795082 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-349 788749 788947 789262 "FFINTBAS" 789714 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-348 784977 787156 787184 "FFIELDC" 787804 T FFIELDC (NIL) -9 NIL 788180 NIL) (-347 783640 784010 784507 "FFIELDC-" 784512 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-346 783210 783255 783379 "FFHOM" 783582 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-345 780908 781392 781909 "FFF" 782725 NIL FFF (NIL T) -7 NIL NIL NIL) (-344 776561 780650 780751 "FFCGX" 780851 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-343 772228 776293 776400 "FFCGP" 776504 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-342 767446 771955 772063 "FFCG" 772164 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-341 749279 758317 758403 "FFCAT" 763568 NIL FFCAT (NIL T T T) -9 NIL 765019 NIL) (-340 744477 745524 746838 "FFCAT-" 748068 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-339 743888 743931 744166 "FFCAT2" 744428 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-338 733100 736860 738080 "FEXPR" 742740 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-337 732100 732535 732576 "FEVALAB" 732660 NIL FEVALAB (NIL T) -9 NIL 732921 NIL) (-336 731259 731469 731807 "FEVALAB-" 731812 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-335 729852 730642 730845 "FDIV" 731158 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-334 726918 727633 727748 "FDIVCAT" 729316 NIL FDIVCAT (NIL T T T T) -9 NIL 729753 NIL) (-333 726680 726707 726877 "FDIVCAT-" 726882 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-332 725900 725987 726264 "FDIV2" 726587 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-331 724586 724845 725134 "FCPAK1" 725631 T FCPAK1 (NIL) -7 NIL NIL NIL) (-330 723714 724086 724227 "FCOMP" 724477 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-329 707451 710864 714402 "FC" 720196 T FC (NIL) -8 NIL NIL NIL) (-328 700030 704015 704055 "FAXF" 705857 NIL FAXF (NIL T) -9 NIL 706549 NIL) (-327 697309 697964 698789 "FAXF-" 699254 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-326 692409 696685 696861 "FARRAY" 697166 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-325 687662 689694 689747 "FAMR" 690770 NIL FAMR (NIL T T) -9 NIL 691230 NIL) (-324 686552 686854 687289 "FAMR-" 687294 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-323 685748 686474 686527 "FAMONOID" 686532 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-322 683560 684244 684297 "FAMONC" 685238 NIL FAMONC (NIL T T) -9 NIL 685624 NIL) (-321 682252 683314 683451 "FAGROUP" 683456 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-320 680047 680366 680769 "FACUTIL" 681933 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-319 679146 679331 679553 "FACTFUNC" 679857 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-318 671551 678397 678609 "EXPUPXS" 679002 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-317 669034 669574 670160 "EXPRTUBE" 670985 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-316 665228 665820 666557 "EXPRODE" 668373 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-315 650602 663883 664311 "EXPR" 664832 NIL EXPR (NIL T) -8 NIL NIL NIL) (-314 645009 645596 646409 "EXPR2UPS" 649900 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-313 644645 644702 644809 "EXPR2" 644946 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-312 636050 643777 644074 "EXPEXPAN" 644482 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-311 635877 636007 636036 "EXIT" 636041 T EXIT (NIL) -8 NIL NIL NIL) (-310 635384 635601 635692 "EXITAST" 635806 T EXITAST (NIL) -8 NIL NIL NIL) (-309 635011 635073 635186 "EVALCYC" 635316 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-308 634552 634670 634711 "EVALAB" 634881 NIL EVALAB (NIL T) -9 NIL 634985 NIL) (-307 634033 634155 634376 "EVALAB-" 634381 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-306 631501 632769 632797 "EUCDOM" 633352 T EUCDOM (NIL) -9 NIL 633702 NIL) (-305 629906 630348 630938 "EUCDOM-" 630943 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-304 617446 620204 622954 "ESTOOLS" 627176 T ESTOOLS (NIL) -7 NIL NIL NIL) (-303 617078 617135 617244 "ESTOOLS2" 617383 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-302 616829 616871 616951 "ESTOOLS1" 617030 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-301 610734 612462 612490 "ES" 615258 T ES (NIL) -9 NIL 616667 NIL) (-300 605682 606968 608785 "ES-" 608949 NIL ES- (NIL T) -8 NIL NIL NIL) (-299 602057 602817 603597 "ESCONT" 604922 T ESCONT (NIL) -7 NIL NIL NIL) (-298 601802 601834 601916 "ESCONT1" 602019 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-297 601477 601527 601627 "ES2" 601746 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-296 601107 601165 601274 "ES1" 601413 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-295 600323 600452 600628 "ERROR" 600951 T ERROR (NIL) -7 NIL NIL NIL) (-294 593826 600182 600273 "EQTBL" 600278 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-293 586383 589140 590589 "EQ" 592410 NIL -3328 (NIL T) -8 NIL NIL NIL) (-292 586015 586072 586181 "EQ2" 586320 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-291 581307 582353 583446 "EP" 584954 NIL EP (NIL T) -7 NIL NIL NIL) (-290 579889 580190 580507 "ENV" 581010 T ENV (NIL) -8 NIL NIL NIL) (-289 579068 579588 579616 "ENTIRER" 579621 T ENTIRER (NIL) -9 NIL 579667 NIL) (-288 575570 577023 577393 "EMR" 578867 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-287 574714 574899 574953 "ELTAGG" 575333 NIL ELTAGG (NIL T T) -9 NIL 575544 NIL) (-286 574433 574495 574636 "ELTAGG-" 574641 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-285 574222 574251 574305 "ELTAB" 574389 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-284 573348 573494 573693 "ELFUTS" 574073 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-283 573090 573146 573174 "ELEMFUN" 573279 T ELEMFUN (NIL) -9 NIL NIL NIL) (-282 572960 572981 573049 "ELEMFUN-" 573054 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-281 567851 571060 571101 "ELAGG" 572041 NIL ELAGG (NIL T) -9 NIL 572504 NIL) (-280 566136 566570 567233 "ELAGG-" 567238 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-279 564793 565073 565368 "ELABEXPR" 565861 T ELABEXPR (NIL) -8 NIL NIL NIL) (-278 557659 559460 560287 "EFUPXS" 564069 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-277 551109 552910 553720 "EFULS" 556935 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-276 548531 548889 549368 "EFSTRUC" 550741 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-275 537603 539168 540728 "EF" 547046 NIL EF (NIL T T) -7 NIL NIL NIL) (-274 536704 537088 537237 "EAB" 537474 T EAB (NIL) -8 NIL NIL NIL) (-273 535913 536663 536691 "E04UCFA" 536696 T E04UCFA (NIL) -8 NIL NIL NIL) (-272 535122 535872 535900 "E04NAFA" 535905 T E04NAFA (NIL) -8 NIL NIL NIL) (-271 534331 535081 535109 "E04MBFA" 535114 T E04MBFA (NIL) -8 NIL NIL NIL) (-270 533540 534290 534318 "E04JAFA" 534323 T E04JAFA (NIL) -8 NIL NIL NIL) (-269 532751 533499 533527 "E04GCFA" 533532 T E04GCFA (NIL) -8 NIL NIL NIL) (-268 531962 532710 532738 "E04FDFA" 532743 T E04FDFA (NIL) -8 NIL NIL NIL) (-267 531171 531921 531949 "E04DGFA" 531954 T E04DGFA (NIL) -8 NIL NIL NIL) (-266 525349 526696 528060 "E04AGNT" 529827 T E04AGNT (NIL) -7 NIL NIL NIL) (-265 524055 524535 524575 "DVARCAT" 525050 NIL DVARCAT (NIL T) -9 NIL 525249 NIL) (-264 523259 523471 523785 "DVARCAT-" 523790 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-263 516159 523058 523187 "DSMP" 523192 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-262 510969 512104 513172 "DROPT" 515111 T DROPT (NIL) -8 NIL NIL NIL) (-261 510634 510693 510791 "DROPT1" 510904 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-260 505749 506875 508012 "DROPT0" 509517 T DROPT0 (NIL) -7 NIL NIL NIL) (-259 504094 504419 504805 "DRAWPT" 505383 T DRAWPT (NIL) -7 NIL NIL NIL) (-258 498681 499604 500683 "DRAW" 503068 NIL DRAW (NIL T) -7 NIL NIL NIL) (-257 498314 498367 498485 "DRAWHACK" 498622 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-256 497045 497314 497605 "DRAWCX" 498043 T DRAWCX (NIL) -7 NIL NIL NIL) (-255 496561 496629 496780 "DRAWCURV" 496971 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-254 487032 488991 491106 "DRAWCFUN" 494466 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-253 483845 485727 485768 "DQAGG" 486397 NIL DQAGG (NIL T) -9 NIL 486670 NIL) (-252 472124 478823 478906 "DPOLCAT" 480758 NIL DPOLCAT (NIL T T T T) -9 NIL 481303 NIL) (-251 466963 468309 470267 "DPOLCAT-" 470272 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-250 460118 466824 466922 "DPMO" 466927 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-249 453176 459898 460065 "DPMM" 460070 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-248 452840 453095 453143 "DOMCTOR" 453148 T DOMCTOR (NIL) -8 NIL NIL NIL) (-247 452135 452362 452499 "DOMAIN" 452723 T DOMAIN (NIL) -8 NIL NIL NIL) (-246 445886 451770 451922 "DMP" 452036 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-245 445486 445542 445686 "DLP" 445824 NIL DLP (NIL T) -7 NIL NIL NIL) (-244 439356 444813 445003 "DLIST" 445328 NIL DLIST (NIL T) -8 NIL NIL NIL) (-243 436200 438209 438250 "DLAGG" 438800 NIL DLAGG (NIL T) -9 NIL 439030 NIL) (-242 435013 435643 435671 "DIVRING" 435763 T DIVRING (NIL) -9 NIL 435846 NIL) (-241 434250 434440 434740 "DIVRING-" 434745 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-240 432352 432709 433115 "DISPLAY" 433864 T DISPLAY (NIL) -7 NIL NIL NIL) (-239 426294 432266 432329 "DIRPROD" 432334 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 425142 425345 425610 "DIRPROD2" 426087 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-237 414405 420357 420410 "DIRPCAT" 420820 NIL DIRPCAT (NIL NIL T) -9 NIL 421660 NIL) (-236 411731 412373 413254 "DIRPCAT-" 413591 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-235 411018 411178 411364 "DIOSP" 411565 T DIOSP (NIL) -7 NIL NIL NIL) (-234 407720 409930 409971 "DIOPS" 410405 NIL DIOPS (NIL T) -9 NIL 410634 NIL) (-233 407269 407383 407574 "DIOPS-" 407579 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-232 406161 406755 406783 "DIFRING" 406970 T DIFRING (NIL) -9 NIL 407080 NIL) (-231 405807 405884 406036 "DIFRING-" 406041 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-230 403612 404850 404891 "DIFEXT" 405254 NIL DIFEXT (NIL T) -9 NIL 405548 NIL) (-229 401897 402325 402991 "DIFEXT-" 402996 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-228 399219 401429 401470 "DIAGG" 401475 NIL DIAGG (NIL T) -9 NIL 401495 NIL) (-227 398603 398760 399012 "DIAGG-" 399017 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-226 394068 397562 397839 "DHMATRIX" 398372 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-225 389680 390589 391599 "DFSFUN" 393078 T DFSFUN (NIL) -7 NIL NIL NIL) (-224 384796 388611 388923 "DFLOAT" 389388 T DFLOAT (NIL) -8 NIL NIL NIL) (-223 383024 383305 383701 "DFINTTLS" 384504 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-222 380089 381045 381445 "DERHAM" 382690 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-221 377938 379864 379953 "DEQUEUE" 380033 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-220 377153 377286 377482 "DEGRED" 377800 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-219 373548 374293 375146 "DEFINTRF" 376381 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-218 371075 371544 372143 "DEFINTEF" 373067 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-217 370452 370695 370810 "DEFAST" 370980 T DEFAST (NIL) -8 NIL NIL NIL) (-216 364494 370049 370197 "DECIMAL" 370324 T DECIMAL (NIL) -8 NIL NIL NIL) (-215 362006 362464 362970 "DDFACT" 364038 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-214 361602 361645 361796 "DBLRESP" 361957 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-213 359501 359835 360195 "DBASE" 361369 NIL DBASE (NIL T) -8 NIL NIL NIL) (-212 358770 358981 359127 "DATAARY" 359400 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-211 357903 358729 358757 "D03FAFA" 358762 T D03FAFA (NIL) -8 NIL NIL NIL) (-210 357037 357862 357890 "D03EEFA" 357895 T D03EEFA (NIL) -8 NIL NIL NIL) (-209 354987 355453 355942 "D03AGNT" 356568 T D03AGNT (NIL) -7 NIL NIL NIL) (-208 354303 354946 354974 "D02EJFA" 354979 T D02EJFA (NIL) -8 NIL NIL NIL) (-207 353619 354262 354290 "D02CJFA" 354295 T D02CJFA (NIL) -8 NIL NIL NIL) (-206 352935 353578 353606 "D02BHFA" 353611 T D02BHFA (NIL) -8 NIL NIL NIL) (-205 352251 352894 352922 "D02BBFA" 352927 T D02BBFA (NIL) -8 NIL NIL NIL) (-204 345449 347037 348643 "D02AGNT" 350665 T D02AGNT (NIL) -7 NIL NIL NIL) (-203 343218 343740 344286 "D01WGTS" 344923 T D01WGTS (NIL) -7 NIL NIL NIL) (-202 342313 343177 343205 "D01TRNS" 343210 T D01TRNS (NIL) -8 NIL NIL NIL) (-201 341408 342272 342300 "D01GBFA" 342305 T D01GBFA (NIL) -8 NIL NIL NIL) (-200 340503 341367 341395 "D01FCFA" 341400 T D01FCFA (NIL) -8 NIL NIL NIL) (-199 339598 340462 340490 "D01ASFA" 340495 T D01ASFA (NIL) -8 NIL NIL NIL) (-198 338693 339557 339585 "D01AQFA" 339590 T D01AQFA (NIL) -8 NIL NIL NIL) (-197 337788 338652 338680 "D01APFA" 338685 T D01APFA (NIL) -8 NIL NIL NIL) (-196 336883 337747 337775 "D01ANFA" 337780 T D01ANFA (NIL) -8 NIL NIL NIL) (-195 335978 336842 336870 "D01AMFA" 336875 T D01AMFA (NIL) -8 NIL NIL NIL) (-194 335073 335937 335965 "D01ALFA" 335970 T D01ALFA (NIL) -8 NIL NIL NIL) (-193 334168 335032 335060 "D01AKFA" 335065 T D01AKFA (NIL) -8 NIL NIL NIL) (-192 333263 334127 334155 "D01AJFA" 334160 T D01AJFA (NIL) -8 NIL NIL NIL) (-191 326560 328111 329672 "D01AGNT" 331722 T D01AGNT (NIL) -7 NIL NIL NIL) (-190 325897 326025 326177 "CYCLOTOM" 326428 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-189 322632 323345 324072 "CYCLES" 325190 T CYCLES (NIL) -7 NIL NIL NIL) (-188 321944 322078 322249 "CVMP" 322493 NIL CVMP (NIL T) -7 NIL NIL NIL) (-187 319715 319973 320349 "CTRIGMNP" 321672 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-186 319438 319674 319702 "CTOR" 319707 T CTOR (NIL) -8 NIL NIL NIL) (-185 318974 319169 319270 "CTORKIND" 319357 T CTORKIND (NIL) -8 NIL NIL NIL) (-184 318445 318673 318701 "CTORCAT" 318821 T CTORCAT (NIL) -9 NIL 318904 NIL) (-183 318140 318220 318346 "CTORCAT-" 318351 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-182 317656 317843 317941 "CTORCALL" 318062 T CTORCALL (NIL) -8 NIL NIL NIL) (-181 317030 317129 317282 "CSTTOOLS" 317553 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-180 312829 313486 314244 "CRFP" 316342 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-179 312331 312550 312642 "CRCEAST" 312757 T CRCEAST (NIL) -8 NIL NIL NIL) (-178 311378 311563 311791 "CRAPACK" 312135 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-177 310762 310863 311067 "CPMATCH" 311254 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-176 310487 310515 310621 "CPIMA" 310728 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-175 306851 307523 308241 "COORDSYS" 309822 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-174 306235 306364 306514 "CONTOUR" 306721 T CONTOUR (NIL) -8 NIL NIL NIL) (-173 302161 304238 304730 "CONTFRAC" 305775 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-172 302041 302062 302090 "CONDUIT" 302127 T CONDUIT (NIL) -9 NIL NIL NIL) (-171 301214 301734 301762 "COMRING" 301767 T COMRING (NIL) -9 NIL 301819 NIL) (-170 300295 300572 300756 "COMPPROP" 301050 T COMPPROP (NIL) -8 NIL NIL NIL) (-169 299956 299991 300119 "COMPLPAT" 300254 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-168 290013 299765 299874 "COMPLEX" 299879 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 289649 289706 289813 "COMPLEX2" 289950 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-166 289367 289402 289500 "COMPFACT" 289608 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-165 273540 283760 283800 "COMPCAT" 284804 NIL COMPCAT (NIL T) -9 NIL 286189 NIL) (-164 263056 265979 269606 "COMPCAT-" 269962 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-163 262785 262813 262916 "COMMUPC" 263022 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-162 262580 262613 262672 "COMMONOP" 262746 T COMMONOP (NIL) -7 NIL NIL NIL) (-161 262163 262331 262418 "COMM" 262513 T COMM (NIL) -8 NIL NIL NIL) (-160 261767 261967 262042 "COMMAAST" 262108 T COMMAAST (NIL) -8 NIL NIL NIL) (-159 261016 261210 261238 "COMBOPC" 261576 T COMBOPC (NIL) -9 NIL 261751 NIL) (-158 259912 260122 260364 "COMBINAT" 260806 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-157 256110 256683 257323 "COMBF" 259334 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-156 254896 255226 255461 "COLOR" 255895 T COLOR (NIL) -8 NIL NIL NIL) (-155 254399 254617 254709 "COLONAST" 254824 T COLONAST (NIL) -8 NIL NIL NIL) (-154 254039 254086 254211 "CMPLXRT" 254346 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-153 253514 253739 253838 "CLLCTAST" 253960 T CLLCTAST (NIL) -8 NIL NIL NIL) (-152 249016 250044 251124 "CLIP" 252454 T CLIP (NIL) -7 NIL NIL NIL) (-151 247398 248122 248361 "CLIF" 248843 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-150 243620 245544 245585 "CLAGG" 246514 NIL CLAGG (NIL T) -9 NIL 247050 NIL) (-149 242042 242499 243082 "CLAGG-" 243087 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-148 241586 241671 241811 "CINTSLPE" 241951 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-147 239087 239558 240106 "CHVAR" 241114 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-146 238330 238850 238878 "CHARZ" 238883 T CHARZ (NIL) -9 NIL 238898 NIL) (-145 238084 238124 238202 "CHARPOL" 238284 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-144 237211 237764 237792 "CHARNZ" 237839 T CHARNZ (NIL) -9 NIL 237895 NIL) (-143 235200 235901 236236 "CHAR" 236896 T CHAR (NIL) -8 NIL NIL NIL) (-142 234926 234987 235015 "CFCAT" 235126 T CFCAT (NIL) -9 NIL NIL NIL) (-141 234171 234282 234464 "CDEN" 234810 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-140 230163 233324 233604 "CCLASS" 233911 T CCLASS (NIL) -8 NIL NIL NIL) (-139 229470 229613 229776 "CATEGORY" 230020 T -10 (NIL) -8 NIL NIL NIL) (-138 229134 229389 229437 "CATCTOR" 229442 T CATCTOR (NIL) -8 NIL NIL NIL) (-137 228608 228834 228933 "CATAST" 229055 T CATAST (NIL) -8 NIL NIL NIL) (-136 228111 228329 228421 "CASEAST" 228536 T CASEAST (NIL) -8 NIL NIL NIL) (-135 223163 224140 224893 "CARTEN" 227414 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 222271 222419 222640 "CARTEN2" 223010 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-133 220613 221421 221678 "CARD" 222034 T CARD (NIL) -8 NIL NIL NIL) (-132 220216 220417 220492 "CAPSLAST" 220558 T CAPSLAST (NIL) -8 NIL NIL NIL) (-131 219588 219916 219944 "CACHSET" 220076 T CACHSET (NIL) -9 NIL 220153 NIL) (-130 219084 219380 219408 "CABMON" 219458 T CABMON (NIL) -9 NIL 219514 NIL) (-129 218107 218630 218766 "BYTE" 218929 T BYTE (NIL) -8 NIL NIL 219045) (-128 213516 217575 217738 "BYTEBUF" 217964 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211073 213208 213315 "BTREE" 213442 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208571 210721 210843 "BTOURN" 210983 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205988 208041 208082 "BTCAT" 208150 NIL BTCAT (NIL T) -9 NIL 208227 NIL) (-124 205655 205735 205884 "BTCAT-" 205889 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200947 204798 204826 "BTAGG" 205048 T BTAGG (NIL) -9 NIL 205209 NIL) (-122 200437 200562 200768 "BTAGG-" 200773 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197481 199715 199930 "BSTREE" 200254 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196619 196745 196929 "BRILL" 197337 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193318 195345 195386 "BRAGG" 196035 NIL BRAGG (NIL T) -9 NIL 196293 NIL) (-118 191847 192253 192808 "BRAGG-" 192813 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185111 191193 191377 "BPADICRT" 191695 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183461 185048 185093 "BPADIC" 185098 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183159 183189 183303 "BOUNDZRO" 183425 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178674 179765 180632 "BOP" 182312 T BOP (NIL) -8 NIL NIL NIL) (-113 176295 176739 177259 "BOP1" 178187 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 174997 175719 175912 "BOOLEAN" 176122 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861 NIL) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339 NIL) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390 NIL) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236 NIL) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802 NIL) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437 NIL) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856 NIL) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283 NIL) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332 NIL) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 014a2181..401e194f 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,2599 +1,2748 @@
-(734363 . 3440300499)
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-762))))
- ((*1 *1 *1) (-4 *1 (-401))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *7 (-1222 *5)) (-4 *4 (-715 *5 *7))
- (-5 *2 (-2 (|:| -3702 (-679 *6)) (|:| |vec| (-1246 *5))))
- (-5 *1 (-802 *5 *6 *7 *4 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-964)))))
-(((*1 *2 *3) (-12 (-5 *3 (-406 (-558))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-684))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-691))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-689))) (-5 *1 (-329))))
- ((*1 *1) (-5 *1 (-329))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
- (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1159 (-558))) (-5 *3 (-558)) (-4 *1 (-859 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+(734719 . 3440472339)
+(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-955))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *1) (-5 *1 (-612))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-638 (-638 (-224)))) (-5 *4 (-224))
+ (-5 *2 (-638 (-936 *4))) (-5 *1 (-1201)) (-5 *3 (-936 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-638 *7) *7 (-1162 *7))) (-5 *5 (-1 (-417 *7) *7))
+ (-4 *7 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-5 *2 (-638 (-2 (|:| |frac| (-406 *7)) (|:| -3360 *3))))
+ (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-649 *7))
+ (-4 *8 (-649 (-406 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2
+ (-638 (-2 (|:| |frac| (-406 *6)) (|:| -3360 (-647 *6 (-406 *6))))))
+ (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1623 (-776 *3)) (|:| |coef2| (-776 *3))))
+ (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -1623 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8))))
+ (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224))
+ (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-745)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-1053 *3 *4 *2)) (-4 *2 (-841))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-839) (-362))) (-5 *2 (-112)) (-5 *1 (-1049 *4 *3))
- (-4 *3 (-1222 *4)))))
+ (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-914))
+ (-4 *2 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2))
- (-4 *4 (-38 (-406 (-558)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))))
+ (-12 (-5 *3 (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5))))
+ (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5)))))
+ (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450))
+ (-5 *2
+ (-638
+ (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4))))
+ (|:| |geneigvec| (-638 (-682 (-406 (-945 *4))))))))
+ (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5))
+ (-5 *2 (-638 *3)) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6))
+ (-14 *7 (-914)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-745)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
((*1 *1 *1) (-4 *1 (-283)))
((*1 *2 *3)
- (-12 (-5 *3 (-417 *4)) (-4 *4 (-550))
- (-5 *2 (-635 (-2 (|:| -3455 (-762)) (|:| |logand| *4))))
+ (-12 (-5 *3 (-417 *4)) (-4 *4 (-553))
+ (-5 *2 (-638 (-2 (|:| -4188 (-765)) (|:| |logand| *4))))
(-5 *1 (-319 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
((*1 *2 *1)
- (-12 (-5 *2 (-654 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
+ (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558)))))
- (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4))))
+ (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561)))))
+ (-4 *5 (-844)) (-5 *1 (-1269 *4 *5 *2)) (-4 *2 (-1274 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4))
- (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-558)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-558)) (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-306))
- (-4 *9 (-939 *8 *6 *7))
- (-5 *2 (-2 (|:| -3936 (-1159 *9)) (|:| |polval| (-1159 *8))))
- (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)) (-5 *4 (-1159 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-948 *3)) (-5 *1 (-1150 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-735 *3)) (-4 *3 (-171)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6))
- (-4 *6 (-13 (-27) (-429 *5)))
- (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7)))
- (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3))
- (-4 *3 (-341 *6 *7 *8)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-1222 *4)) (-4 *4 (-1039))
- (-5 *2 (-1246 *4)))))
+ (-12 (-5 *2 (-765)) (-5 *1 (-1273 *3 *4))
+ (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1128 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))))))
-(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
- ((*1 *1 *1) (-4 *1 (-1131))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-762)) (-4 *5 (-550))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 (-1159 *4))) (-5 *3 (-1159 *4))
- (-4 *4 (-899)) (-5 *1 (-653 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *1 (-1022 *2))
- (-4 *2 (-13 (-1087) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1039))
- (-5 *3 (-406 (-558))) (-5 *1 (-1147 *4)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-942 (-558))) (-5 *3 (-1163))
- (-5 *4 (-1081 (-406 (-558)))) (-5 *1 (-30)))))
+ (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-561))))
+ (-4 *2 (-171)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *2 (-1090)) (-5 *1 (-212 *4 *2))
+ (-14 *4 (-914))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7))
+ (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1244 *4))
+ (-4 *4 (-38 (-406 (-561)))) (-5 *2 (-1 (-1146 *4) (-1146 *4)))
+ (-5 *1 (-1246 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-638 (-315 (-224))))
+ (|:| |constraints|
+ (-638
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-765)) (|:| |boundaryType| (-561))
+ (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
+ (|:| |tol| (-224))))
+ (-5 *2 (-112)) (-5 *1 (-209)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-638 (-638 (-561)))) (-5 *1 (-964))
+ (-5 *3 (-638 (-561))))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
- (-5 *1 (-654 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-654 *3 *4)) (-5 *1 (-1266 *3 *4))
- (-4 *3 (-841)) (-4 *4 (-171)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1159 *7))
- (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1222 *5))
- (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1222 *2)))))
+ (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2))
+ (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4390) (-6 -4391))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2))
+ (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4390) (-6 -4391)))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| -4188 (-561)) (|:| |var| (-607 *1))))
+ (-4 *1 (-429 *3)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6))
+ (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1244 *5)) (-4 *6 (-1229 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1245 *5 *6 *7)) (-4 *5 (-362))
+ (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1226 *6 *5)))
+ (-5 *1 (-861 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1245 *5 *6 *7)) (-4 *5 (-362))
+ (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1226 *6 *5)))
+ (-5 *1 (-861 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
- (-5 *2 (-246 *4 *5)) (-5 *1 (-934 *4 *5)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6))
+ (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2))
- (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
- (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-1229 *3)) (-5 *1 (-163 *3 *4 *2))
+ (-4 *2 (-1229 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-429 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
-(((*1 *2 *1)
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
+ (-5 *1 (-157 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-635
- (-2
- (|:| -2176
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| -1925
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1143 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2103
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-553))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200))
- (-5 *2 (-635 *4)))))
-(((*1 *1 *1) (-5 *1 (-1051))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-882 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1087))
- (-4 *5 (-1200)) (-5 *1 (-880 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-882 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1087))
- (-4 *5 (-1200)) (-5 *1 (-880 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-882 *5)) (-5 *3 (-635 (-1163)))
- (-5 *4 (-1 (-112) (-635 *6))) (-4 *5 (-1087)) (-4 *6 (-1200))
- (-5 *1 (-880 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1200)) (-4 *4 (-841))
- (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1200)) (-4 *4 (-841))
- (-5 *1 (-927 *4 *2 *5)) (-4 *2 (-429 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1200))
- (-5 *2 (-315 (-558))) (-5 *1 (-928 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1200))
- (-5 *2 (-315 (-558))) (-5 *1 (-928 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1 (-112) (-635 *6)))
- (-4 *6 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))) (-4 *4 (-1087))
- (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
- (-5 *1 (-1063 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163)))
- (-4 *5 (-450)) (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-623 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145)) (-5 *2 (-213 (-500))) (-5 *1 (-828)))))
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-635 *3)) (-5 *1 (-951 *3)) (-4 *3 (-543)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-635 (-1163)))
- (-4 *2 (-13 (-429 (-168 *5)) (-992) (-1185)))
- (-4 *5 (-13 (-550) (-841))) (-5 *1 (-592 *5 *6 *2))
- (-4 *6 (-13 (-429 *5) (-992) (-1185))))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1163))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-635 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2475 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1185) (-27) (-429 *8)))
- (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3)))
- (-5 *3 (-558)) (-5 *2 (-635 *4)) (-5 *1 (-1004 *8 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-967 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7)))
- (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
- (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8)))
- (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7)))
- (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
- (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8)))
- (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-635 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-643 (-406 *7))) (-5 *4 (-1 (-635 *6) *7))
- (-5 *5 (-1 (-417 *7) *7))
- (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *6 (-1222 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7))
- (-5 *5 (-1 (-417 *7) *7))
- (-4 *6 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *7 (-1222 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-803 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-643 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
- (-4 *6 (-1222 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *5 (-406 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2 (-635 (-406 *5))) (-5 *1 (-803 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
- (-4 *6 (-1222 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2 (-635 (-406 *6))) (-5 *1 (-803 *5 *6)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
- ((*1 *1 *1) (|partial| -4 *1 (-713))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8))
- (-4 *7 (-841)) (-4 *8 (-1039)) (-4 *9 (-939 *8 *6 *7))
- (-4 *6 (-784)) (-5 *2 (-1159 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2))
- (-4 *2 (-1222 (-168 *3))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-914)) (-4 *5 (-1042)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1148)) (-5 *1 (-97)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1222 *3)) (-5 *1 (-398 *3 *2))
- (-4 *3 (-13 (-362) (-146))))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
+ (-5 *2 (-638 (-638 (-638 (-936 *3))))))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1229 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-978 *4 *2 *3 *5))
+ (-4 *4 (-348)) (-4 *5 (-718 *2 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6))
- (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *1))))
- (-4 *1 (-1059 *4 *5 *6 *3)))))
+ (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1) (-5 *1 (-1054))))
+(((*1 *2)
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902))
+ (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-942 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-902))
+ (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-902)) (-5 *1 (-900 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-2 (|:| -2484 *4) (|:| -3643 (-561)))))
+ (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 *8))
+ (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *9 (-942 *8 *6 *7))
+ (-4 *6 (-787)) (-5 *2 (-1162 *8)) (-5 *1 (-320 *6 *7 *8 *9)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-765)) (-4 *4 (-348))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765))
+ (-5 *1 (-1154 *4 *5)) (-14 *4 (-914))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-914)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042))
+ (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1090))
+ (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3))))
+ (-5 *1 (-1066 *3 *4 *2))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1090)))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *3)
(-12
(-5 *3
- (-635
- (-2 (|:| -1489 (-762))
- (|:| |eqns|
- (-635
- (-2 (|:| |det| *7) (|:| |rows| (-635 (-558)))
- (|:| |cols| (-635 (-558))))))
- (|:| |fgb| (-635 *7)))))
- (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *2 (-1025)) (-5 *1 (-742)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1237 *4)) (-5 *1 (-1239 *4 *2))
- (-4 *4 (-38 (-406 (-558)))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-762))) (-5 *3 (-112)) (-5 *1 (-1151 *4 *5))
- (-14 *4 (-911)) (-4 *5 (-1039)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-604 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163))) (-5 *5 (-1159 *2))
- (-4 *2 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-604 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163)))
- (-5 *5 (-406 (-1159 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *1 (-554 *6 *2 *7)) (-4 *7 (-1087)))))
-(((*1 *2)
- (-12 (-5 *2 (-1246 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-911)) (-14 *4 (-911)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-224))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
+ (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |brans| (-635 (-635 (-933 *4))))
- (|:| |xValues| (-1081 *4)) (|:| |yValues| (-1081 *4))))
- (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 *4)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-1063 *3 *4 *5))) (-4 *3 (-1087))
- (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
- (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3))))
- (-5 *1 (-1064 *3 *4 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2))
- (-4 *2 (-1222 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-348)) (-5 *2 (-1246 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-144)) (-4 *1 (-899))
- (-5 *2 (-1246 *1)))))
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *3 (-635 (-262)))
- (-5 *1 (-260))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6))
- (-14 *5 (-635 (-1163))) (-4 *6 (-450)) (-5 *2 (-1246 *6))
- (-5 *1 (-623 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558))))
- ((*1 *1 *1 *1) (-5 *1 (-1107))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3381 (-635 (-2 (|:| |irr| *10) (|:| -2074 (-558)))))))
- (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-841)) (-4 *3 (-306))
- (-4 *10 (-939 *3 *9 *8)) (-4 *9 (-784))
- (-5 *2
- (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-635 (-1159 *3)))))
- (-5 *1 (-617 *8 *9 *3 *10)) (-5 *4 (-635 (-1159 *3))))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2))
+ (-4 *2 (-641 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-830 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1209)) (-4 *5 (-1229 *3)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1090))
+ (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3))))
+ (-5 *1 (-1066 *3 *4 *2))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1090)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1162 *7)) (-5 *3 (-561)) (-4 *7 (-942 *6 *4 *5))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-5 *1 (-320 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-1039)) (-5 *2 (-1246 *4))
- (-5 *1 (-1164 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-5 *2 (-1246 *3)) (-5 *1 (-1164 *3))
- (-4 *3 (-1039)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
- ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
-(((*1 *2 *2 *2)
+ (-12 (-4 *4 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-635
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841))
- (-5 *1 (-447 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-743)))))
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34))))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1166))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-638 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1190) (-27) (-429 *8)))
+ (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3)))
+ (-5 *3 (-561))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -1621 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1006 *8 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-4 *2 (-1090)) (-5 *1 (-673 *5 *6 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-747)))))
-(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
- (-14 *4 (-635 (-1163)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-558)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
- (-14 *4 (-635 (-1163)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
- (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-274))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 *8)) (-5 *4 (-635 *6)) (-4 *6 (-841))
- (-4 *8 (-939 *7 *5 *6)) (-4 *5 (-784)) (-4 *7 (-1039))
- (-5 *2 (-635 (-762))) (-5 *1 (-320 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
- (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4))
- (-4 *4 (-1222 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
- (-4 *3 (-841)) (-5 *2 (-762))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-963 *3 *2 *4)) (-4 *3 (-1039)) (-4 *4 (-841))
- (-4 *2 (-783))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-762))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1237 *3))
- (-5 *2 (-558))))
+ (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1229 *4))
+ (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1229 *5)) (-14 *6 (-914))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-362)) (-4 *2 (-367)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1166))) (-4 *6 (-362))
+ (-5 *2 (-638 (-293 (-945 *6)))) (-5 *1 (-536 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *7 (-13 (-362) (-842))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-553) (-146))) (-5 *2 (-638 *3))
+ (-5 *1 (-1223 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 (-561)))))
+ (-5 *1 (-360 *3)) (-4 *3 (-1090))))
((*1 *2 *1)
- (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3))
- (-5 *2 (-406 (-558)))))
+ (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 (-765)))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1090))))
((*1 *2 *1)
- (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911)))))
+ (-12 (-5 *2 (-638 (-2 (|:| -1657 *3) (|:| -4196 (-561)))))
+ (-5 *1 (-417 *3)) (-4 *3 (-553))))
((*1 *2 *1)
- (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-762)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
- (-5 *2 (-853)) (-5 *1 (-32 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558))))
- ((*1 *1 *1 *1) (-5 *1 (-1107))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543))))
- ((*1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-635 (-762))) (-5 *1 (-959 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
- (-4 *3 (-550)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2 *3) (-12 (-5 *3 (-961)) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+ (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 (-765)))))
+ (-5 *1 (-813 *3)) (-4 *3 (-844)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-315 (-224))))
- (-5 *2
- (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558))
- (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))))
- (-5 *1 (-304)))))
-(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+ (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-13 (-362) (-841)))
- (-14 *4 (-1163)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-982 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3))
- (-4 *3 (-372 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-982 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550))
- (-5 *2 (-2 (|:| |num| (-679 *4)) (|:| |den| *4)))
- (-5 *1 (-683 *4 *5))))
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-315 *5)))
+ (-5 *1 (-1119 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *6 (-1222 *5))
- (-5 *2 (-2 (|:| -3846 *7) (|:| |rh| (-635 (-406 *6)))))
- (-5 *1 (-798 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6)))
- (-4 *7 (-646 *6)) (-4 *3 (-646 (-406 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-982 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1215 *4 *5 *3))
- (-4 *3 (-1222 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-558)) (|has| *1 (-6 -4374)) (-4 *1 (-403))
- (-5 *2 (-911)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550))
- (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550))
- (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4))))
+ (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-638 (-315 *5))))
+ (-5 *1 (-1119 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-362))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-448 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-679 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2743 (-635 *6)))
- *7 *6))
- (-4 *6 (-362)) (-4 *7 (-646 *6))
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362))
(-5 *2
- (-2 (|:| |particular| (-3 (-1246 *6) "failed"))
- (|:| -2743 (-635 (-1246 *6)))))
- (-5 *1 (-804 *6 *7)) (-5 *4 (-1246 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1145)) (|:| -3179 (-1145))))
- (-5 *1 (-813)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1087)) (-4 *5 (-1087))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-673 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1048))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-1048))))
- ((*1 *1 *1) (-4 *1 (-839)))
- ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)) (-4 *2 (-1048))))
- ((*1 *1 *1) (-4 *1 (-1048))) ((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3)))
- (-5 *1 (-678 *3 *4 *5 *6)) (-4 *6 (-677 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-690 *3))
- (-4 *3 (-306)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-635 (-1159 *13))) (-5 *3 (-1159 *13))
- (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13))
- (-5 *7 (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| *13)))))
- (-5 *8 (-635 (-762))) (-5 *9 (-1246 (-635 (-1159 *10))))
- (-4 *12 (-841)) (-4 *10 (-306)) (-4 *13 (-939 *10 *11 *12))
- (-4 *11 (-784)) (-5 *1 (-698 *11 *12 *10 *13)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 *1)) (-4 *1 (-429 *4))
- (-4 *4 (-841))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1244 *3)) (-4 *3 (-23)) (-4 *3 (-1200)))))
+ (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6))))
+ (-5 *1 (-971 *6)) (-5 *3 (-682 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
+(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-607 *3)) (-5 *5 (-1 (-1162 *3) (-1162 *3)))
+ (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-844) (-553)))
+ (-5 *2 (-582 *3)) (-5 *1 (-548 *6 *3)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
- (-5 *2 (-2 (|:| -1464 (-635 *6)) (|:| -3229 (-635 *6)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-329)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2475 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-362)) (-5 *1 (-568 *4 *2)) (-4 *2 (-1222 *4)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1087)))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
+ (-638
+ (-638
+ (-3 (|:| -3269 (-1166))
+ (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561))))))))))
+ (-5 *1 (-1170)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1279 *5 *6 *7))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-1039 *5 *6))) (-5 *1 (-1279 *5 *6 *7))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-945 *4)))
+ (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-1039 *4 *5))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1169))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205))
+ (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
- (-5 *1 (-978 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
- (-5 *1 (-1094 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146))
+ (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *2 (-1025)) (-5 *1 (-743)))))
+ (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-52)) (-5 *1 (-885 *4))
+ (-4 *4 (-1090)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-435)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-12 (-5 *2 (-638 (-168 *4))) (-5 *1 (-154 *3 *4))
+ (-4 *3 (-1229 (-168 (-561)))) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4)))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-638 (-168 *4)))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
(-5 *2
- (-2 (|:| |ir| (-579 (-406 *6))) (|:| |specpart| (-406 *6))
+ (-2 (|:| |ir| (-582 (-406 *6))) (|:| |specpart| (-406 *6))
(|:| |polypart| *6)))
- (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))))
+ (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4))
+ (-4 *3 (-165 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765))
+ (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543))))
+ ((*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-790 *3 *4))
+ (-4 *3 (-791 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-984 *3 *4))
+ (-4 *3 (-985 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-989 *3 *4))
+ (-4 *3 (-990 *4))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005))))
+ ((*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
- (-5 *2 (-1025)) (-5 *1 (-747)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *2 (-1053 *4 *5 *6)) (-5 *1 (-767 *4 *5 *6 *2 *3))
- (-4 *3 (-1059 *4 *5 *6 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039))
- (-4 *2 (-1206 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-550))))
- ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4))
+ (-14 *3 (-914)) (-4 *4 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-561)) (|has| *1 (-6 -4391)) (-4 *1 (-1241 *3))
+ (-4 *3 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
(-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
-(((*1 *1 *2)
- (-12
+ (-2 (|:| |func| *3) (|:| |kers| (-638 (-607 *3)))
+ (|:| |vals| (-638 *3))))
+ (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920))
+ (-5 *1 (-918 *3)) (-4 *3 (-609 (-534)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920))
+ (-5 *1 (-918 *3)) (-4 *3 (-609 (-534)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-919))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-919))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-1 (-224) (-224)))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3158 *1)))
+ (-4 *1 (-306)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-224))
(-5 *2
- (-635
- (-2
- (|:| -2176
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224))))
- (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224)))
- (|:| |g| (-315 (-224))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| -1925
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378)))))))
- (-5 *1 (-794)))))
-(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+ (-2 (|:| |brans| (-638 (-638 (-936 *4))))
+ (|:| |xValues| (-1084 *4)) (|:| |yValues| (-1084 *4))))
+ (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 *4)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-450)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-417 (-1162 *6)) (-1162 *6)))
+ (-4 *6 (-362))
+ (-5 *2
+ (-638
+ (-2 (|:| |outval| *7) (|:| |outmult| (-561))
+ (|:| |outvect| (-638 (-682 *7))))))
+ (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-679 (-406 (-942 (-558))))) (-5 *2 (-635 (-315 (-558))))
- (-5 *1 (-1021)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166))
+ (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-638 (-1166))) (-4 *2 (-171))
+ (-4 *3 (-237 (-3498 *4) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *3))
+ (-2 (|:| -2413 *5) (|:| -4196 *3))))
+ (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844))
+ (-4 *7 (-942 *2 *3 (-858 *4))))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3))
+ (-4 *3 (-1090)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6))
+ (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1244 *5)) (-4 *6 (-1229 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-977 (-406 (-558)) (-855 *3) (-239 *4 (-762))
- (-246 *3 (-406 (-558)))))
- (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-976 *3 *4)))))
+ (-12 (-5 *3 (-406 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-553))
+ (-4 *4 (-1042)) (-4 *2 (-1244 *4)) (-5 *1 (-1247 *4 *5 *6 *2))
+ (-4 *6 (-649 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107))))))
- (-4 *4 (-348)) (-5 *2 (-1251)) (-5 *1 (-526 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-841))
- (-4 *8 (-939 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1246 (-406 *8)) "failed"))
- (|:| -2743 (-635 (-1246 (-406 *8))))))
- (-5 *1 (-659 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2475 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7))
- (-5 *3 (-406 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-568 *7 *8)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-604 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4)))
- (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-276 *4 *2)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224))))
- (-5 *2 (-1025)) (-5 *1 (-745)))))
-(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *1)
- (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087))
- (-4 *4 (-656 *3))))
- ((*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844))
+ (-5 *2 (-638 (-665 *5))) (-5 *1 (-665 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-141 *2 *4 *3))
+ (-4 *3 (-372 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-501 *2 *4 *5 *3))
+ (-4 *5 (-372 *2)) (-4 *3 (-372 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 *4)) (-4 *4 (-985 *2)) (-4 *2 (-553))
+ (-5 *1 (-686 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-985 *2)) (-4 *2 (-553)) (-5 *1 (-1222 *2 *4 *3))
+ (-4 *3 (-1229 *4)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
(-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
(-5 *4 (-315 (-378))) (-5 *1 (-329))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
- (-5 *4 (-315 (-558))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
+ (-5 *4 (-315 (-561))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-168 (-378)))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-168 (-378)))))
(-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-378)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-378)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-558)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-561)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-168 (-378)))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-168 (-378)))))
(-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-378)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-378)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-558)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-561)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-378))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-378))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-558))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-561))) (-5 *1 (-329))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
- (-5 *4 (-315 (-684))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
+ (-5 *4 (-315 (-687))) (-5 *1 (-329))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
- (-5 *4 (-315 (-689))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
+ (-5 *4 (-315 (-692))) (-5 *1 (-329))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-942 (-558))))
- (-5 *4 (-315 (-691))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-945 (-561))))
+ (-5 *4 (-315 (-694))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-684)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-687)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-689)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-692)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-315 (-691)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-315 (-694)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-684)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-687)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-689)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-692)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-315 (-691)))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-315 (-694)))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-684))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-687))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-689))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-692))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-691))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-694))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-684))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-689))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-679 (-691))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-684))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-687))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-689))) (-5 *1 (-329))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-692))) (-5 *1 (-329))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-315 (-691))) (-5 *1 (-329))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-329))))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-315 (-694))) (-5 *1 (-329))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329))))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-561)) (-4 *1 (-372 *3)) (-4 *3 (-1205))
+ (-4 *3 (-1090))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-372 *3)) (-4 *3 (-1205)) (-4 *3 (-1090))
+ (-5 *2 (-561))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1205))
+ (-5 *2 (-561))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)) (-5 *3 (-140))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-561)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856))))
+ ((*1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028))
+ (-5 *1 (-748)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112))
+ (-5 *1 (-665 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-448 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-448 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450))
+ (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
- (-4 *3 (-1087))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
- (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3))
- (-5 *1 (-940 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $))
- (-15 -3327 (*7 $))))))))
+ (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *2))
+ (-2 (|:| -2413 *5) (|:| -4196 *2))))
+ (-4 *2 (-237 (-3498 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-844)) (-4 *7 (-942 *4 *2 (-858 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-5 *2 (-1145)))))
-(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-143)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-406 (-1159 (-315 *3)))) (-4 *3 (-13 (-550) (-841)))
- (-5 *1 (-1117 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-635 (-933 (-224)))))
- (-5 *2 (-635 (-1081 (-224)))) (-5 *1 (-918)))))
+ (-12 (-4 *2 (-1090)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1090)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1161 *4 *5 *6))
- (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4)))
+ (-12 (-5 *3 (-765)) (-5 *2 (-1226 *5 *4)) (-5 *1 (-1164 *4 *5 *6))
+ (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4)))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1219 *5 *4)) (-5 *1 (-1238 *4 *5 *6))
- (-4 *4 (-1039)) (-14 *5 (-1163)) (-14 *6 *4))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-1226 *5 *4)) (-5 *1 (-1245 *4 *5 *6))
+ (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-815)))))
+(((*1 *2 *3) (-12 (-5 *3 (-945 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090))
+ (-4 *4 (-659 *3))))
+ ((*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6))
+ (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042))
+ (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
+ (-4 *2 (-680 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362))))
+ ((*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2553 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
- (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
- (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-561))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1080))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-310))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1105))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1263))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146)))
+ (-5 *1 (-1223 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *1 (-1025 *2))
+ (-4 *2 (-13 (-1090) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -1621 *6) (|:| |sol?| (-112))) (-561)
+ *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
+ (-5 *2 (-638 (-638 (-638 (-765))))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-635 (-262))) (-5 *1 (-1248))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1145)) (-5 *1 (-1248))))
- ((*1 *1 *1) (-5 *1 (-1248))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-348)) (-5 *3 (-561)) (-5 *2 (-1178 (-914) (-765))))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-4 *1 (-403))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-4 *1 (-403))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1253 *6)) (-5 *4 (-1253 (-561))) (-5 *5 (-561))
+ (-4 *6 (-1090)) (-5 *2 (-1 *6)) (-5 *1 (-1010 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
+ (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-638 *3))
+ (-5 *1 (-587 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
+ (-5 *2
+ (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5))))))
+ (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5)))
+ (-14 *6 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-306) (-146)))
+ (-5 *2
+ (-638 (-2 (|:| -3682 (-1162 *4)) (|:| -3969 (-638 (-945 *4))))))
+ (-5 *1 (-1068 *4 *5)) (-5 *3 (-638 (-945 *4)))
+ (-14 *5 (-638 (-1166)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
+ (-5 *2
+ (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5))))))
+ (-5 *1 (-1068 *5 *6)) (-5 *3 (-638 (-945 *5)))
+ (-14 *6 (-638 (-1166))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3))))
+ (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1238 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5))
+ (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1090)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2413 *3) (|:| -4196 *2))
+ (-2 (|:| -2413 *3) (|:| -4196 *2)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8)))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8)))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *8)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1040)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6))
+ (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1277 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844))
+ (-4 *2 (-171))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-813 *4)) (-4 *1 (-1270 *4 *2)) (-4 *4 (-844))
+ (-4 *2 (-1042))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1042)) (-5 *1 (-1276 *2 *3)) (-4 *3 (-840)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
+ ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3))
+ (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-561)) (-5 *1 (-378)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-765))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1258)) (-5 *1 (-1207))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1258)) (-5 *1 (-1207)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $))
+ (-15 -4045 ((-1115 *3 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *3 (-607 $))))))))))
+(((*1 *1) (-5 *1 (-156)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867))))
+ ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-885 *4))
+ (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1090)) (-4 *3 (-165 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1084 (-837 (-378)))))
+ (-5 *2 (-638 (-1084 (-837 (-224))))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-393))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
+ (-4 *4 (-1229 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-1253 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-553))
+ (-4 *3 (-844))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-461 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-534))))
+ ((*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5))
+ (-4 *5 (-609 (-1166))) (-4 *4 (-787)) (-4 *5 (-844))))
+ ((*1 *1 *2)
+ (-4007
+ (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561)))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8)))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148))
+ (-5 *1 (-1060 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-638 *7)) (|:| -1510 *8)))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148))
+ (-5 *1 (-1135 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1171))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-856)) (-5 *3 (-561)) (-5 *1 (-1185))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-774 *4 (-858 *5)))
+ (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *5 (-638 (-1166)))
+ (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *6 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-774 *4 (-858 *6)))
+ (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166)))
+ (-5 *2 (-945 (-1017 (-406 *4)))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *5 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1162 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-1162 (-1017 (-406 *4)))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))
+ (-4 *4 (-13 (-842) (-306) (-146) (-1015))) (-14 *6 (-638 (-1166)))
+ (-5 *2 (-638 (-774 *4 (-858 *6)))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *5 (-638 (-1166))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-243 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-4 *1 (-491)))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-911)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-783))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1227 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-748)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-743)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))
- (-5 *2 (-1025)) (-5 *1 (-739)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
-(((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-561)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1031 *4)) (-4 *3 (-13 (-844) (-553))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-4 *5 (-362))
+ (-4 *5 (-1042)) (-5 *2 (-112)) (-5 *1 (-1022 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042))
+ (-5 *2 (-112)) (-5 *1 (-1022 *4)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205))
+ (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4391)) (-4 *1 (-119 *3))
+ (-4 *3 (-1205))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4391)) (-4 *1 (-119 *3))
+ (-4 *3 (-1205))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090))
+ (-4 *2 (-1205))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1166)) (-5 *1 (-627))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1220 (-561))) (|has| *1 (-6 -4391)) (-4 *1 (-644 *2))
+ (-4 *2 (-1205))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4391)) (-4 *1 (-1003 *2))
+ (-4 *2 (-1205))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2))
+ (-4 *2 (-1205))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4391)) (-4 *1 (-1241 *3))
+ (-4 *3 (-1205))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2))
+ (-4 *2 (-1205)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
+ (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378)))
+ (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-258 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
+ (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-609 (-534)) (-1090)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1123 (-224))) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-609 (-534)) (-1090)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
+ (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378)))
+ (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-258 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1166)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378))))
- (-5 *2 (-1025)) (-5 *1 (-304)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-778)) (-5 *2 (-1025))
- (-5 *3
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-778)) (-5 *2 (-1025))
- (-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224)))))))
-(((*1 *1 *1) (-4 *1 (-35)))
+ (-12 (-5 *3 (-682 (-315 (-224))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
+ (-5 *1 (-204)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-914))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362)))
+ (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *7 (-341 *4 *5 *6))
+ (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-827 (-914)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4))
+ (-4 *4 (-1229 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042))
+ (-4 *3 (-844))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6)))
+ (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-765))
+ (-5 *1 (-904 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6))
+ (-4 *4 (-1229 (-406 (-561)))) (-4 *5 (-1229 (-406 *4)))
+ (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-765))
+ (-5 *1 (-905 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362))
+ (-4 *7 (-1229 *6)) (-4 *4 (-1229 (-406 *7))) (-4 *8 (-341 *6 *7 *4))
+ (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765))
+ (-5 *1 (-1011 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-553))
+ (-5 *2 (-765))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367))
+ (-5 *2 (-765)))))
+(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-558)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-417 *2)) (-4 *2 (-550)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
- (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
- (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1087))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (-5 *1 (-103 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-417 *3)) (-4 *3 (-550)) (-5 *1 (-418 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
- (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6))
- (-4 *6 (-341 *3 *4 *5)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-1166))
+ (-4 *2 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-276 *5 *2)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042))
+ (-4 *3 (-1090)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143))))
+ ((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143)))))
(((*1 *2)
- (-12 (-5 *2 (-679 (-900 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-911))
- (-14 *4 (-911))))
+ (-12 (-4 *4 (-362)) (-5 *2 (-914)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
((*1 *2)
- (-12 (-5 *2 (-679 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
- (-14 *4
- (-3 (-1159 *3)
- (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107)))))))))
+ (-12 (-4 *4 (-362)) (-5 *2 (-827 (-914))) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914))))
((*1 *2)
- (-12 (-5 *2 (-679 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-911)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-35)))
+ (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914))))))
+(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7)))
- (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5)))
- (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224)))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-679 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-170))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-315 *5)))
- (-5 *1 (-1116 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
- (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-635 (-315 *5))))
- (-5 *1 (-1116 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-558))))
+ (-12 (-5 *3 (-920))
+ (-5 *2
+ (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
+ (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
+ (-5 *1 (-152))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561)))
+ (-5 *2
+ (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
+ (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
+ (-5 *1 (-152)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-841))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))))
-(((*1 *1) (-5 *1 (-156))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039))
- (-5 *1 (-1147 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039))
- (-14 *4 (-1163)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-682 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914))
+ (-14 *4 (-914)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
+ (-4 *3 (-960)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-841) (-550))))))
-(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-762))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-372 *3)) (-4 *3 (-1200))
- (-4 *3 (-1087))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-1087))
- (-5 *2 (-558))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200))
- (-5 *2 (-558))))
- ((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-527))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)) (-5 *3 (-140))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-558)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853))))
- ((*1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-638 (-638 (-561))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *6 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))
- (-5 *2 (-635 (-224))) (-5 *1 (-304)))))
+ (-12 (-4 *4 (-38 (-406 (-561))))
+ (-5 *2 (-2 (|:| -4041 (-1146 *4)) (|:| -4054 (-1146 *4))))
+ (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-696 *3 *4)) (-4 *3 (-1200)) (-4 *4 (-1200)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-679 *2)) (-4 *4 (-1222 *2))
- (-4 *2 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-679 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
- (-246 *4 (-406 (-558)))))
- (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112))
- (-5 *1 (-503 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-760))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))
- (-5 *1 (-559))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-760)) (-5 *4 (-1051))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))
- (-5 *1 (-559))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-778)) (-5 *3 (-1051))
- (-5 *4
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))
- (|:| |extra| (-1025))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-778)) (-5 *3 (-1051))
- (-5 *4
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))
- (|:| |extra| (-1025))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-791)) (-5 *3 (-1051))
- (-5 *4
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))))))
+ (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
((*1 *2 *3)
- (-12 (-5 *3 (-799))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145)))))
- (-5 *1 (-796))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-799)) (-5 *4 (-1051))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145)))))
- (-5 *1 (-796))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-830)) (-5 *3 (-1051))
- (-5 *4
- (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))
- (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-830)) (-5 *3 (-1051))
- (-5 *4
- (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224)))
- (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
- (|:| |ub| (-635 (-834 (-224))))))
- (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-832))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145)))))
- (-5 *1 (-831))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-832)) (-5 *4 (-1051))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145)))))
- (-5 *1 (-831))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-885)) (-5 *3 (-1051))
- (-5 *4
- (-2 (|:| |pde| (-635 (-315 (-224))))
- (|:| |constraints|
- (-635
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-762)) (|:| |boundaryType| (-558))
- (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
- (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
- (|:| |tol| (-224))))
- (-5 *2 (-2 (|:| -4131 (-378)) (|:| |explanations| (-1145))))))
+ (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
((*1 *2 *3)
- (-12 (-5 *3 (-888))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145)))))
- (-5 *1 (-887))))
+ (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -1621 *7) (|:| |sol?| (-112)))
+ (-561) *7))
+ (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7))
+ (-5 *3 (-406 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-571 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-832))) (-5 *1 (-139)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110))))))
+ (-4 *4 (-348)) (-5 *2 (-1258)) (-5 *1 (-526 *4)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1 *1 *1) (-5 *1 (-378)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-638 (-112))) (-5 *7 (-682 (-224)))
+ (-5 *8 (-682 (-561))) (-5 *3 (-561)) (-5 *4 (-224)) (-5 *5 (-112))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561))
+ (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171))
+ (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-888)) (-5 *4 (-1051))
- (-5 *2
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145)))))
- (-5 *1 (-887)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1127 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34)))
- (-5 *1 (-1128 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-1127 *3 *4))) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-558))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1145))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-504))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-585))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-476))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-136))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-155))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1153))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-618))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1083))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1077))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1061))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-960))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-179))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1026))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-310))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-661))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-153))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-523))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1257))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1054))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-515))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-671))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1102))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-1256))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-666))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-217))))
- ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-522))))
- ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-550)) (-4 *4 (-841))
- (-5 *1 (-567 *4 *2)) (-4 *2 (-429 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-813)))))
-(((*1 *2 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-543)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1544 (-773 *3)) (|:| |coef2| (-773 *3))))
- (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-2 (|:| -1544 *1) (|:| |coef2| *1)))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841))
- (-4 *4 (-265 *3)) (-4 *5 (-784)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-762)) (-4 *6 (-362)) (-5 *4 (-1194 *6))
- (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1254 *6))
- (-5 *5 (-1143 *4)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-4 *1 (-403))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-403))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *2 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
+ (-12 (-5 *3 (-638 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787))
+ (-4 *8 (-1042)) (-4 *2 (-942 *9 *7 *5))
+ (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787))
+ (-4 *4 (-942 *8 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
+(((*1 *1) (-5 *1 (-1072))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *5)) (-4 *5 (-1222 *3)) (-4 *3 (-306))
- (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3))
- (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306))
- (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 *7)))
- (-5 *1 (-733 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-450)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-417 *1)) (-4 *1 (-939 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-450)) (-5 *2 (-417 *3))
- (-5 *1 (-969 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4))))
+ (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191))))
((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450))
- (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7))))
- (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204))))
+ (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299))))
((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-417 *3)) (-5 *1 (-1225 *4 *3))
- (-4 *3 (-13 (-1222 *4) (-550) (-10 -8 (-15 -1544 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-14 *5 (-635 (-1163)))
- (-5 *2
- (-635 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6)))))
- (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163))))))
+ (-12 (-5 *3 (-638 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8))
- (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-784))
- (-4 *7 (-841)) (-5 *2 (-112)) (-5 *1 (-967 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1025)) (-5 *1 (-740))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-387)) (-5 *2 (-1025)) (-5 *1 (-740)))))
-(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
-(((*1 *1) (-5 *1 (-436))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-638 *3)) (-5 *5 (-914)) (-4 *3 (-1229 *4))
+ (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163))
- (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-191))))
+ (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1254)) (-5 *1 (-254))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1163))
- (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))))
-(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
-(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1254)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1254)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1084 (-378)))
+ (-5 *2 (-1255)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-1166)) (-5 *5 (-638 (-262)))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-553) (-844) (-1031 (-561))))
+ (-5 *2 (-1254)) (-5 *1 (-255 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1254))
+ (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1254)) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-609 (-534)) (-1090)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
+ (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1254))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-378)))
+ (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1254))
+ (-5 *1 (-258 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
+ (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-378)))
+ (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255))
+ (-5 *1 (-258 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262))) (-5 *2 (-1255))
+ (-5 *1 (-258 *3)) (-4 *3 (-13 (-609 (-534)) (-1090)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1082 (-378))) (-5 *2 (-1255)) (-5 *1 (-258 *3))
+ (-4 *3 (-13 (-609 (-534)) (-1090)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-378))) (-5 *5 (-638 (-262)))
+ (-4 *6 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255))
+ (-5 *1 (-258 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-378)))
+ (-4 *5 (-13 (-609 (-534)) (-1090))) (-5 *2 (-1255))
+ (-5 *1 (-258 *5))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2))
- (-4 *2 (-646 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-543)))
- ((*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $))
- (-15 -3327 ((-1112 *3 (-604 $)) $))
- (-15 -3940 ($ (-1112 *3 (-604 $))))))))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-558))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-762))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-911))))
+ (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1254)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1254))
+ (-5 *1 (-259))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *2 (-1254)) (-5 *1 (-259))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-638 (-262)))
+ (-5 *2 (-1254)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1255)) (-5 *1 (-259))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-638 (-224))) (-5 *4 (-638 (-262))) (-5 *2 (-1255))
+ (-5 *1 (-259)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-561))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-765))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-914))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
(-4 *4 (-171))))
((*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-156))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-156))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185)))
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190)))
(-5 *1 (-226 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
+ (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
+ (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200))))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-1099)) (-4 *2 (-1200))))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-1102)) (-4 *2 (-1205))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1087))))
+ (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1090))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841))))
+ (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
- (-4 *6 (-237 (-1596 *3) (-762)))
+ (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
+ (-4 *6 (-237 (-3498 *3) (-765)))
(-14 *7
- (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *6))
- (-2 (|:| -2349 *5) (|:| -1857 *6))))
- (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-841))
- (-4 *2 (-939 *4 *6 (-855 *3)))))
+ (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *6))
+ (-2 (|:| -2413 *5) (|:| -4196 *6))))
+ (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-844))
+ (-4 *2 (-942 *4 *6 (-858 *3)))))
((*1 *1 *1 *2)
(-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *2 *1)
(-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
((*1 *1 *1 *1) (-5 *1 (-534)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1039))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-674 *5 *6 *7))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1049))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-677 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-677 *3 *2 *4)) (-4 *3 (-1039)) (-4 *2 (-372 *3))
+ (-12 (-4 *1 (-680 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-372 *3))
(-4 *4 (-372 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-677 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
+ (-12 (-4 *1 (-680 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
(-4 *2 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
(-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
(-4 *4 (-372 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
(-4 *4 (-372 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
(-4 *4 (-372 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-711)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *1) (-4 *1 (-714)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550))
- (-5 *1 (-959 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1 *1) (-4 *1 (-1099)))
+ (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-553))
+ (-5 *1 (-962 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-1049))))
+ ((*1 *1 *1 *1) (-4 *1 (-1102)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *2 (-237 *3 *4))
+ (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *2 (-237 *3 *4))
(-4 *5 (-237 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1110 *3 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4))
+ (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4))
(-4 *2 (-237 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2))
- (-4 *2 (-939 *3 (-529 *4) *4))))
+ (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2))
+ (-4 *2 (-942 *3 (-529 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-933 (-224))) (-5 *3 (-224)) (-5 *1 (-1196))))
+ (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-717))))
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-720))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-558)) (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-561)) (-4 *1 (-1251 *3)) (-4 *3 (-1205)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039))))
+ (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
-(((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-762)))))
+ (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-638 (-2 (|:| |totdeg| (-765)) (|:| -4158 *3))))
+ (-5 *4 (-765)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *1 (-447 *5 *6 *7 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-786))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-561))
+ (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171))
+ (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171))
+ (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1042) (-844)))
+ (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765))
+ (-4 *6 (-1205)) (-4 *7 (-1205)) (-5 *2 (-239 *5 *7))
+ (-5 *1 (-238 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-293 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-607 *6))
+ (-4 *6 (-301)) (-4 *2 (-1205)) (-5 *1 (-296 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-607 *5)) (-4 *5 (-301))
+ (-4 *2 (-301)) (-5 *1 (-297 *5 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-607 *1)) (-4 *1 (-301))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-5 *2 (-682 *6)) (-5 *1 (-303 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-844))
+ (-4 *6 (-844)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *9 (-362)) (-4 *10 (-1229 *9)) (-4 *11 (-1229 (-406 *10)))
+ (-5 *2 (-335 *9 *10 *11 *12))
+ (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-341 *9 *10 *11))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *9 (-1229 *8))
+ (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1229 (-406 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1205)) (-4 *6 (-1205))
+ (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-1090))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-553))
+ (-4 *6 (-553)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-553))
+ (-4 *6 (-553)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306))
+ (-4 *6 (-985 *5)) (-4 *7 (-1229 *6))
+ (-4 *8 (-13 (-408 *6 *7) (-1031 *6))) (-4 *9 (-306))
+ (-4 *10 (-985 *9)) (-4 *11 (-1229 *10))
+ (-5 *2 (-412 *9 *10 *11 *12))
+ (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-408 *10 *11) (-1031 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
+ (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-553)) (-5 *1 (-417 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1042) (-844)))
+ (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-429 *6))
+ (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090))
+ (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-844))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-362))
+ (-4 *6 (-362)) (-5 *2 (-582 *6)) (-5 *1 (-581 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -2246 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-362)) (-4 *6 (-362))
+ (-5 *2 (-2 (|:| -2246 *6) (|:| |coeff| *6)))
+ (-5 *1 (-581 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
+ (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-581 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-362)) (-4 *6 (-362))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-581 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-596 *7))
+ (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-596 *8))
+ (-5 *1 (-594 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-596 *7))
+ (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8))
+ (-5 *1 (-594 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1146 *7))
+ (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8))
+ (-5 *1 (-594 *6 *7 *8))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-638 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-638 *6)) (-5 *1 (-636 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-638 *6)) (-5 *5 (-638 *7))
+ (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-638 *8))
+ (-5 *1 (-637 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042))
+ (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-680 *8 *9 *10))
+ (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-680 *5 *6 *7))
+ (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1042))
+ (-4 *8 (-1042)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5))
+ (-4 *2 (-680 *8 *9 *10)) (-5 *1 (-678 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-680 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-553)) (-4 *7 (-553))
+ (-4 *6 (-1229 *5)) (-4 *2 (-1229 (-406 *8)))
+ (-5 *1 (-703 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1229 (-406 *6)))
+ (-4 *8 (-1229 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042))
+ (-4 *5 (-844)) (-4 *6 (-787)) (-4 *2 (-942 *9 *7 *5))
+ (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787))
+ (-4 *4 (-942 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-4 *7 (-787))
+ (-4 *9 (-1042)) (-4 *2 (-942 *9 *8 *6))
+ (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-787))
+ (-4 *4 (-942 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-4 *7 (-720)) (-5 *2 (-729 *6 *7))
+ (-5 *1 (-728 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4))
+ (-4 *4 (-720))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
+ (-4 *2 (-791 *6)) (-5 *1 (-792 *4 *5 *2 *6)) (-4 *4 (-791 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-827 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-826 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-5 *2 (-837 *6)) (-5 *1 (-836 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-837 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-837 *5))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-836 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-882 *5 *6)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-882 *5 *7))
+ (-5 *1 (-881 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-5 *2 (-945 *6)) (-5 *1 (-939 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844))
+ (-4 *8 (-1042)) (-4 *6 (-787))
+ (-4 *2
+ (-13 (-1090)
+ (-10 -8 (-15 -1813 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))))))
+ (-5 *1 (-944 *6 *7 *8 *5 *2)) (-4 *5 (-942 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-951 *6)) (-5 *1 (-950 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-945 *4))) (-4 *4 (-1042))
+ (-4 *2 (-942 (-945 *4) *5 *6)) (-4 *5 (-787))
+ (-4 *6
+ (-13 (-844)
+ (-10 -8 (-15 -4174 ((-1166) $))
+ (-15 -2389 ((-3 $ "failed") (-1166))))))
+ (-5 *1 (-977 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-553)) (-4 *6 (-553))
+ (-4 *2 (-985 *6)) (-5 *1 (-983 *5 *6 *4 *2)) (-4 *4 (-985 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
+ (-4 *2 (-990 *6)) (-5 *1 (-991 *4 *5 *2 *6)) (-4 *4 (-990 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7))
+ (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7))
+ (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042))
+ (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7))
+ (-4 *9 (-237 *5 *7)) (-4 *2 (-1045 *5 *6 *10 *11 *12))
+ (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10))
+ (-4 *12 (-237 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-1084 *6)) (-5 *1 (-1079 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-842))
+ (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-638 *6))
+ (-5 *1 (-1079 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-1082 *6)) (-5 *1 (-1081 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842))
+ (-4 *2 (-1139 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1146 *6)) (-5 *5 (-1146 *7))
+ (-4 *6 (-1205)) (-4 *7 (-1205)) (-4 *8 (-1205)) (-5 *2 (-1146 *8))
+ (-5 *1 (-1145 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1162 *5)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-5 *2 (-1162 *6)) (-5 *1 (-1160 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1217 *5 *7 *9)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1217 *6 *8 *10)) (-5 *1 (-1212 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1166))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-1220 *6)) (-5 *1 (-1219 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-842))
+ (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1146 *6))
+ (-5 *1 (-1219 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1226 *5 *6)) (-14 *5 (-1166))
+ (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1226 *7 *8))
+ (-5 *1 (-1221 *5 *6 *7 *8)) (-14 *7 (-1166))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-4 *2 (-1229 *6)) (-5 *1 (-1227 *5 *4 *6 *2)) (-4 *4 (-1229 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1238 *5 *7 *9)) (-4 *5 (-1042))
+ (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1238 *6 *8 *10)) (-5 *1 (-1233 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1166))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042))
+ (-4 *2 (-1244 *6)) (-5 *1 (-1242 *5 *6 *4 *2)) (-4 *4 (-1244 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1205))
+ (-4 *6 (-1205)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1253 *5))
+ (-4 *5 (-1205)) (-4 *6 (-1205)) (-5 *2 (-1253 *6))
+ (-5 *1 (-1252 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-1042))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-1276 *3 *4))
+ (-4 *4 (-840)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3))
- (-4 *3 (-638 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))))
-(((*1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-290)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-5 *2 (-1159 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 (-604 *5))) (-5 *3 (-1163)) (-4 *5 (-429 *4))
- (-4 *4 (-841)) (-5 *1 (-567 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *3)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
+ (-5 *2
+ (-638
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844))
+ (-5 *1 (-447 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1028)) (-5 *1 (-747)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3))))
- (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
+ (-12 (-5 *2 (-638 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))
+ (-14 *4 (-765)) (-4 *5 (-171)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561))) (-5 *3 (-561))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1162 *3)) (-4 *3 (-1042)) (-4 *1 (-1229 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-114)) (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-844))
+ (-5 *1 (-607 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765))
+ (-14 *4 (-765)) (-4 *5 (-171)))))
+(((*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-638 (-1162 *13))) (-5 *3 (-1162 *13))
+ (-5 *4 (-638 *12)) (-5 *5 (-638 *10)) (-5 *6 (-638 *13))
+ (-5 *7 (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| *13)))))
+ (-5 *8 (-638 (-765))) (-5 *9 (-1253 (-638 (-1162 *10))))
+ (-4 *12 (-844)) (-4 *10 (-306)) (-4 *13 (-942 *10 *11 *12))
+ (-4 *11 (-787)) (-5 *1 (-701 *11 *12 *10 *13)))))
+(((*1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-687))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-694))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-692))) (-5 *1 (-329))))
+ ((*1 *1) (-5 *1 (-329))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
-(((*1 *2 *3)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-450)))))
+(((*1 *2 *3 *4 *2 *5 *6)
(-12
- (-5 *3
- (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))
- (-5 *2 (-635 (-1163))) (-5 *1 (-266))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-635 *5))
- (-5 *1 (-320 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-386))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-635 (-1163)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-635 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
- (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *5))
- (-5 *1 (-940 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1089 (-1163))) (-5 *1 (-956 *3)) (-4 *3 (-957))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-4 *5 (-841)) (-5 *2 (-635 *5))))
+ (-5 *5
+ (-2 (|:| |done| (-638 *11))
+ (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1510 *11))))))
+ (-5 *6 (-765))
+ (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1510 *11))))
+ (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9))
+ (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787))
+ (-4 *9 (-844)) (-5 *1 (-1060 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-638 *11))
+ (|:| |todo| (-638 (-2 (|:| |val| *3) (|:| -1510 *11))))))
+ (-5 *6 (-765))
+ (-5 *2 (-638 (-2 (|:| |val| (-638 *10)) (|:| -1510 *11))))
+ (-5 *3 (-638 *10)) (-5 *4 (-638 *11)) (-4 *10 (-1056 *7 *8 *9))
+ (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787))
+ (-4 *9 (-844)) (-5 *1 (-1135 *7 *8 *9 *10 *11)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1090)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5))
+ (-4 *3 (-1090)) (-4 *5 (-659 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-5 *2 (-635 (-1163)))
- (-5 *1 (-1033 *4)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200))
- (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4384)) (-4 *1 (-119 *3))
- (-4 *3 (-1200))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4384)) (-4 *1 (-119 *3))
- (-4 *3 (-1200))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087))
- (-4 *2 (-1200))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1163)) (-5 *1 (-624))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1213 (-558))) (|has| *1 (-6 -4384)) (-4 *1 (-641 *2))
- (-4 *2 (-1200))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4384)) (-4 *1 (-1000 *2))
- (-4 *2 (-1200))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1176 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2))
- (-4 *2 (-1200))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4384)) (-4 *1 (-1234 *3))
- (-4 *3 (-1200))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2))
- (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -1999 (-635 *7))))
- (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2))
- (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4383) (-6 -4384))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-156)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *6))))
+ (-5 *4 (-1019 (-837 (-561)))) (-5 *5 (-1166)) (-5 *7 (-406 (-561)))
+ (-4 *6 (-1042)) (-5 *2 (-856)) (-5 *1 (-591 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2))
- (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4383) (-6 -4384)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450))
- (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1163))) (-5 *1 (-623 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-550)) (-4 *2 (-1039))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *1))))
- (-4 *1 (-1059 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1159 (-406 (-1159 *2)))) (-5 *4 (-604 *2))
- (-4 *2 (-13 (-429 *5) (-27) (-1185)))
- (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1087))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1159 *1)) (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *3 (-841))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1159 *4)) (-4 *4 (-1039)) (-4 *1 (-939 *4 *5 *3))
- (-4 *5 (-784)) (-4 *3 (-841))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-1159 *2))) (-4 *5 (-784)) (-4 *4 (-841))
- (-4 *6 (-1039))
- (-4 *2
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $)))))
- (-5 *1 (-940 *5 *4 *6 *7 *2)) (-4 *7 (-939 *6 *5 *4))))
+ (|partial| -12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-1159 (-406 (-942 *5))))) (-5 *4 (-1163))
- (-5 *2 (-406 (-942 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-550)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3))
- (-4 *3 (-1087)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-841)) (-4 *5 (-899)) (-4 *6 (-784))
- (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-417 (-1159 *8)))
- (-5 *1 (-896 *5 *6 *7 *8)) (-5 *4 (-1159 *8))))
+ (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5)))
- (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-143))))
- ((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-143)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1193 *4 *5 *3 *6)) (-4 *4 (-550)) (-4 *5 (-784))
- (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-750)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
- (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
+ (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(((*1 *1 *1) (-4 *1 (-1048)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-635 (-911))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-911))
- (-4 *2 (-362)) (-14 *5 (-983 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-704 *5 *6 *7)) (-4 *5 (-841))
- (-4 *6 (-237 (-1596 *4) (-762)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *6))
- (-2 (|:| -2349 *5) (|:| -1857 *6))))
- (-14 *4 (-635 (-1163))) (-4 *2 (-171))
- (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-939 *2 *6 (-855 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4))
- (-4 *4 (-1222 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-726 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-717))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5))
- (-4 *4 (-1039)) (-4 *5 (-841))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039))
- (-4 *2 (-841))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6))
- (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *2 (-841))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-963 *4 *5 *6))
- (-4 *4 (-1039)) (-4 *5 (-783)) (-4 *6 (-841))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-963 *4 *3 *2)) (-4 *4 (-1039)) (-4 *3 (-783))
- (-4 *2 (-841)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163)))))
- (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091))
- (-5 *1 (-396))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1163)))))
- (-5 *6 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1091))
- (-5 *1 (-396))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-635 (-1163))) (-5 *5 (-1166)) (-5 *3 (-1163))
- (-5 *2 (-1091)) (-5 *1 (-396)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
- (-4 *3 (-1222 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-224) (-224) (-224)))
- (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
- (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224)))
- (-5 *1 (-687))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-224)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-687))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1120 (-224))) (-5 *3 (-1 (-933 (-224)) (-224) (-224)))
- (-5 *4 (-1081 (-224))) (-5 *5 (-635 (-262))) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-635 (-168 *4))) (-5 *1 (-154 *3 *4))
- (-4 *3 (-1222 (-168 (-558)))) (-4 *4 (-13 (-362) (-839)))))
+ (|partial| -12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914))
+ (-4 *5 (-553)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4)))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
+ (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-635 (-168 *4)))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-635 (-558))) (-5 *3 (-112)) (-5 *1 (-1097)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-867 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-869 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-5 *1 (-872 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558))
- (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171))
- (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
+ (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *9)) (-4 *9 (-1039)) (-4 *5 (-841)) (-4 *6 (-784))
- (-4 *8 (-1039)) (-4 *2 (-939 *9 *7 *5))
- (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784))
- (-4 *4 (-939 *8 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-635 (-112))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-348)) (-4 *2 (-1039)) (-5 *1 (-703 *2 *3))
- (-4 *3 (-1222 *2)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-635 (-604 *2))) (-5 *4 (-1163))
- (-4 *2 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-276 *5 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-1087)) (-5 *2 (-635 *1))
- (-4 *1 (-381 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-726 *3 *4))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-717))))
+ (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-779 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-664))))
((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-939 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039))
- (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3))
- (-4 *3 (-843 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-904 *2))))
+ (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-914))
+ (-14 *4 (-914)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 (-406 (-945 (-561))))) (-5 *4 (-638 (-1166)))
+ (-5 *2 (-638 (-638 *5))) (-5 *1 (-379 *5))
+ (-4 *5 (-13 (-842) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-417 (-942 *6))) (-5 *5 (-1163)) (-5 *3 (-942 *6))
- (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-905 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))
- (-14 *4 (-762)) (-4 *5 (-171)))))
-(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-133)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-864))))
- ((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2814 *5) (|:| -2980 *5))))
- (-5 *1 (-798 *4 *5 *3 *6)) (-4 *3 (-646 *5))
- (-4 *6 (-646 (-406 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2814 *4) (|:| -2980 *4))))
- (-5 *1 (-798 *5 *4 *3 *6)) (-4 *3 (-646 *4))
- (-4 *6 (-646 (-406 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *5 (-1222 *4)) (-5 *2 (-635 (-2 (|:| -2814 *5) (|:| -2980 *5))))
- (-5 *1 (-798 *4 *5 *6 *3)) (-4 *6 (-646 *5))
- (-4 *3 (-646 (-406 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *4 (-1222 *5)) (-5 *2 (-635 (-2 (|:| -2814 *4) (|:| -2980 *4))))
- (-5 *1 (-798 *5 *4 *6 *3)) (-4 *6 (-646 *4))
- (-4 *3 (-646 (-406 *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2))
- (-5 *2 (-378)) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
- (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550))
- (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
- (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-841)) (-4 *5 (-606 *2)) (-5 *2 (-378))
- (-5 *1 (-776 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550))
- (-5 *2 (-112)) (-5 *1 (-630 *4 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
+ (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-842) (-362))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
+ (-4 *3 (-1090)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-112))
+ (-5 *1 (-897 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-914)) (-5 *2 (-112)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-450))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *5 (-899)) (-5 *1 (-455 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-899)))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3)))
+ (-5 *1 (-681 *3 *4 *5 *6)) (-4 *6 (-680 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-693 *3))
+ (-4 *3 (-306)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3158 *1)))
+ (-4 *1 (-846 *3)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-191)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
+ (-5 *2 (-112)) (-5 *1 (-299)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-827 (-561))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-844) (-553))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814))
+ (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-372 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 *4))))
- (-5 *1 (-879 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087))
- (-4 *7 (-1087)) (-5 *2 (-635 *1)) (-4 *1 (-1090 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
- (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-967 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-293 (-824 *3)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-824 *3)) (-5 *1 (-628 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-824 (-942 *5)))) (-4 *5 (-450))
- (-5 *2 (-824 (-406 (-942 *5)))) (-5 *1 (-629 *5))
- (-5 *3 (-406 (-942 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5)))
- (-4 *5 (-450)) (-5 *2 (-824 *3)) (-5 *1 (-629 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *1) (-5 *1 (-1248))))
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-765)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042))
+ (-5 *3 (-561)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
(-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
(|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
- ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3))))
- ((*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-841))
- (-4 *3 (-1087)))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4))
+ (-4 *4 (-641 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-360 (-114))) (-5 *1 (-830 *2)) (-4 *2 (-1042)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-844) (-553)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-1190))))
+(((*1 *1) (-5 *1 (-436))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1129 *4 *2)) (-14 *4 (-911))
- (-4 *2 (-13 (-1039) (-10 -7 (-6 (-4385 "*")))))
- (-5 *1 (-892 *4 *2)))))
-(((*1 *1 *2 *2)
(-12
- (-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-742)))))
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-204)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
+ ((*1 *1 *1) (|partial| -4 *1 (-716))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558))))))
- (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4))
- (-4 *4 (-13 (-362) (-839)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-293 (-406 (-942 (-168 (-558)))))))
- (-5 *2 (-635 (-635 (-293 (-942 (-168 *4)))))) (-5 *1 (-377 *4))
- (-4 *4 (-13 (-362) (-839)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 (-168 (-558)))))
- (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4))
- (-4 *4 (-13 (-362) (-839)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-942 (-168 (-558))))))
- (-5 *2 (-635 (-293 (-942 (-168 *4))))) (-5 *1 (-377 *4))
- (-4 *4 (-13 (-362) (-839))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1222 *9)) (-4 *7 (-784)) (-4 *8 (-841)) (-4 *9 (-306))
- (-4 *10 (-939 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-635 (-1159 *10)))
- (|:| |dterm|
- (-635 (-635 (-2 (|:| -4327 (-762)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10))))
- (-5 *1 (-769 *6 *7 *8 *9 *10)) (-5 *3 (-1159 *10)) (-5 *4 (-635 *6))
- (-5 *5 (-635 *10)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
(-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
+ (-2 (|:| |solns| (-638 *5))
+ (|:| |maps| (-638 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1118 *3 *5)) (-4 *3 (-1229 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-967 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6))
- (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-967 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1222 (-558))) (-5 *1 (-484 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))))
+ (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166))))
+ (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-942 *3 *5 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-1111 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-534))) (-5 *1 (-534)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1017 *5 *6 *7 *3))) (-5 *1 (-1017 *5 *6 *7 *3))
- (-4 *3 (-1053 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-635 *6)) (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1133 *5 *6 *7 *3))) (-5 *1 (-1133 *5 *6 *7 *3))
- (-4 *3 (-1053 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-961)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-967 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1087) (-1028 *5)))
- (-4 *5 (-876 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-921 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-1162)))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1200)) (-4 *1 (-237 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6))
- (|:| -3273 *6)))
- (-5 *1 (-1005 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-746))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387))
- (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))))
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
+ (-5 *2 (-2 (|:| -1357 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-837)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-679 (-315 (-224))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
- (-5 *1 (-204)))))
+ (-12 (-4 *1 (-688 *3)) (-4 *3 (-1090))
+ (-5 *2 (-638 (-2 (|:| -2654 *3) (|:| -1724 (-765))))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-466)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-444)) (-5 *3 (-561)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5))))
+ (-5 *1 (-1119 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1119 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *5))))
+ (-5 *1 (-1119 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-293 (-406 (-945 *4))))
+ (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-638 (-293 (-315 *4))))
+ (-5 *1 (-1119 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
+ (-4 *5 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-406 (-945 *4))))
+ (-4 *4 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-293 (-406 (-945 *5))))) (-5 *4 (-638 (-1166)))
+ (-4 *5 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1119 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-293 (-406 (-945 *4)))))
+ (-4 *4 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-638 (-638 (-293 (-315 *4))))) (-5 *1 (-1119 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-674))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-963))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1204)) (-5 *1 (-1064))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1108)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-751)))))
+(((*1 *1) (-5 *1 (-290))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1162 *5)) (-4 *5 (-362)) (-5 *2 (-638 *6))
+ (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1))
+ (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4))
- (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
+ (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-985 *2)) (-4 *4 (-1229 *3)) (-4 *2 (-306))
+ (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1)))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4))
+ (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4))
+ (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-2 (|:| |k| (-1166)) (|:| |c| (-1275 *3)))))
+ (-5 *1 (-1275 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-2 (|:| |k| *3) (|:| |c| (-1277 *3 *4)))))
+ (-5 *1 (-1277 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1077)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1159 *3))
- (-4 *3 (-13 (-429 *7) (-27) (-1185)))
- (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3))
- (-5 *6 (-406 (-1159 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1185)))
- (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-554 *7 *3 *8)) (-4 *8 (-1087)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-450)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-762)) (-4 *4 (-306)) (-4 *6 (-1222 *4))
- (-5 *2 (-1246 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-671))))
- ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-960))))
- ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1061))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1105)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189)))) (-5 *3 (-224))
- (-5 *2 (-1025)) (-5 *1 (-739)))))
-(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-315 *4))
- (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
+ ((*1 *1 *1) (-4 *1 (-1193))))
+(((*1 *1 *1) (-4 *1 (-1134))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-682 *7)) (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1200))
- (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *7 *2)) (-4 *6 (-1039))
- (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-813)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
- (-4 *2 (-677 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-326 *3)) (-4 *3 (-1200))))
+ (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200))
- (-14 *4 (-558)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1087) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-362))
- (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-448 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362))
- (-5 *2
- (-2 (|:| R (-679 *6)) (|:| A (-679 *6)) (|:| |Ainv| (-679 *6))))
- (-5 *1 (-968 *6)) (-5 *3 (-679 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-911)) (-4 *5 (-550)) (-5 *2 (-679 *5))
- (-5 *1 (-946 *5 *3)) (-4 *3 (-646 *5)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1163))
- (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-569 *4 *2))
- (-4 *2 (-13 (-1185) (-949) (-1126) (-29 *4))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-746)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-635 (-1163))) (-4 *5 (-450))
- (-5 *2
- (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-558)))))
- (-5 *1 (-623 *4 *5)) (-5 *3 (-635 (-246 *4 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-150 *3))))
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-150 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-635 (-2 (|:| -1857 (-762)) (|:| -2814 *4) (|:| |num| *4))))
- (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))))
+ (-5 *2 (-638 (-2 (|:| -4196 (-765)) (|:| -2262 *4) (|:| |num| *4))))
+ (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-112)) (-5 *1 (-436))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-112)) (-5 *1 (-436))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-5 *3 (-635 (-1163))) (-5 *4 (-112)) (-5 *1 (-436))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-5 *3 (-638 (-1166))) (-5 *4 (-112)) (-5 *1 (-436))))
((*1 *2 *1)
- (-12 (-5 *2 (-1143 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171))))
+ (-12 (-5 *2 (-1146 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4))
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4))
(-4 *4 (-171))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4))
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4))
(-4 *4 (-171))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-5 *1 (-654 *3 *4))
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4))
(-4 *4 (-171))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1087))
- (-5 *1 (-665 *3))))
+ (-12 (-5 *2 (-638 (-638 (-638 *3)))) (-4 *3 (-1090))
+ (-5 *1 (-668 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-704 *2 *3 *4)) (-4 *2 (-841)) (-4 *3 (-1087))
+ (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1090))
(-14 *4
- (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *3))
- (-2 (|:| -2349 *2) (|:| -1857 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-829))))
+ (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *3))
+ (-2 (|:| -2413 *2) (|:| -4196 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-832))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200))))
+ (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 *4))))
- (-4 *4 (-1087)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087))))
+ (-12 (-5 *2 (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 *4))))
+ (-4 *4 (-1090)) (-5 *1 (-882 *3 *4)) (-4 *3 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1087) (-34)))
- (-5 *2 (-635 (-1127 *3 *5))) (-5 *1 (-1127 *3 *5))
- (-4 *3 (-13 (-1087) (-34)))))
+ (-12 (-5 *4 (-638 *5)) (-4 *5 (-13 (-1090) (-34)))
+ (-5 *2 (-638 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5))
+ (-4 *3 (-13 (-1090) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -3798 *5))))
- (-4 *4 (-13 (-1087) (-34))) (-4 *5 (-13 (-1087) (-34)))
- (-5 *2 (-635 (-1127 *4 *5))) (-5 *1 (-1127 *4 *5))))
+ (-12 (-5 *3 (-638 (-2 (|:| |val| *4) (|:| -1510 *5))))
+ (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34)))
+ (-5 *2 (-638 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3798 *4)))
- (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34)))
- (-5 *1 (-1127 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1510 *4)))
+ (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34)))
+ (-5 *1 (-1130 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34)))))
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1087) (-34)))
- (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34)))))
+ (-12 (-5 *4 (-638 *3)) (-4 *3 (-13 (-1090) (-34)))
+ (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-1127 *2 *3))) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34))) (-5 *1 (-1128 *2 *3))))
+ (-12 (-5 *4 (-638 (-1130 *2 *3))) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34))) (-5 *1 (-1131 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-1128 *2 *3))) (-5 *1 (-1128 *2 *3))
- (-4 *2 (-13 (-1087) (-34))) (-4 *3 (-13 (-1087) (-34)))))
+ (-12 (-5 *4 (-638 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3))
+ (-4 *2 (-13 (-1090) (-34))) (-4 *3 (-13 (-1090) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4))))
+ (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(((*1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
- (|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558))))
- ((*1 *1 *1) (-4 *1 (-992)))
- ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1002))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-4 *1 (-1002))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-911))))
- ((*1 *1 *1) (-4 *1 (-1002))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-784))
- (-4 *3 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *5 (-550))
- (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-784))
- (-4 *3
- (-13 (-841)
- (-10 -8 (-15 -3441 ((-1163) $))
- (-15 -2317 ((-3 $ "failed") (-1163))))))
- (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *6))
- (-4 *6
- (-13 (-841)
- (-10 -8 (-15 -3441 ((-1163) $))
- (-15 -2317 ((-3 $ "failed") (-1163))))))
- (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2))
- (-4 *2 (-939 (-942 *4) *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-762)) (-5 *4 (-558)) (-5 *1 (-443 *2)) (-4 *2 (-1039)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
- (-14 *4 (-635 (-1163)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1) (-4 *1 (-283)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-5 *1 (-619 *3 *4 *5))
- (-14 *5 (-911))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558)))))
- (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4))
- (-4 *4 (-708 (-406 (-558)))) (-4 *3 (-841)) (-4 *4 (-171)))))
-(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-558))))
+ (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4))
+ (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6))
+ (-4 *6 (-13 (-408 *4 *5) (-1031 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-607 *1)))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-616 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-720) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-655 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-720) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
+(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112))
+ (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
+(((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
- (-4 *7 (-784))
- (-5 *2
- (-635
- (-2 (|:| -1489 (-762))
- (|:| |eqns|
- (-635
- (-2 (|:| |det| *8) (|:| |rows| (-635 (-558)))
- (|:| |cols| (-635 (-558))))))
- (|:| |fgb| (-635 *8)))))
- (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-762)))))
+ (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *4 (-638 (-1166)))
+ (-5 *2 (-682 (-315 (-224)))) (-5 *1 (-204))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1090)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6))
+ (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-372 *6))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))))
+(((*1 *1 *1) (-4 *1 (-624)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-130)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 (-2 (|:| -1657 (-1162 *6)) (|:| -4196 (-561)))))
+ (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-14 *6 (-1246 (-679 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-911)) (-14 *5 (-635 (-1163)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1200))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-14 *6 (-1253 (-682 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-914)) (-14 *5 (-638 (-1166)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1205))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952 'JINT 'X 'ELAM) (-3952) (-689))))
- (-5 *1 (-61 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031 'JINT 'X 'ELAM) (-4031) (-692))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 'XC) (-689))))
- (-5 *1 (-63 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 'XC) (-692))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-3952 'X) (-3952) (-689))) (-5 *1 (-64 *3))
- (-14 *3 (-1163))))
+ (-12 (-5 *2 (-338 (-4031 'X) (-4031) (-692))) (-5 *1 (-64 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-3952) (-3952 'XC) (-689))) (-5 *1 (-66 *3))
- (-14 *3 (-1163))))
+ (-12 (-5 *2 (-338 (-4031) (-4031 'XC) (-692))) (-5 *1 (-66 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952 'X) (-3952 '-3161) (-689))))
- (-5 *1 (-71 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031 'X) (-4031 '-3187) (-692))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 'X) (-689))))
- (-5 *1 (-74 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 'X) (-692))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952 'X 'EPS) (-3952 '-3161) (-689))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163))
- (-14 *5 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031 'X 'EPS) (-4031 '-3187) (-692))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166))
+ (-14 *5 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952 'EPS) (-3952 'YA 'YB) (-689))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1163)) (-14 *4 (-1163))
- (-14 *5 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031 'EPS) (-4031 'YA 'YB) (-692))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166))
+ (-14 *5 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-3952) (-3952 'X) (-689))) (-5 *1 (-77 *3))
- (-14 *3 (-1163))))
+ (-12 (-5 *2 (-338 (-4031) (-4031 'X) (-692))) (-5 *1 (-77 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-3952) (-3952 'X) (-689))) (-5 *1 (-78 *3))
- (-14 *3 (-1163))))
+ (-12 (-5 *2 (-338 (-4031) (-4031 'X) (-692))) (-5 *1 (-78 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 'XC) (-689))))
- (-5 *1 (-79 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 'XC) (-692))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952) (-3952 'X) (-689))))
- (-5 *1 (-80 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031) (-4031 'X) (-692))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952 'X '-3161) (-3952) (-689))))
- (-5 *1 (-82 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031 'X '-3187) (-4031) (-692))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-679 (-338 (-3952 'X '-3161) (-3952) (-689))))
- (-5 *1 (-83 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-682 (-338 (-4031 'X '-3187) (-4031) (-692))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-679 (-338 (-3952 'X) (-3952) (-689)))) (-5 *1 (-84 *3))
- (-14 *3 (-1163))))
+ (-12 (-5 *2 (-682 (-338 (-4031 'X) (-4031) (-692)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952 'X) (-3952) (-689))))
- (-5 *1 (-85 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031 'X) (-4031) (-692))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-338 (-3952 'X) (-3952 '-3161) (-689))))
- (-5 *1 (-86 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-1253 (-338 (-4031 'X) (-4031 '-3187) (-692))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-679 (-338 (-3952 'XL 'XR 'ELAM) (-3952) (-689))))
- (-5 *1 (-87 *3)) (-14 *3 (-1163))))
+ (-12 (-5 *2 (-682 (-338 (-4031 'XL 'XR 'ELAM) (-4031) (-692))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-338 (-3952 'X) (-3952 '-3161) (-689))) (-5 *1 (-89 *3))
- (-14 *3 (-1163))))
+ (-12 (-5 *2 (-338 (-4031 'X) (-4031 '-3187) (-692))) (-5 *1 (-89 *3))
+ (-14 *3 (-1166))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-558)) (-14 *4 (-762)) (-4 *5 (-171))))
+ (-12 (-5 *2 (-638 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-561)) (-14 *4 (-765)) (-4 *5 (-171))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-558)) (-14 *4 (-762))))
+ (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-561)) (-14 *4 (-765))))
((*1 *1 *2)
- (-12 (-5 *2 (-1129 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))))
+ (-12 (-5 *2 (-1132 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))))
((*1 *1 *2)
- (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-762)) (-4 *5 (-171))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))))
+ (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))))
((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171))
- (-5 *2 (-1246 (-679 (-406 (-942 *4))))) (-5 *1 (-188 *4))))
+ (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171))
+ (-5 *2 (-1253 (-682 (-406 (-945 *4))))) (-5 *1 (-188 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1079 (-315 *4)))
- (-4 *4 (-13 (-841) (-550) (-606 (-378)))) (-5 *2 (-1079 (-378)))
+ (-12 (-5 *3 (-1082 (-315 *4)))
+ (-4 *4 (-13 (-844) (-553) (-609 (-378)))) (-5 *2 (-1082 (-378)))
(-5 *1 (-257 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-274))))
+ ((*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274))))
((*1 *2 *1)
- (-12 (-4 *2 (-1222 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1229 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7))
(-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1231 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3)))
- (-14 *5 (-1163)) (-14 *6 *4)
- (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
+ (-12 (-5 *2 (-1238 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3)))
+ (-14 *5 (-1166)) (-14 *6 *4)
+ (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
(-5 *1 (-312 *3 *4 *5 *6))))
((*1 *2 *1)
(-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5))
- (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
+ (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
((*1 *2 *3)
(-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2))
(-4 *3 (-328 *4))))
@@ -2601,8057 +2750,7637 @@
(-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3))
(-4 *3 (-328 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
- (-5 *2 (-1270 *3 *4))))
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
+ (-5 *2 (-1277 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
- (-5 *2 (-1261 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171))))
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
+ (-5 *2 (-1268 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))
(-4 *1 (-382))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382))))
- ((*1 *1 *2) (-12 (-5 *2 (-679 (-689))) (-4 *1 (-382))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-382))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-692))) (-4 *1 (-382))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))
(-4 *1 (-383))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-383))))
- ((*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1087))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-383))))
+ ((*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1090))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))
(-4 *1 (-395))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-395))))
((*1 *1 *2)
(-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
(-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-558)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-293 (-315 (-561)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
(-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
(-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-558))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-315 (-561))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-684)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-293 (-315 (-687)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-689)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-293 (-315 (-692)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-293 (-315 (-691)))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-293 (-315 (-694)))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-684))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-315 (-687))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-689))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-315 (-692))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-315 (-691))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-315 (-694))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))
- (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163))
- (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))
+ (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6))
- (-14 *3 (-1163)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-638 (-329))) (-5 *1 (-397 *3 *4 *5 *6))
+ (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1163))
- (-14 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1167))))
+ (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166))
+ (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1170))))
((*1 *1 *2)
- (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-841) (-21)))
- (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-558)))))))
+ (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21)))
+ (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-561)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-558)))))
- (-4 *3 (-13 (-841) (-21)))))
+ (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-561)))))
+ (-4 *3 (-13 (-844) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-406 (-942 (-406 *3)))) (-4 *3 (-550)) (-4 *3 (-841))
+ (-12 (-5 *2 (-406 (-945 (-406 *3)))) (-4 *3 (-553)) (-4 *3 (-844))
(-4 *1 (-429 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-942 (-406 *3))) (-4 *3 (-550)) (-4 *3 (-841))
+ (-12 (-5 *2 (-945 (-406 *3))) (-4 *3 (-553)) (-4 *3 (-844))
(-4 *1 (-429 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-406 *3)) (-4 *3 (-550)) (-4 *3 (-841))
+ (-12 (-5 *2 (-406 *3)) (-4 *3 (-553)) (-4 *3 (-844))
(-4 *1 (-429 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-1039)) (-4 *3 (-841))
+ (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-1042)) (-4 *3 (-844))
(-4 *1 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-433))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-433))))
- ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-433))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-433))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-433))))
((*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))
(-4 *1 (-438))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 (-689))) (-4 *1 (-438))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-438))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-692))) (-4 *1 (-438))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1167)) (|:| -3393 (-635 (-329)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -3481 (-638 (-329)))))
(-4 *1 (-439))))
((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-4 *1 (-439))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-406 (-942 *3)))) (-4 *3 (-171))
- (-14 *6 (-1246 (-679 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-14 *4 (-911)) (-14 *5 (-635 (-1163)))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-466))))
+ (-12 (-5 *2 (-1253 (-406 (-945 *3)))) (-4 *3 (-171))
+ (-14 *6 (-1253 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-14 *4 (-914)) (-14 *5 (-638 (-1166)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-466))))
((*1 *1 *2)
- (-12 (-5 *2 (-1231 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1163))
+ (-12 (-5 *2 (-1238 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166))
(-14 *5 *3) (-5 *1 (-472 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493))))
- ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-500))))
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1115 (-561) (-607 (-493)))) (-5 *1 (-493))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-500))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598))))
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601))))
((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-5 *1 (-599 *3 *2)) (-4 *2 (-735 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1039))))
+ (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1042))))
((*1 *2 *1)
- (-12 (-5 *2 (-1266 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
+ (-12 (-5 *2 (-1273 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
((*1 *2 *1)
- (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
+ (-12 (-5 *2 (-1268 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-5 *1 (-627 *3 *2)) (-4 *2 (-735 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
+ (-12 (-4 *3 (-171)) (-5 *1 (-630 *3 *2)) (-4 *2 (-738 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
((*1 *2 *1)
- (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-5 *1 (-665 *3))
- (-4 *3 (-1087))))
+ (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3))
+ (-4 *3 (-1090))))
((*1 *1 *2)
- (-12 (-5 *2 (-948 (-948 (-948 *3)))) (-4 *3 (-1087))
- (-5 *1 (-665 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
- ((*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-671))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087))))
+ (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1090))
+ (-5 *1 (-668 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-674))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090))))
((*1 *1 *2)
- (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *2)) (-4 *4 (-372 *3))
+ (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *2)) (-4 *4 (-372 *3))
(-4 *2 (-372 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-691))) (-5 *1 (-684))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-689))) (-5 *1 (-684))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-558))) (-5 *1 (-684))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-684))))
- ((*1 *1 *2) (-12 (-5 *2 (-691)) (-5 *1 (-689))))
- ((*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-689))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-315 (-558))) (-5 *2 (-315 (-691))) (-5 *1 (-691))))
- ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701))))
+ ((*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-694))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-692))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-561))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-687))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-692))))
+ ((*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-692))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-315 (-561))) (-5 *2 (-315 (-694))) (-5 *1 (-694))))
+ ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704))))
((*1 *2 *1)
- (-12 (-4 *2 (-171)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-171)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-171)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-2 (|:| -3455 *3) (|:| -2345 *4))))
- (-4 *3 (-1039)) (-4 *4 (-717)) (-5 *1 (-726 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-754))))
+ (-12 (-5 *2 (-638 (-2 (|:| -4188 *3) (|:| -3044 *4))))
+ (-4 *3 (-1042)) (-4 *4 (-720)) (-5 *1 (-729 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-757))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
(|:| |mdnia|
(-2 (|:| |fn| (-315 (-224)))
- (|:| -2103 (-635 (-1081 (-834 (-224)))))
+ (|:| -2290 (-638 (-1084 (-837 (-224)))))
(|:| |abserr| (-224)) (|:| |relerr| (-224))))))
- (-5 *1 (-760))))
+ (-5 *1 (-763))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-315 (-224)))
- (|:| -2103 (-635 (-1081 (-834 (-224))))) (|:| |abserr| (-224))
+ (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
- (-5 *1 (-760))))
+ (-5 *1 (-763))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
- (-5 *1 (-760))))
- ((*1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-764 *3)) (-4 *3 (-1200))))
+ (-5 *1 (-763))))
+ ((*1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-767 *3)) (-4 *3 (-1205))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
(|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *1 (-799))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-815))))
+ (-5 *1 (-802))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-818))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224)))
- (|:| |lb| (-635 (-834 (-224))))
- (|:| |cf| (-635 (-315 (-224))))
- (|:| |ub| (-635 (-834 (-224))))))
+ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224)))
+ (|:| |lb| (-638 (-837 (-224))))
+ (|:| |cf| (-638 (-315 (-224))))
+ (|:| |ub| (-638 (-837 (-224))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-635 (-315 (-224))))
- (|:| -1823 (-635 (-224)))))))
- (-5 *1 (-832))))
+ (-2 (|:| |lfn| (-638 (-315 (-224))))
+ (|:| -3721 (-638 (-224)))))))
+ (-5 *1 (-835))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))
- (-5 *1 (-832))))
+ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))
+ (-5 *1 (-835))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224)))
- (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
- (|:| |ub| (-635 (-834 (-224))))))
- (-5 *1 (-832))))
- ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-849))))
- ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-942 (-48))) (-5 *2 (-315 (-558))) (-5 *1 (-865))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-942 (-48)))) (-5 *2 (-315 (-558)))
- (-5 *1 (-865))))
- ((*1 *1 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-810 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
+ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224)))
+ (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
+ (|:| |ub| (-638 (-837 (-224))))))
+ (-5 *1 (-835))))
+ ((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-852))))
+ ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-945 (-48))) (-5 *2 (-315 (-561))) (-5 *1 (-868))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-945 (-48)))) (-5 *2 (-315 (-561)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-635 (-315 (-224))))
+ (-2 (|:| |pde| (-638 (-315 (-224))))
(|:| |constraints|
- (-635
+ (-638
(-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-762)) (|:| |boundaryType| (-558))
- (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
- (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
+ (|:| |grid| (-765)) (|:| |boundaryType| (-561))
+ (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
(|:| |tol| (-224))))
- (-5 *1 (-888))))
+ (-5 *1 (-891))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3))))
+ (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3))))
+ (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3))))
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-904 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-909 *4))
- (-4 *4 (-13 (-841) (-550)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957))))
- ((*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957))))
- ((*1 *2 *3) (-12 (-5 *2 (-1251)) (-5 *1 (-1023 *3)) (-4 *3 (-1200))))
- ((*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1023 *2)) (-4 *2 (-1200))))
+ (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-475)) (-5 *2 (-315 *4)) (-5 *1 (-912 *4))
+ (-4 *4 (-13 (-844) (-553)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960))))
+ ((*1 *1 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1258)) (-5 *1 (-1026 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1026 *2)) (-4 *2 (-1205))))
((*1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5))
- (-14 *6 (-635 *2))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5))
+ (-14 *6 (-638 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-550))))
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-1036 *3)) (-4 *3 (-553))))
((*1 *1 *2)
- (-12 (-4 *3 (-1039)) (-4 *4 (-841)) (-5 *1 (-1113 *3 *4 *2))
- (-4 *2 (-939 *3 (-529 *4) *4))))
+ (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2))
+ (-4 *2 (-942 *3 (-529 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1039)) (-4 *2 (-841)) (-5 *1 (-1113 *3 *2 *4))
- (-4 *4 (-939 *3 (-529 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-853))))
- ((*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1131))))
+ (-12 (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4))
+ (-4 *4 (-942 *3 (-529 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-856))))
+ ((*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1134))))
((*1 *2 *3)
- (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039))))
+ (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042))))
((*1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163))
- (-14 *5 *3) (-5 *1 (-1161 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1162))))
- ((*1 *2 *1) (-12 (-5 *2 (-1173 (-1163) (-436))) (-5 *1 (-1167))))
- ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1172 *3)) (-4 *3 (-1087))))
- ((*1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *1 (-1179 *3)) (-4 *3 (-1087))))
+ (-12 (-5 *2 (-1226 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166))
+ (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1165))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178 (-1166) (-436))) (-5 *1 (-1170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1177 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-1184 *3)) (-4 *3 (-1090))))
((*1 *1 *2)
- (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-5 *1 (-1194 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-1039))))
+ (-12 (-5 *2 (-945 *3)) (-4 *3 (-1042)) (-5 *1 (-1199 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-1042))))
((*1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1217 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1081 *3)) (-4 *3 (-1200)) (-5 *1 (-1213 *3))))
+ (-12 (-5 *2 (-1084 *3)) (-4 *3 (-1205)) (-5 *1 (-1220 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1245 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1163))
- (-14 *5 *3) (-5 *1 (-1238 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-1247))))
- ((*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1247)) (-5 *1 (-1250))))
+ (-12 (-5 *2 (-1226 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166))
+ (-14 *5 *3) (-5 *1 (-1245 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1249 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-1254))))
+ ((*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1254)) (-5 *1 (-1257))))
((*1 *1 *2)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
((*1 *2 *1)
- (-12 (-5 *2 (-1270 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841))
+ (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-1273 *3 *4)) (-4 *3 (-844))
(-4 *4 (-171))))
((*1 *2 *1)
- (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841))
+ (-12 (-5 *2 (-1268 *3 *4)) (-5 *1 (-1273 *3 *4)) (-4 *3 (-844))
(-4 *4 (-171))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
- (-5 *1 (-1266 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1222 (-48)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784))
- (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-939 (-48) *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-48))) (-4 *5 (-841)) (-4 *6 (-784))
- (-4 *7 (-939 (-48) *6 *5)) (-5 *2 (-417 (-1159 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1159 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3))
- (-4 *3 (-1222 (-168 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
- (-4 *3 (-1222 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3))
- (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 (-168 (-558)))) (-5 *1 (-444))
- (-5 *3 (-168 (-558)))))
- ((*1 *2 *3)
+ (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
+ (-5 *1 (-1273 *3 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 (-112) (-638 *1)))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *1 *2 *2)
(-12
- (-4 *4
- (-13 (-841)
- (-10 -8 (-15 -3441 ((-1163) $))
- (-15 -2317 ((-3 $ "failed") (-1163))))))
- (-4 *5 (-784)) (-4 *7 (-550)) (-5 *2 (-417 *3))
- (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-550))
- (-4 *3 (-939 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1159 *4))) (-5 *1 (-456 *4))
- (-5 *3 (-1159 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
- (-4 *7 (-13 (-362) (-146) (-715 *5 *6))) (-5 *2 (-417 *3))
- (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1222 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7)))
- (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784))
- (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3))
- (-4 *3 (-939 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 (-1159 *7)) (-1159 *7)))
- (-4 *7 (-13 (-306) (-146))) (-4 *5 (-841)) (-4 *6 (-784))
- (-4 *8 (-939 *7 *6 *5)) (-5 *2 (-417 (-1159 *8)))
- (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1159 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-635 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *6 (-1222 *5)) (-5 *2 (-635 (-643 (-406 *6))))
- (-5 *1 (-647 *5 *6)) (-5 *3 (-643 (-406 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5))))
- (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-662 *4)))
- (-5 *1 (-662 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-558)) (-5 *2 (-635 *3)) (-5 *1 (-686 *3))
- (-4 *3 (-1222 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348)) (-5 *2 (-417 *3))
- (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-939 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-348))
- (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7)))
- (-5 *1 (-688 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-784))
- (-4 *5
- (-13 (-841)
- (-10 -8 (-15 -3441 ((-1163) $))
- (-15 -2317 ((-3 $ "failed") (-1163))))))
- (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-721 *4 *5 *6 *3))
- (-4 *3 (-939 (-942 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-784))
- (-4 *5 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *6 (-550))
- (-5 *2 (-417 *3)) (-5 *1 (-723 *4 *5 *6 *3))
- (-4 *3 (-939 (-406 (-942 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-13 (-306) (-146)))
- (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3))
- (-4 *3 (-939 (-406 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146)))
- (-5 *2 (-417 *3)) (-5 *1 (-732 *4 *5 *6 *3))
- (-4 *3 (-939 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-4 *5 (-784)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-417 (-1159 *7)))
- (-5 *1 (-732 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3))
- (-4 *3 (-1222 (-406 (-558))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1031 *3))
- (-4 *3 (-1222 (-406 (-942 (-558)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1222 (-406 (-558))))
- (-4 *5 (-13 (-362) (-146) (-715 (-406 (-558)) *4)))
- (-5 *2 (-417 *3)) (-5 *1 (-1066 *4 *5 *3)) (-4 *3 (-1222 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1222 (-406 (-942 (-558)))))
- (-4 *5 (-13 (-362) (-146) (-715 (-406 (-942 (-558))) *4)))
- (-5 *2 (-417 *3)) (-5 *1 (-1068 *4 *5 *3)) (-4 *3 (-1222 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-450))
- (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-417 (-1159 (-406 *7))))
- (-5 *1 (-1158 *4 *5 *6 *7)) (-5 *3 (-1159 (-406 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1204))))
+ (-5 *2
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-607 *4)) (-5 *1 (-606 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-844)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5))
+ (-14 *3 (-638 *2)) (-14 *4 (-638 *2)) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386))
+ (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-561))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-378))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-561))) (-4 *1 (-395))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-406 (-945 (-561))))) (-4 *1 (-439))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-406 (-945 (-378))))) (-4 *1 (-439))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-945 (-561)))) (-4 *1 (-439))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-945 (-378)))) (-4 *1 (-439))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-315 (-561)))) (-4 *1 (-439))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1253 (-315 (-378)))) (-4 *1 (-439))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1087)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5))
+ (-5 *2 (-1162 (-1162 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7))
+ (-4 *3 (-1229 *6)) (-14 *7 (-914))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *1 (-969 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2)
+ (|partial| -4007
+ (-12 (-5 *2 (-945 *3))
+ (-12 (-2159 (-4 *3 (-38 (-406 (-561)))))
+ (-2159 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)))
+ (-12 (-5 *2 (-945 *3))
+ (-12 (-2159 (-4 *3 (-543))) (-2159 (-4 *3 (-38 (-406 (-561)))))
+ (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)))
+ (-12 (-5 *2 (-945 *3))
+ (-12 (-2159 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561))))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (|partial| -4007
+ (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561)))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166)))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-561))) (-5 *1 (-304)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
+ (-4 *2 (-1229 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-433))
+ (-5 *2
+ (-638
+ (-3 (|:| -3269 (-1166))
+ (|:| -3103 (-638 (-3 (|:| S (-1166)) (|:| P (-945 (-561)))))))))
+ (-5 *1 (-1170)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1090)) (-5 *2 (-55)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *3 (-893 *6))
+ (-5 *2 (-682 *3)) (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-372 *3))
+ (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4390)))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
+ (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34))))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-601)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *5 (-550))
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-553))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-638 (-945 *3))) (-4 *3 (-450))
+ (-5 *1 (-359 *3 *4)) (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-638 (-774 *3 (-858 *4)))) (-4 *3 (-450))
+ (-14 *4 (-638 (-1166))) (-5 *1 (-623 *3 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
+ (-4 *5 (-429 *4)) (-5 *2 (-417 (-1162 (-406 (-561)))))
+ (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-234 *3))
+ (-4 *3 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-234 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090))
+ (-5 *1 (-731 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *1 *1) (-5 *1 (-1165)))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |minor| (-635 (-911))) (|:| -3846 *3)
- (|:| |minors| (-635 (-635 (-911)))) (|:| |ops| (-635 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))))
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *1 *1) (-4 *1 (-543))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-679 (-406 (-942 (-558)))))
- (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021))
- (-5 *3 (-315 (-558))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112))
- (-5 *2 (-1025)) (-5 *1 (-736)))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
+ (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *2 (-638 (-168 *4)))
+ (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
+(((*1 *1 *1) (-4 *1 (-624)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-674))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-635 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5))
- (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3846 *3))))
- (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6))
- (-4 *7 (-646 (-406 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-635 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *6 (-1222 *5))
- (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3846 (-644 *6 (-406 *6))))))
- (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-747)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -2475 (-406 *6)) (|:| |coeff| (-406 *6))))
- (-5 *1 (-568 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-1172 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-841)))))
+ (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *4 (-765))
+ (-5 *2 (-682 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1205)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3))
+ (-4 *3 (-667 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-635 (-635 *3)))))
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-840)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
+ (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-1042)) (-4 *4 (-171))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))
+ (-4 *3 (-171)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1094)) (-5 *1 (-290)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-914)) (-5 *1 (-692))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-362)) (-5 *1 (-971 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-638 (-638 (-936 (-224)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-638 (-638 (-936 (-224))))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1182 *4 *5))
+ (-4 *4 (-1090)) (-4 *5 (-1090)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1049 (-1014 *3) (-1159 (-1014 *3))))
- (-5 *1 (-1014 *3)) (-4 *3 (-13 (-839) (-362) (-1012))))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-170))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-638 *5))
+ (-5 *1 (-883 *4 *5)) (-4 *5 (-1205)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
- (|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))))
-(((*1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-671))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1105)))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-635 *11))
- (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -3798 *11))))))
- (-5 *6 (-762))
- (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -3798 *11))))
- (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9))
- (-4 *11 (-1059 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784))
- (-4 *9 (-841)) (-5 *1 (-1057 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-635 *11))
- (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -3798 *11))))))
- (-5 *6 (-762))
- (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -3798 *11))))
- (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1053 *7 *8 *9))
- (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-784))
- (-4 *9 (-841)) (-5 *1 (-1132 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-604 *1)) (-4 *1 (-429 *4)) (-4 *4 (-841))
- (-4 *4 (-550)) (-5 *2 (-406 (-1159 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-1159 (-406 (-1159 *3)))) (-5 *1 (-554 *6 *3 *7))
- (-5 *5 (-1159 *3)) (-4 *7 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1242 *5)) (-14 *5 (-1163)) (-4 *6 (-1039))
- (-5 *2 (-1219 *5 (-942 *6))) (-5 *1 (-937 *5 *6)) (-5 *3 (-942 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-1159 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841)) (-5 *2 (-1159 *1))
- (-4 *1 (-939 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-1039))
- (-4 *7 (-939 *6 *5 *4)) (-5 *2 (-406 (-1159 *3)))
- (-5 *1 (-940 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1159 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $)))))
- (-4 *7 (-939 *6 *5 *4)) (-4 *5 (-784)) (-4 *4 (-841))
- (-4 *6 (-1039)) (-5 *1 (-940 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-4 *5 (-550))
- (-5 *2 (-406 (-1159 (-406 (-942 *5))))) (-5 *1 (-1033 *5))
- (-5 *3 (-406 (-942 *5))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-762)) (-4 *5 (-550))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841)))
- (-14 *3 (-635 (-1163)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1087))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-635 (-1163))) (-4 *3 (-171))
- (-4 *5 (-237 (-1596 *2) (-762)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2349 *4) (|:| -1857 *5))
- (-2 (|:| -2349 *4) (|:| -1857 *5))))
- (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-841))
- (-4 *7 (-939 *3 *5 (-855 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-841))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-726 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1039))
- (-4 *3 (-717))))
- ((*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-837)))))
+ (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090))
+ (-4 *2 (-844)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
+ (-4 *3 (-1090)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-682 *2)) (-5 *4 (-561))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-558)))))
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-638 (-638 *3)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543))
- (-4 *3 (-550))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-558)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-638 (-638 *5)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-558)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543))
- (-4 *3 (-1087))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543))
- (-4 *3 (-1087))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-558)))))
+ (-12 (-5 *2 (-638 (-638 *3))) (-5 *1 (-1177 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3))
- (-4 *3 (-1028 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-306))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3))))
- (-5 *1 (-385 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2263 (-762)) (|:| -1548 (-762))))
- (-5 *1 (-762))))
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362))
+ (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1253 *3))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555))))
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-682 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-1253 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-1253 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
- (-5 *2 (-1159 (-942 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1222 *4))))
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-1253 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171))
+ (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-13 (-450) (-146)))
- (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *1 *1) (-4 *1 (-621)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996))))
- ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-939 *4 *6 *5)) (-4 *4 (-450))
- (-4 *5 (-841)) (-4 *6 (-784)) (-5 *1 (-977 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-635 (-558)))
- (|:| |cols| (-635 (-558)))))
- (-5 *4 (-679 *12)) (-5 *5 (-635 (-406 (-942 *9))))
- (-5 *6 (-635 (-635 *12))) (-5 *7 (-762)) (-5 *8 (-558))
- (-4 *9 (-13 (-306) (-146))) (-4 *12 (-939 *9 *11 *10))
- (-4 *10 (-13 (-841) (-606 (-1163)))) (-4 *11 (-784))
+ (-12 (-5 *4 (-638 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362))
+ (-5 *2 (-1253 *5)) (-5 *1 (-1076 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844))
(-5 *2
- (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12))
- (|:| |wcond| (-635 (-942 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *9))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *9)))))))))
- (-5 *1 (-914 *9 *10 *11 *12)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-939 *3 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558)))))
- (-4 *2 (-13 (-841) (-21))))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))))
-(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1159 (-942 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
- (-5 *2 (-1159 (-942 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
+ (-2 (|:| |f1| (-638 *4)) (|:| |f2| (-638 (-638 (-638 *4))))
+ (|:| |f3| (-638 (-638 *4))) (|:| |f4| (-638 (-638 (-638 *4))))))
+ (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 (-638 *4)))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4))
+ (-4 *4 (-1042))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1258))
+ (-5 *1 (-1255)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-841))
+ (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4))))
- (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4))))))
- (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 (-635 *4)))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1087))
- (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
- (-5 *2 (-635 (-1063 *3 *4 *5))) (-5 *1 (-1064 *3 *4 *5))
- (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-743)))))
-(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-619 *2 *3 *4)) (-4 *2 (-841))
- (-4 *3 (-13 (-171) (-708 (-406 (-558))))) (-14 *4 (-911))))
- ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
- ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1202)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
- (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-635 (-1163))) (-4 *5 (-237 (-1596 *3) (-762)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2349 *4) (|:| -1857 *5))
- (-2 (|:| -2349 *4) (|:| -1857 *5))))
- (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-841))
- (-4 *7 (-939 *2 *5 (-855 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-841)) (-4 *2 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-699 *2)) (-4 *2 (-1039))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-841))
- (-4 *3 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *3 (-783)) (-4 *4 (-841))
- (-4 *2 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
- (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-635 (-762)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
- (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 (-762))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *3 (-1053 *6 *7 *8))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1095 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9))))
- (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8))
- (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841))
- (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -3798 *9))))
- (-5 *1 (-1095 *6 *7 *4 *8 *9)))))
-(((*1 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1249)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240)) (-5 *3 (-1145))))
- ((*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 (-933 *4))) (-4 *1 (-1121 *4)) (-4 *4 (-1039))
- (-5 *2 (-762)))))
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *4))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *4)))))))
+ (-5 *3 (-638 *7)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *7 (-942 *4 *6 *5)) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-168 (-378))) (-5 *1 (-776 *3)) (-4 *3 (-606 (-378)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-5 *2 (-168 (-378))) (-5 *1 (-776 *3))
- (-4 *3 (-606 (-378)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-606 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-168 *5)) (-5 *4 (-911)) (-4 *5 (-171))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-606 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
+ (-12 (-5 *3 (-638 (-2 (|:| -1657 *4) (|:| -2894 (-561)))))
+ (-4 *4 (-1229 (-561))) (-5 *2 (-731 (-765))) (-5 *1 (-440 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 (-378)))
- (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
+ (-12 (-5 *3 (-417 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1042))
+ (-5 *2 (-731 (-765))) (-5 *1 (-442 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-985 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3))
+ (-4 *3 (-372 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
+ (-12 (-4 *4 (-553)) (-4 *5 (-985 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4)))
+ (-5 *1 (-686 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
+ (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *6 (-1229 *5))
+ (-5 *2 (-2 (|:| -3360 *7) (|:| |rh| (-638 (-406 *6)))))
+ (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-638 (-406 *6)))
+ (-4 *7 (-649 *6)) (-4 *3 (-649 (-406 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-776 *5)))))
-(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-366 *3)))))
+ (-12 (-4 *4 (-553)) (-4 *5 (-985 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1222 *4 *5 *3))
+ (-4 *3 (-1229 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *2 (-553)) (-5 *1 (-962 *2 *4))
+ (-4 *4 (-1229 *2)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039))
- (-5 *3 (-558)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114))))
+ (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148))))
+ ((*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787))
+ (-5 *2 (-112)) (-5 *1 (-980 *3 *4 *5 *6))
+ (-4 *6 (-942 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787))
+ (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3360 (-638 *9)) (|:| -1510 *4) (|:| |ineq| (-638 *9))))
+ (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9))
+ (-4 *4 (-1062 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787))
+ (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3360 (-638 *9)) (|:| -1510 *4) (|:| |ineq| (-638 *9))))
+ (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-638 *9))
+ (-4 *4 (-1062 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-4 *6 (-450))
+ (-5 *2 (-638 (-638 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362))
+ (-4 *5 (-13 (-362) (-842))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-841)) (-5 *1 (-919 *4 *2))
+ (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-922 *4 *2))
(-4 *2 (-429 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-1145)) (-5 *2 (-315 (-558)))
- (-5 *1 (-920)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3)))
- (-5 *1 (-757 *3 *4)) (-4 *3 (-699 *4))))
+ (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-315 (-561)))
+ (-5 *1 (-923)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-992 *3)) (-4 *3 (-171)) (-5 *1 (-793 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-776 *3)) (|:| |polden| *3) (|:| -1364 (-765))))
+ (-5 *1 (-776 *3)) (-4 *3 (-1042))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039))
- (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3))
- (-4 *3 (-843 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
- (-4 *6 (-237 (-1596 *3) (-762)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *6))
- (-2 (|:| -2349 *5) (|:| -1857 *6))))
- (-5 *2 (-704 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-841)) (-4 *8 (-939 *4 *6 (-855 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-717)) (-4 *2 (-841)) (-5 *1 (-726 *3 *2))
- (-4 *3 (-1039))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783))
- (-4 *4 (-841)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1200))
- (-4 *2 (-1200)) (-5 *1 (-58 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1087)) (|has| *1 (-6 -4383))
- (-4 *1 (-150 *2)) (-4 *2 (-1200))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *2))
- (-4 *2 (-1200))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *2))
- (-4 *2 (-1200))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1039))
- (-5 *2 (-2 (|:| -3936 (-1159 *4)) (|:| |deg| (-911))))
- (-5 *1 (-220 *4 *5)) (-5 *3 (-1159 *4)) (-4 *5 (-13 (-550) (-841)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762))
- (-4 *6 (-1200)) (-4 *2 (-1200)) (-5 *1 (-238 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1222 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-550)) (-4 *2 (-841))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1222 *2))
- (-4 *4 (-1222 (-406 *3))) (-4 *5 (-341 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1200)) (-4 *2 (-1200))
- (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1087)) (-4 *2 (-1087))
- (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2))))
- ((*1 *1 *1) (-5 *1 (-493)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1200))
- (-4 *2 (-1200)) (-5 *1 (-633 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1039)) (-4 *2 (-1039))
- (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2))
- (-4 *9 (-372 *2)) (-5 *1 (-675 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-677 *5 *6 *7)) (-4 *10 (-677 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1364 (-765))))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1209))
+ (-4 *6 (-1229 (-406 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-341 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *3 (-638 (-561)))
+ (-5 *1 (-876)))))
+(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-638
+ (-2 (|:| -1569 (-765))
+ (|:| |eqns|
+ (-638
+ (-2 (|:| |det| *7) (|:| |rows| (-638 (-561)))
+ (|:| |cols| (-638 (-561))))))
+ (|:| |fgb| (-638 *7)))))
+ (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-561)) (-5 *1 (-484 *4))
+ (-4 *4 (-1229 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-311)) (-5 *1 (-295))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-295))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-1148))) (-5 *3 (-1148)) (-5 *2 (-311))
+ (-5 *1 (-295)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-638 *4)) (-4 *4 (-844))
+ (-5 *1 (-1176 *4)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1205))))
((*1 *1 *2)
- (-12 (-4 *3 (-1039)) (-5 *1 (-703 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-5 *2 (-945 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-362))
- (-4 *3 (-171)) (-4 *1 (-715 *3 *4))))
+ (-12 (-5 *2 (-406 (-945 (-378)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-948 *5)) (-4 *5 (-1200))
- (-4 *2 (-1200)) (-5 *1 (-947 *5 *2))))
+ (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-378))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
((*1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-1024 *3 *4 *5 *2 *6)) (-4 *2 (-939 *3 *4 *5))
- (-14 *6 (-635 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1039)) (-4 *2 (-1039))
- (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7))
- (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2))
- (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *12 (-1042 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1200))
- (-4 *2 (-1200)) (-5 *1 (-1141 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1193 *5 *6 *7 *2)) (-4 *5 (-550)) (-4 *6 (-784))
- (-4 *7 (-841)) (-4 *2 (-1053 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1246 *5)) (-4 *5 (-1200))
- (-4 *2 (-1200)) (-5 *1 (-1245 *5 *2)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-762))
- (-4 *3 (-13 (-717) (-367) (-10 -7 (-15 ** (*3 *3 (-558))))))
- (-5 *1 (-245 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1097)))))
-(((*1 *1) (-5 *1 (-553))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-762)) (-4 *2 (-1087))
- (-5 *1 (-668 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -4144 (-558)) (|:| -3381 (-635 *3))))
- (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *2)
+ (-12 (-5 *2 (-945 (-561))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-945 (-561)))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-315 (-561))) (-5 *1 (-338 *3 *4 *5))
+ (-4 *5 (-1031 (-561))) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 *2))
+ (-14 *4 (-638 *2)) (-4 *5 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5))
+ (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-1166)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-561))))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-945 (-378))))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-561)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-945 (-378)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-682 (-315 (-378)))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-561)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-945 (-378)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-945 (-561))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-945 (-378))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-561))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-945 (-561))))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-945 (-378))))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-945 (-561)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-945 (-378)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-315 (-561)))) (-4 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 (-315 (-378)))) (-4 *1 (-439))))
+ ((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224)))
- (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
- (|:| |ub| (-635 (-834 (-224))))))
- (-5 *1 (-266)))))
-(((*1 *1 *1) (-5 *1 (-1051))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-417 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1163))
- (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
- ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)))))
-(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378))))
- ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-311)) (-5 *1 (-295))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-295))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-1145))) (-5 *3 (-1145)) (-5 *2 (-311))
- (-5 *1 (-295)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-604 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1185)))
- (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-1159 (-406 (-1159 *6)))) (-5 *1 (-554 *5 *6 *7))
- (-5 *3 (-1159 *6)) (-4 *7 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1159 *11)) (-5 *6 (-635 *10))
- (-5 *7 (-635 (-762))) (-5 *8 (-635 *11)) (-4 *10 (-841))
- (-4 *11 (-306)) (-4 *9 (-784)) (-4 *5 (-939 *11 *9 *10))
- (-5 *2 (-635 (-1159 *5))) (-5 *1 (-733 *9 *10 *11 *5))
- (-5 *3 (-1159 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-939 *3 *4 *5)) (-5 *1 (-1024 *3 *4 *5 *2 *6))
- (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-14 *6 (-635 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))))
-(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
- ((*1 *1 *1) (-4 *1 (-1131))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-1014 *3))
- (-4 *3 (-13 (-839) (-362) (-1012)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
- (-4 *3 (-1222 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362)))
- (-4 *3 (-1222 *2)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224))
- (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362))
- (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5))))
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-638 (-1084 (-837 (-224)))))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
+ (-5 *1 (-763))))
((*1 *2 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
- (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
- (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5))))
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *1 (-802))))
((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224))
- (-5 *2 (-1025)) (-5 *1 (-740)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 (-635 *4))))
- (-5 *1 (-1171 *4)) (-5 *3 (-635 (-635 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-563 *3)) (-4 *3 (-1028 (-558)))))
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224)))
+ (|:| |lb| (-638 (-837 (-224))))
+ (|:| |cf| (-638 (-315 (-224))))
+ (|:| |ub| (-638 (-837 (-224))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-638 (-315 (-224))))
+ (|:| -3721 (-638 (-224)))))))
+ (-5 *1 (-835))))
((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-360 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-385 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-639 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-841)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -1544 (-773 *3)) (|:| |coef1| (-773 *3))
- (|:| |coef2| (-773 *3))))
- (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-2 (|:| -1544 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1053 *3 *4 *5)))))
+ (-2 (|:| |pde| (-638 (-315 (-224))))
+ (|:| |constraints|
+ (-638
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-765)) (|:| |boundaryType| (-561))
+ (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
+ (|:| |tol| (-224))))
+ (-5 *1 (-891))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2)
+ (-4007
+ (-12 (-5 *2 (-945 *3))
+ (-12 (-2159 (-4 *3 (-38 (-406 (-561)))))
+ (-2159 (-4 *3 (-38 (-561)))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)))
+ (-12 (-5 *2 (-945 *3))
+ (-12 (-2159 (-4 *3 (-543))) (-2159 (-4 *3 (-38 (-406 (-561)))))
+ (-4 *3 (-38 (-561))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)))
+ (-12 (-5 *2 (-945 *3))
+ (-12 (-2159 (-4 *3 (-985 (-561)))) (-4 *3 (-38 (-406 (-561))))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (-4007
+ (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-2159 (-4 *3 (-38 (-406 (-561))))) (-4 *3 (-38 (-561)))
+ (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))
+ (-12 (-5 *2 (-945 (-561))) (-4 *1 (-1056 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))))
+ (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-945 (-406 (-561)))) (-4 *1 (-1056 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-638 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787))
+ (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084 (-837 (-378)))) (-5 *2 (-1084 (-837 (-224))))
+ (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-274)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1226 *5 *4)))
+ (-5 *1 (-1104 *4 *5)) (-5 *3 (-1226 *5 *4)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1090) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34))))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
+ (-4 *2 (-680 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *2 (-1056 *4 *5 *6)) (-5 *1 (-770 *4 *5 *6 *2 *3))
+ (-4 *3 (-1062 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-638 *4)) (-5 *1 (-773 *4))
+ (-4 *4 (-13 (-362) (-842))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-679 *3))
- (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))))
+ (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3))
+ (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-293 (-827 *3)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-827 *3)) (-5 *1 (-631 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-827 (-945 *5)))) (-4 *5 (-450))
+ (-5 *2 (-827 (-406 (-945 *5)))) (-5 *1 (-632 *5))
+ (-5 *3 (-406 (-945 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5)))
+ (-4 *5 (-450)) (-5 *2 (-827 *3)) (-5 *1 (-632 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-561))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-692)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-550))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3789 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+ (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1162 (-406 (-561))))
+ (|:| |overan| (-1162 (-48))) (|:| -4223 (-112))))
+ (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *8)) (-5 *4 (-762)) (-4 *8 (-939 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
- (-4 *7 (-784))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-635
- (-2 (|:| |det| *8) (|:| |rows| (-635 (-558)))
- (|:| |cols| (-635 (-558))))))
- (-5 *1 (-914 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-310))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-910)))))
-(((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3))
- (-4 *3 (-638 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-171)) (-4 *2 (-1039)) (-5 *1 (-705 *2 *3))
- (-4 *3 (-638 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039))))
- ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-171)) (-4 *2 (-1039)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *1 (-678 *4 *5 *6 *2))
- (-4 *2 (-677 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811))
- (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1113 *4 *3 *5))) (-4 *4 (-38 (-406 (-558))))
- (-4 *4 (-1039)) (-4 *3 (-841)) (-5 *1 (-1113 *4 *3 *5))
- (-4 *5 (-939 *4 (-529 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1194 *4))) (-5 *3 (-1163)) (-5 *1 (-1194 *4))
- (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))))
-(((*1 *1 *1) (-4 *1 (-242)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-3994 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200)))
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200)))))
- ((*1 *1 *1) (-4 *1 (-471)))
- ((*1 *2 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
-(((*1 *2 *3 *2)
- (-12
+ (-2 (|:| |contp| (-561))
+ (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561)))))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
(-5 *2
- (-635
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-784)) (-4 *3 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841))
- (-5 *1 (-447 *4 *5 *6 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))))
-(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1246 *4))) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550))
- (-5 *2 (-635 (-1246 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-479 *4 *5))
- (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))))
-(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *3 *2))
- (-4 *3 (-13 (-1087) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1257)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-841))
- (-4 *5 (-784)) (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-173 *6))
- (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
- (-5 *2 (-1159 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
- (-5 *2 (-1159 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-2 (|:| |contp| (-561))
+ (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561)))))))
+ (-5 *1 (-1218 *3)) (-4 *3 (-1229 (-561))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-679 (-406 (-942 (-558)))))
- (-5 *2
- (-635
- (-2 (|:| |radval| (-315 (-558))) (|:| |radmult| (-558))
- (|:| |radvect| (-635 (-679 (-315 (-558))))))))
- (-5 *1 (-1021)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2862 *3) (|:| |coef2| (-773 *3))))
- (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
+ (-12 (-4 *1 (-833))
+ (-5 *3
+ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224)))
+ (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
+ (|:| |ub| (-638 (-837 (-224))))))
+ (-5 *2 (-1028))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-833))
+ (-5 *3
+ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))
+ (-5 *2 (-1028)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1162 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $))
- (-15 -3327 ((-1112 *3 (-604 $)) $))
- (-15 -3940 ($ (-1112 *3 (-604 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-550)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $))
- (-15 -3327 ((-1112 *3 (-604 $)) $))
- (-15 -3940 ($ (-1112 *3 (-604 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *2))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *4 (-604 $)) $))
- (-15 -3327 ((-1112 *4 (-604 $)) $))
- (-15 -3940 ($ (-1112 *4 (-604 $)))))))
- (-4 *4 (-550)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-604 *2)))
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561)))
+ (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
(-4 *2
(-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *4 (-604 $)) $))
- (-15 -3327 ((-1112 *4 (-604 $)) $))
- (-15 -3940 ($ (-1112 *4 (-604 $)))))))
- (-4 *4 (-550)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1163))
- (-4 *5 (-13 (-550) (-1028 (-558)) (-146)))
- (-5 *2
- (-2 (|:| -2475 (-406 (-942 *5))) (|:| |coeff| (-406 (-942 *5)))))
- (-5 *1 (-564 *5)) (-5 *3 (-406 (-942 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-558))) (-5 *4 (-558)) (-5 *2 (-52))
- (-5 *1 (-995)))))
+ (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $))
+ (-15 -4045 ((-1115 *3 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *3 (-607 $))))))))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-561)) (-5 *5 (-1148)) (-5 *6 (-682 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1039)) (-5 *1 (-705 *2 *4))
- (-4 *4 (-638 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-360 (-114))) (-5 *1 (-827 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-406 (-558)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-109)))))
+(((*1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558)))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8))
- (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558)))
- (-4 *8 (-13 (-27) (-1185) (-429 *7)))
- (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558))))
- (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8)))
- (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-406 (-558))) (-4 *4 (-1039)) (-4 *1 (-1229 *4 *3))
- (-4 *3 (-1206 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-942 (-558)))) (-5 *1 (-436))))
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-649 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-224))) (-5 *2 (-1091))
- (-5 *1 (-750))))
+ (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3360 *3) (|:| -2375 (-638 *5))))
+ (-5 *1 (-1018 *5 *3)) (-5 *4 (-638 *5)) (-4 *3 (-649 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4))
+ (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787))
+ (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-679 (-558))) (-5 *2 (-1091))
- (-5 *1 (-750)))))
+ (-12 (-5 *3 (-1 (-638 *5) (-638 *5))) (-5 *4 (-561))
+ (-5 *2 (-638 *5)) (-5 *1 (-675 *5)) (-4 *5 (-1090)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-306))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-445 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
- (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-445 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
- (-4 *4 (-306)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-445 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-604 *1))) (-4 *1 (-301)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1246 (-635 *3))) (-4 *4 (-306))
- (-5 *2 (-635 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (|:| |%expansion| (-312 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))))
- (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
- (-14 *6 (-1163)) (-14 *7 *3))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-191))))
- ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-299))))
- ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1145)) (-5 *1 (-304)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-748)))))
(((*1 *1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853)))
- (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853)))
- (|:| |args| (-635 (-853)))))
- (-5 *1 (-1163))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-1163)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-911)) (-5 *2 (-466)) (-5 *1 (-1247)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2))))
+ (-12 (-5 *2 (-638 *1)) (|has| *1 (-6 -4391)) (-4 *1 (-1003 *3))
+ (-4 *3 (-1205)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128))))
((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1222 *2))
- (-4 *2 (-171))))
- ((*1 *2)
- (-12 (-4 *4 (-1222 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4))
- (-4 *3 (-408 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171))))
- ((*1 *2)
- (-12 (-4 *3 (-1222 *2)) (-5 *2 (-558)) (-5 *1 (-759 *3 *4))
- (-4 *4 (-408 *2 *3))))
+ (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1258)) (-5 *1 (-1128)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-856)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765))
+ (-14 *4 (-765)) (-4 *5 (-171)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-638 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -1934 *4))) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6)))
+ (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-844) (-553) (-1031 (-561))))
+ (-5 *2 (-2 (|:| -4163 (-765)) (|:| -1418 *8)))
+ (-5 *1 (-904 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6))
+ (-4 *4 (-1229 (-406 (-561)))) (-4 *5 (-1229 (-406 *4)))
+ (-4 *6 (-341 (-406 (-561)) *4 *5))
+ (-5 *2 (-2 (|:| -4163 (-765)) (|:| -1418 *6)))
+ (-5 *1 (-905 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-842)) (-5 *1 (-302 *3)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561))
+ (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348))
+ (-5 *2 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110))))))
+ (-5 *1 (-345 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042))
+ (-5 *1 (-708 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)) (-4 *3 (-171))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-638 (-765)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 (-765))))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-478)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-553))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
+(((*1 *2 *2) (-12 (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-406 (-945 (-561)))))
+ (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-842) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-558)) (-4 *5 (-13 (-450) (-841) (-1028 *4) (-631 *4)))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ (-12 (-5 *3 (-638 (-293 (-406 (-945 (-561))))))
+ (-5 *2 (-638 (-638 (-293 (-945 *4))))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-842) (-362)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-450) (-841) (-1028 *5) (-631 *5))) (-5 *5 (-558))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ (-12 (-5 *3 (-406 (-945 (-561)))) (-5 *2 (-638 (-293 (-945 *4))))
+ (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-406 (-945 (-561)))))
+ (-5 *2 (-638 (-293 (-945 *4)))) (-5 *1 (-379 *4))
+ (-4 *4 (-13 (-842) (-362)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558)))
- (-4 *7 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558)))
- (-4 *3 (-13 (-27) (-1185) (-429 *7)))
- (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-558)) (-4 *4 (-1039)) (-4 *1 (-1208 *4 *3))
- (-4 *3 (-1237 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841))) (-5 *2 (-168 *5))
- (-5 *1 (-592 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-992) (-1185)))
- (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-1222 (-406 *3))) (-5 *2 (-911))
- (-5 *1 (-903 *4 *5)) (-4 *5 (-1222 (-406 *4))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-635 *3)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-635 (-604 *6))) (-5 *4 (-1163)) (-5 *2 (-604 *6))
- (-4 *6 (-429 *5)) (-4 *5 (-841)) (-5 *1 (-567 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-679 *6)) (-5 *5 (-1 (-417 (-1159 *6)) (-1159 *6)))
- (-4 *6 (-362))
+ (|partial| -12 (-5 *5 (-1166))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-4 *4 (-13 (-29 *6) (-1190) (-952)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3711 (-638 *4))))
+ (-5 *1 (-645 *6 *4 *3)) (-4 *3 (-649 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *2))
+ (-4 *2 (-13 (-29 *6) (-1190) (-952)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *1 (-645 *6 *2 *3)) (-4 *3 (-649 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-362))
(-5 *2
- (-635
- (-2 (|:| |outval| *7) (|:| |outmult| (-558))
- (|:| |outvect| (-635 (-679 *7))))))
- (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-839))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4))
- (-4 *4 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762))))
- ((*1 *1 *1) (-4 *1 (-232)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-4 *1 (-265 *3)) (-4 *3 (-841))))
- ((*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
- (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
- (-4 *4 (-1222 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
- (-4 *3 (-1222 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-362)) (-4 *2 (-890 *3)) (-5 *1 (-579 *2))
- (-5 *3 (-1163))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-579 *2)) (-4 *2 (-362))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4))
- (-4 *4 (-1087))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5))
- (-4 *3 (-1039)) (-14 *5 *3))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7))
- (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-899)) (-4 *5 (-784))
- (-4 *6 (-841)) (-5 *1 (-896 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5))
- (-4 *5 (-1222 *4)) (-4 *4 (-899)) (-5 *1 (-897 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
- (-5 *1 (-175 *3)))))
-(((*1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
+ (-2 (|:| |particular| (-3 (-1253 *5) "failed"))
+ (|:| -3711 (-638 (-1253 *5)))))
+ (-5 *1 (-660 *5)) (-5 *4 (-1253 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-762))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
+ (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1253 *5) "failed"))
+ (|:| -3711 (-638 (-1253 *5)))))
+ (-5 *1 (-660 *5)) (-5 *4 (-1253 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-638
+ (-2 (|:| |particular| (-3 (-1253 *5) "failed"))
+ (|:| -3711 (-638 (-1253 *5))))))
+ (-5 *1 (-660 *5)) (-5 *4 (-638 (-1253 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-638 *5))) (-4 *5 (-362))
+ (-5 *2
+ (-638
+ (-2 (|:| |particular| (-3 (-1253 *5) "failed"))
+ (|:| -3711 (-638 (-1253 *5))))))
+ (-5 *1 (-660 *5)) (-5 *4 (-638 (-1253 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4391))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391))))
+ (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4391))))
+ (-5 *2
+ (-638
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3711 (-638 *7)))))
+ (-5 *1 (-661 *5 *6 *7 *3)) (-5 *4 (-638 *7))
+ (-4 *3 (-680 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553))
+ (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553))
+ (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1166))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-952)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-5 *5 (-762))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166))
+ (-4 *7 (-13 (-29 *6) (-1190) (-952)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2
+ (-2 (|:| |particular| (-1253 *7)) (|:| -3711 (-638 (-1253 *7)))))
+ (-5 *1 (-796 *6 *7)) (-5 *4 (-1253 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6))
- (-4 *6 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
+ (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166))
+ (-4 *6 (-13 (-29 *5) (-1190) (-952)))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2 (-638 (-1253 *6))) (-5 *1 (-796 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
+ (|partial| -12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114)))
+ (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2
+ (-2 (|:| |particular| (-1253 *7)) (|:| -3711 (-638 (-1253 *7)))))
+ (-5 *1 (-796 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-762)))
- (-4 *7 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-762)))
- (-4 *3 (-13 (-27) (-1185) (-429 *7)))
- (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5))
- (-4 *3 (-1222 *4))
- (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-329))))
- ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166))))
- ((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4))))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-290))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1246 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5))
- (-4 *4 (-1087)) (-4 *5 (-1087)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-1143 (-224))) (-5 *1 (-191))))
+ (|partial| -12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114)))
+ (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-952)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2
+ (-2 (|:| |particular| (-1253 *7)) (|:| -3711 (-638 (-1253 *7)))))
+ (-5 *1 (-796 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163)))
- (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299))))
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1166))
+ (-4 *7 (-13 (-29 *6) (-1190) (-952)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -3711 (-638 *7))) *7 "failed"))
+ (-5 *1 (-796 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163)))
- (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))))
-(((*1 *1 *1) (-5 *1 (-224)))
- ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1126))) ((*1 *1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
- (-4 *3 (-1087)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-112))
- (-5 *1 (-894 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-911)) (-5 *2 (-112)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-534)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224)))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-558))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841))
- (-5 *1 (-447 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-839)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3381 (-417 *3))))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2)) (-4 *2 (-664 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2)))
- (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5))
- (-4 *3 (-341 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204))
- (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450))
+ (-12 (-5 *4 (-114)) (-5 *5 (-1166))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
(-5 *2
- (-635
- (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4))))
- (|:| |eigmult| (-762))
- (|:| |eigvec| (-635 (-679 (-406 (-942 *4))))))))
- (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1) (-12 (-4 *1 (-1108 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-743)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-447 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-762)) (-5 *1 (-225))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-168 (-224))) (-5 *3 (-762)) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-156)))))
-(((*1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7))
- (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *4 *5 *6 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
- (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-224) (-224) (-224)))
- (-5 *4 (-1 (-224) (-224) (-224) (-224)))
- (-5 *2 (-1 (-933 (-224)) (-224) (-224))) (-5 *1 (-687)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-5 *2 (-1159 *3)) (-5 *1 (-1174 *3))
- (-4 *3 (-362)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
- (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
+ (-3 (-2 (|:| |particular| *3) (|:| -3711 (-638 *3))) *3 "failed"))
+ (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-952)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-638 *2))
+ (-4 *2 (-13 (-29 *6) (-1190) (-952))) (-5 *1 (-796 *6 *2))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-638 *2))
+ (-4 *2 (-13 (-29 *6) (-1190) (-952)))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *1 (-796 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1253 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4))
+ (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1253 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4))
+ (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1253 (-315 *4))) (-5 *5 (-638 (-378)))
+ (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1253 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-638 *4))
+ (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1253 (-315 *4))) (-5 *5 (-638 (-378)))
+ (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1253 (-315 *4))) (-5 *5 (-638 (-378)))
+ (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1028)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -3711 (-638 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-362)) (-4 *7 (-649 *6))
+ (-5 *2 (-2 (|:| |particular| (-1253 *6)) (|:| -3711 (-682 *6))))
+ (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148))
+ (-5 *8 (-224)) (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378))
+ (-5 *2 (-1028)) (-5 *1 (-890))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-765)) (-5 *6 (-638 (-638 (-315 *3)))) (-5 *7 (-1148))
+ (-5 *5 (-638 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1028))
+ (-5 *1 (-890))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 (-378)))
+ (-5 *1 (-1016)) (-5 *4 (-378))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 (-378))) (-5 *1 (-1016))
+ (-5 *4 (-378))))
((*1 *2 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4))
+ (-5 *3 (-315 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2 (-638 (-293 (-315 *4)))) (-5 *1 (-1121 *4))
+ (-5 *3 (-293 (-315 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5))
+ (-5 *3 (-293 (-315 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *3)) (-4 *3 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1094 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-870)))))
-(((*1 *2 *3)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2 (-638 (-293 (-315 *5)))) (-5 *1 (-1121 *5))
+ (-5 *3 (-315 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-1166)))
+ (-4 *5 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2 (-638 (-638 (-293 (-315 *5))))) (-5 *1 (-1121 *5))
+ (-5 *3 (-638 (-293 (-315 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
+ (-4 *5 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *5))))))
+ (-5 *1 (-1174 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-1166))) (-4 *5 (-553))
+ (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-1174 *5))
+ (-5 *3 (-638 (-293 (-406 (-945 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-406 (-945 *4)))) (-4 *4 (-553))
+ (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-1174 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-638 (-638 (-293 (-406 (-945 *4))))))
+ (-5 *1 (-1174 *4)) (-5 *3 (-638 (-293 (-406 (-945 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-553))
+ (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5))
+ (-5 *3 (-406 (-945 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-553))
+ (-5 *2 (-638 (-293 (-406 (-945 *5))))) (-5 *1 (-1174 *5))
+ (-5 *3 (-293 (-406 (-945 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4)))))
+ (-5 *1 (-1174 *4)) (-5 *3 (-406 (-945 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-638 (-293 (-406 (-945 *4)))))
+ (-5 *1 (-1174 *4)) (-5 *3 (-293 (-406 (-945 *4)))))))
+(((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-558)) (-5 *1 (-203)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-661))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911))
- (-14 *4 (-911)))))
-(((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217))))
- ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-666))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-367)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-221 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-253 *3))))
- ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (-4 *4 (-1039))
- (-5 *1 (-1018 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911)) (-4 *4 (-1039))
- (-5 *1 (-1018 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224)))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-784))
- (-4 *5 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *6 (-550))
- (-5 *2 (-2 (|:| -2707 (-942 *6)) (|:| -2790 (-942 *6))))
- (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-939 (-406 (-942 *6)) *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-244 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-852))))
- ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-852)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-360 *3)) (-4 *3 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-762) (-762))) (-5 *1 (-385 *3)) (-4 *3 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362))
- (-5 *2 (-635 (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5)))))
- (-5 *1 (-968 *5)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-558)) (-14 *4 (-762)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-126 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (-638
+ (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
+ (|:| |wcond| (-638 (-945 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *5))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *5))))))))))
+ (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-942 *5 *7 *6))
+ (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-561))
+ (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-534)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1177 *4 *5))
- (-4 *4 (-1087)) (-4 *5 (-1087)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-914)) (-4 *5 (-306)) (-4 *3 (-1229 *5))
+ (-5 *2 (-2 (|:| |plist| (-638 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-458 *5 *3)) (-5 *4 (-638 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3051 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-604 *4)) (-4 *4 (-841)) (-4 *2 (-841))
- (-5 *1 (-603 *2 *4)))))
+ (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-981 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *8 *3)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-1246
- (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-558))
- (|:| -2077 (-558)) (|:| |spline| (-558)) (|:| -1431 (-558))
- (|:| |axesColor| (-864)) (|:| -3344 (-558))
- (|:| |unitsColor| (-864)) (|:| |showing| (-558)))))
- (-5 *1 (-1247)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-762)) (-4 *4 (-348))
- (-5 *1 (-526 *4)))))
+ (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1268 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1275 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1268 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *1 (-1277 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-417 *3)) (-4 *3 (-553))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-2 (|:| -1657 *4) (|:| -2894 (-561)))))
+ (-4 *4 (-1229 (-561))) (-5 *2 (-765)) (-5 *1 (-440 *4)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2))
+ (-4 *2 (-1229 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-5 *2 (-635 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
- (-5 *2 (-635 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1143 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-638 (-1166)))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 *3)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-635 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3)) (-4 *3 (-1039)) (-5 *2 (-1143 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-638 (-1166))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1205))))
((*1 *2 *1)
- (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-112))
- (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1205))
+ (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042))
+ (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-561)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *1 (-681 *4 *5 *6 *2))
+ (-4 *2 (-680 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561))))
+ (-4 *5 (-879 (-561)))
+ (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-564 *5 *3)) (-4 *3 (-624))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-837 *2)) (-4 *2 (-1129))
+ (-4 *2 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-609 (-885 (-561)))) (-4 *5 (-879 (-561)))
+ (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
+ (-5 *1 (-564 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-553))))))
+(((*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485))))
+ ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2))
- (-4 *2 (-1237 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3))
- (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1237 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146)))
- (-5 *1 (-1139 *3)))))
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1244 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 (-168 (-406 (-558)))))
- (-5 *2
- (-635
- (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-558))
- (|:| |outvect| (-635 (-679 (-168 *4)))))))
- (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-329)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762))
- (-14 *4 (-762)) (-4 *5 (-171)))))
-(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
+ (-14 *4 *2))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-224))) (-5 *4 (-762)) (-5 *2 (-679 (-224)))
- (-5 *1 (-304)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
- ((*1 *2 *1) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4384)) (-4 *1 (-1000 *3))
- (-4 *3 (-1200)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-112))
- (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-112)) (-5 *1 (-1189 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4384)) (-4 *4 (-362)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3))
- (-4 *3 (-677 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4384)) (-4 *4 (-550)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-4 *7 (-982 *4)) (-4 *8 (-372 *7))
- (-4 *9 (-372 *7)) (-5 *2 (-635 *6))
- (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-677 *4 *5 *6))
- (-4 *10 (-677 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-635 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-635 *6)) (-5 *1 (-678 *4 *5 *6 *3))
- (-4 *3 (-677 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550))
- (-5 *2 (-635 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348))))
- ((*1 *1) (-4 *1 (-367)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348))))
- ((*1 *1 *1) (-4 *1 (-543))) ((*1 *1) (-4 *1 (-543)))
- ((*1 *1 *1) (-5 *1 (-558))) ((*1 *1 *1) (-5 *1 (-762)))
- ((*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4))
- (-4 *4 (-1087))))
- ((*1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-543)) (-4 *2 (-550)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-762)) (-5 *1 (-1088 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039))))
- ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))))
-(((*1 *1) (-5 *1 (-290))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *3 (-1053 *6 *7 *8))
+ (-12 (-4 *5 (-362))
(-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
+ (-2 (|:| A (-682 *5))
+ (|:| |eqs|
+ (-638
+ (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5)) (|:| -3360 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5))
+ (-4 *6 (-649 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224))) (-5 *6 (-665 (-224)))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-741)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200))
- (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1087))
- (-4 *2 (-1200)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550))))
+ (-12 (-4 *5 (-362)) (-4 *6 (-649 *5))
+ (-5 *2 (-2 (|:| -3327 (-682 *6)) (|:| |vec| (-1253 *5))))
+ (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-638 (-112))) (-5 *5 (-682 (-224)))
+ (-5 *6 (-682 (-561))) (-5 *7 (-224)) (-5 *3 (-561)) (-5 *2 (-1028))
+ (-5 *1 (-748)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1277 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550)))))
-(((*1 *1)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224)))
- (-5 *1 (-687)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
+ (-12 (-5 *2 (-813 *3)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
+(((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2)))
+ (-5 *2 (-885 *3)) (-5 *1 (-1066 *3 *4 *5))
+ (-4 *5 (-13 (-429 *4) (-879 *3) (-609 *2))))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-638 (-914))) (-5 *1 (-1256)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *1) (-4 *1 (-621)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4384)) (-4 *1 (-487 *3))
- (-4 *3 (-1200)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-279)))))
-(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-4 *1 (-699 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1039)) (-5 *2 (-762))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-762)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-939 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
- (-4 *3 (-841)) (-5 *2 (-762)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-830))
- (-5 *3
- (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224)))
- (|:| |lb| (-635 (-834 (-224)))) (|:| |cf| (-635 (-315 (-224))))
- (|:| |ub| (-635 (-834 (-224))))))
- (-5 *2 (-1025))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-830))
- (-5 *3
- (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))
- (-5 *2 (-1025)))))
+ (-12 (-5 *3 (-638 (-638 (-936 (-224)))))
+ (-5 *2 (-638 (-1084 (-224)))) (-5 *1 (-921)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-649 *3)) (-4 *3 (-1042)) (-4 *3 (-362))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
+ (-5 *1 (-652 *5 *2)) (-4 *2 (-649 *5)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-607 *6))) (-5 *4 (-1166)) (-5 *2 (-607 *6))
+ (-4 *6 (-429 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1253 (-1166))) (-5 *3 (-1253 (-451 *4 *5 *6 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-1253 (-682 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-451 *4 *5 *6 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-914))
+ (-14 *6 (-638 *2)) (-14 *7 (-1253 (-682 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166)))
+ (-14 *6 (-1253 (-682 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 (-1166))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-171)) (-14 *4 (-914)) (-14 *5 (-638 (-1166)))
+ (-14 *6 (-1253 (-682 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-914)) (-14 *5 (-638 *2)) (-14 *6 (-1253 (-682 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-914))
+ (-14 *4 (-638 (-1166))) (-14 *5 (-1253 (-682 *2))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-911)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
+ (-12
+ (-5 *2
+ (-1253 (-638 (-2 (|:| -2484 (-903 *3)) (|:| -2413 (-1110))))))
+ (-5 *1 (-350 *3 *4)) (-14 *3 (-914)) (-14 *4 (-914))))
((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-824 (-911))) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-911))))
+ (-12 (-5 *2 (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110))))))
+ (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1162 *3) *2))))
((*1 *2)
- (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-824 (-911))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-762)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1072)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 (-406 (-558))))
+ (-12 (-5 *2 (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110))))))
+ (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-914)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
(-5 *2
- (-635
- (-2 (|:| |outval| *4) (|:| |outmult| (-558))
- (|:| |outvect| (-635 (-679 *4))))))
- (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839))))))
-(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1028 *4)) (-4 *3 (-306))
- (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *6 (-408 *4 *5))
- (-14 *7 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1246 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-982 *3))
- (-4 *5 (-1222 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-433)) (-4 *5 (-841))
- (-5 *1 (-1093 *5 *4)) (-4 *4 (-429 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-635 (-293 *4))) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-762)) (-4 *5 (-450)) (-4 *5 (-841))
- (-4 *5 (-1028 (-558))) (-4 *5 (-550)) (-5 *1 (-41 *5 *2))
- (-4 *2 (-429 *5))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *5 (-604 $)) $))
- (-15 -3327 ((-1112 *5 (-604 $)) $))
- (-15 -3940 ($ (-1112 *5 (-604 $))))))))))
+ (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
+ (-5 *1 (-204)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
- (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
- (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
-(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224)))))
- ((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *4 *5 *6 *7))
- (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200))
- (-4 *7 (-1200)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-743)))))
+ (-12 (-5 *2 (-638 (-638 *6))) (-4 *6 (-942 *3 *5 *4))
+ (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166))))
+ (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-744)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-378)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553))
+ (-5 *2 (-2 (|:| -4188 *4) (|:| -1307 *3) (|:| -1693 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1056 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -4188 *3) (|:| -1307 *1) (|:| -1693 *1)))
+ (-4 *1 (-1229 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))))
(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27))
+ (-5 *2 (-638 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
- (-4 *6 (-1053 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -4259 *1) (|:| |upper| *1)))
- (-4 *1 (-966 *4 *5 *3 *6)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
- (-5 *2 (-1025)) (-5 *1 (-747)))))
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166)))
+ (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))))
+(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1 *1) (-4 *1 (-755))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-635 (-1163))) (-4 *2 (-171))
- (-4 *3 (-237 (-1596 *4) (-762)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *3))
- (-2 (|:| -2349 *5) (|:| -1857 *3))))
- (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-841))
- (-4 *7 (-939 *2 *3 (-855 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1081 (-224)))))
- ((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1081 (-224))))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1087))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087))
- (-5 *1 (-113 *4))))
+ (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-141 *3 *4 *2))
+ (-4 *2 (-372 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-1 *4 (-635 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1087)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917))
- (-5 *1 (-915 *3)) (-4 *3 (-606 (-534)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-5 *2 (-917)) (-5 *1 (-915 *3))
- (-4 *3 (-606 (-534)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-917))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1163)) (-4 *4 (-1039)) (-4 *4 (-841))
- (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1857 (-558))))
- (-4 *1 (-429 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1039)) (-4 *4 (-841))
- (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1857 (-558))))
- (-4 *1 (-429 *4))))
+ (-12 (-4 *4 (-553)) (-4 *5 (-985 *4)) (-4 *2 (-372 *4))
+ (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 *5)) (-4 *5 (-985 *4)) (-4 *4 (-553))
+ (-5 *2 (-682 *4)) (-5 *1 (-686 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-553)) (-4 *4 (-985 *3)) (-5 *1 (-1222 *3 *4 *2))
+ (-4 *2 (-1229 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841))
- (-5 *2 (-2 (|:| |var| (-604 *1)) (|:| -1857 (-558))))
- (-4 *1 (-429 *3))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-553))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-543)) (-4 *3 (-1090))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1857 (-762))))
- (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-543)) (-4 *3 (-1090))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-2 (|:| |var| *5) (|:| -1857 (-762))))))
+ (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
- (-4 *7 (-939 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -1857 (-558))))
- (-5 *1 (-940 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $))
- (-15 -3327 (*7 $))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-4 *4 (-1039))
- (-5 *1 (-1019 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-561)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4))
+ (-5 *1 (-808 *4 *5)) (-4 *5 (-649 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-765)) (-4 *5 (-362))
+ (-5 *2 (-682 *5)) (-5 *1 (-808 *5 *6)) (-4 *6 (-649 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-958))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-561)) (|has| *1 (-6 -4381)) (-4 *1 (-403))
+ (-5 *2 (-914)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1207)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1017 *3))
+ (-4 *3 (-13 (-842) (-362) (-1015)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
+ (-4 *3 (-1229 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362)))
+ (-4 *3 (-1229 *2)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-561)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-765)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-1150 *4)) (-4 *4 (-1042))
+ (-5 *3 (-561)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1028)) (-5 *1 (-743))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-387)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042))
+ (-4 *6 (-1229 *5)) (-5 *2 (-1162 (-1162 *7)))
+ (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1229 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1159 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3))
- (-4 *3 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481)))))
+ (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-841))
- (-5 *2 (-2 (|:| |val| *1) (|:| -1857 (-558)))) (-4 *1 (-429 *3))))
+ (-12 (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110))))))
+ (-4 *4 (-348)) (-5 *2 (-765)) (-5 *1 (-345 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-350 *3 *4)) (-14 *3 (-914))
+ (-14 *4 (-914))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
+ (-14 *4
+ (-3 (-1162 *3)
+ (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-914)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-406 (-561)))
+ (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *6)) (-4 *5 (-1090))
+ (-4 *6 (-1205)) (-5 *2 (-1 *6 *5)) (-5 *1 (-635 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090))
+ (-4 *2 (-1205)) (-5 *1 (-635 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 *5)) (-4 *6 (-1090))
+ (-4 *5 (-1205)) (-5 *2 (-1 *5 *6)) (-5 *1 (-635 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-4 *5 (-1090))
+ (-4 *2 (-1205)) (-5 *1 (-635 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-638 *5)) (-5 *4 (-638 *6))
+ (-4 *5 (-1090)) (-4 *6 (-1205)) (-5 *1 (-635 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1090)) (-4 *2 (-1205)) (-5 *1 (-635 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4))))))
+(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-1090))))
+ ((*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-326 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-514 *3 *4))
+ (-14 *4 (-561)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -4196 (-561)))) (-4 *1 (-429 *3))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |val| (-882 *3)) (|:| -1857 (-882 *3))))
- (-5 *1 (-882 *3)) (-4 *3 (-1087))))
+ (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4196 (-885 *3))))
+ (-5 *1 (-885 *3)) (-4 *3 (-1090))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
- (-4 *7 (-939 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -1857 (-558))))
- (-5 *1 (-940 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-942 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -4196 (-561))))
+ (-5 *1 (-943 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $))
- (-15 -3327 (*7 $))))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-604 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1185)))
- (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-579 *3)) (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-762)) (-4 *5 (-171))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-762)) (-4 *5 (-171))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
- (-246 *4 (-406 (-558)))))
- (-5 *3 (-635 (-855 *4))) (-14 *4 (-635 (-1163))) (-14 *5 (-762))
- (-5 *1 (-503 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-841))
- (-4 *5 (-784)) (-4 *2 (-265 *4)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-635 (-1163))) (-14 *5 (-762))
- (-5 *2
- (-635
- (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
- (-246 *4 (-406 (-558))))))
- (-5 *1 (-503 *4 *5))
- (-5 *3
- (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
- (-246 *4 (-406 (-558))))))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-762)) (-5 *1 (-212 *4 *2)) (-14 *4 (-911))
- (-4 *2 (-1087)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-839))) (-5 *1 (-180 *3 *2))
- (-4 *2 (-1222 (-168 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-579 *3)) (-5 *1 (-551 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
-(((*1 *2)
- (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
- (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1102)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))))
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $))
+ (-15 -4045 (*7 $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1081 (-834 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
- (-5 *1 (-304))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))))
-(((*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1087)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
- (-4 *5 (-372 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-4 *2 (-1087)) (-5 *1 (-212 *4 *2))
- (-14 *4 (-911))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7))
- (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039)))))
+ (-12 (-4 *4 (-1042)) (-4 *5 (-1229 *4)) (-5 *2 (-1 *6 (-638 *6)))
+ (-5 *1 (-1247 *4 *5 *3 *6)) (-4 *3 (-649 *5)) (-4 *6 (-1244 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-942 *5))))
- (-5 *1 (-1254 *5)) (-5 *4 (-1143 (-942 *5))))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-855 *4))
- (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-638 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2))
+ (-4 *2 (-1090))))
((*1 *2 *3)
- (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112))
- (-5 *1 (-356 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1185) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146))
- (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
- (-5 *2 (-315 *5)) (-5 *1 (-582 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-5 *2 (-112)))))
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-844))
+ (-5 *1 (-1206 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2))
+ (-4 *2 (-649 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))
- ((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))
+ (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-604 *5))) (-4 *4 (-841)) (-5 *2 (-604 *5))
- (-5 *1 (-567 *4 *5)) (-4 *5 (-429 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-1237 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-604 *4)) (-5 *6 (-1163))
- (-4 *4 (-13 (-429 *7) (-27) (-1185)))
- (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))))
-(((*1 *1 *1) (-4 *1 (-142)))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 *4)) (-5 *1 (-1131 *3 *4))
+ (-4 *3 (-13 (-1090) (-34))) (-4 *4 (-13 (-1090) (-34))))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1090))
+ (-4 *2 (-130)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362))
+ (-4 *5 (-553)) (-5 *2 (-1253 *5)) (-5 *1 (-633 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5))
+ (-2159 (-4 *5 (-362))) (-4 *5 (-553)) (-5 *2 (-1253 (-406 *5)))
+ (-5 *1 (-633 *5 *4)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *1 *1) (-5 *1 (-224)))
+ ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
(-4 *2 (-429 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1222 *4))
- (-5 *1 (-768 *3 *4 *5 *2 *6)) (-4 *2 (-1222 *5)) (-14 *6 (-911))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
- ((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-362)) (-4 *2 (-367)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-933 *4)) (-4 *4 (-1039)) (-5 *1 (-1151 *3 *4))
- (-14 *3 (-911)))))
-(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-4 *1 (-301))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *2 *1) (-12 (-5 *2 (-815)) (-5 *1 (-816)))))
-(((*1 *1) (-5 *1 (-609))))
-(((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))) ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2)
+ (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *5 (-1148))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1028))
+ (-5 *1 (-744)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-791))
+ (-12
(-5 *3
(-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
(|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-1025)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-1028 (-406 *2)))) (-5 *2 (-558))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *1 *1) (-5 *1 (-1051))))
-(((*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-52)) (-5 *1 (-820)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-550)) (-5 *2 (-112)) (-5 *1 (-615 *3 *4))
- (-4 *4 (-1222 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-717))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1249))))
- ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1249)))))
-(((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185)))))
- ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4))
- (-4 *4 (-1222 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1163)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))))
+ (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(((*1 *1 *1) (-4 *1 (-624)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
+(((*1 *2 *3) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
+ ((*1 *1 *1) (-4 *1 (-842)))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)) (-4 *2 (-1051))))
+ ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1) (-4 *1 (-1129))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-534))) (-5 *2 (-1163)) (-5 *1 (-534)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-762)) (-5 *1 (-555)))))
+ (-12 (-5 *3 (-1253 (-1253 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4))
+ (-5 *1 (-1022 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-853)))))
+ (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-2 (|:| -3939 *4) (|:| -4263 (-558)))))
- (-4 *4 (-1222 (-558))) (-5 *2 (-728 (-762))) (-5 *1 (-440 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-417 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1039))
- (-5 *2 (-728 (-762))) (-5 *1 (-442 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-742)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-604 *3)) (-5 *5 (-1 (-1159 *3) (-1159 *3)))
- (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-841) (-550)))
- (-5 *2 (-579 *3)) (-5 *1 (-545 *6 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 (-406 (-942 (-558))))) (-5 *4 (-635 (-1163)))
- (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5))
- (-4 *5 (-13 (-839) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-839) (-362))))))
-(((*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532))))
- ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
- (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
- (-5 *1 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348))
- (-4 *2
- (-13 (-401)
- (-10 -7 (-15 -3940 (*2 *4)) (-15 -1486 ((-911) *2))
- (-15 -2743 ((-1246 *2) (-911))) (-15 -3607 (*2 *2)))))
- (-5 *1 (-355 *2 *4)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-635
- (-635
- (-3 (|:| -3179 (-1163))
- (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558))))))))))
- (-5 *1 (-1167)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130))
- (-4 *2 (-1087))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-385 *2)) (-4 *2 (-1087))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-1087)) (-5 *1 (-639 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-810 *2)) (-4 *2 (-841)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1127 *3 *2)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *2 (-13 (-1087) (-34))))))
-(((*1 *2 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-450)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
-(((*1 *1) (-4 *1 (-348)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *5)) (-4 *5 (-429 *4))
- (-4 *4 (-13 (-550) (-841) (-146)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1159 *5)))
- (|:| |prim| (-1159 *5))))
- (-5 *1 (-431 *4 *5))))
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1090)) (-4 *4 (-1090))
+ (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-550) (-841) (-146)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1159 *3))
- (|:| |pol2| (-1159 *3)) (|:| |prim| (-1159 *3))))
- (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-942 *5)) (-5 *4 (-1163)) (-4 *5 (-13 (-362) (-146)))
- (-5 *2
- (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558))
- (|:| |prim| (-1159 *5))))
- (-5 *1 (-950 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163)))
- (-4 *5 (-13 (-362) (-146)))
- (-5 *2
- (-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 *5)))
- (|:| |prim| (-1159 *5))))
- (-5 *1 (-950 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-5 *5 (-1163))
- (-4 *6 (-13 (-362) (-146)))
- (-5 *2
- (-2 (|:| -3455 (-635 (-558))) (|:| |poly| (-635 (-1159 *6)))
- (|:| |prim| (-1159 *6))))
- (-5 *1 (-950 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-841))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-579 *4)) (-4 *4 (-13 (-29 *3) (-1185)))
- (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
- (-5 *1 (-577 *3 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844))
+ (-4 *3 (-1090)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1510 *7))))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-579 (-406 (-942 *3))))
- (-4 *3 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
- (-5 *1 (-582 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -2935 *3) (|:| |special| *3))) (-5 *1 (-718 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1246 *5)) (-4 *5 (-362)) (-4 *5 (-1039))
- (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
- (-5 *3 (-635 (-679 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1246 (-1246 *5))) (-4 *5 (-362)) (-4 *5 (-1039))
- (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
- (-5 *3 (-635 (-679 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1131))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1131)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-1246 *4))) (-4 *4 (-1039)) (-5 *2 (-679 *4))
- (-5 *1 (-1019 *4)))))
-(((*1 *2) (-12 (-5 *2 (-834 (-558))) (-5 *1 (-532))))
- ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1087)))))
+ (-12 (-5 *2 (-638 (-2 (|:| |val| (-638 *6)) (|:| -1510 *7))))
+ (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (|has| *4 (-6 (-4392 "*")))
+ (-4 *4 (-1042)) (-5 *1 (-1021 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914))
+ (|has| *4 (-6 (-4392 "*"))) (-4 *4 (-1042)) (-5 *1 (-1021 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-1054)))))
+(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-555)) (-5 *3 (-558)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
- (-4 *5 (-237 (-1596 *3) (-762)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *5))
- (-2 (|:| -2349 *2) (|:| -1857 *5))))
- (-4 *2 (-841)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-939 *4 *5 (-855 *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841))
- (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-604 *4)) (-4 *4 (-841))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-5 *2 (-112)) (-5 *1 (-877 *5 *3 *4))
- (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5)))))
+ (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-638 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *6 (-1229 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-646 (-406 *7))) (-5 *4 (-1 (-638 *6) *7))
+ (-5 *5 (-1 (-417 *7) *7))
+ (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *7 (-1229 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *6)) (-4 *6 (-876 *5)) (-4 *5 (-1087))
- (-5 *2 (-112)) (-5 *1 (-877 *5 *6 *4)) (-4 *4 (-606 (-882 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *4 (-550))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2162 *4))) (-5 *1 (-959 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2461 *1)))
- (-4 *1 (-843 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-596 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1200)) (-5 *2 (-1251)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-52)) (-5 *1 (-882 *4))
- (-4 *4 (-1087)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1163)))
- (-4 *5 (-450))
- (-5 *2
- (-2 (|:| |gblist| (-635 (-246 *4 *5)))
- (|:| |gvlist| (-635 (-558)))))
- (-5 *1 (-623 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-880 *4 *5)) (-4 *5 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1153)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-635 *3)) (-5 *5 (-911)) (-4 *3 (-1222 *4))
- (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
- (|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
- (-14 *6
- (-1 (-112) (-2 (|:| -2349 *5) (|:| -1857 *2))
- (-2 (|:| -2349 *5) (|:| -1857 *2))))
- (-4 *2 (-237 (-1596 *3) (-762))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-841)) (-4 *7 (-939 *4 *2 (-855 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-967 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-638 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *6 (-1229 *5)) (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-647 *7 (-406 *7))) (-5 *4 (-1 (-638 *6) *7))
+ (-5 *5 (-1 (-417 *7) *7))
+ (-4 *6 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *7 (-1229 *6)) (-5 *2 (-638 (-406 *7))) (-5 *1 (-806 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-646 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
+ (-4 *6 (-1229 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-647 *5 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2 (-638 (-406 *5))) (-5 *1 (-806 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6))
+ (-4 *6 (-1229 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2 (-638 (-406 *6))) (-5 *1 (-806 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 (-607 *5))) (-5 *3 (-1166)) (-4 *5 (-429 *4))
+ (-4 *4 (-844)) (-5 *1 (-570 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-504))) (-5 *1 (-481)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5))
+ (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-1266 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1266 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090))
+ (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-966 *4 *5 *3 *6)) (-4 *4 (-1039)) (-4 *5 (-784))
- (-4 *3 (-841)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087)))))
+ (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-638 (-638 *4))) (-5 *1 (-340 *3 *4 *5 *6))
+ (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-638 (-638 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
- (-5 *2 (-635 (-635 (-635 (-762))))))))
+ (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-787)) (-4 *2 (-265 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-635 *5) *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *6 (-1222 *5))
- (-5 *2 (-635 (-2 (|:| -2010 *5) (|:| -3846 *3))))
- (-5 *1 (-800 *5 *6 *3 *7)) (-4 *3 (-646 *6))
- (-4 *7 (-646 (-406 *6))))))
+ (-12 (-5 *3 (-1162 (-945 *6))) (-4 *6 (-553))
+ (-4 *2 (-942 (-406 (-945 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2))
+ (-4 *5 (-787))
+ (-4 *4 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-450))
+ (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-638 (-406 *7)))
+ (-4 *7 (-1229 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-571 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844))))
+ ((*1 *1) (-4 *1 (-1141))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090))
+ (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-117 *3)) (-14 *3 (-558))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3))))
+ (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1244 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4390)) (-4 *1 (-487 *4))
+ (-4 *4 (-1205)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-553)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1229 *4))
+ (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-4 *3 (-553)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306))
+ (-4 *3 (-553)) (-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-173 (-558))) (-5 *1 (-756 *3)) (-4 *3 (-403))))
+ (-12 (-5 *3 (-914)) (-4 *4 (-362)) (-5 *2 (-1253 *1))
+ (-4 *1 (-328 *4))))
+ ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *1))
+ (-4 *1 (-408 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-173 (-406 (-558)))) (-5 *1 (-861 *3)) (-14 *3 (-558))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4))
+ (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6))
+ (-4 *6 (-13 (-408 *4 *5) (-1031 *4)))))
((*1 *2 *1)
- (-12 (-14 *3 (-558)) (-5 *2 (-173 (-406 (-558))))
- (-5 *1 (-862 *3 *4)) (-4 *4 (-859 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5))
- (-4 *5 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-635 *7))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-635 (-293 *8))) (-5 *4 (-635 (-114))) (-5 *5 (-293 *8))
- (-5 *6 (-635 *8)) (-4 *8 (-429 *7))
- (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
- (-5 *1 (-316 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114))) (-5 *5 (-293 *7))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-841) (-550) (-606 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-114))) (-5 *6 (-635 (-293 *8)))
- (-4 *8 (-429 *7)) (-5 *5 (-293 *8))
- (-4 *7 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
- (-5 *1 (-316 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6))
- (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
- (-5 *1 (-316 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
- (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
- (-5 *1 (-316 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
- (-4 *6 (-13 (-841) (-550) (-606 (-534)))) (-5 *2 (-52))
- (-5 *1 (-316 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-635 *3))
- (-4 *3 (-429 *7)) (-4 *7 (-13 (-841) (-550) (-606 (-534))))
- (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
- (-5 *2 (-679 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-5 *2 (-1251)) (-5 *1 (-1166))))
+ (-12 (-4 *3 (-306)) (-4 *4 (-985 *3)) (-4 *5 (-1229 *4))
+ (-5 *2 (-1253 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))
+ (-4 *6 (-408 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-416 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1253 (-1253 *4))) (-5 *1 (-526 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561)))))
+(((*1 *2)
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7))
+ (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205))
+ (-4 *7 (-1205))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163))
- (-5 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *2 (-1251))
- (-5 *1 (-1166))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1163))
- (-5 *4 (-3 (|:| |fst| (-433)) (|:| -1894 "void"))) (-5 *2 (-1251))
- (-5 *1 (-1166)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558))))
- (-4 *5 (-1222 *4)) (-5 *2 (-635 (-406 *5))) (-5 *1 (-1006 *4 *5))
- (-5 *3 (-406 *5)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1222 *6))
- (-4 *6 (-13 (-362) (-146) (-1028 *4))) (-5 *4 (-558))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -3846
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1005 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1247))))
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6))
+ (-4 *3 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-914)) (-4 *5 (-844))
+ (-5 *2 (-59 (-638 (-665 *5)))) (-5 *1 (-665 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-856)) (-5 *1 (-1146 *3)) (-4 *3 (-1090))
+ (-4 *3 (-1205)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1090))
+ (-4 *3 (-1205)) (-4 *3 (-1090)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-372 *2)) (-4 *2 (-1205))
+ (-4 *2 (-844))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4391))
+ (-4 *1 (-372 *3)) (-4 *3 (-1205)))))
(((*1 *2)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-942 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1145)) (-5 *1 (-52)))))
-(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-681 (-129))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039))
- (-5 *1 (-1147 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1213 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844))
+ (-4 *4 (-787)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-561))) (-5 *1 (-1109))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *5 (-1204)) (-4 *6 (-1222 *5))
- (-4 *7 (-1222 (-406 *6))) (-5 *2 (-635 (-942 *5)))
- (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7))))
+ (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
+ (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204))
- (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *4 (-362))
- (-5 *2 (-635 (-942 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1087))
- (-4 *2 (-130)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))))
-(((*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))))
-(((*1 *2 *3) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-444)) (-5 *3 (-558)))))
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-168 *3)) (-5 *1 (-1194 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-635 *4))) (-4 *4 (-841))
- (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-558))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (-12 (-5 *3 (-945 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
+(((*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))))
+(((*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190)))))
+ ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-914)) (-4 *5 (-1042)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-417 *4)) (-4 *4 (-550)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087))))
- ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1144))))
- ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1163)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
- (-5 *1 (-746)))))
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1039))
- (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-939 *2 *4 *5)))))
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-607 *3))
+ (-4 *3 (-13 (-429 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3)))
+ (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-553))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1090)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4))
+ (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-945 (-168 (-561))))) (-5 *2 (-638 (-168 *4)))
+ (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561))))))
+ (-5 *4 (-638 (-1166))) (-5 *2 (-638 (-638 (-168 *5))))
+ (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-842))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-911)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-362)) (-14 *5 (-983 *3 *4)))))
+ (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3051 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-731 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090))))
+ ((*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558))))
+ (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-822) (-844) (-1042)))
+ (-5 *2 (-1148)) (-5 *1 (-820 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 *5)) (-5 *4 (-112))
+ (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1148))
+ (-5 *1 (-820 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-816)) (-5 *4 (-315 *5))
+ (-4 *5 (-13 (-822) (-844) (-1042))) (-5 *2 (-1258))
+ (-5 *1 (-820 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-816)) (-5 *4 (-315 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-822) (-844) (-1042))) (-5 *2 (-1258))
+ (-5 *1 (-820 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-822)) (-5 *2 (-1148))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-112)) (-5 *2 (-1148))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *2 (-1258))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-822)) (-5 *3 (-816)) (-5 *4 (-112)) (-5 *2 (-1258)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1084 *4)) (-4 *4 (-1205))
+ (-5 *1 (-1082 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-281 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2252
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2654
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2290
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-556))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2252
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (|:| -2654
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))))
+ (-5 *1 (-797))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-898 *3))) (-4 *3 (-1090)) (-5 *1 (-897 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2)))
+ (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5))
+ (-4 *3 (-341 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209))
+ (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3))
+ (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2))
+ (-4 *2 (-680 *3 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1090) (-34)))
+ (-4 *5 (-13 (-1090) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1090))
+ (-5 *1 (-671 *2))))
((*1 *2 *2)
- (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-679 (-224))) (-5 *5 (-112)) (-5 *6 (-224))
- (-5 *7 (-679 (-558)))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *1 *1 *1) (-5 *1 (-161)))
- ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-161)))))
-(((*1 *1) (-5 *1 (-1072))))
+ (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1090)) (-5 *1 (-675 *3)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224)))
- (|:| |lb| (-635 (-834 (-224))))
- (|:| |cf| (-635 (-315 (-224))))
- (|:| |ub| (-635 (-834 (-224))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-635 (-315 (-224))))
- (|:| -1823 (-635 (-224)))))))
- (-5 *2 (-635 (-1145))) (-5 *1 (-266)))))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-561)) (-5 *1 (-203)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-938 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1031 (-561))) (-4 *3 (-13 (-844) (-553)))
+ (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1162 *4)) (-5 *1 (-164 *3 *4))
+ (-4 *3 (-165 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-301))))
+ ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3))))
+ ((*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362)))
+ (-4 *2 (-1229 *3)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
+ (-4 *4 (-171)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-224))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-406 (-561))) (-5 *1 (-378)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
+ (-14 *3 (-638 (-1166))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-856)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1204))
- (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
- (-5 *2 (-2 (|:| |num| (-679 *5)) (|:| |den| *5))))))
+ (-12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-883 *4 *5)) (-4 *5 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-2 (|:| |k| (-810 *3)) (|:| |c| *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1028 (-48)))
- (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4))
- (-5 *2 (-417 (-1159 (-48)))) (-5 *1 (-434 *4 *5 *3))
- (-4 *3 (-1222 *5)))))
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-5 *2 (-1148)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7))
- (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
+ (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-914)) (-5 *1 (-780)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042))
+ (-5 *1 (-683 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-553) (-844)))
+ (-4 *2 (-13 (-429 *4) (-995) (-1190))) (-5 *1 (-595 *4 *2 *3))
+ (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
- (-4 *2 (-677 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-624)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
- (-5 *2 (-635 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-728 *3)) (-4 *3 (-1087)))))
+ (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
+ (-4 *3 (-1090))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3))
+ (-5 *1 (-943 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $))
+ (-15 -4045 (*7 $))))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-561) (-561))) (-5 *1 (-360 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-859 *4 *5 *6 *7))
+ (-4 *4 (-1042)) (-14 *5 (-638 (-1166))) (-14 *6 (-638 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787))
+ (-14 *8 (-638 *5)) (-5 *2 (-1258))
+ (-5 *1 (-1265 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-942 *4 *6 *5))
+ (-14 *9 (-638 *3)) (-14 *10 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844))
+ (-4 *5 (-1031 (-561))) (-4 *5 (-553)) (-5 *1 (-41 *5 *2))
+ (-4 *2 (-429 *5))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *5 (-607 $)) $))
+ (-15 -4045 ((-1115 *5 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *5 (-607 $))))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1200))
- (-4 *5 (-1200)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-762))
- (-4 *7 (-1200)) (-4 *5 (-1200)) (-5 *2 (-239 *6 *5))
- (-5 *1 (-238 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1200)) (-4 *5 (-1200))
- (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1087)) (-4 *5 (-1087))
- (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1200))
- (-4 *5 (-1200)) (-5 *2 (-635 *5)) (-5 *1 (-633 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-948 *6)) (-4 *6 (-1200))
- (-4 *5 (-1200)) (-5 *2 (-948 *5)) (-5 *1 (-947 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1200))
- (-4 *3 (-1200)) (-5 *2 (-1143 *3)) (-5 *1 (-1141 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1246 *6)) (-4 *6 (-1200))
- (-4 *5 (-1200)) (-5 *2 (-1246 *5)) (-5 *1 (-1245 *6 *5)))))
-(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $))
+ (-15 -4045 ((-1115 *3 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *3 (-607 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-553)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $))
+ (-15 -4045 ((-1115 *3 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *3 (-607 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *2))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *4 (-607 $)) $))
+ (-15 -4045 ((-1115 *4 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *4 (-607 $)))))))
+ (-4 *4 (-553)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 (-607 *2)))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *4 (-607 $)) $))
+ (-15 -4045 ((-1115 *4 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *4 (-607 $)))))))
+ (-4 *4 (-553)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
+ (-4 *3 (-165 *6)) (-4 (-945 *6) (-879 *5))
+ (-4 *6 (-13 (-879 *5) (-171))) (-5 *1 (-177 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-882 *4 *1)) (-5 *3 (-885 *4)) (-4 *1 (-879 *4))
+ (-4 *4 (-1090))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
+ (-4 *6 (-13 (-1090) (-1031 *3))) (-4 *3 (-879 *5))
+ (-5 *1 (-924 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090))
+ (-4 *3 (-13 (-429 *6) (-609 *4) (-879 *5) (-1031 (-607 $))))
+ (-5 *4 (-885 *5)) (-4 *6 (-13 (-553) (-844) (-879 *5)))
+ (-5 *1 (-925 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 (-561) *3)) (-5 *4 (-885 (-561))) (-4 *3 (-543))
+ (-5 *1 (-926 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 *6)) (-5 *3 (-607 *6)) (-4 *5 (-1090))
+ (-4 *6 (-13 (-844) (-1031 (-607 $)) (-609 *4) (-879 *5)))
+ (-5 *4 (-885 *5)) (-5 *1 (-927 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
+ (-4 *6 (-879 *5)) (-4 *3 (-659 *6)) (-5 *1 (-928 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-882 *6 *3) *8 (-885 *6) (-882 *6 *3)))
+ (-4 *8 (-844)) (-5 *2 (-882 *6 *3)) (-5 *4 (-885 *6))
+ (-4 *6 (-1090)) (-4 *3 (-13 (-942 *9 *7 *8) (-609 *4)))
+ (-4 *7 (-787)) (-4 *9 (-13 (-1042) (-844) (-879 *6)))
+ (-5 *1 (-929 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090))
+ (-4 *3 (-13 (-942 *8 *6 *7) (-609 *4))) (-5 *4 (-885 *5))
+ (-4 *7 (-879 *5)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-13 (-1042) (-844) (-879 *5)))
+ (-5 *1 (-929 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-985 *6))
+ (-4 *6 (-13 (-553) (-879 *5) (-609 *4))) (-5 *4 (-885 *5))
+ (-5 *1 (-932 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-885 *5))
+ (-4 *5 (-1090)) (-5 *1 (-933 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-638 (-885 *7))) (-5 *5 (-1 *9 (-638 *9)))
+ (-5 *6 (-1 (-882 *7 *9) *9 (-885 *7) (-882 *7 *9))) (-4 *7 (-1090))
+ (-4 *9 (-13 (-1042) (-609 (-885 *7)) (-1031 *8)))
+ (-5 *2 (-882 *7 *9)) (-5 *3 (-638 *9)) (-4 *8 (-13 (-1042) (-844)))
+ (-5 *1 (-934 *7 *8 *9)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-561)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
+ ((*1 *2 *1)
(-12
(-5 *2
- (-1246 (-635 (-2 (|:| -2426 (-900 *3)) (|:| -2349 (-1107))))))
- (-5 *1 (-350 *3 *4)) (-14 *3 (-911)) (-14 *4 (-911))))
- ((*1 *2)
- (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107))))))
- (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1159 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107))))))
- (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-911)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
- (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-635 *4)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558)))
- (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-748)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1247))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-262))) (-5 *1 (-1248)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-348))
- (-5 *2 (-635 (-2 (|:| -3939 (-558)) (|:| -1857 (-558))))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-882 *6)))
- (-5 *5 (-1 (-879 *6 *8) *8 (-882 *6) (-879 *6 *8))) (-4 *6 (-1087))
- (-4 *8 (-13 (-1039) (-606 (-882 *6)) (-1028 *7)))
- (-5 *2 (-879 *6 *8)) (-4 *7 (-13 (-1039) (-841)))
- (-5 *1 (-931 *6 *7 *8)))))
+ (-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856)))
+ (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856)))
+ (|:| |args| (-638 (-856)))))
+ (-5 *1 (-1166)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-1204))) (-5 *3 (-1204)) (-5 *1 (-674)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166)))))
+ (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094))
+ (-5 *1 (-396))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-638 (-638 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-638 (-3 (|:| |array| (-638 *3)) (|:| |scalar| (-1166)))))
+ (-5 *6 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1094))
+ (-5 *1 (-396))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-638 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166))
+ (-5 *2 (-1094)) (-5 *1 (-396)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-450)))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-914)) (-5 *4 (-224)) (-5 *5 (-561)) (-5 *6 (-867))
+ (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *1) (-5 *1 (-156)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))
+ ((*1 *1 *1) (-4 *1 (-543)))
+ ((*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-914)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1205)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-995))
+ (-4 *2 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
- (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
-(((*1 *1) (-5 *1 (-1072))))
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-942 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |det| *8) (|:| |rows| (-638 (-561)))
+ (|:| |cols| (-638 (-561))))))
+ (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
+ (-4 *4 (-171))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-429 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
+ (-5 *1 (-157 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1273 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-171)))))
+(((*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-4 *2 (-1222 *5))
- (-5 *1 (-1240 *5 *2 *6 *3)) (-4 *6 (-646 *2)) (-4 *3 (-1237 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *1 *1) (-4 *1 (-752))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-262))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))))
-(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
-(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1178)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-635 (-170)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-4 *5 (-841)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-699 *3 *4)) (-4 *3 (-1205)) (-4 *4 (-1205)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1229 (-561))) (-5 *1 (-484 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-856 *4 *5 *6 *7))
- (-4 *4 (-1039)) (-14 *5 (-635 (-1163))) (-14 *6 (-635 *3))
- (-14 *7 *3)))
+ (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-561))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))
+ (-4 *2 (-450))))
((*1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-4 *5 (-841)) (-4 *6 (-784))
- (-14 *8 (-635 *5)) (-5 *2 (-1251))
- (-5 *1 (-1258 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-939 *4 *6 *5))
- (-14 *9 (-635 *3)) (-14 *10 *3))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
- (-4 *4 (-171))))
- ((*1 *1) (-4 *1 (-717))) ((*1 *1) (-5 *1 (-1163))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1200))
- (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1270 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-841))
- (-4 *2 (-171))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-810 *4)) (-4 *1 (-1263 *4 *2)) (-4 *4 (-841))
- (-4 *2 (-1039))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))))
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-1229 (-561))) (-5 *2 (-638 (-561)))
+ (-5 *1 (-484 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)) (-4 *3 (-450)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-561)) (-4 *6 (-362)) (-4 *6 (-367))
+ (-4 *6 (-1042)) (-5 *2 (-638 (-638 (-682 *6)))) (-5 *1 (-1022 *6))
+ (-5 *3 (-638 (-682 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042))
+ (-5 *2 (-638 (-638 (-682 *4)))) (-5 *1 (-1022 *4))
+ (-5 *3 (-638 (-682 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042))
+ (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
+ (-5 *3 (-638 (-682 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-914)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042))
+ (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
+ (-5 *3 (-638 (-682 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-168 (-224))) (-5 *5 (-561))
+ (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2) (-12 (-5 *2 (-837 (-561))) (-5 *1 (-532))))
+ ((*1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-679 *5))) (-4 *5 (-306)) (-4 *5 (-1039))
- (-5 *2 (-1246 (-1246 *5))) (-5 *1 (-1019 *5)) (-5 *4 (-1246 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-240))))
+ (-12 (-5 *3 (-682 *1)) (-5 *4 (-1253 *1)) (-4 *1 (-634 *5))
+ (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -3327 (-682 *5)) (|:| |vec| (-1253 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-558)) (-5 *1 (-240)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1025)) (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
- (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
- (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042))
+ (-5 *2 (-682 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558))
- (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-619 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-435)))))
+(((*1 *1 *1 *1) (-4 *1 (-142)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040))
+ (-5 *3 (-561)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-1042))
+ (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-1229 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-638 (-561))) (-5 *2 (-765)) (-5 *1 (-586)))))
+(((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1244 *4))
+ (-4 *4 (-38 (-406 (-561))))
+ (-5 *2 (-1 (-1146 *4) (-1146 *4) (-1146 *4))) (-5 *1 (-1246 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
- (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
- (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-939 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1)))
- (-4 *1 (-1222 *3)))))
-(((*1 *2 *2)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-502 (-406 (-558)) (-239 *4 (-762)) (-855 *3)
- (-246 *3 (-406 (-558)))))
- (-14 *3 (-635 (-1163))) (-14 *4 (-762)) (-5 *1 (-503 *3 *4)))))
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844))
+ (-4 *4 (-265 *3)) (-4 *5 (-787)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-914)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-362)) (-14 *5 (-986 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
+ (-4 *4 (-171)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *2)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1163)))
- (-4 *4 (-450)) (-5 *1 (-623 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-841) (-550))))))
-(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-606 *2) (-171))) (-5 *2 (-882 *4))
- (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1087)) (-4 *3 (-165 *5))))
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1081 (-834 (-378)))))
- (-5 *2 (-635 (-1081 (-834 (-224))))) (-5 *1 (-304))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
- (-4 *4 (-1222 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
- (-5 *2 (-1246 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-550))
- (-4 *3 (-841))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-461 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-534))))
- ((*1 *2 *1) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-171)) (-4 *1 (-715 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-942 *3)) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5))
- (-4 *5 (-606 (-1163))) (-4 *4 (-784)) (-4 *5 (-841))))
- ((*1 *1 *2)
- (-3994
- (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
- (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558)))
- (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))
- (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8)))
- (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145))
- (-5 *1 (-1057 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8)))
- (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1145))
- (-5 *1 (-1132 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1168))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-853)) (-5 *3 (-558)) (-5 *1 (-1180))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-771 *4 (-855 *5)))
- (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *5 (-635 (-1163)))
- (-5 *2 (-771 *4 (-855 *6))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *6 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-771 *4 (-855 *6)))
- (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163)))
- (-5 *2 (-942 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *5 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1159 *4)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-1159 (-1014 (-406 *4)))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163)))))
+ (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112))
+ (-5 *1 (-356 *4))))
((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-112))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1255))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1255)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-638 (-958))) (-5 *1 (-290)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3))
+ (-4 *3 (-1229 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
+ (-4 *3 (-960)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-234 *3))))
+ ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-561)) (-14 *4 (-765)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1258)) (-5 *1 (-825)))))
+(((*1 *2 *3)
(-12
- (-5 *3 (-1133 *4 (-529 (-855 *6)) (-855 *6) (-771 *4 (-855 *6))))
- (-4 *4 (-13 (-839) (-306) (-146) (-1012))) (-14 *6 (-635 (-1163)))
- (-5 *2 (-635 (-771 *4 (-855 *6)))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *5 (-635 (-1163))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (-5 *3
+ (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
+ (-246 *4 (-406 (-561)))))
+ (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217))))
+ ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3))
+ (-4 *3 (-13 (-1190) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-1031 (-561)) (-146)))
+ (-5 *2 (-582 (-406 (-945 *5)))) (-5 *1 (-567 *5))
+ (-5 *3 (-406 (-945 *5))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *5 (-237 *3 *4))
- (-4 *2 (-237 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-776 *3)) (-4 *3 (-606 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-5 *2 (-378)) (-5 *1 (-776 *3))
- (-4 *3 (-606 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-942 *4)) (-4 *4 (-1039)) (-4 *4 (-606 *2))
- (-5 *2 (-378)) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
- (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550)) (-4 *4 (-606 *2))
- (-5 *2 (-378)) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
- (-4 *4 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550)) (-4 *5 (-841))
- (-4 *5 (-606 *2)) (-5 *2 (-378)) (-5 *1 (-776 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-571))))
- ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-571)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-1200))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-638 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
+ (-5 *2 (-638 *3)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-919))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-919))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920)))))
+(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-1253 *5)) (-4 *5 (-306))
+ (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1022 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1254))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1254))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-262))) (-5 *1 (-1255)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-638 (-1166))) (-4 *5 (-450))
+ (-5 *2
+ (-2 (|:| |glbase| (-638 (-246 *4 *5))) (|:| |glval| (-638 (-561)))))
+ (-5 *1 (-626 *4 *5)) (-5 *3 (-638 (-246 *4 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3))
+ (-4 *3 (-13 (-429 *4) (-995))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
+(((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200)) (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4)))
- (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1120 (-224))) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
- (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378)))
- (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
- (-5 *1 (-258 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
- (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-606 (-534)) (-1087)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1120 (-224))) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-606 (-534)) (-1087)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
- (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378)))
- (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1120 (-224)))
- (-5 *1 (-258 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450))
- (-5 *1 (-908 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204))
- (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3)))))
+ (-12 (-5 *3 (-1162 *2)) (-5 *4 (-1166)) (-4 *2 (-429 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-844) (-553)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171))
- (-4 *1 (-366 *4))))
+ (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-4 *1 (-1005))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1162 *1)) (-5 *3 (-914)) (-5 *4 (-856))
+ (-4 *1 (-1005))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1246 *1)) (-4 *4 (-171))
- (-4 *1 (-369 *4 *5)) (-4 *5 (-1222 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
- (-4 *4 (-1222 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))))
+ (|partial| -12 (-5 *3 (-914)) (-4 *4 (-13 (-842) (-362)))
+ (-4 *1 (-1059 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-293 (-945 (-561))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-638 (-1166)))
+ (|:| |inhom| (-3 (-638 (-1253 (-765))) "failed"))
+ (|:| |hom| (-638 (-1253 (-765))))))
+ (-5 *1 (-235)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5)) (-4 *5 (-362))
- (-4 *5 (-550)) (-5 *2 (-1246 *5)) (-5 *1 (-630 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 *5))
- (-2143 (-4 *5 (-362))) (-4 *5 (-550)) (-5 *2 (-1246 (-406 *5)))
- (-5 *1 (-630 *5 *4)))))
+ (-12 (-4 *4 (-362)) (-5 *2 (-638 (-1146 *4))) (-5 *1 (-284 *4 *5))
+ (-5 *3 (-1146 *4)) (-4 *5 (-1244 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *3))
+ (-4 *3 (-1205))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1198 *4 *5 *3 *2)) (-4 *4 (-553))
+ (-4 *5 (-787)) (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166))) (-4 *5 (-553))
+ (-5 *2 (-638 (-638 (-293 (-406 (-945 *5)))))) (-5 *1 (-764 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-553))
+ (-5 *2 (-638 (-638 (-293 (-406 (-945 *4)))))) (-5 *1 (-764 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-682 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3711 (-638 *6)))
+ *7 *6))
+ (-4 *6 (-362)) (-4 *7 (-649 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1253 *6) "failed"))
+ (|:| -3711 (-638 (-1253 *6)))))
+ (-5 *1 (-807 *6 *7)) (-5 *4 (-1253 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-553)) (-4 *2 (-942 *3 *5 *4))
+ (-5 *1 (-726 *5 *4 *6 *2)) (-5 *3 (-406 (-945 *6))) (-4 *5 (-787))
+ (-4 *4 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
- (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
+ (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-348)) (-5 *2 (-1253 *1))))
((*1 *2 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550))
- (-5 *2 (-406 (-942 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-1206 *4)) (-4 *4 (-1039)) (-4 *4 (-550))
- (-5 *2 (-406 (-942 *4))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1200))
- (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-841)) (-5 *1 (-1171 *3)))))
+ (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-902))
+ (-5 *2 (-1253 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-224))) (-5 *2 (-1253 (-692))) (-5 *1 (-304)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-436)) (-5 *1 (-1170)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1159 *7)) (-4 *5 (-1039))
- (-4 *7 (-1039)) (-4 *2 (-1222 *5)) (-5 *1 (-499 *5 *2 *6 *7))
- (-4 *6 (-1222 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039))
- (-4 *4 (-1222 *5)) (-5 *2 (-1159 *7)) (-5 *1 (-499 *5 *4 *6 *7))
- (-4 *6 (-1222 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-171))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224))
- (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-742)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-466)) (-5 *3 (-638 (-262))) (-5 *1 (-1254))))
+ ((*1 *1 *1) (-5 *1 (-1254))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-1 (-1159 (-942 *4)) (-942 *4)))
- (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-1042)) (-4 *2 (-1229 *4))
+ (-5 *1 (-442 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-406 (-1162 (-315 *5)))) (-5 *3 (-1253 (-315 *5)))
+ (-5 *4 (-561)) (-4 *5 (-13 (-553) (-844))) (-5 *1 (-1120 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1229 *5))
+ (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
+ (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-112))
+ (-5 *1 (-904 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-335 (-406 (-561)) *4 *5 *6))
+ (-4 *4 (-1229 (-406 (-561)))) (-4 *5 (-1229 (-406 *4)))
+ (-4 *6 (-341 (-406 (-561)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-905 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9))
+ (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2
+ (-638
+ (-2 (|:| -3360 (-638 *9)) (|:| -1510 *10) (|:| |ineq| (-638 *9)))))
+ (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-638 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9))
+ (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *9 (-1056 *6 *7 *8))
+ (-5 *2
+ (-638
+ (-2 (|:| -3360 (-638 *9)) (|:| -1510 *10) (|:| |ineq| (-638 *9)))))
+ (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-638 *9)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450))
+ (-12 (-5 *4 (-914)) (-5 *2 (-1162 *3)) (-5 *1 (-1179 *3))
+ (-4 *3 (-362)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-844)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |dpolys| (-635 (-246 *5 *6)))
- (|:| |coords| (-635 (-558)))))
- (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-730 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *2 (-635 (-635 (-558))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *6 *5)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-112))
- (-5 *1 (-879 *4 *5)) (-4 *5 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-882 *5)) (-4 *5 (-1087)) (-5 *2 (-112))
- (-5 *1 (-880 *5 *3)) (-4 *3 (-1200))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
- (-4 *6 (-1200)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
- (-5 *2 (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -1548 *1)))
- (-4 *1 (-1053 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -1548 *1)))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130))
- (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 *4))))))
+ (-502 (-406 (-561)) (-239 *4 (-765)) (-858 *3)
+ (-246 *3 (-406 (-561)))))
+ (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-914)) (-4 *6 (-13 (-553) (-844)))
+ (-5 *2 (-638 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6))
+ (-4 *5 (-1042))))
+ ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-582 *5)) (-4 *5 (-13 (-29 *4) (-1190)))
+ (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
+ (-5 *2 (-638 *5)) (-5 *1 (-580 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-582 (-406 (-945 *4))))
+ (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
+ (-5 *2 (-638 (-315 *4))) (-5 *1 (-585 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| -3455 *3) (|:| -2345 *4))))
- (-5 *1 (-726 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-717))))
+ (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842))
+ (-4 *2 (-1139 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-635 *4)) (-5 *1 (-770 *4))
- (-4 *4 (-13 (-362) (-839))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1268 (-1166) *3)) (-5 *1 (-1275 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1268 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-1042)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1166))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-638 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1190) (-27) (-429 *8)))
+ (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3)))
+ (-5 *3 (-561)) (-5 *2 (-638 *4)) (-5 *1 (-1007 *8 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-635
- (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
- (|:| |wcond| (-635 (-942 *5)))
+ (-2 (|:| |det| *12) (|:| |rows| (-638 (-561)))
+ (|:| |cols| (-638 (-561)))))
+ (-5 *4 (-682 *12)) (-5 *5 (-638 (-406 (-945 *9))))
+ (-5 *6 (-638 (-638 *12))) (-5 *7 (-765)) (-5 *8 (-561))
+ (-4 *9 (-13 (-306) (-146))) (-4 *12 (-942 *9 *11 *10))
+ (-4 *10 (-13 (-844) (-609 (-1166)))) (-4 *11 (-787))
+ (-5 *2
+ (-2 (|:| |eqzro| (-638 *12)) (|:| |neqzro| (-638 *12))
+ (|:| |wcond| (-638 (-945 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *9))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *9)))))))))
+ (-5 *1 (-917 *9 *10 *11 *12)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
+ (|:| |wcond| (-638 (-945 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *5))))))))))
- (-5 *4 (-1145)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-939 *5 *7 *6))
- (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-558))
- (-5 *1 (-914 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
- (-5 *1 (-739)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))
- (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
- (-5 *2 (-679 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992))
- (-4 *2 (-1039)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-329)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2))
- (-4 *3 (-13 (-841) (-550))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-558))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-762)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-784)) (-4 *4 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-841))
- (-5 *1 (-447 *5 *6 *7 *4)))))
-(((*1 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1249)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864))
- (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-1247))
- (-5 *1 (-1250))))
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *5))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *5))))))))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-638 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262)))
- (-5 *2 (-1247)) (-5 *1 (-1250)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-933 *4))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1247)) (-5 *1 (-254))))
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-638 (-1166))) (-4 *8 (-942 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
+ (|:| |wcond| (-638 (-945 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *5))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *5))))))))))
+ (-5 *1 (-917 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7))
+ (|:| |wcond| (-638 (-945 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *4))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *4))))))))))
+ (-5 *1 (-917 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1247)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-867 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1247)) (-5 *1 (-254))))
+ (-12 (-5 *3 (-682 *9)) (-5 *5 (-914)) (-4 *9 (-942 *6 *8 *7))
+ (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166))))
+ (-4 *8 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9))
+ (|:| |wcond| (-638 (-945 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *6))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *6))))))))))
+ (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-638 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-914))
+ (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |eqzro| (-638 *9)) (|:| |neqzro| (-638 *9))
+ (|:| |wcond| (-638 (-945 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *6))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *6))))))))))
+ (-5 *1 (-917 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-869 (-1 (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1248)) (-5 *1 (-254))))
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-914)) (-4 *8 (-942 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |eqzro| (-638 *8)) (|:| |neqzro| (-638 *8))
+ (|:| |wcond| (-638 (-945 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *5))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *5))))))))))
+ (-5 *1 (-917 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-933 (-224)) (-224) (-224))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *5 (-635 (-262))) (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-872 (-1 (-224) (-224) (-224)))) (-5 *4 (-1081 (-378)))
- (-5 *2 (-1248)) (-5 *1 (-254))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-293 *7)) (-5 *4 (-1163)) (-5 *5 (-635 (-262)))
- (-4 *7 (-429 *6)) (-4 *6 (-13 (-550) (-841) (-1028 (-558))))
- (-5 *2 (-1247)) (-5 *1 (-255 *6 *7))))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 *9)) (-5 *5 (-1148))
+ (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561))
+ (-5 *1 (-917 *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1247))
- (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1247)) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-606 (-534)) (-1087)))))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-638 (-1166))) (-5 *5 (-1148))
+ (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561))
+ (-5 *1 (-917 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-942 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787)) (-5 *2 (-561)) (-5 *1 (-917 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 *10)) (-5 *5 (-914))
+ (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
+ (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561))
+ (-5 *1 (-917 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-682 *10)) (-5 *4 (-638 (-1166))) (-5 *5 (-914))
+ (-5 *6 (-1148)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
+ (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-561))
+ (-5 *1 (-917 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-867 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
- (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247))
- (-5 *1 (-258 *6))))
+ (-12 (-5 *3 (-682 *9)) (-5 *4 (-914)) (-5 *5 (-1148))
+ (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-561))
+ (-5 *1 (-917 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-867 *5)) (-5 *4 (-1079 (-378)))
- (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1247))
- (-5 *1 (-258 *5))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-869 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
- (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-869 *5)) (-5 *4 (-1079 (-378)))
- (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
- (-5 *1 (-258 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262))) (-5 *2 (-1248))
- (-5 *1 (-258 *3)) (-4 *3 (-13 (-606 (-534)) (-1087)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1079 (-378))) (-5 *2 (-1248)) (-5 *1 (-258 *3))
- (-4 *3 (-13 (-606 (-534)) (-1087)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-872 *6)) (-5 *4 (-1079 (-378))) (-5 *5 (-635 (-262)))
- (-4 *6 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
- (-5 *1 (-258 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-872 *5)) (-5 *4 (-1079 (-378)))
- (-4 *5 (-13 (-606 (-534)) (-1087))) (-5 *2 (-1248))
- (-5 *1 (-258 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1247)) (-5 *1 (-259))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1247))
- (-5 *1 (-259))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *2 (-1247)) (-5 *1 (-259))))
+ (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-635 (-262)))
- (-5 *2 (-1247)) (-5 *1 (-259))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1248)) (-5 *1 (-259))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-262))) (-5 *2 (-1248))
- (-5 *1 (-259)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-783))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-635 (-1163)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-558))
- (-14 *6 (-762)) (-4 *7 (-171)) (-4 *8 (-171))
- (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171))
- (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1039) (-841)))
- (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-762))
- (-4 *6 (-1200)) (-4 *7 (-1200)) (-5 *2 (-239 *5 *7))
- (-5 *1 (-238 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-293 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1145)) (-5 *5 (-604 *6))
- (-4 *6 (-301)) (-4 *2 (-1200)) (-5 *1 (-296 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-604 *5)) (-4 *5 (-301))
- (-4 *2 (-301)) (-5 *1 (-297 *5 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-604 *1)) (-4 *1 (-301))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-679 *5)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-5 *2 (-679 *6)) (-5 *1 (-303 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-841))
- (-4 *6 (-841)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362))
- (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
- (-4 *9 (-362)) (-4 *10 (-1222 *9)) (-4 *11 (-1222 (-406 *10)))
- (-5 *2 (-335 *9 *10 *11 *12))
- (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-341 *9 *10 *11))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1204)) (-4 *8 (-1204))
- (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6))) (-4 *9 (-1222 *8))
- (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1222 (-406 *9)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1200)) (-4 *6 (-1200))
- (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-550))
- (-4 *6 (-550)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-550))
- (-4 *6 (-550)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306))
- (-4 *6 (-982 *5)) (-4 *7 (-1222 *6))
- (-4 *8 (-13 (-408 *6 *7) (-1028 *6))) (-4 *9 (-306))
- (-4 *10 (-982 *9)) (-4 *11 (-1222 *10))
- (-5 *2 (-412 *9 *10 *11 *12))
- (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-408 *10 *11) (-1028 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
- (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-550)) (-5 *1 (-417 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1039) (-841)))
- (-4 *6 (-13 (-1039) (-841))) (-4 *2 (-429 *6))
- (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087))
- (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1200))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-841))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-362))
- (-4 *6 (-362)) (-5 *2 (-579 *6)) (-5 *1 (-578 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2475 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-362)) (-4 *6 (-362))
- (-5 *2 (-2 (|:| -2475 *6) (|:| |coeff| *6)))
- (-5 *1 (-578 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-578 *5 *2))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-362)) (-4 *6 (-362))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-578 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-593 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-593 *6)) (-5 *1 (-590 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-593 *7))
- (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-593 *8))
- (-5 *1 (-591 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-593 *7))
- (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8))
- (-5 *1 (-591 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-593 *6)) (-5 *5 (-1143 *7))
- (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8))
- (-5 *1 (-591 *6 *7 *8))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-635 *6)) (-5 *1 (-633 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7))
- (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-635 *8))
- (-5 *1 (-634 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1039)) (-4 *8 (-1039))
- (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-677 *8 *9 *10))
- (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7))
- (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1039))
- (-4 *8 (-1039)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5))
- (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-550)) (-4 *7 (-550))
- (-4 *6 (-1222 *5)) (-4 *2 (-1222 (-406 *8)))
- (-5 *1 (-700 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1222 (-406 *6)))
- (-4 *8 (-1222 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1039)) (-4 *9 (-1039))
- (-4 *5 (-841)) (-4 *6 (-784)) (-4 *2 (-939 *9 *7 *5))
- (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-784))
- (-4 *4 (-939 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-841)) (-4 *6 (-841)) (-4 *7 (-784))
- (-4 *9 (-1039)) (-4 *2 (-939 *9 *8 *6))
- (-5 *1 (-720 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-784))
- (-4 *4 (-939 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-726 *5 *7)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-4 *7 (-717)) (-5 *2 (-726 *6 *7))
- (-5 *1 (-725 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-726 *3 *4))
- (-4 *4 (-717))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-773 *5)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-5 *2 (-773 *6)) (-5 *1 (-772 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
- (-4 *2 (-788 *6)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *4 (-788 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-5 *2 (-824 *6)) (-5 *1 (-823 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-824 *5))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-823 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-5 *1 (-833 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-869 *6)) (-5 *1 (-868 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-879 *5 *6)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-879 *5 *7))
- (-5 *1 (-878 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-942 *5)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-5 *2 (-942 *6)) (-5 *1 (-936 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-841))
- (-4 *8 (-1039)) (-4 *6 (-784))
- (-4 *2
- (-13 (-1087)
- (-10 -8 (-15 -1785 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-762))))))
- (-5 *1 (-941 *6 *7 *8 *5 *2)) (-4 *5 (-939 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-948 *6)) (-5 *1 (-947 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-933 *5)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-5 *2 (-933 *6)) (-5 *1 (-971 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-942 *4))) (-4 *4 (-1039))
- (-4 *2 (-939 (-942 *4) *5 *6)) (-4 *5 (-784))
- (-4 *6
- (-13 (-841)
- (-10 -8 (-15 -3441 ((-1163) $))
- (-15 -2317 ((-3 $ "failed") (-1163))))))
- (-5 *1 (-974 *4 *5 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-550)) (-4 *6 (-550))
- (-4 *2 (-982 *6)) (-5 *1 (-980 *5 *6 *4 *2)) (-4 *4 (-982 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171))
- (-4 *2 (-987 *6)) (-5 *1 (-988 *4 *5 *2 *6)) (-4 *4 (-987 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7))
- (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7))
- (-4 *5 (-1039)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1039)) (-4 *10 (-1039))
- (-14 *5 (-762)) (-14 *6 (-762)) (-4 *8 (-237 *6 *7))
- (-4 *9 (-237 *5 *7)) (-4 *2 (-1042 *5 *6 *10 *11 *12))
- (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10))
- (-4 *12 (-237 *5 *10))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-1081 *6)) (-5 *1 (-1076 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-839))
- (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-635 *6))
- (-5 *1 (-1076 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-1079 *6)) (-5 *1 (-1078 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839))
- (-4 *2 (-1136 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-1143 *6)) (-5 *1 (-1141 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7))
- (-4 *6 (-1200)) (-4 *7 (-1200)) (-4 *8 (-1200)) (-5 *2 (-1143 *8))
- (-5 *1 (-1142 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1176 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1205 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1163))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-1213 *6)) (-5 *1 (-1212 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5)) (-4 *5 (-839))
- (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1143 *6))
- (-5 *1 (-1212 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1219 *5 *6)) (-14 *5 (-1163))
- (-4 *6 (-1039)) (-4 *8 (-1039)) (-5 *2 (-1219 *7 *8))
- (-5 *1 (-1214 *5 *6 *7 *8)) (-14 *7 (-1163))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-786)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039))
- (-4 *2 (-1222 *6)) (-5 *1 (-1220 *5 *4 *6 *2)) (-4 *4 (-1222 *5))))
+ (-12 (-5 *4 (-914)) (-5 *2 (-378)) (-5 *1 (-779 *3))
+ (-4 *3 (-609 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2))
+ (-5 *2 (-378)) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5 *7 *9)) (-4 *5 (-1039))
- (-4 *6 (-1039)) (-14 *7 (-1163)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1231 *6 *8 *10)) (-5 *1 (-1226 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1163))))
+ (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
+ (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 *2))
+ (-5 *2 (-378)) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039))
- (-4 *2 (-1237 *6)) (-5 *1 (-1235 *5 *6 *4 *2)) (-4 *4 (-1237 *5))))
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
+ (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1200))
- (-4 *6 (-1200)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6))))
+ (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844))
+ (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2375 (-114)) (|:| |arg| (-638 (-885 *3)))))
+ (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-885 *4)))
+ (-5 *1 (-885 *4)) (-4 *4 (-1090)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1246 *5))
- (-4 *5 (-1200)) (-4 *6 (-1200)) (-5 *2 (-1246 *6))
- (-5 *1 (-1245 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-1039))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-1269 *3 *4))
- (-4 *4 (-837)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-911)) (-5 *4 (-224)) (-5 *5 (-558)) (-5 *6 (-864))
- (-5 *2 (-1251)) (-5 *1 (-1247)))))
+ (-12 (-5 *4 (-1084 (-837 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
+ (-5 *1 (-304))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-682 (-903 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-914))
+ (-14 *4 (-914))))
+ ((*1 *2)
+ (-12 (-5 *2 (-682 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
+ (-14 *4
+ (-3 (-1162 *3)
+ (-1253 (-638 (-2 (|:| -2484 *3) (|:| -2413 (-1110)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-914)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1258))
+ (-5 *1 (-1206 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-5 *2 (-1258))
+ (-5 *1 (-1206 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-561))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-52)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-478)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *2 (-1258))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1229 (-406 *5))) (-14 *7 *6))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-638 *6) "failed") (-561) *6 *6)) (-4 *6 (-362))
+ (-4 *7 (-1229 *6))
+ (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-646 *4)) (-4 *4 (-341 *5 *6 *7))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-800 *5 *6 *7 *4)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-841))
- (-4 *4 (-784)) (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-558))) (-5 *1 (-1106))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
+ (-12 (-4 *2 (-306)) (-4 *3 (-985 *2)) (-4 *4 (-1229 *3))
+ (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1031 *3))))))
+(((*1 *2) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-105)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3))
+ (-4 *3 (-846 *5)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
+ (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-690)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4390)) (-4 *1 (-34)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-561))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-840)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876))
+ (-5 *3 (-638 (-561)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876))
+ (-5 *3 (-638 (-561))))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-638 (-1162 *11))) (-5 *3 (-1162 *11))
+ (-5 *4 (-638 *10)) (-5 *5 (-638 *8)) (-5 *6 (-638 (-765)))
+ (-5 *7 (-1253 (-638 (-1162 *8)))) (-4 *10 (-844))
+ (-4 *8 (-306)) (-4 *11 (-942 *8 *9 *10)) (-4 *9 (-787))
+ (-5 *1 (-701 *9 *10 *8 *11)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
+ ((*1 *1 *1) (|partial| -4 *1 (-716))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-534)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-768)) (-5 *1 (-114)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-816)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-52)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-682 *2)) (-5 *4 (-765))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4022 ($ *7)))))
+ (-4 *7 (-842))
+ (-4 *8
+ (-13 (-1231 *3 *7) (-362) (-1190)
+ (-10 -8 (-15 -3238 ($ $)) (-15 -1842 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
+ (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8))
+ (-14 *10 (-1166)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1163))
- (|:| |arrayIndex| (-635 (-942 (-558))))
+ (-2 (|:| |var| (-1166))
+ (|:| |arrayIndex| (-638 (-945 (-561))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1163)) (|:| |rand| (-853))
+ (-2 (|:| |var| (-1166)) (|:| |rand| (-856))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1162)) (|:| |thenClause| (-329))
+ (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329))
(|:| |elseClause| (-329))))
(|:| |returnBranch|
- (-2 (|:| -3711 (-112))
- (|:| -2426
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3445 (-853))))))
- (|:| |blockBranch| (-635 (-329)))
- (|:| |commentBranch| (-635 (-1145))) (|:| |callBranch| (-1145))
+ (-2 (|:| -1928 (-112))
+ (|:| -2484
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2345 (-856))))))
+ (|:| |blockBranch| (-638 (-329)))
+ (|:| |commentBranch| (-638 (-1148))) (|:| |callBranch| (-1148))
(|:| |forBranch|
- (-2 (|:| -2103 (-1079 (-942 (-558))))
- (|:| |span| (-942 (-558))) (|:| -3190 (-329))))
- (|:| |labelBranch| (-1107))
- (|:| |loopBranch| (-2 (|:| |switch| (-1162)) (|:| -3190 (-329))))
+ (-2 (|:| -2290 (-1082 (-945 (-561))))
+ (|:| |span| (-945 (-561))) (|:| -3279 (-329))))
+ (|:| |labelBranch| (-1110))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3279 (-329))))
(|:| |commonBranch|
- (-2 (|:| -3179 (-1163)) (|:| |contents| (-635 (-1163)))))
- (|:| |printBranch| (-635 (-853)))))
+ (-2 (|:| -3269 (-1166)) (|:| |contents| (-638 (-1166)))))
+ (|:| |printBranch| (-638 (-856)))))
(-5 *1 (-329)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200)) (-4 *2 (-841))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4))
- (-14 *3 (-911)) (-4 *4 (-1039))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-841))
- (-5 *1 (-604 *5)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864)))
- (-5 *4 (-635 (-911))) (-5 *5 (-635 (-262))) (-5 *1 (-466))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864)))
- (-5 *4 (-635 (-911))) (-5 *1 (-466))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466))))
- ((*1 *1 *1) (-5 *1 (-466))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-762)) (-4 *5 (-550))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *1) (-5 *1 (-185))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163))))
- (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *2 (-939 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-362)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-306))
- (-5 *2 (-762)) (-5 *1 (-453 *5 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 (-558)))))
- (-5 *1 (-360 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 (-762)))))
- (-5 *1 (-385 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| -3939 *3) (|:| -1857 (-558)))))
- (-5 *1 (-417 *3)) (-4 *3 (-550))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 (-762)))))
- (-5 *1 (-810 *3)) (-4 *3 (-841)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112)))))
-(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(((*1 *1) (-5 *1 (-185))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-489)) (-5 *4 (-944)) (-5 *2 (-681 (-531)))
- (-5 *1 (-531))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-944)) (-4 *3 (-1087)) (-5 *2 (-681 *1))
- (-4 *1 (-758 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-429 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *4))
+ (-4 *4 (-429 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-114)) (-5 *1 (-162))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *4))
+ (-4 *4 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301))))
+ ((*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *4 (-844)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *4))
+ (-4 *4 (-429 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *4))
+ (-4 *4 (-13 (-429 *3) (-995) (-1190)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-558)) (-4 *5 (-839)) (-4 *5 (-362))
- (-5 *2 (-762)) (-5 *1 (-935 *5 *6)) (-4 *6 (-1222 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-1246 *5)) (-4 *5 (-306))
- (-4 *5 (-1039)) (-5 *2 (-679 *5)) (-5 *1 (-1019 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550))))))
-(((*1 *1) (-5 *1 (-185))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8)))
- (-4 *7 (-841)) (-4 *8 (-306)) (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784))
- (-5 *2
- (-2 (|:| |upol| (-1159 *8)) (|:| |Lval| (-635 *8))
- (|:| |Lfact|
- (-635 (-2 (|:| -3939 (-1159 *8)) (|:| -1857 (-558)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-733 *6 *7 *8 *9)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1016 (-834 (-558))))
- (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1039))
- (-5 *1 (-588 *4)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-853) (-853) (-853))) (-5 *4 (-558)) (-5 *2 (-853))
- (-5 *1 (-639 *5 *6 *7)) (-4 *5 (-1087)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-853)) (-5 *1 (-845 *3 *4 *5)) (-4 *3 (-1039))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-853))))
- ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-853))))
- ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-853)) (-5 *1 (-1159 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+ (-12
+ (-5 *3
+ (-638
+ (-2 (|:| -1569 (-765))
+ (|:| |eqns|
+ (-638
+ (-2 (|:| |det| *7) (|:| |rows| (-638 (-561)))
+ (|:| |cols| (-638 (-561))))))
+ (|:| |fgb| (-638 *7)))))
+ (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-561))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844))
+ (-5 *1 (-447 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-329)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224))
+ (-5 *7 (-682 (-561)))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-747)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-1015 *3 *2)) (-4 *2 (-646 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3846 *3) (|:| -2314 (-635 *5))))
- (-5 *1 (-1015 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-646 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-156)))
- ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-5 *2 (-824 (-558))) (-5 *1 (-532))))
- ((*1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-841)) (-5 *4 (-635 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4))))
- (-5 *1 (-1171 *6)) (-5 *5 (-635 *4)))))
-(((*1 *1) (-5 *1 (-794))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-762)) (|:| -3936 *3))))
- (-5 *4 (-762)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-784))
- (-4 *7 (-841)) (-5 *1 (-447 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1145) (-765))) (-5 *1 (-114)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
- (-5 *2
- (-2 (|:| -1349 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-534))) (-5 *1 (-534)))))
+(((*1 *1) (-5 *1 (-575)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-857))))
+ ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-857))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
+ (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1258)) (-5 *1 (-857))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-1146 *4))
+ (-4 *4 (-1090)) (-4 *4 (-1205)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765)))
+ (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-417 *4)) (-4 *4 (-553)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-417 *3)) (-4 *3 (-553)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -1621 *6) (|:| |sol?| (-112))) (-561)
+ *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
(-5 *2
- (-2 (|:| |poly| *6) (|:| -2935 (-406 *6))
- (|:| |special| (-406 *6))))
- (-5 *1 (-718 *5 *6)) (-5 *3 (-406 *6))))
+ (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
+ (-2 (|:| -2246 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-914)) (-4 *3 (-362))
+ (-14 *4 (-986 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1) (|partial| -4 *1 (-716)))
+ ((*1 *1 *1) (|partial| -4 *1 (-720)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362)))
+ (-4 *2 (-1229 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391)))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3051 *3) (|:| |coef2| (-776 *3))))
+ (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166)))
+ (-4 *5 (-450)) (-5 *2 (-638 (-246 *4 *5))) (-5 *1 (-626 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558))))
((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-886 *3 *4))
- (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-762)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -1524 *3) (|:| -1540 *3))) (-5 *1 (-886 *3 *5))
- (-4 *3 (-1222 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
- (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
- (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
- (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112))
- (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450))
- (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-1042))))
+ ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1162 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-768)) (-5 *1 (-52)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561)))))
+ (-4 *4 (-1229 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *5))
+ (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *3 (-638 (-262)))
+ (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-466)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-558)))))
- (-4 *2 (-13 (-841) (-21))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-362))
+ (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561)))))
+ (-4 *2 (-13 (-844) (-21))))))
+(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| A (-679 *5))
- (|:| |eqs|
- (-635
- (-2 (|:| C (-679 *5)) (|:| |g| (-1246 *5)) (|:| -3846 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *5)) (-5 *4 (-1246 *5))
- (-4 *6 (-646 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-646 *5))
- (-5 *2 (-2 (|:| -3702 (-679 *6)) (|:| |vec| (-1246 *5))))
- (-5 *1 (-804 *5 *6)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *5)))))
-(((*1 *1 *1) (-5 *1 (-1051))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2))
- (-4 *3 (-13 (-841) (-550)))))
- ((*1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-1185))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2743 (-635 *1))))
- (-4 *1 (-366 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-451 *3 *4 *5 *6))
- (|:| -2743 (-635 (-451 *3 *4 *5 *6)))))
- (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-588 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1039)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-765)) (-5 *1 (-114)))))
+ (-638
+ (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *3))
+ (|:| |logand| (-1162 *3)))))
+ (-5 *1 (-582 *3)) (-4 *3 (-362)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-417 (-1162 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1162 *1))
+ (-4 *4 (-450)) (-4 *4 (-553)) (-4 *4 (-844))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-897 *4))
+ (-4 *4 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-553)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
+ (-4 *2 (-680 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-776 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-956 *3 *2)) (-4 *2 (-130)) (-4 *3 (-553))
+ (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1162 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-553))
+ (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1226 *4 *3)) (-14 *4 (-1166))
+ (-4 *3 (-1042)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *4)) (-5 *1 (-878 *3 *4 *5))
+ (-4 *3 (-1090)) (-4 *5 (-659 *4)))))
+(((*1 *1)
+ (-12 (-4 *1 (-403)) (-2159 (|has| *1 (-6 -4381)))
+ (-2159 (|has| *1 (-6 -4373)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844))))
+ ((*1 *1) (-4 *1 (-838))) ((*1 *1 *1 *1) (-4 *1 (-844))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1110)) (-4 *4 (-348))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042))
+ (-5 *1 (-1150 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-561)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042))
+ (-14 *4 (-1166)) (-14 *5 *3))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1) (-4 *1 (-283)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-5 *1 (-622 *3 *4 *5))
+ (-14 *5 (-914))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561)))))
+ (-4 *5 (-844)) (-5 *1 (-1269 *4 *5 *2)) (-4 *2 (-1274 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1273 *3 *4))
+ (-4 *4 (-711 (-406 (-561)))) (-4 *3 (-844)) (-4 *4 (-171)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-873)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 (-378))) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-378))) (-5 *1 (-466))))
+ (-12 (-5 *2 (-638 (-378))) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-466))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247))))
+ (-12 (-5 *3 (-914)) (-5 *4 (-867)) (-5 *2 (-1258)) (-5 *1 (-1254))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550))
- (-5 *2 (-2 (|:| -3455 *4) (|:| -2263 *3) (|:| -1548 *3)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1053 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| -3455 *3) (|:| -2263 *1) (|:| -1548 *1)))
- (-4 *1 (-1222 *3)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
+ (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1866 (-638 *3)) (|:| -2541 (-638 *3))))
+ (-5 *1 (-1206 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-5 *2 (-1162 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784))
- (-4 *8 (-841)) (-5 *1 (-967 *6 *7 *8 *9)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-406 (-558))))
- (-5 *2 (-2 (|:| -2109 (-1143 *4)) (|:| -2120 (-1143 *4))))
- (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1025))
- (-5 *1 (-737)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1200)) (-4 *3 (-1039))
- (-5 *2 (-679 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-762))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550)))))
-(((*1 *1) (-5 *1 (-814))))
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1193 *4 *5 *6 *7))
- (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3940 ($ *7)))))
- (-4 *7 (-839))
- (-4 *8
- (-13 (-1224 *3 *7) (-362) (-1185)
- (-10 -8 (-15 -3780 ($ $)) (-15 -1337 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))))
- (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8))
- (-14 *10 (-1163)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-635 (-1163)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841)))
- (-14 *3 (-635 (-1163))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-982 *2)) (-4 *4 (-1222 *3)) (-4 *2 (-306))
- (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3)))))
+ (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844))
+ (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4196 (-561))))
+ (-4 *1 (-429 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1042)) (-4 *4 (-844))
+ (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4196 (-561))))
+ (-4 *1 (-429 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1)))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493))))
+ (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -4196 (-561))))
+ (-4 *1 (-429 *3))))
((*1 *2 *1)
- (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4))
- (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-885 *3)) (|:| -4196 (-765))))
+ (-5 *1 (-885 *3)) (-4 *3 (-1090))))
((*1 *2 *1)
- (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-717) *4))
- (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-190)) (-5 *3 (-558))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-171))))
+ (|partial| -12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -4196 (-765))))))
((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-748)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550))
- (-5 *2 (-1159 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1 *1) (-4 *1 (-142)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1163)) (-5 *6 (-112))
- (-4 *7 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-4 *3 (-13 (-1185) (-949) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-218 *7 *3)) (-5 *5 (-834 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-191)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))))
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-942 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -4196 (-561))))
+ (-5 *1 (-943 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $))
+ (-15 -4045 (*7 $))))))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -4282 (-638 (-2 (|:| |irr| *10) (|:| -2449 (-561)))))))
+ (-5 *6 (-638 *3)) (-5 *7 (-638 *8)) (-4 *8 (-844)) (-4 *3 (-306))
+ (-4 *10 (-942 *3 *9 *8)) (-4 *9 (-787))
+ (-5 *2
+ (-2 (|:| |polfac| (-638 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-638 (-1162 *3)))))
+ (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-638 (-1162 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-638 (-293 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-581 *4))
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
(-4 *4 (-348)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4))
- (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6))
- (-4 *6 (-13 (-408 *4 *5) (-1028 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *3 (-841)) (-5 *2 (-1112 *3 (-604 *1)))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112 (-558) (-604 (-493)))) (-5 *1 (-493))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-613 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-717) *3))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-362)) (-4 *2 (-1229 *4))
+ (-5 *1 (-915 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))))
+(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3))
+ (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306))
+ (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 *7)))
+ (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
((*1 *2 *1)
- (-12 (-4 *3 (-171)) (-4 *2 (-708 *3)) (-5 *1 (-652 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-717) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
-(((*1 *1 *1) (-4 *1 (-621)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *4))
- (-4 *4 (-1200)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-417 *1)) (-4 *1 (-942 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-417 *3))
+ (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450))
+ (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7))))
+ (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-417 *3)) (-5 *1 (-1232 *4 *3))
+ (-4 *3 (-13 (-1229 *4) (-553) (-10 -8 (-15 -1623 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-14 *5 (-638 (-1166)))
+ (-5 *2
+ (-638 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))))
+ (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166))))))
+(((*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1) (-5 *1 (-185))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1229 (-406 (-561))))
+ (-5 *2 (-2 (|:| |den| (-561)) (|:| |gcdnum| (-561))))
+ (-5 *1 (-906 *3 *4)) (-4 *4 (-1229 (-406 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3))
+ (-4 *3 (-1229 (-406 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-914)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-429 *4) (-992))) (-4 *4 (-13 (-841) (-550)))
- (-5 *1 (-275 *4 *2)))))
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844))
+ (-4 *4 (-265 *3)) (-4 *5 (-787)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110))))))
+ (-4 *4 (-348)) (-5 *2 (-682 *4)) (-5 *1 (-345 *4)))))
+(((*1 *1 *1) (-4 *1 (-1051)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(((*1 *1) (-5 *1 (-185))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1145)) (-5 *2 (-765)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1091)) (-5 *1 (-955)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *3 (-1053 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
+ (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-768)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-958)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3))
+ (-4 *3 (-13 (-362) (-146) (-1031 (-561)))) (-5 *1 (-565 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
+ (-12 (-5 *4 (-406 (-561)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *3 (-1053 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3))))
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561)))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
- (-14 *4 *2))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))))
-(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-635 (-635 (-933 (-224)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-635 (-635 (-933 (-224))))))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-306))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2461 *1)))
- (-4 *1 (-306)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-911)) (-5 *1 (-777)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5))
- (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386))
- (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-558))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-942 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-558))) (-4 *1 (-395))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439))))
+ (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6))
+ (-4 *6 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1220 (-561)))
+ (-4 *7 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-561)))
+ (-4 *3 (-13 (-27) (-1190) (-429 *7)))
+ (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8))
+ (-5 *5 (-1220 (-406 (-561)))) (-5 *6 (-406 (-561)))
+ (-4 *8 (-13 (-27) (-1190) (-429 *7)))
+ (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-406 (-561))))
+ (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8)))
+ (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5))
- (-5 *2 (-1159 (-1159 *4))) (-5 *1 (-768 *4 *5 *6 *3 *7))
- (-4 *3 (-1222 *6)) (-14 *7 (-911))))
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3))))
+ (-4 *3 (-1042)) (-5 *1 (-591 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *1 (-966 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1028 *2)) (-4 *2 (-1200))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3))))
((*1 *1 *2)
- (|partial| -3994
- (-12 (-5 *2 (-942 *3))
- (-12 (-2143 (-4 *3 (-38 (-406 (-558)))))
- (-2143 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)))
- (-12 (-5 *2 (-942 *3))
- (-12 (-2143 (-4 *3 (-543))) (-2143 (-4 *3 (-38 (-406 (-558)))))
- (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)))
- (-12 (-5 *2 (-942 *3))
- (-12 (-2143 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558))))
- (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)))))
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *3))))
+ (-4 *3 (-1042)) (-4 *1 (-1213 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-765))
+ (-5 *3 (-1146 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4))))
+ (-4 *4 (-1042)) (-4 *1 (-1234 *4))))
((*1 *1 *2)
- (|partial| -3994
- (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
- (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558)))
- (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))
- (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-4 *1 (-1244 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163)))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
+ (-12 (-5 *2 (-1146 (-2 (|:| |k| (-765)) (|:| |c| *3))))
+ (-4 *3 (-1042)) (-4 *1 (-1244 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-246 *3 *4))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-561))) (-14 *3 (-638 (-1166)))
+ (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1042))
+ (-4 *5 (-237 (-3498 *3) (-765)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-479 *3 *4))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *6)) (-5 *1 (-335 *3 *4 *5 *6))
+ (-4 *6 (-341 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -4233 (-561)) (|:| -4282 (-638 *3))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
+(((*1 *1) (-5 *1 (-185))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5))
- (-4 *5 (-38 (-406 (-558)))) (-4 *2 (-1237 *5))
- (-5 *1 (-1239 *5 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-957)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450))
- (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1163)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450))
- (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))))
-(((*1 *1 *2 *2)
+ (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362))
+ (-5 *2 (-112)) (-5 *1 (-660 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-5 *2 (-112))
+ (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-902)) (-5 *2 (-417 (-1162 *1))) (-5 *3 (-1162 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-579)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-823)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-755))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *2 (-1253 (-315 (-378))))
+ (-5 *1 (-304)))))
+(((*1 *2)
(-12
+ (-5 *2 (-2 (|:| -2541 (-638 (-1166))) (|:| -1866 (-638 (-1166)))))
+ (-5 *1 (-1207)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1019 (-837 (-561))))
+ (-5 *3 (-1146 (-2 (|:| |k| (-561)) (|:| |c| *4)))) (-4 *4 (-1042))
+ (-5 *1 (-591 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-234 *3))
+ (-4 *3 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-561)) (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-1201)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-2 (|:| -1657 (-1162 *6)) (|:| -4196 (-561)))))
+ (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561))
+ (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-942 *4 *6 *5)) (-4 *4 (-450))
+ (-4 *5 (-844)) (-4 *6 (-787)) (-5 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-914))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-14 *5 (-638 (-1166)))
(-5 *2
- (-3 (|:| I (-315 (-558))) (|:| -3189 (-315 (-378)))
- (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1162))))
- (-5 *1 (-1162)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
+ (-638 (-2 (|:| -3682 (-1162 *4)) (|:| -3969 (-638 (-945 *4))))))
+ (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-635 (-604 *3)))
- (|:| |vals| (-635 *3))))
- (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-558)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-762)) (-4 *5 (-171))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
- (-4 *4 (-171))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
+ (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5))))))
+ (-5 *1 (-1279 *5 *6 *7)) (-5 *3 (-638 (-945 *5)))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2
+ (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5))))))
+ (-5 *1 (-1279 *5 *6 *7)) (-5 *3 (-638 (-945 *5)))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2
+ (-638 (-2 (|:| -3682 (-1162 *5)) (|:| -3969 (-638 (-945 *5))))))
+ (-5 *1 (-1279 *5 *6 *7)) (-5 *3 (-638 (-945 *5)))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2
+ (-638 (-2 (|:| -3682 (-1162 *4)) (|:| -3969 (-638 (-945 *4))))))
+ (-5 *1 (-1279 *4 *5 *6)) (-5 *3 (-638 (-945 *4)))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1258))
+ (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1039)) (-4 *1 (-677 *3 *2 *4)) (-4 *2 (-372 *3))
- (-4 *4 (-372 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1129 *2 *3)) (-14 *2 (-762)) (-4 *3 (-1039)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))))
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042))
+ (-4 *5 (-844)) (-5 *2 (-945 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042))
+ (-4 *5 (-844)) (-5 *2 (-945 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-1244 *4)) (-4 *4 (-1042))
+ (-5 *2 (-945 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-1244 *4)) (-4 *4 (-1042))
+ (-5 *2 (-945 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-1090)) (-5 *2 (-638 *1))
+ (-4 *1 (-381 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-720))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-942 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-841) (-550))))))
+ (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3))
+ (-4 *3 (-680 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553))
+ (-5 *2 (-765)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378))))
+ ((*1 *1 *1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-765)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1090))
+ (-5 *1 (-671 *2)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-406 (-945 *6)) (-1155 (-1166) (-945 *6))))
+ (-5 *5 (-765)) (-4 *6 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *6)))))
+ (-5 *1 (-291 *6)) (-5 *4 (-682 (-406 (-945 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-406 (-945 *5)) (-1155 (-1166) (-945 *5))))
+ (|:| |eigmult| (-765)) (|:| |eigvec| (-638 *4))))
+ (-4 *5 (-450)) (-5 *2 (-638 (-682 (-406 (-945 *5)))))
+ (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-945 *5)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561)))
+ (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $))
+ (-15 -4045 ((-1115 *3 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *3 (-607 $))))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-356 *3)) (-4 *3 (-348)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-787))
+ (-4 *3 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *5 (-553))
+ (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -4174 ((-1166) $))
+ (-15 -2389 ((-3 $ "failed") (-1166))))))
+ (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *6))
+ (-4 *6
+ (-13 (-844)
+ (-10 -8 (-15 -4174 ((-1166) $))
+ (-15 -2389 ((-3 $ "failed") (-1166))))))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2))
+ (-4 *2 (-942 (-945 *4) *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1253 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1090)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-635 *1)) (-4 *1 (-1053 *3 *4 *5)))))
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1220 (-561))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-682 (-1162 *8))) (-4 *5 (-1042)) (-4 *8 (-1042))
+ (-4 *6 (-1229 *5)) (-5 *2 (-682 *6)) (-5 *1 (-499 *5 *6 *7 *8))
+ (-4 *7 (-1229 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-682 (-406 (-945 (-561)))))
+ (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
- (-4 *3 (-957)))))
-(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-561)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543))
+ (-4 *3 (-553))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-561)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-561)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543))
+ (-4 *3 (-1090))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543))
+ (-4 *3 (-1090))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-561)))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-679 (-224))) (-5 *6 (-679 (-558))) (-5 *3 (-558))
- (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146)))
- (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1213 (-558))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-38 (-406 (-558))))
- (-4 *2 (-171)))))
-(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1145)) (-5 *2 (-558)) (-5 *1 (-1182 *4))
- (-4 *4 (-1039)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-1089 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-635 *4))) (-5 *1 (-894 *4))
- (-5 *3 (-635 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1087)) (-5 *2 (-1089 (-1089 *4))) (-5 *1 (-894 *4))
- (-5 *3 (-1089 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-4 *2 (-1087))
- (-5 *1 (-879 *4 *2)))))
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306))
+ (-5 *2 (-638 (-765))) (-5 *1 (-772 *3 *4 *5 *6 *7))
+ (-4 *3 (-1229 *6)) (-4 *7 (-942 *6 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-981 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-561)))
+ (-5 *2 (-1253 (-561))) (-5 *1 (-1280 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
+ (-5 *1 (-331))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-945 (-561)))) (-5 *2 (-329))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042))
+ (-4 *3 (-1090)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-310))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844))
+ (-5 *1 (-570 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))))
+(((*1 *1) (-5 *1 (-817))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1258))
+ (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-762)) (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-543)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378))))
- ((*1 *1 *1 *1) (-4 *1 (-543)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
- ((*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-762)))))
+ (-12 (-5 *4 (-561)) (-4 *5 (-348)) (-5 *2 (-417 (-1162 (-1162 *5))))
+ (-5 *1 (-1203 *5)) (-5 *3 (-1162 (-1162 *5))))))
(((*1 *2)
- (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
- (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209))
+ (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-5 *2 (-1162 (-945 *3)))))
((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-561)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *3 *2))
+ (-4 *3 (-13 (-1090) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1090))
+ (-4 *4 (-1090))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-844)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1229 *5))
+ (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *3) (|:| |radicand| *6)))
+ (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1229 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-840)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))
+ (-5 *1 (-797)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-315 (-561))) (|:| -3214 (-315 (-378)))
+ (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1165))))
+ (-5 *1 (-1165)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224)))
+ (-5 *1 (-304)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4381)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692))))
+ ((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4))))
+ (-5 *1 (-1261 *4)) (-4 *4 (-362)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-638 *3)) (-5 *1 (-954 *3)) (-4 *3 (-543)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-584 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-141 *3 *4 *2))
- (-4 *2 (-372 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-982 *4)) (-4 *2 (-372 *4))
- (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-372 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-679 *5)) (-4 *5 (-982 *4)) (-4 *4 (-550))
- (-5 *2 (-679 *4)) (-5 *1 (-683 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-550)) (-4 *4 (-982 *3)) (-5 *1 (-1215 *3 *4 *2))
- (-4 *2 (-1222 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-750)))))
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1268 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
+ (-5 *1 (-657 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1273 *3 *4))
+ (-4 *3 (-844)) (-4 *4 (-171)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-1177 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-644 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
+(((*1 *1 *1) (-4 *1 (-654))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *1) (-5 *1 (-1054))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1204))) (-5 *1 (-522)))))
+(((*1 *1) (-5 *1 (-329))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-855))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-855)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-406 (-945 *4))) (-5 *1 (-917 *4 *5 *6 *3))
+ (-4 *3 (-942 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 *7)) (-4 *7 (-942 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-682 (-406 (-945 *4))))
+ (-5 *1 (-917 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-638 (-406 (-945 *4))))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301))))
+ ((*1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-5 *1 (-856))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692))))
+ ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 (-558))) (-4 *4 (-1028 (-558)))
- (-4 *4 (-13 (-841) (-550))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4))))
+ (-12 (-5 *3 (-406 (-561))) (-4 *4 (-1031 (-561)))
+ (-4 *4 (-13 (-844) (-553))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4))))
((*1 *1 *1 *1) (-5 *1 (-133)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
(-4 *2 (-429 *3))))
((*1 *1 *1 *1) (-5 *1 (-224)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-558))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-561))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3))
- (-4 *5 (-1237 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1208 *4 *5))))
+ (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3))
+ (-4 *5 (-1244 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1215 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 (-558))) (-4 *4 (-362)) (-4 *4 (-38 *3))
- (-4 *5 (-1206 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1229 *4 *5))
- (-4 *6 (-973 *5))))
+ (-12 (-5 *3 (-406 (-561))) (-4 *4 (-362)) (-4 *4 (-38 *3))
+ (-4 *5 (-1213 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1236 *4 *5))
+ (-4 *6 (-976 *5))))
((*1 *1 *1 *1) (-4 *1 (-283)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-360 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090))))
((*1 *1 *1 *1) (-5 *1 (-378)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-385 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1090))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-429 *3)) (-4 *3 (-841)) (-4 *3 (-1099))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-558))))
+ (-12 (-5 *2 (-765)) (-4 *1 (-429 *3)) (-4 *3 (-844)) (-4 *3 (-1102))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-561))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348))
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-561)) (-4 *4 (-348))
(-5 *1 (-526 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-534))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-534))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-534))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-534))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *4 (-1087))
- (-5 *1 (-672 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1090))
+ (-5 *1 (-675 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
(-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-12 (-5 *2 (-765)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
(-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039))
- (-5 *1 (-680 *4))))
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042))
+ (-5 *1 (-683 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *3 (-1039)) (-5 *1 (-705 *3 *4))
- (-4 *4 (-638 *3))))
+ (-12 (-5 *2 (-561)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4))
+ (-4 *4 (-641 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-4 *4 (-1039))
- (-5 *1 (-705 *4 *5)) (-4 *5 (-638 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-762))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-827 *3)) (-4 *3 (-1039))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-4 *4 (-1042))
+ (-5 *1 (-708 *4 *5)) (-4 *5 (-641 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-914))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-830 *3)) (-4 *3 (-1042))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-558)) (-5 *1 (-827 *4)) (-4 *4 (-1039))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-406 (-558)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1099)) (-5 *2 (-911))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-561)) (-5 *1 (-830 *4)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-561)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-914))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-1110 *3 *4 *5 *6)) (-4 *4 (-1039))
+ (-12 (-5 *2 (-561)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042))
(-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2)
- (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899))
- (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-939 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *2 (-899))
- (-5 *1 (-896 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-899)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1222 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-306))
- (-5 *2 (-406 (-417 (-942 *4)))) (-5 *1 (-1032 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-224) (-224) (-224)))
- (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
- (-5 *5 (-1081 (-224))) (-5 *6 (-635 (-262))) (-5 *2 (-1120 (-224)))
- (-5 *1 (-687)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-112)) (-5 *6 (-679 (-224)))
- (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-746)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146))) (-5 *1 (-535 *4 *2))
- (-4 *2 (-1237 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3)))
- (-4 *5 (-1222 *4)) (-4 *6 (-715 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2))
- (-4 *2 (-1237 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-13 (-362) (-367) (-606 *3)))
- (-5 *1 (-540 *4 *2)) (-4 *2 (-1237 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-550) (-146)))
- (-5 *1 (-1139 *4)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1072))) (-5 *1 (-290)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-643 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-801 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-643 (-406 *6))) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2 (-2 (|:| -2743 (-635 (-406 *6))) (|:| -3702 (-679 *5))))
- (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-801 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6 (-406 *6))) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2 (-2 (|:| -2743 (-635 (-406 *6))) (|:| -3702 (-679 *5))))
- (-5 *1 (-801 *5 *6)) (-5 *4 (-635 (-406 *6))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1222 *2)) (-4 *2 (-1204)) (-5 *1 (-147 *2 *4 *3))
- (-4 *3 (-1222 (-406 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-944)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-550)) (-5 *2 (-417 *4))
- (-5 *1 (-418 *4))))
- ((*1 *1 *1) (-5 *1 (-916)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
- ((*1 *1 *1) (-5 *1 (-917)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))
- (-5 *4 (-406 (-558))) (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))
- (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))
- (-5 *4 (-406 (-558))) (-5 *1 (-1011 *3)) (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))
- (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
- (-4 *3 (-1222 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *5 (-1222 *4))
- (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -3846 *5))))
- (-5 *1 (-800 *4 *5 *3 *6)) (-4 *3 (-646 *5))
- (-4 *6 (-646 (-406 *5))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-911)) (-4 *3 (-362))
- (-14 *4 (-983 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
- ((*1 *1) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
- ((*1 *1 *1) (|partial| -4 *1 (-713)))
- ((*1 *1 *1) (|partial| -4 *1 (-717)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362)))
- (-4 *2 (-1222 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *1 *1) (-4 *1 (-651))))
-(((*1 *1 *1) (-4 *1 (-550))))
+ (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3))
+ (-4 *4 (-13 (-362) (-842))) (-4 *3 (-1229 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
- (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |k| (-883 *3)) (|:| |c| *4))))
- (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1205))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 (-662 *3))) (-5 *1 (-883 *3)) (-4 *3 (-841)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *1 *1) (-5 *1 (-1051))))
-(((*1 *1 *1) (-5 *1 (-534))))
-(((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
- (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
- (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1258))
+ (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-378)) (-5 *1 (-1033)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-607 *2))) (-5 *4 (-638 (-1166)))
+ (-4 *2 (-13 (-429 (-168 *5)) (-995) (-1190)))
+ (-4 *5 (-13 (-553) (-844))) (-5 *1 (-595 *5 *6 *2))
+ (-4 *6 (-13 (-429 *5) (-995) (-1190))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-607 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166)))
+ (-4 *2 (-13 (-429 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1090)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-910)) (-5 *2 (-2 (|:| -3455 (-635 *1)) (|:| -2461 *1)))
- (-5 *3 (-635 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))))
-(((*1 *2)
- (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
- (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-762)))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-1162 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348)))))
+(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-112))
- (-5 *1 (-356 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-112))
- (-5 *1 (-526 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-651))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558)))
- (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $))
- (-15 -3327 ((-1112 *3 (-604 $)) $))
- (-15 -3940 ($ (-1112 *3 (-604 $))))))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-773 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-953 *3 *2)) (-4 *2 (-130)) (-4 *3 (-550))
- (-4 *3 (-1039)) (-4 *2 (-783))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-1159 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-961)) (-4 *2 (-130)) (-5 *1 (-1165 *3)) (-4 *3 (-550))
- (-4 *3 (-1039))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-1219 *4 *3)) (-14 *4 (-1163))
- (-4 *3 (-1039)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1145)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1087))
- (-4 *4 (-1087))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-879 *4 *5)) (-5 *3 (-879 *4 *6)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-656 *5)) (-5 *1 (-875 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691))))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-942 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-406 (-942 (-378)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-378))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-942 (-558))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-406 (-942 (-558)))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-315 (-558))) (-5 *1 (-338 *3 *4 *5))
- (-4 *5 (-1028 (-558))) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1163)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2))
- (-14 *4 (-635 *2)) (-4 *5 (-386))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5))
- (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-1163)))))
- ((*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-558))))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-679 (-406 (-942 (-378))))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-558)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-679 (-942 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-558)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-679 (-315 (-378)))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-558)))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-406 (-942 (-378)))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-942 (-558))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-942 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-558))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-558))))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 (-406 (-942 (-378))))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-558)))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 (-942 (-378)))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-558)))) (-4 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1246 (-315 (-378)))) (-4 *1 (-439))))
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-554 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-4 *5 (-844)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *6)) (-5 *1 (-335 *3 *4 *5 *6))
+ (-4 *6 (-341 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-160))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1086)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-1 (-224) (-224) (-224) (-224)))
+ (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690)))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-315 (-224)))
- (|:| -2103 (-635 (-1081 (-834 (-224)))))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))))
- (-5 *1 (-760))))
- ((*1 *2 *1)
+ (-638
+ (-2
+ (|:| -2252
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224))))
+ (|:| |yinit| (-638 (-224))) (|:| |intvals| (-638 (-224)))
+ (|:| |g| (-315 (-224))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2654
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378)))))))
+ (-5 *1 (-797)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-657 *4 *5)))
+ (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-561)))))
+ (-14 *6 (-914)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166))
+ (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *1 (-799))))
+ (-1253
+ (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1836 (-561))
+ (|:| -2253 (-561)) (|:| |spline| (-561)) (|:| -3585 (-561))
+ (|:| |axesColor| (-867)) (|:| -3437 (-561))
+ (|:| |unitsColor| (-867)) (|:| |showing| (-561)))))
+ (-5 *1 (-1254)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5)))
+ (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-114))))
((*1 *2 *1)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1090))))
+ ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-437 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-958))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1065 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1105))))
+ ((*1 *1 *1) (-5 *1 (-1166))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4))
+ (-4 *4 (-171)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1253 (-638 *3))) (-4 *4 (-306))
+ (-5 *2 (-638 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362))
+ (-5 *2 (-638 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5)))))
+ (-5 *1 (-971 *5)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-109))) (-5 *1 (-174)))))
+(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3)
(-12
- (-5 *2
+ (-5 *3
(-3
(|:| |noa|
- (-2 (|:| |fn| (-315 (-224))) (|:| -1823 (-635 (-224)))
- (|:| |lb| (-635 (-834 (-224))))
- (|:| |cf| (-635 (-315 (-224))))
- (|:| |ub| (-635 (-834 (-224))))))
+ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224)))
+ (|:| |lb| (-638 (-837 (-224))))
+ (|:| |cf| (-638 (-315 (-224))))
+ (|:| |ub| (-638 (-837 (-224))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-635 (-315 (-224))))
- (|:| -1823 (-635 (-224)))))))
- (-5 *1 (-832))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-635 (-315 (-224))))
- (|:| |constraints|
- (-635
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-762)) (|:| |boundaryType| (-558))
- (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
- (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
- (|:| |tol| (-224))))
- (-5 *1 (-888))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *1 (-966 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2)
- (-3994
- (-12 (-5 *2 (-942 *3))
- (-12 (-2143 (-4 *3 (-38 (-406 (-558)))))
- (-2143 (-4 *3 (-38 (-558)))) (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)))
- (-12 (-5 *2 (-942 *3))
- (-12 (-2143 (-4 *3 (-543))) (-2143 (-4 *3 (-38 (-406 (-558)))))
- (-4 *3 (-38 (-558))) (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)))
- (-12 (-5 *2 (-942 *3))
- (-12 (-2143 (-4 *3 (-982 (-558)))) (-4 *3 (-38 (-406 (-558))))
- (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)))))
- ((*1 *1 *2)
- (-3994
- (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
- (-12 (-2143 (-4 *3 (-38 (-406 (-558))))) (-4 *3 (-38 (-558)))
- (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))
- (-12 (-5 *2 (-942 (-558))) (-4 *1 (-1053 *3 *4 *5))
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))))
- (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-942 (-406 (-558)))) (-4 *1 (-1053 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *5 (-606 (-1163))) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550)))))
-(((*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))))
-(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-390)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *6)) (-5 *4 (-1163)) (-4 *6 (-429 *5))
- (-4 *5 (-841)) (-5 *2 (-635 (-604 *6))) (-5 *1 (-567 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *2 *2)
+ (-2 (|:| |lfn| (-638 (-315 (-224))))
+ (|:| -3721 (-638 (-224)))))))
+ (-5 *2 (-638 (-1148))) (-5 *1 (-266)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-406 (-1162 (-315 *3)))) (-4 *3 (-13 (-553) (-844)))
+ (-5 *1 (-1120 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2))
+ (-4 *2 (-1229 *4)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-679 *3))))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+ (-980 (-406 (-561)) (-858 *3) (-239 *4 (-765))
+ (-246 *3 (-406 (-561)))))
+ (-14 *3 (-638 (-1166))) (-14 *4 (-765)) (-5 *1 (-979 *3 *4)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224)))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3))
+ (-4 *3 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3)))
+ (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3)))
+ (-4 *3 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3)))
+ (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))))
+(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-635 (-635 (-558)))) (-5 *1 (-961))
- (-5 *3 (-635 (-558))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039)))))
+ (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-1187 *4))
+ (-4 *4 (-1042)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *2 (-406 (-942 *4))) (-5 *1 (-914 *4 *5 *6 *3))
- (-4 *3 (-939 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *2 (-679 (-406 (-942 *4))))
- (-5 *1 (-914 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *2 (-635 (-406 (-942 *4))))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -2663 (-762)) (|:| |period| (-762))))
- (-5 *1 (-1143 *4)) (-4 *4 (-1200)) (-5 *3 (-762)))))
+ (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814))
+ (-14 *5 (-1166)) (-5 *2 (-561)) (-5 *1 (-1104 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-841))
- (-4 *7 (-939 *5 (-529 *6) *6)) (-4 *5 (-1039))
- (-5 *2 (-1 (-1143 *7) *7)) (-5 *1 (-1113 *5 *6 *7)))))
+ (-12 (-5 *3 (-815)) (-5 *4 (-52)) (-5 *2 (-1258)) (-5 *1 (-825)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-914)) (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-786))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1234 *3)) (-4 *3 (-1042)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-784))
- (-4 *8 (-841)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-635 *9))))
- (-5 *3 (-635 *9)) (-4 *1 (-1193 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-635 *8))))
- (-5 *3 (-635 *8)) (-4 *1 (-1193 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-274)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-762)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1087)) (-5 *2 (-112))
- (-5 *1 (-1201 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112))
- (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1025)) (-5 *1 (-747)))))
-(((*1 *1 *1) (-4 *1 (-651))))
+ (-12 (-5 *4 (-765)) (-5 *5 (-638 *3)) (-4 *3 (-306)) (-4 *6 (-844))
+ (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8))
+ (-4 *8 (-942 *3 *7 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-142)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037))
- (-5 *3 (-558)))))
+ (-12 (-5 *2 (-638 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-582 *3)) (-4 *3 (-362)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-4 *6 (-876 *5)) (-5 *2 (-875 *5 *6 (-635 *6)))
- (-5 *1 (-877 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-606 (-882 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 *3))) (-5 *1 (-877 *5 *3 *4))
- (-4 *3 (-1028 (-1163))) (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-5 *2 (-635 (-293 (-942 *3))))
- (-5 *1 (-877 *5 *3 *4)) (-4 *3 (-1039))
- (-2143 (-4 *3 (-1028 (-1163)))) (-4 *3 (-876 *5))
- (-4 *4 (-606 (-882 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-5 *2 (-879 *5 *3)) (-5 *1 (-877 *5 *3 *4))
- (-2143 (-4 *3 (-1028 (-1163)))) (-2143 (-4 *3 (-1039)))
- (-4 *3 (-876 *5)) (-4 *4 (-606 (-882 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1248))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6))
+ (-4 *6 (-13 (-27) (-429 *5)))
+ (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1229 (-406 *7)))
+ (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3))
+ (-4 *3 (-341 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1222 (-406 (-558))))
- (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))
- (-5 *1 (-903 *3 *4)) (-4 *4 (-1222 (-406 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3))
- (-4 *3 (-1222 (-406 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-616 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *2 (-1096 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4)))
- (-4 *4 (-841)) (-5 *1 (-1171 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))
- (-4 *2 (-450))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2))
- (-4 *4 (-1222 (-406 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450))))
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4))
+ (-4 *4 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765))))
+ ((*1 *1 *1) (-4 *1 (-232)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-265 *3)) (-4 *3 (-844))))
+ ((*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)) (-4 *3 (-450))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
+ (-4 *4 (-1229 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-450))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-4 *3 (-550)) (-5 *1 (-1150 *3 *2))
- (-4 *2 (-1222 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-741)))))
-(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-635 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1087))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1087))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1087))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-635 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1087))))
+ (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
+ (-4 *3 (-1229 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-582 *2))
+ (-5 *3 (-1166))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-582 *2)) (-4 *2 (-362))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4))
+ (-4 *4 (-1090))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039))
- (-5 *1 (-705 *3 *4))))
+ (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-747)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1222 *4))
- (-5 *1 (-912 *4 *2)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 *5 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
- (-4 *3 (-165 *6)) (-4 (-942 *6) (-876 *5))
- (-4 *6 (-13 (-876 *5) (-171))) (-5 *1 (-177 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-879 *4 *1)) (-5 *3 (-882 *4)) (-4 *1 (-876 *4))
- (-4 *4 (-1087))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 *5 *6)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
- (-4 *6 (-13 (-1087) (-1028 *3))) (-4 *3 (-876 *5))
- (-5 *1 (-921 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087))
- (-4 *3 (-13 (-429 *6) (-606 *4) (-876 *5) (-1028 (-604 $))))
- (-5 *4 (-882 *5)) (-4 *6 (-13 (-550) (-841) (-876 *5)))
- (-5 *1 (-922 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 (-558) *3)) (-5 *4 (-882 (-558))) (-4 *3 (-543))
- (-5 *1 (-923 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 *5 *6)) (-5 *3 (-604 *6)) (-4 *5 (-1087))
- (-4 *6 (-13 (-841) (-1028 (-604 $)) (-606 *4) (-876 *5)))
- (-5 *4 (-882 *5)) (-5 *1 (-924 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-875 *5 *6 *3)) (-5 *4 (-882 *5)) (-4 *5 (-1087))
- (-4 *6 (-876 *5)) (-4 *3 (-656 *6)) (-5 *1 (-925 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-879 *6 *3) *8 (-882 *6) (-879 *6 *3)))
- (-4 *8 (-841)) (-5 *2 (-879 *6 *3)) (-5 *4 (-882 *6))
- (-4 *6 (-1087)) (-4 *3 (-13 (-939 *9 *7 *8) (-606 *4)))
- (-4 *7 (-784)) (-4 *9 (-13 (-1039) (-841) (-876 *6)))
- (-5 *1 (-926 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087))
- (-4 *3 (-13 (-939 *8 *6 *7) (-606 *4))) (-5 *4 (-882 *5))
- (-4 *7 (-876 *5)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *8 (-13 (-1039) (-841) (-876 *5)))
- (-5 *1 (-926 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 *5 *3)) (-4 *5 (-1087)) (-4 *3 (-982 *6))
- (-4 *6 (-13 (-550) (-876 *5) (-606 *4))) (-5 *4 (-882 *5))
- (-5 *1 (-929 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-879 *5 (-1163))) (-5 *3 (-1163)) (-5 *4 (-882 *5))
- (-4 *5 (-1087)) (-5 *1 (-930 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-635 (-882 *7))) (-5 *5 (-1 *9 (-635 *9)))
- (-5 *6 (-1 (-879 *7 *9) *9 (-882 *7) (-879 *7 *9))) (-4 *7 (-1087))
- (-4 *9 (-13 (-1039) (-606 (-882 *7)) (-1028 *8)))
- (-5 *2 (-879 *7 *9)) (-5 *3 (-635 *9)) (-4 *8 (-13 (-1039) (-841)))
- (-5 *1 (-931 *7 *8 *9)))))
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1217 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1238 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1245 *3 *4 *5))
+ (-4 *3 (-1042)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-561))) (-5 *5 (-1 (-1146 *4))) (-4 *4 (-362))
+ (-4 *4 (-1042)) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558))))
- (-4 *5 (-876 (-558)))
- (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-561 *5 *3)) (-4 *3 (-621))
- (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1163)) (-5 *4 (-834 *2)) (-4 *2 (-1126))
- (-4 *2 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-606 (-882 (-558)))) (-4 *5 (-876 (-558)))
- (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
- (-5 *1 (-561 *5 *2)))))
+ (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6)))
+ (-5 *1 (-623 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9))
- (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6))
- (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039))
- (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
- (-4 *2 (-677 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-679 *2)) (-4 *2 (-362)) (-4 *2 (-1039))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1110 *2 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362))))
- ((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-1171 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-132))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-153))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-160))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-666))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1054))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1083)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-554 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-150 *2)) (-4 *2 (-1200))
- (-4 *2 (-1087)))))
-(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087))
- (-4 *2 (-841)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-743)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558)))
- (-5 *2 (-1246 (-558))) (-5 *1 (-1273 *4)))))
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
- (-5 *1 (-739)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-114))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *6))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1087))))
- ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-437 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-955))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1062 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1102))))
- ((*1 *1 *1) (-5 *1 (-1163))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
+ (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258))
+ (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258))
+ (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-856))))
+ ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-955)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1229 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-635 (-942 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-635 (-942 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-942 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-635 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3)))))
+ (-12 (-5 *3 (-638 (-2 (|:| |deg| (-765)) (|:| -2255 *5))))
+ (-4 *5 (-1229 *4)) (-4 *4 (-348)) (-5 *2 (-638 *5))
+ (-5 *1 (-215 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-2 (|:| -1657 *5) (|:| -2894 (-561)))))
+ (-5 *4 (-561)) (-4 *5 (-1229 *4)) (-5 *2 (-638 *5))
+ (-5 *1 (-689 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6) (-10 -8 (-15 -4022 ($ *7)))))
+ (-4 *7 (-842))
+ (-4 *8
+ (-13 (-1231 *3 *7) (-362) (-1190)
+ (-10 -8 (-15 -3238 ($ $)) (-15 -1842 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
+ (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8))
+ (-14 *10 (-1166)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-607 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1031 (-561)))
+ (-4 *4 (-13 (-844) (-553))) (-5 *2 (-1162 *5)) (-5 *1 (-32 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-942 *4)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *4 (-171))
- (-14 *5 (-911)) (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4))))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
- (-5 *2 (-2 (|:| -1306 *3) (|:| |nconst| *3))) (-5 *1 (-561 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
+ (-12 (-5 *3 (-607 *1)) (-4 *1 (-1042)) (-4 *1 (-301))
+ (-5 *2 (-1162 *1)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-995))
+ (-4 *2 (-1042)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1 (-378))) (-5 *1 (-1033)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-679 *5)) (-4 *5 (-1039)) (-5 *1 (-1043 *3 *4 *5))
- (-14 *3 (-762)) (-14 *4 (-762)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1253 *3)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-561))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-787)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844))
+ (-5 *1 (-447 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-794))
+ (-5 *3
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-1028)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148))
+ (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-417 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))))
+(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+(((*1 *2 *3) (-12 (-5 *3 (-638 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-738 *3)) (-4 *3 (-171)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-917))
- (-5 *2
- (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
- (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
- (-5 *1 (-152))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558)))
- (-5 *2
- (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
- (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
- (-5 *1 (-152))))
- ((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
(-5 *2
- (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
- (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
- (-5 *1 (-152)) (-5 *3 (-635 (-933 (-224))))))
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-191)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
+ (-4 *3 (-1229 *4)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-914))))
((*1 *2 *3)
- (-12
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-914))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-168 (-224))) (-5 *3 (-765)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3))
+ (-4 *3 (-609 (-534)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224)))
+ (-5 *1 (-697 *3)) (-4 *3 (-609 (-534))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8))) (-4 *7 (-844))
+ (-4 *8 (-306)) (-4 *6 (-787)) (-4 *9 (-942 *8 *6 *7))
(-5 *2
- (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
- (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
- (-5 *1 (-152)) (-5 *3 (-635 (-635 (-933 (-224)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
- ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550))
- (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-855 *4)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6))
- (-4 *6 (-450)))))
-(((*1 *1) (-5 *1 (-329))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378))))
- ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))))
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-638 (-2 (|:| -1657 (-1162 *9)) (|:| -4196 (-561)))))))
+ (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *5 (-1229 *4))
+ (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -3360 *5))))
+ (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-649 *5))
+ (-4 *6 (-649 (-406 *5))))))
(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))
+ (-14 *4 (-765)) (-4 *5 (-171)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4))
- (-5 *1 (-1271 *4)) (-4 *4 (-1200))))
+ (-12 (-5 *3 (-1 (-1146 *4) (-1146 *4))) (-5 *2 (-1146 *4))
+ (-5 *1 (-1278 *4)) (-4 *4 (-1205))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-558))
- (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1271 *5)) (-4 *5 (-1200)))))
-(((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))))
+ (-12 (-5 *3 (-1 (-638 (-1146 *5)) (-638 (-1146 *5)))) (-5 *4 (-561))
+ (-5 *2 (-638 (-1146 *5))) (-5 *1 (-1278 *5)) (-4 *5 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-834 *3))) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (-834 *3)
- (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-834 *3) "failed")))
- "failed"))
- (-5 *1 (-628 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1145))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-834 *3)) (-5 *1 (-628 *6 *3))))
+ (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-638 (-1199 *5)))
+ (-5 *1 (-1261 *5)) (-5 *4 (-1199 *5)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1205))
+ (-4 *2 (-1205)) (-5 *1 (-58 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (|has| *1 (-6 -4390))
+ (-4 *1 (-150 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *2))
+ (-4 *2 (-1205))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *2))
+ (-4 *2 (-1205))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1042))
+ (-5 *2 (-2 (|:| -4158 (-1162 *4)) (|:| |deg| (-914))))
+ (-5 *1 (-220 *4 *5)) (-5 *3 (-1162 *4)) (-4 *5 (-13 (-553) (-844)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-765))
+ (-4 *6 (-1205)) (-4 *2 (-1205)) (-5 *1 (-238 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1229 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-553)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1229 *2))
+ (-4 *4 (-1229 (-406 *3))) (-4 *5 (-341 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1205)) (-4 *2 (-1205))
+ (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1090)) (-4 *2 (-1090))
+ (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2))))
+ ((*1 *1 *1) (-5 *1 (-493)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-638 *5)) (-4 *5 (-1205))
+ (-4 *2 (-1205)) (-5 *1 (-636 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042))
+ (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2))
+ (-4 *9 (-372 *2)) (-5 *1 (-678 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-680 *5 *6 *7)) (-4 *10 (-680 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-362))
+ (-4 *3 (-171)) (-4 *1 (-718 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1205))
+ (-4 *2 (-1205)) (-5 *1 (-950 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5))
+ (-14 *6 (-638 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042))
+ (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7))
+ (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2))
+ (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1146 *5)) (-4 *5 (-1205))
+ (-4 *2 (-1205)) (-5 *1 (-1144 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1198 *5 *6 *7 *2)) (-4 *5 (-553)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-4 *2 (-1056 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1253 *5)) (-4 *5 (-1205))
+ (-4 *2 (-1205)) (-5 *1 (-1252 *5 *2)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5))
+ (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 *3)) (-4 *3 (-1229 *5))
+ (-4 *5 (-1229 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 (-1162 (-561)))) (-5 *3 (-1162 (-561)))
+ (-5 *1 (-569))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 (-1162 *1))) (-5 *3 (-1162 *1))
+ (-4 *1 (-902)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-885 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1090))
+ (-4 *5 (-1205)) (-5 *1 (-883 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-885 *4)) (-5 *3 (-638 (-1 (-112) *5))) (-4 *4 (-1090))
+ (-4 *5 (-1205)) (-5 *1 (-883 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-885 *5)) (-5 *3 (-638 (-1166)))
+ (-5 *4 (-1 (-112) (-638 *6))) (-4 *5 (-1090)) (-4 *6 (-1205))
+ (-5 *1 (-883 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1205)) (-4 *4 (-844))
+ (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 (-1 (-112) *5))) (-4 *5 (-1205)) (-4 *4 (-844))
+ (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-429 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-834 (-942 *5)))) (-4 *5 (-450))
- (-5 *2
- (-3 (-834 (-406 (-942 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-834 (-406 (-942 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-834 (-406 (-942 *5))) "failed")))
- "failed"))
- (-5 *1 (-629 *5)) (-5 *3 (-406 (-942 *5)))))
+ (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1205))
+ (-5 *2 (-315 (-561))) (-5 *1 (-931 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5)))
- (-4 *5 (-450))
- (-5 *2
- (-3 (-834 *3)
- (-2 (|:| |leftHandLimit| (-3 (-834 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-834 *3) "failed")))
- "failed"))
- (-5 *1 (-629 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-293 (-406 (-942 *6)))) (-5 *5 (-1145))
- (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-834 *3))
- (-5 *1 (-629 *6)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-747)))))
+ (-12 (-5 *3 (-1166)) (-5 *4 (-638 (-1 (-112) *5))) (-4 *5 (-1205))
+ (-5 *2 (-315 (-561))) (-5 *1 (-931 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1 (-112) (-638 *6)))
+ (-4 *6 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))) (-4 *4 (-1090))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
+ (-5 *1 (-1066 *4 *5 *6)))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224)))
+ (-5 *2 (-1255)) (-5 *1 (-256)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-114)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *3)) (-4 *3 (-1096 *5 *6 *7 *8))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-584 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1087)) (-4 *3 (-841))
- (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
- ((*1 *2 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ (-12 (-5 *4 (-607 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-1162 (-406 (-1162 *6)))) (-5 *1 (-557 *5 *6 *7))
+ (-5 *3 (-1162 *6)) (-4 *7 (-1090))))
((*1 *2 *1)
- (-12 (-4 *2 (-1200)) (-5 *1 (-863 *2 *3)) (-4 *3 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-662 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
+ (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
- ((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-62 *3)) (-14 *3 (-1163))))
- ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-69 *3)) (-14 *3 (-1163))))
- ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-72 *3)) (-14 *3 (-1163))))
- ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1251))))
- ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-396))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
- ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1247))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1247))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-1248))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1248)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224)))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+ (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1162 *11)) (-5 *6 (-638 *10))
+ (-5 *7 (-638 (-765))) (-5 *8 (-638 *11)) (-4 *10 (-844))
+ (-4 *11 (-306)) (-4 *9 (-787)) (-4 *5 (-942 *11 *9 *10))
+ (-5 *2 (-638 (-1162 *5))) (-5 *1 (-736 *9 *10 *11 *5))
+ (-5 *3 (-1162 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-942 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6))
+ (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-638 *2)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-168 (-224))) (-5 *6 (-1148))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-638 (-561))) (-5 *3 (-682 (-561))) (-5 *1 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290)))
+ ((*1 *1) (-5 *1 (-856)))
+ ((*1 *1)
+ (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787))
+ (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1075)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1090) (-34)))
+ (-4 *3 (-13 (-1090) (-34)))))
+ ((*1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1170))))
+(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-246 *5 *6))) (-4 *6 (-450))
+ (-5 *2 (-246 *5 *6)) (-14 *5 (-638 (-1166))) (-5 *1 (-626 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527))))
+ ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))))
(((*1 *2 *3)
- (-12
+ (-12 (-14 *4 (-638 (-1166))) (-14 *5 (-765))
+ (-5 *2
+ (-638
+ (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
+ (-246 *4 (-406 (-561))))))
+ (-5 *1 (-503 *4 *5))
(-5 *3
- (-2 (|:| |lfn| (-635 (-315 (-224)))) (|:| -1823 (-635 (-224)))))
- (-5 *2 (-378)) (-5 *1 (-266))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)))))
+ (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
+ (-246 *4 (-406 (-561))))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1052 (-1017 *4) (-1162 (-1017 *4)))) (-5 *3 (-856))
+ (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1015))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-4 *2 (-341 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-171))))
+ ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1146 (-1146 (-945 *5))))
+ (-5 *1 (-1261 *5)) (-5 *4 (-1146 (-945 *5))))))
+(((*1 *1) (-5 *1 (-1169))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5))
- (-14 *4 (-635 (-1163))) (-4 *5 (-450)) (-5 *1 (-623 *4 *5)))))
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-638 (-224)))
+ (-5 *1 (-466)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-246 *3 *4))
- (-14 *3 (-635 (-1163))) (-4 *4 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-558))) (-14 *3 (-635 (-1163)))
- (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1039))
- (-4 *5 (-237 (-1596 *3) (-762)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-479 *3 *4))
- (-14 *3 (-635 (-1163))) (-4 *4 (-1039)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1162 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3))
+ (-4 *3 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1198 *5 *6 *7 *8)) (-4 *5 (-553))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039))
- (-4 *3 (-1087)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1039)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1163)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 (-911))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5))
- (-14 *4 (-911)) (-14 *5 (-983 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
- (-4 *3 (-13 (-1039) (-841))) (-14 *4 (-635 (-1163)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-130))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1087)) (-4 *2 (-1039))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-550)) (-5 *1 (-615 *2 *4))
- (-4 *4 (-1222 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-699 *2)) (-4 *2 (-1039))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1039)) (-5 *1 (-726 *2 *3)) (-4 *3 (-717))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-762))) (-4 *1 (-731 *4 *5))
- (-4 *4 (-1039)) (-4 *5 (-841))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *2)) (-4 *4 (-1039))
- (-4 *2 (-841))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-762)) (-4 *1 (-843 *2)) (-4 *2 (-1039))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-762))) (-4 *1 (-939 *4 *5 *6))
- (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *6 (-841))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-939 *4 *5 *2)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *2 (-841))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-4 *2 (-939 *4 (-529 *5) *5))
- (-5 *1 (-1113 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-841))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-942 *4)) (-5 *1 (-1194 *4))
- (-4 *4 (-1039)))))
+ (-12 (-5 *2 (-638 (-1066 *3 *4 *5))) (-4 *3 (-1090))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
+ (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3))))
+ (-5 *1 (-1067 *3 *4 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1258)) (-5 *1 (-213 *4))
+ (-4 *4
+ (-13 (-844)
+ (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 (*2 $))
+ (-15 -3148 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1258)) (-5 *1 (-213 *3))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 (*2 $))
+ (-15 -3148 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-500)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1222 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-117 *3)) (-14 *3 (-561))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-173 (-561))) (-5 *1 (-759 *3)) (-4 *3 (-403))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-171))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1222 *3)) (-5 *1 (-703 *3 *2)) (-4 *3 (-1039))))
+ (-12 (-5 *2 (-173 (-406 (-561)))) (-5 *1 (-864 *3)) (-14 *3 (-561))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-681 (-573))) (-5 *1 (-573)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
-(((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-478)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-853))))
- ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-952)))))
+ (-12 (-14 *3 (-561)) (-5 *2 (-173 (-406 (-561))))
+ (-5 *1 (-865 *3 *4)) (-4 *4 (-862 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367))
- (-4 *3 (-1087)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1090)) (-5 *2 (-882 *3 *5)) (-5 *1 (-878 *3 *4 *5))
+ (-4 *3 (-1090)) (-4 *5 (-659 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-942 (-168 *4))) (-4 *4 (-171))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-942 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-171))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-942 *4)) (-4 *4 (-1039))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-942 *5)) (-5 *4 (-911)) (-4 *5 (-1039))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-942 (-168 *4)))) (-4 *4 (-550))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-406 (-942 (-168 *5)))) (-5 *4 (-911))
- (-4 *5 (-550)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-550)) (-4 *4 (-841))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-776 *5))))
+ (-12 (-4 *4 (-450))
+ (-5 *2
+ (-638
+ (-2 (|:| |eigval| (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4))))
+ (|:| |eigmult| (-765))
+ (|:| |eigvec| (-638 (-682 (-406 (-945 *4))))))))
+ (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-945 *4)))))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166))
+ (-4 *4 (-13 (-553) (-1031 (-561)) (-146))) (-5 *1 (-567 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-112))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-550)) (-4 *4 (-841))
- (-4 *4 (-606 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-911)) (-4 *5 (-550))
- (-4 *5 (-841)) (-4 *5 (-606 (-378))) (-5 *2 (-168 (-378)))
- (-5 *1 (-776 *5)))))
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-112)) (-5 *1 (-1194 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))))
+(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-362) (-839))) (-5 *2 (-417 *3))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-4 *7 (-982 *4)) (-4 *2 (-677 *7 *8 *9))
- (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6))
- (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)) (-4 *2 (-306))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *1 (-678 *3 *4 *5 *2))
- (-4 *2 (-677 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-306)) (-5 *1 (-690 *3))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1205))
+ (-4 *5 (-1205)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-765))
+ (-4 *7 (-1205)) (-4 *5 (-1205)) (-5 *2 (-239 *6 *5))
+ (-5 *1 (-238 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1205)) (-4 *5 (-1205))
+ (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1090)) (-4 *5 (-1090))
+ (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-638 *6)) (-4 *6 (-1205))
+ (-4 *5 (-1205)) (-5 *2 (-638 *5)) (-5 *1 (-636 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1205))
+ (-4 *5 (-1205)) (-5 *2 (-951 *5)) (-5 *1 (-950 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1146 *6)) (-4 *6 (-1205))
+ (-4 *3 (-1205)) (-5 *2 (-1146 *3)) (-5 *1 (-1144 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1253 *6)) (-4 *6 (-1205))
+ (-4 *5 (-1205)) (-5 *2 (-1253 *5)) (-5 *1 (-1252 *6 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205))))
((*1 *1 *1)
- (-12 (-4 *1 (-1042 *2 *3 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
- (-4 *3 (-1222 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-466)))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-679 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-777)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1127 *4 *5)) (-4 *4 (-13 (-1087) (-34)))
- (-4 *5 (-13 (-1087) (-34))) (-5 *2 (-112)) (-5 *1 (-1128 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-1039))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
+ (-5 *2 (-638 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-2 (|:| |k| (-886 *3)) (|:| |c| *4))))
+ (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-224)))) (-5 *1 (-919)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4))
+ (-4 *4 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765))))
+ ((*1 *1 *1) (-4 *1 (-232)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
+ (-4 *4 (-1229 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
- (-14 *4 *2))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+ (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
+ (-4 *3 (-1229 *2))))
+ ((*1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 (-765))) (-4 *1 (-893 *4))
+ (-4 *4 (-1090))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561))))
+ (-4 *2 (-171)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-638 (-406 *5))) (-5 *1 (-1009 *4 *5))
+ (-5 *3 (-406 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-417 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-13 (-450) (-146)))
+ (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 *1)) (-4 *1 (-429 *4))
+ (-4 *4 (-844))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4))))
- (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
- (-5 *1 (-331))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-1079 (-942 (-558)))) (-5 *2 (-329))
- (-5 *1 (-331))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-665 *3)) (-4 *3 (-1039))
- (-4 *3 (-1087)))))
+ (-12 (-4 *3 (-13 (-362) (-146)))
+ (-5 *2 (-638 (-2 (|:| -4196 (-765)) (|:| -2262 *4) (|:| |num| *4))))
+ (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3))
- (-4 *3 (-13 (-429 *4) (-992))))))
+ (-12 (-5 *3 (-561)) (|has| *1 (-6 -4381)) (-4 *1 (-403))
+ (-5 *2 (-914)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-232)) (-4 *3 (-1039)) (-4 *4 (-841)) (-4 *5 (-265 *4))
- (-4 *6 (-784)) (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1039)) (-4 *3 (-841)) (-4 *5 (-265 *3)) (-4 *6 (-784))
- (-5 *2 (-1 *1 (-762))) (-4 *1 (-252 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-762)) (-4 *1 (-265 *2)) (-4 *2 (-841)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-742)))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-97)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1087))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-1251)) (-5 *1 (-822)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-762)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2))
- (-4 *2 (-1222 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-523)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2425 (-635 *3)) (|:| -3568 (-635 *3))))
- (-5 *1 (-1201 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1025)) (-5 *1 (-739)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-834 *4)) (-5 *3 (-604 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1185) (-29 *6)))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-223 *6 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1129 *3 *4)) (-14 *3 (-911)) (-4 *4 (-362))
- (-5 *1 (-983 *3 *4)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-604 *4)) (-5 *6 (-1159 *4))
- (-4 *4 (-13 (-429 *7) (-27) (-1185)))
- (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-604 *4)) (-5 *6 (-406 (-1159 *4)))
- (-4 *4 (-13 (-429 *7) (-27) (-1185)))
- (-4 *7 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1087)))))
-(((*1 *1 *1 *1) (-5 *1 (-224)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1 (-378))) (-5 *1 (-1030))))
- ((*1 *1 *1 *1) (-4 *1 (-1126))))
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-374 *4 *2))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1229 *5))
+ (-5 *1 (-1247 *5 *2 *6 *3)) (-4 *6 (-649 *2)) (-4 *3 (-1244 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3))
- (-4 *4 (-13 (-362) (-839))) (-4 *3 (-1222 *2)))))
+ (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1080)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-841) (-550))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1000 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *1 (-579 *2)) (-4 *2 (-1028 *3))
- (-4 *2 (-362))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2))
- (-4 *2 (-13 (-429 *4) (-992) (-1185)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-992) (-1185)))
- (-4 *4 (-13 (-841) (-550))) (-5 *1 (-622 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-949)) (-5 *2 (-1163))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-949)))))
-(((*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-747)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3))))
- (-5 *1 (-588 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1145)) (-5 *5 (-679 (-224))) (-5 *6 (-224))
- (-5 *7 (-679 (-558))) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
- (-4 *4 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1087))
- (-4 *6 (-1200)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087))
- (-4 *2 (-1200)) (-5 *1 (-632 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1087))
- (-4 *5 (-1200)) (-5 *2 (-1 *5 *6)) (-5 *1 (-632 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1087))
- (-4 *2 (-1200)) (-5 *1 (-632 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6))
- (-4 *5 (-1087)) (-4 *6 (-1200)) (-5 *1 (-632 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1087)) (-4 *2 (-1200)) (-5 *1 (-632 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (-143)) (-5 *2 (-762)))))
-(((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1 *1) (-4 *1 (-752))))
-(((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1087)) (-5 *2 (-762)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
+ (-12 (-5 *3 (-638 (-534))) (-5 *2 (-1166)) (-5 *1 (-534)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-784)) (-4 *2 (-939 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2))
- (-4 *4 (-450)) (-4 *6 (-841)))))
-(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
- ((*1 *1 *1 *1) (-4 *1 (-471)))
- ((*1 *1 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
- ((*1 *2 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-873))))
- ((*1 *1 *1) (-5 *1 (-961)))
- ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-191)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1258)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-406 (-945 *5)))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5)))))
+ (-5 *1 (-1119 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146)))
+ (-5 *2 (-1155 (-638 (-315 *5)) (-638 (-293 (-315 *5)))))
+ (-5 *1 (-1119 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1205)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-1191 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-638 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-561))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-765)))))
+(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-348)) (-5 *3 (-558)) (-5 *2 (-1173 (-911) (-762))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550)))))
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2)
+ (-12 (-14 *4 (-765)) (-4 *5 (-1205)) (-5 *2 (-133))
+ (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-171))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-561))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *2 (-561)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-914))))
+ ((*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-856)))))
+(((*1 *2)
+ (-12 (-4 *1 (-348))
+ (-5 *2 (-638 (-2 (|:| -1657 (-561)) (|:| -4196 (-561))))))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-553))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042))
+ (-5 *1 (-1150 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-561)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042))
+ (-14 *4 (-1166)) (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1148)) (-5 *1 (-704)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561)))
+ (-5 *1 (-189)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1244 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+ (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-638 (-1166))) (-4 *5 (-1042))
+ (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 (-1162 *4))) (-5 *3 (-1162 *4))
+ (-4 *4 (-902)) (-5 *1 (-656 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 (-1253 (-561)))) (-5 *3 (-914)) (-5 *1 (-464)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1623 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4))
- (-4 *4 (-38 (-406 (-558)))) (-4 *4 (-1039)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 *4)) (-5 *1 (-1128 *3 *4))
- (-4 *3 (-13 (-1087) (-34))) (-4 *4 (-13 (-1087) (-34))))))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7))
+ (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205))
+ (-4 *7 (-1205)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3)))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
+ (-12 (-5 *2 (-638 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))))
+ (-12 (-5 *2 (-638 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))))
(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
(-4 *4 (-416 *3)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-27) (-429 *4)))
- (-4 *4 (-13 (-841) (-550) (-1028 (-558))))
- (-4 *7 (-1222 (-406 *6))) (-5 *1 (-546 *4 *5 *6 *7 *2))
- (-4 *2 (-341 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1205)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-765))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-607 *3)) (-4 *3 (-844))))
+ ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-743)))))
+ (|partial| -12
+ (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1238 *4 *5 *6))
+ (|:| |%expon| (-318 *4 *5 *6))
+ (|:| |%expTerms|
+ (-638 (-2 (|:| |k| (-406 (-561))) (|:| |c| *4))))))
+ (|:| |%type| (-1148))))
+ (-5 *1 (-1239 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-429 *3)))
+ (-14 *5 (-1166)) (-14 *6 *4))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-609 (-885 *3))) (-4 *3 (-879 *3))
+ (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-609 (-885 *3))) (-4 *2 (-879 *3))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-942 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1253 (-1253 (-561)))) (-5 *1 (-464)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-951 (-1110)))
+ (-5 *1 (-345 *4)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-607 *3)) (-5 *5 (-1162 *3))
+ (-4 *3 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-607 *3)) (-5 *5 (-406 (-1162 *3)))
+ (-4 *3 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-582 *3)) (-5 *1 (-557 *6 *3 *7)) (-4 *7 (-1090)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1229 *5))
+ (-4 *7 (-1229 (-406 *6))) (-5 *2 (-638 (-945 *5)))
+ (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209))
+ (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *4 (-362))
+ (-5 *2 (-638 (-945 *4))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)) (-4 *3 (-171))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-638 (-1226 *5 *4)))
+ (-5 *1 (-1104 *4 *5)) (-5 *3 (-1226 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *10))
- (-5 *1 (-616 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1059 *5 *6 *7 *8))
- (-4 *10 (-1096 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *10))
+ (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8))
+ (-4 *10 (-1099 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6)))
- (-5 *1 (-620 *5 *6))))
+ (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6)))
+ (-5 *1 (-623 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-635 (-1163)))
+ (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-638 (-1166)))
(-5 *2
- (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6)))))
- (-5 *1 (-620 *5 *6))))
+ (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6)))))
+ (-5 *1 (-623 *5 *6))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1017 *5 *6 *7 *8))) (-5 *1 (-1017 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6)))
- (-5 *1 (-1036 *5 *6))))
+ (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-638 (-1166))) (-5 *2 (-638 (-1039 *5 *6)))
+ (-5 *1 (-1039 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-635 (-1133 *5 *6 *7 *8))) (-5 *1 (-1133 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1193 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2475 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-362)) (-4 *7 (-1222 *6))
- (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6)))
- (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4))))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200))
- (-5 *2 (-635 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-762)) (-5 *3 (-933 *4)) (-4 *1 (-1121 *4))
- (-4 *4 (-1039))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-762)) (-5 *4 (-933 (-224))) (-5 *2 (-1251))
- (-5 *1 (-1248)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-635 (-635 *7)))
- (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-635 *7))))
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1198 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-797))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1263)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
- (-4 *7 (-841)) (-4 *8 (-939 *5 *6 *7)) (-5 *2 (-635 (-635 *8)))
- (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
-(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
+ (-12 (-5 *4 (-561)) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3))
+ (-4 *3 (-1042))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1270 *4 *3))
+ (-4 *3 (-1042)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-638 *1)) (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-5 *1 (-582 *2)) (-4 *2 (-1031 *3))
+ (-4 *2 (-362))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2))
+ (-4 *2 (-13 (-429 *4) (-995) (-1190)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-995) (-1190)))
+ (-4 *4 (-13 (-844) (-553))) (-5 *1 (-625 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-952)) (-5 *2 (-1166))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-952)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092 *4)) (-4 *4 (-1090)) (-5 *2 (-1 *4))
+ (-5 *1 (-1010 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084 (-561))) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3)) (-4 *3 (-1090))
+ (-4 *3 (-1205)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1222 *6))
- (-4 *6 (-13 (-27) (-429 *5)))
- (-4 *5 (-13 (-841) (-550) (-1028 (-558)))) (-4 *8 (-1222 (-406 *7)))
- (-5 *2 (-579 *3)) (-5 *1 (-546 *5 *6 *7 *8 *3))
- (-4 *3 (-341 *6 *7 *8)))))
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-638 (-1 *6 (-638 *6))))
+ (-4 *5 (-38 (-406 (-561)))) (-4 *6 (-1244 *5)) (-5 *2 (-638 *6))
+ (-5 *1 (-1246 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5))
+ (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-1266 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1266 *5 *6 *7 *8)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-378))) (-5 *1 (-262))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-107 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1205)) (-5 *2 (-1258)))))
+(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1237 *4))
- (-4 *4 (-38 (-406 (-558))))
- (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1239 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
+ (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5))
+ (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1090)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3))
+ (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4390)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1196)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-669 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-762)) (-4 *1 (-230 *4))
- (-4 *4 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-762))))
- ((*1 *1 *1) (-4 *1 (-232)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4))
- (-4 *4 (-1222 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3))
- (-4 *3 (-1222 *2))))
- ((*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-762))) (-4 *1 (-890 *4))
- (-4 *4 (-1087))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-890 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *1 (-890 *3)) (-4 *3 (-1087))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1087)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-372 *2)) (-4 *2 (-1200))
- (-4 *2 (-841))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4384))
- (-4 *1 (-372 *3)) (-4 *3 (-1200)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
+ (-12 (-5 *3 (-1253 (-315 (-224))))
+ (-5 *2
+ (-2 (|:| |additions| (-561)) (|:| |multiplications| (-561))
+ (|:| |exponentiations| (-561)) (|:| |functionCalls| (-561))))
+ (-5 *1 (-304)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-638 *3)) (-4 *3 (-1039))
- (-5 *1 (-705 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-827 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4)))
- (-5 *2 (-2 (|:| |num| (-1246 *4)) (|:| |den| *4))))))
+ (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4))
+ (-14 *3 (-914)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-1100)) (-5 *3 (-561)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
- ((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4374)) (-4 *1 (-403))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911))))
- ((*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-1143 (-558))))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-362)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 (-406 *3)))
- (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-362)) (-4 *4 (-1222 *2))
- (-4 *5 (-1222 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6))
- (-4 *6 (-341 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-362)) (-4 *3 (-1222 *2)) (-4 *4 (-1222 (-406 *3)))
- (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
- (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362))
- (-4 *1 (-334 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-638 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-417 *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-1039)) (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
+ (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450))
+ (-5 *2
+ (-2 (|:| |dpolys| (-638 (-246 *5 *6)))
+ (|:| |coords| (-638 (-561)))))
+ (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
- (-5 *1 (-978 *3 *4 *5 *6 *7))))
+ (|partial| -12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-667 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-5 *2 (-635 *7)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
- (-5 *1 (-1094 *3 *4 *5 *6 *7)))))
-(((*1 *1 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-638 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914))))
+ ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-885 *3)) (|:| |den| (-885 *3))))
+ (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |mval| (-679 *3)) (|:| |invmval| (-679 *3))
- (|:| |genIdeal| (-502 *3 *4 *5 *6))))
- (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-851)) (-5 *3 (-128)) (-5 *2 (-762)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *3 (-635 (-558)))
- (-5 *1 (-873)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
+ (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3))))
+ (-5 *1 (-813 *3)) (-4 *3 (-844)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3))
- (-4 *3 (-1222 *4)))))
+ (|partial| -12 (-4 *2 (-1090)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1090)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-550) (-146)))
- (-5 *2 (-2 (|:| -1524 *3) (|:| -1540 *3))) (-5 *1 (-1216 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-1185) (-949) (-29 *4))))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-112))
- (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+ (-12 (-5 *4 (-682 (-406 (-945 (-561)))))
+ (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024))
+ (-5 *3 (-315 (-561))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1039)) (-4 *3 (-1222 *4)) (-4 *2 (-1237 *4))
- (-5 *1 (-1240 *4 *3 *5 *2)) (-4 *5 (-646 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *1) (-5 *1 (-1051))))
+ (-12 (-5 *3 (-638 (-607 *5))) (-4 *4 (-844)) (-5 *2 (-607 *5))
+ (-5 *1 (-570 *4 *5)) (-4 *5 (-429 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042))
+ (-5 *1 (-847 *5 *2)) (-4 *2 (-846 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-751)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914))))
+ ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3711 (-638 *1))))
+ (-4 *1 (-366 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-451 *3 *4 *5 *6))
+ (|:| -3711 (-638 (-451 *3 *4 *5 *6)))))
+ (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))
- (-4 *2 (-450))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-1222 (-558))) (-5 *2 (-635 (-558)))
- (-5 *1 (-484 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-450))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)) (-4 *3 (-450)))))
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 *3 (-638 *1)))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *1)
+ (-12 (-4 *1 (-403)) (-2159 (|has| *1 (-6 -4381)))
+ (-2159 (|has| *1 (-6 -4373)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-844))))
+ ((*1 *1) (-4 *1 (-838))) ((*1 *1 *1 *1) (-4 *1 (-844)))
+ ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1159 *9)) (-5 *4 (-635 *7)) (-4 *7 (-841))
- (-4 *9 (-939 *8 *6 *7)) (-4 *6 (-784)) (-4 *8 (-306))
- (-5 *2 (-635 (-762))) (-5 *1 (-733 *6 *7 *8 *9)) (-5 *5 (-762)))))
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -4158 *4))) (-5 *5 (-765))
+ (-4 *4 (-942 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-447 *6 *7 *8 *4)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163))
- (-5 *2 (-635 *4)) (-5 *1 (-1101 *4 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-174))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-109)) (-5 *1 (-1072)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6))
- (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362))
- (-4 *4 (-1039)) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4)))))
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-561)))
+ (-5 *2 (-1253 (-406 (-561)))) (-5 *1 (-1280 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-572 *4 *2))
+ (-4 *2 (-13 (-1190) (-952) (-1129) (-29 *4))))))
+(((*1 *1 *1) (-5 *1 (-224)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-5 *1 (-378))) ((*1 *1) (-5 *1 (-378))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4))
+ (-4 *2 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1205))
+ (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1229 (-406 (-561)))) (-5 *1 (-906 *3 *2))
+ (-4 *2 (-1229 (-406 *3))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1 *1) (-4 *1 (-491)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1162 *1)) (-5 *3 (-1166)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-553)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-553))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-466)) (-5 *3 (-635 (-262))) (-5 *1 (-1247))))
- ((*1 *1 *1) (-5 *1 (-1247))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209))
+ (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3))
+ (-4 *3 (-1056 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-638 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-638 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3))
+ (-4 *3 (-1056 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-2 (|:| -2314 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-436)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)))))
+ (-12 (-5 *2 (-638 (-1162 (-561)))) (-5 *1 (-190)) (-5 *3 (-561)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1222 *4)) (-5 *1 (-800 *4 *2 *3 *5))
- (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2))
- (-4 *5 (-646 (-406 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-112))))
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-813 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-837)))))
-(((*1 *2)
- (-12 (-4 *3 (-1204)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
- (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *4 (-1222 *3))
- (-5 *2
- (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-679 *3))))
- (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1222 (-558)))
- (-5 *2
- (-2 (|:| -2743 (-679 (-558))) (|:| |basisDen| (-558))
- (|:| |basisInv| (-679 (-558)))))
- (-5 *1 (-759 *3 *4)) (-4 *4 (-408 (-558) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4))
- (-5 *2
- (-2 (|:| -2743 (-679 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-679 *4))))
- (-5 *1 (-975 *3 *4 *5 *6)) (-4 *6 (-715 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-348)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 *4))
- (-5 *2
- (-2 (|:| -2743 (-679 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-679 *4))))
- (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
+ (-12 (-4 *2 (-840)) (-5 *1 (-1276 *3 *2)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| -3455 *3) (|:| |gap| (-762)) (|:| -2263 (-773 *3))
- (|:| -1548 (-773 *3))))
- (-5 *1 (-773 *3)) (-4 *3 (-1039))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-784)) (-4 *3 (-841))
- (-5 *2
- (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -2263 *1)
- (|:| -1548 *1)))
- (-4 *1 (-1053 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2
- (-2 (|:| -3455 *1) (|:| |gap| (-762)) (|:| -2263 *1)
- (|:| -1548 *1)))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *1 *2 *3)
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-635
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-558)))))
- (-4 *2 (-550)) (-5 *1 (-417 *2))))
- ((*1 *2 *3)
+ (-5 *2
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *1 (-262))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-561)) (-5 *4 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255))))
+ ((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |contp| (-558))
- (|:| -3381 (-635 (-2 (|:| |irr| *4) (|:| -2074 (-558)))))))
- (-4 *4 (-1222 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-875 *3 *4 *5))
- (-4 *3 (-1087)) (-4 *5 (-656 *4))))
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *2 (-1258)) (-5 *1 (-1255))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-879 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-168 (-558))) (-5 *2 (-112)) (-5 *1 (-444))))
- ((*1 *2 *3)
(-12
- (-5 *3
- (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
- (-246 *4 (-406 (-558)))))
- (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112))
- (-5 *1 (-503 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-543))))
- ((*1 *2 *1) (-12 (-4 *1 (-1204)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-527)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-5 *2 (-1246 *3)) (-5 *1 (-703 *3 *4))
- (-4 *4 (-1222 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *2 (-1025)) (-5 *1 (-742)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-5 *2 (-762))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
- (-5 *2 (-762))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-726 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-717)))))
-(((*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1249)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+ (-5 *2
+ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3917 (-224))
+ (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
+ (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
+ (-5 *1 (-1255))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-885 *4))
+ (-4 *4 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378))))
- (-5 *1 (-794)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-1145)) (-5 *1 (-979))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1081 *4)) (-4 *4 (-1200))
- (-5 *1 (-1079 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-933 (-224)) (-933 (-224)))) (-5 *1 (-262))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362))
- (-5 *2 (-679 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1246 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-679 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-1246 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1222 *4)) (-5 *2 (-1246 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171))
- (-4 *5 (-1222 *4)) (-5 *2 (-679 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
- (-5 *2 (-1246 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171))
- (-5 *2 (-679 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-679 *5))) (-5 *3 (-679 *5)) (-4 *5 (-362))
- (-5 *2 (-1246 *5)) (-5 *1 (-1073 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1270 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-171))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-810 *2)) (-4 *2 (-841))))
+ (-12 (-4 *4 (-13 (-553) (-844)))
+ (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190)))
+ (-5 *1 (-595 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-995) (-1190))))))
+(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-306))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-561)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-810 *3)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-911))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1039))
- (-5 *1 (-1147 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-168 (-224))))
- (-5 *2 (-1025)) (-5 *1 (-745)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
- (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))))
+ (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1090)))))
+(((*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042))))
+ ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-816)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-561)) (-5 *1 (-906 *4 *3))
+ (-4 *3 (-1229 (-406 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| -4188 (-406 *5)) (|:| |poly| *3)))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
+ (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-561)))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -2356 (-635 (-853))) (|:| -2707 (-635 (-853)))
- (|:| |presup| (-635 (-853))) (|:| -1810 (-635 (-853)))
- (|:| |args| (-635 (-853)))))
- (-5 *1 (-1163)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-939 *3 *5 *4))
- (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-841) (-606 (-1163))))
- (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-4 *2 (-1087)) (-5 *1 (-670 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-112))
- (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-771 *4 (-855 *5)))) (-4 *4 (-450))
- (-14 *5 (-635 (-1163))) (-5 *2 (-112)) (-5 *1 (-620 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-864))
- (-5 *5 (-911)) (-5 *6 (-635 (-262))) (-5 *2 (-466)) (-5 *1 (-1250))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-466))
- (-5 *1 (-1250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-635 (-262)))
- (-5 *2 (-466)) (-5 *1 (-1250)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-1222 *4))
- (-4 *5 (-1222 (-406 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112))))
+ (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-417 *3)) (-4 *3 (-543))
+ (-4 *3 (-553))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-561)))))
((*1 *2 *1)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-112)) (-5 *1 (-882 *4))
- (-4 *4 (-1087)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1039))
- (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4))))
- ((*1 *1 *1) (-4 *1 (-543)))
- ((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-4 *1 (-985 *3)) (-4 *3 (-1200)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-1197 *3)) (-4 *3 (-1200))))
+ (|partial| -12 (-4 *1 (-791 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-561)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-992))
- (-4 *2 (-1039)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-558) "failed") *5)) (-4 *5 (-1039))
- (-5 *2 (-558)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1222 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039))
- (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-558) "failed") *4)) (-4 *4 (-1039))
- (-5 *2 (-558)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-558))) (-5 *1 (-304)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-604 *3))
- (-4 *3 (-13 (-429 *5) (-27) (-1185)))
- (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3)))
- (-5 *1 (-560 *5 *3 *6)) (-4 *6 (-1087)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-738)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1145)) (-5 *4 (-168 (-224))) (-5 *5 (-558))
- (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))
- (-5 *2 (-635 (-2 (|:| -1464 *1) (|:| -3229 (-635 *7)))))
- (-5 *3 (-635 *7)) (-4 *1 (-1193 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-5 *1 (-129))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-4 *3 (-890 *5)) (-5 *2 (-1246 *3))
- (-5 *1 (-682 *5 *3 *6 *4)) (-4 *6 (-372 *3))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7)))
- (-4 *7 (-1222 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-568 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))))
-(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-1018 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-635 (-679 *3))) (-4 *3 (-1039)) (-5 *1 (-1018 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-91 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
- (|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *2)
- (-12 (-4 *1 (-348))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *1 *1 *1) (-5 *1 (-129))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163))) (-4 *6 (-450))
- (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362))
- (-4 *5 (-13 (-362) (-839))))))
-(((*1 *1) (-4 *1 (-348))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -1894 "void")))
- (-5 *1 (-436)))))
-(((*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784))
- (-5 *2
- (-635
- (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7))
- (|:| |wcond| (-635 (-942 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *4))))))))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1159 *6)) (-5 *3 (-558)) (-4 *6 (-306)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *1 *1) (-5 *1 (-224)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1 *1) (-5 *1 (-378))) ((*1 *1) (-5 *1 (-378))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2862 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1246 (-1246 (-558)))) (-5 *3 (-911)) (-5 *1 (-464)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-450)))))
-(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1204)) (-4 *5 (-1222 *3)) (-4 *6 (-1222 (-406 *5)))
- (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1261 (-1163) *3)) (-4 *3 (-1039)) (-5 *1 (-1268 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1261 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *1 (-1270 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-573)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689))))
- ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-635 *3))))
+ (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-827 *3)) (-4 *3 (-543))
+ (-4 *3 (-1090))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
- (-5 *2 (-635 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4))
- (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1005 *4 *5)) (-5 *3 (-406 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-762)))
- (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1222 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5))
- (-4 *3 (-1222 *4))
- (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
-(((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-543))))
- ((*1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *6)) (-4 *1 (-939 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762))))
+ (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-837 *3)) (-4 *3 (-543))
+ (-4 *3 (-1090))))
((*1 *2 *1)
- (-12 (-4 *1 (-939 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-762)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-729)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558)))
- (-5 *2 (-1246 (-406 (-558)))) (-5 *1 (-1273 *4)))))
+ (|partial| -12 (-4 *1 (-990 *3)) (-4 *3 (-171)) (-4 *3 (-543))
+ (-5 *2 (-406 (-561)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-406 (-561))) (-5 *1 (-1001 *3))
+ (-4 *3 (-1031 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-679 *4))) (-4 *4 (-171))
- (-5 *2 (-1246 (-679 (-942 *4)))) (-5 *1 (-188 *4)))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-561)) (-5 *3 (-765)) (-5 *1 (-558)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4)))))
- (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-942 *4)))
- (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3)))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-844)) (-4 *3 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-832)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-831))))
- ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-635 (-378))) (-5 *5 (-635 (-834 (-378))))
- (-5 *6 (-635 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1025))
- (-5 *1 (-831))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378)))
- (-5 *5 (-635 (-834 (-378)))) (-5 *2 (-1025)) (-5 *1 (-831))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-378))) (-5 *2 (-1025))
- (-5 *1 (-831))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378)))
- (-5 *2 (-1025)) (-5 *1 (-831)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-855 *5))) (-14 *5 (-635 (-1163))) (-4 *6 (-450))
- (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7))
- (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4))))
+ (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-329))) (-5 *1 (-329)))))
+(((*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561))))
+ ((*1 *1 *1) (-5 *1 (-1110))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-914)) (-4 *5 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
+(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-816)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025))
- (-5 *1 (-747)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-112))
- (-5 *1 (-262)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3)))))
-(((*1 *2)
- (-12 (-14 *4 (-762)) (-4 *5 (-1200)) (-5 *2 (-133))
- (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-171))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
- (-5 *2 (-558)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-970 *3)) (-4 *3 (-1039)) (-5 *2 (-911))))
- ((*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-362)) (-5 *2 (-133)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *2 (-635 *3)) (-5 *1 (-967 *4 *5 *6 *3))
- (-4 *3 (-1053 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-156)))
- ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
- (-5 *2
- (-2 (|:| |mval| (-679 *4)) (|:| |invmval| (-679 *4))
- (|:| |genIdeal| (-502 *4 *5 *6 *7))))
- (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-1134 *3)))))
+ (-12 (-5 *2 (-914)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042))
+ (-4 *4 (-1205))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
+ (-4 *5 (-237 (-3498 *3) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *5))
+ (-2 (|:| -2413 *2) (|:| -4196 *5))))
+ (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844))
+ (-4 *7 (-942 *4 *5 (-858 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3))
- (-4 *3 (-1087)))))
-(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-762)))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-372 *3)) (-4 *3 (-1200)) (-4 *3 (-841)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1200))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-834 (-378))) (-5 *2 (-834 (-224))) (-5 *1 (-304)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290)))
- ((*1 *1) (-5 *1 (-853)))
- ((*1 *1)
- (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784))
- (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1072)))
- ((*1 *1)
- (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34)))))
- ((*1 *1) (-5 *1 (-1166))) ((*1 *1) (-5 *1 (-1167))))
-(((*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-558))))
- ((*1 *1 *1) (-5 *1 (-1107))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-378))))
-(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))))
-(((*1 *1 *1) (-5 *1 (-1051))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-810 *3)) (|:| |rm| (-810 *3))))
- (-5 *1 (-810 *3)) (-4 *3 (-841))))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1246 *4))
- (-5 *1 (-805 *4 *3)) (-4 *3 (-646 *4)))))
+ (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *3 (-945 (-561)))
+ (-5 *1 (-329))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-945 (-561)))) (-5 *1 (-329)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1145)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-262)))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))))
-(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
- (-4 *2 (-1222 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)) (-4 *3 (-171))))
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *2 (-550)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1222 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-171)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))
- (-4 *2 (-550))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-550)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039))
- (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-550))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-762)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-550))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-550))
- (-5 *1 (-959 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039))
- (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-550))))
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-638 *7) (-638 *7))) (-5 *2 (-638 *7))
+ (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561))))
+ ((*1 *1 *1 *1) (-5 *1 (-1110))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-682 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1039)) (-4 *2 (-677 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1222 *4)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1219 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1163))
- (-4 *5 (-362)) (-5 *1 (-913 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1159 *5))
- (-5 *1 (-913 *4 *5)) (-14 *4 (-1163))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-635 *6)) (-5 *4 (-762)) (-4 *6 (-362))
- (-5 *2 (-406 (-942 *6))) (-5 *1 (-1040 *5 *6)) (-14 *5 (-1163)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112))))
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3))
+ (-4 *3 (-1229 (-406 *4))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-435)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1229 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-390)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-4 *4 (-550)) (-4 *5 (-1222 *4))
- (-5 *2 (-2 (|:| -4297 (-615 *4 *5)) (|:| -2477 (-406 *5))))
- (-5 *1 (-615 *4 *5)) (-5 *3 (-406 *5))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4))
- (-14 *3 (-911)) (-4 *4 (-1039))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-450)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1222 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2)))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-561))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-864 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-561))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-561)) (-14 *3 *2) (-5 *1 (-865 *3 *4))
+ (-4 *4 (-862 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-561)) (-5 *1 (-865 *2 *3)) (-4 *3 (-862 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-561)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-1244 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1244 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-638 (-112))))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1090))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-561))))
+ ((*1 *1 *1 *1) (-5 *1 (-1110))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-582 *3)) (-5 *1 (-554 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
+(((*1 *1) (-5 *1 (-1075))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-888))
(-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-112)) (-5 *1 (-299)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *8 (-1053 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-635 *8))
- (|:| |towers| (-635 (-1017 *5 *6 *7 *8)))))
- (-5 *1 (-1017 *5 *6 *7 *8)) (-5 *3 (-635 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *8 (-1053 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-635 *8))
- (|:| |towers| (-635 (-1133 *5 *6 *7 *8)))))
- (-5 *1 (-1133 *5 *6 *7 *8)) (-5 *3 (-635 *8)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762)))
- (-5 *1 (-894 *4)))))
+ (-2 (|:| |pde| (-638 (-315 (-224))))
+ (|:| |constraints|
+ (-638
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-765)) (|:| |boundaryType| (-561))
+ (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
+ (|:| |tol| (-224))))
+ (-5 *2 (-1028)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-1223 *3 *2))
+ (-4 *2 (-1229 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145)))))
- (-5 *2 (-1025)) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -4131 (-378)) (|:| -3179 (-1145))
- (|:| |explanations| (-635 (-1145))) (|:| |extra| (-1025))))
- (-5 *2 (-1025)) (-5 *1 (-304)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1540 *6) (|:| |sol?| (-112))) (-558)
- *6))
- (-4 *6 (-362)) (-4 *7 (-1222 *6))
- (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6)))
- (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1251)) (-5 *1 (-390))))
- ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-390)))))
+ (-12 (-4 *4 (-348)) (-5 *2 (-951 (-1162 *4))) (-5 *1 (-356 *4))
+ (-5 *3 (-1162 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1146 *3))) (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-329)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-406 (-561))))
+ (-5 *2 (-2 (|:| -4172 (-1146 *4)) (|:| -2968 (-1146 *4))))
+ (-5 *1 (-1152 *4)) (-5 *3 (-1146 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
- (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
- (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-839)))
- (-5 *2 (-635 (-2 (|:| -3381 (-635 *3)) (|:| -3851 *5))))
- (-5 *1 (-180 *5 *3)) (-4 *3 (-1222 (-168 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-362) (-839)))
- (-5 *2 (-635 (-2 (|:| -3381 (-635 *3)) (|:| -3851 *4))))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-1222 (-168 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-679 *4)) (-4 *5 (-646 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *3 (-1222 *4)) (-5 *1 (-800 *4 *3 *2 *5)) (-4 *2 (-646 *3))
- (-4 *5 (-646 (-406 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-406 *5))
- (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-1222 *4))
- (-5 *1 (-800 *4 *5 *2 *6)) (-4 *2 (-646 *5)) (-4 *6 (-646 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1087)))))
+ (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-914)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *4 (-1163))
- (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-299)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-810 *4)) (-4 *4 (-841)) (-5 *2 (-112))
- (-5 *1 (-662 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-489)))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-450)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-561)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844)))
+ (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844))
+ (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1162 *8)) (-5 *4 (-638 *6)) (-4 *6 (-844))
+ (-4 *8 (-942 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042))
+ (-5 *2 (-638 (-765))) (-5 *1 (-320 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-914))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
+ (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-553)) (-5 *2 (-561)) (-5 *1 (-618 *3 *4))
+ (-4 *4 (-1229 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *3 (-844)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *2 (-786))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1244 *3))
+ (-5 *2 (-561))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1213 *3))
+ (-5 *2 (-406 (-561)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-827 (-914)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-765)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1042))
+ (-4 *2 (-1244 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1251 *3)) (-4 *3 (-23)) (-4 *3 (-1205)))))
(((*1 *2)
(-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
(-4 *3 (-366 *4))))
((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (|has| *1 (-6 -4384)) (-4 *1 (-372 *3))
- (-4 *3 (-1200)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *4))
- (-4 *4 (-1200)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1200)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-596 *3 *2)) (-4 *3 (-1087))
- (-4 *2 (-1200)))))
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-638 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 *6)) (-4 *5 (-1204)) (-4 *6 (-1222 *5))
- (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *3) (|:| |radicand| *6)))
- (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-762)) (-4 *7 (-1222 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
- (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+ (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834))))
+ ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-638 (-378))) (-5 *5 (-638 (-837 (-378))))
+ (-5 *6 (-638 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1028))
+ (-5 *1 (-834))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378)))
+ (-5 *5 (-638 (-837 (-378)))) (-5 *2 (-1028)) (-5 *1 (-834))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-378))) (-5 *2 (-1028))
+ (-5 *1 (-834))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378)))
+ (-5 *2 (-1028)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2)
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-841))
- (-4 *8 (-306)) (-4 *6 (-784)) (-4 *9 (-939 *8 *6 *7))
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553)) (-4 *7 (-787))
+ (-4 *8 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2735 (-638 *9))))
+ (-5 *3 (-638 *9)) (-4 *1 (-1198 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2735 (-638 *8))))
+ (-5 *3 (-638 *8)) (-4 *1 (-1198 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1092 (-765))) (-5 *6 (-765))
(-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-635 (-2 (|:| -3939 (-1159 *9)) (|:| -1857 (-558)))))))
- (-5 *1 (-733 *6 *7 *8 *9)) (-5 *3 (-1159 *9)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1246 *5)) (-5 *3 (-762)) (-5 *4 (-1107)) (-4 *5 (-348))
- (-5 *1 (-526 *5)))))
+ (-2 (|:| |contp| (-561))
+ (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561)))))))
+ (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1229 *3)) (-5 *1 (-398 *3 *2))
+ (-4 *3 (-13 (-362) (-146))))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-550)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
- (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6)))
- (-4 *8 (-341 *5 *6 *7))
- (-4 *4 (-13 (-841) (-550) (-1028 (-558))))
- (-5 *2 (-2 (|:| -2532 (-762)) (|:| -1341 *8)))
- (-5 *1 (-901 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6))
- (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4)))
- (-4 *6 (-341 (-406 (-558)) *4 *5))
- (-5 *2 (-2 (|:| -2532 (-762)) (|:| -1341 *6)))
- (-5 *1 (-902 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1200)) (-4 *2 (-1039))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-853))))
- ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-933 (-224))) (-5 *2 (-224)) (-5 *1 (-1196))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-1039)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1145)))))
+ (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2))
- (-4 *2 (-1200)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1099)) (-4 *3 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-429 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
- (-4 *3 (-1087))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-635 *1)) (-4 *1 (-939 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
- (-4 *7 (-939 *6 *4 *5)) (-5 *2 (-635 *3))
- (-5 *1 (-940 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $))
- (-15 -3327 (*7 $))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-679 (-558))) (-5 *5 (-112)) (-5 *7 (-679 (-224)))
- (-5 *3 (-558)) (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-745)))))
+ (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1222 (-406 *2)))
- (-4 *2 (-1222 *5)) (-5 *1 (-214 *5 *2 *6 *3))
- (-4 *3 (-341 *5 *2 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-240))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-635 (-1145))) (-5 *3 (-558)) (-5 *4 (-1145))
- (-5 *1 (-240))))
- ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-329)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-839)) (-5 *1 (-302 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-964)))))
-(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-820)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 (-942 (-558)))) (-5 *4 (-635 (-1163)))
- (-5 *2 (-635 (-635 (-378)))) (-5 *1 (-1013)) (-5 *5 (-378))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-14 *5 (-635 (-1163))) (-5 *2 (-635 (-635 (-1014 (-406 *4)))))
- (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-635 (-1014 (-406 *5))))) (-5 *1 (-1272 *5 *6 *7))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-942 *4)))
- (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-635 (-1014 (-406 *4))))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-635 (-1163))) (-5 *2 (-635 (-1036 *5 *6)))
- (-5 *1 (-620 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1222 *5))
- (-4 *7 (-1222 (-406 *6))) (-4 *8 (-341 *5 *6 *7))
- (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-112))
- (-5 *1 (-901 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6))
- (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4)))
- (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-902 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-911)) (-5 *1 (-440 *2))
- (-4 *2 (-1222 (-558)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-911)) (-5 *4 (-762)) (-5 *1 (-440 *2))
- (-4 *2 (-1222 (-558)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *1 (-440 *2))
- (-4 *2 (-1222 (-558)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762))
- (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-911)) (-5 *4 (-635 (-762))) (-5 *5 (-762))
- (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1222 (-558)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-417 *2)) (-4 *2 (-1222 *5))
- (-5 *1 (-442 *5 *2)) (-4 *5 (-1039)))))
+ (-12 (-5 *3 (-638 *6)) (-5 *4 (-1166)) (-4 *6 (-429 *5))
+ (-4 *5 (-844)) (-5 *2 (-638 (-607 *6))) (-5 *1 (-570 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-553))))
+ ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-224)) (-5 *5 (-558)) (-5 *2 (-1195 *3))
- (-5 *1 (-781 *3)) (-4 *3 (-964))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *4 (-112))
- (-5 *1 (-1195 *2)) (-4 *2 (-964)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+ (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1199 *6))
+ (-5 *2 (-1 (-1146 *4) (-1146 *4))) (-5 *1 (-1261 *6))
+ (-5 *5 (-1146 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-753)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-856))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-362))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 *5))) (-4 *5 (-1042))
+ (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5))
+ (-4 *7 (-237 *3 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1159 *6)) (-4 *6 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-1159 *7)) (-5 *1 (-320 *4 *5 *6 *7))
- (-4 *7 (-939 *6 *4 *5)))))
+ (-12 (-4 *4 (-787))
+ (-4 *5 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *6 (-553))
+ (-5 *2 (-2 (|:| -2090 (-945 *6)) (|:| -3692 (-945 *6))))
+ (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-942 (-406 (-945 *6)) *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112))
+ (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *1 *1) (-4 *1 (-553))))
(((*1 *2 *3)
- (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1))
- (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841))))
+ (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2553 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1220 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-644 *3)) (-4 *3 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-306))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
+ (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-445 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-638 *7)) (-5 *3 (-1148)) (-4 *7 (-942 *4 *5 *6))
+ (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-445 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
((*1 *2 *3)
- (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))))
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-561)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306))
+ (-4 *9 (-942 *8 *6 *7))
+ (-5 *2 (-2 (|:| -4158 (-1162 *9)) (|:| |polval| (-1162 *8))))
+ (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1162 *9)) (-5 *4 (-1162 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3))
- (-4 *3 (-13 (-1185) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-1028 (-558)) (-146)))
- (-5 *2 (-579 (-406 (-942 *5)))) (-5 *1 (-564 *5))
- (-5 *3 (-406 (-942 *5))))))
+ (-12 (-5 *4 (-638 *3)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-447 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1159 *3)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
-(((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))))
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *5 (-1145))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1025))
- (-5 *1 (-741)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-765)) (-5 *1 (-52)))))
+ (-12 (-5 *3 (-638 (-479 *4 *5))) (-14 *4 (-638 (-1166)))
+ (-4 *5 (-450))
+ (-5 *2
+ (-2 (|:| |gblist| (-638 (-246 *4 *5)))
+ (|:| |gvlist| (-638 (-561)))))
+ (-5 *1 (-626 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-172)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
+(((*1 *1) (-5 *1 (-143)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-262)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166)) (-5 *2 (-534)) (-5 *1 (-533 *4))
+ (-4 *4 (-1205)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-550))
- (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-1217 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6))
- (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-942 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6))
- (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))))
+ (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1623 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-558))
- (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558)))))))
- (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
+ (-12 (-5 *4 (-112)) (-4 *5 (-348))
(-5 *2
- (-2 (|:| |contp| (-558))
- (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558)))))))
- (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *1) (-12 (-5 *2 (-813)) (-5 *1 (-812)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| -2935 (-417 *3)) (|:| |special| (-417 *3))))
- (-5 *1 (-718 *5 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1185)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
- ((*1 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
+ (-2 (|:| |cont| *5)
+ (|:| -4282 (-638 (-2 (|:| |irr| *3) (|:| -2449 (-561)))))))
+ (-5 *1 (-215 *5 *3)) (-4 *3 (-1229 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
+ (-12 (-4 *4 (-553)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1222 *5)) (-4 *5 (-362))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-568 *5 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-783)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))))
-(((*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-635
- (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *2))
- (|:| |logand| (-1159 *2)))))
- (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-362)) (-5 *1 (-579 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-1039))))
- ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1039)) (-5 *1 (-884 *2 *3)) (-4 *2 (-1222 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
-(((*1 *1) (-5 *1 (-572)))
- ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-854))))
- ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-854))))
+ (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531)))
+ (-5 *1 (-531))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-853)) (-5 *2 (-1251)) (-5 *1 (-854))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1143 *4))
- (-4 *4 (-1087)) (-4 *4 (-1200)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558)))
- (-5 *1 (-189)))))
+ (-12 (-5 *4 (-947)) (-4 *3 (-1090)) (-5 *2 (-684 *1))
+ (-4 *1 (-761 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1084 (-837 (-224)))) (-5 *1 (-304)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *4 (-1222 *3))
- (-5 *2
- (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-679 *3))))
- (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-1222 *3))
- (-5 *2
- (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-679 *3))))
- (-5 *1 (-759 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3))
- (-5 *2
- (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-679 *3))))
- (-5 *1 (-975 *4 *3 *5 *6)) (-4 *6 (-715 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *3 (-1222 *4)) (-4 *5 (-1222 *3))
+ (-12 (-4 *4 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-837 (-224)))) (-5 *4 (-224)) (-5 *2 (-638 *4))
+ (-5 *1 (-266)))))
+(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-823)))))
+(((*1 *2 *3) (-12 (-5 *3 (-406 (-561))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4))
(-5 *2
- (-2 (|:| -2743 (-679 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-679 *3))))
- (-5 *1 (-1255 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5))
+ (|:| |c2| (-406 *5)) (|:| |deg| (-765))))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-885 (-561))))
+ (-4 *5 (-879 (-561)))
+ (-4 *5 (-13 (-844) (-1031 (-561)) (-450) (-634 (-561))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-564 *5 *3)) (-4 *3 (-624))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *2 (-13 (-1090) (-34))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1222 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-975 *4 *2 *3 *5))
- (-4 *4 (-348)) (-4 *5 (-715 *2 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1071 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-679 *7)) (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-2 (|:| -2176 (-1163)) (|:| -1925 (-436)))))
- (-5 *1 (-1167)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-576)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-911))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-911))
- (-14 *4 (-911)))))
+ (-12 (-5 *3 (-945 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5))
+ (-5 *1 (-937 *4 *5)) (-14 *4 (-638 (-1166))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-638 (-1166))) (-5 *1 (-209))
+ (-5 *3 (-1166))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-765)) (-5 *2 (-638 (-1166)))
+ (-5 *1 (-266))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))
+ (-5 *2 (-638 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-638 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-579 *2)) (-4 *2 (-13 (-29 *4) (-1185)))
- (-5 *1 (-577 *4 *2))
- (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))))
+ (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348))
+ (-4 *2
+ (-13 (-401)
+ (-10 -7 (-15 -4022 (*2 *4)) (-15 -3198 ((-914) *2))
+ (-15 -3711 ((-1253 *2) (-914))) (-15 -4285 (*2 *2)))))
+ (-5 *1 (-355 *2 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-690)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-832))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1105))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-558)) (-5 *3 (-561))))
((*1 *2 *3)
- (-12 (-5 *3 (-579 (-406 (-942 *4))))
- (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
- (-5 *2 (-315 *4)) (-5 *1 (-582 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1081 *3)) (-4 *3 (-939 *7 *6 *4)) (-4 *6 (-784))
- (-4 *4 (-841)) (-4 *7 (-550))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558))))
- (-5 *1 (-587 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-550))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558))))
- (-5 *1 (-587 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1155 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185)))))
+ (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-765)) (-4 *5 (-171))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-765)) (-4 *5 (-171))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1079 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1185)))
- (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1155 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558))))
- (-5 *2 (-406 (-942 *5))) (-5 *1 (-1156 *5)) (-5 *3 (-942 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-4 *5 (-13 (-550) (-841) (-1028 (-558))))
- (-5 *2 (-3 (-406 (-942 *5)) (-315 *5))) (-5 *1 (-1156 *5))
- (-5 *3 (-406 (-942 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1079 (-942 *5))) (-5 *3 (-942 *5))
- (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-406 *3))
- (-5 *1 (-1156 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1079 (-406 (-942 *5)))) (-5 *3 (-406 (-942 *5)))
- (-4 *5 (-13 (-550) (-841) (-1028 (-558)))) (-5 *2 (-3 *3 (-315 *5)))
- (-5 *1 (-1156 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9))))
- (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1059 *5 *6 *7 *8))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251))
- (-5 *1 (-1057 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9))))
- (-5 *4 (-762)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8))
- (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841)) (-5 *2 (-1251))
- (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
+ (-12
+ (-5 *2
+ (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
+ (-246 *4 (-406 (-561)))))
+ (-5 *3 (-638 (-858 *4))) (-14 *4 (-638 (-1166))) (-14 *5 (-765))
+ (-5 *1 (-503 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-561))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-360 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1090))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5))
+ (-4 *4 (-1090)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1039))
- (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3))
- (-4 *3 (-843 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841))
- (-5 *2 (-635 (-662 *5))) (-5 *1 (-662 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-829))))
- ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1102))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1168))) (-5 *3 (-1168)) (-5 *1 (-1105)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-256)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-748)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-762))) (-5 *3 (-170)) (-5 *1 (-1151 *4 *5))
- (-14 *4 (-911)) (-4 *5 (-1039)))))
+ (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1205)) (-4 *3 (-1042))
+ (-5 *2 (-682 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1148)) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
+ (-4 *3 (-1229 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
+ (-4 *5 (-237 (-3498 *3) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *5))
+ (-2 (|:| -2413 *2) (|:| -4196 *5))))
+ (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-942 *4 *5 (-858 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-638 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-638 *4))))
+ (-5 *1 (-1176 *6)) (-5 *5 (-638 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *8)) (-4 *8 (-939 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
- (-4 *7 (-784))
+ (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9))))
+ (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1258))
+ (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9))))
+ (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8))
+ (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1258))
+ (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787))
+ (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9))
(-5 *2
- (-635
- (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
- (|:| |wcond| (-635 (-942 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *5))))))))))
- (-5 *1 (-914 *5 *6 *7 *8)) (-5 *4 (-635 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *8)) (-5 *4 (-635 (-1163))) (-4 *8 (-939 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
- (-4 *7 (-784))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1062 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
(-5 *2
- (-635
- (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
- (|:| |wcond| (-635 (-942 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *5))))))))))
- (-5 *1 (-914 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-679 *7)) (-4 *7 (-939 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
(-5 *2
- (-635
- (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7))
- (|:| |wcond| (-635 (-942 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *4))))))))))
- (-5 *1 (-914 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-679 *9)) (-5 *5 (-911)) (-4 *9 (-939 *6 *8 *7))
- (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-841) (-606 (-1163))))
- (-4 *8 (-784))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787))
+ (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9))
(-5 *2
- (-635
- (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9))
- (|:| |wcond| (-635 (-942 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *6))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *6))))))))))
- (-5 *1 (-914 *6 *7 *8 *9)) (-5 *4 (-635 *9))))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1135 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-911))
- (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784))
+ (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
(-5 *2
- (-635
- (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9))
- (|:| |wcond| (-635 (-942 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *6))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *6))))))))))
- (-5 *1 (-914 *6 *7 *8 *9))))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *8)) (-5 *4 (-911)) (-4 *8 (-939 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
- (-4 *7 (-784))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
(-5 *2
- (-635
- (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8))
- (|:| |wcond| (-635 (-942 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *5))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *5))))))))))
- (-5 *1 (-914 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1145))
- (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558))
- (-5 *1 (-914 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-679 *9)) (-5 *4 (-635 (-1163))) (-5 *5 (-1145))
- (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558))
- (-5 *1 (-914 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *8)) (-5 *4 (-1145)) (-4 *8 (-939 *5 *7 *6))
- (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-841) (-606 (-1163))))
- (-4 *7 (-784)) (-5 *2 (-558)) (-5 *1 (-914 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 *10)) (-5 *5 (-911))
- (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
- (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558))
- (-5 *1 (-914 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-679 *10)) (-5 *4 (-635 (-1163))) (-5 *5 (-911))
- (-5 *6 (-1145)) (-4 *10 (-939 *7 *9 *8)) (-4 *7 (-13 (-306) (-146)))
- (-4 *8 (-13 (-841) (-606 (-1163)))) (-4 *9 (-784)) (-5 *2 (-558))
- (-5 *1 (-914 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-679 *9)) (-5 *4 (-911)) (-5 *5 (-1145))
- (-4 *9 (-939 *6 *8 *7)) (-4 *6 (-13 (-306) (-146)))
- (-4 *7 (-13 (-841) (-606 (-1163)))) (-4 *8 (-784)) (-5 *2 (-558))
- (-5 *1 (-914 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *6 (-606 (-1163)))
- (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *2 (-1152 (-635 (-942 *4)) (-635 (-293 (-942 *4)))))
- (-5 *1 (-502 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1222 *5))
- (-5 *1 (-718 *5 *2)) (-4 *5 (-362)))))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
+(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-378))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4392 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
+ (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2))
+ (-4 *4 (-680 *2 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1246 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306))
- (-4 *3 (-550)) (-5 *1 (-43 *3 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-4 *4 (-362)) (-5 *2 (-1246 *1))
- (-4 *1 (-328 *4))))
- ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1246 *1)) (-4 *1 (-328 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-171)) (-4 *4 (-1222 *3)) (-5 *2 (-1246 *1))
- (-4 *1 (-408 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4))
- (-5 *2 (-1246 *6)) (-5 *1 (-412 *3 *4 *5 *6))
- (-4 *6 (-13 (-408 *4 *5) (-1028 *4)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-326 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-561)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205)) (-14 *4 *2))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-638 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
+ (-5 *1 (-209)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-306))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844))))
((*1 *2 *1)
- (-12 (-4 *3 (-306)) (-4 *4 (-982 *3)) (-4 *5 (-1222 *4))
- (-5 *2 (-1246 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))
- (-4 *6 (-408 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1246 *1)) (-4 *1 (-416 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 *4))) (-5 *1 (-526 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-537 *4 *2 *5 *6))
- (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-762))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1200))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-561)))
+ (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-751)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1159 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-933 (-224)))) (-5 *1 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1167)))))
-(((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-4 *5 (-362)) (-5 *2 (-635 (-1194 *5)))
- (-5 *1 (-1254 *5)) (-5 *4 (-1194 *5)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306)))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))
- (-5 *2 (-1025)) (-5 *1 (-739)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-378)) (-5 *1 (-191)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1205)) (-4 *2 (-1090))
+ (-4 *2 (-844)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842)))
+ (-5 *2 (-638 (-2 (|:| -4282 (-638 *3)) (|:| -3941 *5))))
+ (-5 *1 (-180 *5 *3)) (-4 *3 (-1229 (-168 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-362) (-842)))
+ (-5 *2 (-638 (-2 (|:| -4282 (-638 *3)) (|:| -3941 *4))))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))))
+(((*1 *1) (-5 *1 (-1075))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146)))
- (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5)))))
- (-5 *1 (-1116 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146)))
- (-5 *2 (-1152 (-635 (-315 *5)) (-635 (-293 (-315 *5)))))
- (-5 *1 (-1116 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-895 *4)) (-4 *4 (-1087)) (-5 *2 (-635 (-762)))
- (-5 *1 (-894 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558)))
- (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $))
- (-15 -3327 ((-1112 *3 (-604 $)) $))
- (-15 -3940 ($ (-1112 *3 (-604 $))))))))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1145)) (-5 *3 (-558)) (-5 *1 (-1051)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3)) (-4 *3 (-13 (-362) (-146)))
- (-5 *1 (-398 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7)))
+ (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
+ (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8)))
+ (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
+ ((*1 *1 *1) (-4 *1 (-1134))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550))
- (-4 *3 (-939 *7 *5 *6))
- (-5 *2
- (-2 (|:| -1857 (-762)) (|:| -3455 *3) (|:| |radicand| (-635 *3))))
- (-5 *1 (-943 *5 *6 *7 *3 *8)) (-5 *4 (-762))
- (-4 *8
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *3)) (-15 -3316 (*3 $)) (-15 -3327 (*3 $))))))))
+ (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1229 *5))
+ (-5 *1 (-801 *5 *2 *3 *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *3 (-649 *2)) (-4 *6 (-649 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-406 *2))) (-4 *2 (-1229 *5))
+ (-5 *1 (-801 *5 *2 *3 *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2))
+ (-4 *6 (-649 (-406 *2))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-558)) (-5 *1 (-932)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6))
+ (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1263)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *4)) (-4 *4 (-1039)) (-4 *2 (-1222 *4))
- (-5 *1 (-442 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-406 (-1159 (-315 *5)))) (-5 *3 (-1246 (-315 *5)))
- (-5 *4 (-558)) (-4 *5 (-13 (-550) (-841))) (-5 *1 (-1117 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+ (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))
+ ((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-1042))
+ (-5 *1 (-1150 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-561)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1042))
+ (-14 *4 (-1166)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-406 (-561)))
+ (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-607 *3)) (-4 *3 (-429 *5))
+ (-4 *5 (-13 (-844) (-553) (-1031 (-561))))
+ (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-432 *5 *3)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-362)) (-4 *2 (-839)) (-5 *1 (-935 *2 *3))
- (-4 *3 (-1222 *2)))))
+ (-12 (-5 *3 (-682 (-406 (-945 (-561))))) (-5 *2 (-638 (-315 (-561))))
+ (-5 *1 (-1024)))))
+(((*1 *1) (-5 *1 (-817))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-813 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-840)) (-5 *1 (-1276 *3 *2)) (-4 *3 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1019 (-837 (-561)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6))
- (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-839))))))
+ (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
+ (-5 *1 (-331)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1162 (-1017 *3))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1015))))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-762)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-841))
- (-4 *7 (-784)) (-5 *2 (-112)) (-5 *1 (-617 *6 *7 *3 *8))
- (-4 *8 (-939 *3 *7 *6)))))
+ (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1090)) (-4 *2 (-844))
+ (-5 *1 (-113 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4))
+ (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1205)) (-5 *1 (-1122 *4 *2))
+ (-4 *2 (-13 (-599 (-561) *4) (-10 -7 (-6 -4390) (-6 -4391))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-844)) (-4 *3 (-1205)) (-5 *1 (-1122 *3 *2))
+ (-4 *2 (-13 (-599 (-561) *3) (-10 -7 (-6 -4390) (-6 -4391)))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224))))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1042))
+ (-4 *2 (-1213 *3)))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-168 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
- (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-609))))
-(((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185)))))
- ((*1 *1 *1 *1) (-4 *1 (-784))))
+ (-12 (-5 *4 (-1 (-638 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5))
+ (-5 *2 (-638 (-2 (|:| -1514 *5) (|:| -3360 *3))))
+ (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6))
+ (-4 *7 (-649 (-406 *6))))))
(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *3 (-890 *6))
- (-5 *2 (-679 *3)) (-5 *1 (-682 *6 *3 *7 *4)) (-4 *7 (-372 *3))
- (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4383)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))))
-(((*1 *2) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-105)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-853)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *3 (-942 (-558)))
- (-5 *1 (-329))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1079 (-942 (-558)))) (-5 *1 (-329)))))
+ (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-342 *3 *4)) (-14 *3 (-914))
+ (-14 *4 (-914))))
+ ((*1 *2)
+ (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-1162 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348))
+ (-14 *4 (-914)))))
+(((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-980 *3 *4 *5 *2))
+ (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-914)) (-4 *5 (-553)) (-5 *2 (-682 *5))
+ (-5 *1 (-949 *5 *3)) (-4 *3 (-649 *5)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
(-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
(|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1205))
+ (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042))
+ (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1146 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-5 *2 (-638 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
+ (-5 *2 (-638 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1146 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-720))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-638 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1042)) (-5 *2 (-1146 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130))
+ (-4 *2 (-1090))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-360 *2)) (-4 *2 (-1090))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-385 *2)) (-4 *2 (-1090))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *2 (-1090)) (-5 *1 (-642 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *1 (-813 *2)) (-4 *2 (-844)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-447 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))))
+(((*1 *2 *3) (-12 (-5 *3 (-168 (-561))) (-5 *2 (-112)) (-5 *1 (-444))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
+ (-246 *4 (-406 (-561)))))
+ (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-954 *3)) (-4 *3 (-543))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1031 (-561))) (-4 *1 (-301)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-1042)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787))
+ (-4 *6 (-553)) (-4 *7 (-942 *6 *5 *3))
+ (-5 *1 (-460 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1031 (-406 (-561))) (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $))
+ (-15 -4045 (*7 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-406 (-942 (-558)))))
- (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-839) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-293 (-406 (-942 (-558))))))
- (-5 *2 (-635 (-635 (-293 (-942 *4))))) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-839) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 (-558)))) (-5 *2 (-635 (-293 (-942 *4))))
- (-5 *1 (-379 *4)) (-4 *4 (-13 (-839) (-362)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-942 (-558)))))
- (-5 *2 (-635 (-293 (-942 *4)))) (-5 *1 (-379 *4))
- (-4 *4 (-13 (-839) (-362)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1163))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-4 *4 (-13 (-29 *6) (-1185) (-949)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2743 (-635 *4))))
- (-5 *1 (-642 *6 *4 *3)) (-4 *3 (-646 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *2))
- (-4 *2 (-13 (-29 *6) (-1185) (-949)))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *1 (-642 *6 *2 *3)) (-4 *3 (-646 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *5)) (-4 *5 (-362))
+ (-12 (-5 *3 (-638 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
+ (-14 *6 (-638 (-1166)))
(-5 *2
- (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
- (|:| -2743 (-635 (-1246 *5)))))
- (-5 *1 (-657 *5)) (-5 *4 (-1246 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
- (|:| -2743 (-635 (-1246 *5)))))
- (-5 *1 (-657 *5)) (-5 *4 (-1246 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *5)) (-4 *5 (-362))
+ (-638 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6)))))
+ (-5 *1 (-623 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-4 *3 (-1090))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-304))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1028))) (-5 *2 (-1028)) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *1) (-5 *1 (-1054)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1143 *4))
+ (-4 *4 (-1205))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-646 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
(-5 *2
- (-635
- (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
- (|:| -2743 (-635 (-1246 *5))))))
- (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-804 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362))
- (-5 *2
- (-635
- (-2 (|:| |particular| (-3 (-1246 *5) "failed"))
- (|:| -2743 (-635 (-1246 *5))))))
- (-5 *1 (-657 *5)) (-5 *4 (-635 (-1246 *5)))))
+ (-12 (-5 *3 (-646 (-406 *6))) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2 (-2 (|:| -3711 (-638 (-406 *6))) (|:| -3327 (-682 *5))))
+ (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384))))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4384))))
+ (-12 (-5 *3 (-647 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-804 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384))))
- (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4384))))
+ (-12 (-5 *3 (-647 *6 (-406 *6))) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2 (-2 (|:| -3711 (-638 (-406 *6))) (|:| -3327 (-682 *5))))
+ (-5 *1 (-804 *5 *6)) (-5 *4 (-638 (-406 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-638 (-646 (-406 *5))))
+ (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-553))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *1 *1) (-5 *1 (-534))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-765)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1162 *6)) (-5 *3 (-561)) (-4 *6 (-306)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-867)) (-5 *3 (-638 (-262))) (-5 *1 (-260)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))
+ (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))
+ (-14 *4 (-1166)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-4 *2 (-13 (-27) (-1190) (-429 *3) (-10 -8 (-15 -4022 ($ *4)))))
+ (-4 *4 (-842))
+ (-4 *5
+ (-13 (-1231 *2 *4) (-362) (-1190)
+ (-10 -8 (-15 -3238 ($ $)) (-15 -1842 ($ $)))))
+ (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166)))))
+(((*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224)))
+ (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
+ (-5 *1 (-742)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 *4))))
+ (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
+ ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
+ ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171))
+ (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4))
+ (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-682 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3051 *3) (|:| |coef1| (-776 *3))))
+ (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-914)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1162 *1))
+ (-4 *1 (-328 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1162 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-4 *2 (-1229 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-348)) (-5 *2 (-1162 *4))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348))
+ (-5 *2 (-638 (-2 (|:| |deg| (-765)) (|:| -2255 *3))))
+ (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8))))
+ (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-638 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-970 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
+ (-4 *2 (-1229 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))) ((*1 *1) (-4 *1 (-543)))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-692))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-543)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-818)) (-5 *3 (-638 (-1166))) (-5 *1 (-819)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112))
+ (-5 *2 (-1028)) (-5 *1 (-739)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
+ (-4 *3 (-960)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-329))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *9)) (-4 *8 (-1056 *5 *6 *7))
+ (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
(-5 *2
- (-635
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2743 (-635 *7)))))
- (-5 *1 (-658 *5 *6 *7 *3)) (-5 *4 (-635 *7))
- (-4 *3 (-677 *5 *6 *7))))
+ (-2 (|:| -1836 (-765)) (|:| |curves| (-765))
+ (|:| |polygons| (-765)) (|:| |constructs| (-765)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1166))) (-5 *2 (-1258)) (-5 *1 (-1169))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-635 (-1163))) (-4 *5 (-550))
- (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-761 *5))))
+ (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1258))
+ (-5 *1 (-1169))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-638 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1258))
+ (-5 *1 (-1169)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))
+ (-5 *2 (-638 (-224))) (-5 *1 (-304)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-741)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-561))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
+ (-4 *3 (-1229 *4)) (-5 *2 (-561))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-550))
- (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-761 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1163))
- (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *1 (-763 *5 *2)) (-4 *2 (-13 (-29 *5) (-1185) (-949)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-679 *7)) (-5 *5 (-1163))
- (-4 *7 (-13 (-29 *6) (-1185) (-949)))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2
- (-2 (|:| |particular| (-1246 *7)) (|:| -2743 (-635 (-1246 *7)))))
- (-5 *1 (-793 *6 *7)) (-5 *4 (-1246 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-679 *6)) (-5 *4 (-1163))
- (-4 *6 (-13 (-29 *5) (-1185) (-949)))
- (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2 (-635 (-1246 *6))) (-5 *1 (-793 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-635 (-293 *7))) (-5 *4 (-635 (-114)))
- (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949)))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2
- (-2 (|:| |particular| (-1246 *7)) (|:| -2743 (-635 (-1246 *7)))))
- (-5 *1 (-793 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-114)))
- (-5 *5 (-1163)) (-4 *7 (-13 (-29 *6) (-1185) (-949)))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2
- (-2 (|:| |particular| (-1246 *7)) (|:| -2743 (-635 (-1246 *7)))))
- (-5 *1 (-793 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1163))
- (-4 *7 (-13 (-29 *6) (-1185) (-949)))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2743 (-635 *7))) *7 "failed"))
- (-5 *1 (-793 *6 *7))))
+ (|partial| -12
+ (-4 *4 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450)))
+ (-5 *2 (-561)) (-5 *1 (-1106 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1163))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2743 (-635 *3))) *3 "failed"))
- (-5 *1 (-793 *6 *3)) (-4 *3 (-13 (-29 *6) (-1185) (-949)))))
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450)))
+ (-5 *2 (-561)) (-5 *1 (-1106 *6 *3))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-635 *2))
- (-4 *2 (-13 (-29 *6) (-1185) (-949))) (-5 *1 (-793 *6 *2))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-635 *2))
- (-4 *2 (-13 (-29 *6) (-1185) (-949)))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *1 (-793 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1025)) (-5 *1 (-796))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-799)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-796))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4))
- (-5 *2 (-1025)) (-5 *1 (-796))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4))
- (-5 *2 (-1025)) (-5 *1 (-796))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378)))
- (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1246 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-635 *4))
- (-5 *2 (-1025)) (-5 *1 (-796))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378)))
- (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1246 (-315 *4))) (-5 *5 (-635 (-378)))
- (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1025)) (-5 *1 (-796))))
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148))
+ (-4 *6 (-13 (-553) (-844) (-1031 *2) (-634 *2) (-450)))
+ (-5 *2 (-561)) (-5 *1 (-1106 *6 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-561))
+ (-5 *1 (-1107 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -2743 (-635 *6))) "failed")
- *7 *6))
- (-4 *6 (-362)) (-4 *7 (-646 *6))
- (-5 *2 (-2 (|:| |particular| (-1246 *6)) (|:| -2743 (-679 *6))))
- (-5 *1 (-804 *6 *7)) (-5 *3 (-679 *6)) (-5 *4 (-1246 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1025)) (-5 *1 (-887))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-888)) (-5 *4 (-1051)) (-5 *2 (-1025)) (-5 *1 (-887))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145))
- (-5 *8 (-224)) (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378))
- (-5 *2 (-1025)) (-5 *1 (-887))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-762)) (-5 *6 (-635 (-635 (-315 *3)))) (-5 *7 (-1145))
- (-5 *5 (-635 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1025))
- (-5 *1 (-887))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 (-378)))
- (-5 *1 (-1013)) (-5 *4 (-378))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 (-378))) (-5 *1 (-1013))
- (-5 *4 (-378))))
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-837 (-406 (-945 *6))))
+ (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-561))
+ (-5 *1 (-1107 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1166))
+ (-5 *5 (-1148)) (-4 *6 (-450)) (-5 *2 (-561)) (-5 *1 (-1107 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
+ (|partial| -12 (-5 *2 (-561)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4))
- (-5 *3 (-315 *4))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
+ (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1118 *4))
- (-5 *3 (-293 (-315 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5))
- (-5 *3 (-293 (-315 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2 (-635 (-293 (-315 *5)))) (-5 *1 (-1118 *5))
- (-5 *3 (-315 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-1163)))
- (-4 *5 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1118 *5))
- (-5 *3 (-635 (-293 (-315 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
- (-4 *5 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *5))))))
- (-5 *1 (-1169 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-1163))) (-4 *5 (-550))
- (-5 *2 (-635 (-635 (-293 (-406 (-942 *5)))))) (-5 *1 (-1169 *5))
- (-5 *3 (-635 (-293 (-406 (-942 *5)))))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
+ (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-995)))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-406 (-942 *4)))) (-4 *4 (-550))
- (-5 *2 (-635 (-635 (-293 (-406 (-942 *4)))))) (-5 *1 (-1169 *4))))
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301))))
+ ((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-635 (-635 (-293 (-406 (-942 *4))))))
- (-5 *1 (-1169 *4)) (-5 *3 (-635 (-293 (-406 (-942 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-4 *5 (-550))
- (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5))
- (-5 *3 (-406 (-942 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-4 *5 (-550))
- (-5 *2 (-635 (-293 (-406 (-942 *5))))) (-5 *1 (-1169 *5))
- (-5 *3 (-293 (-406 (-942 *5))))))
+ (-12 (-5 *3 (-114)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4)))))
- (-5 *1 (-1169 *4)) (-5 *3 (-406 (-942 *4)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
+ (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-635 (-293 (-406 (-942 *4)))))
- (-5 *1 (-1169 *4)) (-5 *3 (-293 (-406 (-942 *4)))))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-112))
+ (-5 *1 (-625 *4 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
- (-14 *4 (-635 (-1163)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
- (-14 *4 (-635 (-1163))))))
+ (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-4 *7 (-550))
- (-4 *8 (-939 *7 *5 *6))
- (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *3) (|:| |radicand| *3)))
- (-5 *1 (-943 *5 *6 *7 *8 *3)) (-5 *4 (-762))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *8)) (-15 -3316 (*8 $)) (-15 -3327 (*8 $))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
- (-4 *3 (-957)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1025)) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1025))) (-5 *2 (-1025)) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1 *1) (-5 *1 (-1051)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1140 *4))
- (-4 *4 (-1200))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689))))
- ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-689)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *4 *5 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1081 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-1200))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1089 (-1089 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 (-406 (-942 *6))))
- (-5 *3 (-406 (-942 *6)))
- (-4 *6 (-13 (-550) (-1028 (-558)) (-146)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-564 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-52)) (-5 *1 (-1178)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))
- (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *5))
- (-4 *5 (-1222 (-406 *4))))))
+ (-12 (-4 *3 (-1090))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
+ (-5 *2 (-638 (-1166))) (-5 *1 (-1066 *3 *4 *5))
+ (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-995) (-1190)))
+ (-4 *4 (-13 (-553) (-844)))
+ (-4 *2 (-13 (-429 (-168 *4)) (-995) (-1190)))
+ (-5 *1 (-595 *4 *5 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))
+ (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))
+ (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561)))
+ (-5 *4 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))
+ (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561))) (-5 *4 (-406 (-561)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-406 (-561)))
+ (-5 *2 (-638 (-2 (|:| -1605 *5) (|:| -1621 *5)))) (-5 *1 (-1013 *3))
+ (-4 *3 (-1229 (-561))) (-5 *4 (-2 (|:| -1605 *5) (|:| -1621 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-406 (-561))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-406 (-561))))
+ (-5 *4 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-406 (-561)))
+ (-5 *2 (-638 (-2 (|:| -1605 *4) (|:| -1621 *4)))) (-5 *1 (-1014 *3))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-406 (-561)))
+ (-5 *2 (-638 (-2 (|:| -1605 *5) (|:| -1621 *5)))) (-5 *1 (-1014 *3))
+ (-4 *3 (-1229 *5)) (-5 *4 (-2 (|:| -1605 *5) (|:| -1621 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784))
- (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3846 (-635 *9)) (|:| -3798 *4) (|:| |ineq| (-635 *9))))
- (-5 *1 (-978 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9))
- (-4 *4 (-1059 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784))
- (-4 *8 (-841)) (-4 *9 (-1053 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3846 (-635 *9)) (|:| -3798 *4) (|:| |ineq| (-635 *9))))
- (-5 *1 (-1094 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9))
- (-4 *4 (-1059 *6 *7 *8 *9)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+ (-12
+ (-5 *2
+ (-638
+ (-2
+ (|:| -2252
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (|:| -2654
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2290
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-556))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205))
+ (-5 *2 (-638 *4)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-579 *3)) (-5 *1 (-425 *5 *3))
- (-4 *3 (-13 (-1185) (-29 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1145)) (-5 *1 (-191))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
+ (-12 (-5 *3 (-1253 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
+ (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1229 *5))
+ (-5 *2 (-682 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-765)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
+ (-4 *2 (-1229 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))))
(((*1 *2 *3)
(-12
(-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -10664,3710 +10393,3169 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1143 (-224)))
+ (-3 (|:| |str| (-1146 (-224)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2103
+ (|:| -2290
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1025)) (-5 *1 (-304)))))
-(((*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4374)) (-4 *1 (-403))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911))))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689))))
- ((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-615 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -1540 *4) (|:| |sol?| (-112)))
- (-558) *4))
- (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *1 (-568 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-128)) (-5 *2 (-762)))))
-(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-378)))
- ((*1 *1) (-5 *1 (-378))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1159 *7)) (-5 *3 (-558)) (-4 *7 (-939 *6 *4 *5))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1039))
- (-5 *1 (-320 *4 *5 *6 *7)))))
+ (-5 *1 (-556)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-914))
+ (-5 *2 (-1258)) (-5 *1 (-466))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1258)) (-5 *1 (-466))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-638 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-914))
+ (-5 *2 (-1258)) (-5 *1 (-466)))))
+(((*1 *1) (-5 *1 (-436))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112))
+ (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4))
- (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))))
+ (|partial| -12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))))
+(((*1 *1) (-5 *1 (-329))))
+(((*1 *2 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-999)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-914))
+ (-5 *2 (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110))))))
+ (-5 *1 (-345 *4)) (-4 *4 (-348)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5))
- (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-1259 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
- (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1051)) (-5 *3 (-1145)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-841))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-841))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-281 *2)) (-4 *2 (-1200))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2176
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (|:| -1925
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1143 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2103
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-553))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-685 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2176
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (|:| -1925
- (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
- (|:| |expense| (-378)) (|:| |accuracy| (-378))
- (|:| |intermediateResults| (-378))))))
- (-5 *1 (-794))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8))
- (-4 *8 (-939 *5 *7 *6)) (-4 *5 (-13 (-306) (-146)))
- (-4 *6 (-13 (-841) (-606 (-1163)))) (-4 *7 (-784)) (-5 *2 (-112))
- (-5 *1 (-914 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-679 *2)) (-5 *4 (-762))
- (-4 *2 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-112))))
+ (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 (-914))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5))
+ (-14 *4 (-914)) (-14 *5 (-986 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
+ (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166)))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1193 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1049 (-1014 *4) (-1159 (-1014 *4)))) (-5 *3 (-853))
- (-5 *1 (-1014 *4)) (-4 *4 (-13 (-839) (-362) (-1012))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301))))
- ((*1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-5 *1 (-853))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-635 *6)) (-4 *6 (-841)) (-4 *4 (-362)) (-4 *5 (-784))
- (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-939 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))) ((*1 *1) (-4 *1 (-543)))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-689))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146))
- (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-895 *3)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-109)))))
-(((*1 *1 *1) (-4 *1 (-1131))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-810 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
- (-4 *2 (-1222 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
+ (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-130))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4))
+ (-4 *4 (-1229 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5))
+ (-4 *4 (-1042)) (-4 *5 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042))
+ (-4 *2 (-844))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *2 (-844))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *2 (-942 *4 (-529 *5) *5))
+ (-5 *1 (-1116 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-844))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-945 *4)) (-5 *1 (-1199 *4))
+ (-4 *4 (-1042)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-62 *3)) (-14 *3 (-1166))))
+ ((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-69 *3)) (-14 *3 (-1166))))
+ ((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-72 *3)) (-14 *3 (-1166))))
+ ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1258))))
+ ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1258)) (-5 *1 (-396))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128))))
+ ((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1258)) (-5 *1 (-1128)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1255))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1255)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
(-5 *2
- (-2 (|:| -1358 (-762)) (|:| |curves| (-762))
- (|:| |polygons| (-762)) (|:| |constructs| (-762)))))))
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1084 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1090)) (-4 *6 (-1090))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1090)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553))
+ (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039))
- (-4 *6 (-1222 *5)) (-5 *2 (-1159 (-1159 *7)))
- (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1222 *6)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-1039)) (-5 *1 (-1218 *4 *2))
- (-4 *2 (-1222 *4)))))
+ (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-4 *2 (-1090))
+ (-5 *1 (-882 *4 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-854)) (-5 *2 (-684 (-129))) (-5 *3 (-129)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362))
+ (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
+ (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
+ (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-1162 *6))
+ (-5 *1 (-320 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-5 *1 (-886 *2 *4))
- (-4 *2 (-1222 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1159 *9)))
- (-5 *6 (-635 *9)) (-5 *7 (-635 *12)) (-5 *8 (-635 (-762)))
- (-4 *11 (-841)) (-4 *9 (-306)) (-4 *12 (-939 *9 *10 *11))
- (-4 *10 (-784)) (-5 *2 (-635 (-1159 *12)))
- (-5 *1 (-698 *10 *11 *9 *12)) (-5 *3 (-1159 *12)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-182))) (-5 *1 (-139)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1028))
+ (-5 *1 (-743)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258))
+ (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258))
+ (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1623 (-776 *3)) (|:| |coef1| (-776 *3))
+ (|:| |coef2| (-776 *3))))
+ (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -1623 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-837 (-378))) (-5 *2 (-837 (-224))) (-5 *1 (-304)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1205))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-607 *1))) (-5 *3 (-638 *1)) (-4 *1 (-301))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-293 *1))) (-4 *1 (-301))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))))
+(((*1 *1) (-5 *1 (-1258))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *3 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-447 *4 *3 *5 *6)) (-4 *6 (-939 *4 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1092 (-1092 *3))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
+ ((*1 *1 *1) (-5 *1 (-856))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-635 (-933 (-224))))) (-5 *2 (-635 (-224)))
- (-5 *1 (-466)))))
+ (|partial| -12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-553))
+ (-5 *2 (-1253 *4)) (-5 *1 (-633 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-638 *4)) (-4 *4 (-362)) (-5 *2 (-1253 *4))
+ (-5 *1 (-808 *4 *3)) (-4 *3 (-649 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-1253 (-682 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1253 (-682 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362))
+ (-5 *2 (-1253 (-682 (-406 (-945 *5))))) (-5 *1 (-1076 *5))
+ (-5 *4 (-682 (-406 (-945 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-1166))) (-4 *5 (-362))
+ (-5 *2 (-1253 (-682 (-945 *5)))) (-5 *1 (-1076 *5))
+ (-5 *4 (-682 (-945 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-682 *4))) (-4 *4 (-362))
+ (-5 *2 (-1253 (-682 *4))) (-5 *1 (-1076 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-970 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
+ (-4 *3 (-1229 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844))
+ (-4 *3 (-13 (-171) (-711 (-406 (-561))))) (-14 *4 (-914))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-558))) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-550)) (-4 *8 (-939 *7 *5 *6))
- (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *9) (|:| |radicand| *9)))
- (-5 *1 (-943 *5 *6 *7 *8 *9)) (-5 *4 (-762))
- (-4 *9
+ (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553))
+ (-4 *3 (-942 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -4196 (-765)) (|:| -4188 *3) (|:| |radicand| (-638 *3))))
+ (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765))
+ (-4 *8
(-13 (-362)
- (-10 -8 (-15 -3940 ($ *8)) (-15 -3316 (*8 $)) (-15 -3327 (*8 $))))))))
+ (-10 -8 (-15 -4022 ($ *3)) (-15 -4030 (*3 $)) (-15 -4045 (*3 $))))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-561))) (-5 *4 (-561)) (-5 *2 (-52))
+ (-5 *1 (-998)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-224) (-224) (-224)))
+ (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined"))
+ (-5 *5 (-1084 (-224))) (-5 *6 (-638 (-262))) (-5 *2 (-1123 (-224)))
+ (-5 *1 (-690))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1084 (-224)))
+ (-5 *5 (-638 (-262))) (-5 *2 (-1123 (-224))) (-5 *1 (-690))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224)))
+ (-5 *4 (-1084 (-224))) (-5 *5 (-638 (-262))) (-5 *1 (-690)))))
(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
*7 *3 *8)
- (-12 (-5 *5 (-679 (-224))) (-5 *6 (-112)) (-5 *7 (-679 (-558)))
+ (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-561)))
(-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-558)) (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-558)) (-5 *1 (-1097))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1246 (-558))) (-5 *3 (-635 (-558))) (-5 *4 (-558))
- (-5 *1 (-1097)))))
+ (-5 *3 (-561)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *5 (-1222 *4)) (-5 *2 (-635 (-643 (-406 *5))))
- (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-406 *5))))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *1 (-262))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-558)) (-5 *4 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248))))
- ((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *2 (-1251)) (-5 *1 (-1248))))
- ((*1 *2 *1)
- (-12
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1146 (-224)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2290
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1028)) (-5 *1 (-304)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-1229 (-168 *3))))))
+(((*1 *1) (-5 *1 (-575))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-174))) (-5 *1 (-1075)))))
+(((*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-396)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-4 *7 (-1229 (-406 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3450 *3)))
+ (-5 *1 (-559 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
(-5 *2
- (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -2780 (-224))
- (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224))
- (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))
- (-5 *1 (-1248))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))))
+ (-2 (|:| |answer| (-406 *6)) (|:| -3450 (-406 *6))
+ (|:| |specpart| (-406 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-560 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-112)) (-5 *5 (-682 (-168 (-224))))
+ (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))))
(((*1 *2)
- (-12 (-5 *2 (-1251)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+ (-12 (-4 *2 (-13 (-429 *3) (-995))) (-5 *1 (-275 *3 *2))
+ (-4 *3 (-13 (-844) (-553))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-561) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1229 *4))
+ (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-168 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-168 *2))))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-854)) (-5 *3 (-128)) (-5 *2 (-765)))))
+(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-129))))))
+(((*1 *1) (-5 *1 (-1254))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-550)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-844)) (-4 *5 (-902)) (-4 *6 (-787))
+ (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-417 (-1162 *8)))
+ (-5 *1 (-899 *5 *6 *7 *8)) (-5 *4 (-1162 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-902)) (-4 *5 (-1229 *4)) (-5 *2 (-417 (-1162 *5)))
+ (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-607 *4)) (-4 *4 (-844))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1090)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4))
+ (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1090))
+ (-5 *2 (-112)) (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-885 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224))
+ (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-741)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166))))
+ (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *4 (-1163))
- (-5 *1 (-1166))))
+ (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *4 (-1166))
+ (-5 *1 (-1169))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1166))))
+ (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1169))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-1163)) (-5 *1 (-1167))))
+ (-12 (-5 *2 (-436)) (-5 *3 (-1166)) (-5 *1 (-1170))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-436)) (-5 *3 (-635 (-1163))) (-5 *1 (-1167)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *3 *5))
- (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2))
- (-4 *5 (-646 (-406 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1222 *4)) (-5 *1 (-798 *4 *2 *5 *3))
- (-4 *4 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *5 (-646 *2))
- (-4 *3 (-646 (-406 *2))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1087)) (-4 *1 (-893 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27))
- (-5 *2 (-635 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-635 (-1163)))
- (-5 *5 (-1081 (-834 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-299)))))
+ (-12 (-5 *2 (-436)) (-5 *3 (-638 (-1166))) (-5 *1 (-1170)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-315 (-224)))) (-5 *4 (-762))
- (-5 *2 (-679 (-224))) (-5 *1 (-266)))))
-(((*1 *2 *2 *3)
- (-12
+ (-12 (-5 *3 (-417 *5)) (-4 *5 (-553))
(-5 *2
- (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *4)))))))
- (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146)))
- (-4 *7 (-939 *4 *6 *5)) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-812)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))
- (-14 *4 (-762)) (-4 *5 (-171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-378)) (-5 *1 (-97)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
- (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
- (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4385 "*"))) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
- (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1087))
- (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
- (-5 *2 (-635 (-1163))) (-5 *1 (-1063 *3 *4 *5))
- (-4 *5 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
- (-5 *1 (-1060 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
- (-5 *1 (-1095 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
+ (-2 (|:| -4196 (-765)) (|:| -4188 *5) (|:| |radicand| (-638 *5))))
+ (-5 *1 (-319 *5)) (-5 *4 (-765))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-561)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-450))
- (-5 *2
- (-635
- (-2 (|:| |eigval| (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4))))
- (|:| |geneigvec| (-635 (-679 (-406 (-942 *4))))))))
- (-5 *1 (-291 *4)) (-5 *3 (-679 (-406 (-942 *4)))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-558)) (-4 *7 (-939 *4 *5 *6))
- (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039))
- (-4 *5 (-841)) (-5 *2 (-942 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-731 *4 *5)) (-4 *4 (-1039))
- (-4 *5 (-841)) (-5 *2 (-942 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039))
- (-5 *2 (-942 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-4 *1 (-1237 *4)) (-4 *4 (-1039))
- (-5 *2 (-942 *4)))))
-(((*1 *1 *1) (-5 *1 (-1051))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-170)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-911)) (-4 *5 (-841))
- (-5 *2 (-59 (-635 (-662 *5)))) (-5 *1 (-662 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1544 *3)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1)
(-12
- (-5 *2
- (-2 (|:| |polnum| (-773 *3)) (|:| |polden| *3) (|:| -1630 (-762))))
- (-5 *1 (-773 *3)) (-4 *3 (-1039))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1630 (-762))))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *2 (-635 *3)) (-5 *1 (-914 *4 *5 *6 *3))
- (-4 *3 (-939 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-1146 (-224))) (-5 *1 (-191))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-638 (-1166)))
+ (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *4 (-638 (-1166)))
+ (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-1146 (-224))) (-5 *1 (-299)))))
(((*1 *2 *3)
(-12
(-5 *3
(-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
(|:| |abserr| (-224)) (|:| |relerr| (-224))))
(-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
- (-5 *2 (-635 (-635 (-933 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112)) (-4 *4 (-1039))
- (-4 *1 (-1121 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 (-933 *3)))) (-4 *3 (-1039))
- (-4 *1 (-1121 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112))
- (-4 *1 (-1121 *4)) (-4 *4 (-1039))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-635 (-635 (-933 *4)))) (-5 *3 (-112))
- (-4 *1 (-1121 *4)) (-4 *4 (-1039))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170)))
- (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-635 (-635 (-933 *5)))) (-5 *3 (-635 (-170)))
- (-5 *4 (-170)) (-4 *1 (-1121 *5)) (-4 *5 (-1039)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 *4))))
- (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-362)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-635 (-1163))) (-4 *2 (-171))
- (-4 *4 (-237 (-1596 *5) (-762)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2349 *3) (|:| -1857 *4))
- (-2 (|:| -2349 *3) (|:| -1857 *4))))
- (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-841))
- (-4 *7 (-939 *2 *4 (-855 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-329)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4)))
- (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
- (-4 *4 (-372 *2)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1200))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-604 *1))) (-5 *3 (-635 *1)) (-4 *1 (-301))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-293 *1))) (-4 *1 (-301))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163))
- (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-959 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-1186 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224)))
- (-5 *5 (-112)) (-5 *2 (-1248)) (-5 *1 (-256)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))
+(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1229 *2))
+ (-4 *2 (-171))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4))
+ (-4 *3 (-408 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1229 *2)) (-5 *2 (-561)) (-5 *1 (-762 *3 *4))
+ (-4 *4 (-408 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)) (-4 *3 (-171))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-553)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *4 (-1166))
+ (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-942 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1)))
+ (-4 *1 (-1229 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-561)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1205))
+ (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-952)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1146 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-553)) (-4 *4 (-844))
+ (-5 *1 (-570 *4 *2)) (-4 *2 (-429 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1258)) (-5 *1 (-240)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2246 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-638 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7))
+ (-5 *3 (-406 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-571 *7 *8)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146))
+ (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *5 (-553))
+ (-5 *2
+ (-2 (|:| |minor| (-638 (-914))) (|:| -3360 *3)
+ (|:| |minors| (-638 (-638 (-914)))) (|:| |ops| (-638 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4391)) (-4 *4 (-362)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-519 *4 *5 *6 *3))
+ (-4 *3 (-680 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4391)) (-4 *4 (-553)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-4 *7 (-985 *4)) (-4 *8 (-372 *7))
+ (-4 *9 (-372 *7)) (-5 *2 (-638 *6))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-680 *4 *5 *6))
+ (-4 *10 (-680 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762))))
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-638 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3))
- (-4 *3 (-677 *4 *5 *6))))
+ (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-638 *6)) (-5 *1 (-681 *4 *5 *6 *3))
+ (-4 *3 (-680 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550))
- (-5 *2 (-762)))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553))
+ (-5 *2 (-638 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
+ (-5 *1 (-1066 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1090))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
+ (-5 *1 (-1066 *3 *4 *2))
+ (-4 *2 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *3 (-1229 *4)) (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-649 *3))
+ (-4 *5 (-649 (-406 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-406 *5))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-1229 *4))
+ (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-649 *5)) (-4 *6 (-649 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-819) (-841) (-1039)))
- (-5 *2 (-1145)) (-5 *1 (-817 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 *5)) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1145))
- (-5 *1 (-817 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813)) (-5 *4 (-315 *5))
- (-4 *5 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251))
- (-5 *1 (-817 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-813)) (-5 *4 (-315 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-819) (-841) (-1039))) (-5 *2 (-1251))
- (-5 *1 (-817 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-1145))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-819)) (-5 *3 (-112)) (-5 *2 (-1145))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *2 (-1251))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-819)) (-5 *3 (-813)) (-5 *4 (-112)) (-5 *2 (-1251)))))
+ (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-844) (-553)))
+ (-5 *2 (-856)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-224)) (-5 *5 (-561)) (-5 *2 (-1200 *3))
+ (-5 *1 (-784 *3)) (-4 *3 (-967))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-112))
+ (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-97)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-4 *5 (-362))
- (-4 *5 (-1039)) (-5 *2 (-112)) (-5 *1 (-1019 *5))))
+ (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166)))
+ (-4 *6 (-13 (-553) (-1031 *5))) (-4 *5 (-553))
+ (-5 *2 (-638 (-638 (-293 (-406 (-945 *6)))))) (-5 *1 (-1032 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-103 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *4 (-1229 *3))
+ (-5 *2
+ (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362)) (-4 *4 (-1039))
- (-5 *2 (-112)) (-5 *1 (-1019 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1087))
- (-4 *3 (-1200)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 *2)) (-4 *2 (-939 (-406 (-942 *6)) *5 *4))
- (-5 *1 (-723 *5 *4 *6 *2)) (-4 *5 (-784))
- (-4 *4 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $)))))
- (-4 *6 (-550)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-762))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-762)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-604 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1028 (-558)))
- (-4 *4 (-13 (-841) (-550))) (-5 *2 (-1159 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-604 *1)) (-4 *1 (-1039)) (-4 *1 (-301))
- (-5 *2 (-1159 *1)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *3 (-1053 *6 *7 *8))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -3798 *9))))
- (-5 *5 (-112)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1059 *6 *7 *4 *8))
- (-4 *6 (-450)) (-4 *7 (-784)) (-4 *4 (-841))
- (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -3798 *9))))
- (-5 *1 (-1060 *6 *7 *4 *8 *9)))))
-(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1087)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1174 *2)) (-4 *2 (-362)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-515)))))
+ (-12 (-5 *3 (-561)) (-4 *4 (-1229 *3))
+ (-5 *2
+ (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-762 *4 *5)) (-4 *5 (-408 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3))
+ (-5 *2
+ (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3))
+ (-5 *2
+ (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-1262 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1163)))
- (-14 *4 (-635 (-1163))) (-4 *5 (-386)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4))
+ (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4)))))
+ ((*1 *1 *1) (-5 *1 (-378)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1238 *3 *4 *5)) (-4 *3 (-13 (-362) (-844)))
+ (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-190)) (-5 *3 (-561))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-5 *2 (-1177 (-638 *4))) (-5 *1 (-1176 *4))
+ (-5 *3 (-638 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1090)) (-4 *3 (-893 *5)) (-5 *2 (-1253 *3))
+ (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-372 *3))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4390)))))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-561)) (-4 *3 (-171)) (-4 *5 (-372 *3))
+ (-4 *6 (-372 *3)) (-5 *1 (-681 *3 *5 *6 *2))
+ (-4 *2 (-680 *3 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5))
- (|:| |c2| (-406 *5)) (|:| |deg| (-762))))
- (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
-(((*1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-543)))))
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1229 *4))
+ (-5 *2 (-1253 (-638 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-638 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-816)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 *4))
- (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-762))))
- (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
+ (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1226 *4 *5)) (-5 *3 (-638 *5)) (-14 *4 (-1166))
+ (-4 *5 (-362)) (-5 *1 (-916 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *5)) (-4 *5 (-362)) (-5 *2 (-1162 *5))
+ (-5 *1 (-916 *4 *5)) (-14 *4 (-1166))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-638 *6)) (-5 *4 (-765)) (-4 *6 (-362))
+ (-5 *2 (-406 (-945 *6))) (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-485)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-942 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-942 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
- ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1))))
+ (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-561))))
+ (-5 *1 (-304)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-638 (-945 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-638 (-945 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-638 (-945 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-638 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1159 (-558))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
+ (-12 (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *2 (-638 (-945 *4)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-553)) (-4 *4 (-171))
+ (-14 *5 (-914)) (-14 *6 (-638 (-1166))) (-14 *7 (-1253 (-682 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042))
+ (-5 *2 (-765)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-582 *2)) (-4 *2 (-13 (-29 *4) (-1190)))
+ (-5 *1 (-580 *4 *2))
+ (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-582 (-406 (-945 *4))))
+ (-4 *4 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
+ (-5 *2 (-315 *4)) (-5 *1 (-585 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1256))))
+ ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1256)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-638
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-561)))))
+ (-4 *2 (-553)) (-5 *1 (-417 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1159 (-406 (-558)))) (-5 *2 (-635 *1)) (-4 *1 (-1002))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-561))
+ (|:| -4282 (-638 (-2 (|:| |irr| *4) (|:| -2449 (-561)))))))
+ (-4 *4 (-1229 (-561))) (-5 *2 (-417 *4)) (-5 *1 (-440 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-1162 (-945 *4))) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362))
+ (-5 *2 (-1162 (-945 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1162 (-406 (-945 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-844) (-553) (-1031 (-561)))) (-5 *2 (-1258))
+ (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5))
+ (-4 *5 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-638 *7))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-638 (-293 *7))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-638 (-293 *8))) (-5 *4 (-638 (-114))) (-5 *5 (-293 *8))
+ (-5 *6 (-638 *8)) (-4 *8 (-429 *7))
+ (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-638 *7)) (-5 *4 (-638 (-114))) (-5 *5 (-293 *7))
+ (-4 *7 (-429 *6)) (-4 *6 (-13 (-844) (-553) (-609 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-114))) (-5 *6 (-638 (-293 *8)))
+ (-4 *8 (-429 *7)) (-5 *5 (-293 *8))
+ (-4 *7 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6))
+ (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
+ (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6))
+ (-4 *6 (-13 (-844) (-553) (-609 (-534)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-638 *3))
+ (-4 *3 (-429 *7)) (-4 *7 (-13 (-844) (-553) (-609 (-534))))
+ (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-256)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1229 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1159 *1)) (-4 *1 (-1002)) (-5 *2 (-635 *1))))
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3))
+ (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-561)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-839) (-362))) (-4 *3 (-1222 *4)) (-5 *2 (-635 *1))
- (-4 *1 (-1056 *4 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-752))))
-(((*1 *1 *1) (-4 *1 (-1131))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
- (-14 *4 (-635 (-1163)))))
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3))
+ (-4 *3 (-1229 (-406 (-561))))))
((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1200))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
- (-14 *4 (-635 (-1163)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-841)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))))
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1218 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-749))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-914)) (-5 *2 (-466)) (-5 *1 (-1254)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-867))))
+ ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-841))
- (-4 *5 (-265 *4)) (-4 *6 (-784)) (-5 *2 (-762))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-841))
- (-4 *5 (-265 *3)) (-4 *6 (-784)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-841)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-911))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362)))
- (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5))) (-4 *7 (-341 *4 *5 *6))
- (-5 *2 (-762)) (-5 *1 (-391 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-824 (-911)))))
- ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-589 *3)) (-4 *3 (-1039))))
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *3 (-550)) (-5 *2 (-558)) (-5 *1 (-615 *3 *4))
- (-4 *4 (-1222 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-731 *4 *3)) (-4 *4 (-1039))
- (-4 *3 (-841))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-731 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-841))
- (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-859 *3)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
+ (-4 *4 (-13 (-844) (-553))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4))
- (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6)))
- (-4 *8 (-341 *5 *6 *7))
- (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-762))
- (-5 *1 (-901 *4 *5 *6 *7 *8))))
+ (-12 (-4 *4 (-171)) (-4 *2 (-1229 *4)) (-5 *1 (-176 *4 *2 *3))
+ (-4 *3 (-718 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-406 (-945 *5)))) (-5 *4 (-1166))
+ (-5 *2 (-945 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-335 (-406 (-558)) *4 *5 *6))
- (-4 *4 (-1222 (-406 (-558)))) (-4 *5 (-1222 (-406 *4)))
- (-4 *6 (-341 (-406 (-558)) *4 *5)) (-5 *2 (-762))
- (-5 *1 (-902 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362))
- (-4 *7 (-1222 *6)) (-4 *4 (-1222 (-406 *7))) (-4 *8 (-341 *6 *7 *4))
- (-4 *9 (-13 (-367) (-362))) (-5 *2 (-762))
- (-5 *1 (-1008 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1039)) (-4 *3 (-550))
- (-5 *2 (-762))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783))))
+ (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-5 *2 (-945 *4))
+ (-5 *1 (-291 *4)) (-4 *4 (-450))))
((*1 *2 *1)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))))
+ (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-168 (-406 (-561)))))
+ (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *4))
+ (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-168 (-406 (-561))))) (-5 *4 (-1166))
+ (-5 *2 (-945 (-168 (-406 (-561))))) (-5 *1 (-758 *5))
+ (-4 *5 (-13 (-362) (-842)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *2 (-945 (-406 (-561))))
+ (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-406 (-561)))) (-5 *4 (-1166))
+ (-5 *2 (-945 (-406 (-561)))) (-5 *1 (-773 *5))
+ (-4 *5 (-13 (-362) (-842))))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-852))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-958))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1090) (-34))) (-5 *1 (-1130 *2 *3))
+ (-4 *3 (-13 (-1090) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-682 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-415 *3 *4))
+ (-4 *3 (-416 *4))))
+ ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-911)) (-5 *1 (-1020 *2))
- (-4 *2 (-13 (-1087) (-10 -8 (-15 -1785 ($ $ $))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3))
- (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7))
- (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-784))
- (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-914)) (-5 *1 (-1023 *2))
+ (-4 *2 (-13 (-1090) (-10 -8 (-15 -1813 ($ $ $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-221 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-4 *1 (-253 *3))))
+ ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-945 (-561)))) (-5 *1 (-436))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1094))
+ (-5 *1 (-753))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-561))) (-5 *2 (-1094))
+ (-5 *1 (-753)))))
+(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-815)))))
+(((*1 *2 *2) (-12 (-5 *2 (-682 (-315 (-561)))) (-5 *1 (-1024)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(((*1 *2 *2) (-12 (-5 *2 (-638 (-315 (-224)))) (-5 *1 (-266)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-406 (-945 (-168 (-561))))))
+ (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-293 (-406 (-945 (-168 (-561)))))))
+ (-5 *2 (-638 (-638 (-293 (-945 (-168 *4)))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-945 (-168 (-561)))))
+ (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-293 (-406 (-945 (-168 (-561))))))
+ (-5 *2 (-638 (-293 (-945 (-168 *4))))) (-5 *1 (-377 *4))
+ (-4 *4 (-13 (-362) (-842))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-502 (-406 (-558)) (-239 *5 (-762)) (-855 *4)
- (-246 *4 (-406 (-558)))))
- (-14 *4 (-635 (-1163))) (-14 *5 (-762)) (-5 *2 (-112))
- (-5 *1 (-503 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-841)) (-4 *3 (-1028 (-558)))
- (-4 *3 (-550)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
- (-4 *2
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *3 (-604 $)) $))
- (-15 -3327 ((-1112 *3 (-604 $)) $))
- (-15 -3940 ($ (-1112 *3 (-604 $))))))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1544 (-773 *3)) (|:| |coef1| (-773 *3))))
- (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *2 (-2 (|:| -1544 *1) (|:| |coef1| *1)))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-553)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1087)) (-4 *2 (-890 *4)) (-5 *1 (-682 *4 *2 *5 *3))
- (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4383)))))))
-(((*1 *1 *1) (|partial| -4 *1 (-1138))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-816)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-1107)) (-4 *4 (-348))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1159 (-406 (-942 *3)))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *3)
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148)))))
+ (-5 *2 (-1028)) (-5 *1 (-304))))
+ ((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))))
- (-5 *1 (-204)))))
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))
+ (-5 *2 (-1028)) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1205)))))
+(((*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-216)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4))))
+ (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1148)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-182))) (-5 *1 (-139)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *2 (-635 (-168 *4)))
- (-5 *1 (-755 *4)) (-4 *4 (-13 (-362) (-839))))))
-(((*1 *1 *1) (-4 *1 (-621)))
+ (-12 (-5 *3 (-638 (-406 (-945 *5)))) (-5 *4 (-638 (-1166)))
+ (-4 *5 (-553)) (-5 *2 (-638 (-638 (-945 *5)))) (-5 *1 (-1174 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2))
+ (-4 *2 (-1244 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
- (|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-795 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1185) (-949))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1145)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1237 *4))
- (-4 *4 (-38 (-406 (-558)))) (-5 *2 (-1 (-1143 *4) (-1143 *4)))
- (-5 *1 (-1239 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762))
- (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-130))
- (-5 *2 (-762))))
- ((*1 *2)
- (-12 (-4 *4 (-362)) (-5 *2 (-762)) (-5 *1 (-327 *3 *4))
- (-4 *3 (-328 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-360 *3)) (-4 *3 (-1087))))
- ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-385 *3)) (-4 *3 (-1087))))
- ((*1 *2)
- (-12 (-4 *4 (-1087)) (-5 *2 (-762)) (-5 *1 (-423 *3 *4))
- (-4 *3 (-424 *4))))
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1229 *3))
+ (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1244 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1244 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146)))
+ (-5 *1 (-1142 *3)))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130))
+ (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 *4))))))
((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-1087))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-4 *5 (-1222 *4)) (-5 *2 (-762))
- (-5 *1 (-714 *3 *4 *5)) (-4 *3 (-715 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-810 *3)) (-4 *3 (-841))))
- ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-996))))
+ (-12 (-5 *2 (-638 (-2 (|:| -4188 *3) (|:| -3044 *4))))
+ (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
- (-4 *3 (-1222 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-527))))
- ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-4 *4 (-450))
- (-5 *2 (-635 (-3 (-406 (-942 *4)) (-1152 (-1163) (-942 *4)))))
- (-5 *1 (-291 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-699 *3)) (-5 *1 (-818 *2 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1200))
- (-4 *5 (-372 *4)) (-4 *2 (-372 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *6 *2 *7)) (-4 *6 (-1039))
- (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *6))))
- (-5 *4 (-1016 (-834 (-558)))) (-5 *5 (-1163)) (-5 *7 (-406 (-558)))
- (-4 *6 (-1039)) (-5 *2 (-853)) (-5 *1 (-588 *6)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
+ (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-5 *2 (-1146 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3)) (-5 *6 (-1162 *3))
+ (-4 *3 (-13 (-429 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
(-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1231 *4 *5 *6))
- (|:| |%expon| (-318 *4 *5 *6))
- (|:| |%expTerms|
- (-635 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4))))))
- (|:| |%type| (-1145))))
- (-5 *1 (-1232 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1185) (-429 *3)))
- (-14 *5 (-1163)) (-14 *6 *4))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3))
+ (-5 *6 (-406 (-1162 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-557 *7 *3 *8)) (-4 *8 (-1090)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306))))
+ (-12 (-5 *3 (-638 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306))
+ (-12 (-5 *3 (-638 (-638 *4))) (-5 *2 (-638 *4)) (-4 *4 (-306))
(-5 *1 (-178 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *8))
+ (-12 (-5 *3 (-638 *8))
(-5 *4
- (-635
- (-2 (|:| -2743 (-679 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-679 *7)))))
- (-5 *5 (-762)) (-4 *8 (-1222 *7)) (-4 *7 (-1222 *6)) (-4 *6 (-348))
+ (-638
+ (-2 (|:| -3711 (-682 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-682 *7)))))
+ (-5 *5 (-765)) (-4 *8 (-1229 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-348))
(-5 *2
- (-2 (|:| -2743 (-679 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-679 *7))))
+ (-2 (|:| -3711 (-682 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-682 *7))))
(-5 *1 (-496 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-326 *3))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-638 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-429 *4) (-995))) (-4 *4 (-13 (-844) (-553)))
+ (-5 *1 (-275 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-638 (-765))) (-5 *1 (-1256)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205))
+ (-5 *2 (-638 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 *1)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-514 *3 *4))
- (-14 *4 (-558)))))
-(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-279))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-558) (-224) (-1163) (-1145) (-1168)))
- (-5 *1 (-1168)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1222 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1042)) (-4 *1 (-680 *3 *4 *5))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6))
+ (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1256)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1205)) (-4 *3 (-1205)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-553)) (-4 *3 (-844)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 (-607 *4))) (-4 *4 (-429 *3)) (-4 *3 (-844))
+ (-5 *1 (-570 *3 *4))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-171))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
+(((*1 *1) (-5 *1 (-556))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-561)))))
+ (-4 *2 (-13 (-844) (-21))))))
+(((*1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-911)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-558))) (-5 *1 (-304)))))
+ (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3))
+ (-4 *3 (-641 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3))
+ (-4 *3 (-641 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042))))
+ ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-682 *3))))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-638 *11)) (-5 *5 (-638 (-1162 *9)))
+ (-5 *6 (-638 *9)) (-5 *7 (-638 *12)) (-5 *8 (-638 (-765)))
+ (-4 *11 (-844)) (-4 *9 (-306)) (-4 *12 (-942 *9 *10 *11))
+ (-4 *10 (-787)) (-5 *2 (-638 (-1162 *12)))
+ (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1162 *12)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-168 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
+ (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7))
+ (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-902)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-5 *1 (-899 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 (-1162 *5))) (-5 *3 (-1162 *5))
+ (-4 *5 (-1229 *4)) (-4 *4 (-902)) (-5 *1 (-900 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-2 (|:| -2426 *4) (|:| -4173 (-558)))))
- (-4 *4 (-1087)) (-5 *2 (-1 *4)) (-5 *1 (-1007 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-638 *5)) (-4 *5 (-1039))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-843 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-679 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1039))
- (-5 *1 (-844 *2 *3)) (-4 *3 (-843 *2)))))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6))
+ (-4 *4 (-609 (-534))) (-4 *5 (-1205)) (-4 *6 (-1205)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-561)) (-5 *2 (-638 (-2 (|:| -1657 *3) (|:| -2894 *4))))
+ (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *4)) (-4 *4 (-631 (-558))) (-5 *2 (-112))
- (-5 *1 (-1273 *4)))))
+ (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
- (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
+ (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *2 (-942 *4 *6 *5)) (-5 *1 (-917 *4 *5 *6 *2))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-856)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-553))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205))
+ (-14 *4 (-561)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
- (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
- (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
- (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-992)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301))))
- ((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
- (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7)))
+ (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
+ (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8)))
+ (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-112))
- (-5 *1 (-622 *4 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185))))))
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-638 (-638 *7)))
+ (-5 *1 (-446 *4 *5 *6 *7)) (-5 *3 (-638 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787))
+ (-4 *7 (-844)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-638 (-638 *8)))
+ (-5 *1 (-446 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-553))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1166))
+ (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *1 (-1169)))))
+(((*1 *1 *2) (-12 (-5 *2 (-914)) (-4 *1 (-367))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1090))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2413 *2) (|:| -4196 *3))
+ (-2 (|:| -2413 *2) (|:| -4196 *3)))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-882 *4 *5)) (-5 *3 (-882 *4 *6)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3051 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
+ (-5 *2 (-1162 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
+ (-5 *2 (-1162 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-1090)) (-4 *4 (-1205)) (-5 *2 (-112))
+ (-5 *1 (-1146 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-638 (-561))) (-5 *3 (-112)) (-5 *1 (-1100)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-834 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1053 *5 *6 *7))
- (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8))))
- (-5 *1 (-967 *5 *6 *7 *8)) (-5 *4 (-635 *8)))))
+ (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-362) (-146)))
- (-5 *2 (-635 (-2 (|:| -1857 (-762)) (|:| -2814 *4) (|:| |num| *4))))
- (-5 *1 (-398 *3 *4)) (-4 *4 (-1222 *3)))))
+ (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))
+ (-4 *2 (-450))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2))
+ (-4 *4 (-1229 (-406 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)) (-4 *3 (-450))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-450))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-306)) (-4 *3 (-553)) (-5 *1 (-1153 *3 *2))
+ (-4 *2 (-1229 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-153))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1125))) (-5 *1 (-1057)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-797)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1033)) (-5 *3 (-378)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-362)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *5 (-911))
- (-5 *2 (-1251)) (-5 *1 (-466))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1229 (-406 *2)))
+ (-4 *2 (-1229 *5)) (-5 *1 (-214 *5 *2 *6 *3))
+ (-4 *3 (-341 *5 *2 *6)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))
+ ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-933 (-224))) (-5 *2 (-1251)) (-5 *1 (-466))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-635 (-933 (-224)))) (-5 *4 (-864)) (-5 *5 (-911))
- (-5 *2 (-1251)) (-5 *1 (-466)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-4 *1 (-107 *3)))))
+ (-12 (-5 *3 (-638 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-765)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *3 (-844)) (-5 *2 (-765)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553))
+ (-5 *2 (-1162 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-550))
- (-5 *2 (-2 (|:| -3702 (-679 *5)) (|:| |vec| (-1246 (-635 (-911))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-911)) (-4 *3 (-646 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
- (-4 *7 (-1222 (-406 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2366 *3)))
- (-5 *1 (-556 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5)) (-4 *5 (-362))
- (-5 *2
- (-2 (|:| |answer| (-406 *6)) (|:| -2366 (-406 *6))
- (|:| |specpart| (-406 *6)) (|:| |polypart| *6)))
- (-5 *1 (-557 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-738)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-534)) (-5 *1 (-533 *4))
- (-4 *4 (-1200)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-839)) (-4 *4 (-362)) (-5 *2 (-762))
- (-5 *1 (-935 *4 *5)) (-4 *5 (-1222 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
- (-5 *2 (-942 *5)) (-5 *1 (-934 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1039))
- (-14 *4 (-635 (-1163)))))
+ (-12 (-5 *2 (-682 *4)) (-5 *3 (-914)) (-4 *4 (-1042))
+ (-5 *1 (-1021 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 (-682 *4))) (-5 *3 (-914)) (-4 *4 (-1042))
+ (-5 *1 (-1021 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1244 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844))))
((*1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1039) (-841)))
- (-14 *4 (-635 (-1163)))))
- ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
+ (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-638 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1205))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362))
- (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
- (-4 *2 (-341 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-171))))
- ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-715 *2 *3)) (-4 *3 (-1222 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2))
- (-4 *2 (-1237 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3))
- (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1237 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146)))
- (-5 *1 (-1139 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-762)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-784)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-841))
- (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-916)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-550)) (-4 *2 (-939 *3 *5 *4))
- (-5 *1 (-723 *5 *4 *6 *2)) (-5 *3 (-406 (-942 *6))) (-4 *5 (-784))
- (-4 *4 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1166))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251))
- (-5 *1 (-1166))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-635 (-1163))) (-5 *3 (-1163)) (-5 *2 (-1251))
- (-5 *1 (-1166)))))
-(((*1 *2 *3) (-12 (-5 *3 (-635 (-52))) (-5 *2 (-1251)) (-5 *1 (-854)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1087)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1087)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-1166))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1167)))))
+ (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-5 *2 (-1166))))
+ ((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1249 *3)) (-14 *3 *2))))
(((*1 *2 *3)
- (-12 (-5 *3 (-942 *5)) (-4 *5 (-1039)) (-5 *2 (-246 *4 *5))
- (-5 *1 (-934 *4 *5)) (-14 *4 (-635 (-1163))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1170)))))
-(((*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-1200)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-534))) (-5 *1 (-534)))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-682 (-945 *4))) (-5 *1 (-1021 *4))
+ (-4 *4 (-1042)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087))
- (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-679 *11)) (-5 *4 (-635 (-406 (-942 *8))))
- (-5 *5 (-762)) (-5 *6 (-1145)) (-4 *8 (-13 (-306) (-146)))
- (-4 *11 (-939 *8 *10 *9)) (-4 *9 (-13 (-841) (-606 (-1163))))
- (-4 *10 (-784))
- (-5 *2
- (-2
- (|:| |rgl|
- (-635
- (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11))
- (|:| |wcond| (-635 (-942 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1246 (-406 (-942 *8))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *8))))))))))
- (|:| |rgsz| (-558))))
- (-5 *1 (-914 *8 *9 *10 *11)) (-5 *7 (-558)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1127 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1128 *5 *6)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-864))))
- ((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-851)) (-5 *2 (-681 (-129))) (-5 *3 (-129)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-635 *5)) (-4 *5 (-841)) (-5 *1 (-1171 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1163))
- (-4 *4 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-885))
- (-5 *3
- (-2 (|:| |pde| (-635 (-315 (-224))))
- (|:| |constraints|
- (-635
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-762)) (|:| |boundaryType| (-558))
- (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
- (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
- (|:| |tol| (-224))))
- (-5 *2 (-1025)))))
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1137 *3)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1131 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
- (-5 *1 (-331)))))
-(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841))))
- ((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-849))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-955))))
- ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1200))))
+ (-12 (-5 *3 (-898 (-561))) (-5 *4 (-561)) (-5 *2 (-682 *4))
+ (-5 *1 (-1021 *5)) (-4 *5 (-1042))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1021 *4))
+ (-4 *4 (-1042))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-898 (-561)))) (-5 *4 (-561))
+ (-5 *2 (-638 (-682 *4))) (-5 *1 (-1021 *5)) (-4 *5 (-1042))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-638 (-561)))) (-5 *2 (-638 (-682 (-561))))
+ (-5 *1 (-1021 *4)) (-4 *4 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-561)))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1087) (-34))) (-5 *1 (-1127 *2 *3))
- (-4 *3 (-13 (-1087) (-34))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1246 (-762))) (-5 *1 (-665 *3)) (-4 *3 (-1087)))))
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5))
+ (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6))
+ (-4 *6 (-450))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-479 *5 *6))) (-5 *4 (-858 *5))
+ (-14 *5 (-638 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6))
+ (-4 *6 (-450)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1090 *2 *3 *4 *5 *6)) (-4 *2 (-1087)) (-4 *3 (-1087))
- (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)))))
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-406 (-561))) (-4 *1 (-551 *3))
+ (-4 *3 (-13 (-403) (-1190)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1229 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1206 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2862 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553))
+ (-5 *2 (-1162 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130))
+ (-4 *3 (-786)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-821 *2 *3)) (-4 *2 (-702 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028))
+ (-5 *1 (-740)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))))
+(((*1 *1) (-5 *1 (-143))))
(((*1 *2 *3)
- (-12 (-5 *2 (-417 (-1159 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1159 *1))
- (-4 *4 (-450)) (-4 *4 (-550)) (-4 *4 (-841))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-164 *3 *4))
- (-4 *3 (-165 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1200)) (-5 *2 (-762))
- (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-841)) (-5 *2 (-762)) (-5 *1 (-428 *3 *4))
- (-4 *3 (-429 *4))))
- ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-542 *3)) (-4 *3 (-543))))
- ((*1 *2) (-12 (-4 *1 (-754)) (-5 *2 (-762))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-787 *3 *4))
- (-4 *3 (-788 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-981 *3 *4))
- (-4 *3 (-982 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-762)) (-5 *1 (-986 *3 *4))
- (-4 *3 (-987 *4))))
- ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1001 *3)) (-4 *3 (-1002))))
- ((*1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-762))))
- ((*1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-1047 *3)) (-4 *3 (-1048)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-689)) (-5 *1 (-304)))))
+ (-12 (-4 *1 (-913)) (-5 *2 (-2 (|:| -4188 (-638 *1)) (|:| -3158 *1)))
+ (-5 *3 (-638 *1)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1087)) (-4 *2 (-841))
- (-5 *1 (-113 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992))))))
-(((*1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1163)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-482 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *6 (-224))
- (-5 *3 (-558)) (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
- ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
- ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-933 *5)) (-4 *5 (-1039)) (-5 *2 (-762))
- (-5 *1 (-1151 *4 *5)) (-14 *4 (-911))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5))
- (-14 *4 (-911)) (-4 *5 (-1039))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039))
- (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3))
- (-4 *3 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3)))
- (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3)))
- (-4 *3 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3)))
- (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))))
+ (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-638 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-416 *4)))))
(((*1 *2)
- (|partial| -12 (-4 *4 (-1204)) (-4 *5 (-1222 (-406 *2)))
- (-4 *2 (-1222 *4)) (-5 *1 (-340 *3 *4 *2 *5))
- (-4 *3 (-341 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1204))
- (-4 *4 (-1222 (-406 *2))) (-4 *2 (-1222 *3)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-933 *5)) (-5 *3 (-762)) (-4 *5 (-1039))
- (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-966 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841)) (-4 *5 (-1053 *3 *4 *2)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-879 *4 *3))
- (-4 *3 (-1087)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-112))
- (-5 *2 (-1025)) (-5 *1 (-736)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-762)) (|:| -3936 *4))) (-5 *5 (-762))
- (-4 *4 (-939 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
+ (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-765)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-732)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1205))
+ (-14 *4 (-561)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169))))
+ ((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1169)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
(-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-447 *6 *7 *8 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1200)) (-5 *2 (-762)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-811)) (-14 *5 (-1163))
- (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
+ (-12 (-4 *4 (-13 (-553) (-844))) (-5 *2 (-168 *5))
+ (-5 *1 (-595 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-995) (-1190)))
+ (-4 *3 (-13 (-429 (-168 *4)) (-995) (-1190))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2862 *3) (|:| |coef1| (-773 *3))))
- (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-841) (-550))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
- ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
- ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-834 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4))
- (-5 *1 (-266)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-1186 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-635 (-1186 *2))) (-5 *1 (-1186 *2)) (-4 *2 (-1087)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-762))) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-882 *4)) (-4 *4 (-1087)) (-5 *1 (-880 *4 *3))
- (-4 *3 (-1200))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1087))
- (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3))))
- (-5 *1 (-1063 *3 *4 *2))
- (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *3 *2)) (-4 *3 (-1087)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-863 *2 *3)) (-4 *2 (-1200)) (-4 *3 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-841)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 (-604 *4))) (-4 *4 (-429 *3)) (-4 *3 (-841))
- (-5 *1 (-567 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1039)) (-5 *1 (-705 *4 *2))
- (-4 *2 (-638 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-827 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-635 (-114))))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4385 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
- (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2))
- (-4 *4 (-677 *2 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-329)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-4 *4 (-1200)) (-5 *2 (-112))
- (-5 *1 (-1143 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-234 *3))
- (-4 *3 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-234 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087))
- (-5 *1 (-728 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3))
- (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-939 *6 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-635 (-315 (-224)))) (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-476))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-585))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-618))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1087))
- (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3))))
- (-5 *1 (-1063 *3 *4 *2))
- (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1087)) (-5 *1 (-1152 *2 *3)) (-4 *3 (-1087)))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1163))
- (-5 *2
- (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224)))
- (|:| |singularities| (-1143 (-224)))))
- (-5 *1 (-105)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1163)) (-5 *2 (-1167)) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-813)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-373 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-171))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-1039)))))
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-561))
+ (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *6)))))
+ (-12 (-5 *2 (-1092 *3)) (-5 *1 (-898 *3)) (-4 *3 (-367))
+ (-4 *3 (-1090)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-553) (-844) (-1031 (-561)))) (-5 *1 (-187 *3 *2))
+ (-4 *2 (-13 (-27) (-1190) (-429 (-168 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-553) (-844) (-1031 (-561))))
+ (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112))
+ (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-635
- (-2 (|:| |scalar| (-406 (-558))) (|:| |coeff| (-1159 *3))
- (|:| |logand| (-1159 *3)))))
- (-5 *1 (-579 *3)) (-4 *3 (-362)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1163))
- (-4 *6 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-4 *4 (-13 (-29 *6) (-1185) (-949)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2743 (-635 *4))))
- (-5 *1 (-792 *6 *4 *3)) (-4 *3 (-646 *4)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1159 *1)) (-5 *3 (-1163)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1159 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-942 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1163)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-841) (-550)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-841) (-550)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 *2)) (-5 *4 (-1163)) (-4 *2 (-429 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-841) (-550)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-4 *1 (-1002))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1159 *1)) (-5 *3 (-911)) (-5 *4 (-853))
- (-4 *1 (-1002))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-911)) (-4 *4 (-13 (-839) (-362)))
- (-4 *1 (-1056 *4 *2)) (-4 *2 (-1222 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1185))))
- ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-604 *3)) (-4 *3 (-841)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1200)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-762))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1039))
- (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
- ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-443 *3)) (-4 *3 (-1039)))))
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4381)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1159 *7)) (-4 *7 (-939 *6 *4 *5)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1039)) (-5 *2 (-1159 *6))
- (-5 *1 (-320 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1162 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6))
+ (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-945 *5)) (-4 *5 (-450)) (-5 *2 (-638 *6))
+ (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-811)) (-14 *5 (-1163)) (-5 *2 (-635 (-1219 *5 *4)))
- (-5 *1 (-1101 *4 *5)) (-5 *3 (-1219 *5 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1246 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
- (-4 *1 (-715 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1222 *5))
- (-5 *2 (-679 *5)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-435)))))
-(((*1 *2)
- (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
- (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6))
- (-4 *3 (-341 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-534)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *3 (-550)))))
-(((*1 *1 *2) (-12 (-5 *2 (-911)) (-4 *1 (-367))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1246 *4)) (-5 *1 (-526 *4))
- (-4 *4 (-348))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-841)) (-5 *1 (-704 *2 *3 *4)) (-4 *3 (-1087))
- (-14 *4
- (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *3))
- (-2 (|:| -2349 *2) (|:| -1857 *3)))))))
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876))
+ (-5 *3 (-638 (-561))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-191))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084 (-837 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-618 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -1621 *4) (|:| |sol?| (-112)))
+ (-561) *4))
+ (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-378)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *1 (-157 *4 *2))
+ (-4 *2 (-429 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166))))
+ ((*1 *1 *1) (-4 *1 (-159))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-812)) (-5 *4 (-52)) (-5 *2 (-1251)) (-5 *1 (-822)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -2397 (-417 *3)) (|:| |special| (-417 *3))))
+ (-5 *1 (-721 *5 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-958))) (-5 *1 (-290)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-638 *5)) (-5 *4 (-561)) (-4 *5 (-842)) (-4 *5 (-362))
+ (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1229 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 (-168 (-558))))) (-5 *2 (-635 (-168 *4)))
- (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-839)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 (-406 (-942 (-168 (-558))))))
- (-5 *4 (-635 (-1163))) (-5 *2 (-635 (-635 (-168 *5))))
- (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-839))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
- (-4 *3 (-957)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-558)) (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3))
- (-4 *3 (-1039))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-810 *4)) (-4 *4 (-841)) (-4 *1 (-1263 *4 *3))
- (-4 *3 (-1039)))))
+ (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1229 *5))
+ (-5 *1 (-721 *5 *2)) (-4 *5 (-362)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-844)) (-5 *3 (-638 *6)) (-5 *5 (-638 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-638 *5)) (|:| |f3| *5)
+ (|:| |f4| (-638 *5))))
+ (-5 *1 (-1176 *6)) (-5 *4 (-638 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-993 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-819)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
- (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112))
- (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-329)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
-(((*1 *1) (-5 *1 (-1051))))
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-844))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-582 *4)) (-4 *4 (-13 (-29 *3) (-1190)))
+ (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
+ (-5 *1 (-580 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-582 (-406 (-945 *3))))
+ (-4 *3 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
+ (-5 *1 (-585 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -2397 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
+ (-5 *3 (-638 (-682 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1253 (-1253 *5))) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-638 (-638 (-682 *5)))) (-5 *1 (-1022 *5))
+ (-5 *3 (-638 (-682 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-638 *1)) (-4 *1 (-1134))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-638 *1)) (-4 *1 (-1134)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1090)) (-4 *5 (-1090))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-638 (-406 *6))) (-5 *3 (-406 *6))
+ (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-561))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-556)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-191)))))
+ (-2 (|:| -4188 *3) (|:| |gap| (-765)) (|:| -1307 (-776 *3))
+ (|:| -1693 (-776 *3))))
+ (-5 *1 (-776 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2
+ (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1307 *1)
+ (|:| -1693 *1)))
+ (-4 *1 (-1056 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2
+ (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1307 *1)
+ (|:| -1693 *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3)))
+ (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3))
+ (-4 *3 (-846 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-390)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-957))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1222 *4)) (-4 *4 (-1204))
- (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1222 (-406 *3))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841))))
+ (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3))
+ (-4 *3 (-960)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 (-479 *3 *4))) (-14 *3 (-638 (-1166)))
+ (-4 *4 (-450)) (-5 *1 (-626 *3 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *9 (-1059 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
- (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1053 *5 *6 *7))
- (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-784))
- (-4 *7 (-841)) (-5 *2 (-762)) (-5 *1 (-1132 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
- (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 (-168 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-168 *3)) (-5 *1 (-1189 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558))))
- (-5 *1 (-1097)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-153))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1122))) (-5 *1 (-1054)))))
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224)))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-635 *5)))))
+ (-12 (-5 *2 (-638 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-553))
+ (-4 *3 (-1205)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6))
- (-4 *4 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3) (-12 (-5 *3 (-635 (-558))) (-5 *2 (-762)) (-5 *1 (-583)))))
-(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-156))))
- ((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-899)) (-5 *2 (-417 (-1159 *1))) (-5 *3 (-1159 *1)))))
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-561)) (-5 *4 (-417 *2)) (-4 *2 (-942 *7 *5 *6))
+ (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-306)))))
+(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1258)) (-5 *1 (-390))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-390)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-841))
- (-5 *2 (-2 (|:| -3455 (-558)) (|:| |var| (-604 *1))))
- (-4 *1 (-429 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-173 *3)) (-4 *3 (-306))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-664 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-731 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-841))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *1 (-970 *3)) (-4 *3 (-1039))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1059 *4 *5 *6 *7))
- (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *5 *6 *3)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-635 *1))
- (-4 *1 (-1059 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-783)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-5 *2 (-1172 (-635 *4))) (-5 *1 (-1171 *4))
- (-5 *3 (-635 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-841))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-855 *3)) (-14 *3 (-635 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-956 *3)) (-4 *3 (-957))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1079 *3)) (-4 *3 (-1200))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
- (-5 *2 (-1163))))
- ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1242 *3)) (-14 *3 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1039)) (-5 *1 (-818 *2 *3)) (-4 *2 (-699 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348)) (-5 *2 (-948 (-1107)))
- (-5 *1 (-345 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1) (-4 *1 (-491)))
+ (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
+ (-5 *2 (-1162 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1021 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
+ (-12 (-5 *2 (-638 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1021 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1148)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-262)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1090)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1048)) (-4 *3 (-1185))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *2) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485)))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-450)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))
- (-5 *2 (-635 (-406 (-558)))) (-5 *1 (-1010 *4))
- (-4 *4 (-1222 (-558))))))
+ (-12 (-5 *3 (-1148)) (-5 *2 (-638 (-1171))) (-5 *1 (-1126)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-561)) (-5 *1 (-417 *2)) (-4 *2 (-553)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-607 *4)) (-5 *6 (-1162 *4))
+ (-4 *4 (-13 (-429 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-607 *4)) (-5 *6 (-406 (-1162 *4)))
+ (-4 *4 (-13 (-429 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-557 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |k| (-662 *3)) (|:| |c| *4))))
- (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-882 *3)) (|:| |den| (-882 *3))))
- (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1145)) (-5 *3 (-814)) (-5 *1 (-813)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-406 (-558))) (-4 *1 (-548 *3))
- (-4 *3 (-13 (-403) (-1185)))))
- ((*1 *1 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-548 *2)) (-4 *2 (-13 (-403) (-1185))))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140))))
- ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-140)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-406 (-561))))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
+ (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2))
+ (-4 *2 (-1244 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1229 *3))
+ (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1244 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1) (-4 *1 (-491)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1244 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1028 (-558))) (-4 *3 (-13 (-841) (-550)))
- (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1159 *4)) (-5 *1 (-164 *3 *4))
- (-4 *3 (-165 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1039)) (-4 *1 (-301))))
- ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3))))
- ((*1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1056 *3 *2)) (-4 *3 (-13 (-839) (-362)))
- (-4 *2 (-1222 *3)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1039))
- (-5 *1 (-844 *5 *2)) (-4 *2 (-843 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-784)) (-4 *4 (-841)) (-4 *6 (-306)) (-5 *2 (-417 *3))
- (-5 *1 (-733 *5 *4 *6 *3)) (-4 *3 (-939 *6 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992))))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-604 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1163)))
- (-4 *2 (-13 (-429 *5) (-27) (-1185)))
- (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1087)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-311)) (-5 *1 (-820)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1) (-4 *1 (-491)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-543)) (-4 *3 (-550))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-543)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-543)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-998 *3)) (-4 *3 (-1028 (-406 (-558)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *4 (-635 (-1163)))
- (-5 *2 (-679 (-315 (-224)))) (-5 *1 (-204))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-4 *6 (-890 *5)) (-5 *2 (-679 *6))
- (-5 *1 (-682 *5 *6 *3 *4)) (-4 *3 (-372 *6))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146)))
+ (-5 *1 (-1142 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-4 *1 (-896 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856)))))
+(((*1 *1 *1) (-5 *1 (-1054))))
(((*1 *2 *1)
- (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1087))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+ (-12 (-4 *2 (-1205)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1205))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-679 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-679 *4)) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1193 *5 *6 *7 *8)) (-4 *5 (-550))
- (-4 *6 (-784)) (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)))))
-(((*1 *1)
- (-12 (-4 *1 (-403)) (-2143 (|has| *1 (-6 -4374)))
- (-2143 (|has| *1 (-6 -4366)))))
- ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841))))
- ((*1 *1) (-4 *1 (-835))) ((*1 *1 *1 *1) (-4 *1 (-841)))
- ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-841)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-378)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-558))
- (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1146 (-945 *4)) (-1146 (-945 *4))))
+ (-5 *1 (-1261 *4)) (-4 *4 (-362)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1229 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306))
+ (-4 *10 (-942 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-638 (-1162 *10)))
+ (|:| |dterm|
+ (-638 (-638 (-2 (|:| -4215 (-765)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-638 *6)) (|:| |nlead| (-638 *10))))
+ (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1162 *10)) (-5 *4 (-638 *6))
+ (-5 *5 (-638 *10)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2 (-2 (|:| |answer| (-582 (-406 *7))) (|:| |a0| *6)))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-378)))
+ ((*1 *1) (-5 *1 (-378))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-561))) (-4 *3 (-1042)) (-5 *1 (-591 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1213 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-561))) (-4 *1 (-1244 *3)) (-4 *3 (-1042)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1 *1) (-4 *1 (-491)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1200))
+ (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205))
(-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
- (-4 *5 (-372 *2)) (-4 *2 (-1200))))
+ (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2))
+ (-4 *5 (-372 *2)) (-4 *2 (-1205))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1200))))
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1205))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 (-558))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 (-558)) (-14 *5 (-762))))
+ (-12 (-5 *3 (-638 (-561))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 (-561)) (-14 *5 (-765))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-762))))
+ (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-765))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-762))))
+ (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-765))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-762))))
+ (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-765))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-762))))
+ (-12 (-5 *3 (-561)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-765))))
((*1 *2 *1)
- (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-558))
- (-14 *4 (-762))))
+ (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-561))
+ (-14 *4 (-765))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-244 (-1145))) (-5 *1 (-213 *4))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4))
(-4 *4
- (-13 (-841)
- (-10 -8 (-15 -2276 ((-1145) $ *3)) (-15 -1490 ((-1251) $))
- (-15 -1963 ((-1251) $)))))))
+ (-13 (-844)
+ (-10 -8 (-15 -2277 ((-1148) $ *3)) (-15 -1491 ((-1258) $))
+ (-15 -3148 ((-1258) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-979)) (-5 *1 (-213 *3))
+ (-12 (-5 *2 (-982)) (-5 *1 (-213 *3))
(-4 *3
- (-13 (-841)
- (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $))
- (-15 -1963 ((-1251) $)))))))
+ (-13 (-844)
+ (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $))
+ (-15 -3148 ((-1258) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-762)) (-5 *1 (-244 *4)) (-4 *4 (-841))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-841))))
+ (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-841))))
+ (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200))))
+ (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1200))))
+ (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1205))))
((*1 *2 *1 *2)
(-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1222 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-4 *2 (-1229 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-635 *1)) (-4 *1 (-301))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-638 *1)) (-4 *1 (-301))))
((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-1222 *2))
- (-4 *4 (-1222 (-406 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-416 *2)) (-4 *2 (-171))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1145)) (-5 *1 (-500))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-52)) (-5 *1 (-624))))
+ (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2))
+ (-4 *4 (-1229 (-406 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-4 *1 (-416 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-52)) (-5 *1 (-627))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1213 (-558))) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
+ (-12 (-5 *2 (-1220 (-561))) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *1 (-665 *2)) (-4 *2 (-1087))))
+ (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1090))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-635 (-558))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
+ (-12 (-5 *2 (-638 (-561))) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
(-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-635 (-882 *4))) (-5 *1 (-882 *4))
- (-4 *4 (-1087))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-638 (-885 *4))) (-5 *1 (-885 *4))
+ (-4 *4 (-1090))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-895 *4)) (-5 *1 (-894 *4))
- (-4 *4 (-1087))))
+ (-12 (-5 *3 (-765)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4))
+ (-4 *4 (-1090))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-911)) (-4 *2 (-362))
- (-5 *1 (-983 *4 *2))))
+ (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-914)) (-4 *2 (-362))
+ (-5 *1 (-986 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1000 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200))))
+ (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *2 (-1039))
+ (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042))
(-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-1042 *4 *5 *2 *6 *7))
- (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1039))))
+ (-12 (-5 *3 (-561)) (-4 *1 (-1045 *4 *5 *2 *6 *7))
+ (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-911)) (-4 *4 (-1087))
- (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
- (-5 *1 (-1063 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))))
+ (-12 (-5 *3 (-914)) (-4 *4 (-1090))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
+ (-5 *1 (-1066 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-911)) (-4 *4 (-1087))
- (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
- (-5 *1 (-1064 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))))
+ (-12 (-5 *3 (-914)) (-4 *4 (-1090))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
+ (-5 *1 (-1067 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-558))) (-4 *1 (-1090 *3 *4 *5 *6 *7))
- (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087))
- (-4 *7 (-1087))))
+ (-12 (-5 *2 (-638 (-561))) (-4 *1 (-1093 *3 *4 *5 *6 *7))
+ (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090))
+ (-4 *7 (-1090))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087))
- (-4 *4 (-1087)) (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087))))
- ((*1 *1 *1 *1) (-4 *1 (-1131)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163))))
+ (-12 (-5 *2 (-561)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090))
+ (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090))))
+ ((*1 *1 *1 *1) (-4 *1 (-1134)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-406 *1)) (-4 *1 (-1222 *2)) (-4 *2 (-1039))
+ (-12 (-5 *3 (-406 *1)) (-4 *1 (-1229 *2)) (-4 *2 (-1042))
(-4 *2 (-362))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))
- (-4 *3 (-550))))
+ (-12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))
+ (-4 *3 (-553))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1039))))
+ (-12 (-4 *1 (-1231 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1234 *2)) (-4 *2 (-1200))))
+ (-12 (-5 *3 "last") (-4 *1 (-1241 *2)) (-4 *2 (-1205))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1241 *3)) (-4 *3 (-1205))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-450))
- (-5 *2 (-479 *4 *5)) (-5 *1 (-623 *4 *5)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1258)) (-5 *1 (-1128))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-856))) (-5 *2 (-1258)) (-5 *1 (-1128)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-561))
+ (-5 *6
+ (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))))
+ (-5 *7 (-1 (-1258) (-1253 *5) (-1253 *5) (-378)))
+ (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258))
+ (-5 *1 (-782))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-561))
+ (-5 *6
+ (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4312 (-378))))
+ (-5 *7 (-1 (-1258) (-1253 *5) (-1253 *5) (-378)))
+ (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258))
+ (-5 *1 (-782)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1090) (-34))) (-4 *5 (-13 (-1090) (-34)))
+ (-5 *1 (-1131 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-1130 *3 *4))) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1162 (-561))) (-5 *3 (-561)) (-4 *1 (-862 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-130))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-360 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-385 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-642 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-638 *3))
+ (-4 *3 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1090)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))))
(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))
- (-5 *2 (-406 (-558))) (-5 *1 (-1010 *4)) (-4 *4 (-1222 (-558))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *6))
- (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-939 *3 *4 *5))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
+(((*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))))
+(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143)))
+ ((*1 *1 *1) (-4 *1 (-1134))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-97)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-561)) (-5 *1 (-240))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-638 (-1148))) (-5 *3 (-561)) (-5 *4 (-1148))
+ (-5 *1 (-240))))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224)))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-112)) (-5 *5 (-679 (-168 (-224))))
- (-5 *2 (-1025)) (-5 *1 (-746)))))
+ (-12 (-4 *1 (-1231 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *1 *1 *1) (-4 *1 (-471)))
+ ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
+ ((*1 *2 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-876))))
+ ((*1 *1 *1) (-5 *1 (-964)))
+ ((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-745)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209))
+ (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171))
+ (-4 *1 (-366 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171))
+ (-4 *1 (-369 *4 *5)) (-4 *5 (-1229 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4))
+ (-4 *4 (-1229 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-553))
+ (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-1224 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *6)) (-5 *4 (-638 (-1146 *7))) (-4 *6 (-844))
+ (-4 *7 (-942 *5 (-529 *6) *6)) (-4 *5 (-1042))
+ (-5 *2 (-1 (-1146 *7) *7)) (-5 *1 (-1116 *5 *6 *7)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1254))))
+ ((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-1255)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-638 (-279))) (-5 *1 (-279))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-853)) (-5 *1 (-1143 *3)) (-4 *3 (-1087))
- (-4 *3 (-1200)))))
-(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-315 (-224)))) (-5 *2 (-1246 (-315 (-378))))
- (-5 *1 (-304)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1 *1) (-4 *1 (-491)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224))
- (-5 *2 (-1025)) (-5 *1 (-740)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-362)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-580 *2)) (-4 *2 (-543)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-638 *6))
+ (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-362)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-765)) (-4 *6 (-1090)) (-4 *7 (-893 *6))
+ (-5 *2 (-682 *7)) (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-372 *7))
+ (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4390)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-558)) (-5 *1 (-484 *4))
- (-4 *4 (-1222 *2)))))
+ (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-182)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-4 *7 (-939 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-550)) (-5 *1 (-959 *4 *2))
- (-4 *2 (-1222 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-234 *3))
- (-4 *3 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-762)) (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))))
+(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-1171))) (-5 *1 (-1171))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-638 (-1171))) (-5 *1 (-1171)))))
+(((*1 *1 *1 *1) (-4 *1 (-654))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1 *1) (-4 *1 (-491)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1134 (-1145))) (-5 *1 (-390)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-665 *2)) (-4 *2 (-1039)) (-4 *2 (-1087)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-550)) (-4 *2 (-171)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-948 (-1159 *4))) (-5 *1 (-356 *4))
- (-5 *3 (-1159 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-638 (-1166)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-386)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-1090))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-1246 *4 *2))
+ (-4 *4 (-38 (-406 (-561)))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3051 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1090)) (-5 *2 (-112))
+ (-5 *1 (-1206 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))))
+(((*1 *1 *1 *1) (-4 *1 (-142)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1226 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166))
+ (-5 *2 (-638 *4)) (-5 *1 (-1104 *4 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-654))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258))
+ (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1258))
+ (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5)))))
+(((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-534))) ((*1 *1) (-4 *1 (-716)))
+ ((*1 *1) (-4 *1 (-720)))
+ ((*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
+ ((*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))))
(((*1 *2)
(-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
(-4 *3 (-366 *4))))
((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112))
- (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
-(((*1 *1) (-5 *1 (-140))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-558)) (-5 *2 (-635 (-2 (|:| -3939 *3) (|:| -4263 *4))))
- (-5 *1 (-686 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-911)) (-5 *1 (-689))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-679 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-362)) (-5 *1 (-968 *5)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-762)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1166)))))
-(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-372 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-637 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-834 (-378)))) (-5 *2 (-1081 (-834 (-224))))
- (-5 *1 (-304)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1025)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1) (-5 *1 (-156)))
- ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-911)) (-4 *5 (-306)) (-4 *3 (-1222 *5))
- (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5)))
- (-5 *1 (-458 *5 *3)) (-5 *4 (-635 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-59 *3)) (-4 *3 (-1200))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1200)) (-5 *1 (-59 *3)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-119 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145)) (-5 *2 (-635 (-1168))) (-5 *1 (-1123)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-818)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1087)) (-5 *1 (-894 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-534))) ((*1 *1) (-4 *1 (-713)))
- ((*1 *1) (-4 *1 (-717)))
- ((*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
- ((*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-841)))))
-(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1145)) (-5 *1 (-777)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-841)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039))
- (-5 *1 (-1147 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039))
- (-14 *4 (-1163)) (-14 *5 *3))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1222 *5))
- (-5 *2 (-635 *3)) (-5 *1 (-768 *4 *5 *6 *3 *7)) (-4 *3 (-1222 *6))
- (-14 *7 (-911)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *1 *1 *1) (-5 *1 (-378)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-362)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2461 *1)))
- (-4 *1 (-843 *3)))))
+ (-12 (-5 *2 (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 (-436)))))
+ (-5 *1 (-1170)))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-534)))
- ((*1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-1168))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-1168))) (-5 *1 (-1168)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 (-942 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4))
- (-14 *4 (-635 (-1163)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-448 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
- (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-448 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-1145)) (-4 *7 (-939 *4 *5 *6))
- (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-448 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-635 (-771 *3 (-855 *4)))) (-4 *3 (-450))
- (-14 *4 (-635 (-1163))) (-5 *1 (-620 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
- (-5 *1 (-331)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-4 *1 (-859 *2))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-4 *3 (-1087))
- (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-679 (-1159 *8))) (-4 *5 (-1039)) (-4 *8 (-1039))
- (-4 *6 (-1222 *5)) (-5 *2 (-679 *6)) (-5 *1 (-499 *5 *6 *7 *8))
- (-4 *7 (-1222 *6)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388)))))
-(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-240)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
+ ((*1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867))
+ (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-466)) (-5 *1 (-1257))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *2 (-466))
+ (-5 *1 (-1257))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262)))
+ (-5 *2 (-466)) (-5 *1 (-1257)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844))
+ (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6))
+ (|:| -3369 *6)))
+ (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2708)) (-5 *2 (-112)) (-5 *1 (-609))))
+ (-12 (-5 *3 (|[\|\|]| -2754)) (-5 *2 (-112)) (-5 *1 (-612))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3601)) (-5 *2 (-112)) (-5 *1 (-609))))
+ (-12 (-5 *3 (|[\|\|]| -4365)) (-5 *2 (-112)) (-5 *1 (-612))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1556)) (-5 *2 (-112)) (-5 *1 (-609))))
+ (-12 (-5 *3 (|[\|\|]| -1638)) (-5 *2 (-112)) (-5 *1 (-612))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1789)) (-5 *2 (-112)) (-5 *1 (-681 *4))
- (-4 *4 (-605 (-853)))))
+ (-12 (-5 *3 (|[\|\|]| -1876)) (-5 *2 (-112)) (-5 *1 (-684 *4))
+ (-4 *4 (-608 (-856)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-605 (-853))) (-5 *2 (-112))
- (-5 *1 (-681 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-856))) (-5 *2 (-112))
+ (-5 *1 (-684 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-585))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-960))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1026))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1257))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-1256))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1263))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1124)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)) (-5 *1 (-1168))))
+ (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)) (-5 *1 (-1168))))
+ (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1168))))
+ (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-112)) (-5 *1 (-1168)))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))
- (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))
- (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558)))
- (-5 *4 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))
- (-5 *1 (-1010 *3)) (-4 *3 (-1222 (-558))) (-5 *4 (-406 (-558)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-406 (-558)))
- (-5 *2 (-635 (-2 (|:| -1524 *5) (|:| -1540 *5)))) (-5 *1 (-1010 *3))
- (-4 *3 (-1222 (-558))) (-5 *4 (-2 (|:| -1524 *5) (|:| -1540 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))
- (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-635 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558))))))
- (-5 *1 (-1011 *3)) (-4 *3 (-1222 (-406 (-558))))
- (-5 *4 (-2 (|:| -1524 (-406 (-558))) (|:| -1540 (-406 (-558)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-406 (-558)))
- (-5 *2 (-635 (-2 (|:| -1524 *4) (|:| -1540 *4)))) (-5 *1 (-1011 *3))
- (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-406 (-558)))
- (-5 *2 (-635 (-2 (|:| -1524 *5) (|:| -1540 *5)))) (-5 *1 (-1011 *3))
- (-4 *3 (-1222 *5)) (-5 *4 (-2 (|:| -1524 *5) (|:| -1540 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-596 *2 *3)) (-4 *3 (-1200)) (-4 *2 (-1087))
- (-4 *2 (-841)))))
+ (-12 (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-112)) (-5 *1 (-1171)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *3 *5))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2))
+ (-4 *5 (-649 (-406 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *5 *3))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *5 (-649 *2))
+ (-4 *3 (-649 (-406 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920)))))
+(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-561))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1110))))
+(((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258))
+ (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258))
+ (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-378)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1246 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204))
- (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-362)) (-5 *1 (-886 *2 *3))
- (-4 *2 (-1222 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-1180)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1145)) (-5 *1 (-304)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1222 *3)) (-4 *3 (-1039)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
+ (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3))
+ (-4 *3 (-641 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1623 (-776 *3)) (|:| |coef1| (-776 *3))))
+ (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -1623 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-679 (-942 *4))) (-5 *1 (-1018 *4))
- (-4 *4 (-1039)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1107))))
-(((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
- ((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-522)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-406 (-558)))
- (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-638 (-224))) (-5 *1 (-203)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1031 (-48)))
+ (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-4 *5 (-429 *4))
+ (-5 *2 (-417 (-1162 (-48)))) (-5 *1 (-434 *4 *5 *3))
+ (-4 *3 (-1229 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-561)) (-4 *4 (-1229 (-406 *3))) (-5 *2 (-914))
+ (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-945 *4)))) (-4 *4 (-450))
+ (-5 *2 (-638 (-3 (-406 (-945 *4)) (-1155 (-1166) (-945 *4)))))
+ (-5 *1 (-291 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4)))
+ (-4 *4 (-844)) (-5 *1 (-1176 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1087)) (-4 *5 (-1087))
- (-5 *2 (-1 *5)) (-5 *1 (-673 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1087)) (-4 *5 (-1087))
- (-4 *6 (-1087)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-674 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1248)))))
-(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-378)) (-5 *1 (-1030)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784))
- (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1059 *7 *8 *9 *3))))
+ (-12 (-4 *5 (-1090)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-638 *6)))
+ (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-638 *6)) (-4 *4 (-609 (-885 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 *3))) (-5 *1 (-880 *5 *3 *4))
+ (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1090)) (-5 *2 (-638 (-293 (-945 *3))))
+ (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1042))
+ (-2159 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5))
+ (-4 *4 (-609 (-885 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1090)) (-5 *2 (-882 *5 *3)) (-5 *1 (-880 *5 *3 *4))
+ (-2159 (-4 *3 (-1031 (-1166)))) (-2159 (-4 *3 (-1042)))
+ (-4 *3 (-879 *5)) (-4 *4 (-609 (-885 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1166))) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
+ (-5 *2 (-638 (-406 (-945 *4)))) (-5 *1 (-917 *4 *5 *6 *7))
+ (-4 *7 (-942 *4 *6 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765)))
+ (-5 *1 (-897 *4)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8))
+ (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-306) (-146)))
+ (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-112))
+ (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-168 (-224)))) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *3 (-1053 *6 *7 *8))
+ (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8))
+ (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844))
+ (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1510 *9))))
+ (-5 *1 (-1098 *6 *7 *4 *8 *9)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1) (-4 *1 (-960))) ((*1 *1 *1) (-5 *1 (-1110))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-561))))
+ (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| -2246 (-406 *5)) (|:| |coeff| (-406 *5))))
+ (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-329)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *6 (-112))
+ (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-4 *3 (-13 (-1190) (-952) (-29 *7)))
(-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1059 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
+ (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-218 *7 *3)) (-5 *5 (-837 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1198 *4 *5 *6 *3)) (-4 *4 (-553)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-553) (-1031 (-561)) (-146)))
+ (-5 *2
+ (-2 (|:| -2246 (-406 (-945 *5))) (|:| |coeff| (-406 (-945 *5)))))
+ (-5 *1 (-567 *5)) (-5 *3 (-406 (-945 *5))))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *3 (-561))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1033)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-638 *3)) (-4 *3 (-1205)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166))
(-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-762)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-784))
- (-4 *9 (-841)) (-4 *3 (-1053 *7 *8 *9))
+ (-2 (|:| |zeros| (-1146 (-224))) (|:| |ones| (-1146 (-224)))
+ (|:| |singularities| (-1146 (-224)))))
+ (-5 *1 (-105)))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-815)))))
+(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6))
+ (-4 *6 (-13 (-27) (-429 *5)))
+ (-4 *5 (-13 (-844) (-553) (-1031 (-561)))) (-4 *8 (-1229 (-406 *7)))
+ (-5 *2 (-582 *3)) (-5 *1 (-549 *5 *6 *7 *8 *3))
+ (-4 *3 (-341 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1162 *1)) (-5 *4 (-1166)) (-4 *1 (-27))
+ (-5 *2 (-638 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1162 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-638 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-553))) (-5 *2 (-638 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *2 (-638 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-450)) (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1934 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-837 *3))) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
(-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1132 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3))))
+ (-3 (-837 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-837 *3) "failed")))
+ "failed"))
+ (-5 *1 (-631 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-762)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *3 (-1053 *6 *7 *8))
+ (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1148))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-837 *3)) (-5 *1 (-631 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 (-837 (-945 *5)))) (-4 *5 (-450))
(-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1132 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3))))
+ (-3 (-837 (-406 (-945 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-837 (-406 (-945 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-837 (-406 (-945 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-632 *5)) (-5 *3 (-406 (-945 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
+ (-12 (-5 *4 (-293 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5)))
+ (-4 *5 (-450))
(-5 *2
- (-2 (|:| |done| (-635 *4))
- (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))))
- (-5 *1 (-1132 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6))))
- (-4 *5 (-38 (-406 (-558)))) (-4 *6 (-1237 *5)) (-5 *2 (-635 *6))
- (-5 *1 (-1239 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
- ((*1 *1 *1) (-4 *1 (-1188))))
+ (-3 (-837 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-837 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-837 *3) "failed")))
+ "failed"))
+ (-5 *1 (-632 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-293 (-406 (-945 *6)))) (-5 *5 (-1148))
+ (-5 *3 (-406 (-945 *6))) (-4 *6 (-450)) (-5 *2 (-837 *3))
+ (-5 *1 (-632 *6)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-720)) (-4 *2 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-1246 *5))) (-5 *4 (-558)) (-5 *2 (-1246 *5))
- (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *1) (-4 *1 (-957))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-738)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *3 (-635 (-262)))
- (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-466)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1168))) (-5 *1 (-182)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-550)) (-4 *2 (-450)) (-5 *1 (-959 *2 *3))
- (-4 *3 (-1222 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))))
+ (-12 (-4 *5 (-553))
+ (-5 *2 (-2 (|:| -3327 (-682 *5)) (|:| |vec| (-1253 (-638 (-914))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-914)) (-4 *3 (-649 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1237 *4))
- (-4 *4 (-38 (-406 (-558))))
- (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1239 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -3798 *7))))
- (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-978 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -3798 *7))))
- (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1059 *3 *4 *5 *6)) (-4 *3 (-450))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-1094 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
- ((*1 *1 *1) (-4 *1 (-1188))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *1) (-4 *1 (-957))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-558))
- (-5 *6
- (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))))
- (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
- (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
- (-5 *1 (-779))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-558))
- (-5 *6
- (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -3532 (-378))))
- (-5 *7 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
- (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
- (-5 *1 (-779)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-429 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-114))))
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1162 (-1162 *4))))
+ (-5 *1 (-1203 *4)) (-5 *3 (-1162 (-1162 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1225 *4 *2))
+ (-4 *2 (-1229 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1623 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1229 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *4))
- (-4 *4 (-429 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-114)) (-5 *1 (-162))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995)))))
((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *4))
- (-4 *4 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301))))
- ((*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1244 *3))
+ (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1215 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-841)) (-5 *1 (-428 *3 *4))
- (-4 *3 (-429 *4))))
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *4 (-1213 *3))
+ (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1236 *3 *4)) (-4 *5 (-976 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *4))
- (-4 *4 (-429 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-604 *3)) (-4 *3 (-841))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1151 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *4))
- (-4 *4 (-13 (-429 *3) (-992) (-1185)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1009)))))
-(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3))
- (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2))
- (-4 *2 (-677 *3 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *1) (-5 *1 (-814))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-596 *4 *3)) (-4 *4 (-1087))
- (-4 *3 (-1200)) (-4 *3 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-933 *4)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4390)) (-4 *1 (-487 *4))
+ (-4 *4 (-1205)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1162 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-1162 *7)) (-5 *1 (-320 *4 *5 *6 *7))
+ (-4 *7 (-942 *6 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-682 (-561))) (-5 *5 (-112)) (-5 *7 (-682 (-224)))
+ (-5 *3 (-561)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-1148)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-741)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
- ((*1 *1 *1) (-4 *1 (-1188))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-638 *1)) (-4 *1 (-913)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1246 *4)) (-5 *3 (-679 *4)) (-4 *4 (-362))
- (-5 *1 (-657 *4))))
+ (|partial| -12 (-5 *2 (-1253 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362))
+ (-5 *1 (-660 *4))))
((*1 *2 *3 *2)
(|partial| -12 (-4 *4 (-362))
- (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4384))))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384))))
- (-5 *1 (-658 *4 *5 *2 *3)) (-4 *3 (-677 *4 *5 *2))))
+ (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4391))))
+ (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4391))))
+ (-5 *1 (-661 *4 *5 *2 *3)) (-4 *3 (-680 *4 *5 *2))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362))
- (-5 *1 (-805 *2 *3)) (-4 *3 (-646 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-853)))) (-5 *1 (-853))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1129 *3 *4)) (-5 *1 (-983 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-362))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1039))
- (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5))
- (-4 *7 (-237 *3 *5)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1) (-4 *1 (-957))) ((*1 *1 *1) (-5 *1 (-1107))))
-(((*1 *1)
- (-12 (-4 *1 (-403)) (-2143 (|has| *1 (-6 -4374)))
- (-2143 (|has| *1 (-6 -4366)))))
- ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1087)) (-4 *2 (-841))))
- ((*1 *2 *1) (-12 (-4 *1 (-821 *2)) (-4 *2 (-841))))
- ((*1 *1) (-4 *1 (-835))) ((*1 *1 *1 *1) (-4 *1 (-841))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-306))
- (-5 *2 (-635 (-762))) (-5 *1 (-769 *3 *4 *5 *6 *7))
- (-4 *3 (-1222 *6)) (-4 *7 (-939 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-679 *4)) (-4 *4 (-362)) (-5 *2 (-1159 *4))
- (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-839))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1145)) (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *4 (-1053 *6 *7 *8)) (-5 *2 (-1251))
- (-5 *1 (-767 *6 *7 *8 *4 *5)) (-4 *5 (-1059 *6 *7 *8 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 *5)) (-4 *5 (-550))
- (-5 *2
- (-2 (|:| -1857 (-762)) (|:| -3455 *5) (|:| |radicand| (-635 *5))))
- (-5 *1 (-319 *5)) (-5 *4 (-762))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-992)) (-5 *2 (-558)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-939 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *2 (-841))))
+ (|partial| -12 (-5 *4 (-638 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362))
+ (-5 *1 (-808 *2 *3)) (-4 *3 (-649 *2))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-784)) (-4 *5 (-1039)) (-4 *6 (-939 *5 *4 *2))
- (-4 *2 (-841)) (-5 *1 (-940 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *6)) (-15 -3316 (*6 $))
- (-15 -3327 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-550))
- (-5 *2 (-1163)) (-5 *1 (-1033 *4)))))
-(((*1 *1) (-5 *1 (-814))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-13 (-1039) (-708 (-406 (-558)))))
- (-4 *5 (-841)) (-5 *1 (-1262 *4 *5 *2)) (-4 *2 (-1267 *5 *4)))))
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-815)) (-5 *2 (-52)) (-5 *1 (-825)))))
+(((*1 *1 *1 *1) (-4 *1 (-960))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1220 (-561))) (-4 *1 (-281 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-281 *3)) (-4 *3 (-1205)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378)))
+ (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258))
+ (-5 *1 (-782))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378)))
+ (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258))
+ (-5 *1 (-782)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
- ((*1 *1 *1) (-4 *1 (-1188))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-784))
- (-4 *3 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))) (-4 *5 (-550))
- (-5 *1 (-723 *4 *3 *5 *2)) (-4 *2 (-939 (-406 (-942 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-784))
- (-4 *3
- (-13 (-841)
- (-10 -8 (-15 -3441 ((-1163) $))
- (-15 -2317 ((-3 $ "failed") (-1163))))))
- (-5 *1 (-974 *4 *5 *3 *2)) (-4 *2 (-939 (-942 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *6))
- (-4 *6
- (-13 (-841)
- (-10 -8 (-15 -3441 ((-1163) $))
- (-15 -2317 ((-3 $ "failed") (-1163))))))
- (-4 *4 (-1039)) (-4 *5 (-784)) (-5 *1 (-974 *4 *5 *6 *2))
- (-4 *2 (-939 (-942 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1039)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
-(((*1 *1) (-5 *1 (-55))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *2 *1) (-12 (-5 *2 (-853)) (-5 *1 (-52)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-4 *1 (-551 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362)))
+ (-4 *3 (-1229 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191))))
+ ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-299))))
+ ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-304)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-576)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-553)) (-4 *2 (-171)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3))
+ (-4 *3 (-1090)))))
+(((*1 *1 *1) (-4 *1 (-142)))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
- ((*1 *1 *1) (-4 *1 (-1188))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1002)) (-5 *2 (-853)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-157 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-679 *4))
- (-5 *1 (-805 *4 *5)) (-4 *5 (-646 *4))))
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4))
+ (-5 *1 (-1167 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *5)) (-5 *4 (-762)) (-4 *5 (-362))
- (-5 *2 (-679 *5)) (-5 *1 (-805 *5 *6)) (-4 *6 (-646 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4)))
- (-5 *1 (-1171 *4)) (-4 *4 (-841)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-52))) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-579 *3) *3 (-1163)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1163)))
- (-4 *3 (-283)) (-4 *3 (-621)) (-4 *3 (-1028 *4)) (-4 *3 (-429 *7))
- (-5 *4 (-1163)) (-4 *7 (-606 (-882 (-558)))) (-4 *7 (-450))
- (-4 *7 (-876 (-558))) (-4 *7 (-841)) (-5 *2 (-579 *3))
- (-5 *1 (-567 *7 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-550))))
- ((*1 *1 *1) (|partial| -4 *1 (-713))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1199))) (-5 *3 (-1199)) (-5 *1 (-671)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1028 (-558))))
- (-4 *5 (-1222 *4))
- (-5 *2 (-2 (|:| -2475 (-406 *5)) (|:| |coeff| (-406 *5))))
- (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1039) (-841)))
- (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1163))))))
+ (-12 (-5 *4 (-914)) (-5 *2 (-1253 *3)) (-5 *1 (-1167 *3))
+ (-4 *3 (-1042)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1094)) (-5 *1 (-279)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-841))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1163)))
- (-14 *3 (-635 (-1163))) (-4 *4 (-386))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-765)) (-5 *2 (-1253 (-638 (-561)))) (-5 *1 (-478))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-596 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3))))
- ((*1 *1 *1) (-4 *1 (-1188))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-899)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-939 *4 *5 *6)) (-5 *2 (-417 (-1159 *7)))
- (-5 *1 (-896 *4 *5 *6 *7)) (-5 *3 (-1159 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-899)) (-4 *5 (-1222 *4)) (-5 *2 (-417 (-1159 *5)))
- (-5 *1 (-897 *4 *5)) (-5 *3 (-1159 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251))
- (-5 *1 (-447 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087))
- (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-406 (-558))))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-1081 (-378)))) (-5 *1 (-262)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1198 *5 *6 *7 *3))
+ (-4 *5 (-553)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558))))
- (-5 *1 (-189)))))
-(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1030)))))
-(((*1 *1 *1) (-4 *1 (-621)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-762)) (-5 *2 (-635 (-1163))) (-5 *1 (-209))
- (-5 *3 (-1163))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-224))) (-5 *4 (-762)) (-5 *2 (-635 (-1163)))
- (-5 *1 (-266))))
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2))
+ (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171))
+ (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-680 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-841)) (-4 *4 (-171))
- (-5 *2 (-635 *3))))
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4392 "*"))) (-4 *2 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-635 *3)) (-5 *1 (-619 *3 *4 *5)) (-4 *3 (-841))
- (-4 *4 (-13 (-171) (-708 (-406 (-558))))) (-14 *5 (-911))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-662 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-667 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-810 *3)) (-4 *3 (-841))))
- ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-883 *3)) (-4 *3 (-841))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042))))
((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-635 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
- (-4 *5 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-406 (-558)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-558)))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-293 *6))
- (-4 *6 (-13 (-27) (-1185) (-429 *5)))
- (-4 *5 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-293 *7)) (-5 *5 (-1213 (-558)))
- (-4 *7 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-558)))
- (-4 *3 (-13 (-27) (-1185) (-429 *7)))
- (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-406 (-558)))) (-5 *4 (-293 *8))
- (-5 *5 (-1213 (-406 (-558)))) (-5 *6 (-406 (-558)))
- (-4 *8 (-13 (-27) (-1185) (-429 *7)))
- (-4 *7 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1163)) (-5 *5 (-293 *3)) (-5 *6 (-1213 (-406 (-558))))
- (-5 *7 (-406 (-558))) (-4 *3 (-13 (-27) (-1185) (-429 *8)))
- (-4 *8 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3))))
- (-4 *3 (-1039)) (-5 *1 (-588 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-589 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1143 (-2 (|:| |k| (-558)) (|:| |c| *3))))
- (-4 *3 (-1039)) (-4 *1 (-1206 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-762))
- (-5 *3 (-1143 (-2 (|:| |k| (-406 (-558))) (|:| |c| *4))))
- (-4 *4 (-1039)) (-4 *1 (-1227 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-4 *1 (-1237 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1143 (-2 (|:| |k| (-762)) (|:| |c| *3))))
- (-4 *3 (-1039)) (-4 *1 (-1237 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-864)) (-5 *3 (-635 (-262))) (-5 *1 (-260)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-635 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112))
- (-5 *1 (-209)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-157 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2))
- (-4 *2 (-429 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163))))
- ((*1 *1 *1) (-4 *1 (-159))))
-(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-128)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
- (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1145)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1251))
- (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ (-12 (-4 *3 (-553)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4))
+ (-4 *4 (-1229 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-841)) (-5 *2 (-635 (-654 *4 *5)))
- (-5 *1 (-619 *4 *5 *6)) (-4 *5 (-13 (-171) (-708 (-406 (-558)))))
- (-14 *6 (-911)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-939 *4 *6 *5))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-720))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -1429 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -2397 (-406 *6))
+ (|:| |special| (-406 *6))))
+ (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-942 *4))) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-112))
- (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-643 *4)) (-4 *4 (-341 *5 *6 *7))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *6 (-1222 *5)) (-4 *7 (-1222 (-406 *6)))
+ (-12 (-4 *4 (-362)) (-5 *2 (-638 *3)) (-5 *1 (-889 *3 *4))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -1605 *3) (|:| -1621 *3))) (-5 *1 (-889 *3 *5))
+ (-4 *3 (-1229 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-638 *9)) (-5 *3 (-638 *8)) (-5 *4 (-112))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450))
+ (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190)))))
+ ((*1 *1 *1 *1) (-4 *1 (-787))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2743 (-635 *4))))
- (-5 *1 (-797 *5 *6 *7 *4)))))
+ (-638
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-561)))))
+ (-5 *1 (-417 *3)) (-4 *3 (-553))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-765)) (-4 *3 (-348)) (-4 *5 (-1229 *3))
+ (-5 *2 (-638 (-1162 *3))) (-5 *1 (-496 *3 *5 *6))
+ (-4 *6 (-1229 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256))))
+ ((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-1256)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-638 (-2 (|:| -2262 *5) (|:| -3675 *5))))
+ (-5 *1 (-801 *4 *5 *3 *6)) (-4 *3 (-649 *5))
+ (-4 *6 (-649 (-406 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *4 (-1229 *5)) (-5 *2 (-638 (-2 (|:| -2262 *4) (|:| -3675 *4))))
+ (-5 *1 (-801 *5 *4 *3 *6)) (-4 *3 (-649 *4))
+ (-4 *6 (-649 (-406 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-638 (-2 (|:| -2262 *5) (|:| -3675 *5))))
+ (-5 *1 (-801 *4 *5 *6 *3)) (-4 *6 (-649 *5))
+ (-4 *3 (-649 (-406 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561)))))
+ (-4 *4 (-1229 *5)) (-5 *2 (-638 (-2 (|:| -2262 *4) (|:| -3675 *4))))
+ (-5 *1 (-801 *5 *4 *6 *3)) (-4 *6 (-649 *4))
+ (-4 *3 (-649 (-406 *4))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-450)) (-4 *4 (-550))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2162 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5))
- (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6))
- (-4 *6 (-450))))
+ (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224))
+ (-5 *7 (-682 (-561))) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *1 *1) (-5 *1 (-112))))
+(((*1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 *3)) (-4 *3 (-1099 *5 *6 *7 *8))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-587 *5 *6 *7 *8 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1090)) (-4 *2 (-367)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-561))) (-5 *4 (-898 (-561)))
+ (-5 *2 (-682 (-561))) (-5 *1 (-586))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561))))
+ (-5 *1 (-586))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-855 *5))
- (-14 *5 (-635 (-1163))) (-5 *2 (-479 *5 *6)) (-5 *1 (-623 *5 *6))
- (-4 *6 (-450)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-635 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-551 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
-(((*1 *2)
- (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4))
- (-4 *4 (-1222 *3)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-550)) (-5 *1 (-959 *3 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1039)) (-5 *2 (-948 (-703 *3 *4))) (-5 *1 (-703 *3 *4))
- (-4 *4 (-1222 *3)))))
+ (-12 (-5 *3 (-638 (-561))) (-5 *4 (-638 (-898 (-561))))
+ (-5 *2 (-638 (-682 (-561)))) (-5 *1 (-586)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3327 (-682 (-406 (-945 *4))))
+ (|:| |vec| (-638 (-406 (-945 *4)))) (|:| -1569 (-765))
+ (|:| |rows| (-638 (-561))) (|:| |cols| (-638 (-561)))))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787))
+ (-5 *2
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *4))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *4)))))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1205)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1128 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *3))
- (-4 *3 (-1200))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1193 *4 *5 *3 *2)) (-4 *4 (-550))
- (-4 *5 (-784)) (-4 *3 (-841)) (-4 *2 (-1053 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-5 *1 (-1197 *2)) (-4 *2 (-1200)))))
+ (-12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-561)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1205))
+ (-4 *4 (-372 *2)) (-4 *5 (-372 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1090))
+ (-4 *2 (-1205)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1090) (-1031 *5)))
+ (-4 *5 (-879 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-924 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1183)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-820)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
-(((*1 *1 *1) (-4 *1 (-621)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-622 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992) (-1185))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-4 *5 (-1222 *4)) (-5 *2 (-1159 (-406 *5))) (-5 *1 (-607 *4 *5))
- (-5 *3 (-406 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-146) (-27) (-1028 (-558)) (-1028 (-406 (-558)))))
- (-5 *2 (-1159 (-406 *6))) (-5 *1 (-607 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-535 *3 *2))
- (-4 *2 (-1237 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-4 *4 (-1222 *3))
- (-4 *5 (-715 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1237 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-362) (-367) (-606 (-558)))) (-5 *1 (-540 *3 *2))
- (-4 *2 (-1237 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-550) (-146)))
- (-5 *1 (-1139 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-933 (-224))) (-5 *4 (-864)) (-5 *2 (-1251))
- (-5 *1 (-466))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-970 *3))))
+ (-12 (-5 *3 (-1 *2 (-638 *2))) (-5 *4 (-638 *5))
+ (-4 *5 (-38 (-406 (-561)))) (-4 *2 (-1244 *5))
+ (-5 *1 (-1246 *5 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258))
+ (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258))
+ (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1213 *3))
+ (-5 *2 (-406 (-561))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-5 *2 (-765))))
((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-933 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)) (-5 *3 (-224)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-672 *2)) (-4 *2 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-558))
- (-5 *2 (-635 *5)) (-5 *1 (-672 *5)) (-4 *5 (-1087)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1090))
+ (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-720)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-582 *3) *3 (-1166)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1166)))
+ (-4 *3 (-283)) (-4 *3 (-624)) (-4 *3 (-1031 *4)) (-4 *3 (-429 *7))
+ (-5 *4 (-1166)) (-4 *7 (-609 (-885 (-561)))) (-4 *7 (-450))
+ (-4 *7 (-879 (-561))) (-4 *7 (-844)) (-5 *2 (-582 *3))
+ (-5 *1 (-570 *7 *3)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
- (-5 *1 (-175 *3)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4391)) (-4 *1 (-487 *3))
+ (-4 *3 (-1205)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-450))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *5 (-902)) (-5 *1 (-455 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1162 *1)) (-4 *1 (-902)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-99 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-301))))
- ((*1 *1 *1) (-4 *1 (-301)))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
- ((*1 *1 *1) (-5 *1 (-853))))
+ (-12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146)))
+ (-5 *1 (-398 *3 *4)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-561)) (-5 *5 (-112)) (-5 *6 (-682 (-224)))
+ (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-638 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-561))
+ (-5 *2 (-682 *6)) (-5 *1 (-1022 *6)) (-4 *6 (-362)) (-4 *6 (-1042))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1022 *4))
+ (-4 *4 (-362)) (-4 *4 (-1042))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-638 (-682 *5))) (-5 *4 (-561)) (-5 *2 (-682 *5))
+ (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543)))))
+(((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))))
(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-1251))
- (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (|partial| -12 (-5 *3 (-607 *4)) (-4 *4 (-844)) (-4 *2 (-844))
+ (-5 *1 (-606 *2 *4)))))
+(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-682 *4)) (-4 *5 (-649 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-550))
- (-4 *3 (-1200)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-679 *4)) (-5 *3 (-911)) (|has| *4 (-6 (-4385 "*")))
- (-4 *4 (-1039)) (-5 *1 (-1018 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 (-679 *4))) (-5 *3 (-911))
- (|has| *4 (-6 (-4385 "*"))) (-4 *4 (-1039)) (-5 *1 (-1018 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-762)) (-4 *6 (-1087)) (-4 *7 (-890 *6))
- (-5 *2 (-679 *7)) (-5 *1 (-682 *6 *7 *3 *4)) (-4 *3 (-372 *7))
- (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4383)))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3269 (-1148))))
+ (-5 *1 (-816)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-635 *1)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-679 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *4)) (-4 *4 (-1039)) (-4 *1 (-1110 *3 *4 *5 *6))
- (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-679 *2)) (-5 *4 (-558))
- (-4 *2 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *5 (-1222 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-408 *2 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-550)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1190 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-1146 *3)))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1084 (-224)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1084 (-224))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *3))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1039))
- (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-4 *6 (-13 (-550) (-841)))
- (-5 *2 (-635 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6))
- (-4 *5 (-1039))))
- ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-550))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-579 *5)) (-4 *5 (-13 (-29 *4) (-1185)))
- (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
- (-5 *2 (-635 *5)) (-5 *1 (-577 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-579 (-406 (-942 *4))))
- (-4 *4 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
- (-5 *2 (-635 (-315 *4))) (-5 *1 (-582 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1082 *3 *2)) (-4 *3 (-839)) (-4 *2 (-1136 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 *1)) (-4 *1 (-1082 *4 *2)) (-4 *4 (-839))
- (-4 *2 (-1136 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1261 (-1163) *3)) (-5 *1 (-1268 *3)) (-4 *3 (-1039))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-1270 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-1039)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-378)) (-5 *1 (-1051)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1237 *3))
- (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1208 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *4 (-1206 *3))
- (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1229 *3 *4)) (-4 *5 (-973 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1148 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558))))
- (-5 *1 (-1149 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1256)))))
-(((*1 *2 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-396)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-942 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-1036 *5 *6))) (-5 *1 (-1272 *5 *6 *7))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-942 *4)))
- (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2 (-635 (-1036 *4 *5))) (-5 *1 (-1272 *4 *5 *6))
- (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-550) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *1 *1) (-5 *1 (-378)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450))
+ (-5 *1 (-911 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-5 *5 (-638 (-638 *8)))
+ (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787))
+ (-5 *2
+ (-2 (|:| |upol| (-1162 *8)) (|:| |Lval| (-638 *8))
+ (|:| |Lfact|
+ (-638 (-2 (|:| -1657 (-1162 *8)) (|:| -4196 (-561)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-736 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-548 *3)) (-4 *3 (-13 (-403) (-1185))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
- (-4 *3 (-1222 *4)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1229 *4)) (-5 *1 (-803 *4 *2 *3 *5))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *3 (-649 *2))
+ (-4 *5 (-649 (-406 *2))))))
+(((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-694)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1090)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-5 *1 (-436)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-815)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146))
+ (-4 *3 (-306)) (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-863 (-956 *3) (-956 *3))) (-5 *1 (-956 *3))
- (-4 *3 (-957)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1258)) (-5 *1 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-378)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-635
- (-2 (|:| -1489 (-762))
- (|:| |eqns|
- (-635
- (-2 (|:| |det| *7) (|:| |rows| (-635 (-558)))
- (|:| |cols| (-635 (-558))))))
- (|:| |fgb| (-635 *7)))))
- (-4 *7 (-939 *4 *6 *5)) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)) (-5 *2 (-762))
- (-5 *1 (-914 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-717) (-25))))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1163))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-635 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2475 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1185) (-27) (-429 *8)))
- (-4 *8 (-13 (-450) (-841) (-146) (-1028 *3) (-631 *3)))
- (-5 *3 (-558))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -1540 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1003 *8 *4)))))
+ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))
+ (-5 *2 (-378)) (-5 *1 (-266))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039))
- (-5 *2 (-810 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-837)) (-5 *1 (-1269 *3 *2)) (-4 *3 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-604 *1)) (-4 *1 (-301)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1163))
- (-4 *5 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-717)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-4 *3 (-1042)) (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
- (-4 *5 (-429 *4)) (-5 *2 (-417 (-1159 (-406 (-558)))))
- (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-939 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-450))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *1))))
- (-4 *1 (-1059 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1204)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-550)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-1222 *3) (-550) (-10 -8 (-15 -1544 ($ $ $))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1222 *3)) (-4 *3 (-1039))
- (-4 *3 (-550))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-895 (-558))) (-5 *4 (-558)) (-5 *2 (-679 *4))
- (-5 *1 (-1018 *5)) (-4 *5 (-1039))))
+ (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-561))))
+ (-4 *2 (-171)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-638 *7))) (-4 *1 (-1198 *4 *5 *6 *7))
+ (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))))
+(((*1 *1) (-4 *1 (-348)))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1018 *4))
- (-4 *4 (-1039))))
+ (-12 (-5 *3 (-638 *5)) (-4 *5 (-429 *4))
+ (-4 *4 (-13 (-553) (-844) (-146)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-638 (-1162 *5)))
+ (|:| |prim| (-1162 *5))))
+ (-5 *1 (-431 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-553) (-844) (-146)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1162 *3))
+ (|:| |pol2| (-1162 *3)) (|:| |prim| (-1162 *3))))
+ (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-945 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| |coef1| (-561)) (|:| |coef2| (-561))
+ (|:| |prim| (-1162 *5))))
+ (-5 *1 (-953 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-895 (-558)))) (-5 *4 (-558))
- (-5 *2 (-635 (-679 *4))) (-5 *1 (-1018 *5)) (-4 *5 (-1039))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-635 (-558)))) (-5 *2 (-635 (-679 (-558))))
- (-5 *1 (-1018 *4)) (-4 *4 (-1039)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 (-112) (-635 *1)))
- (-4 *1 (-1059 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-635 *7) *7 (-1159 *7))) (-5 *5 (-1 (-417 *7) *7))
- (-4 *7 (-1222 *6)) (-4 *6 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -3846 *3))))
- (-5 *1 (-800 *6 *7 *3 *8)) (-4 *3 (-646 *7))
- (-4 *8 (-646 (-406 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-638 (-1166)))
+ (-4 *5 (-13 (-362) (-146)))
(-5 *2
- (-635 (-2 (|:| |frac| (-406 *6)) (|:| -3846 (-644 *6 (-406 *6))))))
- (-5 *1 (-803 *5 *6)) (-5 *3 (-644 *6 (-406 *6))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1151 3 *3)) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
- ((*1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-635 *4))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+ (-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 *5)))
+ (|:| |prim| (-1162 *5))))
+ (-5 *1 (-953 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 (-945 *6))) (-5 *4 (-638 (-1166))) (-5 *5 (-1166))
+ (-4 *6 (-13 (-362) (-146)))
+ (-5 *2
+ (-2 (|:| -4188 (-638 (-561))) (|:| |poly| (-638 (-1162 *6)))
+ (|:| |prim| (-1162 *6))))
+ (-5 *1 (-953 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1087)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-673 *4 *5)) (-4 *4 (-1087))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-841)) (-5 *1 (-919 *3 *2)) (-4 *2 (-429 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1163)) (-5 *2 (-315 (-558))) (-5 *1 (-920))))
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *6 (-609 (-1166)))
+ (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *2 (-1155 (-638 (-945 *4)) (-638 (-293 (-945 *4)))))
+ (-5 *1 (-502 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224)))
+ (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
+ (|:| |ub| (-638 (-837 (-224))))))
+ (-5 *1 (-266)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4)))))
+ (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-945 *4)))
+ (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-638
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224)))))
+ (-5 *1 (-556))))
((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-841)) (-4 *2 (-1039))))
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-5 *2 (-638 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-1039)) (-5 *1 (-1269 *2 *3)) (-4 *3 (-837)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1246 (-635 (-558)))) (-5 *1 (-478))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-593 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1200)) (-5 *1 (-1143 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3466 *1) (|:| -4370 *1) (|:| |associate| *1)))
- (-4 *1 (-550)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-679 (-406 (-942 (-558)))))
- (-5 *2 (-679 (-315 (-558)))) (-5 *1 (-1021)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1246 (-1246 (-558)))) (-5 *1 (-464)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-635 (-1159 *11))) (-5 *3 (-1159 *11))
- (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-762)))
- (-5 *7 (-1246 (-635 (-1159 *8)))) (-4 *10 (-841))
- (-4 *8 (-306)) (-4 *11 (-939 *8 *9 *10)) (-4 *9 (-784))
- (-5 *1 (-698 *9 *10 *8 *11)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1193 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *5 (-1053 *2 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-794)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107))))))
- (-4 *4 (-348)) (-5 *2 (-762)) (-5 *1 (-345 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-350 *3 *4)) (-14 *3 (-911))
- (-14 *4 (-911))))
- ((*1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348))
- (-14 *4
- (-3 (-1159 *3)
- (-1246 (-635 (-2 (|:| -2426 *3) (|:| -2349 (-1107)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-911)))))
-(((*1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-130)))))
+ (-12
+ (-5 *2
+ (-638
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224)))))
+ (-5 *1 (-797)))))
+(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *5 (-112))
+ (-5 *2 (-1028)) (-5 *1 (-739)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-682 *11)) (-5 *4 (-638 (-406 (-945 *8))))
+ (-5 *5 (-765)) (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146)))
+ (-4 *11 (-942 *8 *10 *9)) (-4 *9 (-13 (-844) (-609 (-1166))))
+ (-4 *10 (-787))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-638
+ (-2 (|:| |eqzro| (-638 *11)) (|:| |neqzro| (-638 *11))
+ (|:| |wcond| (-638 (-945 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *8))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *8))))))))))
+ (|:| |rgsz| (-561))))
+ (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-561)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-301)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *1 *1) (-5 *1 (-1054))))
(((*1 *2)
- (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4)) (-4 *6 (-1222 (-406 *5)))
- (-5 *2 (-762)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-762)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-942 *6))) (-5 *4 (-635 (-1163)))
- (-4 *6 (-13 (-550) (-1028 *5))) (-4 *5 (-550))
- (-5 *2 (-635 (-635 (-293 (-406 (-942 *6)))))) (-5 *1 (-1029 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1222 (-406 *2))) (-5 *2 (-558)) (-5 *1 (-903 *4 *3))
- (-4 *3 (-1222 (-406 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1145)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1246 (-1163))) (-5 *3 (-1246 (-451 *4 *5 *6 *7)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911))
- (-14 *6 (-635 (-1163))) (-14 *7 (-1246 (-679 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1246 (-451 *4 *5 *6 *7)))
- (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-911))
- (-14 *6 (-635 *2)) (-14 *7 (-1246 (-679 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163)))
- (-14 *6 (-1246 (-679 *3)))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-936 (-224)))) (-5 *1 (-1254)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-638 (-262)))
+ (-5 *1 (-260))))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 (-1163))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-171)) (-14 *4 (-911)) (-14 *5 (-635 (-1163)))
- (-14 *6 (-1246 (-679 *3)))))
+ (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-262))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-479 *5 *6))) (-5 *3 (-479 *5 *6))
+ (-14 *5 (-638 (-1166))) (-4 *6 (-450)) (-5 *2 (-1253 *6))
+ (-5 *1 (-626 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-553))
+ (-4 *7 (-942 *3 *5 *6))
+ (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *8) (|:| |radicand| *8)))
+ (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765))
+ (-4 *8
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $))))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146))) (-5 *1 (-535 *4 *2))
+ (-4 *2 (-1244 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3)))
+ (-4 *5 (-1229 *4)) (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2))
+ (-4 *2 (-1244 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-561)) (-4 *4 (-13 (-362) (-367) (-609 *3)))
+ (-5 *1 (-540 *4 *2)) (-4 *2 (-1244 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-561)) (-4 *4 (-13 (-553) (-146)))
+ (-5 *1 (-1142 *4)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-5 *2 (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1693 *1)))
+ (-4 *1 (-1056 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-2 (|:| -4188 *1) (|:| |gap| (-765)) (|:| -1693 *1)))
+ (-4 *1 (-1056 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1090)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1090)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 *5)) (-4 *5 (-1229 *3)) (-4 *3 (-306))
+ (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306))
+ (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-4 *6 (-408 *4 *5))
+ (-14 *7 (-1253 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))))
((*1 *1 *2)
- (-12 (-5 *2 (-1163)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171))
- (-14 *4 (-911)) (-14 *5 (-635 *2)) (-14 *6 (-1246 (-679 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-911))
- (-14 *4 (-635 (-1163))) (-14 *5 (-1246 (-679 *2))))))
+ (-12 (-5 *2 (-1253 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-985 *3))
+ (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-378)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146))
- (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841)))
- (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185)))
- (-5 *1 (-592 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-992) (-1185))))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-1251))
- (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-406 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-550))
- (-4 *4 (-1039)) (-4 *2 (-1237 *4)) (-5 *1 (-1240 *4 *5 *6 *2))
- (-4 *6 (-646 *5)))))
+ (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))
+ (-4 *3 (-553))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-553)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692))))
+ ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-692)))))
+(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-841))
- (-5 *1 (-1171 *4)))))
+ (-12 (-5 *3 (-638 (-1066 *4 *5 *2))) (-4 *4 (-1090))
+ (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-885 *4))))
+ (-4 *2 (-13 (-429 *5) (-879 *4) (-609 (-885 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-638 (-1066 *5 *6 *2))) (-5 *4 (-914)) (-4 *5 (-1090))
+ (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-885 *5))))
+ (-4 *2 (-13 (-429 *6) (-879 *5) (-609 (-885 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-914)) (-4 *4 (-362))
+ (-5 *1 (-986 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1159 (-1159 *4))))
- (-5 *1 (-1198 *4)) (-5 *3 (-1159 (-1159 *4))))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-635 (-955))) (-5 *1 (-290)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-961)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873))
- (-5 *3 (-635 (-558)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873))
- (-5 *3 (-635 (-558))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-841)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5)
- (|:| |f4| (-635 *5))))
- (-5 *1 (-1171 *6)) (-5 *4 (-635 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-762)) (-5 *1 (-580 *2)) (-4 *2 (-543))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2636 *3) (|:| -1857 (-762)))) (-5 *1 (-580 *3))
- (-4 *3 (-543)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4))
+ (-4 *4 (-1042)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-502 (-406 (-561)) (-239 *5 (-765)) (-858 *4)
+ (-246 *4 (-406 (-561)))))
+ (-14 *4 (-638 (-1166))) (-14 *5 (-765)) (-5 *2 (-112))
+ (-5 *1 (-503 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 (-942 *4))) (-5 *3 (-635 (-1163))) (-4 *4 (-450))
- (-5 *1 (-908 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-523)))))
-(((*1 *2 *3) (-12 (-5 *3 (-933 *2)) (-5 *1 (-972 *2)) (-4 *2 (-1039)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-954 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-679 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-171)) (-4 *2 (-1222 *4)) (-5 *1 (-176 *4 *2 *3))
- (-4 *3 (-715 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 (-406 (-942 *5)))) (-5 *4 (-1163))
- (-5 *2 (-942 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-679 (-406 (-942 *4)))) (-5 *2 (-942 *4))
- (-5 *1 (-291 *4)) (-4 *4 (-450))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1222 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-679 (-168 (-406 (-558)))))
- (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *4))
- (-4 *4 (-13 (-362) (-839)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 (-168 (-406 (-558))))) (-5 *4 (-1163))
- (-5 *2 (-942 (-168 (-406 (-558))))) (-5 *1 (-755 *5))
- (-4 *5 (-13 (-362) (-839)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *2 (-942 (-406 (-558))))
- (-5 *1 (-770 *4)) (-4 *4 (-13 (-362) (-839)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 (-406 (-558)))) (-5 *4 (-1163))
- (-5 *2 (-942 (-406 (-558)))) (-5 *1 (-770 *5))
- (-4 *5 (-13 (-362) (-839))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-996)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-234 *3))))
- ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 *3))
- (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1251)) (-5 *1 (-213 *4))
- (-4 *4
- (-13 (-841)
- (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 (*2 $))
- (-15 -1963 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3))
- (-4 *3
- (-13 (-841)
- (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 (*2 $))
- (-15 -1963 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500)))))
+ (-12 (-5 *3 (-638 (-246 *4 *5))) (-5 *2 (-246 *4 *5))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-745)))))
(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -2314 (-114)) (|:| |arg| (-635 (-882 *3)))))
- (-5 *1 (-882 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-635 (-882 *4)))
- (-5 *1 (-882 *4)) (-4 *4 (-1087)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-1039)) (-5 *1 (-703 *3 *4))
- (-4 *4 (-1222 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1025)) (-5 *3 (-1163)) (-5 *1 (-266)))))
-(((*1 *2)
- (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-5 *2 (-679 (-406 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200)) (-4 *2 (-1087))))
- ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1087)) (-4 *4 (-1087))
- (-4 *6 (-1087)) (-5 *2 (-1 *6 *5)) (-5 *1 (-674 *5 *4 *6)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-762)) (-4 *5 (-362)) (-5 *2 (-406 *6))
- (-5 *1 (-857 *5 *4 *6)) (-4 *4 (-1237 *5)) (-4 *6 (-1222 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362))
- (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5)))
- (-5 *1 (-858 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-762)) (-5 *4 (-1238 *5 *6 *7)) (-4 *5 (-362))
- (-14 *6 (-1163)) (-14 *7 *5) (-5 *2 (-406 (-1219 *6 *5)))
- (-5 *1 (-858 *5 *6 *7)))))
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1222 *5))
- (-5 *1 (-798 *5 *2 *3 *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558)))))
- (-4 *3 (-646 *2)) (-4 *6 (-646 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1222 *5))
- (-5 *1 (-798 *5 *2 *3 *6))
- (-4 *5 (-13 (-362) (-146) (-1028 (-406 (-558))))) (-4 *3 (-646 *2))
- (-4 *6 (-646 (-406 *2))))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1039)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3))
- (-4 *3 (-1222 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-635
+ (-638
(-2
- (|:| -2176
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (|:| -2252
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
- (|:| -1925
+ (|:| -2654
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -14380,10 +13568,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1143 (-224)))
+ (-3 (|:| |str| (-1146 (-224)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2103
+ (|:| -2290
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -14391,1447 +13579,1375 @@
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-553)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1222 (-168 *2))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2862 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-911))
- (-4 *4 (-1039)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 *3 (-635 *1)))
- (-4 *1 (-1059 *4 *5 *6 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-762)) (-5 *1 (-847 *2)) (-4 *2 (-171))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-558))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-360 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-385 *4)) (-4 *4 (-1087))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-639 *4 *2 *5))
- (-4 *4 (-1087)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-762)) (-5 *1 (-810 *4)) (-4 *4 (-841)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9))
- (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *9 (-1053 *6 *7 *8))
- (-5 *2
- (-635
- (-2 (|:| -3846 (-635 *9)) (|:| -3798 *10) (|:| |ineq| (-635 *9)))))
- (-5 *1 (-978 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1059 *6 *7 *8 *9))
- (-4 *6 (-450)) (-4 *7 (-784)) (-4 *8 (-841))
- (-4 *9 (-1053 *6 *7 *8))
- (-5 *2
- (-635
- (-2 (|:| -3846 (-635 *9)) (|:| -3798 *10) (|:| |ineq| (-635 *9)))))
- (-5 *1 (-1094 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-679 *3))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-679 *3))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-406 (-942 *3))) (-5 *1 (-451 *3 *4 *5 *6))
- (-4 *3 (-550)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-13 (-306) (-146)))
- (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784))
- (-5 *2 (-635 (-406 (-942 *4)))) (-5 *1 (-914 *4 *5 *6 *7))
- (-4 *7 (-939 *4 *6 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))
- (-5 *2 (-1159 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
- (-4 *3 (-1222 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+ (-5 *1 (-556)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-635
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224)))))
- (-5 *1 (-553))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-5 *2 (-635 *3))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-635
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224)))))
- (-5 *1 (-794)))))
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-553)) (-5 *1 (-962 *4 *2))
+ (-4 *2 (-1229 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-571 *5 *3)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-867))
+ (-5 *5 (-914)) (-5 *6 (-638 (-262))) (-5 *2 (-1254))
+ (-5 *1 (-1257))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-638 (-936 (-224))))) (-5 *4 (-638 (-262)))
+ (-5 *2 (-1254)) (-5 *1 (-1257)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-119 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-561)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042))
+ (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-942 *2 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-624)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3))))
+ (-5 *1 (-385 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1307 (-765)) (|:| -1693 (-765))))
+ (-5 *1 (-765))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-553)) (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-945 (-561)))))
+ (-5 *2 (-638 (-682 (-315 (-561))))) (-5 *1 (-1024)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1003 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2862 *3) (|:| |coef1| (-773 *3)) (|:| |coef2| (-773 *3))))
- (-5 *1 (-773 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-561))))
+ (-4 *4 (-13 (-1229 *3) (-553) (-10 -8 (-15 -1623 ($ $ $)))))
+ (-4 *3 (-553)) (-5 *1 (-1232 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
+ (-4 *4 (-171))))
+ ((*1 *1) (-4 *1 (-720))) ((*1 *1) (-5 *1 (-1166)))
+ ((*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-914))))
+ ((*1 *1) (-5 *1 (-1210))) ((*1 *1) (-5 *1 (-1211))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4385 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
- (-4 *2 (-1039)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1222 *2))
- (-4 *4 (-677 *2 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1025))
- (-5 *1 (-739)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *3 (-635 (-864)))
- (-5 *1 (-466)))))
+ (-12 (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3051 *4)))
+ (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1200)) (-5 *1 (-181 *3 *2))
- (-4 *2 (-664 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
- ((*1 *1 *2) (-12 (-5 *2 (-635 (-558))) (-5 *1 (-961)))))
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
+ (-14 *3 (-638 (-1166))))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999))))
+ ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999)))))
+(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256))))
+ ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1256)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-1146 *4))) (-5 *2 (-1146 *4)) (-5 *1 (-1150 *4))
+ (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-362)))))
+(((*1 *1) (-5 *1 (-156))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-945 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-945 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
+ ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1162 (-406 (-561)))) (-5 *2 (-638 *1)) (-4 *1 (-1005))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1162 *1)) (-4 *1 (-1005)) (-5 *2 (-638 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-638 *1))
+ (-4 *1 (-1059 *4 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1253 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4))
+ (-14 *3 (-914)) (-14 *4 (-914)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5))))
- (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5)))))
- (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1143 (-224)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2103
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-553)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-762)) (-4 *5 (-550))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-959 *5 *3)) (-4 *3 (-1222 *5)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-604 *4)) (-5 *1 (-603 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-841)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-168 (-224))) (-5 *5 (-558)) (-5 *6 (-1145))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-662 *3)) (-4 *3 (-841)) (-4 *1 (-373 *3 *4))
- (-4 *4 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *1)) (-5 *4 (-1246 *1)) (-4 *1 (-631 *5))
- (-4 *5 (-1039))
- (-5 *2 (-2 (|:| -3702 (-679 *5)) (|:| |vec| (-1246 *5))))))
+ (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7)))
+ (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-679 *1)) (-4 *1 (-631 *4)) (-4 *4 (-1039))
- (-5 *2 (-679 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1246 *5)) (-4 *5 (-631 *4)) (-4 *4 (-550))
- (-5 *2 (-1246 *4)) (-5 *1 (-630 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-829))) (-5 *1 (-139)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-762)) (-5 *2 (-1251)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1016 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1200))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1039)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1222 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
- (-4 *3 (-1087)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-168 (-224)))) (-5 *2 (-1025))
- (-5 *1 (-745)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-815)) (-5 *3 (-635 (-1163))) (-5 *1 (-816)))))
+ (-12 (-4 *4 (-902)) (-4 *5 (-1229 *4)) (-5 *2 (-417 (-1162 *5)))
+ (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-561)))))
+ (-4 *5 (-844)) (-5 *1 (-1269 *4 *5 *2)) (-4 *2 (-1274 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
+ (-12 (-4 *4 (-1042)) (-4 *3 (-1229 *4)) (-4 *2 (-1244 *4))
+ (-5 *1 (-1247 *4 *3 *5 *2)) (-4 *5 (-649 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1042)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1229 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-635 (-1159 *7))) (-5 *3 (-1159 *7))
- (-4 *7 (-939 *5 *6 *4)) (-4 *5 (-899)) (-4 *6 (-784))
- (-4 *4 (-841)) (-5 *1 (-896 *5 *6 *4 *7)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2475 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-362)) (-4 *7 (-1222 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
- (-2 (|:| -2475 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
- (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))))
+ (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-553) (-146)))
+ (-5 *1 (-1223 *4 *2)) (-4 *2 (-1229 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1087)) (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 *2)))
- (-5 *2 (-882 *3)) (-5 *1 (-1063 *3 *4 *5))
- (-4 *5 (-13 (-429 *4) (-876 *3) (-606 *2))))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1037)))))
+ (-12 (-4 *3 (-1205)) (-5 *2 (-638 *1)) (-4 *1 (-1003 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-911)) (-5 *2 (-1159 *4)) (-5 *1 (-356 *4))
- (-4 *4 (-348)))))
+ (-12 (-5 *3 (-638 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-702 *3)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-561)) (-4 *4 (-348))
+ (-5 *1 (-526 *4)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-682 (-561))) (-5 *3 (-638 (-561))) (-5 *1 (-1100)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2))
- (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-550) (-841) (-1028 (-558))))
- (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 (-168 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *4))))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *2 (-1025))
- (-5 *1 (-747)))))
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1229 (-561))) (-5 *1 (-484 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1544 *3)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-738)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
- (-5 *2 (-1025)) (-5 *1 (-745)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2862 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *1) (-5 *1 (-1251))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3))))
- (-5 *1 (-385 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-810 *3)) (|:| |mm| (-810 *3)) (|:| |rm| (-810 *3))))
- (-5 *1 (-810 *3)) (-4 *3 (-841)))))
-(((*1 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-841)) (-5 *1 (-662 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-553)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3))
+ (-4 *3 (-1229 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1162 *9)) (-5 *4 (-638 *7)) (-4 *7 (-844))
+ (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306))
+ (-5 *2 (-638 (-765))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
+(((*1 *1) (-5 *1 (-817))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-914)) (-5 *1 (-440 *2))
+ (-4 *2 (-1229 (-561)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-914)) (-5 *4 (-765)) (-5 *1 (-440 *2))
+ (-4 *2 (-1229 (-561)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *1 (-440 *2))
+ (-4 *2 (-1229 (-561)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765))
+ (-5 *1 (-440 *2)) (-4 *2 (-1229 (-561)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-914)) (-5 *4 (-638 (-765))) (-5 *5 (-765))
+ (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-561)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-417 *2)) (-4 *2 (-1229 *5))
+ (-5 *1 (-442 *5 *2)) (-4 *5 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112))
+ (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251))
- (-5 *1 (-1201 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *4)) (-4 *4 (-1087)) (-5 *2 (-1251))
- (-5 *1 (-1201 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-646 *3)) (-4 *3 (-1039)) (-4 *3 (-362))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-762)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362))
- (-5 *1 (-649 *5 *2)) (-4 *2 (-646 *5)))))
+ (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *2 (-638 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *1))))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 *3))) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
+(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
+(((*1 *2 *3) (-12 (-5 *3 (-638 (-52))) (-5 *2 (-1258)) (-5 *1 (-857)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1090)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *3)) (-4 *3 (-1059 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107))))))
- (-4 *4 (-348)) (-5 *2 (-679 *4)) (-5 *1 (-345 *4)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-679 *4)) (-5 *3 (-762)) (-4 *4 (-1039))
- (-5 *1 (-680 *4)))))
+ (-12 (-4 *4 (-553)) (-5 *2 (-638 (-765))) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4))
+ (-4 *4 (-1229 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-638 (-607 *3)))
+ (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *7)))
+ (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3)))
+ (-5 *1 (-554 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1090)) (-5 *2 (-765)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-914))
+ (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4392 "*")))))
+ (-5 *1 (-895 *4 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-765))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765)))))
(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 (-682 *3))) (-5 *1 (-43 *3 *4))
(-4 *4 (-416 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-911)) (-5 *1 (-1088 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-52)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1090)) (-5 *2 (-638 (-765)))
+ (-5 *1 (-897 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-765)) (-5 *4 (-561)) (-5 *1 (-443 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-1162 (-406 *5))) (-5 *1 (-610 *4 *5))
+ (-5 *3 (-406 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-146) (-27) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-5 *2 (-1162 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-882 *4 *3))
+ (-4 *3 (-1090)))))
+(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-315 (-378)))) (-5 *4 (-638 (-378)))
+ (-5 *2 (-1028)) (-5 *1 (-834)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-638 (-858 *4)))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6))
+ (-4 *6 (-450)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2)
+ (-12 (-4 *1 (-348))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *1) (-5 *1 (-140))))
+(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561))))
+ ((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1) (-4 *1 (-862 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786))
+ (-4 *4 (-844)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-143))) (-5 *1 (-140))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-362)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3)))
+ (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-561)) (-4 *2 (-362)) (-4 *4 (-1229 *2))
+ (-4 *5 (-1229 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6))
+ (-4 *6 (-341 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3)))
+ (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *1 (-334 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-417 *3))
+ (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))))
+(((*1 *1) (-5 *1 (-466))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-301))))
+ ((*1 *1 *1) (-4 *1 (-301)))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
+ ((*1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1162 *1)) (-4 *1 (-1005)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-112))
+ (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4))
+ (-4 *2 (-237 *3 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-742)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1145))
- (-4 *4 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1185) (-29 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1) (-5 *1 (-624))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992))))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2 (-2 (|:| -2375 (-114)) (|:| |w| (-224)))) (-5 *1 (-203)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-553)) (-5 *2 (-417 *4))
+ (-5 *1 (-418 *4))))
+ ((*1 *1 *1) (-5 *1 (-919)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-919))))
+ ((*1 *1 *1) (-5 *1 (-920)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-224))) (-5 *1 (-920))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))
+ (-5 *4 (-406 (-561))) (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))
+ (-5 *1 (-1013 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))
+ (-5 *4 (-406 (-561))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))
+ (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-406 (-561))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
+ (-4 *3 (-1229 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844))
+ (-4 *5 (-787)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-638 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-561))))) (-4 *6 (-1229 *5))
+ (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3360 *3))))
+ (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-649 *6))
+ (-4 *7 (-649 (-406 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-638 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *6 (-1229 *5))
+ (-5 *2 (-638 (-2 (|:| |poly| *6) (|:| -3360 (-647 *6 (-406 *6))))))
+ (-5 *1 (-806 *5 *6)) (-5 *3 (-647 *6 (-406 *6))))))
+(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1148)) (-5 *1 (-780)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-638 (-682 (-561))))
+ (-5 *1 (-1100)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-885 *4)) (-4 *4 (-1090)) (-5 *1 (-883 *4 *3))
+ (-4 *3 (-1205))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-638 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042))
+ (-5 *1 (-1022 *4)))))
+(((*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-856))))))
+(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-607 *3)) (-4 *3 (-844)))))
+(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-156))))
+ ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+ (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-561)))
+ (-4 *3 (-553)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3))
+ (-4 *2
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *3 (-607 $)) $))
+ (-15 -4045 ((-1115 *3 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *3 (-607 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-819)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-550)) (-4 *3 (-171))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2743 (-635 *1))))
- (-4 *1 (-366 *3))))
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995)))))
((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-451 *3 *4 *5 *6))
- (|:| -2743 (-635 (-451 *3 *4 *5 *6)))))
- (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-911))
- (-14 *5 (-635 (-1163))) (-14 *6 (-1246 (-679 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1053 *4 *5 *6))
- (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *1 (-967 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-558)) (-4 *3 (-171)) (-4 *5 (-372 *3))
- (-4 *6 (-372 *3)) (-5 *1 (-678 *3 *5 *6 *2))
- (-4 *2 (-677 *3 *5 *6)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-604 *3)) (-5 *5 (-1159 *3))
- (-4 *3 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-604 *3)) (-5 *5 (-406 (-1159 *3)))
- (-4 *3 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2 (-579 *3)) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1087)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2)))
+ (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5))
+ (-4 *3 (-341 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209))
+ (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *2)
(-12
- (-5 *3
- (-2 (|:| -3702 (-679 (-406 (-942 *4))))
- (|:| |vec| (-635 (-406 (-942 *4)))) (|:| -1489 (-762))
- (|:| |rows| (-635 (-558))) (|:| |cols| (-635 (-558)))))
- (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-841) (-606 (-1163))))
- (-4 *6 (-784))
(-5 *2
- (-2 (|:| |partsol| (-1246 (-406 (-942 *4))))
- (|:| -2743 (-635 (-1246 (-406 (-942 *4)))))))
- (-5 *1 (-914 *4 *5 *6 *7)) (-4 *7 (-939 *4 *6 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-762)) (-4 *3 (-1039)) (-4 *1 (-677 *3 *4 *5))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1039)) (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
+ (-638
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-787)) (-4 *6 (-942 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844))
+ (-5 *1 (-447 *4 *3 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-417 *3)) (-4 *3 (-553)) (-5 *1 (-418 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1108)) (-5 *1 (-1105)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-558)) (-4 *5 (-348)) (-5 *2 (-417 (-1159 (-1159 *5))))
- (-5 *1 (-1198 *5)) (-5 *3 (-1159 (-1159 *5))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-911)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-262)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-746)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-685 *3)) (-4 *3 (-1087))
- (-5 *2 (-635 (-2 (|:| -1925 *3) (|:| -1698 (-762))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1231 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5))
- (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-558))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-550))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-689))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1087)) (-5 *1 (-704 *3 *2 *4)) (-4 *3 (-841))
- (-14 *4
- (-1 (-112) (-2 (|:| -2349 *3) (|:| -1857 *2))
- (-2 (|:| -2349 *3) (|:| -1857 *2)))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1163)) (-5 *3 (-635 (-955))) (-5 *1 (-290)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-728 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087))))
- ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-1087)))))
+ (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166))
+ (-5 *1 (-261 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-52))
+ (-5 *1 (-262)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-914))
+ (-5 *2
+ (-3 (-1162 *4)
+ (-1253 (-638 (-2 (|:| -2484 *4) (|:| -2413 (-1110)))))))
+ (-5 *1 (-345 *4)) (-4 *4 (-348)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-964)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-433))
+ (-12
(-5 *2
- (-635
- (-3 (|:| -3179 (-1163))
- (|:| -3974 (-635 (-3 (|:| S (-1163)) (|:| P (-942 (-558)))))))))
- (-5 *1 (-1167)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1145)) (-5 *1 (-97)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-635 (-112))) (-5 *7 (-679 (-224)))
- (-5 *8 (-679 (-558))) (-5 *3 (-558)) (-5 *4 (-224)) (-5 *5 (-112))
- (-5 *2 (-1025)) (-5 *1 (-745)))))
+ (-2 (|:| |cycle?| (-112)) (|:| -2107 (-765)) (|:| |period| (-765))))
+ (-5 *1 (-1146 *4)) (-4 *4 (-1205)) (-5 *3 (-765)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))))
+(((*1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1277 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-171))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-813 *3)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-844))
+ (-4 *4 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1270 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6)
+ (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3369 *6)))
+ (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-939 *7 *5 *6))
- (-5 *1 (-733 *5 *6 *7 *2)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-306)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1090) (-34))) (-4 *6 (-13 (-1090) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1130 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-553)) (-5 *2 (-638 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-416 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3158 *1)))
+ (-4 *1 (-846 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-784))
- (-4 *7 (-841)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-635 *3))
- (-5 *1 (-584 *5 *6 *7 *8 *3)) (-4 *3 (-1096 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-1082 (-837 *3))) (-4 *3 (-13 (-1190) (-952) (-29 *5)))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2
+ (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-218 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1082 (-837 *3))) (-5 *5 (-1148))
+ (-4 *3 (-13 (-1190) (-952) (-29 *6)))
+ (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2
+ (-3 (|:| |f1| (-837 *3)) (|:| |f2| (-638 (-837 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-218 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1082 (-837 (-315 *5))))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
(-5 *2
- (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5))))))
- (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5)))
- (-14 *6 (-635 (-1163)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-306) (-146)))
+ (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-406 (-945 *6))) (-5 *4 (-1082 (-837 (-315 *6))))
+ (-5 *5 (-1148))
+ (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
(-5 *2
- (-635 (-2 (|:| -2347 (-1159 *4)) (|:| -2979 (-635 (-942 *4))))))
- (-5 *1 (-1065 *4 *5)) (-5 *3 (-635 (-942 *4)))
- (-14 *5 (-635 (-1163)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146)))
+ (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1082 (-837 (-406 (-945 *5))))) (-5 *3 (-406 (-945 *5)))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
(-5 *2
- (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5))))))
- (-5 *1 (-1065 *5 *6)) (-5 *3 (-635 (-942 *5)))
- (-14 *6 (-635 (-1163))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-992) (-1185)))
- (-4 *4 (-13 (-550) (-841)))
- (-4 *2 (-13 (-429 (-168 *4)) (-992) (-1185)))
- (-5 *1 (-592 *4 *5 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 (-2 (|:| -3939 (-1159 *6)) (|:| -1857 (-558)))))
- (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112))
- (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1039)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-762)) (-4 *4 (-13 (-550) (-146)))
- (-5 *1 (-1216 *4 *2)) (-4 *2 (-1222 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1222 (-168 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1222 (-168 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-2 (|:| |deg| (-762)) (|:| -2576 *5))))
- (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *2 (-635 *5))
- (-5 *1 (-215 *4 *5))))
+ (-3 (|:| |f1| (-837 (-315 *5))) (|:| |f2| (-638 (-837 (-315 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1082 (-837 (-406 (-945 *6))))) (-5 *5 (-1148))
+ (-5 *3 (-406 (-945 *6)))
+ (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2
+ (-3 (|:| |f1| (-837 (-315 *6))) (|:| |f2| (-638 (-837 (-315 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-2 (|:| -3939 *5) (|:| -4263 (-558)))))
- (-5 *4 (-558)) (-4 *5 (-1222 *4)) (-5 *2 (-635 *5))
- (-5 *1 (-686 *5)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-635 (-224))) (-5 *1 (-203)))))
-(((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-52)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-904 *3)) (-4 *3 (-306)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-140))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-143)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-1163))) (-4 *4 (-1087))
- (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
- (-5 *1 (-1063 *4 *5 *2))
- (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1087))
- (-4 *4 (-13 (-1039) (-876 *3) (-841) (-606 (-882 *3))))
- (-5 *1 (-1063 *3 *4 *2))
- (-4 *2 (-13 (-429 *4) (-876 *3) (-606 (-882 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-478)))))
-(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-450)) (-4 *4 (-841))
- (-5 *1 (-567 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-240))))
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-3 *3 (-638 *3))) (-5 *1 (-427 *5 *3))
+ (-4 *3 (-13 (-1190) (-952) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
+ (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
+ (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
+ (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-837 (-378))))
+ (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
+ (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
+ (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
+ (-5 *5 (-378)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-315 (-378))) (-5 *4 (-638 (-1084 (-837 (-378)))))
+ (-5 *5 (-378)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378))))
+ (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1082 (-837 (-378))))
+ (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1145))) (-5 *2 (-1251)) (-5 *1 (-240)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
- (|:| |fn| (-1246 (-315 (-224)))) (|:| |yinit| (-635 (-224)))
- (|:| |intvals| (-635 (-224))) (|:| |g| (-315 (-224)))
- (|:| |abserr| (-224)) (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-204)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1059 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
+ (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-561)))) (-4 *5 (-1229 *4))
+ (-5 *2 (-582 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146))
+ (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
+ (-5 *2 (-3 (-315 *5) (-638 (-315 *5)))) (-5 *1 (-585 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844))
+ (-4 *3 (-38 (-406 (-561))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-945 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-4 *3 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-4 *2 (-844))
+ (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-942 *3 (-529 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042))
+ (-5 *1 (-1150 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *1 (-1199 *3)) (-4 *3 (-38 (-406 (-561))))
+ (-4 *3 (-1042))))
+ ((*1 *1 *1 *2)
+ (-4007
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1213 *3)) (-4 *3 (-1042))
+ (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190))
+ (-4 *3 (-38 (-406 (-561))))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1213 *3)) (-4 *3 (-1042))
+ (-12 (|has| *3 (-15 -1412 ((-638 *2) *3)))
+ (|has| *3 (-15 -1842 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1217 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
+ ((*1 *1 *1 *2)
+ (-4007
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1234 *3)) (-4 *3 (-1042))
+ (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190))
+ (-4 *3 (-38 (-406 (-561))))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1234 *3)) (-4 *3 (-1042))
+ (-12 (|has| *3 (-15 -1412 ((-638 *2) *3)))
+ (|has| *3 (-15 -1842 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1238 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-4007
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1244 *3)) (-4 *3 (-1042))
+ (-12 (-4 *3 (-29 (-561))) (-4 *3 (-952)) (-4 *3 (-1190))
+ (-4 *3 (-38 (-406 (-561))))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-1244 *3)) (-4 *3 (-1042))
+ (-12 (|has| *3 (-15 -1412 ((-638 *2) *3)))
+ (|has| *3 (-15 -1842 (*3 *3 *2))) (-4 *3 (-38 (-406 (-561))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-561))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1249 *4)) (-14 *4 (-1166)) (-5 *1 (-1245 *3 *4 *5))
+ (-4 *3 (-38 (-406 (-561)))) (-4 *3 (-1042)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841))))
- ((*1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1089 *4)) (-4 *4 (-1087)) (-5 *2 (-1 *4))
- (-5 *1 (-1007 *4))))
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1030)) (-5 *3 (-378))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1081 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1037)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1159 *4)) (-4 *4 (-348))
- (-5 *2 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107))))))
- (-5 *1 (-345 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-1119 *4 *2))
- (-4 *2 (-13 (-596 (-558) *4) (-10 -7 (-6 -4383) (-6 -4384))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-841)) (-4 *3 (-1200)) (-5 *1 (-1119 *3 *2))
- (-4 *2 (-13 (-596 (-558) *3) (-10 -7 (-6 -4383) (-6 -4384)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-933 (-224)) (-224) (-224)))
- (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1089 *3)) (-5 *1 (-894 *3)) (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1089 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224))
- (-5 *2 (-635 (-933 *4))) (-5 *1 (-1196)) (-5 *3 (-933 *4)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-742)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *4)) (-5 *1 (-1115 *3 *4)) (-4 *3 (-1222 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2 (-635 *3)) (-5 *1 (-1115 *4 *3)) (-4 *4 (-1222 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-942 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-146))
- (-4 *3 (-306)) (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-790 *3)))))
+ (-12 (-5 *2 (-1146 (-638 (-561)))) (-5 *1 (-876)) (-5 *3 (-561)))))
+(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1094)) (-5 *1 (-290)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-561))) (-5 *6 (-224))
+ (-5 *3 (-561)) (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-1084 (-224))) (-5 *2 (-920))
+ (-5 *1 (-918 *3)) (-4 *3 (-609 (-534)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-5 *2 (-920)) (-5 *1 (-918 *3))
+ (-4 *3 (-609 (-534)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-920))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1084 (-224)))
+ (-5 *1 (-920)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1244 *4)) (-5 *1 (-1246 *4 *2))
+ (-4 *4 (-38 (-406 (-561)))))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-783))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))
(-4 *2 (-362))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-224))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-224))))
((*1 *1 *1 *1)
- (-3994 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1200)))
- (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1200)))))
+ (-4007 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205)))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205)))))
((*1 *1 *1 *1) (-4 *1 (-362)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-378))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-378))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1112 *3 (-604 *1))) (-4 *3 (-550)) (-4 *3 (-841))
+ (-12 (-5 *2 (-1115 *3 (-607 *1))) (-4 *3 (-553)) (-4 *3 (-844))
(-4 *1 (-429 *3))))
((*1 *1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1246 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
+ (-12 (-5 *2 (-1253 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
((*1 *1 *1 *1) (-5 *1 (-534)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-171)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-717) *4))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-616 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-720) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-171)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-717) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-171)) (-4 *2 (-362))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-616 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-720) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-171)) (-4 *2 (-362))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-171)) (-5 *1 (-652 *2 *4 *3)) (-4 *2 (-708 *4))
- (-4 *3 (|SubsetCategory| (-717) *4))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-655 *2 *4 *3)) (-4 *2 (-711 *4))
+ (-4 *3 (|SubsetCategory| (-720) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-171)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-708 *4))
- (-4 *2 (|SubsetCategory| (-717) *4))))
+ (-12 (-4 *4 (-171)) (-5 *1 (-655 *3 *4 *2)) (-4 *3 (-711 *4))
+ (-4 *2 (|SubsetCategory| (-720) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
(-4 *4 (-372 *2)) (-4 *2 (-362))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-856 *2 *3 *4 *5)) (-4 *2 (-362))
- (-4 *2 (-1039)) (-14 *3 (-635 (-1163))) (-14 *4 (-635 (-762)))
- (-14 *5 (-762))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550))))
+ (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362))
+ (-4 *2 (-1042)) (-14 *3 (-638 (-1166))) (-14 *4 (-638 (-765)))
+ (-14 *5 (-765))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039))
+ (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042))
(-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-362))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-362))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1039)) (-4 *3 (-841))
- (-4 *4 (-784)) (-14 *6 (-635 *3))
- (-5 *1 (-1258 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-939 *2 *4 *3))
- (-14 *7 (-635 (-762))) (-14 *8 (-762))))
+ (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844))
+ (-4 *4 (-787)) (-14 *6 (-638 *3))
+ (-5 *1 (-1265 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-942 *2 *4 *3))
+ (-14 *7 (-638 (-765))) (-14 *8 (-765))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1269 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1039))
- (-4 *3 (-837)))))
-(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-112)))))
+ (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042))
+ (-4 *3 (-840)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-781)) (-5 *2 (-1028))
+ (-5 *3
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-781)) (-5 *2 (-1028))
+ (-5 *3
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-919)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-638
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-787)) (-4 *3 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
+ (-5 *1 (-447 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
-(((*1 *1) (-5 *1 (-814))))
+ (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
+ (-4 *3 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362))
- (-5 *2 (-112)) (-5 *1 (-657 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384))))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-5 *2 (-112))
- (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-635 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1193 *5 *6 *7 *3))
- (-4 *5 (-550)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-550) (-841) (-1028 (-558)))) (-5 *1 (-187 *3 *2))
- (-4 *2 (-13 (-27) (-1185) (-429 (-168 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-1189 *3 *2)) (-4 *2 (-13 (-27) (-1185) (-429 *3))))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1162 *7))
+ (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5))
+ (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1258))
+ (-5 *1 (-770 *6 *7 *8 *4 *5)) (-4 *5 (-1062 *6 *7 *8 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-638 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-4 *3 (-553)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-213 *2))
(-4 *2
- (-13 (-841)
- (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $))
- (-15 -1963 ((-1251) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200))))
+ (-13 (-844)
+ (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $))
+ (-15 -3148 ((-1258) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1205))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
(-4 *4 (-372 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
(-4 *4 (-372 *2))))
- ((*1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-21)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-635 (-679 *6))) (-5 *4 (-112)) (-5 *5 (-558))
- (-5 *2 (-679 *6)) (-5 *1 (-1019 *6)) (-4 *6 (-362)) (-4 *6 (-1039))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 (-679 *4))) (-5 *2 (-679 *4)) (-5 *1 (-1019 *4))
- (-4 *4 (-362)) (-4 *4 (-1039))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-635 (-679 *5))) (-5 *4 (-558)) (-5 *2 (-679 *5))
- (-5 *1 (-1019 *5)) (-4 *5 (-362)) (-4 *5 (-1039)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-711)) (-5 *2 (-911))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-762)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3789 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-635 (-558))) (-5 *3 (-679 (-558))) (-5 *1 (-1097)))))
-(((*1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-579 *3)) (-4 *3 (-362)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-558)) (-4 *6 (-362)) (-4 *6 (-367))
- (-4 *6 (-1039)) (-5 *2 (-635 (-635 (-679 *6)))) (-5 *1 (-1019 *6))
- (-5 *3 (-635 (-679 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1039))
- (-5 *2 (-635 (-635 (-679 *4)))) (-5 *1 (-1019 *4))
- (-5 *3 (-635 (-679 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039))
- (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
- (-5 *3 (-635 (-679 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1039))
- (-5 *2 (-635 (-635 (-679 *5)))) (-5 *1 (-1019 *5))
- (-5 *3 (-635 (-679 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-21)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-858 *5))) (-14 *5 (-638 (-1166))) (-4 *6 (-450))
+ (-5 *2 (-638 (-638 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7))
+ (-5 *3 (-638 (-246 *5 *6))) (-4 *7 (-450)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
+ (-5 *1 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561))))
+ (-5 *1 (-189)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-561)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-765)) (-4 *5 (-171))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-561)) (-14 *3 (-765))
+ (-4 *4 (-171))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1042)) (-4 *1 (-680 *3 *2 *4)) (-4 *2 (-372 *3))
+ (-4 *4 (-372 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-4 *1 (-1134))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-168 (-224))))
+ (-5 *2 (-1028)) (-5 *1 (-748)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-787)) (-4 *2 (-942 *4 *5 *6)) (-5 *1 (-447 *4 *5 *6 *2))
+ (-4 *4 (-450)) (-4 *6 (-844)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))
+ (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-213 *2))
(-4 *2
- (-13 (-841)
- (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 ((-1251) $))
- (-15 -1963 ((-1251) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1200))))
+ (-13 (-844)
+ (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 ((-1258) $))
+ (-15 -3148 ((-1258) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1205))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130))))
+ (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-130))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2))
- (-4 *2 (-1222 *3))))
+ (-4 *2 (-1229 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-362)) (-4 *3 (-784)) (-4 *4 (-841))
- (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-939 *2 *3 *4))))
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))
((*1 *1 *1 *1) (-5 *1 (-534)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-372 *2))
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
(-4 *4 (-372 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1087))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1090))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1200)) (-4 *2 (-25)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1200))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1200))
- (-14 *4 (-558)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-604 *3)) (-5 *5 (-635 *3))
- (-4 *3 (-13 (-429 *6) (-27) (-1185)))
- (-4 *6 (-13 (-450) (-1028 (-558)) (-841) (-146) (-631 (-558))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1087)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-762)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2))
- (-4 *2 (-1222 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -3944 *4))))
- (-4 *3 (-1087)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-639 *3 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1222 *3))
- (-4 *5 (-1222 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
- (-5 *2 (-412 *4 (-406 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1246 *6)) (-4 *6 (-13 (-408 *4 *5) (-1028 *4)))
- (-4 *4 (-982 *3)) (-4 *5 (-1222 *4)) (-4 *3 (-306))
- (-5 *1 (-412 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-362))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-502 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-306))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-445 *4 *5 *6 *2)))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-25)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163))
- (-5 *1 (-261 *2)) (-4 *2 (-1200))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-635 (-262))) (-5 *4 (-1163)) (-5 *2 (-52))
- (-5 *1 (-262)))))
+ (-12 (-5 *4 (-638 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-306))
+ (-5 *2 (-765)) (-5 *1 (-453 *5 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-635 (-315 (-224))))
- (|:| |constraints|
- (-635
- (-2 (|:| |start| (-224)) (|:| |finish| (-224))
- (|:| |grid| (-762)) (|:| |boundaryType| (-558))
- (|:| |dStart| (-679 (-224))) (|:| |dFinish| (-679 (-224))))))
- (|:| |f| (-635 (-635 (-315 (-224))))) (|:| |st| (-1145))
- (|:| |tol| (-224))))
- (-5 *2 (-112)) (-5 *1 (-209)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-555)))))
-(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-762)) (-5 *3 (-933 *5)) (-4 *5 (-1039))
- (-5 *1 (-1151 *4 *5)) (-14 *4 (-911))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-762))) (-5 *3 (-762)) (-5 *1 (-1151 *4 *5))
- (-14 *4 (-911)) (-4 *5 (-1039))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-762))) (-5 *3 (-933 *5)) (-4 *5 (-1039))
- (-5 *1 (-1151 *4 *5)) (-14 *4 (-911)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
- (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
- (-5 *1 (-779))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
- (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
- (-5 *1 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992))))))
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-1168 (-406 (-561))))
+ (-5 *1 (-189)))))
+(((*1 *2 *2) (-12 (-5 *1 (-954 *2)) (-4 *2 (-543)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841) (-1028 (-558)))) (-4 *5 (-429 *4))
+ (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-2 (|:| |k| (-665 *3)) (|:| |c| *4))))
+ (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844))
+ (-4 *4 (-13 (-171) (-711 (-406 (-561))))) (-14 *5 (-914)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-348)) (-4 *6 (-1229 *5))
(-5 *2
- (-3 (|:| |overq| (-1159 (-406 (-558))))
- (|:| |overan| (-1159 (-48))) (|:| -4198 (-112))))
- (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1222 *5)))))
+ (-638
+ (-2 (|:| -3711 (-682 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-682 *6)))))
+ (-5 *1 (-496 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -3711 (-682 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-682 *6))))
+ (-4 *7 (-1229 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-917))
+ (-12 (-5 *3 (-763))
(-5 *2
- (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
- (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
- (-5 *1 (-152))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-917)) (-5 *4 (-406 (-558)))
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))
+ (-5 *1 (-562))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-763)) (-5 *4 (-1054))
(-5 *2
- (-2 (|:| |brans| (-635 (-635 (-933 (-224)))))
- (|:| |xValues| (-1081 (-224))) (|:| |yValues| (-1081 (-224)))))
- (-5 *1 (-152)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-429 *3) (-992))) (-5 *1 (-275 *3 *2))
- (-4 *3 (-13 (-841) (-550))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-406 (-558))))
- (-5 *2 (-2 (|:| -2254 (-1143 *4)) (|:| -2265 (-1143 *4))))
- (-5 *1 (-1149 *4)) (-5 *3 (-1143 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-762))
- (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-939 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *1 (-1115 *3 *2)) (-4 *3 (-1222 *2)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163))
- (-4 *4 (-13 (-550) (-1028 (-558)) (-146))) (-5 *1 (-564 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-1251)) (-5 *1 (-378))))
- ((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-378)))))
-(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
- (-4 *3 (-1222 *4))))
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148))) (|:| |extra| (-1028))))
+ (-5 *1 (-562))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-781)) (-5 *3 (-1054))
+ (-5 *4
+ (-2 (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-638 (-1084 (-837 (-224))))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))
+ (|:| |extra| (-1028))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-781)) (-5 *3 (-1054))
+ (-5 *4
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
+ (|:| |relerr| (-224))))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))
+ (|:| |extra| (-1028))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-794)) (-5 *3 (-1054))
+ (-5 *4
+ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224))
+ (|:| |fn| (-1253 (-315 (-224)))) (|:| |yinit| (-638 (-224)))
+ (|:| |intvals| (-638 (-224))) (|:| |g| (-315 (-224)))
+ (|:| |abserr| (-224)) (|:| |relerr| (-224))))
+ (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-802))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148)))))
+ (-5 *1 (-799))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-802)) (-5 *4 (-1054))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148)))))
+ (-5 *1 (-799))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-833)) (-5 *3 (-1054))
+ (-5 *4
+ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))
+ (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-833)) (-5 *3 (-1054))
+ (-5 *4
+ (-2 (|:| |fn| (-315 (-224))) (|:| -3721 (-638 (-224)))
+ (|:| |lb| (-638 (-837 (-224)))) (|:| |cf| (-638 (-315 (-224))))
+ (|:| |ub| (-638 (-837 (-224))))))
+ (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
+ (-12 (-5 *3 (-835))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148)))))
+ (-5 *1 (-834))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1222 (-558)))))
+ (-12 (-5 *3 (-835)) (-5 *4 (-1054))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148)))))
+ (-5 *1 (-834))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 (-762))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-635 (-762))) (-5 *5 (-762)) (-5 *2 (-417 *3))
- (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-762)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
- (-4 *3 (-1222 (-558)))))
+ (-12 (-4 *1 (-888)) (-5 *3 (-1054))
+ (-5 *4
+ (-2 (|:| |pde| (-638 (-315 (-224))))
+ (|:| |constraints|
+ (-638
+ (-2 (|:| |start| (-224)) (|:| |finish| (-224))
+ (|:| |grid| (-765)) (|:| |boundaryType| (-561))
+ (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224))))))
+ (|:| |f| (-638 (-638 (-315 (-224))))) (|:| |st| (-1148))
+ (|:| |tol| (-224))))
+ (-5 *2 (-2 (|:| -1804 (-378)) (|:| |explanations| (-1148))))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-997 *3))
- (-4 *3 (-1222 (-406 (-558))))))
+ (-12 (-5 *3 (-891))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148)))))
+ (-5 *1 (-890))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-891)) (-5 *4 (-1054))
+ (-5 *2
+ (-2 (|:| -1804 (-378)) (|:| -3269 (-1148))
+ (|:| |explanations| (-638 (-1148)))))
+ (-5 *1 (-890)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-853)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-762))
- (-14 *4 (-762)) (-4 *5 (-171)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2))
- (-4 *2 (-429 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
- (-5 *1 (-157 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163)))))
-(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1249)))))
+ (-12 (-5 *3 (-1162 *4)) (-4 *4 (-348)) (-5 *2 (-112))
+ (-5 *1 (-356 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-635 (-1159 (-558)))) (-5 *1 (-190)) (-5 *3 (-558)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2)
- (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-342 *3 *4)) (-14 *3 (-911))
- (-14 *4 (-911))))
- ((*1 *2)
- (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-1159 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-948 (-1107))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348))
- (-14 *4 (-911)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-547)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1246 *6)) (-5 *4 (-1246 (-558))) (-5 *5 (-558))
- (-4 *6 (-1087)) (-5 *2 (-1 *6)) (-5 *1 (-1007 *6)))))
+ (-12 (-5 *3 (-1162 (-561))) (-5 *2 (-561)) (-5 *1 (-935)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1205)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1090))
+ (-4 *2 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1163)) (-5 *4 (-942 (-558))) (-5 *2 (-329))
- (-5 *1 (-331)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))))
+ (-12 (-5 *3 (-682 (-406 (-561))))
+ (-5 *2
+ (-638
+ (-2 (|:| |outval| *4) (|:| |outmult| (-561))
+ (|:| |outvect| (-638 (-682 *4))))))
+ (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-450))
- (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873)) (-5 *3 (-558)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *1 *1 *1) (-4 *1 (-957))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-130))
- (-4 *3 (-783)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-558))) (-5 *4 (-895 (-558)))
- (-5 *2 (-679 (-558))) (-5 *1 (-583))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-635 (-679 (-558))))
- (-5 *1 (-583))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-558))) (-5 *4 (-635 (-895 (-558))))
- (-5 *2 (-635 (-679 (-558)))) (-5 *1 (-583)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))
- (-5 *2 (-1025)) (-5 *1 (-739)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1039))
- (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4))))
+ (-12
+ (-5 *2
+ (-638
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-787)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844))
+ (-5 *1 (-447 *3 *4 *5 *6)))))
+(((*1 *1) (-4 *1 (-348))))
+(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1170)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-4 *5 (-1039))
- (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283)))
- (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5)))))
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-417 (-945 *6))) (-5 *5 (-1166)) (-5 *3 (-945 *6))
+ (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-908 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765)))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-2 (|:| -3939 (-1159 *6)) (|:| -1857 (-558)))))
- (-4 *6 (-306)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-558))
- (-5 *1 (-733 *4 *5 *6 *7)) (-4 *7 (-939 *6 *4 *5)))))
+ (-12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-561))) (-5 *2 (-112))
+ (-5 *1 (-1280 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-348))
- (-5 *2 (-635 (-2 (|:| |deg| (-762)) (|:| -2576 *3))))
- (-5 *1 (-215 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-679 *4)) (-4 *4 (-1039)) (-5 *1 (-1129 *3 *4))
- (-14 *3 (-762)))))
-(((*1 *2 *2)
+ (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-191))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-299))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1146 (-224))) (-5 *2 (-638 (-1148))) (-5 *1 (-304)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
+ (-5 *2 (-837 *4)) (-5 *1 (-312 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-844) (-1031 (-561)) (-634 (-561)) (-450)))
+ (-5 *2 (-837 *4)) (-5 *1 (-1239 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1190) (-429 *3))) (-14 *5 (-1166))
+ (-14 *6 *4))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-638 (-170)))))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-1253 *5))) (-5 *4 (-561)) (-5 *2 (-1253 *5))
+ (-5 *1 (-1022 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *1 *2 *3 *4)
(-12
+ (-5 *3
+ (-638
+ (-2 (|:| |scalar| (-406 (-561))) (|:| |coeff| (-1162 *2))
+ (|:| |logand| (-1162 *2)))))
+ (-5 *4 (-638 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-362)) (-5 *1 (-582 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1258)) (-5 *1 (-1256)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-638 (-638 *4)))) (-5 *2 (-638 (-638 *4)))
+ (-5 *1 (-1176 *4)) (-4 *4 (-844)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-914)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-638 *7)) (|:| |badPols| (-638 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765)))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1084 (-224)))
+ (-5 *5 (-112)) (-5 *2 (-1255)) (-5 *1 (-256)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-945 (-561))) (-5 *3 (-1166))
+ (-5 *4 (-1084 (-406 (-561)))) (-5 *1 (-30)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -3027 *1) (|:| -4377 *1) (|:| |associate| *1)))
+ (-4 *1 (-553)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5))
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-558))))
- (-4 *4 (-13 (-1222 *3) (-550) (-10 -8 (-15 -1544 ($ $ $)))))
- (-4 *3 (-550)) (-5 *1 (-1225 *3 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-841)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-1087)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-638 (-1166))) (-4 *2 (-171))
+ (-4 *4 (-237 (-3498 *5) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2413 *3) (|:| -4196 *4))
+ (-2 (|:| -2413 *3) (|:| -4196 *4))))
+ (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844))
+ (-4 *7 (-942 *2 *4 (-858 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1148)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3))))
+ (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *1 *1 *1) (-4 *1 (-755))))
+(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-348)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-902)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-896 *3)))))
(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3568 (-635 (-1163))) (|:| -2425 (-635 (-1163)))))
- (-5 *1 (-1202)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-762) *2)) (-5 *4 (-762)) (-4 *2 (-1087))
- (-5 *1 (-668 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-762) *3)) (-4 *3 (-1087)) (-5 *1 (-672 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *1) (-5 *1 (-436))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
+ (-12 (-4 *4 (-171)) (-5 *2 (-638 (-1253 *4))) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-553))
+ (-5 *2 (-638 (-1253 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1205)) (-5 *2 (-561)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-553))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))
+ (-4 *2 (-553))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-553)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042))
+ (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-553))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-765)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-553))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-553))
+ (-5 *1 (-962 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042))
+ (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-553))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-638 *7)) (-5 *3 (-561)) (-4 *7 (-942 *4 *5 *6))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *1 (-447 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1039))
- (-4 *2 (-13 (-403) (-1028 *4) (-362) (-1185) (-283)))
- (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-550)) (-4 *3 (-841)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
- ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
+ (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1198 *4 *5 *3 *6)) (-4 *4 (-553)) (-4 *5 (-787))
+ (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-561)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 (-945 (-561)))) (-5 *4 (-638 (-1166)))
+ (-5 *2 (-638 (-638 (-378)))) (-5 *1 (-1016)) (-5 *5 (-378))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-14 *5 (-638 (-1166))) (-5 *2 (-638 (-638 (-1017 (-406 *4)))))
+ (-5 *1 (-1279 *4 *5 *6)) (-14 *6 (-638 (-1166)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-945 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-638 (-1017 (-406 *5))))) (-5 *1 (-1279 *5 *6 *7))
+ (-14 *6 (-638 (-1166))) (-14 *7 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-945 *4)))
+ (-4 *4 (-13 (-842) (-306) (-146) (-1015)))
+ (-5 *2 (-638 (-638 (-1017 (-406 *4))))) (-5 *1 (-1279 *4 *5 *6))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-638 (-1166))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-952) (-29 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1205)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
((*1 *2 *1)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171))))
+ (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348))
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-914)) (-4 *4 (-348))
(-5 *1 (-526 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1110 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
- (-4 *5 (-237 *3 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1544 *3)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-465))))
- ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-917)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -3798 *4))))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-911)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1159 *1))
- (-4 *1 (-328 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1159 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362))
- (-4 *2 (-1222 *3))))
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-2 (|:| |gen| *3) (|:| -3440 *4))))
+ (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-561))
+ (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1229 *5))
+ (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-1159 *4))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558))))
- (-4 *2 (-171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1145)) (-5 *1 (-701)))))
-(((*1 *2 *1) (-12 (-4 *1 (-758 *3)) (-4 *3 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1163)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-1039))
- (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-1222 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-762)))
- ((*1 *1 *1 *1) (-5 *1 (-853))))
+ (-12 (-4 *4 (-1042)) (-5 *2 (-561)) (-5 *1 (-441 *4 *3 *5))
+ (-4 *3 (-1229 *4))
+ (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-310))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-607 *4)) (-5 *6 (-1166))
+ (-4 *4 (-13 (-429 *7) (-27) (-1190)))
+ (-4 *7 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3711 (-638 *4))))
+ (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-649 *4)) (-4 *3 (-1090)))))
+(((*1 *1) (-5 *1 (-1255))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1166))
+ (-4 *6 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-4 *4 (-13 (-29 *6) (-1190) (-952)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3711 (-638 *4))))
+ (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-649 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-638 (-262))) (-5 *1 (-1255))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1255))))
+ ((*1 *1 *1) (-5 *1 (-1255))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4))
+ (-5 *3 (-638 *4)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1205))))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))
- ((*1 *1 *1 *1) (-5 *1 (-853)))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-1145)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-738)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -1540 *7) (|:| |sol?| (-112)))
- (-558) *7))
- (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1222 *7))
- (-5 *3 (-406 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-568 *7 *8)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1205)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-558)) (-4 *4 (-450)) (-4 *5 (-784)) (-4 *6 (-841))
- (-5 *2 (-1251)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-939 *4 *5 *6)))))
+ (-12 (-5 *3 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561)))))
+ (-5 *2 (-406 (-561))) (-5 *1 (-1013 *4)) (-4 *4 (-1229 (-561))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1146 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-679 (-406 (-942 (-558)))))
- (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6))
- (-4 *6 (-1222 *5)) (-4 *5 (-13 (-362) (-146) (-1028 (-558))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-562 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *1 *1) (-5 *1 (-1051))))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1162 (-945 *4)) (-945 *4)))
+ (-5 *1 (-1261 *4)) (-4 *4 (-362)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-487 *3)) (-4 *3 (-1200))
- (-4 *3 (-1087)) (-5 *2 (-762))))
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
+ (-4 *3 (-1090)) (-5 *2 (-765))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4383)) (-4 *1 (-487 *4))
- (-4 *4 (-1200)) (-5 *2 (-762)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4390)) (-4 *1 (-487 *4))
+ (-4 *4 (-1205)) (-5 *2 (-765)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-882 *4)) (-4 *4 (-1087)) (-5 *2 (-635 *5))
- (-5 *1 (-880 *4 *5)) (-4 *5 (-1200)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-635 *6) "failed") (-558) *6 *6)) (-4 *6 (-362))
- (-4 *7 (-1222 *6))
- (-5 *2 (-2 (|:| |answer| (-579 (-406 *7))) (|:| |a0| *6)))
- (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)) (-5 *3 (-1145)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-773 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841))
- (-4 *7 (-1053 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7))))
- (-5 *1 (-967 *4 *5 *6 *7)) (-5 *3 (-635 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-586 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1087)) (-5 *2 (-1107)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-635 (-1163))) (|:| |pred| (-52))))
- (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-558))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-861 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-14 *2 (-558))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-862 *3 *4))
- (-4 *4 (-859 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-558)) (-5 *1 (-862 *2 *3)) (-4 *3 (-859 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-558)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-1237 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1208 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1237 *2)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *6 (-224)) (-5 *2 (-1025)) (-5 *1 (-743)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-558)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1163))) (-4 *6 (-362))
- (-5 *2 (-635 (-293 (-942 *6)))) (-5 *1 (-536 *5 *6 *7))
- (-4 *5 (-450)) (-4 *7 (-13 (-362) (-839))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1087)) (-4 *2 (-1087)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-1165 (-406 (-558))))
- (-5 *1 (-189)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-558)) (-5 *5 (-1145)) (-5 *6 (-679 (-224)))
- (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-224)) (-5 *2 (-1025)) (-5 *1 (-740)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-168 (-224))) (-5 *6 (-1145))
- (-5 *4 (-224)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-550) (-146))) (-5 *1 (-1216 *3 *2))
- (-4 *2 (-1222 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 (-1163))) (-5 *2 (-1251)) (-5 *1 (-1202)))))
+ (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-935 *4 *3))
- (-4 *3 (-1222 *4)))))
+ (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-561))) (-5 *1 (-304)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-558)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-543))
- (-4 *3 (-550))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-558)))))
+ (-12 (-5 *2 (-638 (-2 (|:| -2252 (-1166)) (|:| -2654 *4))))
+ (-5 *1 (-882 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))
((*1 *2 *1)
- (-12 (-4 *1 (-788 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-558)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-824 *3)) (-4 *3 (-543))
- (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-834 *3)) (-4 *3 (-543))
- (-4 *3 (-1087))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3)) (-4 *3 (-171)) (-4 *3 (-543))
- (-5 *2 (-406 (-558)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-998 *3)) (-4 *3 (-1028 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-939 *3 *5 *4)) (-5 *1 (-977 *3 *4 *5 *2))
- (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 (-1159 *5))) (-5 *3 (-1159 *5))
- (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1222 *5))
- (-4 *5 (-1222 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 (-1159 (-558)))) (-5 *3 (-1159 (-558)))
- (-5 *1 (-566))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-635 (-1159 *1))) (-5 *3 (-1159 *1))
- (-4 *1 (-899)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
- ((*1 *2 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-306))))
- ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306))))
- ((*1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-558)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-746)))))
-(((*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-563 *3)) (-4 *3 (-1028 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *2 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *4)) (-5 *1 (-875 *3 *4 *5))
- (-4 *3 (-1087)) (-4 *5 (-656 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-813)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-783)) (-4 *3 (-171)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1089 (-762))) (-5 *6 (-762))
- (-5 *2
- (-2 (|:| |contp| (-558))
- (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558)))))))
- (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-911))
- (-5 *2
- (-3 (-1159 *4)
- (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107)))))))
- (-5 *1 (-345 *4)) (-4 *4 (-348)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-1087))
- (-4 *4 (-1087)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-310))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-960))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-984))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1026))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1061)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1540 *6) (|:| |sol?| (-112))) (-558)
- *6))
- (-4 *6 (-362)) (-4 *7 (-1222 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
- (-2 (|:| -2475 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
- (-5 *1 (-568 *6 *7)) (-5 *3 (-406 *7)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (|has| *1 (-6 -4374)) (-4 *1 (-403))))
- ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-911)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1237 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917))
- (-5 *1 (-915 *3)) (-4 *3 (-606 (-534)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1163)) (-5 *5 (-1081 (-224))) (-5 *2 (-917))
- (-5 *1 (-915 *3)) (-4 *3 (-606 (-534)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-916))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-916))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-916))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1081 (-224))) (-5 *1 (-917))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853))))
- ((*1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-742)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1107)) (-5 *1 (-812)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-243 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *2 *4 *5 *6)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *2 (-1087)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-558)) (-5 *1 (-1143 *3)) (-4 *3 (-1200))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4384)) (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-745)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4))))
- (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-1246 (-679 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-1246 (-679 *4))) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1246 (-679 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362))
- (-5 *2 (-1246 (-679 (-406 (-942 *5))))) (-5 *1 (-1073 *5))
- (-5 *4 (-679 (-406 (-942 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-1163))) (-4 *5 (-362))
- (-5 *2 (-1246 (-679 (-942 *5)))) (-5 *1 (-1073 *5))
- (-5 *4 (-679 (-942 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-679 *4))) (-4 *4 (-362))
- (-5 *2 (-1246 (-679 *4))) (-5 *1 (-1073 *4)))))
+ (-12 (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090))
+ (-4 *7 (-1090)) (-5 *2 (-638 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-817))))
+(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-638 (-114))))))
+(((*1 *2) (-12 (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-191))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1145))) (-5 *1 (-304)))))
-(((*1 *1) (-5 *1 (-572))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1204)) (-4 *5 (-1222 *4))
- (-5 *2 (-2 (|:| -3455 (-406 *5)) (|:| |poly| *3)))
- (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1222 (-406 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1039)) (-4 *4 (-1222 *3)) (-5 *1 (-163 *3 *4 *2))
- (-4 *2 (-1222 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1200)))))
+ (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-378)) (-5 *1 (-780)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
+ (-2 (|:| |var| (-1166)) (|:| |fn| (-315 (-224)))
+ (|:| -2290 (-1084 (-837 (-224)))) (|:| |abserr| (-224))
(|:| |relerr| (-224))))
(-5 *2
(-2
@@ -15846,2492 +14962,3382 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1143 (-224)))
+ (-3 (|:| |str| (-1146 (-224)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2103
+ (|:| -2290
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-553)))))
+ (-5 *1 (-556)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-589 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-942 *4 *6 *5))
+ (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-786)) (-4 *3 (-171)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856))))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-550))
- (-5 *2 (-1159 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-216))))
- ((*1 *2 *1) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-485))))
- ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-550)) (-4 *2 (-306))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-561))))
((*1 *2 *1)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558))))
- ((*1 *1 *1) (-4 *1 (-1048))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-561)))))
+(((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-534))) (-5 *1 (-534)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 (-2 (|:| |val| (-638 *8)) (|:| -1510 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8))
+ (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844))
+ (-5 *2 (-638 (-2 (|:| |val| *8) (|:| -1510 *9))))
+ (-5 *1 (-1063 *6 *7 *4 *8 *9)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-679 *3))
- (-4 *3 (-13 (-306) (-10 -8 (-15 -4110 ((-417 $) $)))))
- (-4 *4 (-1222 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-146))) (-5 *2 (-635 *3))
- (-5 *1 (-1216 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1087)) (-4 *6 (-1087))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *5 (-1087)))))
+ (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-558)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1028 *4)) (-4 *3 (-13 (-841) (-550))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1039))
- (-5 *1 (-1147 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-853)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *4 *5 *6)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1108 *2)) (-4 *2 (-1200)))))
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *4))))
+ (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1246 (-689))) (-5 *1 (-304)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1087)) (-5 *1 (-954 *3 *2)) (-4 *3 (-1087)))))
+ (-12
+ (-5 *3
+ (-638 (-2 (|:| -1605 (-406 (-561))) (|:| -1621 (-406 (-561))))))
+ (-5 *2 (-638 (-406 (-561)))) (-5 *1 (-1013 *4))
+ (-4 *4 (-1229 (-561))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-52)) (-5 *1 (-1183)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-682 (-406 (-945 (-561)))))
+ (-5 *2
+ (-638
+ (-2 (|:| |radval| (-315 (-561))) (|:| |radmult| (-561))
+ (|:| |radvect| (-638 (-682 (-315 (-561))))))))
+ (-5 *1 (-1024)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-682 (-561))) (-5 *1 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-561)) (-5 *1 (-907 *3)) (-4 *3 (-306)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-247)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-817)) (-5 *1 (-816)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787))
+ (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1229 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1206 *3))
- (-5 *2 (-406 (-558))))))
-(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-247)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-679 (-558))) (-5 *1 (-1097)))))
+ (-12 (-5 *2 (-2 (|:| |var| (-638 (-1166))) (|:| |pred| (-52))))
+ (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1205)) (-4 *1 (-237 *3 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))
+ (-5 *2 (-1028)) (-5 *1 (-740)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-378)) (-5 *1 (-1054)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-765)) (-4 *5 (-553))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 (-945 *4))) (-5 *3 (-638 (-1166))) (-4 *4 (-450))
+ (-5 *1 (-911 *4)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3))
+ (|:| |genIdeal| (-502 *3 *4 *5 *6))))
+ (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-447 *3 *4 *5 *2)) (-4 *2 (-939 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 (-558))) (-5 *2 (-894 (-558))) (-5 *1 (-907))))
- ((*1 *2) (-12 (-5 *2 (-894 (-558))) (-5 *1 (-907)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1163)) (-5 *2 (-1251)) (-5 *1 (-813)))))
+ (-12 (-5 *4 (-1166))
+ (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-582 *3)) (-5 *1 (-425 *5 *3))
+ (-4 *3 (-13 (-1190) (-29 *5))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-561)) (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-635 (-933 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-635 (-933 *3))) (-4 *3 (-1039)) (-4 *1 (-1121 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-638 (-936 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-561)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *2 (-1258)) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-561)))))))
+ (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-315 *4))
+ (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-429 (-168 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-638 (-607 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1162 (-48))) (-5 *3 (-607 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-168 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-933 *3))) (-4 *1 (-1121 *3)) (-4 *3 (-1039)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1051)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1107)) (-5 *2 (-112)) (-5 *1 (-812)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1087))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-841)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1200)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039))
- (-5 *2 (-635 (-635 (-635 (-933 *3))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-1085 *3))))
- ((*1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-362)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-550) (-841)))
- (-4 *2 (-13 (-429 *4) (-992) (-1185))) (-5 *1 (-592 *4 *2 *3))
- (-4 *3 (-13 (-429 (-168 *4)) (-992) (-1185))))))
-(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-573)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-5 *1 (-990 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-750)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1200)) (-5 *1 (-863 *3 *2)) (-4 *3 (-1200))))
- ((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1159 *1)) (-4 *1 (-1002)))))
-(((*1 *2)
- (-12 (-4 *3 (-550)) (-5 *2 (-635 (-679 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-416 *3)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4383)) (-4 *1 (-34)) (-5 *2 (-762))))
- ((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-128))))
+ (-12 (-5 *2 (-914)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
+ ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-558))))
+ (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171))))
((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-1269 *3 *4)) (-4 *3 (-1039))
- (-4 *4 (-837)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-550)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-985 *3)) (-5 *1 (-412 *3 *2 *4 *5))
+ (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1031 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1229 *2)) (-4 *2 (-985 *3))
+ (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4))
+ (-14 *6 (-1253 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-914)) (-4 *5 (-1042))
+ (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283)))
+ (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-607 (-493)))) (-5 *1 (-493))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-493))) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-638 (-607 (-493))))
+ (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1162 (-493))) (-5 *3 (-607 (-493))) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1253 *4)) (-5 *3 (-914)) (-4 *4 (-348))
+ (-5 *1 (-526 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1229 *4))
+ (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171))))
+ ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-171))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-765))
+ (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-561))))))
+ (-5 *1 (-245 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-635 *1))
- (-4 *1 (-1053 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2) (-12 (-5 *2 (-1251)) (-5 *1 (-1249)))))
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-635 (-262))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-853))) (-5 *1 (-1163)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
+ (-12 (-5 *2 (-1146 *4)) (-5 *3 (-1 *4 (-561))) (-4 *4 (-1042))
+ (-5 *1 (-1150 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-842)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -4282 (-417 *3))))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
- (-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
- (|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-694 *3))
- (-4 *3 (-606 (-534)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1163)) (-5 *2 (-1 (-224) (-224) (-224)))
- (-5 *1 (-694 *3)) (-4 *3 (-606 (-534))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1039)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1251) (-1246 *5) (-1246 *5) (-378)))
- (-5 *3 (-1246 (-378))) (-5 *5 (-378)) (-5 *2 (-1251))
- (-5 *1 (-779)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-762)) (-4 *5 (-348)) (-4 *6 (-1222 *5))
- (-5 *2
- (-635
- (-2 (|:| -2743 (-679 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-679 *6)))))
- (-5 *1 (-496 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2743 (-679 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-679 *6))))
- (-4 *7 (-1222 *6)))))
+ (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-638 (-1166)))
+ (-14 *3 (-638 (-1166))) (-4 *4 (-386))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561))))
+ ((*1 *1 *1) (-4 *1 (-995)))
+ ((*1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-1005))))
+ ((*1 *1 *2) (-12 (-5 *2 (-406 (-561))) (-4 *1 (-1005))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-914))))
+ ((*1 *1 *1) (-4 *1 (-1005))))
(((*1 *2 *1)
- (-12 (-4 *3 (-362)) (-4 *4 (-1222 *3)) (-4 *5 (-1222 (-406 *4)))
- (-5 *2 (-1246 *6)) (-5 *1 (-335 *3 *4 *5 *6))
- (-4 *6 (-341 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-635 (-112))) (-5 *5 (-679 (-224)))
- (-5 *6 (-679 (-558))) (-5 *7 (-224)) (-5 *3 (-558)) (-5 *2 (-1025))
- (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-933 *3) (-933 *3))) (-5 *1 (-175 *3))
- (-4 *3 (-13 (-362) (-1185) (-992))))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-429 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3))
+ (-4 *3 (-1090))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *2 (-638 *1)) (-4 *1 (-942 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *3))
+ (-5 *1 (-943 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $))
+ (-15 -4045 (*7 $))))))))
+(((*1 *1 *1) (|partial| -4 *1 (-1141))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1201 *2))
- (-4 *2 (-1087))))
+ (-12 (-5 *3 (-765)) (-5 *4 (-1253 *2)) (-4 *5 (-306))
+ (-4 *6 (-985 *5)) (-4 *2 (-13 (-408 *6 *7) (-1031 *6)))
+ (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1229 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867)))
+ (-5 *1 (-466)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1229 (-48)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787))
+ (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-942 (-48) *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-48))) (-4 *5 (-844)) (-4 *6 (-787))
+ (-4 *7 (-942 (-48) *6 *5)) (-5 *2 (-417 (-1162 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3))
+ (-4 *3 (-1229 (-168 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-417 *3))
+ (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-168 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-765))) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-638 (-765))) (-5 *5 (-765)) (-5 *2 (-417 *3))
+ (-5 *1 (-440 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-765)) (-5 *2 (-417 *3)) (-5 *1 (-440 *3))
+ (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 (-168 (-561)))) (-5 *1 (-444))
+ (-5 *3 (-168 (-561)))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-1087)) (-4 *2 (-841))
- (-5 *1 (-1201 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1087)) (-5 *2 (-879 *3 *5)) (-5 *1 (-875 *3 *4 *5))
- (-4 *3 (-1087)) (-4 *5 (-656 *4)))))
-(((*1 *2 *2)
(-12
- (-5 *2
- (-635
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-762)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-784)) (-4 *6 (-939 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-841))
- (-5 *1 (-447 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1143 (-558))) (-5 *1 (-1147 *4)) (-4 *4 (-1039))
- (-5 *3 (-558)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1081 (-224)))
- (-5 *2 (-1248)) (-5 *1 (-256)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1237 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 *1)) (-5 *4 (-1163)) (-4 *1 (-27))
- (-5 *2 (-635 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1159 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-942 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1))))
+ (-4 *4
+ (-13 (-844)
+ (-10 -8 (-15 -4174 ((-1166) $))
+ (-15 -2389 ((-3 $ "failed") (-1166))))))
+ (-4 *5 (-787)) (-4 *7 (-553)) (-5 *2 (-417 *3))
+ (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-553))
+ (-4 *3 (-942 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1162 *4))) (-5 *1 (-456 *4))
+ (-5 *3 (-1162 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-417 *3))
+ (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1229 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7)))
+ (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787))
+ (-5 *2 (-417 *3)) (-5 *1 (-538 *5 *6 *7 *3))
+ (-4 *3 (-942 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-417 (-1162 *7)) (-1162 *7)))
+ (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787))
+ (-4 *8 (-942 *7 *6 *5)) (-5 *2 (-417 (-1162 *8)))
+ (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1162 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-555 *3)) (-4 *3 (-543))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-638 *5) *6))
+ (-4 *5 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *6 (-1229 *5)) (-5 *2 (-638 (-646 (-406 *6))))
+ (-5 *1 (-650 *5 *6)) (-5 *3 (-646 (-406 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))
+ (-4 *5 (-1229 *4)) (-5 *2 (-638 (-646 (-406 *5))))
+ (-5 *1 (-650 *4 *5)) (-5 *3 (-646 (-406 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-638 (-665 *4)))
+ (-5 *1 (-665 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-561)) (-5 *2 (-638 *3)) (-5 *1 (-689 *3))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348)) (-5 *2 (-417 *3))
+ (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-348))
+ (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7)))
+ (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787))
+ (-4 *5
+ (-13 (-844)
+ (-10 -8 (-15 -4174 ((-1166) $))
+ (-15 -2389 ((-3 $ "failed") (-1166))))))
+ (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-724 *4 *5 *6 *3))
+ (-4 *3 (-942 (-945 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787))
+ (-4 *5 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *6 (-553))
+ (-5 *2 (-417 *3)) (-5 *1 (-726 *4 *5 *6 *3))
+ (-4 *3 (-942 (-406 (-945 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146)))
+ (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3))
+ (-4 *3 (-942 (-406 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146)))
+ (-5 *2 (-417 *3)) (-5 *1 (-735 *4 *5 *6 *3))
+ (-4 *3 (-942 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146)))
+ (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-417 (-1162 *7)))
+ (-5 *1 (-735 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1000 *3))
+ (-4 *3 (-1229 (-406 (-561))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1034 *3))
+ (-4 *3 (-1229 (-406 (-945 (-561)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1229 (-406 (-561))))
+ (-4 *5 (-13 (-362) (-146) (-718 (-406 (-561)) *4)))
+ (-5 *2 (-417 *3)) (-5 *1 (-1069 *4 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1229 (-406 (-945 (-561)))))
+ (-4 *5 (-13 (-362) (-146) (-718 (-406 (-945 (-561))) *4)))
+ (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450))
+ (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-417 (-1162 (-406 *7))))
+ (-5 *1 (-1161 *4 *5 *6 *7)) (-5 *3 (-1162 (-406 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1209))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-417 *3)) (-5 *1 (-1218 *3)) (-4 *3 (-1229 (-561))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4))
+ (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *2 (-635 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
- (-4 *5 (-550)) (-5 *2 (-635 (-635 (-942 *5)))) (-5 *1 (-1169 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-624)))))
-(((*1 *2 *1) (-12 (-5 *2 (-762)) (-5 *1 (-417 *3)) (-4 *3 (-550))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-2 (|:| -3939 *4) (|:| -4263 (-558)))))
- (-4 *4 (-1222 (-558))) (-5 *2 (-762)) (-5 *1 (-440 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-156)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-318 *3 *4 *5))
- (-4 *3 (-13 (-362) (-841))) (-14 *4 (-1163)) (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1222 *5))
- (-4 *5 (-13 (-362) (-146) (-1028 (-558))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6)
- (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3273 *6)))
- (-5 *1 (-1006 *5 *6)) (-5 *3 (-406 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1145)) (-5 *4 (-558)) (-5 *5 (-679 (-224)))
- (-5 *2 (-1025)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-762)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
-(((*1 *1 *2) (-12 (-5 *2 (-762)) (-5 *1 (-129)))))
-(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-638 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1090))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-638 *4))) (-4 *4 (-1090))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090))
+ (-5 *1 (-113 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558))))
- ((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1) (-4 *1 (-859 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-783))
- (-4 *4 (-841)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-635 (-534)))) (-5 *1 (-114))))
- ((*1 *1) (-5 *1 (-572))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-609))))
-(((*1 *1) (-5 *1 (-466))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *2 (-1195 (-916)))
- (-5 *1 (-317))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1081 (-224))) (-5 *6 (-558)) (-5 *7 (-1145))
- (-5 *2 (-1195 (-916))) (-5 *1 (-317))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558))
- (-5 *2 (-1195 (-916))) (-5 *1 (-317))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-315 (-558))) (-5 *4 (-1 (-224) (-224)))
- (-5 *5 (-1081 (-224))) (-5 *6 (-224)) (-5 *7 (-558)) (-5 *8 (-1145))
- (-5 *2 (-1195 (-916))) (-5 *1 (-317)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1081 (-834 (-224)))) (-5 *1 (-304)))))
-(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248))))
- ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1248)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |k| (-1163)) (|:| |c| (-1268 *3)))))
- (-5 *1 (-1268 *3)) (-4 *3 (-1039))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1270 *3 *4)))))
- (-5 *1 (-1270 *3 *4)) (-4 *3 (-841)) (-4 *4 (-1039)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-638 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1090))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042))
+ (-5 *1 (-708 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-830 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-1166)) (-4 *5 (-146))
+ (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-634 (-561))))
+ (-5 *2 (-315 *5)) (-5 *1 (-585 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-635 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-635 (-1259 *4 *5 *6 *7)))
- (-5 *1 (-1259 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550))
- (-4 *7 (-784)) (-4 *8 (-841)) (-5 *2 (-635 (-1259 *6 *7 *8 *9)))
- (-5 *1 (-1259 *6 *7 *8 *9)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-966 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-784))
- (-4 *6 (-841)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+ (-12 (-4 *4 (-553)) (-5 *2 (-1162 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-362) (-301)
+ (-10 -8 (-15 -4030 ((-1115 *4 (-607 $)) $))
+ (-15 -4045 ((-1115 *4 (-607 $)) $))
+ (-15 -4022 ($ (-1115 *4 (-607 $))))))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1162 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1162 *2)) (-4 *2 (-942 (-406 (-945 *6)) *5 *4))
+ (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787))
+ (-4 *4 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $)))))
+ (-4 *6 (-553)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112))
+ (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1084 *3)) (-4 *3 (-942 *7 *6 *4)) (-4 *6 (-787))
+ (-4 *4 (-844)) (-4 *7 (-553))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561))))
+ (-5 *1 (-590 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-553))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-561))))
+ (-5 *1 (-590 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-856))) ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1190)))
+ (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-1158 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561))))
+ (-5 *2 (-406 (-945 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-945 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-553) (-844) (-1031 (-561))))
+ (-5 *2 (-3 (-406 (-945 *5)) (-315 *5))) (-5 *1 (-1159 *5))
+ (-5 *3 (-406 (-945 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1082 (-945 *5))) (-5 *3 (-945 *5))
+ (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-406 *3))
+ (-5 *1 (-1159 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1082 (-406 (-945 *5)))) (-5 *3 (-406 (-945 *5)))
+ (-4 *5 (-13 (-553) (-844) (-1031 (-561)))) (-5 *2 (-3 *3 (-315 *5)))
+ (-5 *1 (-1159 *5)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-362)) (-4 *7 (-1229 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6))
+ (-2 (|:| -2246 (-406 *7)) (|:| |coeff| (-406 *7))) "failed"))
+ (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1258)) (-5 *1 (-466)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-841)) (-4 *3 (-1087)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-406 (-942 *6)) (-1152 (-1163) (-942 *6))))
- (-5 *5 (-762)) (-4 *6 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *6)))))
- (-5 *1 (-291 *6)) (-5 *4 (-679 (-406 (-942 *6))))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2609 "void")))
+ (-5 *2 (-1258)) (-5 *1 (-1169))))
((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-406 (-942 *5)) (-1152 (-1163) (-942 *5))))
- (|:| |eigmult| (-762)) (|:| |eigvec| (-635 *4))))
- (-4 *5 (-450)) (-5 *2 (-635 (-679 (-406 (-942 *5)))))
- (-5 *1 (-291 *5)) (-5 *4 (-679 (-406 (-942 *5)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450))))
+ (-12 (-5 *3 (-1166))
+ (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *2 (-1258))
+ (-5 *1 (-1169))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1166))
+ (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2609 "void"))) (-5 *2 (-1258))
+ (-5 *1 (-1169)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1229 *6))
+ (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-561))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -3360
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1008 *6 *3)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362))
+ (-5 *2 (-2 (|:| -2246 (-406 *6)) (|:| |coeff| (-406 *6))))
+ (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-275 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995))))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-607 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) (-5 *5 (-1162 *2))
+ (-4 *2 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-607 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166)))
+ (-5 *5 (-406 (-1162 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *1 (-557 *6 *2 *7)) (-4 *7 (-1090)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-306))
+ (-5 *2 (-406 (-417 (-945 *4)))) (-5 *1 (-1035 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-638 (-638 *8))) (-5 *3 (-638 *8))
+ (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787))
+ (-4 *7 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-561))) (-5 *1 (-964)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-553)) (-4 *2 (-1042))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-553)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *1))))
+ (-4 *1 (-1062 *4 *5 *6 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450))
+ (-4 *3 (-553)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-945 *4))) (-4 *4 (-450)) (-5 *2 (-112))
+ (-5 *1 (-359 *4 *5)) (-14 *5 (-638 (-1166)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-774 *4 (-858 *5)))) (-4 *4 (-450))
+ (-14 *5 (-638 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-4 *1 (-1088 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-638 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *4 (-1229 *3))
+ (-5 *2
+ (-2 (|:| -3711 (-682 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-682 *3))))
+ (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1229 (-561)))
+ (-5 *2
+ (-2 (|:| -3711 (-682 (-561))) (|:| |basisDen| (-561))
+ (|:| |basisInv| (-682 (-561)))))
+ (-5 *1 (-762 *3 *4)) (-4 *4 (-408 (-561) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-348)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4))
+ (-5 *2
+ (-2 (|:| -3711 (-682 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-682 *4))))
+ (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-348)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4))
+ (-5 *2
+ (-2 (|:| -3711 (-682 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-682 *4))))
+ (-5 *1 (-1262 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1241 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450))))
((*1 *1 *1 *1) (-4 *1 (-450)))
((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1222 (-558)))))
+ (-12 (-5 *3 (-638 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-561)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-762)))
+ (-12 (-5 *3 (-561)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-765)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306))
- (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4))))
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306))
+ (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5))
- (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841))
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5))
+ (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844))
(-4 *6 (-306))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-1159 *7))) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-306)) (-5 *2 (-1159 *7)) (-5 *1 (-906 *4 *5 *6 *7))
- (-4 *7 (-939 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-911)))
+ (-12 (-5 *3 (-638 (-1162 *7))) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-306)) (-5 *2 (-1162 *7)) (-5 *1 (-909 *4 *5 *6 *7))
+ (-4 *7 (-942 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-914)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-450)) (-4 *3 (-550)) (-5 *1 (-959 *3 *2))
- (-4 *2 (-1222 *3))))
+ (-12 (-4 *3 (-450)) (-4 *3 (-553)) (-5 *1 (-962 *3 *2))
+ (-4 *2 (-1229 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *2 (-450)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-916))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-916))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-933 (-224)) (-224))) (-5 *3 (-1081 (-224)))
- (-5 *1 (-917)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-635 *6)) (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5))
- (-4 *3 (-550)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841))))
- ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
- ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-450)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-312 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))))
+ (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
+ (-14 *6 (-1166)) (-14 *7 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
- (-4 *3 (-1222 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-362)) (-5 *1 (-757 *2 *3)) (-4 *2 (-699 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1039)) (-4 *2 (-362)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1039)) (-5 *2 (-1151 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248))))
- ((*1 *2 *1) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-1248)))))
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
+ (-4 *3 (-1229 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-607 *1)) (-4 *1 (-429 *4)) (-4 *4 (-844))
+ (-4 *4 (-553)) (-5 *2 (-406 (-1162 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1190)))
+ (-4 *6 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-1162 (-406 (-1162 *3)))) (-5 *1 (-557 *6 *3 *7))
+ (-5 *5 (-1162 *3)) (-4 *7 (-1090))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1249 *5)) (-14 *5 (-1166)) (-4 *6 (-1042))
+ (-5 *2 (-1226 *5 (-945 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-945 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-1162 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1162 *1))
+ (-4 *1 (-942 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-406 (-1162 *3)))
+ (-5 *1 (-943 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1162 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $)))))
+ (-4 *7 (-942 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844))
+ (-4 *6 (-1042)) (-5 *1 (-943 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166)) (-4 *5 (-553))
+ (-5 *2 (-406 (-1162 (-406 (-945 *5))))) (-5 *1 (-1036 *5))
+ (-5 *3 (-406 (-945 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-638 (-1166)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844)))
+ (-14 *3 (-638 (-1166)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1090))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-638 (-1166))) (-4 *3 (-171))
+ (-4 *5 (-237 (-3498 *2) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2413 *4) (|:| -4196 *5))
+ (-2 (|:| -2413 *4) (|:| -4196 *5))))
+ (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844))
+ (-4 *7 (-942 *3 *5 (-858 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042))
+ (-4 *3 (-720))))
+ ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1276 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-856)))))
+(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255))))
+ ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1255)))))
+(((*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1253 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-348))
+ (-5 *1 (-526 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-561)) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-1148))) (-5 *2 (-561)) (-5 *1 (-240)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171))
+ (-5 *2 (-1253 (-682 (-945 *4)))) (-5 *1 (-188 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3))
+ (-4 *3 (-13 (-362) (-1190) (-995))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042))
+ (-5 *3 (-406 (-561))) (-5 *1 (-1150 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-553))
+ (-4 *6 (-787)) (-4 *7 (-844))
+ (-5 *2 (-2 (|:| |goodPols| (-638 *8)) (|:| |badPols| (-638 *8))))
+ (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-638 *8)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042))
+ (-5 *1 (-1154 *4 *5)) (-14 *4 (-914))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5))
+ (-14 *4 (-914)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042))
+ (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *1) (-5 *1 (-627))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-553)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1205))))
+ ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
+ (-4 *3 (-1229 *2)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1254)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-1170)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-635
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-558)))))
- (-5 *1 (-417 *3)) (-4 *3 (-550))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-762)) (-4 *3 (-348)) (-4 *5 (-1222 *3))
- (-5 *2 (-635 (-1159 *3))) (-5 *1 (-496 *3 *5 *6))
- (-4 *6 (-1222 *5)))))
+ (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-942 *3 *4 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-14 *5 (-635 (-1163)))
- (-5 *2
- (-635 (-2 (|:| -2347 (-1159 *4)) (|:| -2979 (-635 (-942 *4))))))
- (-5 *1 (-1272 *4 *5 *6)) (-14 *6 (-635 (-1163)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2
- (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5))))))
- (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5)))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-12 (|has| *2 (-6 (-4392 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2))
+ (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2))
+ (-4 *4 (-680 *2 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844))
+ (-4 *3 (-1056 *6 *7 *8))
(-5 *2
- (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5))))))
- (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5)))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-839) (-306) (-146) (-1012)))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
(-5 *2
- (-635 (-2 (|:| -2347 (-1159 *5)) (|:| -2979 (-635 (-942 *5))))))
- (-5 *1 (-1272 *5 *6 *7)) (-5 *3 (-635 (-942 *5)))
- (-14 *6 (-635 (-1163))) (-14 *7 (-635 (-1163)))))
+ (-2 (|:| |done| (-638 *4))
+ (|:| |todo| (-638 (-2 (|:| |val| (-638 *3)) (|:| -1510 *4))))))
+ (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-839) (-306) (-146) (-1012)))
- (-5 *2
- (-635 (-2 (|:| -2347 (-1159 *4)) (|:| -2979 (-635 (-942 *4))))))
- (-5 *1 (-1272 *4 *5 *6)) (-5 *3 (-635 (-942 *4)))
- (-14 *5 (-635 (-1163))) (-14 *6 (-635 (-1163))))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-942 *6)) (-5 *4 (-1163))
- (-5 *5 (-834 *7))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-4 *7 (-13 (-1185) (-29 *6))) (-5 *1 (-223 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1159 *6)) (-5 *4 (-834 *6))
- (-4 *6 (-13 (-1185) (-29 *5)))
- (-4 *5 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-223 *5 *6)))))
+ (-12 (-5 *2 (-1162 (-406 (-561)))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-638 *2) *2 *2 *2)) (-4 *2 (-1090))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-103 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-1159 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-362) (-301)
- (-10 -8 (-15 -3316 ((-1112 *4 (-604 $)) $))
- (-15 -3327 ((-1112 *4 (-604 $)) $))
- (-15 -3940 ($ (-1112 *4 (-604 $))))))))))
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112))
+ (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-682 *3))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-682 *3))
+ (-4 *3 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-408 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1090))
+ (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-885 *3))))
+ (-5 *2 (-638 (-1066 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5))
+ (-4 *5 (-13 (-429 *4) (-879 *3) (-609 (-885 *3)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-919)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-450)) (-4 *3 (-841)) (-4 *4 (-784))
- (-5 *1 (-977 *2 *3 *4 *5)) (-4 *5 (-939 *2 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1147 *4))
- (-4 *4 (-1039)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *5 *4)) (-4 *4 (-450)) (-4 *4 (-811))
- (-14 *5 (-1163)) (-5 *2 (-558)) (-5 *1 (-1101 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-378)) (-5 *1 (-1051)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-635
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-762)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-784)) (-4 *6 (-939 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-841))
- (-5 *1 (-447 *4 *3 *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-5 *2 (-2 (|:| -2176 *3) (|:| -1925 *4))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-679 (-558))) (-5 *3 (-635 (-558))) (-5 *1 (-1097)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1200))))
- ((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-841))))
- ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-841))))
- ((*1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-853))))
+ (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *2 (-450))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6))
+ (-5 *2 (-638 (-2 (|:| |val| *3) (|:| -1510 *1))))
+ (-4 *1 (-1062 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1209)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-553)) (-5 *1 (-1232 *3 *2))
+ (-4 *2 (-13 (-1229 *3) (-553) (-10 -8 (-15 -1623 ($ $ $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-839) (-362))) (-5 *1 (-1049 *2 *3))
- (-4 *3 (-1222 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-1053 *4 *5 *6)) (-4 *4 (-550))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *1 (-967 *4 *5 *6 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-543))))
+ (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-638 (-1166)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4))
+ (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-638 (-1166)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-638 (-1166))) (-4 *5 (-237 (-3498 *3) (-765)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2413 *4) (|:| -4196 *5))
+ (-2 (|:| -2413 *4) (|:| -4196 *5))))
+ (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844))
+ (-4 *7 (-942 *2 *5 (-858 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1090))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-553)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844))
+ (-4 *3 (-720))))
+ ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844))
+ (-4 *2 (-1042))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-914)) (-5 *4 (-417 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-1042)) (-5 *2 (-638 *6)) (-5 *1 (-442 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 (-262))) (-5 *4 (-1166)) (-5 *2 (-112))
+ (-5 *1 (-262)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-224)) (-5 *4 (-561))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3214))))
+ (-5 *2 (-1028)) (-5 *1 (-742)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
+(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-4 *1 (-301))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *1)) (-4 *1 (-450))))
+ ((*1 *1 *1 *1) (-4 *1 (-450))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995)))
+ (-5 *1 (-175 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-1200 *3))
+ (-4 *3 (-967)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1090))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-638 (-1166))) (-4 *4 (-171))
+ (-4 *6 (-237 (-3498 *3) (-765)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *6))
+ (-2 (|:| -2413 *5) (|:| -4196 *6))))
+ (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-844)) (-4 *8 (-942 *4 *6 (-858 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2))
+ (-4 *3 (-1042))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786))
+ (-4 *4 (-844)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-841) (-550) (-1028 (-558)))) (-5 *2 (-406 (-558)))
- (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4))))
+ (-12 (-5 *2 (-168 (-378))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-378)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-604 *3)) (-4 *3 (-429 *5))
- (-4 *5 (-13 (-841) (-550) (-1028 (-558))))
- (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-432 *5 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-558)) (-5 *1 (-686 *2)) (-4 *2 (-1222 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1199))) (-5 *1 (-598)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-558)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-1039)) (-4 *4 (-171))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-841)) (-4 *3 (-1039))
- (-4 *3 (-171)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-141 *2 *4 *3))
- (-4 *3 (-372 *4))))
+ (-12 (-5 *4 (-914)) (-5 *2 (-168 (-378))) (-5 *1 (-779 *3))
+ (-4 *3 (-609 (-378)))))
((*1 *2 *3)
- (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-501 *2 *4 *5 *3))
- (-4 *5 (-372 *2)) (-4 *3 (-372 *4))))
+ (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-168 *5)) (-5 *4 (-914)) (-4 *5 (-171))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-679 *4)) (-4 *4 (-982 *2)) (-4 *2 (-550))
- (-5 *1 (-683 *2 *4))))
+ (-12 (-5 *3 (-945 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-945 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-171))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-982 *2)) (-4 *2 (-550)) (-5 *1 (-1215 *2 *4 *3))
- (-4 *3 (-1222 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1083))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-4 *1 (-1234 *3)) (-4 *3 (-1200))))
- ((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1200)) (-5 *2 (-762)) (-5 *1 (-181 *4 *3))
- (-4 *3 (-664 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1222 *3))
- (-4 *3 (-13 (-362) (-146) (-1028 (-558)))) (-5 *1 (-562 *3 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-841))
- (-4 *4 (-265 *3)) (-4 *5 (-784)))))
-(((*1 *1) (-5 *1 (-143)))
+ (-12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-262))) (-5 *2 (-1120 (-224))) (-5 *1 (-260))))
- ((*1 *1 *2) (-12 (-5 *2 (-1120 (-224))) (-5 *1 (-262)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-853)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-967 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-784)) (-4 *6 (-841)) (-4 *3 (-550))
- (-4 *7 (-939 *3 *5 *6))
- (-5 *2 (-2 (|:| -1857 (-762)) (|:| -3455 *8) (|:| |radicand| *8)))
- (-5 *1 (-943 *5 *6 *3 *7 *8)) (-5 *4 (-762))
- (-4 *8
- (-13 (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $)) (-15 -3327 (*7 $))))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1163)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-692 *3 *5 *6 *7))
- (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200))
- (-4 *7 (-1200))))
+ (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-4 *4 (-609 (-378)))
+ (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *3 *5 *6))
- (-4 *3 (-606 (-534))) (-4 *5 (-1200)) (-4 *6 (-1200)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450))))
- ((*1 *1 *1 *1) (-4 *1 (-450))))
+ (-12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-406 (-945 (-168 *4)))) (-4 *4 (-553))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-945 (-168 *5)))) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553)) (-4 *5 (-844))
+ (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-553)) (-4 *4 (-844))
+ (-4 *4 (-609 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-844)) (-4 *5 (-609 (-378))) (-5 *2 (-168 (-378)))
+ (-5 *1 (-779 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-348))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3381 (-635 (-2 (|:| |irr| *3) (|:| -2074 (-558)))))))
- (-5 *1 (-215 *5 *3)) (-4 *3 (-1222 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -3798 *4))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1039) (-841)))
- (-14 *3 (-635 (-1163))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1028 (-558))) (-4 *1 (-301)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1087)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-1080 *3)) (-4 *3 (-1200)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-430 *3 *2))
- (-4 *2 (-429 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1126))))
-(((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
- (-5 *1 (-1060 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-450)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1251))
- (-5 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *7 (-1059 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-853))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-853) (-635 (-853)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1251)) (-5 *1 (-213 *3))
- (-4 *3
- (-13 (-841)
- (-10 -8 (-15 -2276 ((-1145) $ (-1163))) (-15 -1490 (*2 $))
- (-15 -1963 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-393))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-393))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-500))))
- ((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-701))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765))))
+ ((*1 *1 *1) (-4 *1 (-401))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-59 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1205)) (-5 *1 (-59 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1090)) (-4 *5 (-1090))
+ (-5 *2 (-1 *5)) (-5 *1 (-676 *4 *5)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-856) (-856) (-856))) (-5 *4 (-561)) (-5 *2 (-856))
+ (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1090)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-856))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-856))))
+ ((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-856))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-1162 *3)) (-4 *3 (-1042)))))
+(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-762)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-558))
+ (-12 (-5 *2 (-765)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-561))
(-14 *4 *2) (-4 *5 (-171))))
((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-911)) (-5 *1 (-164 *3 *4))
+ (-12 (-4 *4 (-171)) (-5 *2 (-914)) (-5 *1 (-164 *3 *4))
(-4 *3 (-165 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-911))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-914))))
((*1 *2)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1222 *3))
- (-5 *2 (-911))))
+ (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3))
+ (-5 *2 (-914))))
((*1 *2 *3)
(-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2 (-762)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))
+ (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-680 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-679 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-362))
- (-5 *2 (-762)) (-5 *1 (-657 *5))))
+ (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362))
+ (-5 *2 (-765)) (-5 *1 (-660 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4384))))
- (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4384)))) (-5 *2 (-762))
- (-5 *1 (-658 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4))))
+ (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4391))))
+ (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4391)))) (-5 *2 (-765))
+ (-5 *1 (-661 *5 *6 *4 *3)) (-4 *3 (-680 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-4 *3 (-550)) (-5 *2 (-762))))
+ (-12 (-4 *1 (-680 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-4 *3 (-553)) (-5 *2 (-765))))
((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-4 *4 (-171)) (-4 *5 (-372 *4))
- (-4 *6 (-372 *4)) (-5 *2 (-762)) (-5 *1 (-678 *4 *5 *6 *3))
- (-4 *3 (-677 *4 *5 *6))))
+ (-12 (-4 *4 (-553)) (-4 *4 (-171)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3))
+ (-4 *3 (-680 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-550))
- (-5 *2 (-762)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4383)) (-4 *1 (-150 *2)) (-4 *2 (-1200))
- (-4 *2 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4383)) (-4 *1 (-150 *3))
- (-4 *3 (-1200))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-664 *3)) (-4 *3 (-1200))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-558)) (-4 *4 (-1087))
- (-5 *1 (-728 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-5 *1 (-728 *2)) (-4 *2 (-1087))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))) (-5 *1 (-1128 *3 *4)))))
-(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-348)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-899)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-911))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-553))
+ (-5 *2 (-765)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-920))
+ (-5 *2
+ (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
+ (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
+ (-5 *1 (-152))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-920)) (-5 *4 (-406 (-561)))
+ (-5 *2
+ (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
+ (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
+ (-5 *1 (-152))))
((*1 *2 *3)
- (-12 (-5 *3 (-1246 *4)) (-4 *4 (-348)) (-5 *2 (-911))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
- (-5 *1 (-175 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-916)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
+ (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
+ (-5 *1 (-152)) (-5 *3 (-638 (-936 (-224))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-638 (-638 (-936 (-224)))))
+ (|:| |xValues| (-1084 (-224))) (|:| |yValues| (-1084 (-224)))))
+ (-5 *1 (-152)) (-5 *3 (-638 (-638 (-936 (-224)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-1084 (-378)))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-837 *4)) (-5 *3 (-607 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1190) (-29 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-223 *6 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1253 (-561))) (-5 *3 (-561)) (-5 *1 (-1100))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1253 (-561))) (-5 *3 (-638 (-561))) (-5 *4 (-561))
+ (-5 *1 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-406 (-561)))) (-5 *1 (-189)) (-5 *3 (-561))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1253 (-3 (-466) "undefined"))) (-5 *1 (-1254)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-638 (-776 *3))) (-5 *1 (-776 *3)) (-4 *3 (-553))
+ (-4 *3 (-1042)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (|has| *1 (-6 -4384)) (-4 *1 (-1234 *3))
- (-4 *3 (-1200)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-1087)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1238 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1163))
- (-14 *4 *2))))
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-844) (-306) (-1031 (-561)) (-634 (-561)) (-146)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-798 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1190) (-952))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-1229 *4)) (-4 *4 (-1042))
+ (-5 *2 (-1253 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-558))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-558)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-679 (-224))) (-5 *4 (-558)) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1025))
- (-5 *1 (-740)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249))))
- ((*1 *2 *2) (-12 (-5 *2 (-911)) (-5 *1 (-1249)))))
-(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-552 *3)) (-4 *3 (-543)))))
+ (|partial| -12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-534) (-638 (-534)))) (-5 *1 (-114))))
+ ((*1 *1) (-5 *1 (-575))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *4 (-362)) (-4 *5 (-1222 *4)) (-5 *2 (-1251))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1222 (-406 *5))) (-14 *7 *6))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-635 (-882 *3))) (-5 *1 (-882 *3))
- (-4 *3 (-1087)))))
-(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-864)))))
-(((*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-605 (-853))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1222 (-48))))))
+ (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146)))
+ (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| |eqzro| (-638 *7)) (|:| |neqzro| (-638 *7))
+ (|:| |wcond| (-638 (-945 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1253 (-406 (-945 *4))))
+ (|:| -3711 (-638 (-1253 (-406 (-945 *4))))))))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1016 (-834 (-558)))) (-5 *1 (-588 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-606 (-882 *3))) (-4 *3 (-876 *3))
- (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-606 (-882 *3))) (-4 *2 (-876 *3))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-914)) (-5 *3 (-638 (-262))) (-5 *1 (-260))))
+ ((*1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-262)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-635 (-762)))) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-1248)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-957)))))
-(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1050))))
- ((*1 *1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1050)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1163)) (-5 *6 (-635 (-604 *3)))
- (-5 *5 (-604 *3)) (-4 *3 (-13 (-27) (-1185) (-429 *7)))
- (-4 *7 (-13 (-450) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-2 (|:| -2475 *3) (|:| |coeff| *3)))
- (-5 *1 (-551 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-820)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-762)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145)) (-5 *1 (-1181)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-638 *3)) (|:| |image| (-638 *3))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-168 (-224))) (-5 *5 (-561)) (-5 *6 (-1148))
+ (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4))
+ (-14 *3 (-765)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
+ (-14 *4 *2))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *5 (-682 (-224))) (-5 *4 (-224))
+ (-5 *2 (-1028)) (-5 *1 (-746)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1087)) (-4 *6 (-1087))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-674 *4 *5 *6)) (-4 *4 (-1087)))))
+ (-12 (-5 *3 (-1 *5 (-638 *5))) (-4 *5 (-1244 *4))
+ (-4 *4 (-38 (-406 (-561))))
+ (-5 *2 (-1 (-1146 *4) (-638 (-1146 *4)))) (-5 *1 (-1246 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-242)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-4007 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1205)))
+ (-12 (-5 *1 (-293 *2)) (-4 *2 (-471)) (-4 *2 (-1205)))))
+ ((*1 *1 *1) (-4 *1 (-471)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-348)) (-5 *1 (-526 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)) (-4 *2 (-362)))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1162 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1042)) (-4 *2 (-680 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-372 *4))
+ (-4 *6 (-372 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-161)))
+ ((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-161)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
+ (-14 *4 *2))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-638 (-479 *4 *5))) (-5 *3 (-858 *4))
+ (-14 *4 (-638 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-624)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-625 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-995) (-1190))))))
+(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-366 *3)))))
(((*1 *2 *3 *1)
- (-12 (-5 *2 (-635 (-1163))) (-5 *1 (-1166)) (-5 *3 (-1163)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784))
- (-5 *2 (-112)) (-5 *1 (-977 *3 *4 *5 *6))
- (-4 *6 (-939 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-13 (-1087) (-34)))
- (-4 *4 (-13 (-1087) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-882 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1251)) (-5 *1 (-1125))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-853))) (-5 *2 (-1251)) (-5 *1 (-1125)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *2 (-1025)) (-5 *1 (-742)))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-5 *2 (-2 (|:| -2252 *3) (|:| -2654 *4))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1163)) (|:| |fn| (-315 (-224)))
- (|:| -2103 (-1081 (-834 (-224)))) (|:| |abserr| (-224))
- (|:| |relerr| (-224))))
- (-5 *2 (-378)) (-5 *1 (-191)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1039)) (-5 *1 (-588 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1206 *3)) (-4 *3 (-1039))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1237 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-552 *2)) (-4 *2 (-543)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-1097)) (-5 *3 (-558)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-784)) (-4 *4 (-841)) (-4 *5 (-306))
- (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-939 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1159 *6)) (-4 *6 (-939 *5 *3 *4)) (-4 *3 (-784))
- (-4 *4 (-841)) (-4 *5 (-306)) (-5 *1 (-906 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-646 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-939 *6 *4 *5))
- (-5 *1 (-906 *4 *5 *6 *2)) (-4 *4 (-784)) (-4 *5 (-841))
- (-4 *6 (-306)))))
+ (-12 (-5 *3 (-647 *2 (-406 *2))) (-4 *2 (-1229 *4))
+ (-5 *1 (-804 *4 *2))
+ (-4 *4 (-13 (-362) (-146) (-1031 (-561)) (-1031 (-406 (-561))))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-348)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3))
+ (-4 *3 (-1229 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-762))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
- (-4 *4 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-762)) (-4 *5 (-1039)) (-5 *2 (-558))
- (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1222 *5))
- (-4 *6 (-13 (-403) (-1028 *5) (-362) (-1185) (-283)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1039)) (-5 *2 (-558)) (-5 *1 (-441 *4 *3 *5))
- (-4 *3 (-1222 *4))
- (-4 *5 (-13 (-403) (-1028 *4) (-362) (-1185) (-283))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-911)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1039))
- (-4 *4 (-1200))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-635 (-1163))) (-4 *4 (-171))
- (-4 *5 (-237 (-1596 *3) (-762)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2349 *2) (|:| -1857 *5))
- (-2 (|:| -2349 *2) (|:| -1857 *5))))
- (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-841))
- (-4 *7 (-939 *4 *5 (-855 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-933 (-224))) (-5 *1 (-1196)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1039)) (-4 *2 (-362))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-649 *4 *2))
- (-4 *2 (-646 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-635 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2))
- (-4 *4 (-13 (-841) (-550))))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-742)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
+ (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1042) (-844)))
+ (-5 *1 (-222 *3 *4)) (-14 *4 (-638 (-1166))))))
+(((*1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-1053))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *5 (-367))
- (-5 *2 (-762)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-450)) (-4 *4 (-841)) (-4 *5 (-784)) (-5 *2 (-635 *6))
- (-5 *1 (-977 *3 *4 *5 *6)) (-4 *6 (-939 *3 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-558))))
- (-5 *1 (-304)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-293 (-942 (-558))))
- (-5 *2
- (-2 (|:| |varOrder| (-635 (-1163)))
- (|:| |inhom| (-3 (-635 (-1246 (-762))) "failed"))
- (|:| |hom| (-635 (-1246 (-762))))))
- (-5 *1 (-235)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-864)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1248)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-765))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042))
+ (-5 *1 (-1154 *4 *5)) (-14 *4 (-914)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1200)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-762))))
+ (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042))
+ (-5 *2 (-638 (-638 (-936 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042))
+ (-4 *1 (-1124 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-638 (-936 *3)))) (-4 *3 (-1042))
+ (-4 *1 (-1124 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-638 (-638 (-638 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1124 *4)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-638 (-638 (-936 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1124 *4)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-638 (-638 (-638 *5)))) (-5 *3 (-638 (-170)))
+ (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-638 (-638 (-936 *5)))) (-5 *3 (-638 (-170)))
+ (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-406 (-561)))) (-5 *1 (-1246 *3 *2))
+ (-4 *2 (-1244 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086))))
((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-762)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
+ (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1241 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258))
+ (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1258))
+ (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-762)) (-5 *4 (-1246 *2)) (-4 *5 (-306))
- (-4 *6 (-982 *5)) (-4 *2 (-13 (-408 *6 *7) (-1028 *6)))
- (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1222 *6)))))
+ (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-553))
+ (-4 *8 (-942 *7 *5 *6))
+ (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *3) (|:| |radicand| *3)))
+ (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *8)) (-15 -4030 (*8 $)) (-15 -4045 (*8 $))))))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1146 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-1 (-1143 (-942 *4)) (-1143 (-942 *4))))
- (-5 *1 (-1254 *4)) (-4 *4 (-362)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-853))) ((*1 *1 *1 *1) (-5 *1 (-853)))
- ((*1 *1 *1) (-5 *1 (-853)))
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1159 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-604 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-635 (-604 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1159 (-48))) (-5 *3 (-604 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-406 (-561)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-561)))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-406 (-561)))) (-5 *4 (-293 *8))
+ (-5 *5 (-1220 (-406 (-561)))) (-5 *6 (-406 (-561)))
+ (-4 *8 (-13 (-27) (-1190) (-429 *7)))
+ (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-406 (-561))))
+ (-5 *7 (-406 (-561))) (-4 *3 (-13 (-27) (-1190) (-429 *8)))
+ (-4 *8 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-406 (-561))) (-4 *4 (-1042)) (-4 *1 (-1236 *4 *3))
+ (-4 *3 (-1213 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-676 *4 *5)) (-4 *4 (-1090))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-844)) (-5 *1 (-922 *3 *2)) (-4 *2 (-429 *3))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-362) (-839))) (-5 *1 (-180 *2 *3))
- (-4 *3 (-1222 (-168 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-911)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367))))
- ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362))))
+ (-12 (-5 *3 (-1166)) (-5 *2 (-315 (-561))) (-5 *1 (-923))))
((*1 *2 *1)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1222 *2)) (-4 *2 (-171))))
+ (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042))))
((*1 *2 *1)
- (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3)) (-5 *1 (-412 *3 *2 *4 *5))
- (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1028 *2)))))
+ (-12 (-4 *2 (-1042)) (-5 *1 (-1276 *2 *3)) (-4 *3 (-840)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1205)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *2 (-765))))
((*1 *2 *1)
- (-12 (-4 *4 (-1222 *2)) (-4 *2 (-982 *3))
- (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4))
- (-14 *6 (-1246 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-911)) (-4 *5 (-1039))
- (-4 *2 (-13 (-403) (-1028 *5) (-362) (-1185) (-283)))
- (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1222 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-604 (-493)))) (-5 *1 (-493))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-604 (-493))) (-5 *1 (-493))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-635 (-604 (-493))))
- (-5 *1 (-493))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1159 (-493))) (-5 *3 (-604 (-493))) (-5 *1 (-493))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-911)) (-4 *4 (-348))
- (-5 *1 (-526 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-450)) (-4 *5 (-715 *4 *2)) (-4 *2 (-1222 *4))
- (-5 *1 (-766 *4 *2 *5 *3)) (-4 *3 (-1222 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-788 *2)) (-4 *2 (-171))))
- ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-171))))
- ((*1 *1 *1) (-4 *1 (-1048))))
+ (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042))
+ (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-607 *1))) (-4 *1 (-301)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3))
+ (-4 *3 (-1229 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-112)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-117 *4)) (-14 *4 *3)
- (-5 *3 (-558))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-859 *3)) (-5 *2 (-558))))
+ (-12 (-4 *1 (-896 *3)) (-4 *3 (-1090)) (-5 *2 (-1092 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-406 (-558))) (-5 *1 (-861 *4)) (-14 *4 *3)
- (-5 *3 (-558))))
+ (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-638 *4))) (-5 *1 (-897 *4))
+ (-5 *3 (-638 *4))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-406 (-558))) (-5 *1 (-862 *4 *5))
- (-5 *3 (-558)) (-4 *5 (-859 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1002)) (-5 *2 (-406 (-558)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1056 *2 *3)) (-4 *2 (-13 (-839) (-362)))
- (-4 *3 (-1222 *2))))
+ (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-897 *4))
+ (-5 *3 (-1092 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1224 *2 *3)) (-4 *3 (-783))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3940 (*2 (-1163))))
- (-4 *2 (-1039)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1087)) (-4 *1 (-893 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1025)) (-5 *1 (-831))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-315 (-378)))) (-5 *4 (-635 (-378)))
- (-5 *2 (-1025)) (-5 *1 (-831)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-762)) (-4 *2 (-550)) (-5 *1 (-959 *2 *4))
- (-4 *4 (-1222 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-933 *3)) (-4 *3 (-13 (-362) (-1185) (-992)))
- (-5 *1 (-175 *3)))))
+ (-12 (-5 *2 (-1092 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-329)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-945 *6)) (-5 *4 (-1166))
+ (-5 *5 (-837 *7))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1162 *6)) (-5 *4 (-837 *6))
+ (-4 *6 (-13 (-1190) (-29 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-223 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039))))
- ((*1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1039)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-5 *1 (-103 *3)) (-4 *3 (-1087)))))
+ (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3))
+ (-4 *3 (-1229 (-168 *2))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-561))))
+ (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5))
+ (-4 *5 (-942 *4 (-529 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1199 *4))) (-5 *3 (-1166)) (-5 *1 (-1199 *4))
+ (-4 *4 (-38 (-406 (-561)))) (-4 *4 (-1042)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3))
+ (-4 *2 (-1229 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3))
+ (-4 *3 (-846 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558))))
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-561)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4)))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-561))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1220 (-561)))
+ (-4 *7 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-561)))
+ (-4 *3 (-13 (-27) (-1190) (-429 *7)))
+ (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-561)) (-4 *4 (-1042)) (-4 *1 (-1215 *4 *3))
+ (-4 *3 (-1244 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1213 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-5 *2 (-638 (-638 (-638 *4))))
+ (-5 *1 (-1176 *4)) (-5 *3 (-638 (-638 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-561)) (-4 *1 (-1083 *3)) (-4 *3 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1185)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2) (-12 (-5 *2 (-638 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1258)) (-5 *1 (-1169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1170)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-638 (-765)))) (-5 *1 (-897 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-856))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-856) (-638 (-856)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1246 (-3 (-466) "undefined"))) (-5 *1 (-1247)))))
-(((*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-131)))))
+ (-12 (-5 *2 (-1258)) (-5 *1 (-213 *3))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -2277 ((-1148) $ (-1166))) (-15 -1491 (*2 $))
+ (-15 -3148 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-393))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-393))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-500))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-704))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-1185)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-638 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765))
+ (-5 *1 (-938 *4 *5)) (-4 *5 (-1229 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-150 *2)) (-4 *2 (-1205))
+ (-4 *2 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4390)) (-4 *1 (-150 *3))
+ (-4 *3 (-1205))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-561)) (-4 *4 (-1090))
+ (-5 *1 (-731 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-5 *1 (-731 *2)) (-4 *2 (-1090))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1090) (-34)))
+ (-4 *4 (-13 (-1090) (-34))) (-5 *1 (-1131 *3 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1163)) (-4 *5 (-606 (-882 (-558))))
- (-4 *5 (-876 (-558)))
- (-4 *5 (-13 (-841) (-1028 (-558)) (-450) (-631 (-558))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-561 *5 *3)) (-4 *3 (-621))
- (-4 *3 (-13 (-27) (-1185) (-429 *5))))))
+ (-12 (-5 *3 (-682 *8)) (-4 *8 (-942 *5 *7 *6))
+ (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166))))
+ (-4 *7 (-787))
+ (-5 *2
+ (-638
+ (-2 (|:| -1569 (-765))
+ (|:| |eqns|
+ (-638
+ (-2 (|:| |det| *8) (|:| |rows| (-638 (-561)))
+ (|:| |cols| (-638 (-561))))))
+ (|:| |fgb| (-638 *8)))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-406 (-945 *3))) (-5 *1 (-451 *3 *4 *5 *6))
+ (-4 *3 (-553)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-91 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-638 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787))
+ (-5 *2
+ (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4))
+ (|:| |genIdeal| (-502 *4 *5 *6 *7))))
+ (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-561) (-224) (-1166) (-1148) (-1171)))
+ (-5 *1 (-1171)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1165 (-406 (-558)))) (-5 *1 (-189)) (-5 *3 (-558)))))
-(((*1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8)))
- (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-978 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -3798 *8)))
- (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1059 *4 *5 *6 *7)) (-4 *4 (-450))
- (-4 *5 (-784)) (-4 *6 (-841)) (-5 *2 (-112))
- (-5 *1 (-1094 *4 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-1170)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-558)) (-5 *5 (-679 (-224))) (-5 *4 (-224))
- (-5 *2 (-1025)) (-5 *1 (-744)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1087) (-34))) (-4 *6 (-13 (-1087) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1127 *5 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-762)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1087)) (-5 *2 (-55)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1143 *4)) (-5 *3 (-558)) (-4 *4 (-1039))
- (-5 *1 (-1147 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-558)) (-5 *1 (-1238 *3 *4 *5)) (-4 *3 (-1039))
- (-14 *4 (-1163)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-52)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-784))
- (-4 *4 (-841))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *2 (-1053 *3 *4 *5)))))
+ (-12 (-5 *3 (-1166))
+ (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *5))
+ (-4 *5 (-13 (-27) (-1190) (-429 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *4 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-765))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-293 *3)) (-5 *5 (-765))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-450) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-314 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-561))) (-5 *4 (-293 *6))
+ (-4 *6 (-13 (-27) (-1190) (-429 *5)))
+ (-4 *5 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3))
+ (-4 *3 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-561))) (-5 *4 (-293 *7)) (-5 *5 (-1220 (-765)))
+ (-4 *7 (-13 (-27) (-1190) (-429 *6)))
+ (-4 *6 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1166)) (-5 *5 (-293 *3)) (-5 *6 (-1220 (-765)))
+ (-4 *3 (-13 (-27) (-1190) (-429 *7)))
+ (-4 *7 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *2 (-52)) (-5 *1 (-457 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1244 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-741)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166)) (-5 *4 (-945 (-561))) (-5 *2 (-329))
+ (-5 *1 (-331)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-897 (-561))) (-5 *1 (-910))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 (-561))) (-5 *2 (-897 (-561))) (-5 *1 (-910)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1163))) (-4 *5 (-1039))
- (-5 *2 (-479 *4 *5)) (-5 *1 (-934 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *5)) (-4 *5 (-783)) (-5 *2 (-112))
- (-5 *1 (-836 *4 *5)) (-14 *4 (-762)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1246 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
- (-5 *2 (-679 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-679 *3)))))
-(((*1 *1 *1) (-4 *1 (-543))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-224))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-762)) (-5 *2 (-406 (-558))) (-5 *1 (-378)))))
+ (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1162 *4))
+ (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1162 (-561))) (-5 *1 (-935)) (-5 *3 (-561)))))
+(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))))
+(((*1 *1 *1) (-5 *1 (-1054))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-5 *2
+ (-2 (|:| -2484 *4) (|:| -3941 *4) (|:| |totalpts| (-561))
+ (|:| |success| (-112))))
+ (-5 *1 (-783)) (-5 *5 (-561)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-150 *2)) (-4 *2 (-1205))
+ (-4 *2 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-52)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-762)) (-4 *3 (-1200)) (-4 *1 (-57 *3 *4 *5))
+ (-12 (-5 *2 (-765)) (-4 *3 (-1205)) (-4 *1 (-57 *3 *4 *5))
(-4 *4 (-372 *3)) (-4 *5 (-372 *3))))
((*1 *1) (-5 *1 (-170)))
- ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1087))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1145)) (-4 *1 (-388))))
+ ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1090))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388))))
((*1 *1) (-5 *1 (-393)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-762)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1205))))
((*1 *1)
- (-12 (-4 *3 (-1087)) (-5 *1 (-875 *2 *3 *4)) (-4 *2 (-1087))
- (-4 *4 (-656 *3))))
- ((*1 *1) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087))))
+ (-12 (-4 *3 (-1090)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1090))
+ (-4 *4 (-659 *3))))
+ ((*1 *1) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))
((*1 *1 *2)
- (-12 (-5 *1 (-1129 *3 *2)) (-14 *3 (-762)) (-4 *2 (-1039))))
- ((*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-911)) (-4 *3 (-1039))))
- ((*1 *1 *1) (-5 *1 (-1163))) ((*1 *1) (-5 *1 (-1163)))
- ((*1 *1) (-5 *1 (-1180))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-558)))))))
- (-5 *2
- (-2 (|:| |solns| (-635 *5))
- (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1115 *3 *5)) (-4 *3 (-1222 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-853))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-635 (-773 *3))) (-5 *1 (-773 *3)) (-4 *3 (-550))
- (-4 *3 (-1039)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
- (-5 *2 (-834 *4)) (-5 *1 (-312 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-841) (-1028 (-558)) (-631 (-558)) (-450)))
- (-5 *2 (-834 *4)) (-5 *1 (-1232 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1185) (-429 *3))) (-14 *5 (-1163))
- (-14 *6 *4))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-762)) (-5 *1 (-774 *2)) (-4 *2 (-38 (-406 (-558))))
- (-4 *2 (-171)))))
-(((*1 *2 *3) (-12 (-5 *3 (-534)) (-5 *1 (-533 *2)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-534)))))
-(((*1 *1 *1) (-4 *1 (-172)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-771 *5 (-855 *6)))) (-5 *4 (-112)) (-4 *5 (-450))
- (-14 *6 (-635 (-1163)))
- (-5 *2
- (-635 (-1133 *5 (-529 (-855 *6)) (-855 *6) (-771 *5 (-855 *6)))))
- (-5 *1 (-620 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-406 (-558))) (-5 *1 (-555)) (-5 *3 (-558))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1159 (-406 (-558)))) (-5 *1 (-932)) (-5 *3 (-558)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815)))))
+ (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042))))
+ ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042))))
+ ((*1 *1 *1) (-5 *1 (-1166))) ((*1 *1) (-5 *1 (-1166)))
+ ((*1 *1) (-5 *1 (-1185))))
+(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-745)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-13 (-403) (-1190))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1148)) (-5 *4 (-561)) (-5 *5 (-682 (-224)))
+ (-5 *2 (-1028)) (-5 *1 (-751)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-635 (-1151 *3 *4))) (-5 *1 (-1151 *3 *4))
- (-14 *3 (-911)) (-4 *4 (-1039)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-306)) (-4 *3 (-982 *2)) (-4 *4 (-1222 *3))
- (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1028 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4))))
- (-5 *1 (-1095 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853)))))
-(((*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1200)))))
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-318 *3 *4 *5))
+ (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378)))
+ (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258))
+ (-5 *1 (-782)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1254))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-682 (-224))) (-5 *4 (-561)) (-5 *2 (-1028))
+ (-5 *1 (-750)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378))
+ (|:| |expense| (-378)) (|:| |accuracy| (-378))
+ (|:| |intermediateResults| (-378))))
+ (-5 *2 (-1028)) (-5 *1 (-304)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166))
+ (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-191))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1166))
+ (-5 *5 (-1084 (-837 (-224)))) (-5 *2 (-638 (-224))) (-5 *1 (-299)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-635 (-2 (|:| -2176 *3) (|:| -1925 *4))))
- (-4 *3 (-1087)) (-4 *4 (-1087)) (-4 *1 (-1176 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1176 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1087)))))
-(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))))
+ (-12 (-5 *2 (-638 (-2 (|:| -2252 *3) (|:| -2654 *4))))
+ (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *1 (-1181 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5))
- (-4 *3 (-550)) (-4 *4 (-784)) (-4 *5 (-841))
- (-5 *1 (-1259 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550))
- (-4 *6 (-784)) (-4 *7 (-841)) (-5 *1 (-1259 *5 *6 *7 *8)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-329)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1159 (-942 *6))) (-4 *6 (-550))
- (-4 *2 (-939 (-406 (-942 *6)) *5 *4)) (-5 *1 (-723 *5 *4 *6 *2))
- (-4 *5 (-784))
- (-4 *4 (-13 (-841) (-10 -8 (-15 -3441 ((-1163) $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-635 (-1145))) (-5 *1 (-393)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-635 (-1063 *4 *5 *2))) (-4 *4 (-1087))
- (-4 *5 (-13 (-1039) (-876 *4) (-841) (-606 (-882 *4))))
- (-4 *2 (-13 (-429 *5) (-876 *4) (-606 (-882 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-635 (-1063 *5 *6 *2))) (-5 *4 (-911)) (-4 *5 (-1087))
- (-4 *6 (-13 (-1039) (-876 *5) (-841) (-606 (-882 *5))))
- (-4 *2 (-13 (-429 *6) (-876 *5) (-606 (-882 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-841)) (-4 *5 (-784))
- (-4 *6 (-550)) (-4 *7 (-939 *6 *5 *3))
- (-5 *1 (-460 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1028 (-406 (-558))) (-362)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -3316 (*7 $))
- (-15 -3327 (*7 $))))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-466)) (-5 *4 (-911)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
+ (-12 (-5 *2 (-1 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1205)))))
+(((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
+ ((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-465))))
+ ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-4 *7 (-942 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-638 *7)) (|:| |n0| (-638 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1039)) (-4 *5 (-1222 *4)) (-5 *2 (-1 *6 (-635 *6)))
- (-5 *1 (-1240 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-1237 *4)))))
+ (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2))
+ (-5 *2 (-378)) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-914)) (-4 *5 (-1042))
+ (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553))
+ (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-406 (-945 *5))) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-553)) (-4 *4 (-844))
+ (-4 *4 (-609 *2)) (-5 *2 (-378)) (-5 *1 (-779 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-914)) (-4 *5 (-553))
+ (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-378))
+ (-5 *1 (-779 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-393)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -1313 (-638 (-856))) (|:| -2090 (-638 (-856)))
+ (|:| |presup| (-638 (-856))) (|:| -1351 (-638 (-856)))
+ (|:| |args| (-638 (-856)))))
+ (-5 *1 (-1166))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-638 (-856)))) (-5 *1 (-1166)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1205)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-311)) (-5 *1 (-823)))))
+(((*1 *2)
+ (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
+ (-4 *3 (-366 *4))))
+ ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1198 *2 *3 *4 *5)) (-4 *2 (-553))
+ (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1241 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-406 *5)) (-4 *4 (-1204)) (-4 *5 (-1222 *4))
- (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1222 *3))))
+ (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1229 *4))
+ (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1229 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-406 (-558)))) (-5 *2 (-406 (-558)))
+ (-12 (-5 *3 (-1168 (-406 (-561)))) (-5 *2 (-406 (-561)))
(-5 *1 (-189))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-679 (-315 (-224)))) (-5 *3 (-635 (-1163)))
- (-5 *4 (-1246 (-315 (-224)))) (-5 *1 (-204))))
+ (-12 (-5 *2 (-682 (-315 (-224)))) (-5 *3 (-638 (-1166)))
+ (-5 *4 (-1253 (-315 (-224)))) (-5 *1 (-204))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1087))
- (-4 *3 (-1200)) (-5 *1 (-293 *3))))
+ (-12 (-5 *2 (-638 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1090))
+ (-4 *3 (-1205)) (-5 *1 (-293 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-308 *2)) (-4 *2 (-1087)) (-4 *2 (-1200))
+ (-12 (-4 *2 (-308 *2)) (-4 *2 (-1090)) (-4 *2 (-1205))
(-5 *1 (-293 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 (-635 *1))))
+ (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 (-638 *1))))
(-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301))))
+ (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-301))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-638 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 (-635 *1))))
+ (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 (-638 *1))))
(-4 *1 (-301))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-301))))
+ (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-1 *1 *1))) (-4 *1 (-301))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1087))))
+ (-12 (-5 *2 (-638 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1090))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1087))))
+ (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1165 (-406 (-558))))
- (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-558))))))
+ (-12 (-5 *3 (-1 *2 (-561))) (-5 *4 (-1168 (-406 (-561))))
+ (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-561))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5))
- (-4 *4 (-841)) (-4 *5 (-171))))
+ (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *1)) (-4 *1 (-373 *4 *5))
+ (-4 *4 (-844)) (-4 *5 (-171))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-841)) (-4 *3 (-171))))
+ (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1163)) (-5 *3 (-762)) (-5 *4 (-1 *1 (-635 *1)))
- (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-1039))))
+ (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-638 *1)))
+ (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-1042))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762)))
- (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-841))
- (-4 *5 (-1039))))
+ (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765)))
+ (-5 *4 (-638 (-1 *1 (-638 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-844))
+ (-4 *5 (-1042))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-635 (-762)))
- (-5 *4 (-635 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-841))
- (-4 *5 (-1039))))
+ (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-638 (-765)))
+ (-5 *4 (-638 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-844))
+ (-4 *5 (-1042))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-635 (-114))) (-5 *3 (-635 *1)) (-5 *4 (-1163))
- (-4 *1 (-429 *5)) (-4 *5 (-841)) (-4 *5 (-606 (-534)))))
+ (-12 (-5 *2 (-638 (-114))) (-5 *3 (-638 *1)) (-5 *4 (-1166))
+ (-4 *1 (-429 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-534)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1163)) (-4 *1 (-429 *4)) (-4 *4 (-841))
- (-4 *4 (-606 (-534)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1166)) (-4 *1 (-429 *4)) (-4 *4 (-844))
+ (-4 *4 (-609 (-534)))))
((*1 *1 *1)
- (-12 (-4 *1 (-429 *2)) (-4 *2 (-841)) (-4 *2 (-606 (-534)))))
+ (-12 (-4 *1 (-429 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-534)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-635 (-1163))) (-4 *1 (-429 *3)) (-4 *3 (-841))
- (-4 *3 (-606 (-534)))))
+ (-12 (-5 *2 (-638 (-1166))) (-4 *1 (-429 *3)) (-4 *3 (-844))
+ (-4 *3 (-609 (-534)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1163)) (-4 *1 (-429 *3)) (-4 *3 (-841))
- (-4 *3 (-606 (-534)))))
+ (-12 (-5 *2 (-1166)) (-4 *1 (-429 *3)) (-4 *3 (-844))
+ (-4 *3 (-609 (-534)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1087)) (-4 *3 (-1200))))
+ (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1205))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5))
- (-4 *4 (-1087)) (-4 *5 (-1200))))
+ (-12 (-5 *2 (-638 *4)) (-5 *3 (-638 *5)) (-4 *1 (-512 *4 *5))
+ (-4 *4 (-1090)) (-4 *5 (-1205))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-824 *3)) (-4 *3 (-362)) (-5 *1 (-709 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-709 *2)) (-4 *2 (-362))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1087))))
+ (-12 (-5 *2 (-827 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1090))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-406 (-942 *4))) (-5 *3 (-1163)) (-4 *4 (-550))
- (-5 *1 (-1033 *4))))
+ (-12 (-5 *2 (-406 (-945 *4))) (-5 *3 (-1166)) (-4 *4 (-553))
+ (-5 *1 (-1036 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-635 (-1163))) (-5 *4 (-635 (-406 (-942 *5))))
- (-5 *2 (-406 (-942 *5))) (-4 *5 (-550)) (-5 *1 (-1033 *5))))
+ (-12 (-5 *3 (-638 (-1166))) (-5 *4 (-638 (-406 (-945 *5))))
+ (-5 *2 (-406 (-945 *5))) (-4 *5 (-553)) (-5 *1 (-1036 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-293 (-406 (-942 *4)))) (-5 *2 (-406 (-942 *4)))
- (-4 *4 (-550)) (-5 *1 (-1033 *4))))
+ (-12 (-5 *3 (-293 (-406 (-945 *4)))) (-5 *2 (-406 (-945 *4)))
+ (-4 *4 (-553)) (-5 *1 (-1036 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-635 (-293 (-406 (-942 *4))))) (-5 *2 (-406 (-942 *4)))
- (-4 *4 (-550)) (-5 *1 (-1033 *4))))
+ (-12 (-5 *3 (-638 (-293 (-406 (-945 *4))))) (-5 *2 (-406 (-945 *4)))
+ (-4 *4 (-553)) (-5 *1 (-1036 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1039)) (-5 *1 (-1147 *3))))
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-783))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3)))))
+ (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1146 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-841)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1171 *4))
- (-5 *3 (-635 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-664 *3)) (-4 *3 (-1200)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-(((*1 *1) (-5 *1 (-329))))
-(((*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-558)) (-4 *1 (-641 *3)) (-4 *3 (-1200))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-558)) (-4 *1 (-641 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-762))
- (-4 *4 (-171))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163)) (-4 *4 (-13 (-841) (-550))) (-5 *1 (-157 *4 *2))
- (-4 *2 (-429 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1079 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-841) (-550)))
- (-5 *1 (-157 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-159))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1163))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-841))
- (-4 *4 (-171)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1200)) (-5 *1 (-374 *4 *2))
- (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4384)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1200)))))
-(((*1 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-762)) (-5 *1 (-120 *3)) (-4 *3 (-1222 (-558))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-679 (-224))) (-5 *5 (-679 (-558))) (-5 *3 (-558))
- (-5 *2 (-1025)) (-5 *1 (-747)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *5 (-224))
- (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1025))
- (-5 *1 (-737)))))
+ (-12 (-4 *4 (-450)) (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-5 *2 (-638 *3)) (-5 *1 (-970 *4 *5 *6 *3))
+ (-4 *3 (-1056 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4))))
- (-5 *1 (-767 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-378)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))))
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-638 *4))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-1090)) (-5 *1 (-898 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-638 (-856))) (-5 *1 (-1166)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-553)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| -1307 *1) (|:| -1693 *1))) (-4 *1 (-846 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-553)) (-4 *5 (-1042))
+ (-5 *2 (-2 (|:| -1307 *3) (|:| -1693 *3))) (-5 *1 (-847 *5 *3))
+ (-4 *3 (-846 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1129))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-1213 *4)) (-4 *4 (-1042)) (-4 *4 (-553))
+ (-5 *2 (-406 (-945 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-4 *1 (-1213 *4)) (-4 *4 (-1042)) (-4 *4 (-553))
+ (-5 *2 (-406 (-945 *4))))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-561)) (-5 *6 (-1 (-1258) (-1253 *5) (-1253 *5) (-378)))
+ (-5 *3 (-1253 (-378))) (-5 *5 (-378)) (-5 *2 (-1258))
+ (-5 *1 (-782)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1200)) (-5 *2 (-635 *1)) (-4 *1 (-1000 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-916)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1127 *2 *3)) (-4 *2 (-13 (-1087) (-34)))
- (-4 *3 (-13 (-1087) (-34))))))
-(((*1 *2 *2) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1087)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
+ (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1090)) (-4 *3 (-844))
+ (-4 *2 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1205)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1241 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-406 (-561))) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-553)) (-4 *8 (-942 *7 *5 *6))
+ (-5 *2 (-2 (|:| -4196 (-765)) (|:| -4188 *9) (|:| |radicand| *9)))
+ (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765))
+ (-4 *9
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *8)) (-15 -4030 (*8 $)) (-15 -4045 (*8 $))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-416 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-679 *3)) (-4 *3 (-1039)) (-5 *1 (-680 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-558)) (-5 *4 (-679 (-224))) (-5 *2 (-1025))
- (-5 *1 (-743)))))
-(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-841)) (-5 *1 (-121 *3)))))
+ (-12 (-4 *4 (-902)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-417 (-1162 *7)))
+ (-5 *1 (-899 *4 *5 *6 *7)) (-5 *3 (-1162 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-902)) (-4 *5 (-1229 *4)) (-5 *2 (-417 (-1162 *5)))
+ (-5 *1 (-900 *4 *5)) (-5 *3 (-1162 *5)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))))
+(((*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1090)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 *7)) (-4 *7 (-844))
+ (-4 *8 (-942 *5 *6 *7)) (-4 *5 (-553)) (-4 *6 (-787))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1253 (-406 *8)) "failed"))
+ (|:| -3711 (-638 (-1253 (-406 *8))))))
+ (-5 *1 (-662 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -2735 (-638 *7))))
+ (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-638 *7)))))
+(((*1 *1)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))))
+(((*1 *2 *1) (-12 (-5 *2 (-638 (-1075))) (-5 *1 (-290)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090))
+ (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-942 *4)) (-4 *4 (-13 (-306) (-146)))
- (-4 *2 (-939 *4 *6 *5)) (-5 *1 (-914 *4 *5 *6 *2))
- (-4 *5 (-13 (-841) (-606 (-1163)))) (-4 *6 (-784)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-224)) (-5 *4 (-558))
- (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3189))))
- (-5 *2 (-1025)) (-5 *1 (-737)))))
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-553))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 (-1266 *4 *5 *6 *7)))
+ (-5 *1 (-1266 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-638 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-553))
+ (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-638 (-1266 *6 *7 *8 *9)))
+ (-5 *1 (-1266 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-362)) (-4 *7 (-1229 *5)) (-4 *4 (-718 *5 *7))
+ (-5 *2 (-2 (|:| -3327 (-682 *6)) (|:| |vec| (-1253 *5))))
+ (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-649 *5)) (-4 *3 (-649 *4)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-635 (-1163))) (-5 *3 (-1163)) (-5 *1 (-534))))
+ (-12 (-5 *2 (-638 (-1166))) (-5 *3 (-1166)) (-5 *1 (-534))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534)))))
+ (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534)))))
+ (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1163)) (-5 *1 (-695 *3)) (-4 *3 (-606 (-534)))))
+ (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-534)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-635 (-1163))) (-5 *2 (-1163)) (-5 *1 (-695 *3))
- (-4 *3 (-606 (-534))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
+ (-12 (-5 *4 (-638 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3))
+ (-4 *3 (-609 (-534))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-1204))
- (-4 *6 (-1222 (-406 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-341 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1079 (-834 *3))) (-4 *3 (-13 (-1185) (-949) (-29 *5)))
- (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-218 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1079 (-834 *3))) (-5 *5 (-1145))
- (-4 *3 (-13 (-1185) (-949) (-29 *6)))
- (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (|:| |f1| (-834 *3)) (|:| |f2| (-635 (-834 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-218 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1079 (-834 (-315 *5))))
- (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1079 (-834 (-315 *6))))
- (-5 *5 (-1145))
- (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1079 (-834 (-406 (-942 *5))))) (-5 *3 (-406 (-942 *5)))
- (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (|:| |f1| (-834 (-315 *5))) (|:| |f2| (-635 (-834 (-315 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1079 (-834 (-406 (-942 *6))))) (-5 *5 (-1145))
- (-5 *3 (-406 (-942 *6)))
- (-4 *6 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2
- (-3 (|:| |f1| (-834 (-315 *6))) (|:| |f2| (-635 (-834 (-315 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146) (-1028 (-558)) (-631 (-558))))
- (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-427 *5 *3))
- (-4 *3 (-13 (-1185) (-949) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-472 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
- (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
- (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
- (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1081 (-834 (-378))))
- (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
- (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
- (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
- (-5 *5 (-378)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-315 (-378))) (-5 *4 (-635 (-1081 (-834 (-378)))))
- (-5 *5 (-378)) (-5 *6 (-1051)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378))))
- (-5 *5 (-1145)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1079 (-834 (-378))))
- (-5 *5 (-1163)) (-5 *2 (-1025)) (-5 *1 (-559))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-362) (-146) (-1028 (-558)))) (-4 *5 (-1222 *4))
- (-5 *2 (-579 (-406 *5))) (-5 *1 (-562 *4 *5)) (-5 *3 (-406 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163)) (-4 *5 (-146))
- (-4 *5 (-13 (-450) (-1028 (-558)) (-841) (-631 (-558))))
- (-5 *2 (-3 (-315 *5) (-635 (-315 *5)))) (-5 *1 (-582 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039))))
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-117 *4)) (-14 *4 *3)
+ (-5 *3 (-561))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-406 (-561))) (-5 *1 (-864 *4)) (-14 *4 *3)
+ (-5 *3 (-561))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-406 (-561))) (-5 *1 (-865 *4 *5))
+ (-5 *3 (-561)) (-4 *5 (-862 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-561)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362)))
+ (-4 *3 (-1229 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1231 *2 *3)) (-4 *3 (-786))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4022 (*2 (-1166))))
+ (-4 *2 (-1042)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-173 *3)) (-4 *3 (-306))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561)) (-4 *1 (-667 *3)) (-4 *3 (-1205))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-731 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-841))
- (-4 *3 (-38 (-406 (-558))))))
+ (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042))
+ (-4 *4 (-844))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-862 *3)) (-5 *2 (-561))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1163)) (-5 *1 (-942 *3)) (-4 *3 (-38 (-406 (-558))))
- (-4 *3 (-1039))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-4 *2 (-841))
- (-5 *1 (-1113 *3 *2 *4)) (-4 *4 (-939 *3 (-529 *2) *2))))
+ (-12 (-5 *2 (-638 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039))
- (-5 *1 (-1147 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1154 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1160 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1163)) (-5 *1 (-1194 *3)) (-4 *3 (-38 (-406 (-558))))
- (-4 *3 (-1039))))
- ((*1 *1 *1 *2)
- (-3994
- (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039))
- (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185))
- (-4 *3 (-38 (-406 (-558))))))
- (-12 (-5 *2 (-1163)) (-4 *1 (-1206 *3)) (-4 *3 (-1039))
- (-12 (|has| *3 (-15 -4078 ((-635 *2) *3)))
- (|has| *3 (-15 -1337 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1210 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
- ((*1 *1 *1 *2)
- (-3994
- (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039))
- (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185))
- (-4 *3 (-38 (-406 (-558))))))
- (-12 (-5 *2 (-1163)) (-4 *1 (-1227 *3)) (-4 *3 (-1039))
- (-12 (|has| *3 (-15 -4078 ((-635 *2) *3)))
- (|has| *3 (-15 -1337 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1227 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1231 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3)))
+ (-12 (-5 *2 (-638 *1)) (-5 *3 (-638 *7)) (-4 *1 (-1062 *4 *5 *6 *7))
+ (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-638 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-638 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450))
+ (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-638 *1))
+ (-4 *1 (-1062 *4 *5 *6 *3))))
((*1 *1 *1 *2)
- (-3994
- (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039))
- (-12 (-4 *3 (-29 (-558))) (-4 *3 (-949)) (-4 *3 (-1185))
- (-4 *3 (-38 (-406 (-558))))))
- (-12 (-5 *2 (-1163)) (-4 *1 (-1237 *3)) (-4 *3 (-1039))
- (-12 (|has| *3 (-15 -4078 ((-635 *2) *3)))
- (|has| *3 (-15 -1337 (*3 *3 *2))) (-4 *3 (-38 (-406 (-558))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1039)) (-4 *2 (-38 (-406 (-558))))))
+ (-12 (-4 *1 (-1198 *3 *4 *5 *2)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1242 *4)) (-14 *4 (-1163)) (-5 *1 (-1238 *3 *4 *5))
- (-4 *3 (-38 (-406 (-558)))) (-4 *3 (-1039)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *3 (-1087)) (-4 *4 (-1087))
- (-4 *5 (-1087)) (-4 *6 (-1087)) (-4 *7 (-1087)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-558))))
- ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-895 *3)) (-4 *3 (-1087))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1056 *4 *3)) (-4 *4 (-13 (-839) (-362)))
- (-4 *3 (-1222 *4)) (-5 *2 (-558))))
+ (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-768))) (-5 *1 (-114)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-638 (-315 (-224)))) (|:| -3721 (-638 (-224)))))
+ (-5 *2 (-638 (-1166))) (-5 *1 (-266))))
((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450)))
- (-5 *2 (-558)) (-5 *1 (-1103 *4 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))
- (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450)))
- (-5 *2 (-558)) (-5 *1 (-1103 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-1145))
- (-4 *6 (-13 (-550) (-841) (-1028 *2) (-631 *2) (-450)))
- (-5 *2 (-558)) (-5 *1 (-1103 *6 *3))
- (-4 *3 (-13 (-27) (-1185) (-429 *6)))))
+ (-12 (-5 *3 (-1162 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-638 *5))
+ (-5 *1 (-320 *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-386))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-844)) (-5 *2 (-638 (-1166)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-885 *3))) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-5 *2 (-638 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-450)) (-5 *2 (-558))
- (-5 *1 (-1104 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1163)) (-5 *5 (-834 (-406 (-942 *6))))
- (-5 *3 (-406 (-942 *6))) (-4 *6 (-450)) (-5 *2 (-558))
- (-5 *1 (-1104 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-406 (-942 *6))) (-5 *4 (-1163))
- (-5 *5 (-1145)) (-4 *6 (-450)) (-5 *2 (-558)) (-5 *1 (-1104 *6))))
+ (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042))
+ (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-638 *5))
+ (-5 *1 (-943 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1092 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786))
+ (-4 *5 (-844)) (-5 *2 (-638 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-638 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1039))
- (-4 *2 (-1237 *3)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1163)) (-5 *1 (-665 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1145)) (-5 *2 (-1251)) (-5 *1 (-1247)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-973 *2)) (-4 *2 (-1185)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1163)) (-5 *2 (-1091)) (-5 *1 (-290)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-450))) (-5 *1 (-1191 *3 *2))
- (-4 *2 (-13 (-429 *3) (-1185))))))
+ (-12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553)) (-5 *2 (-638 (-1166)))
+ (-5 *1 (-1036 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-643 (-406 *2))) (-4 *2 (-1222 *4)) (-5 *1 (-801 *4 *2))
- (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *2 (-406 *2))) (-4 *2 (-1222 *4))
- (-5 *1 (-801 *4 *2))
- (-4 *4 (-13 (-362) (-146) (-1028 (-558)) (-1028 (-406 (-558))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-635 (-933 (-224))))) (-5 *1 (-1195 *3))
- (-4 *3 (-964)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-550)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1222 *2)))))
-(((*1 *1) (-5 *1 (-1166))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-635 *3)) (-4 *3 (-939 *5 *6 *7)) (-4 *5 (-450))
- (-4 *6 (-784)) (-4 *7 (-841))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-447 *5 *6 *7 *3)))))
+ (|partial| -12 (-4 *4 (-13 (-553) (-146)))
+ (-5 *2 (-2 (|:| -1605 *3) (|:| -1621 *3))) (-5 *1 (-1223 *4 *3))
+ (-4 *3 (-1229 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-171)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4))
+ (-14 *3 (-914)) (-4 *4 (-1042))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-914)) (-4 *3 (-1042)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-4 *3 (-13 (-27) (-1185) (-429 *6) (-10 -8 (-15 -3940 ($ *7)))))
- (-4 *7 (-839))
- (-4 *8
- (-13 (-1224 *3 *7) (-362) (-1185)
- (-10 -8 (-15 -3780 ($ $)) (-15 -1337 ($ $)))))
+ (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-638 (-406 (-945 *6))))
+ (-5 *3 (-406 (-945 *6)))
+ (-4 *6 (-13 (-553) (-1031 (-561)) (-146)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-638 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-567 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3 *4 *5 *6)) (-4 *3 (-553)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1461 (-638 *6)) (|:| -3333 (-638 *6)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-885 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1205)) (-5 *2 (-765)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1145)) (|:| |prob| (-1145))))))
- (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1145)) (-4 *9 (-973 *8))
- (-14 *10 (-1163)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
- (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1222 (-406 (-558)))) (-5 *1 (-903 *3 *2))
- (-4 *2 (-1222 (-406 *3))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378))
+ (-2 (|:| |val| (-638 *8))
+ (|:| |towers| (-638 (-1020 *5 *6 *7 *8)))))
+ (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-638 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *8 (-1056 *5 *6 *7))
(-5 *2
- (-2 (|:| -2426 *4) (|:| -3851 *4) (|:| |totalpts| (-558))
- (|:| |success| (-112))))
- (-5 *1 (-780)) (-5 *5 (-558)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-635 (-558))) (-5 *1 (-994 *3)) (-14 *3 (-558)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5))
- (-5 *3 (-1143 *4)) (-4 *5 (-1237 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-406 (-942 *5))) (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5))))
- (-5 *1 (-1116 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-406 (-942 *4))) (-4 *4 (-13 (-306) (-841) (-146)))
- (-5 *2 (-635 (-293 (-315 *4)))) (-5 *1 (-1116 *4))))
+ (-2 (|:| |val| (-638 *8))
+ (|:| |towers| (-638 (-1136 *5 *6 *7 *8)))))
+ (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-638 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1162 (-406 (-1162 *2)))) (-5 *4 (-607 *2))
+ (-4 *2 (-13 (-429 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *1 (-557 *5 *2 *6)) (-4 *6 (-1090))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1162 *1)) (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *3 (-844))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1162 *4)) (-4 *4 (-1042)) (-4 *1 (-942 *4 *5 *3))
+ (-4 *5 (-787)) (-4 *3 (-844))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-293 (-406 (-942 *5)))) (-5 *4 (-1163))
- (-4 *5 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *5))))
- (-5 *1 (-1116 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-293 (-406 (-942 *4))))
- (-4 *4 (-13 (-306) (-841) (-146))) (-5 *2 (-635 (-293 (-315 *4))))
- (-5 *1 (-1116 *4))))
+ (-12 (-5 *3 (-406 (-1162 *2))) (-4 *5 (-787)) (-4 *4 (-844))
+ (-4 *6 (-1042))
+ (-4 *2
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *7)) (-15 -4030 (*7 $)) (-15 -4045 (*7 $)))))
+ (-5 *1 (-943 *5 *4 *6 *7 *2)) (-4 *7 (-942 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-406 (-942 *5)))) (-5 *4 (-635 (-1163)))
- (-4 *5 (-13 (-306) (-841) (-146)))
- (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-635 (-406 (-942 *4))))
- (-4 *4 (-13 (-306) (-841) (-146)))
- (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4))))
+ (-12 (-5 *3 (-406 (-1162 (-406 (-945 *5))))) (-5 *4 (-1166))
+ (-5 *2 (-406 (-945 *5))) (-5 *1 (-1036 *5)) (-4 *5 (-553)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-1090)) (-5 *2 (-112))
+ (-5 *1 (-882 *4 *5)) (-4 *5 (-1090))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-885 *5)) (-4 *5 (-1090)) (-5 *2 (-112))
+ (-5 *1 (-883 *5 *3)) (-4 *3 (-1205))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-635 (-293 (-406 (-942 *5))))) (-5 *4 (-635 (-1163)))
- (-4 *5 (-13 (-306) (-841) (-146)))
- (-5 *2 (-635 (-635 (-293 (-315 *5))))) (-5 *1 (-1116 *5))))
+ (-12 (-5 *3 (-638 *6)) (-5 *4 (-885 *5)) (-4 *5 (-1090))
+ (-4 *6 (-1205)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *5 (-224))
+ (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028))
+ (-5 *1 (-740)))))
+(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-128)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1190)))
+ (-4 *5 (-13 (-450) (-1031 (-561)) (-844) (-146) (-634 (-561))))
+ (-5 *2 (-582 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1090)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))))
+(((*1 *1 *1) (-4 *1 (-862 *2))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-638 (-1 *4 (-638 *4)))) (-4 *4 (-1090))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090))
+ (-5 *1 (-113 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-635 (-293 (-406 (-942 *4)))))
- (-4 *4 (-13 (-306) (-841) (-146)))
- (-5 *2 (-635 (-635 (-293 (-315 *4))))) (-5 *1 (-1116 *4)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-638 (-1 *4 (-638 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1090)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1205)) (-5 *2 (-765))
+ (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-130))
+ (-5 *2 (-765))))
+ ((*1 *2)
+ (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4))
+ (-4 *3 (-328 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1090))))
+ ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1090))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1090)) (-5 *2 (-765)) (-5 *1 (-423 *3 *4))
+ (-4 *3 (-424 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1090))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-765))
+ (-5 *1 (-717 *3 *4 *5)) (-4 *3 (-718 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844))))
+ ((*1 *2) (-12 (-5 *2 (-561)) (-5 *1 (-999))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3))
+ (-4 *3 (-1229 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))
+ (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1205))
+ (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-553)) (-4 *2 (-543))))
+ ((*1 *1 *1) (-4 *1 (-1051))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-638 (-914))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-914))
+ (-4 *2 (-362)) (-14 *5 (-986 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844))
+ (-4 *6 (-237 (-3498 *4) (-765)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -2413 *5) (|:| -4196 *6))
+ (-2 (|:| -2413 *5) (|:| -4196 *6))))
+ (-14 *4 (-638 (-1166))) (-4 *2 (-171))
+ (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-942 *2 *6 (-858 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-844))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-561)) (-4 *2 (-553)) (-5 *1 (-618 *2 *4))
+ (-4 *4 (-1229 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *5)) (-5 *3 (-638 (-765))) (-4 *1 (-734 *4 *5))
+ (-4 *4 (-1042)) (-4 *5 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042))
+ (-4 *2 (-844))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 (-765))) (-4 *1 (-942 *4 *5 *6))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-765)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1042))
+ (-4 *5 (-787)) (-4 *2 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-638 *6)) (-5 *3 (-638 *5)) (-4 *1 (-966 *4 *5 *6))
+ (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786))
+ (-4 *2 (-844)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-649 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-652 *4 *2))
+ (-4 *2 (-649 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224)))))
+ (-12 (-5 *3 (-682 *2)) (-4 *4 (-1229 *2))
+ (-4 *2 (-13 (-306) (-10 -8 (-15 -3422 ((-417 $) $)))))
+ (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-408 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2))
+ (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171))))
+ ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2))))
+ ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-638 (-561))) (-5 *1 (-997 *3)) (-14 *3 (-561)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765))
+ (-5 *1 (-447 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))))
+(((*1 *1) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-787))
+ (-4 *3 (-13 (-844) (-10 -8 (-15 -4174 ((-1166) $))))) (-4 *5 (-553))
+ (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-942 (-406 (-945 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787))
+ (-4 *3
+ (-13 (-844)
+ (-10 -8 (-15 -4174 ((-1166) $))
+ (-15 -2389 ((-3 $ "failed") (-1166))))))
+ (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-638 *6))
+ (-4 *6
+ (-13 (-844)
+ (-10 -8 (-15 -4174 ((-1166) $))
+ (-15 -2389 ((-3 $ "failed") (-1166))))))
+ (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2))
+ (-4 *2 (-942 (-945 *4) *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348)))))
+(((*1 *1) (-5 *1 (-156)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-816)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1087)) (-4 *2 (-890 *5)) (-5 *1 (-682 *5 *2 *3 *4))
- (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4383)))))))
+ (-12 (-5 *3 (-224)) (-5 *4 (-561)) (-5 *2 (-1028)) (-5 *1 (-752)))))
+(((*1 *1) (-5 *1 (-290))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-638 *8)) (-5 *4 (-638 (-885 *6)))
+ (-5 *5 (-1 (-882 *6 *8) *8 (-885 *6) (-882 *6 *8))) (-4 *6 (-1090))
+ (-4 *8 (-13 (-1042) (-609 (-885 *6)) (-1031 *7)))
+ (-5 *2 (-882 *6 *8)) (-4 *7 (-13 (-1042) (-844)))
+ (-5 *1 (-934 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-638 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *1 (-1150 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
+ ((*1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-402 *3)) (-4 *3 (-403))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914)) (|has| *1 (-6 -4381)) (-4 *1 (-403))))
+ ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-914))))
+ ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-5 *2 (-1146 (-561))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-682 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042))
+ (-5 *1 (-847 *2 *3)) (-4 *3 (-846 *2)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-638 (-1162 *7))) (-5 *3 (-1162 *7))
+ (-4 *7 (-942 *5 *6 *4)) (-4 *5 (-902)) (-4 *6 (-787))
+ (-4 *4 (-844)) (-5 *1 (-899 *5 *6 *4 *7)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-561)) (|has| *1 (-6 -4391)) (-4 *1 (-372 *3))
+ (-4 *3 (-1205)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-362)) (-4 *3 (-1042))
+ (-5 *1 (-1150 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-1229 (-168 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-372 *3))
- (-4 *5 (-372 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039))
- (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2862 *4)))
- (-5 *1 (-959 *4 *3)) (-4 *3 (-1222 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4))
- (-4 *3 (-366 *4))))
- ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1072)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-224)) (-5 *4 (-558)) (-5 *2 (-1025)) (-5 *1 (-749)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-914))
+ (-4 *4 (-1042)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-553))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-243 *2)) (-4 *2 (-1205)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3))
+ (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5))
+ (-5 *2 (-412 *4 (-406 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1253 *6)) (-4 *6 (-13 (-408 *4 *5) (-1031 *4)))
+ (-4 *4 (-985 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306))
+ (-5 *1 (-412 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-638 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-362))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-942 *5 *4 *2))
+ (-4 *2 (-844)) (-5 *1 (-943 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-362)
+ (-10 -8 (-15 -4022 ($ *6)) (-15 -4030 (*6 $))
+ (-15 -4045 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-406 (-945 *4))) (-4 *4 (-553))
+ (-5 *2 (-1166)) (-5 *1 (-1036 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-673 *4 *3)) (-4 *4 (-1087))
- (-4 *3 (-1087)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1090))
+ (-4 *3 (-1090)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171))
+ (-5 *2 (-682 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-561)) (-5 *1 (-1146 *3)) (-4 *3 (-1205))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4391)) (-4 *1 (-1241 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-27) (-1190) (-429 *4)))
+ (-4 *4 (-13 (-553) (-844) (-1031 (-561)) (-634 (-561))))
+ (-5 *1 (-276 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1185) (-429 *3)))
- (-14 *4 (-1163)) (-14 *5 *2)))
+ (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-981 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-450) (-841) (-1028 (-558)) (-631 (-558))))
- (-4 *2 (-13 (-27) (-1185) (-429 *3) (-10 -8 (-15 -3940 ($ *4)))))
- (-4 *4 (-839))
- (-4 *5
- (-13 (-1224 *2 *4) (-362) (-1185)
- (-10 -8 (-15 -3780 ($ $)) (-15 -1337 ($ $)))))
- (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-973 *5)) (-14 *7 (-1163)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-550)) (-4 *3 (-1039))
- (-5 *2 (-2 (|:| -2263 *1) (|:| -1548 *1))) (-4 *1 (-843 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-550)) (-4 *5 (-1039))
- (-5 *2 (-2 (|:| -2263 *3) (|:| -1548 *3))) (-5 *1 (-844 *5 *3))
- (-4 *3 (-843 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-841) (-550))) (-5 *1 (-275 *3 *2))
- (-4 *2 (-13 (-429 *3) (-992))))))
+ (-12 (-5 *2 (-638 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5))
+ (-5 *1 (-1097 *3 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1246 *4)) (-5 *3 (-558)) (-4 *4 (-348))
- (-5 *1 (-526 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1143 (-635 (-558)))) (-5 *1 (-873))
- (-5 *3 (-635 (-558))))))
+ (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2684 *3) (|:| -4196 (-765)))) (-5 *1 (-583 *3))
+ (-4 *3 (-543)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787))
+ (-4 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787))
+ (-4 *4 (-844)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-553))) (-5 *1 (-430 *3 *2))
+ (-4 *2 (-429 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-450)) (-4 *6 (-784)) (-4 *7 (-841))
- (-4 *3 (-1053 *5 *6 *7))
- (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -3798 *4))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1059 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-638 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042))
+ (-5 *2 (-1253 (-1253 *5))) (-5 *1 (-1022 *5)) (-5 *4 (-1253 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-638 *2)) (-4 *2 (-1090)) (-4 *2 (-1205)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-558)) (|has| *1 (-6 -4374)) (-4 *1 (-403))
- (-5 *2 (-911)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1163))
- (-4 *4 (-13 (-841) (-306) (-1028 (-558)) (-631 (-558)) (-146)))
- (-5 *1 (-795 *4 *2)) (-4 *2 (-13 (-29 *4) (-1185) (-949))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-787)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844))
+ (-5 *2 (-112)) (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5))
+ (-14 *3 (-765)) (-14 *4 (-765)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-682 (-168 (-406 (-561)))))
+ (-5 *2
+ (-638
+ (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-561))
+ (|:| |outvect| (-638 (-682 (-168 *4)))))))
+ (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))))
+(((*1 *2) (-12 (-5 *2 (-638 (-1148))) (-5 *1 (-1256)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-378)) (-5 *1 (-1054)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224))) (-5 *2 (-1028))
+ (-5 *1 (-746)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-561)) (-5 *4 (-682 (-224)))
+ (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1028)) (-5 *1 (-747)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1258)) (-5 *1 (-816)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765))))
+ (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1162 *4)) (-5 *1 (-356 *4))
+ (-4 *4 (-348))))
+ ((*1 *1) (-4 *1 (-367)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-914)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4))
+ (-4 *4 (-348))))
+ ((*1 *1 *1) (-4 *1 (-543))) ((*1 *1) (-4 *1 (-543)))
+ ((*1 *1 *1) (-5 *1 (-561))) ((*1 *1 *1) (-5 *1 (-765)))
+ ((*1 *2 *1) (-12 (-5 *2 (-898 *3)) (-5 *1 (-897 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-561)) (-5 *2 (-898 *4)) (-5 *1 (-897 *4))
+ (-4 *4 (-1090))))
+ ((*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-543)) (-4 *2 (-553)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-561) "failed") *5)) (-4 *5 (-1042))
+ (-5 *2 (-561)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1229 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042))
+ (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-561) "failed") *4)) (-4 *4 (-1042))
+ (-5 *2 (-561)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2))
+ (-4 *2 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844))
+ (-4 *3 (-1056 *5 *6 *7))
+ (-5 *2 (-638 (-2 (|:| |val| (-112)) (|:| -1510 *4))))
+ (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1163)) (-5 *1 (-604 *3)) (-4 *3 (-841)))))
-(((*1 *2 *2) (-12 (-5 *2 (-635 (-679 (-315 (-558))))) (-5 *1 (-1021)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1200)))))
+ (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090))
+ (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-112)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-784))
- (-4 *5 (-841)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1159 *3)))))
+ (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1205)) (-4 *2 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-856))))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1205)) (-4 *2 (-1042)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-13 (-429 *3) (-1190))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))))
+(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1258)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1090))
+ (-4 *4 (-1090)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042))
+ (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-553)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1177 (-638 *4))) (-4 *4 (-844))
+ (-5 *2 (-638 (-638 *4))) (-5 *1 (-1176 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-561)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867)))
+ (-5 *4 (-638 (-914))) (-5 *5 (-638 (-262))) (-5 *1 (-466))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *3 (-638 (-867)))
+ (-5 *4 (-638 (-914))) (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638 (-638 (-936 (-224))))) (-5 *1 (-466))))
+ ((*1 *1 *1) (-5 *1 (-466))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148)) (-5 *2 (-1258)) (-5 *1 (-1182 *4 *5))
+ (-4 *4 (-1090)) (-4 *5 (-1090)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-638 (-52))) (-5 *1 (-885 *3)) (-4 *3 (-1090)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1229 *5))
+ (-4 *5 (-13 (-27) (-429 *4)))
+ (-4 *4 (-13 (-844) (-553) (-1031 (-561))))
+ (-4 *7 (-1229 (-406 *6))) (-5 *1 (-549 *4 *5 *6 *7 *2))
+ (-4 *2 (-341 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-5 *1 (-856))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-553)) (-4 *3 (-171))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3711 (-638 *1))))
+ (-4 *1 (-366 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-451 *3 *4 *5 *6))
+ (|:| -3711 (-638 (-451 *3 *4 *5 *6)))))
+ (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-914))
+ (-14 *5 (-638 (-1166))) (-14 *6 (-1253 (-682 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-898 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-561)))) (-4 *2 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-561))) (-5 *1 (-1040)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844))
+ (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1162 *7)) (-4 *5 (-1042))
+ (-4 *7 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7))
+ (-4 *6 (-1229 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042))
+ (-4 *4 (-1229 *5)) (-5 *2 (-1162 *7)) (-5 *1 (-499 *5 *4 *6 *7))
+ (-4 *6 (-1229 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1039)) (-5 *2 (-635 *1)) (-4 *1 (-1121 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-813)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1251)) (-5 *1 (-435)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1087)))))
+ (-12 (|has| *1 (-6 -4390)) (-4 *1 (-487 *3)) (-4 *3 (-1205))
+ (-5 *2 (-638 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-638 *3)) (-5 *1 (-731 *3)) (-4 *3 (-1090)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844))
+ (-5 *1 (-1096 *5 *4)) (-4 *4 (-429 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-920)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1245 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166))
+ (-14 *4 *2))))
(((*1 *2 *3)
- (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1111 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))))
+ (-12 (-4 *4 (-362)) (-4 *4 (-553)) (-4 *5 (-1229 *4))
+ (-5 *2 (-2 (|:| -2870 (-618 *4 *5)) (|:| -3116 (-406 *5))))
+ (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-638 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4))
+ (-14 *3 (-914)) (-4 *4 (-1042))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-450)) (-4 *3 (-1042))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1229 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-553) (-146))) (-5 *1 (-535 *3 *2))
+ (-4 *2 (-1244 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-4 *4 (-1229 *3))
+ (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1244 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-362) (-367) (-609 (-561)))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1244 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1146 *3)) (-4 *3 (-13 (-553) (-146)))
+ (-5 *1 (-1142 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))
+ (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-680 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-553)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))
+ (-4 *7 (-985 *4)) (-4 *2 (-680 *7 *8 *9))
+ (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-680 *4 *5 *6))
+ (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-680 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-372 *2))
+ (-4 *4 (-372 *2)) (-4 *2 (-306))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3))
+ (-4 *5 (-372 *3)) (-5 *1 (-681 *3 *4 *5 *2))
+ (-4 *2 (-680 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042))
+ (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1166)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-911))
- (-5 *2 (-1246 (-635 (-2 (|:| -2426 *4) (|:| -2349 (-1107))))))
- (-5 *1 (-345 *4)) (-4 *4 (-348)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1039)) (-4 *1 (-1222 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1167)))))
+ (-12 (-4 *4 (-553)) (-4 *5 (-787)) (-4 *6 (-844))
+ (-4 *7 (-1056 *4 *5 *6))
+ (-5 *2 (-638 (-2 (|:| -1461 *1) (|:| -3333 (-638 *7)))))
+ (-5 *3 (-638 *7)) (-4 *1 (-1198 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-561))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-558)) (-5 *2 (-1251)) (-5 *1 (-894 *4))
- (-4 *4 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-1251)) (-5 *1 (-894 *3)) (-4 *3 (-1087)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1200)) (-5 *2 (-558)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-635 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))
- (-4 *4 (-784)) (-4 *5 (-841)) (-5 *1 (-967 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-588 *2)) (-4 *2 (-38 (-406 (-558)))) (-4 *2 (-1039)))))
-((-1279 . 734277) (-1280 . 734135) (-1281 . 734063) (-1282 . 734007)
- (-1283 . 733839) (-1284 . 733785) (-1285 . 733707) (-1286 . 733550)
- (-1287 . 733368) (-1288 . 733291) (-1289 . 733222) (-1290 . 733145)
- (-1291 . 733068) (-1292 . 732994) (-1293 . 732833) (-1294 . 732776)
- (-1295 . 732702) (-1296 . 732619) (-1297 . 732447) (-1298 . 732353)
- (-1299 . 731959) (-1300 . 731862) (-1301 . 731765) (-1302 . 731658)
- (-1303 . 731372) (-1304 . 731320) (-1305 . 730802) (-1306 . 730703)
- (-1307 . 730647) (-1308 . 730550) (-1309 . 730494) (-1310 . 730336)
- (-1311 . 730206) (-1312 . 729959) (-1313 . 729806) (-1314 . 729725)
- (-1315 . 728440) (-1316 . 728310) (-1317 . 728230) (-1318 . 728011)
- (-1319 . 727907) (-1320 . 727777) (-1321 . 727285) (-1322 . 727090)
- (-1323 . 726932) (-1324 . 726903) (-1325 . 726824) (-1326 . 726727)
- (-1327 . 726409) (-1328 . 726300) (-1329 . 726213) (-1330 . 726147)
- (-1331 . 726054) (-1332 . 725974) (-1333 . 725877) (-1334 . 724501)
- (-1335 . 724348) (-1336 . 724289) (-1337 . 717290) (-1338 . 717064)
- (-1339 . 716978) (-1340 . 716926) (-1341 . 716480) (-1342 . 716320)
- (-1343 . 716142) (-1344 . 716069) (-1345 . 715950) (-1346 . 715868)
- (-1347 . 715770) (-1348 . 715663) (-1349 . 715607) (-1350 . 715499)
- (-1351 . 715447) (-1352 . 715370) (-1353 . 715318) (-1354 . 715263)
- (-1355 . 715045) (-1356 . 714862) (-1357 . 714715) (-1358 . 714622)
- (-1359 . 714467) (-1360 . 714397) (-1361 . 714260) (-1362 . 713650)
- (-1363 . 713494) (-1364 . 713442) (-1365 . 713414) (-1366 . 713328)
- (-1367 . 713257) (-1368 . 713153) (-1369 . 709155) (-1370 . 709002)
- (-1371 . 708910) (-1372 . 708604) (-1373 . 708160) (-1374 . 708100)
- (-1375 . 707889) (-1376 . 707833) (-1377 . 707457) (-1378 . 707387)
- (-1379 . 707185) (-1380 . 707132) (-1381 . 707080) (-1382 . 706861)
- (-1383 . 706717) (-1384 . 706532) (-1385 . 706480) (-1386 . 706324)
- (-1387 . 706101) (-1388 . 705995) (-1389 . 705875) (-1390 . 705769)
- (-1391 . 705316) (-1392 . 705212) (-1393 . 705178) (-1394 . 704922)
- (-1395 . 704152) (-1396 . 703836) (-1397 . 703805) (-1398 . 703634)
- (-1399 . 703518) (-1400 . 703388) (-1401 . 703161) (-1402 . 703110)
- (-1403 . 703054) (-1404 . 702836) (-1405 . 702706) (-1406 . 702522)
- (-1407 . 702391) (-1408 . 702340) (-1409 . 701883) (-1410 . 701827)
- (-1411 . 701775) (-1412 . 701691) (-1413 . 701373) (-1414 . 701302)
- (-1415 . 701140) (-1416 . 701066) (-1417 . 700895) (-1418 . 700796)
- (-1419 . 700693) (-1420 . 700515) (-1421 . 700441) (-1422 . 699765)
- (-1423 . 697982) (-1424 . 697867) (-1425 . 697793) (-1426 . 697450)
- (-1427 . 697325) (-1428 . 697141) (-1429 . 697089) (-1430 . 696843)
- (-1431 . 696589) (-1432 . 696372) (-1433 . 696279) (-1434 . 696138)
- (-1435 . 695980) (-1436 . 695922) (-1437 . 695812) (-1438 . 695700)
- (-1439 . 695522) (-1440 . 695466) (-1441 . 695028) (-1442 . 694696)
- (-1443 . 694601) (-1444 . 694355) (-1445 . 693944) (-1446 . 693861)
- (-1447 . 693796) (-1448 . 693546) (-1449 . 693480) (-1450 . 693270)
- (-1451 . 693142) (-1452 . 693065) (-1453 . 692920) (-1454 . 692849)
- (-1455 . 692574) (-1456 . 692492) (-1457 . 692352) (-1458 . 692288)
- (-1459 . 692193) (-1460 . 692136) (-1461 . 691842) (-1462 . 691737)
- (-1463 . 691667) (-1464 . 691508) (-1465 . 691421) (-1466 . 691220)
- (-1467 . 691132) (-1468 . 691054) (-1469 . 690992) (-1470 . 690940)
- (-1471 . 690841) (-1472 . 690685) (-1473 . 690612) (-1474 . 690511)
- (-1475 . 690353) (-1476 . 690152) (-1477 . 690064) (-1478 . 689818)
- (-1479 . 689645) (-1480 . 689546) (-1481 . 689450) (-1482 . 689348)
- (-1483 . 689271) (-1484 . 689219) (-1485 . 689120) (-1486 . 688976)
- (-1487 . 688847) (-1488 . 688248) (-1489 . 686998) (-1490 . 686244)
- (-1491 . 686115) (-1492 . 685773) (-1493 . 685530) (-1494 . 685453)
- (-1495 . 685257) (-1496 . 685156) (-1497 . 684938) (-1498 . 684882)
- (-1499 . 684683) (-1500 . 684596) (-1501 . 684284) (-1502 . 684247)
- (-1503 . 683931) (-1504 . 683792) (-1505 . 683736) (-1506 . 683568)
- (-1507 . 683450) (-1508 . 683292) (-1509 . 683219) (-1510 . 683078)
- (-1511 . 683007) (-1512 . 682910) (-1513 . 682850) (-1514 . 682476)
- (-1515 . 682054) (-1516 . 681845) (-1517 . 681757) (-1518 . 681697)
- (-1519 . 681618) (-1520 . 681326) (-1521 . 681292) (-1522 . 681147)
- (-1523 . 681039) (-1524 . 680701) (-1525 . 680611) (-1526 . 680473)
- (-1527 . 680400) (-1528 . 680161) (-1529 . 680102) (-1530 . 680025)
- (-1531 . 679892) (-1532 . 679784) (-1533 . 679661) (-1534 . 679414)
- (-1535 . 678954) (-1536 . 677652) (-1537 . 677317) (-1538 . 677045)
- (-1539 . 676892) (-1540 . 676554) (-1541 . 676501) (-1542 . 676337)
- (-1543 . 675920) (-1544 . 674818) (-1545 . 674333) (-1546 . 674244)
- (-1547 . 674156) (-1548 . 673948) (-1549 . 673531) (-1550 . 673275)
- (-1551 . 673189) (-1552 . 673088) (-1553 . 673021) (-1554 . 672267)
- (-1555 . 672239) (-1556 . 672186) (-1557 . 672103) (-1558 . 671922)
- (-1559 . 671604) (-1560 . 671552) (-1561 . 671500) (-1562 . 671448)
- (-1563 . 671316) (-1564 . 671003) (-1565 . 670873) (-1566 . 670820)
- (-1567 . 670743) (-1568 . 670538) (-1569 . 670486) (-1570 . 670335)
- (-1571 . 669905) (-1572 . 669824) (-1573 . 669696) (-1574 . 669596)
- (-1575 . 669360) (-1576 . 669238) (-1577 . 669036) (-1578 . 668922)
- (-1579 . 668735) (-1580 . 668575) (-1581 . 668246) (-1582 . 668067)
- (-1583 . 668008) (-1584 . 667774) (-1585 . 667719) (-1586 . 667497)
- (-1587 . 667411) (-1588 . 667345) (-1589 . 667282) (-1590 . 667153)
- (-1591 . 667102) (-1592 . 667050) (-1593 . 666934) (-1594 . 666882)
- (-1595 . 666760) (-1596 . 666393) (-1597 . 666291) (-1598 . 666224)
- (-1599 . 666169) (-1600 . 666117) (-1601 . 665985) (-1602 . 665932)
- (-1603 . 665858) (-1604 . 665797) (-1605 . 665630) (-1606 . 665559)
- (-1607 . 665430) (-1608 . 665329) (-1609 . 665187) (-1610 . 665156)
- (-1611 . 665099) (-1612 . 664984) (-1613 . 664913) (-1614 . 664856)
- (-1615 . 664520) (-1616 . 664448) (-1617 . 664311) (-1618 . 664188)
- (-1619 . 664100) (-1620 . 664013) (-1621 . 663960) (-1622 . 663908)
- (-1623 . 663802) (-1624 . 663716) (-1625 . 663639) (-1626 . 663555)
- (-1627 . 663498) (-1628 . 663354) (-1629 . 663295) (-1630 . 663196)
- (-1631 . 663066) (-1632 . 662959) (-1633 . 662819) (-1634 . 662705)
- (-1635 . 662535) (-1636 . 662186) (-1637 . 662092) (-1638 . 660796)
- (-1639 . 660637) (-1640 . 660536) (-1641 . 660370) (-1642 . 660342)
- (-1643 . 660094) (-1644 . 659393) (-1645 . 659268) (-1646 . 659197)
- (-1647 . 659056) (-1648 . 658968) (-1649 . 658806) (-1650 . 658668)
- (-1651 . 658307) (-1652 . 658254) (-1653 . 658141) (-1654 . 658053)
- (-1655 . 656873) (-1656 . 656791) (-1657 . 656602) (-1658 . 656252)
- (-1659 . 656063) (-1660 . 655753) (-1661 . 655660) (-1662 . 655494)
- (-1663 . 655260) (-1664 . 655145) (-1665 . 655093) (-1666 . 654971)
- (-1667 . 654761) (-1668 . 654657) (-1669 . 654430) (-1670 . 654277)
- (-1671 . 653789) (-1672 . 653666) (-1673 . 652954) (-1674 . 652854)
- (-1675 . 652695) (-1676 . 652583) (-1677 . 652504) (-1678 . 652363)
- (-1679 . 652041) (-1680 . 651944) (-1681 . 651867) (-1682 . 651679)
- (-1683 . 651552) (-1684 . 651378) (-1685 . 650782) (-1686 . 650662)
- (-1687 . 650553) (-1688 . 650434) (-1689 . 650220) (-1690 . 650161)
- (-1691 . 650083) (-1692 . 649840) (-1693 . 649593) (-1694 . 649534)
- (-1695 . 649418) (-1696 . 649384) (-1697 . 649291) (-1698 . 649052)
- (-1699 . 649020) (-1700 . 648867) (-1701 . 648801) (-1702 . 648492)
- (-1703 . 648377) (-1704 . 648223) (-1705 . 647737) (-1706 . 647611)
- (-1707 . 647541) (-1708 . 647269) (-1709 . 647172) (-1710 . 647049)
- (-1711 . 646925) (-1712 . 646854) (-1713 . 646786) (-1714 . 646680)
- (-1715 . 646305) (-1716 . 646080) (-1717 . 645934) (-1718 . 645784)
- (-1719 . 645358) (-1720 . 645212) (-1721 . 645125) (-1722 . 644982)
- (-1723 . 644900) (-1724 . 644872) (-1725 . 644784) (-1726 . 644594)
- (-1727 . 644484) (-1728 . 644253) (-1729 . 644018) (-1730 . 643919)
- (-1731 . 643824) (-1732 . 643685) (-1733 . 643482) (-1734 . 643180)
- (-1735 . 643014) (-1736 . 642941) (-1737 . 642854) (-1738 . 642802)
- (-1739 . 642477) (-1740 . 642380) (-1741 . 642346) (-1742 . 642260)
- (-1743 . 642176) (-1744 . 642013) (-1745 . 641934) (-1746 . 641836)
- (-1747 . 641695) (-1748 . 641625) (-1749 . 641466) (-1750 . 641168)
- (-1751 . 641080) (-1752 . 641024) (-1753 . 640940) (-1754 . 640839)
- (-1755 . 640501) (-1756 . 640388) (-1757 . 640301) (-1758 . 639504)
- (-1759 . 639352) (-1760 . 639236) (-1761 . 639091) (-1762 . 638952)
- (-1763 . 638814) (-1764 . 638659) (-1765 . 638555) (-1766 . 638157)
- (-1767 . 637917) (-1768 . 637803) (-1769 . 637441) (-1770 . 637074)
- (-1771 . 636969) (-1772 . 636917) (-1773 . 636489) (-1774 . 636266)
- (-1775 . 636122) (-1776 . 635644) (-1777 . 635507) (-1778 . 635348)
- (-1779 . 635205) (-1780 . 635087) (-1781 . 634984) (-1782 . 634611)
- (-1783 . 634534) (-1784 . 634370) (-1785 . 633184) (-1786 . 633131)
- (-1787 . 632454) (-1788 . 632335) (-1789 . 632276) (-1790 . 632186)
- (-1791 . 632077) (-1792 . 632022) (-1793 . 631895) (-1794 . 631787)
- (-1795 . 631368) (-1796 . 630186) (-1797 . 629908) (-1798 . 629487)
- (-1799 . 629384) (-1800 . 629069) (-1801 . 629041) (-1802 . 628961)
- (-1803 . 628889) (-1804 . 628837) (-1805 . 626631) (-1806 . 626477)
- (-1807 . 626299) (-1808 . 626233) (-1809 . 626150) (-1810 . 626116)
- (-1811 . 625819) (-1812 . 625715) (-1813 . 625573) (-1814 . 625421)
- (-1815 . 625353) (-1816 . 625265) (-1817 . 625022) (-1818 . 624895)
- (-1819 . 624599) (-1820 . 624454) (-1821 . 624381) (-1822 . 624127)
- (-1823 . 624002) (-1824 . 623914) (-1825 . 623724) (-1826 . 623569)
- (-1827 . 623182) (-1828 . 622890) (-1829 . 622745) (-1830 . 622615)
- (-1831 . 622548) (-1832 . 622470) (-1833 . 622399) (-1834 . 622007)
- (-1835 . 621897) (-1836 . 621827) (-1837 . 621753) (-1838 . 621687)
- (-1839 . 621445) (-1840 . 621133) (-1841 . 621047) (-1842 . 620975)
- (-1843 . 620770) (-1844 . 620643) (-1845 . 620533) (-1846 . 620272)
- (-1847 . 620084) (-1848 . 619220) (-1849 . 619058) (-1850 . 618853)
- (-1851 . 618746) (-1852 . 618588) (-1853 . 618447) (-1854 . 618266)
- (-1855 . 618087) (-1856 . 618004) (-1857 . 617523) (-1858 . 617408)
- (-1859 . 617277) (-1860 . 617148) (-1861 . 617077) (-1862 . 617018)
- (-1863 . 616929) (-1864 . 616789) (-1865 . 616701) (-1866 . 616469)
- (-1867 . 616021) (-1868 . 615977) (-1869 . 615485) (-1870 . 615329)
- (-1871 . 615020) (-1872 . 614969) (-1873 . 614561) (-1874 . 614261)
- (-1875 . 614188) (-1876 . 614079) (-1877 . 613962) (-1878 . 613910)
- (-1879 . 613825) (-1880 . 613655) (-1881 . 613551) (-1882 . 613488)
- (-1883 . 613393) (-1884 . 613287) (-1885 . 613146) (-1886 . 612763)
- (-1887 . 612553) (-1888 . 612360) (-1889 . 612202) (-1890 . 612130)
- (-1891 . 612057) (-1892 . 611766) (-1893 . 611713) (-1894 . 611684)
- (-1895 . 611554) (-1896 . 611425) (-1897 . 611321) (-1898 . 611191)
- (-1899 . 611081) (-1900 . 610486) (-1901 . 610392) (-1902 . 610330)
- (-1903 . 610148) (-1904 . 610071) (-1905 . 609741) (-1906 . 609548)
- (-1907 . 609454) (-1908 . 609374) (-1909 . 609260) (-1910 . 609161)
- (-1911 . 608936) (-1912 . 608876) (-1913 . 608805) (-1914 . 608555)
- (-1915 . 608413) (-1916 . 608354) (-1917 . 608222) (-1918 . 607965)
- (-1919 . 607869) (-1920 . 607731) (-1921 . 607674) (-1922 . 607578)
- (-1923 . 607477) (-1924 . 607317) (-1925 . 606115) (-1926 . 606044)
- (-1927 . 605851) (-1928 . 605739) (-1929 . 605644) (-1930 . 605541)
- (-1931 . 605373) (-1932 . 605187) (-1933 . 605025) (-1934 . 604430)
- (-1935 . 604364) (-1936 . 604268) (-1937 . 604174) (-1938 . 603956)
- (-1939 . 603780) (-1940 . 603439) (-1941 . 603353) (-1942 . 603288)
- (-1943 . 602655) (-1944 . 602546) (-1945 . 602437) (-1946 . 602077)
- (-1947 . 601929) (-1948 . 601769) (-1949 . 601670) (-1950 . 601520)
- (-1951 . 601418) (-1952 . 599972) (-1953 . 599763) (-1954 . 599704)
- (-1955 . 599301) (-1956 . 598765) (-1957 . 598622) (-1958 . 598496)
- (-1959 . 598362) (-1960 . 598290) (-1961 . 598188) (-1962 . 597932)
- (-1963 . 597510) (-1964 . 597476) (-1965 . 597331) (-1966 . 597206)
- (-1967 . 597138) (-1968 . 597085) (-1969 . 596000) (-1970 . 595920)
- (-1971 . 595846) (-1972 . 595793) (-1973 . 595682) (-1974 . 595529)
- (-1975 . 595339) (-1976 . 595114) (-1977 . 595062) (-1978 . 594873)
- (-1979 . 594821) (-1980 . 594731) (-1981 . 594609) (-1982 . 594495)
- (-1983 . 594332) (-1984 . 594210) (-1985 . 594043) (-1986 . 593868)
- (-1987 . 593657) (-1988 . 592661) (-1989 . 592562) (-1990 . 592509)
- (-1991 . 592402) (-1992 . 592287) (-1993 . 592221) (-1994 . 592025)
- (-1995 . 591752) (-1996 . 591651) (-1997 . 591617) (-1998 . 591138)
- (-1999 . 591081) (-2000 . 590997) (-2001 . 590924) (-2002 . 590858)
- (-2003 . 590808) (-2004 . 590683) (-2005 . 590338) (-2006 . 590253)
- (-2007 . 590132) (-2008 . 590026) (-2009 . 589711) (-2010 . 589295)
- (-2011 . 589115) (-2012 . 589008) (-2013 . 588876) (-2014 . 588302)
- (-2015 . 588141) (-2016 . 587667) (-2017 . 587396) (-2018 . 586949)
- (-2019 . 586762) (-2020 . 586633) (-2021 . 586547) (-2022 . 586491)
- (-2023 . 586408) (-2024 . 586166) (-2025 . 586101) (-2026 . 585987)
- (-2027 . 585814) (-2028 . 585293) (-2029 . 585205) (-2030 . 584812)
- (-2031 . 584717) (-2032 . 584469) (-2033 . 583922) (-2034 . 583278)
- (-2035 . 583218) (-2036 . 583164) (-2037 . 583040) (-2038 . 582466)
- (-2039 . 582394) (-2040 . 581384) (-2041 . 581241) (-2042 . 581103)
- (-2043 . 580954) (-2044 . 580847) (-2045 . 580764) (-2046 . 580631)
- (-2047 . 580440) (-2048 . 580352) (-2049 . 579908) (-2050 . 579741)
- (-2051 . 579546) (-2052 . 579491) (-2053 . 579234) (-2054 . 579133)
- (-2055 . 579024) (-2056 . 578961) (-2057 . 578822) (-2058 . 578652)
- (-2059 . 578420) (-2060 . 578321) (-2061 . 578154) (-2062 . 578068)
- (-2063 . 577863) (-2064 . 577225) (-2065 . 576779) (-2066 . 576346)
- (-2067 . 576202) (-2068 . 576120) (-2069 . 576052) (-2070 . 575994)
- (-2071 . 575814) (-2072 . 575327) (-2073 . 575209) (-2074 . 575101)
- (-2075 . 575013) (-2076 . 574905) (-2077 . 574812) (-2078 . 574633)
- (-2079 . 574284) (-2080 . 573963) (-2081 . 573798) (-2082 . 573505)
- (-2083 . 573417) (-2084 . 573026) (-2085 . 572853) (-2086 . 572606)
- (-2087 . 572523) (-2088 . 572470) (-2089 . 572417) (-2090 . 572026)
- (-2091 . 571974) (-2092 . 571686) (-2093 . 571579) (-2094 . 571500)
- (-2095 . 568573) (-2096 . 567757) (-2097 . 567613) (-2098 . 567563)
- (-2099 . 567469) (-2100 . 567296) (-2101 . 567215) (-2102 . 567163)
- (-2103 . 567024) (-2104 . 566819) (-2105 . 566757) (-2106 . 566688)
- (-2107 . 566528) (-2108 . 566232) (-2109 . 565491) (-2110 . 565372)
- (-2111 . 565157) (-2112 . 565076) (-2113 . 564955) (-2114 . 564578)
- (-2115 . 564480) (-2116 . 564398) (-2117 . 564280) (-2118 . 564030)
- (-2119 . 563967) (-2120 . 563226) (-2121 . 563175) (-2122 . 563123)
- (-2123 . 563067) (-2124 . 562841) (-2125 . 562688) (-2126 . 562661)
- (-2127 . 562588) (-2128 . 562504) (-2129 . 562433) (-2130 . 561776)
- (-2131 . 561088) (-2132 . 560935) (-2133 . 560883) (-2134 . 560855)
- (-2135 . 560377) (-2136 . 560147) (-2137 . 560010) (-2138 . 559811)
- (-2139 . 559665) (-2140 . 559594) (-2141 . 559424) (-2142 . 559146)
- (-2143 . 559029) (-2144 . 558596) (-2145 . 558013) (-2146 . 557437)
- (-2147 . 557351) (-2148 . 557252) (-2149 . 557116) (-2150 . 557088)
- (-2151 . 557002) (-2152 . 556846) (-2153 . 556796) (-2154 . 555708)
- (-2155 . 555165) (-2156 . 555087) (-2157 . 554990) (-2158 . 554414)
- (-2159 . 553985) (-2160 . 553818) (-2161 . 553741) (-2162 . 553641)
- (-2163 . 553567) (-2164 . 553507) (-2165 . 553212) (-2166 . 553086)
- (-2167 . 552977) (-2168 . 552880) (-2169 . 552725) (-2170 . 552149)
- (-2171 . 552040) (-2172 . 551927) (-2173 . 551756) (-2174 . 550026)
- (-2175 . 549958) (-2176 . 549804) (-2177 . 549661) (-2178 . 549543)
- (-2179 . 549372) (-2180 . 549312) (-2181 . 549211) (-2182 . 549113)
- (-2183 . 549011) (-2184 . 548325) (-2185 . 548251) (-2186 . 548174)
- (-2187 . 548106) (-2188 . 548015) (-2189 . 547890) (-2190 . 547792)
- (-2191 . 547661) (-2192 . 547566) (-2193 . 546134) (-2194 . 542798)
- (-2195 . 542112) (-2196 . 542040) (-2197 . 541990) (-2198 . 541931)
- (-2199 . 541702) (-2200 . 541634) (-2201 . 541538) (-2202 . 541504)
- (-2203 . 541153) (-2204 . 541055) (-2205 . 540238) (-2206 . 540094)
- (-2207 . 539923) (-2208 . 539779) (-2209 . 539030) (-2210 . 538865)
- (-2211 . 538704) (-2212 . 538486) (-2213 . 538416) (-2214 . 538365)
- (-2215 . 538311) (-2216 . 538177) (-2217 . 538108) (-2218 . 538034)
- (-2219 . 537966) (-2220 . 537719) (-2221 . 537145) (-2222 . 537093)
- (-2223 . 537041) (-2224 . 536814) (-2225 . 536731) (-2226 . 536652)
- (-2227 . 536569) (-2228 . 536486) (-2229 . 536342) (-2230 . 536287)
- (-2231 . 536105) (-2232 . 536016) (-2233 . 535442) (-2234 . 535361)
- (-2235 . 535259) (-2236 . 535152) (-2237 . 535099) (-2238 . 534997)
- (-2239 . 534926) (-2240 . 534701) (-2241 . 534650) (-2242 . 534456)
- (-2243 . 534262) (-2244 . 533688) (-2245 . 533556) (-2246 . 533528)
- (-2247 . 533412) (-2248 . 533359) (-2249 . 533201) (-2250 . 533096)
- (-2251 . 533017) (-2252 . 532749) (-2253 . 532691) (-2254 . 532004)
- (-2255 . 531918) (-2256 . 531727) (-2257 . 531655) (-2258 . 531552)
- (-2259 . 531288) (-2260 . 531183) (-2261 . 531082) (-2262 . 531017)
- (-2263 . 530767) (-2264 . 530503) (-2265 . 529816) (-2266 . 529696)
- (-2267 . 529594) (-2268 . 529523) (-2269 . 529430) (-2270 . 529280)
- (-2271 . 529109) (-2272 . 528887) (-2273 . 528731) (-2274 . 528573)
- (-2275 . 528444) (-2276 . 523331) (-2277 . 522644) (-2278 . 522506)
- (-2279 . 522377) (-2280 . 522325) (-2281 . 522047) (-2282 . 521844)
- (-2283 . 521807) (-2284 . 521548) (-2285 . 521496) (-2286 . 521377)
- (-2287 . 521078) (-2288 . 520429) (-2289 . 519854) (-2290 . 519706)
- (-2291 . 519635) (-2292 . 519358) (-2293 . 519244) (-2294 . 519142)
- (-2295 . 518998) (-2296 . 518871) (-2297 . 518374) (-2298 . 517799)
- (-2299 . 517671) (-2300 . 517568) (-2301 . 517459) (-2302 . 517349)
- (-2303 . 517116) (-2304 . 517045) (-2305 . 516841) (-2306 . 516661)
- (-2307 . 516481) (-2308 . 516422) (-2309 . 516340) (-2310 . 516207)
- (-2311 . 516109) (-2312 . 515534) (-2313 . 515432) (-2314 . 515353)
- (-2315 . 515302) (-2316 . 515268) (-2317 . 514779) (-2318 . 514674)
- (-2319 . 513476) (-2320 . 513329) (-2321 . 513245) (-2322 . 513121)
- (-2323 . 513047) (-2324 . 512994) (-2325 . 512420) (-2326 . 512280)
- (-2327 . 512137) (-2328 . 512018) (-2329 . 511924) (-2330 . 511597)
- (-2331 . 511173) (-2332 . 510970) (-2333 . 510836) (-2334 . 510802)
- (-2335 . 510664) (-2336 . 510173) (-2337 . 510093) (-2338 . 510064)
- (-2339 . 509963) (-2340 . 509910) (-2341 . 509794) (-2342 . 509728)
- (-2343 . 509497) (-2344 . 509324) (-2345 . 509048) (-2346 . 508953)
- (-2347 . 508638) (-2348 . 508551) (-2349 . 508224) (-2350 . 508090)
- (-2351 . 508037) (-2352 . 507726) (-2353 . 507676) (-2354 . 507617)
- (-2355 . 507458) (-2356 . 507424) (-2357 . 507289) (-2358 . 507124)
- (-2359 . 507036) (-2360 . 506967) (-2361 . 506540) (-2362 . 506345)
- (-2363 . 505567) (-2364 . 505463) (-2365 . 505204) (-2366 . 505026)
- (-2367 . 504883) (-2368 . 504691) (-2369 . 504639) (-2370 . 504566)
- (-2371 . 504389) (-2372 . 503823) (-2373 . 503757) (-2374 . 503616)
- (-2375 . 502873) (-2376 . 502759) (-2377 . 502678) (-2378 . 502599)
- (-2379 . 502416) (-2380 . 502357) (-2381 . 502185) (-2382 . 501824)
- (-2383 . 501754) (-2384 . 501674) (-2385 . 501108) (-2386 . 500936)
- (-2387 . 500829) (-2388 . 500701) (-2389 . 500595) (-2390 . 500377)
- (-2391 . 500270) (-2392 . 500075) (-2393 . 499963) (-2394 . 499832)
- (-2395 . 499714) (-2396 . 499620) (-2397 . 499533) (-2398 . 499461)
- (-2399 . 499171) (-2400 . 499052) (-2401 . 498945) (-2402 . 498817)
- (-2403 . 498694) (-2404 . 498419) (-2405 . 497817) (-2406 . 497743)
- (-2407 . 497379) (-2408 . 497184) (-2409 . 497010) (-2410 . 496937)
- (-2411 . 496822) (-2412 . 496708) (-2413 . 496599) (-2414 . 496495)
- (-2415 . 496428) (-2416 . 496400) (-2417 . 495539) (-2418 . 495322)
- (-2419 . 495159) (-2420 . 495073) (-2421 . 494923) (-2422 . 494842)
- (-2423 . 494704) (-2424 . 494623) (-2425 . 494566) (-2426 . 494254)
- (-2427 . 494047) (-2428 . 493949) (-2429 . 493520) (-2430 . 493332)
- (-2431 . 493189) (-2432 . 493110) (-2433 . 492936) (-2434 . 492908)
- (-2435 . 492731) (-2436 . 492111) (-2437 . 491973) (-2438 . 491854)
- (-2439 . 491782) (-2440 . 491727) (-2441 . 491674) (-2442 . 491471)
- (-2443 . 491388) (-2444 . 491304) (-2445 . 491227) (-2446 . 491126)
- (-2447 . 491071) (-2448 . 491001) (-2449 . 490874) (-2450 . 490752)
- (-2451 . 490664) (-2452 . 490590) (-2453 . 490310) (-2454 . 490117)
- (-2455 . 490051) (-2456 . 489983) (-2457 . 489745) (-2458 . 489665)
- (-2459 . 489588) (-2460 . 489142) (-2461 . 488531) (-2462 . 488404)
- (-2463 . 488333) (-2464 . 488203) (-2465 . 488112) (-2466 . 488020)
- (-2467 . 487891) (-2468 . 487835) (-2469 . 487384) (-2470 . 487214)
- (-2471 . 487081) (-2472 . 487007) (-2473 . 486930) (-2474 . 486603)
- (-2475 . 486548) (-2476 . 486452) (-2477 . 486285) (-2478 . 486038)
- (-2479 . 485790) (-2480 . 484886) (-2481 . 484755) (-2482 . 484541)
- (-2483 . 484439) (-2484 . 484048) (-2485 . 483916) (-2486 . 483831)
- (-2487 . 483757) (-2488 . 483602) (-2489 . 482942) (-2490 . 482787)
- (-2491 . 482679) (-2492 . 482509) (-2493 . 481923) (-2494 . 481786)
- (-2495 . 481310) (-2496 . 481203) (-2497 . 481060) (-2498 . 481011)
- (-2499 . 480801) (-2500 . 480549) (-2501 . 480461) (-2502 . 480382)
- (-2503 . 480308) (-2504 . 480150) (-2505 . 480064) (-2506 . 479961)
- (-2507 . 478958) (-2508 . 478895) (-2509 . 478742) (-2510 . 478688)
- (-2511 . 478497) (-2512 . 478442) (-2513 . 478290) (-2514 . 478071)
- (-2515 . 477927) (-2516 . 477790) (-2517 . 477431) (-2518 . 477244)
- (-2519 . 477143) (-2520 . 477083) (-2521 . 477041) (-2522 . 476888)
- (-2523 . 476821) (-2524 . 476771) (-2525 . 476471) (-2526 . 476169)
- (-2527 . 476117) (-2528 . 475919) (-2529 . 475166) (-2530 . 475051)
- (-2531 . 474780) (-2532 . 472511) (-2533 . 472455) (-2534 . 471951)
- (-2535 . 471919) (-2536 . 471882) (-2537 . 471293) (-2538 . 471103)
- (-2539 . 471048) (-2540 . 470815) (-2541 . 470562) (-2542 . 470509)
- (-2543 . 470435) (-2544 . 470262) (-2545 . 470207) (-2546 . 469677)
- (-2547 . 469624) (-2548 . 469449) (-2549 . 469385) (-2550 . 469139)
- (-2551 . 469024) (-2552 . 468820) (-2553 . 468730) (-2554 . 468480)
- (-2555 . 467667) (-2556 . 467085) (-2557 . 466939) (-2558 . 466882)
- (-2559 . 466797) (-2560 . 466694) (-2561 . 466573) (-2562 . 466432)
- (-2563 . 466141) (-2564 . 465862) (-2565 . 465756) (-2566 . 465621)
- (-2567 . 465561) (-2568 . 465508) (-2569 . 465215) (-2570 . 465074)
- (-2571 . 464931) (-2572 . 464124) (-2573 . 463832) (-2574 . 463744)
- (-2575 . 463566) (-2576 . 463469) (-2577 . 463153) (-2578 . 463011)
- (-2579 . 462867) (-2580 . 462737) (-2581 . 462610) (-2582 . 462514)
- (-2583 . 462482) (-2584 . 462056) (-2585 . 461891) (-2586 . 461649)
- (-2587 . 461257) (-2588 . 461053) (-2589 . 461000) (-2590 . 460786)
- (-2591 . 460389) (-2592 . 460254) (-2593 . 460131) (-2594 . 460078)
- (-2595 . 460025) (-2596 . 459731) (-2597 . 459620) (-2598 . 459046)
- (-2599 . 458963) (-2600 . 458621) (-2601 . 458135) (-2602 . 458049)
- (-2603 . 458000) (-2604 . 457906) (-2605 . 457823) (-2606 . 456483)
- (-2607 . 456274) (-2608 . 456083) (-2609 . 455803) (-2610 . 455465)
- (-2611 . 455365) (-2612 . 455277) (-2613 . 455136) (-2614 . 455053)
- (-2615 . 454967) (-2616 . 454908) (-2617 . 454577) (-2618 . 454525)
- (-2619 . 454425) (-2620 . 454317) (-2621 . 454141) (-2622 . 454088)
- (-2623 . 453998) (-2624 . 453823) (-2625 . 453720) (-2626 . 453665)
- (-2627 . 453556) (-2628 . 453383) (-2629 . 453331) (-2630 . 453299)
- (-2631 . 453219) (-2632 . 453191) (-2633 . 453117) (-2634 . 452942)
- (-2635 . 452911) (-2636 . 452665) (-2637 . 452394) (-2638 . 452282)
- (-2639 . 452227) (-2640 . 452144) (-2641 . 452072) (-2642 . 451926)
- (-2643 . 451399) (-2644 . 451325) (-2645 . 451137) (-2646 . 451071)
- (-2647 . 450962) (-2648 . 450909) (-2649 . 450685) (-2650 . 448270)
- (-2651 . 448188) (-2652 . 447812) (-2653 . 447757) (-2654 . 447608)
- (-2655 . 447444) (-2656 . 447359) (-2657 . 447289) (-2658 . 447071)
- (-2659 . 446853) (-2660 . 445788) (-2661 . 445653) (-2662 . 445467)
- (-2663 . 445405) (-2664 . 445282) (-2665 . 445100) (-2666 . 445051)
- (-2667 . 444893) (-2668 . 444254) (-2669 . 444111) (-2670 . 443932)
- (-2671 . 443877) (-2672 . 443809) (-2673 . 443483) (-2674 . 443388)
- (-2675 . 443303) (-2676 . 443271) (-2677 . 443080) (-2678 . 443006)
- (-2679 . 442954) (-2680 . 442895) (-2681 . 442746) (-2682 . 442647)
- (-2683 . 442017) (-2684 . 441964) (-2685 . 441880) (-2686 . 441785)
- (-2687 . 441657) (-2688 . 441550) (-2689 . 441219) (-2690 . 440938)
- (-2691 . 440722) (-2692 . 431160) (-2693 . 431026) (-2694 . 430807)
- (-2695 . 430639) (-2696 . 430583) (-2697 . 430430) (-2698 . 430377)
- (-2699 . 430276) (-2700 . 430219) (-2701 . 429968) (-2702 . 429776)
- (-2703 . 429724) (-2704 . 429639) (-2705 . 429586) (-2706 . 429428)
- (-2707 . 429327) (-2708 . 429274) (-2709 . 429168) (-2710 . 429116)
- (-2711 . 429018) (-2712 . 428838) (-2713 . 428740) (-2714 . 428591)
- (-2715 . 428494) (-2716 . 428428) (-2717 . 428174) (-2718 . 427995)
- (-2719 . 427918) (-2720 . 427591) (-2721 . 427454) (-2722 . 427405)
- (-2723 . 427292) (-2724 . 427205) (-2725 . 426903) (-2726 . 426799)
- (-2727 . 426746) (-2728 . 426588) (-2729 . 426207) (-2730 . 426041)
- (-2731 . 425989) (-2732 . 425921) (-2733 . 425796) (-2734 . 425565)
- (-2735 . 425504) (-2736 . 425437) (-2737 . 425330) (-2738 . 425236)
- (-2739 . 425156) (-2740 . 425058) (-2741 . 424913) (-2742 . 424839)
- (-2743 . 423973) (-2744 . 423851) (-2745 . 423795) (-2746 . 423568)
- (-2747 . 419408) (-2748 . 419284) (-2749 . 419180) (-2750 . 419128)
- (-2751 . 418892) (-2752 . 418771) (-2753 . 418718) (-2754 . 418432)
- (-2755 . 417928) (-2756 . 417840) (-2757 . 416370) (-2758 . 416234)
- (-2759 . 415924) (-2760 . 415821) (-2761 . 415769) (-2762 . 415700)
- (-2763 . 415598) (-2764 . 415399) (-2765 . 415230) (-2766 . 415102)
- (-2767 . 414223) (-2768 . 414126) (-2769 . 414040) (-2770 . 413682)
- (-2771 . 413520) (-2772 . 413396) (-2773 . 413150) (-2774 . 413092)
- (-2775 . 413039) (-2776 . 412938) (-2777 . 412780) (-2778 . 412700)
- (-2779 . 412570) (-2780 . 412291) (-2781 . 412198) (-2782 . 412030)
- (-2783 . 411978) (-2784 . 411599) (-2785 . 411304) (-2786 . 411156)
- (-2787 . 411086) (-2788 . 410840) (-2789 . 410548) (-2790 . 410479)
- (-2791 . 410430) (-2792 . 410346) (-2793 . 410263) (-2794 . 410184)
- (-2795 . 409833) (-2796 . 409616) (-2797 . 409451) (-2798 . 409399)
- (-2799 . 409168) (-2800 . 408417) (-2801 . 408246) (-2802 . 408015)
- (-2803 . 407581) (-2804 . 407409) (-2805 . 406147) (-2806 . 406080)
- (-2807 . 405925) (-2808 . 405854) (-2809 . 405781) (-2810 . 405710)
- (-2811 . 405657) (-2812 . 405546) (-2813 . 405439) (-2814 . 405108)
- (-2815 . 405053) (-2816 . 404890) (-2817 . 404707) (-2818 . 404652)
- (-2819 . 404043) (-2820 . 403943) (-2821 . 403890) (-2822 . 403800)
- (-2823 . 403484) (-2824 . 402930) (-2825 . 402814) (-2826 . 402496)
- (-2827 . 402282) (-2828 . 402210) (-2829 . 401999) (-2830 . 401791)
- (-2831 . 401667) (-2832 . 401584) (-2833 . 401501) (-2834 . 401397)
- (-2835 . 401239) (-2836 . 401186) (-2837 . 401093) (-2838 . 400948)
- (-2839 . 400843) (-2840 . 400781) (-2841 . 400428) (-2842 . 400334)
- (-2843 . 400210) (-2844 . 399864) (-2845 . 399522) (-2846 . 399387)
- (-2847 . 399107) (-2848 . 398885) (-2849 . 398549) (-2850 . 398445)
- (-2851 . 398361) (-2852 . 397851) (-2853 . 397641) (-2854 . 397555)
- (-2855 . 397132) (-2856 . 397082) (-2857 . 396555) (-2858 . 396502)
- (-2859 . 396112) (-2860 . 395954) (-2861 . 395093) (-2862 . 394706)
- (-2863 . 394520) (-2864 . 394452) (-2865 . 394343) (-2866 . 394212)
- (-2867 . 394105) (-2868 . 393968) (-2869 . 393805) (-2870 . 393773)
- (-2871 . 393660) (-2872 . 393587) (-2873 . 393534) (-2874 . 393397)
- (-2875 . 393311) (-2876 . 392935) (-2877 . 392852) (-2878 . 392661)
- (-2879 . 392540) (-2880 . 392512) (-2881 . 392415) (-2882 . 392311)
- (-2883 . 392234) (-2884 . 391980) (-2885 . 391899) (-2886 . 391739)
- (-2887 . 391004) (-2888 . 390925) (-2889 . 390851) (-2890 . 390788)
- (-2891 . 390690) (-2892 . 390616) (-2893 . 390493) (-2894 . 390275)
- (-2895 . 390223) (-2896 . 390082) (-2897 . 390030) (-2898 . 389831)
- (-2899 . 389735) (-2900 . 389056) (-2901 . 388962) (-2902 . 388891)
- (-2903 . 388824) (-2904 . 387941) (-2905 . 387822) (-2906 . 387689)
- (-2907 . 387620) (-2908 . 387548) (-2909 . 387305) (-2910 . 387225)
- (-2911 . 387151) (-2912 . 387051) (-2913 . 386893) (-2914 . 386808)
- (-2915 . 386518) (-2916 . 386327) (-2917 . 386108) (-2918 . 386009)
- (-2919 . 385956) (-2920 . 385770) (-2921 . 385712) (-2922 . 385427)
- (-2923 . 385371) (-2924 . 385258) (-2925 . 385170) (-2926 . 385040)
- (-2927 . 384843) (-2928 . 384755) (-2929 . 384595) (-2930 . 384168)
- (-2931 . 384112) (-2932 . 384019) (-2933 . 383991) (-2934 . 383797)
- (-2935 . 383719) (-2936 . 383685) (-2937 . 383594) (-2938 . 383375)
- (-2939 . 383266) (-2940 . 383193) (-2941 . 382871) (-2942 . 382712)
- (-2943 . 382604) (-2944 . 382301) (-2945 . 382126) (-2946 . 382092)
- (-2947 . 381886) (-2948 . 381834) (-2949 . 381714) (-2950 . 381582)
- (-2951 . 381463) (-2952 . 381375) (-2953 . 381298) (-2954 . 381026)
- (-2955 . 380960) (-2956 . 380877) (-2957 . 380416) (-2958 . 379742)
- (-2959 . 379641) (-2960 . 379258) (-2961 . 379206) (-2962 . 379133)
- (-2963 . 378766) (-2964 . 378504) (-2965 . 378395) (-2966 . 378252)
- (-2967 . 378197) (-2968 . 378012) (-2969 . 377745) (-2970 . 377675)
- (-2971 . 377542) (-2972 . 377460) (-2973 . 377364) (-2974 . 377069)
- (-2975 . 376930) (-2976 . 376823) (-2977 . 376740) (-2978 . 376183)
- (-2979 . 374991) (-2980 . 374764) (-2981 . 374692) (-2982 . 374618)
- (-2983 . 374528) (-2984 . 374049) (-2985 . 373997) (-2986 . 373880)
- (-2987 . 373601) (-2988 . 373467) (-2989 . 373365) (-2990 . 373222)
- (-2991 . 373166) (-2992 . 372777) (-2993 . 372704) (-2994 . 372495)
- (-2995 . 372124) (-2996 . 371578) (-2997 . 371506) (-2998 . 371369)
- (-2999 . 370371) (-3000 . 370064) (-3001 . 369895) (-3002 . 369737)
- (-3003 . 369665) (-3004 . 369616) (-3005 . 369347) (-3006 . 369237)
- (-3007 . 369088) (-3008 . 368943) (-3009 . 368778) (-3010 . 368654)
- (-3011 . 368448) (-3012 . 368066) (-3013 . 368037) (-3014 . 367884)
- (-3015 . 367704) (-3016 . 367577) (-3017 . 367478) (-3018 . 367326)
- (-3019 . 367238) (-3020 . 367063) (-3021 . 366905) (-3022 . 366808)
- (-3023 . 366755) (-3024 . 366658) (-3025 . 366588) (-3026 . 366532)
- (-3027 . 366296) (-3028 . 365945) (-3029 . 365893) (-3030 . 365840)
- (-3031 . 365763) (-3032 . 365683) (-3033 . 365546) (-3034 . 364788)
- (-3035 . 364473) (-3036 . 364360) (-3037 . 364194) (-3038 . 364106)
- (-3039 . 363924) (-3040 . 363851) (-3041 . 363643) (-3042 . 362811)
- (-3043 . 362731) (-3044 . 362647) (-3045 . 362595) (-3046 . 362428)
- (-3047 . 362180) (-3048 . 362130) (-3049 . 361750) (-3050 . 361549)
- (-3051 . 361451) (-3052 . 361057) (-3053 . 360797) (-3054 . 360706)
- (-3055 . 358738) (-3056 . 358634) (-3057 . 358518) (-3058 . 358266)
- (-3059 . 358169) (-3060 . 358074) (-3061 . 357738) (-3062 . 357615)
- (-3063 . 357436) (-3064 . 357300) (-3065 . 357163) (-3066 . 357050)
- (-3067 . 356966) (-3068 . 356687) (-3069 . 356464) (-3070 . 356407)
- (-3071 . 356336) (-3072 . 356271) (-3073 . 355398) (-3074 . 355303)
- (-3075 . 355104) (-3076 . 354992) (-3077 . 354789) (-3078 . 354724)
- (-3079 . 354672) (-3080 . 354591) (-3081 . 354533) (-3082 . 354001)
- (-3083 . 353917) (-3084 . 353805) (-3085 . 353692) (-3086 . 353607)
- (-3087 . 353256) (-3088 . 352602) (-3089 . 352501) (-3090 . 352277)
- (-3091 . 352085) (-3092 . 351969) (-3093 . 351627) (-3094 . 351574)
- (-3095 . 351468) (-3096 . 351396) (-3097 . 351316) (-3098 . 351188)
- (-3099 . 351139) (-3100 . 351111) (-3101 . 350998) (-3102 . 350632)
- (-3103 . 350510) (-3104 . 350206) (-3105 . 350123) (-3106 . 350063)
- (-3107 . 349954) (-3108 . 349832) (-3109 . 349725) (-3110 . 349538)
- (-3111 . 349485) (-3112 . 349411) (-3113 . 349238) (-3114 . 349167)
- (-3115 . 349085) (-3116 . 348889) (-3117 . 348744) (-3118 . 348676)
- (-3119 . 348395) (-3120 . 348312) (-3121 . 348184) (-3122 . 348041)
- (-3123 . 347968) (-3124 . 347669) (-3125 . 346851) (-3126 . 346589)
- (-3127 . 344733) (-3128 . 344669) (-3129 . 344574) (-3130 . 344455)
- (-3131 . 344389) (-3132 . 344336) (-3133 . 344230) (-3134 . 344175)
- (-3135 . 344073) (-3136 . 344011) (-3137 . 343942) (-3138 . 343863)
- (-3139 . 343789) (-3140 . 343736) (-3141 . 343670) (-3142 . 342957)
- (-3143 . 341369) (-3144 . 341277) (-3145 . 341119) (-3146 . 340745)
- (-3147 . 340606) (-3148 . 340549) (-3149 . 340331) (-3150 . 340106)
- (-3151 . 339977) (-3152 . 339589) (-3153 . 339195) (-3154 . 338644)
- (-3155 . 338396) (-3156 . 337783) (-3157 . 337573) (-3158 . 337466)
- (-3159 . 336154) (-3160 . 336086) (-3161 . 335817) (-3162 . 335710)
- (-3163 . 335625) (-3164 . 335509) (-3165 . 335427) (-3166 . 335399)
- (-3167 . 335219) (-3168 . 334792) (-3169 . 333876) (-3170 . 333790)
- (-3171 . 333737) (-3172 . 333619) (-3173 . 333405) (-3174 . 333298)
- (-3175 . 332630) (-3176 . 332523) (-3177 . 332471) (-3178 . 332409)
- (-3179 . 331691) (-3180 . 331526) (-3181 . 331373) (-3182 . 331250)
- (-3183 . 331198) (-3184 . 331076) (-3185 . 330833) (-3186 . 330738)
- (-3187 . 330683) (-3188 . 330584) (-3189 . 330506) (-3190 . 329914)
- (-3191 . 328948) (-3192 . 328348) (-3193 . 326085) (-3194 . 325982)
- (-3195 . 325872) (-3196 . 325270) (-3197 . 325196) (-3198 . 325059)
- (-3199 . 324464) (-3200 . 324343) (-3201 . 324154) (-3202 . 323880)
- (-3203 . 323728) (-3204 . 323651) (-3205 . 323557) (-3206 . 322847)
- (-3207 . 322526) (-3208 . 322373) (-3209 . 322342) (-3210 . 322069)
- (-3211 . 321983) (-3212 . 321722) (-3213 . 321670) (-3214 . 321152)
- (-3215 . 320961) (-3216 . 320798) (-3217 . 320191) (-3218 . 320113)
- (-3219 . 320020) (-3220 . 319774) (-3221 . 319634) (-3222 . 319491)
- (-3223 . 319441) (-3224 . 319389) (-3225 . 319276) (-3226 . 313938)
- (-3227 . 313839) (-3228 . 313693) (-3229 . 313519) (-3230 . 313416)
- (-3231 . 313361) (-3232 . 312864) (-3233 . 312562) (-3234 . 312528)
- (-3235 . 312257) (-3236 . 311914) (-3237 . 311861) (-3238 . 311751)
- (-3239 . 311410) (-3240 . 311379) (-3241 . 311347) (-3242 . 311186)
- (-3243 . 310802) (-3244 . 310771) (-3245 . 310737) (-3246 . 310684)
- (-3247 . 310612) (-3248 . 309396) (-3249 . 309167) (-3250 . 308097)
- (-3251 . 308011) (-3252 . 307958) (-3253 . 307843) (-3254 . 306815)
- (-3255 . 306732) (-3256 . 306625) (-3257 . 306565) (-3258 . 306513)
- (-3259 . 306449) (-3260 . 305924) (-3261 . 305775) (-3262 . 305696)
- (-3263 . 305581) (-3264 . 305361) (-3265 . 305273) (-3266 . 305193)
- (-3267 . 305075) (-3268 . 304765) (-3269 . 304692) (-3270 . 304606)
- (** . 301517) (-3272 . 301468) (-3273 . 301395) (-3274 . 301285)
- (-3275 . 300845) (-3276 . 300572) (-3277 . 300323) (-3278 . 300233)
- (-3279 . 300119) (-3280 . 299747) (-3281 . 299654) (-3282 . 299553)
- (-3283 . 299447) (-3284 . 299380) (-3285 . 299250) (-3286 . 299073)
- (-3287 . 298918) (-3288 . 298823) (-3289 . 298689) (-3290 . 298577)
- (-3291 . 298500) (-3292 . 298434) (-3293 . 298327) (-3294 . 298199)
- (-3295 . 297710) (-3296 . 297451) (-3297 . 297279) (-3298 . 297021)
- (-3299 . 296966) (-3300 . 296847) (-3301 . 296701) (-3302 . 292159)
- (-3303 . 292091) (-3304 . 291878) (-3305 . 291734) (-3306 . 291682)
- (-3307 . 291604) (-3308 . 291431) (-3309 . 290313) (-3310 . 290220)
- (-3311 . 290090) (-3312 . 289937) (-3313 . 289746) (-3314 . 289622)
- (-3315 . 289478) (-3316 . 288777) (-3317 . 288683) (-3318 . 288614)
- (-3319 . 288547) (-3320 . 288470) (-3321 . 288128) (-3322 . 287943)
- (-3323 . 287887) (-3324 . 287793) (-3325 . 287664) (-3326 . 287441)
- (-3327 . 286763) (-3328 . 286662) (-3329 . 286479) (-3330 . 285987)
- (-3331 . 285808) (-3332 . 285780) (-3333 . 285550) (-3334 . 285383)
- (-3335 . 285284) (-3336 . 285186) (-3337 . 285043) (-3338 . 284863)
- (-3339 . 284708) (-3340 . 284480) (-3341 . 284371) (-3342 . 284235)
- (-3343 . 283808) (-3344 . 283424) (-3345 . 283350) (-3346 . 283247)
- (-3347 . 282839) (-3348 . 282574) (-3349 . 282521) (-3350 . 282489)
- (-3351 . 282017) (-3352 . 281898) (-3353 . 280321) (-3354 . 280252)
- (-3355 . 280086) (-3356 . 279882) (-3357 . 279854) (-3358 . 279656)
- (-3359 . 279549) (-3360 . 279468) (-3361 . 279305) (-3362 . 279072)
- (-3363 . 278890) (-3364 . 278326) (-3365 . 278178) (-3366 . 277812)
- (-9 . 277784) (-3368 . 277454) (-3369 . 277314) (-3370 . 277172)
- (-3371 . 277138) (-3372 . 276987) (-3373 . 276903) (-3374 . 276851)
- (-3375 . 276717) (-3376 . 276525) (-8 . 276497) (-3378 . 276438)
- (-3379 . 276372) (-3380 . 276256) (-3381 . 275804) (-3382 . 275750)
- (-3383 . 275632) (-3384 . 275562) (-3385 . 275405) (-7 . 275377)
- (-3387 . 275291) (-3388 . 275110) (-3389 . 274725) (-3390 . 274418)
- (-3391 . 273880) (-3392 . 273821) (-3393 . 272640) (-3394 . 272539)
- (-3395 . 272207) (-3396 . 272049) (-3397 . 257935) (-3398 . 257857)
- (-3399 . 253794) (-3400 . 253688) (-3401 . 253408) (-3402 . 253293)
- (-3403 . 253037) (-3404 . 252952) (-3405 . 252848) (-3406 . 252741)
- (-3407 . 252688) (-3408 . 252595) (-3409 . 252262) (-3410 . 252097)
- (-3411 . 251649) (-3412 . 251515) (-3413 . 251392) (-3414 . 251011)
- (-3415 . 250678) (-3416 . 250303) (-3417 . 250096) (-3418 . 250018)
- (-3419 . 249768) (-3420 . 249650) (-3421 . 249494) (-3422 . 248937)
- (-3423 . 248603) (-3424 . 248520) (-3425 . 248397) (-3426 . 248156)
- (-3427 . 247748) (-3428 . 247696) (-3429 . 247444) (-3430 . 247125)
- (-3431 . 246528) (-3432 . 246417) (-3433 . 246307) (-3434 . 243962)
- (-3435 . 243796) (-3436 . 243633) (-3437 . 243530) (-3438 . 242609)
- (-3439 . 242496) (-3440 . 242387) (-3441 . 238721) (-3442 . 238609)
- (-3443 . 238494) (-3444 . 238426) (-3445 . 238288) (-3446 . 238108)
- (-3447 . 237856) (-3448 . 237723) (-3449 . 237603) (-3450 . 237517)
- (-3451 . 237125) (-3452 . 236930) (-3453 . 236787) (-3454 . 236636)
- (-3455 . 236278) (-3456 . 236155) (-3457 . 235933) (-3458 . 235553)
- (-3459 . 235372) (-3460 . 235298) (-3461 . 235210) (-3462 . 235156)
- (-3463 . 235055) (-3464 . 235003) (-3465 . 234929) (-3466 . 234740)
- (-3467 . 234706) (-3468 . 234653) (-3469 . 234508) (-3470 . 234479)
- (-3471 . 234232) (-3472 . 234119) (-3473 . 233846) (-3474 . 233566)
- (-3475 . 233500) (-3476 . 233403) (-3477 . 233317) (-3478 . 233231)
- (-3479 . 232991) (-3480 . 232837) (-3481 . 232701) (-3482 . 232592)
- (-3483 . 232152) (-3484 . 230971) (-3485 . 230864) (-3486 . 230691)
- (-3487 . 230603) (-3488 . 230550) (-3489 . 230387) (-3490 . 229427)
- (-3491 . 229220) (-3492 . 229094) (-3493 . 228910) (-3494 . 228511)
- (-3495 . 228482) (-3496 . 228398) (-3497 . 227994) (-3498 . 227789)
- (-3499 . 227674) (-3500 . 227535) (-3501 . 227419) (-3502 . 227385)
- (-3503 . 227115) (-3504 . 227032) (-3505 . 226912) (-3506 . 226803)
- (-3507 . 226709) (-3508 . 226463) (-3509 . 226351) (-3510 . 226277)
- (-3511 . 226222) (-3512 . 226170) (-3513 . 226073) (-3514 . 226012)
- (-3515 . 225660) (-3516 . 225551) (-3517 . 225452) (-3518 . 225381)
- (-3519 . 225322) (-3520 . 225255) (-3521 . 225116) (-3522 . 224913)
- (-3523 . 224839) (-3524 . 224663) (-3525 . 224634) (-3526 . 224562)
- (-3527 . 224490) (-3528 . 224146) (-3529 . 224066) (-3530 . 223887)
- (-3531 . 223514) (-3532 . 223458) (-3533 . 223238) (-3534 . 221387)
- (-3535 . 221259) (-3536 . 221176) (-3537 . 220667) (-3538 . 220413)
- (-3539 . 220315) (-3540 . 220230) (-3541 . 220087) (-3542 . 219924)
- (-3543 . 219640) (-3544 . 219421) (-3545 . 219327) (-3546 . 219203)
- (-3547 . 219030) (-3548 . 218823) (-3549 . 218670) (-3550 . 218566)
- (-3551 . 218319) (-3552 . 218195) (-3553 . 218115) (-3554 . 217957)
- (-3555 . 217813) (-3556 . 217665) (-3557 . 217010) (-3558 . 216769)
- (-3559 . 216703) (-3560 . 216416) (-3561 . 216342) (-3562 . 216246)
- (-3563 . 216158) (-3564 . 216051) (-3565 . 215944) (-3566 . 214835)
- (-3567 . 213670) (-3568 . 213613) (-3569 . 213500) (-3570 . 213433)
- (-3571 . 213325) (-3572 . 212833) (-3573 . 212656) (-3574 . 212430)
- (-3575 . 212245) (-3576 . 212138) (-3577 . 211851) (-3578 . 211464)
- (-3579 . 211275) (-3580 . 211165) (-3581 . 210900) (-3582 . 210831)
- (-3583 . 210776) (-3584 . 210705) (-3585 . 210576) (-3586 . 210506)
- (-3587 . 210429) (-3588 . 209976) (-3589 . 209766) (-3590 . 209715)
- (-3591 . 209613) (-3592 . 209447) (-3593 . 209331) (-3594 . 208796)
- (-3595 . 208730) (-3596 . 208698) (-3597 . 208577) (-3598 . 208425)
- (-3599 . 208132) (-3600 . 208076) (-3601 . 208048) (-3602 . 207996)
- (-3603 . 207886) (-3604 . 207824) (-3605 . 207722) (-3606 . 207587)
- (-3607 . 207285) (-3608 . 207109) (-3609 . 206792) (-3610 . 206693)
- (-3611 . 206569) (-3612 . 206277) (-3613 . 206178) (-3614 . 206020)
- (-3615 . 205675) (-3616 . 205622) (-3617 . 205478) (-3618 . 205339)
- (-3619 . 205199) (-3620 . 204767) (-3621 . 204699) (-3622 . 204355)
- (-3623 . 204285) (-3624 . 204213) (-3625 . 204085) (-3626 . 203892)
- (-3627 . 203790) (-3628 . 203689) (-3629 . 203404) (-3630 . 203286)
- (-3631 . 202846) (-3632 . 202632) (-3633 . 202047) (-3634 . 201931)
- (-3635 . 201834) (-3636 . 201726) (-3637 . 200651) (-3638 . 200270)
- (-3639 . 199942) (-3640 . 199890) (-3641 . 199675) (-3642 . 199571)
- (-3643 . 199453) (-3644 . 199160) (-3645 . 199082) (-3646 . 198996)
- (-3647 . 198858) (-3648 . 198427) (-3649 . 198303) (-3650 . 198172)
- (-3651 . 198103) (-3652 . 198044) (-3653 . 197879) (-3654 . 197761)
- (-3655 . 197702) (-3656 . 197462) (-3657 . 197363) (-3658 . 196976)
- (-3659 . 196635) (-3660 . 196483) (-3661 . 196364) (-3662 . 196003)
- (-3663 . 195969) (-3664 . 195932) (-3665 . 195872) (-3666 . 195655)
- (-3667 . 195595) (-3668 . 195442) (-3669 . 195329) (-3670 . 194998)
- (-3671 . 194628) (-3672 . 194165) (-3673 . 194102) (-3674 . 193875)
- (-3675 . 193731) (-3676 . 193678) (-3677 . 193571) (-3678 . 193497)
- (-3679 . 193469) (-3680 . 193292) (-3681 . 193202) (-3682 . 192972)
- (-3683 . 192740) (-3684 . 192652) (-3685 . 192445) (-3686 . 192329)
- (-3687 . 192272) (-3688 . 191712) (-3689 . 191684) (-3690 . 191547)
- (-3691 . 191438) (-3692 . 190788) (-3693 . 189901) (-3694 . 189831)
- (-3695 . 189470) (-3696 . 189374) (-3697 . 189269) (-3698 . 189202)
- (-3699 . 189084) (-3700 . 188881) (-3701 . 188587) (-3702 . 188483)
- (-3703 . 188416) (-3704 . 188303) (-3705 . 188194) (-3706 . 187679)
- (-3707 . 187613) (-3708 . 187375) (-3709 . 186929) (-3710 . 186843)
- (-3711 . 186538) (-3712 . 186027) (-3713 . 185930) (-3714 . 185570)
- (-3715 . 185461) (-3716 . 185345) (-3717 . 185279) (-3718 . 185196)
- (-3719 . 185080) (-3720 . 185028) (-3721 . 184955) (-3722 . 184839)
- (-3723 . 184677) (-3724 . 184390) (-3725 . 184287) (-3726 . 184214)
- (-3727 . 183975) (-3728 . 183804) (-3729 . 183603) (-3730 . 183297)
- (-3731 . 183196) (-3732 . 182999) (-3733 . 182928) (-3734 . 182676)
- (-3735 . 182515) (-3736 . 182305) (-3737 . 182227) (-3738 . 182071)
- (-3739 . 181335) (-3740 . 181083) (-3741 . 180985) (-3742 . 180815)
- (-3743 . 180744) (-3744 . 180613) (-3745 . 179990) (-3746 . 179815)
- (-3747 . 179766) (-3748 . 179491) (-3749 . 179350) (-3750 . 179107)
- (-3751 . 178979) (-3752 . 178838) (-3753 . 178570) (-3754 . 178183)
- (-3755 . 178101) (-3756 . 177991) (-3757 . 177834) (-3758 . 177581)
- (-3759 . 177324) (-3760 . 177230) (-3761 . 177053) (-3762 . 176990)
- (-3763 . 176937) (-3764 . 176621) (-3765 . 176234) (-3766 . 175720)
- (-3767 . 175607) (-3768 . 175530) (-3769 . 175502) (-3770 . 175151)
- (-3771 . 174932) (-3772 . 174742) (-3773 . 174631) (-3774 . 174473)
- (-3775 . 174346) (-3776 . 172508) (-3777 . 172477) (-3778 . 172378)
- (-3779 . 172047) (-3780 . 169885) (-3781 . 169595) (-3782 . 169449)
- (-3783 . 169372) (-3784 . 169247) (-3785 . 169117) (-3786 . 169010)
- (-3787 . 168825) (-3788 . 167315) (-3789 . 166612) (-3790 . 166546)
- (-3791 . 166475) (-3792 . 166197) (-3793 . 165997) (-3794 . 165890)
- (-3795 . 165824) (-3796 . 165495) (-3797 . 165350) (-3798 . 165288)
- (-3799 . 164822) (-3800 . 164562) (-3801 . 163014) (-3802 . 162826)
- (-3803 . 162730) (-3804 . 162490) (-3805 . 161526) (-3806 . 161395)
- (-3807 . 161346) (-3808 . 161133) (-3809 . 161049) (-3810 . 160911)
- (-3811 . 160709) (-3812 . 160550) (-3813 . 160395) (-3814 . 160187)
- (-3815 . 160085) (-3816 . 159958) (-3817 . 159758) (-3818 . 159702)
- (-3819 . 159600) (-3820 . 159530) (-3821 . 159478) (-3822 . 159239)
- (-3823 . 158503) (-3824 . 158188) (-3825 . 158154) (-3826 . 158018)
- (-3827 . 157865) (-3828 . 157804) (-3829 . 157687) (-3830 . 157103)
- (-3831 . 157035) (-3832 . 156889) (-3833 . 156583) (-3834 . 156436)
- (-3835 . 156262) (-3836 . 155909) (-3837 . 155747) (-3838 . 155377)
- (-3839 . 155293) (-3840 . 155012) (-3841 . 154894) (-3842 . 154649)
- (-3843 . 154125) (-3844 . 153941) (-3845 . 153634) (-3846 . 153478)
- (-3847 . 153392) (-3848 . 153341) (-3849 . 153268) (-3850 . 152419)
- (-3851 . 152110) (-3852 . 151994) (-3853 . 151867) (-3854 . 151754)
- (-3855 . 151670) (-3856 . 151638) (-3857 . 151419) (-3858 . 151297)
- (-3859 . 151196) (-3860 . 151096) (-3861 . 150962) (-3862 . 150885)
- (-3863 . 150857) (-3864 . 150801) (-3865 . 150655) (-3866 . 147034)
- (-3867 . 146390) (-3868 . 145979) (-3869 . 145728) (-3870 . 145628)
- (-3871 . 145557) (-3872 . 143425) (-3873 . 143320) (-3874 . 143267)
- (-3875 . 143081) (-3876 . 143011) (-3877 . 142896) (-3878 . 142366)
- (-3879 . 141724) (-3880 . 141443) (-3881 . 140271) (-3882 . 140220)
- (-3883 . 139844) (-3884 . 139731) (-3885 . 139518) (-3886 . 139281)
- (-3887 . 139174) (-3888 . 139116) (-3889 . 138734) (-3890 . 138679)
- (-3891 . 138623) (-3892 . 138561) (-3893 . 138442) (-3894 . 138327)
- (-3895 . 137693) (-3896 . 137549) (-3897 . 137450) (-3898 . 137306)
- (-3899 . 137058) (-3900 . 136676) (-3901 . 136539) (-3902 . 136104)
- (-3903 . 135981) (-3904 . 135165) (-3905 . 134028) (-3906 . 133847)
- (-3907 . 132439) (-3908 . 131637) (-3909 . 131609) (-3910 . 131490)
- (-3911 . 131416) (-3912 . 131318) (-3913 . 131224) (-3914 . 131154)
- (-3915 . 131123) (-3916 . 131049) (-3917 . 130930) (-3918 . 130711)
- (-3919 . 130615) (-3920 . 130474) (-3921 . 130422) (-3922 . 130073)
- (-3923 . 129858) (-3924 . 129774) (-3925 . 129746) (-3926 . 129543)
- (-3927 . 129436) (-3928 . 128917) (-3929 . 128830) (-3930 . 128678)
- (-3931 . 128583) (-3932 . 128464) (-3933 . 128285) (-3934 . 128142)
- (-3935 . 127903) (-3936 . 127805) (-3937 . 127717) (-3938 . 127640)
- (-3939 . 122127) (-3940 . 103413) (-3941 . 102999) (-3942 . 102753)
- (-3943 . 102652) (-3944 . 101440) (-3945 . 101349) (-3946 . 100692)
- (-3947 . 100613) (-3948 . 100221) (-3949 . 99999) (-3950 . 99944)
- (-3951 . 99915) (-3952 . 97094) (-3953 . 96896) (-3954 . 96753)
- (-3955 . 96548) (-3956 . 96418) (-3957 . 96059) (-3958 . 95907)
- (-3959 . 95743) (-3960 . 95596) (-3961 . 95543) (-3962 . 95291)
- (-3963 . 94836) (-3964 . 94780) (-3965 . 94586) (-3966 . 94434)
- (-3967 . 94175) (-3968 . 94102) (-3969 . 93942) (-3970 . 93829)
- (-3971 . 93025) (-3972 . 92955) (-3973 . 92921) (-3974 . 92860)
- (-3975 . 92511) (-3976 . 92355) (-3977 . 92278) (-3978 . 92125)
- (-3979 . 91937) (-3980 . 91399) (-3981 . 91124) (-3982 . 91044)
- (-3983 . 90845) (-3984 . 90678) (-3985 . 90518) (-3986 . 90447)
- (-3987 . 89787) (-3988 . 89707) (-3989 . 89496) (-3990 . 89418)
- (-3991 . 89363) (-3992 . 89280) (-3993 . 88944) (-3994 . 88772)
- (-3995 . 88363) (-3996 . 88221) (-3997 . 87569) (-3998 . 87496)
- (-3999 . 87258) (-4000 . 87151) (-4001 . 87044) (-4002 . 86949)
- (-4003 . 86895) (-4004 . 86796) (-12 . 86624) (-4006 . 86487)
- (-4007 . 86325) (-4008 . 86110) (-4009 . 86053) (-4010 . 85831)
- (-4011 . 85802) (-4012 . 85731) (-4013 . 85228) (-4014 . 85113)
- (-4015 . 84914) (-4016 . 84861) (-4017 . 84572) (-4018 . 84463)
- (-4019 . 84169) (-4020 . 83596) (-4021 . 83337) (-4022 . 83182)
- (-4023 . 83067) (-4024 . 82227) (-4025 . 81339) (-4026 . 81215)
- (-4027 . 81149) (-4028 . 81097) (-4029 . 80981) (-4030 . 80624)
- (-4031 . 80546) (-4032 . 80260) (-4033 . 79944) (-4034 . 79873)
- (-4035 . 79807) (-4036 . 79592) (-4037 . 79494) (-4038 . 79435)
- (-4039 . 79034) (-4040 . 78981) (-4041 . 78763) (-4042 . 78680)
- (-4043 . 78586) (-4044 . 78534) (-4045 . 78482) (-4046 . 78404)
- (-4047 . 78017) (-4048 . 77931) (-4049 . 77858) (-4050 . 77313)
- (-4051 . 77256) (-4052 . 77185) (-4053 . 76937) (-4054 . 76830)
- (-4055 . 76227) (-4056 . 74598) (-4057 . 74407) (-4058 . 74355)
- (-4059 . 74103) (-4060 . 74024) (-4061 . 73974) (-4062 . 73762)
- (-4063 . 73659) (-4064 . 73579) (-4065 . 73262) (-4066 . 73158)
- (-4067 . 73109) (-4068 . 72243) (-4069 . 71790) (-4070 . 71630)
- (-4071 . 71517) (-4072 . 71462) (-4073 . 71166) (-4074 . 71138)
- (-4075 . 70905) (-4076 . 70810) (-4077 . 69506) (-4078 . 68132)
- (-4079 . 68054) (-4080 . 67929) (-4081 . 67860) (-4082 . 67756)
- (-4083 . 67464) (-4084 . 67246) (-4085 . 67194) (-4086 . 67069)
- (-4087 . 66991) (-4088 . 66911) (-4089 . 66877) (-4090 . 66711)
- (-4091 . 66552) (-4092 . 66460) (-4093 . 66328) (-4094 . 66206)
- (* . 61660) (-4096 . 61432) (-4097 . 61350) (-4098 . 61023)
- (-4099 . 60929) (-4100 . 60751) (-4101 . 60400) (-4102 . 60317)
- (-4103 . 60267) (-4104 . 60198) (-4105 . 59924) (-4106 . 59896)
- (-4107 . 59846) (-4108 . 59303) (-4109 . 59115) (-4110 . 57842)
- (-4111 . 57724) (-4112 . 57645) (-4113 . 57531) (-4114 . 57269)
- (-4115 . 57111) (-4116 . 56993) (-4117 . 56693) (-4118 . 56609)
- (-4119 . 56481) (-4120 . 56334) (-4121 . 56224) (-4122 . 56169)
- (-4123 . 56116) (-4124 . 56050) (-4125 . 55935) (-4126 . 55811)
- (-4127 . 53953) (-4128 . 53643) (-4129 . 53569) (-4130 . 53503)
- (-4131 . 50204) (-4132 . 50123) (-4133 . 50004) (-4134 . 49945)
- (-4135 . 49836) (-4136 . 49638) (-4137 . 49582) (-4138 . 49411)
- (-4139 . 49133) (-4140 . 49003) (-4141 . 48785) (-4142 . 48642)
- (-4143 . 48568) (-4144 . 48484) (-4145 . 47963) (-4146 . 47851)
- (-4147 . 47713) (-4148 . 47495) (-4149 . 47467) (-4150 . 47249)
- (-4151 . 47177) (-4152 . 47091) (-4153 . 46845) (-4154 . 46779)
- (-4155 . 46454) (-4156 . 46373) (-4157 . 46114) (-4158 . 46059)
- (-4159 . 45834) (-4160 . 45766) (-4161 . 45470) (-4162 . 45400)
- (-4163 . 45334) (-4164 . 44760) (-4165 . 44602) (-4166 . 44543)
- (-4167 . 44184) (-4168 . 44024) (-4169 . 43946) (-4170 . 43763)
- (-4171 . 43667) (-4172 . 43584) (-4173 . 43146) (-4174 . 43023)
- (-4175 . 42449) (-4176 . 42042) (-4177 . 41822) (-4178 . 41642)
- (-4179 . 41571) (-4180 . 41512) (-4181 . 41346) (-4182 . 41233)
- (-4183 . 41113) (-4184 . 40858) (-4185 . 40284) (-4186 . 40086)
- (-4187 . 40031) (-4188 . 39607) (-4189 . 39335) (-4190 . 39227)
- (-4191 . 39114) (-4192 . 39019) (-4193 . 38967) (-4194 . 38871)
- (-4195 . 38264) (-4196 . 35483) (-4197 . 34909) (-4198 . 34741)
- (-4199 . 34634) (-4200 . 34564) (-4201 . 34416) (-4202 . 34244)
- (-4203 . 34077) (-4204 . 33610) (-4205 . 33332) (-4206 . 33258)
- (-4207 . 33116) (-4208 . 32936) (-4209 . 32856) (-4210 . 32747)
- (-4211 . 32589) (-4212 . 32537) (-4213 . 32429) (-4214 . 32355)
- (-4215 . 31809) (-4216 . 31637) (-4217 . 31557) (-4218 . 31434)
- (-4219 . 31337) (-4220 . 31267) (-4221 . 31106) (-4222 . 30950)
- (-4223 . 30841) (-4224 . 30688) (-4225 . 30544) (-4226 . 30322)
- (-4227 . 30197) (-4228 . 29670) (-4229 . 29593) (-4230 . 29242)
- (-4231 . 29070) (-4232 . 28975) (-4233 . 28859) (-4234 . 28678)
- (-4235 . 28619) (-4236 . 28434) (-4237 . 28227) (-4238 . 27818)
- (-4239 . 27397) (-4240 . 27100) (-4241 . 26599) (-4242 . 26478)
- (-4243 . 26384) (-4244 . 25780) (-4245 . 25608) (-4246 . 25514)
- (-4247 . 24644) (-4248 . 24440) (-4249 . 24346) (-4250 . 24258)
- (-4251 . 24186) (-4252 . 24117) (-4253 . 23904) (-4254 . 23708)
- (-4255 . 23553) (-4256 . 23389) (-4257 . 23315) (-4258 . 23208)
- (-4259 . 23108) (-4260 . 23025) (-4261 . 22933) (-4262 . 22807)
- (-4263 . 20693) (-4264 . 20637) (-4265 . 20506) (-4266 . 20454)
- (-4267 . 20347) (-4268 . 20261) (-4269 . 20124) (-4270 . 19885)
- (-4271 . 19739) (-4272 . 19543) (-4273 . 19485) (-4274 . 19034)
- (-4275 . 18942) (-4276 . 18597) (-4277 . 18406) (-4278 . 18303)
- (-4279 . 18090) (-4280 . 17872) (-4281 . 17768) (-4282 . 17680)
- (-4283 . 17572) (-4284 . 16966) (-4285 . 16865) (-4286 . 16741)
- (-4287 . 16645) (-4288 . 16504) (-4289 . 16380) (-4290 . 16288)
- (-4291 . 16215) (-4292 . 16081) (-4293 . 15688) (-4294 . 15359)
- (-4295 . 15308) (-4296 . 15184) (-4297 . 15089) (-4298 . 14987)
- (-4299 . 14780) (-4300 . 14659) (-4301 . 12881) (-4302 . 12117)
- (-4303 . 11954) (-4304 . 11868) (-4305 . 11346) (-4306 . 11122)
- (-4307 . 10907) (-4308 . 10833) (-4309 . 10755) (-4310 . 10657)
- (-4311 . 10562) (-4312 . 10485) (-4313 . 10327) (-4314 . 10182)
- (-4315 . 10039) (-4316 . 8882) (-4317 . 8850) (-4318 . 7308)
- (-4319 . 6713) (-4320 . 6632) (-4321 . 6502) (-4322 . 6304)
- (-4323 . 6080) (-4324 . 5959) (-4325 . 5836) (-4326 . 5784)
- (-4327 . 5673) (-4328 . 5552) (-4329 . 5444) (-4330 . 5284)
- (-4331 . 5198) (-4332 . 5040) (-4333 . 4941) (-4334 . 4858)
- (-4335 . 4610) (-4336 . 4537) (-4337 . 4464) (-4338 . 4369)
- (-4339 . 4265) (-4340 . 4015) (-4341 . 3941) (-4342 . 2703)
- (-4343 . 2650) (-4344 . 2532) (-4345 . 2418) (-4346 . 2197)
- (-4347 . 2074) (-4348 . 1950) (-4349 . 1813) (-4350 . 1670)
- (-4351 . 1543) (-4352 . 1473) (-4353 . 1096) (-4354 . 941)
- (-4355 . 867) (-4356 . 811) (-4357 . 599) (-4358 . 498) (-4359 . 445)
- (-4360 . 200) (-4361 . 151) (-4362 . 67) (-4363 . 30)) \ No newline at end of file
+ (-12 (-5 *3 (-561)) (-5 *2 (-1258)) (-5 *1 (-1255))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-378)) (-5 *2 (-1258)) (-5 *1 (-1255)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *2 (-1200 (-919)))
+ (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1084 (-224))) (-5 *6 (-561)) (-5 *7 (-1148))
+ (-5 *2 (-1200 (-919))) (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561))
+ (-5 *2 (-1200 (-919))) (-5 *1 (-317))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-315 (-561))) (-5 *4 (-1 (-224) (-224)))
+ (-5 *5 (-1084 (-224))) (-5 *6 (-224)) (-5 *7 (-561)) (-5 *8 (-1148))
+ (-5 *2 (-1200 (-919))) (-5 *1 (-317)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306))
+ (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1162 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-787))
+ (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-638 *2)) (-4 *2 (-942 *6 *4 *5))
+ (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844))
+ (-4 *6 (-306)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3051 *3) (|:| |coef1| (-776 *3)) (|:| |coef2| (-776 *3))))
+ (-5 *1 (-776 *3)) (-4 *3 (-553)) (-4 *3 (-1042)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1205)))))
+(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1205)) (-4 *2 (-844))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1205))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-638 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1090))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844))
+ (-4 *6 (-1056 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -1388 *1) (|:| |upper| *1)))
+ (-4 *1 (-969 *4 *5 *3 *6)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-543))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166))))
+ (-4 *6 (-787)) (-5 *2 (-638 *3)) (-5 *1 (-917 *4 *5 *6 *3))
+ (-4 *3 (-942 *4 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-561)) (-5 *1 (-558)))))
+((-1286 . 734667) (-1287 . 734489) (-1288 . 734452) (-1289 . 734021)
+ (-1290 . 733964) (-1291 . 733802) (-1292 . 733391) (-1293 . 732637)
+ (-1294 . 732485) (-1295 . 732324) (-1296 . 732118) (-1297 . 731994)
+ (-1298 . 731176) (-1299 . 731045) (-1300 . 730599) (-1301 . 730176)
+ (-1302 . 730003) (-1303 . 729951) (-1304 . 729832) (-1305 . 729659)
+ (-1306 . 729325) (-1307 . 729075) (-1308 . 729023) (-1309 . 728938)
+ (-1310 . 728852) (-1311 . 728781) (-1312 . 728373) (-1313 . 728339)
+ (-1314 . 728087) (-1315 . 728021) (-1316 . 727939) (-1317 . 727826)
+ (-1318 . 727441) (-1319 . 727388) (-1320 . 727300) (-1321 . 727188)
+ (-1322 . 727051) (-1323 . 726957) (-1324 . 726907) (-1325 . 726854)
+ (-1326 . 726745) (-1327 . 726429) (-1328 . 726276) (-1329 . 725882)
+ (-1330 . 725782) (-1331 . 725321) (-1332 . 724671) (-1333 . 724481)
+ (-1334 . 724428) (-1335 . 724257) (-1336 . 724129) (-1337 . 724057)
+ (-1338 . 724004) (-1339 . 723946) (-1340 . 723708) (-1341 . 723590)
+ (-1342 . 723352) (-1343 . 723275) (-1344 . 723124) (-1345 . 723030)
+ (-1346 . 722827) (-1347 . 722637) (-1348 . 722447) (-1349 . 722096)
+ (-1350 . 721929) (-1351 . 721895) (-1352 . 721861) (-1353 . 721699)
+ (-1354 . 721528) (-1355 . 721451) (-1356 . 721355) (-1357 . 721256)
+ (-1358 . 720778) (-1359 . 720300) (-1360 . 720217) (-1361 . 720059)
+ (-1362 . 719963) (-1363 . 719861) (-1364 . 719762) (-1365 . 719658)
+ (-1366 . 719465) (-1367 . 719074) (-1368 . 718759) (-1369 . 718660)
+ (-1370 . 718587) (-1371 . 718307) (-1372 . 718279) (-1373 . 718191)
+ (-1374 . 718138) (-1375 . 718057) (-1376 . 717963) (-1377 . 717306)
+ (-1378 . 717253) (-1379 . 717115) (-1380 . 717035) (-1381 . 716840)
+ (-1382 . 716562) (-1383 . 716507) (-1384 . 716384) (-1385 . 716206)
+ (-1386 . 716135) (-1387 . 714506) (-1388 . 714406) (-1389 . 714332)
+ (-1390 . 714234) (-1391 . 714106) (-1392 . 713997) (-1393 . 712994)
+ (-1394 . 712666) (-1395 . 712632) (-1396 . 712579) (-1397 . 712365)
+ (-1398 . 712313) (-1399 . 712133) (-1400 . 711758) (-1401 . 710892)
+ (-1402 . 710783) (-1403 . 710273) (-1404 . 710132) (-1405 . 709947)
+ (-1406 . 709621) (-1407 . 709083) (-1408 . 708961) (-1409 . 708819)
+ (-1410 . 708764) (-1411 . 708606) (-1412 . 707232) (-1413 . 707079)
+ (-1414 . 706950) (-1415 . 706881) (-1416 . 705683) (-1417 . 705007)
+ (-1418 . 704561) (-1419 . 704349) (-1420 . 703932) (-1421 . 703789)
+ (-1422 . 703636) (-1423 . 703576) (-1424 . 703520) (-1425 . 703427)
+ (-1426 . 703337) (-1427 . 703104) (-1428 . 702826) (-1429 . 702770)
+ (-1430 . 702712) (-1431 . 702416) (-1432 . 702078) (-1433 . 701465)
+ (-1434 . 701280) (-1435 . 701039) (-1436 . 700796) (-1437 . 700744)
+ (-1438 . 700458) (-1439 . 700395) (-1440 . 700321) (-1441 . 700141)
+ (-1442 . 700062) (-1443 . 699902) (-1444 . 695904) (-1445 . 695477)
+ (-1446 . 695319) (-1447 . 695248) (-1448 . 695095) (-1449 . 695013)
+ (-1450 . 694735) (-1451 . 694675) (-1452 . 693835) (-1453 . 693571)
+ (-1454 . 693425) (-1455 . 693342) (-1456 . 693140) (-1457 . 692866)
+ (-1458 . 692646) (-1459 . 692584) (-1460 . 692474) (-1461 . 692315)
+ (-1462 . 692244) (-1463 . 692065) (-1464 . 691935) (-1465 . 691794)
+ (-1466 . 691674) (-1467 . 691602) (-1468 . 691489) (-1469 . 691417)
+ (-1470 . 690647) (-1471 . 690596) (-1472 . 690497) (-1473 . 690278)
+ (-1474 . 690246) (-1475 . 690188) (-1476 . 690040) (-1477 . 689894)
+ (-1478 . 689739) (-1479 . 689641) (-1480 . 689540) (-1481 . 689474)
+ (-1482 . 687636) (-1483 . 687481) (-1484 . 687227) (-1485 . 687137)
+ (-1486 . 687064) (-1487 . 686885) (-1488 . 686471) (-1489 . 685872)
+ (-1490 . 685742) (-1491 . 684988) (-1492 . 684901) (-1493 . 684779)
+ (-1494 . 684708) (-1495 . 684599) (-1496 . 684538) (-1497 . 684461)
+ (-1498 . 684343) (-1499 . 682833) (-1500 . 682547) (-1501 . 682467)
+ (-1502 . 682369) (-1503 . 682054) (-1504 . 681952) (-1505 . 681492)
+ (-1506 . 680977) (-1507 . 680924) (-1508 . 680552) (-1509 . 680343)
+ (-1510 . 680281) (-1511 . 680208) (-1512 . 680138) (-1513 . 679892)
+ (-1514 . 679476) (-1515 . 677928) (-1516 . 677847) (-1517 . 677787)
+ (-1518 . 677456) (-1519 . 677114) (-1520 . 676740) (-1521 . 676683)
+ (-1522 . 676584) (-1523 . 675777) (-1524 . 675723) (-1525 . 675600)
+ (-1526 . 675354) (-1527 . 675249) (-1528 . 675130) (-1529 . 675034)
+ (-1530 . 674936) (-1531 . 674618) (-1532 . 674480) (-1533 . 674409)
+ (-1534 . 674265) (-1535 . 674126) (-1536 . 673953) (-1537 . 673869)
+ (-1538 . 673711) (-1539 . 673637) (-1540 . 672901) (-1541 . 672734)
+ (-1542 . 672600) (-1543 . 672427) (-1544 . 672248) (-1545 . 672149)
+ (-1546 . 672011) (-1547 . 671886) (-1548 . 671780) (-1549 . 671651)
+ (-1550 . 671498) (-1551 . 671336) (-1552 . 670909) (-1553 . 670829)
+ (-1554 . 670776) (-1555 . 670595) (-1556 . 670542) (-1557 . 670443)
+ (-1558 . 670252) (-1559 . 670178) (-1560 . 669975) (-1561 . 669848)
+ (-1562 . 669745) (-1563 . 669641) (-1564 . 669479) (-1565 . 669426)
+ (-1566 . 669235) (-1567 . 669011) (-1568 . 668095) (-1569 . 666845)
+ (-1570 . 666736) (-1571 . 666684) (-1572 . 666120) (-1573 . 666002)
+ (-1574 . 665858) (-1575 . 665774) (-1576 . 665686) (-1577 . 663554)
+ (-1578 . 662910) (-1579 . 662854) (-1580 . 662757) (-1581 . 662658)
+ (-1582 . 662571) (-1583 . 662464) (-1584 . 662402) (-1585 . 662283)
+ (-1586 . 662117) (-1587 . 662019) (-1588 . 661882) (-1589 . 661810)
+ (-1590 . 660638) (-1591 . 660191) (-1592 . 660139) (-1593 . 659926)
+ (-1594 . 659585) (-1595 . 659446) (-1596 . 659263) (-1597 . 659129)
+ (-1598 . 658569) (-1599 . 658386) (-1600 . 658324) (-1601 . 658242)
+ (-1602 . 658127) (-1603 . 658066) (-1604 . 657973) (-1605 . 657635)
+ (-1606 . 657405) (-1607 . 657320) (-1608 . 657261) (-1609 . 656894)
+ (-1610 . 656654) (-1611 . 656531) (-1612 . 656417) (-1613 . 656298)
+ (-1614 . 656155) (-1615 . 656039) (-1616 . 655983) (-1617 . 655882)
+ (-1618 . 655823) (-1619 . 654686) (-1620 . 653278) (-1621 . 652940)
+ (-1622 . 652611) (-1623 . 651509) (-1624 . 651437) (-1625 . 650439)
+ (-1626 . 650360) (-1627 . 650231) (-1628 . 649969) (-1629 . 649806)
+ (-1630 . 649737) (-1631 . 649284) (-1632 . 649172) (-1633 . 648984)
+ (-1634 . 648904) (-1635 . 648786) (-1636 . 648180) (-1637 . 648094)
+ (-1638 . 648041) (-1639 . 647934) (-1640 . 647731) (-1641 . 647387)
+ (-1642 . 647014) (-1643 . 646956) (-1644 . 646849) (-1645 . 646769)
+ (-1646 . 646439) (-1647 . 644969) (-1648 . 644859) (-1649 . 644743)
+ (-1650 . 644539) (-1651 . 644488) (-1652 . 644402) (-1653 . 644155)
+ (-1654 . 643810) (-1655 . 643208) (-1656 . 642825) (-1657 . 637311)
+ (-1658 . 637195) (-1659 . 637121) (-1660 . 637018) (-1661 . 636889)
+ (-1662 . 636705) (-1663 . 636663) (-1664 . 636056) (-1665 . 635664)
+ (-1666 . 635611) (-1667 . 635454) (-1668 . 635347) (-1669 . 635194)
+ (-1670 . 635048) (-1671 . 634993) (-1672 . 633210) (-1673 . 632755)
+ (-1674 . 632646) (-1675 . 632507) (-1676 . 632353) (-1677 . 632268)
+ (-1678 . 632184) (-1679 . 632060) (-1680 . 631874) (-1681 . 631638)
+ (-1682 . 631527) (-1683 . 631367) (-1684 . 631018) (-1685 . 630880)
+ (-1686 . 630767) (-1687 . 630693) (-1688 . 630616) (-1689 . 630456)
+ (-1690 . 630376) (-1691 . 630256) (-1692 . 630133) (-1693 . 629925)
+ (-1694 . 629851) (-1695 . 629788) (-1696 . 629735) (-1697 . 629676)
+ (-1698 . 629606) (-1699 . 629516) (-1700 . 629356) (-1701 . 629143)
+ (-1702 . 629075) (-1703 . 628895) (-1704 . 628677) (-1705 . 628570)
+ (-1706 . 628417) (-1707 . 627887) (-1708 . 627768) (-1709 . 627522)
+ (-1710 . 627307) (-1711 . 627192) (-1712 . 626801) (-1713 . 626729)
+ (-1714 . 626610) (-1715 . 625314) (-1716 . 625201) (-1717 . 625121)
+ (-1718 . 625065) (-1719 . 625006) (-1720 . 624978) (-1721 . 624689)
+ (-1722 . 624606) (-1723 . 624513) (-1724 . 624274) (-1725 . 624144)
+ (-1726 . 624060) (-1727 . 623942) (-1728 . 623863) (-1729 . 623744)
+ (-1730 . 623606) (-1731 . 623554) (-1732 . 623398) (-1733 . 623126)
+ (-1734 . 623022) (-1735 . 622824) (-1736 . 622565) (-1737 . 622536)
+ (-1738 . 622219) (-1739 . 621909) (-1740 . 621784) (-1741 . 621581)
+ (-1742 . 621249) (-1743 . 621106) (-1744 . 620680) (-1745 . 620623)
+ (-1746 . 620448) (-1747 . 620382) (-1748 . 619120) (-1749 . 619070)
+ (-1750 . 618860) (-1751 . 618648) (-1752 . 618565) (-1753 . 618400)
+ (-1754 . 618169) (-1755 . 618041) (-1756 . 617180) (-1757 . 617108)
+ (-1758 . 616908) (-1759 . 616834) (-1760 . 616705) (-1761 . 616671)
+ (-1762 . 616584) (-1763 . 616421) (-1764 . 616367) (-1765 . 616258)
+ (-1766 . 615965) (-1767 . 615912) (-1768 . 615701) (-1769 . 615595)
+ (-1770 . 615539) (-1771 . 615418) (-1772 . 615272) (-1773 . 615113)
+ (-1774 . 615016) (-1775 . 614802) (-1776 . 614725) (-1777 . 614647)
+ (-1778 . 614543) (-1779 . 614425) (-1780 . 614374) (-1781 . 614128)
+ (-1782 . 614041) (-1783 . 613886) (-1784 . 613852) (-1785 . 613764)
+ (-1786 . 613483) (-1787 . 613257) (-1788 . 612804) (-1789 . 612553)
+ (-1790 . 612451) (-1791 . 612352) (-1792 . 612281) (-1793 . 612184)
+ (-1794 . 611827) (-1795 . 611773) (-1796 . 611745) (-1797 . 611506)
+ (-1798 . 611289) (-1799 . 611081) (-1800 . 611004) (-1801 . 610951)
+ (-1802 . 610842) (-1803 . 610698) (-1804 . 607399) (-1805 . 607070)
+ (-1806 . 606890) (-1807 . 606810) (-1808 . 606755) (-1809 . 606658)
+ (-1810 . 606411) (-1811 . 606159) (-1812 . 606041) (-1813 . 604855)
+ (-1814 . 604785) (-1815 . 604619) (-1816 . 604396) (-1817 . 604248)
+ (-1818 . 604216) (-1819 . 604072) (-1820 . 603583) (-1821 . 603489)
+ (-1822 . 603391) (-1823 . 603192) (-1824 . 602010) (-1825 . 601846)
+ (-1826 . 601647) (-1827 . 601449) (-1828 . 601350) (-1829 . 601123)
+ (-1830 . 600884) (-1831 . 600832) (-1832 . 600425) (-1833 . 598219)
+ (-1834 . 598095) (-1835 . 597714) (-1836 . 597621) (-1837 . 597447)
+ (-1838 . 597316) (-1839 . 597236) (-1840 . 597181) (-1841 . 596924)
+ (-1842 . 589925) (-1843 . 589781) (-1844 . 589686) (-1845 . 589502)
+ (-1846 . 589436) (-1847 . 589371) (-1848 . 589297) (-1849 . 589145)
+ (-1850 . 589057) (-1851 . 588744) (-1852 . 588187) (-1853 . 588100)
+ (-1854 . 588066) (-1855 . 587956) (-1856 . 587815) (-1857 . 587652)
+ (-1858 . 587542) (-1859 . 587490) (-1860 . 587324) (-1861 . 587238)
+ (-1862 . 587015) (-1863 . 586943) (-1864 . 586865) (-1865 . 586626)
+ (-1866 . 586569) (-1867 . 586182) (-1868 . 586078) (-1869 . 586018)
+ (-1870 . 585716) (-1871 . 585592) (-1872 . 585397) (-1873 . 585287)
+ (-1874 . 585228) (-1875 . 585073) (-1876 . 585014) (-1877 . 584906)
+ (-1878 . 584734) (-1879 . 584640) (-1880 . 584572) (-1881 . 584053)
+ (-1882 . 583898) (-1883 . 582828) (-1884 . 582559) (-1885 . 582459)
+ (-1886 . 582346) (-1887 . 582115) (-1888 . 581842) (-1889 . 581775)
+ (-1890 . 581605) (-1891 . 581263) (-1892 . 581235) (-1893 . 581091)
+ (-1894 . 581021) (-1895 . 580263) (-1896 . 580153) (-1897 . 579835)
+ (-1898 . 579807) (-1899 . 579754) (-1900 . 579663) (-1901 . 579575)
+ (-1902 . 579502) (-1903 . 579322) (-1904 . 579144) (-1905 . 579040)
+ (-1906 . 578974) (-1907 . 578541) (-1908 . 578475) (-1909 . 578384)
+ (-1910 . 578280) (-1911 . 578229) (-1912 . 578127) (-1913 . 578012)
+ (-1914 . 577875) (-1915 . 577804) (-1916 . 577510) (-1917 . 577408)
+ (-1918 . 577301) (-1919 . 577229) (-1920 . 577155) (-1921 . 577045)
+ (-1922 . 576978) (-1923 . 576895) (-1924 . 576566) (-1925 . 576514)
+ (-1926 . 576220) (-1927 . 576045) (-1928 . 575740) (-1929 . 574989)
+ (-1930 . 574961) (-1931 . 574851) (-1932 . 574645) (-1933 . 574593)
+ (-1934 . 574493) (-1935 . 574410) (-1936 . 574320) (-1937 . 574223)
+ (-1938 . 574144) (-1939 . 574061) (-1940 . 573984) (-1941 . 573854)
+ (-1942 . 573756) (-1943 . 573672) (-1944 . 573545) (-1945 . 573392)
+ (-1946 . 573096) (-1947 . 573044) (-1948 . 572930) (-1949 . 572842)
+ (-1950 . 572734) (-1951 . 572573) (-1952 . 571984) (-1953 . 571956)
+ (-1954 . 571886) (-1955 . 571815) (-1956 . 571679) (-1957 . 571645)
+ (-1958 . 571544) (-1959 . 571445) (-1960 . 571344) (-1961 . 571241)
+ (-1962 . 571118) (-1963 . 570968) (-1964 . 570880) (-1965 . 570553)
+ (-1966 . 570459) (-1967 . 570331) (-1968 . 570096) (-1969 . 570012)
+ (-1970 . 569897) (-1971 . 569462) (-1972 . 569318) (-1973 . 569179)
+ (-1974 . 569096) (-1975 . 568816) (-1976 . 568658) (-1977 . 568555)
+ (-1978 . 568415) (-1979 . 566969) (-1980 . 566754) (-1981 . 566611)
+ (-1982 . 566477) (-1983 . 566394) (-1984 . 566255) (-1985 . 566057)
+ (-1986 . 565949) (-1987 . 565848) (-1988 . 565404) (-1989 . 565316)
+ (-1990 . 565264) (-1991 . 565165) (-1992 . 565094) (-1993 . 564823)
+ (-1994 . 564694) (-1995 . 564628) (-1996 . 564267) (-1997 . 564149)
+ (-1998 . 564072) (-1999 . 563739) (-2000 . 563214) (-2001 . 563162)
+ (-2002 . 563004) (-2003 . 562955) (-2004 . 562878) (-2005 . 562562)
+ (-2006 . 562217) (-2007 . 562150) (-2008 . 561992) (-2009 . 561960)
+ (-2010 . 561907) (-2011 . 561836) (-2012 . 561771) (-2013 . 561151)
+ (-2014 . 561032) (-2015 . 560958) (-2016 . 560902) (-2017 . 560307)
+ (-2018 . 559424) (-2019 . 559367) (-2020 . 559148) (-2021 . 558921)
+ (-2022 . 557756) (-2023 . 557667) (-2024 . 557488) (-2025 . 557360)
+ (-2026 . 557254) (-2027 . 557177) (-2028 . 556959) (-2029 . 556843)
+ (-2030 . 556712) (-2031 . 556616) (-2032 . 556525) (-2033 . 556350)
+ (-2034 . 556279) (-2035 . 556186) (-2036 . 556120) (-2037 . 555980)
+ (-2038 . 555881) (-2039 . 555712) (-2040 . 555596) (-2041 . 555230)
+ (-2042 . 555067) (-2043 . 554994) (-2044 . 554883) (-2045 . 554738)
+ (-2046 . 554620) (-2047 . 554592) (-2048 . 554515) (-2049 . 554463)
+ (-2050 . 554369) (-2051 . 554245) (-2052 . 554086) (-2053 . 553977)
+ (-2054 . 553746) (-2055 . 553647) (-2056 . 553587) (-2057 . 553514)
+ (-2058 . 553095) (-2059 . 553040) (-2060 . 552922) (-2061 . 552836)
+ (-2062 . 552611) (-2063 . 552498) (-2064 . 552239) (-2065 . 552012)
+ (-2066 . 551635) (-2067 . 551356) (-2068 . 551250) (-2069 . 550908)
+ (-2070 . 550762) (-2071 . 550595) (-2072 . 550539) (-2073 . 550307)
+ (-2074 . 550182) (-2075 . 550111) (-2076 . 550045) (-2077 . 549597)
+ (-2078 . 549272) (-2079 . 549201) (-2080 . 548991) (-2081 . 548938)
+ (-2082 . 548907) (-2083 . 548876) (-2084 . 548692) (-2085 . 548634)
+ (-2086 . 548251) (-2087 . 547363) (-2088 . 547262) (-2089 . 546927)
+ (-2090 . 546826) (-2091 . 545249) (-2092 . 544714) (-2093 . 544317)
+ (-2094 . 544208) (-2095 . 543787) (-2096 . 543556) (-2097 . 543241)
+ (-2098 . 543134) (-2099 . 543071) (-2100 . 542875) (-2101 . 542699)
+ (-2102 . 542595) (-2103 . 542510) (-2104 . 542431) (-2105 . 542370)
+ (-2106 . 542343) (-2107 . 542281) (-2108 . 542081) (-2109 . 542022)
+ (-2110 . 541774) (-2111 . 541707) (-2112 . 541598) (-2113 . 541236)
+ (-2114 . 541080) (-2115 . 541046) (-2116 . 540980) (-2117 . 540397)
+ (-2118 . 540329) (-2119 . 540220) (-2120 . 540094) (-2121 . 539911)
+ (-2122 . 539746) (-2123 . 539622) (-2124 . 539488) (-2125 . 538914)
+ (-2126 . 538862) (-2127 . 538700) (-2128 . 538570) (-2129 . 538462)
+ (-2130 . 538383) (-2131 . 538261) (-2132 . 538209) (-2133 . 538039)
+ (-2134 . 537956) (-2135 . 536644) (-2136 . 536479) (-2137 . 536049)
+ (-2138 . 535801) (-2139 . 535507) (-2140 . 535406) (-2141 . 535347)
+ (-2142 . 535295) (-2143 . 535224) (-2144 . 535172) (-2145 . 534995)
+ (-2146 . 534909) (-2147 . 534838) (-2148 . 534788) (-2149 . 534718)
+ (-2150 . 534624) (-2151 . 534477) (-2152 . 534237) (-2153 . 533710)
+ (-2154 . 533368) (-2155 . 533315) (-2156 . 533191) (-2157 . 533114)
+ (-2158 . 532899) (-2159 . 532782) (-2160 . 532252) (-2161 . 532129)
+ (-2162 . 531905) (-2163 . 531839) (-2164 . 531787) (-2165 . 531678)
+ (-2166 . 531622) (-2167 . 531588) (-2168 . 531324) (-2169 . 531220)
+ (-2170 . 531123) (-2171 . 530905) (-2172 . 530195) (-2173 . 530058)
+ (-2174 . 529937) (-2175 . 529779) (-2176 . 529710) (-2177 . 529575)
+ (-2178 . 529445) (-2179 . 529238) (-2180 . 529141) (-2181 . 528899)
+ (-2182 . 528652) (-2183 . 528551) (-2184 . 528251) (-2185 . 528085)
+ (-2186 . 528012) (-2187 . 527896) (-2188 . 527808) (-2189 . 527467)
+ (-2190 . 527369) (-2191 . 527314) (-2192 . 527193) (-2193 . 527141)
+ (-2194 . 527107) (-2195 . 527038) (-2196 . 526982) (-2197 . 526930)
+ (-2198 . 526875) (-2199 . 526822) (-2200 . 526480) (-2201 . 523144)
+ (-2202 . 522869) (-2203 . 522791) (-2204 . 522705) (-2205 . 522572)
+ (-2206 . 522347) (-2207 . 521980) (-2208 . 521916) (-2209 . 521773)
+ (-2210 . 521741) (-2211 . 521570) (-2212 . 521468) (-2213 . 521416)
+ (-2214 . 521346) (-2215 . 521239) (-2216 . 521081) (-2217 . 521017)
+ (-2218 . 520937) (-2219 . 520842) (-2220 . 520679) (-2221 . 520578)
+ (-2222 . 520331) (-2223 . 520140) (-2224 . 519748) (-2225 . 519714)
+ (-2226 . 519590) (-2227 . 519405) (-2228 . 519350) (-2229 . 519297)
+ (-2230 . 519036) (-2231 . 518906) (-2232 . 518840) (-2233 . 518722)
+ (-2234 . 518517) (-2235 . 518264) (-2236 . 518230) (-2237 . 518086)
+ (-2238 . 518012) (-2239 . 517935) (-2240 . 517834) (-2241 . 517766)
+ (-2242 . 517653) (-2243 . 517593) (-2244 . 517509) (-2245 . 517314)
+ (-2246 . 517259) (-2247 . 517118) (-2248 . 517030) (-2249 . 516986)
+ (-2250 . 516912) (-2251 . 516784) (-2252 . 516630) (-2253 . 516537)
+ (-2254 . 516346) (-2255 . 516249) (-2256 . 516101) (-2257 . 515504)
+ (-2258 . 515433) (-2259 . 515299) (-2260 . 515020) (-2261 . 514913)
+ (-2262 . 514582) (-2263 . 514497) (-2264 . 514448) (-2265 . 514362)
+ (-2266 . 514288) (-2267 . 514202) (-2268 . 514150) (-2269 . 514016)
+ (-2270 . 513957) (-2271 . 513584) (-2272 . 513214) (-2273 . 513071)
+ (-2274 . 512761) (-2275 . 512218) (-2276 . 512073) (-2277 . 506960)
+ (-2278 . 506851) (-2279 . 506601) (-2280 . 506516) (-2281 . 506256)
+ (-2282 . 505847) (-2283 . 505722) (-2284 . 505652) (-2285 . 505520)
+ (-2286 . 505488) (-2287 . 505436) (-2288 . 505353) (-2289 . 504907)
+ (-2290 . 504768) (-2291 . 504652) (-2292 . 503998) (-2293 . 503925)
+ (-2294 . 503846) (-2295 . 503789) (-2296 . 503676) (-2297 . 503599)
+ (-2298 . 503468) (-2299 . 503146) (-2300 . 503052) (-2301 . 502917)
+ (-2302 . 502755) (-2303 . 502661) (-2304 . 502560) (-2305 . 502411)
+ (-2306 . 502326) (-2307 . 502130) (-2308 . 502015) (-2309 . 501937)
+ (-2310 . 501842) (-2311 . 501792) (-2312 . 501381) (-2313 . 500835)
+ (-2314 . 500621) (-2315 . 500571) (-2316 . 500262) (-2317 . 500194)
+ (-2318 . 500120) (-2319 . 500049) (-2320 . 499928) (-2321 . 498819)
+ (-2322 . 498749) (-2323 . 498640) (-2324 . 498541) (-2325 . 498489)
+ (-2326 . 498415) (-2327 . 498357) (-2328 . 498284) (-2329 . 498059)
+ (-2330 . 497937) (-2331 . 497786) (-2332 . 497703) (-2333 . 497620)
+ (-2334 . 497452) (-2335 . 497164) (-2336 . 497048) (-2337 . 496830)
+ (-2338 . 496582) (-2339 . 496485) (-2340 . 496190) (-2341 . 496118)
+ (-2342 . 495929) (-2343 . 495814) (-2344 . 495765) (-2345 . 495627)
+ (-2346 . 495511) (-2347 . 494916) (-2348 . 494830) (-2349 . 494777)
+ (-2350 . 494682) (-2351 . 494544) (-2352 . 494435) (-2353 . 494366)
+ (-2354 . 494184) (-2355 . 494098) (-2356 . 494012) (-2357 . 493827)
+ (-2358 . 493605) (-2359 . 493532) (-2360 . 493413) (-2361 . 493249)
+ (-2362 . 493140) (-2363 . 493071) (-2364 . 492968) (-2365 . 492897)
+ (-2366 . 492781) (-2367 . 492668) (-2368 . 492509) (-2369 . 492411)
+ (-2370 . 492323) (-2371 . 492213) (-2372 . 492185) (-2373 . 492133)
+ (-2374 . 491950) (-2375 . 491871) (-2376 . 491774) (-2377 . 491680)
+ (-2378 . 491447) (-2379 . 491361) (-2380 . 491203) (-2381 . 490882)
+ (-2382 . 490601) (-2383 . 490127) (-2384 . 489950) (-2385 . 489873)
+ (-2386 . 489759) (-2387 . 489673) (-2388 . 489571) (-2389 . 489082)
+ (-2390 . 489000) (-2391 . 488799) (-2392 . 488705) (-2393 . 488242)
+ (-2394 . 488090) (-2395 . 487927) (-2396 . 487800) (-2397 . 487722)
+ (-2398 . 487636) (-2399 . 487586) (-2400 . 487467) (-2401 . 486872)
+ (-2402 . 486764) (-2403 . 486668) (-2404 . 486463) (-2405 . 486307)
+ (-2406 . 486224) (-2407 . 486172) (-2408 . 486058) (-2409 . 485856)
+ (-2410 . 485726) (-2411 . 485573) (-2412 . 485427) (-2413 . 485100)
+ (-2414 . 484987) (-2415 . 484806) (-2416 . 484042) (-2417 . 483869)
+ (-2418 . 483705) (-2419 . 483524) (-2420 . 483461) (-2421 . 483283)
+ (-2422 . 483073) (-2423 . 482894) (-2424 . 482762) (-2425 . 482689)
+ (-2426 . 482549) (-2427 . 482421) (-2428 . 482169) (-2429 . 481775)
+ (-2430 . 481444) (-2431 . 481392) (-2432 . 481292) (-2433 . 481218)
+ (-2434 . 481120) (-2435 . 480789) (-2436 . 480719) (-2437 . 480473)
+ (-2438 . 479889) (-2439 . 479770) (-2440 . 479742) (-2441 . 479690)
+ (-2442 . 479624) (-2443 . 479263) (-2444 . 479176) (-2445 . 479097)
+ (-2446 . 479017) (-2447 . 478900) (-2448 . 478799) (-2449 . 478691)
+ (-2450 . 478247) (-2451 . 478149) (-2452 . 478034) (-2453 . 477843)
+ (-2454 . 477257) (-2455 . 476979) (-2456 . 476175) (-2457 . 475794)
+ (-2458 . 475762) (-2459 . 475316) (-2460 . 475165) (-2461 . 475106)
+ (-2462 . 475007) (-2463 . 474911) (-2464 . 474883) (-2465 . 474761)
+ (-2466 . 474702) (-2467 . 474629) (-2468 . 474557) (-2469 . 474221)
+ (-2470 . 474096) (-2471 . 473444) (-2472 . 473281) (-2473 . 473063)
+ (-2474 . 472997) (-2475 . 472849) (-2476 . 472782) (-2477 . 472729)
+ (-2478 . 472680) (-2479 . 472420) (-2480 . 472223) (-2481 . 472108)
+ (-2482 . 472040) (-2483 . 471781) (-2484 . 471469) (-2485 . 470384)
+ (-2486 . 470272) (-2487 . 470025) (-2488 . 469919) (-2489 . 469795)
+ (-2490 . 469724) (-2491 . 469623) (-2492 . 469574) (-2493 . 469036)
+ (-2494 . 468238) (-2495 . 468186) (-2496 . 468134) (-2497 . 466283)
+ (-2498 . 466161) (-2499 . 466054) (-2500 . 465896) (-2501 . 465844)
+ (-2502 . 465462) (-2503 . 465091) (-2504 . 464975) (-2505 . 464665)
+ (-2506 . 464560) (-2507 . 464451) (-2508 . 463783) (-2509 . 463724)
+ (-2510 . 463638) (-2511 . 463545) (-2512 . 463486) (-2513 . 463392)
+ (-2514 . 463002) (-2515 . 462925) (-2516 . 462848) (-2517 . 462786)
+ (-2518 . 462626) (-2519 . 462407) (-2520 . 462251) (-2521 . 462193)
+ (-2522 . 462018) (-2523 . 461913) (-2524 . 461770) (-2525 . 461718)
+ (-2526 . 461495) (-2527 . 461291) (-2528 . 460744) (-2529 . 459865)
+ (-2530 . 459743) (-2531 . 459664) (-2532 . 459468) (-2533 . 459333)
+ (-2534 . 459102) (-2535 . 458976) (-2536 . 458887) (-2537 . 458855)
+ (-2538 . 458744) (-2539 . 458391) (-2540 . 457999) (-2541 . 457942)
+ (-2542 . 457055) (-2543 . 456816) (-2544 . 456638) (-2545 . 456171)
+ (-2546 . 456120) (-2547 . 455975) (-2548 . 455860) (-2549 . 455517)
+ (-2550 . 455394) (-2551 . 455142) (-2552 . 454997) (-2553 . 454294)
+ (-2554 . 454002) (-2555 . 453488) (-2556 . 453258) (-2557 . 452772)
+ (-2558 . 452646) (-2559 . 452447) (-2560 . 452376) (-2561 . 451721)
+ (-2562 . 451667) (-2563 . 451599) (-2564 . 451282) (-2565 . 451227)
+ (-2566 . 451141) (-2567 . 451112) (-2568 . 451053) (-2569 . 450983)
+ (-2570 . 450934) (-2571 . 450729) (-2572 . 450571) (-2573 . 450498)
+ (-2574 . 450329) (-2575 . 450243) (-2576 . 450139) (-2577 . 450084)
+ (-2578 . 449934) (-2579 . 448974) (-2580 . 448902) (-2581 . 448451)
+ (-2582 . 448398) (-2583 . 448338) (-2584 . 448278) (-2585 . 448250)
+ (-2586 . 448148) (-2587 . 447083) (-2588 . 447031) (-2589 . 446951)
+ (-2590 . 446671) (-2591 . 446126) (-2592 . 446030) (-2593 . 445905)
+ (-2594 . 445848) (-2595 . 445521) (-2596 . 445435) (-2597 . 445059)
+ (-2598 . 444963) (-2599 . 444891) (-2600 . 444838) (-2601 . 444502)
+ (-2602 . 443801) (-2603 . 443664) (-2604 . 443601) (-2605 . 443469)
+ (-2606 . 443381) (-2607 . 443296) (-2608 . 442945) (-2609 . 442916)
+ (-2610 . 442863) (-2611 . 442757) (-2612 . 442478) (-2613 . 442418)
+ (-2614 . 442335) (-2615 . 441982) (-2616 . 441591) (-2617 . 441390)
+ (-2618 . 441312) (-2619 . 441196) (-2620 . 441031) (-2621 . 440958)
+ (-2622 . 440434) (-2623 . 440355) (-2624 . 440241) (-2625 . 440159)
+ (-2626 . 440044) (-2627 . 440010) (-2628 . 439870) (-2629 . 439679)
+ (-2630 . 439548) (-2631 . 439329) (-2632 . 438935) (-2633 . 438384)
+ (-2634 . 436796) (-2635 . 436714) (-2636 . 436495) (-2637 . 436351)
+ (-2638 . 436126) (-2639 . 435983) (-2640 . 435928) (-2641 . 435845)
+ (-2642 . 435688) (-2643 . 435620) (-2644 . 435592) (-2645 . 435321)
+ (-2646 . 435235) (-2647 . 435116) (-2648 . 434975) (-2649 . 434871)
+ (-2650 . 434737) (-2651 . 434684) (-2652 . 434656) (-2653 . 434329)
+ (-2654 . 433127) (-2655 . 432941) (-2656 . 432782) (-2657 . 432649)
+ (-2658 . 431107) (-2659 . 431033) (-2660 . 430962) (-2661 . 429530)
+ (-2662 . 429342) (-2663 . 429138) (-2664 . 428951) (-2665 . 428047)
+ (-2666 . 426671) (-2667 . 426599) (-2668 . 426470) (-2669 . 426393)
+ (-2670 . 426322) (-2671 . 426179) (-2672 . 425899) (-2673 . 425724)
+ (-2674 . 425638) (-2675 . 425571) (-2676 . 425147) (-2677 . 425036)
+ (-2678 . 424965) (-2679 . 424870) (-2680 . 424751) (-2681 . 424671)
+ (-2682 . 424505) (-2683 . 424440) (-2684 . 424194) (-2685 . 424145)
+ (-2686 . 423915) (-2687 . 423812) (-2688 . 423613) (-2689 . 423525)
+ (-2690 . 423278) (-2691 . 423139) (-2692 . 422764) (-2693 . 422668)
+ (-2694 . 422537) (-2695 . 422204) (-2696 . 422009) (-2697 . 421585)
+ (-2698 . 421478) (-2699 . 421335) (-2700 . 421232) (-2701 . 421074)
+ (-2702 . 420967) (-2703 . 420863) (-2704 . 420736) (-2705 . 420670)
+ (-2706 . 420152) (-2707 . 419986) (-2708 . 419907) (-2709 . 419747)
+ (-2710 . 419504) (-2711 . 419397) (-2712 . 419309) (-2713 . 419202)
+ (-2714 . 419171) (-2715 . 419067) (-2716 . 418990) (-2717 . 418919)
+ (-2718 . 418807) (-2719 . 418670) (-2720 . 418461) (-2721 . 417433)
+ (-2722 . 417362) (-2723 . 417210) (-2724 . 417140) (-2725 . 416510)
+ (-2726 . 416414) (-2727 . 416363) (-2728 . 416256) (-2729 . 416162)
+ (-2730 . 415939) (-2731 . 415633) (-2732 . 415568) (-2733 . 415376)
+ (-2734 . 415310) (-2735 . 415253) (-2736 . 415057) (-2737 . 414668)
+ (-2738 . 414567) (-2739 . 414426) (-2740 . 413934) (-2741 . 413731)
+ (-2742 . 413220) (-2743 . 413137) (-2744 . 413058) (-2745 . 412806)
+ (-2746 . 412587) (-2747 . 412457) (-2748 . 412400) (-2749 . 412277)
+ (-2750 . 412226) (-2751 . 411928) (-2752 . 411674) (-2753 . 411575)
+ (-2754 . 411522) (-2755 . 411425) (-2756 . 411286) (-2757 . 410990)
+ (-2758 . 410841) (-2759 . 410737) (-2760 . 410685) (-2761 . 410544)
+ (-2762 . 410446) (-2763 . 410358) (-2764 . 410185) (-2765 . 410157)
+ (-2766 . 410049) (-2767 . 409757) (-2768 . 409539) (-2769 . 409247)
+ (-2770 . 409193) (-2771 . 409048) (-2772 . 408645) (-2773 . 408559)
+ (-2774 . 408531) (-2775 . 408151) (-2776 . 408063) (-2777 . 407403)
+ (-2778 . 407374) (-2779 . 407028) (-2780 . 406933) (-2781 . 406723)
+ (-2782 . 406569) (-2783 . 406348) (-2784 . 406204) (-2785 . 406097)
+ (-2786 . 405934) (-2787 . 405800) (-2788 . 405548) (-2789 . 405460)
+ (-2790 . 405404) (-2791 . 405324) (-2792 . 405138) (-2793 . 405006)
+ (-2794 . 404878) (-2795 . 404825) (-2796 . 403095) (-2797 . 402591)
+ (-2798 . 402393) (-2799 . 402106) (-2800 . 401807) (-2801 . 401739)
+ (-2802 . 401640) (-2803 . 401280) (-2804 . 401034) (-2805 . 400594)
+ (-2806 . 400438) (-2807 . 400202) (-2808 . 400150) (-2809 . 400072)
+ (-2810 . 399895) (-2811 . 399508) (-2812 . 399282) (-2813 . 398466)
+ (-2814 . 398339) (-2815 . 398230) (-2816 . 398122) (-2817 . 397804)
+ (-2818 . 397738) (-2819 . 397505) (-2820 . 397431) (-2821 . 397365)
+ (-2822 . 397258) (-2823 . 397115) (-2824 . 397048) (-2825 . 396856)
+ (-2826 . 396807) (-2827 . 396664) (-2828 . 396569) (-2829 . 396370)
+ (-2830 . 396318) (-2831 . 396290) (-2832 . 396160) (-2833 . 396086)
+ (-2834 . 395994) (-2835 . 395826) (-2836 . 395720) (-2837 . 395513)
+ (-2838 . 395126) (-2839 . 394996) (-2840 . 394930) (-2841 . 394735)
+ (-2842 . 394485) (-2843 . 394235) (-2844 . 394162) (-2845 . 394007)
+ (-2846 . 393541) (-2847 . 393440) (-2848 . 393388) (-2849 . 393232)
+ (-2850 . 393105) (-2851 . 393074) (-2852 . 392922) (-2853 . 392844)
+ (-2854 . 392605) (-2855 . 392172) (-2856 . 392013) (-2857 . 391915)
+ (-2858 . 391865) (-2859 . 391812) (-2860 . 391654) (-2861 . 391531)
+ (-2862 . 391434) (-2863 . 391381) (-2864 . 391303) (-2865 . 391160)
+ (-2866 . 391017) (-2867 . 390922) (-2868 . 390852) (-2869 . 390800)
+ (-2870 . 390705) (-2871 . 390471) (-2872 . 390392) (-2873 . 390304)
+ (-2874 . 389786) (-2875 . 389714) (-2876 . 389648) (-2877 . 389472)
+ (-2878 . 389399) (-2879 . 389319) (-2880 . 389267) (-2881 . 389158)
+ (-2882 . 388479) (-2883 . 388422) (-2884 . 388286) (-2885 . 388234)
+ (-2886 . 388140) (-2887 . 387982) (-2888 . 387775) (-2889 . 387668)
+ (-2890 . 387564) (-2891 . 387512) (-2892 . 387349) (-2893 . 387252)
+ (-2894 . 385138) (-2895 . 385025) (-2896 . 384955) (-2897 . 384800)
+ (-2898 . 384645) (-2899 . 384586) (-2900 . 384478) (-2901 . 384342)
+ (-2902 . 384237) (-2903 . 384125) (-2904 . 383696) (-2905 . 383667)
+ (-2906 . 383474) (-2907 . 383309) (-2908 . 383217) (-2909 . 383089)
+ (-2910 . 383030) (-2911 . 382434) (-2912 . 381721) (-2913 . 381652)
+ (-2914 . 381618) (-2915 . 381531) (-2916 . 381390) (-2917 . 381275)
+ (-2918 . 381207) (-2919 . 380948) (-2920 . 380856) (-2921 . 380103)
+ (-2922 . 379935) (-2923 . 379497) (-2924 . 379445) (-2925 . 379393)
+ (-2926 . 379280) (-2927 . 378978) (-2928 . 378907) (-2929 . 378752)
+ (-2930 . 378129) (-2931 . 378043) (-2932 . 377984) (-2933 . 377766)
+ (-2934 . 377678) (-2935 . 377608) (-2936 . 377311) (-2937 . 376494)
+ (-2938 . 376351) (-2939 . 376185) (-2940 . 376070) (-2941 . 375996)
+ (-2942 . 375930) (-2943 . 375712) (-2944 . 375659) (-2945 . 375608)
+ (-2946 . 375499) (-2947 . 375362) (-2948 . 375094) (-2949 . 374867)
+ (-2950 . 374700) (-2951 . 374647) (-2952 . 374546) (-2953 . 373206)
+ (-2954 . 373033) (-2955 . 372919) (-2956 . 372835) (-2957 . 372727)
+ (-2958 . 372421) (-2959 . 372260) (-2960 . 372166) (-2961 . 371506)
+ (-2962 . 371372) (-2963 . 371306) (-2964 . 370976) (-2965 . 370886)
+ (-2966 . 370833) (-2967 . 370710) (-2968 . 370023) (-2969 . 369939)
+ (-2970 . 369835) (-2971 . 369712) (-2972 . 369532) (-2973 . 369432)
+ (-2974 . 369189) (-2975 . 368992) (-2976 . 368787) (-2977 . 368721)
+ (-2978 . 368034) (-2979 . 367960) (-2980 . 367887) (-2981 . 367754)
+ (-2982 . 367701) (-2983 . 367314) (-2984 . 367024) (-2985 . 366951)
+ (-2986 . 366673) (-2987 . 366513) (-2988 . 366360) (-2989 . 366265)
+ (-2990 . 366170) (-2991 . 365762) (-2992 . 365605) (-2993 . 365476)
+ (-2994 . 365423) (-2995 . 364848) (-2996 . 364721) (-2997 . 364612)
+ (-2998 . 364488) (-2999 . 364345) (-3000 . 364045) (-3001 . 363957)
+ (-3002 . 363666) (-3003 . 363462) (-3004 . 363333) (-3005 . 363090)
+ (-3006 . 362933) (-3007 . 362880) (-3008 . 362737) (-3009 . 362162)
+ (-3010 . 361881) (-3011 . 361786) (-3012 . 361536) (-3013 . 361451)
+ (-3014 . 361368) (-3015 . 361266) (-3016 . 361212) (-3017 . 360999)
+ (-3018 . 360943) (-3019 . 360790) (-3020 . 360710) (-3021 . 360135)
+ (-3022 . 360008) (-3023 . 359913) (-3024 . 359789) (-3025 . 359715)
+ (-3026 . 359614) (-3027 . 359425) (-3028 . 359346) (-3029 . 359296)
+ (-3030 . 358920) (-3031 . 358346) (-3032 . 358274) (-3033 . 357747)
+ (-3034 . 357573) (-3035 . 357402) (-3036 . 357188) (-3037 . 357098)
+ (-3038 . 356966) (-3039 . 356859) (-3040 . 356605) (-3041 . 356073)
+ (-3042 . 355939) (-3043 . 355365) (-3044 . 355089) (-3045 . 355035)
+ (-3046 . 355007) (-3047 . 353039) (-3048 . 352926) (-3049 . 352791)
+ (-3050 . 352707) (-3051 . 352320) (-3052 . 351968) (-3053 . 351810)
+ (-3054 . 351318) (-3055 . 350744) (-3056 . 350642) (-3057 . 350557)
+ (-3058 . 350286) (-3059 . 350085) (-3060 . 349609) (-3061 . 349182)
+ (-3062 . 349087) (-3063 . 348751) (-3064 . 348586) (-3065 . 348436)
+ (-3066 . 347862) (-3067 . 347696) (-3068 . 347608) (-3069 . 347537)
+ (-3070 . 347467) (-3071 . 347346) (-3072 . 347219) (-3073 . 347137)
+ (-3074 . 347040) (-3075 . 346959) (-3076 . 346891) (-3077 . 346720)
+ (-3078 . 346632) (-3079 . 346414) (-3080 . 346254) (-3081 . 345680)
+ (-3082 . 345583) (-3083 . 345527) (-3084 . 344792) (-3085 . 344678)
+ (-3086 . 344463) (-3087 . 344361) (-3088 . 344291) (-3089 . 344045)
+ (-3090 . 343939) (-3091 . 343721) (-3092 . 343503) (-3093 . 343122)
+ (-3094 . 343067) (-3095 . 342997) (-3096 . 342892) (-3097 . 342804)
+ (-3098 . 342723) (-3099 . 342652) (-3100 . 342161) (-3101 . 342054)
+ (-3102 . 341977) (-3103 . 341916) (-3104 . 341758) (-3105 . 341605)
+ (-3106 . 341508) (-3107 . 341378) (-3108 . 341282) (-3109 . 341137)
+ (-3110 . 340988) (-3111 . 340936) (-3112 . 340799) (-3113 . 340561)
+ (-3114 . 340467) (-3115 . 340172) (-3116 . 340005) (-3117 . 339596)
+ (-3118 . 339348) (-3119 . 339169) (-3120 . 339063) (-3121 . 339008)
+ (-3122 . 338176) (-3123 . 338080) (-3124 . 338014) (-3125 . 337980)
+ (-3126 . 337596) (-3127 . 337524) (-3128 . 337344) (-3129 . 337137)
+ (-3130 . 335956) (-3131 . 335901) (-3132 . 335800) (-3133 . 335671)
+ (-3134 . 335310) (-3135 . 335165) (-3136 . 335032) (-3137 . 334977)
+ (-3138 . 334819) (-3139 . 334661) (-3140 . 334393) (-3141 . 334271)
+ (-3142 . 334105) (-3143 . 333975) (-3144 . 333466) (-3145 . 333115)
+ (-3146 . 333008) (-3147 . 332942) (-3148 . 332520) (-3149 . 332307)
+ (-3150 . 332104) (-3151 . 332051) (-3152 . 331954) (-3153 . 331854)
+ (-3154 . 331682) (-3155 . 331653) (-3156 . 331513) (-3157 . 331443)
+ (-3158 . 330832) (-3159 . 330744) (-3160 . 330598) (-3161 . 330313)
+ (-3162 . 330210) (-3163 . 330050) (-3164 . 329858) (-3165 . 329806)
+ (-3166 . 329747) (-3167 . 329568) (-3168 . 329513) (-3169 . 329458)
+ (-3170 . 329082) (-3171 . 328980) (-3172 . 328890) (-3173 . 328749)
+ (-3174 . 327900) (-3175 . 327844) (-3176 . 327758) (-3177 . 327672)
+ (-3178 . 327264) (-3179 . 327136) (-3180 . 327084) (-3181 . 327001)
+ (-3182 . 326969) (-3183 . 325812) (-3184 . 325324) (-3185 . 321703)
+ (-3186 . 321578) (-3187 . 321309) (-3188 . 321186) (-3189 . 321062)
+ (-3190 . 321010) (-3191 . 320917) (-3192 . 320688) (-3193 . 320370)
+ (-3194 . 320314) (-3195 . 320080) (-3196 . 319805) (-3197 . 319722)
+ (-3198 . 319578) (-3199 . 319468) (-3200 . 319344) (-3201 . 319096)
+ (-3202 . 318523) (-3203 . 318450) (-3204 . 318380) (-3205 . 318306)
+ (-3206 . 318251) (-3207 . 318167) (-3208 . 318101) (-3209 . 317931)
+ (-3210 . 317638) (-3211 . 317582) (-3212 . 317329) (-3213 . 317252)
+ (-3214 . 317174) (-3215 . 317125) (-3216 . 317032) (-3217 . 316786)
+ (-3218 . 316294) (-3219 . 315982) (-3220 . 315842) (-3221 . 315814)
+ (-3222 . 315757) (-3223 . 315576) (-3224 . 315240) (-3225 . 315121)
+ (-3226 . 314729) (-3227 . 314507) (-3228 . 314421) (-3229 . 314369)
+ (-3230 . 314020) (-3231 . 313912) (-3232 . 313805) (-3233 . 313697)
+ (-3234 . 313525) (-3235 . 313388) (-3236 . 313314) (-3237 . 313165)
+ (-3238 . 311003) (-3239 . 310864) (-3240 . 310616) (-3241 . 310539)
+ (-3242 . 310420) (-3243 . 310240) (-3244 . 309985) (-3245 . 309881)
+ (-3246 . 309794) (-3247 . 309661) (-3248 . 309568) (-3249 . 309473)
+ (-3250 . 309305) (-3251 . 309249) (-3252 . 309193) (-3253 . 308591)
+ (-3254 . 308384) (-3255 . 308204) (-3256 . 308101) (-3257 . 307988)
+ (-3258 . 307896) (-3259 . 307802) (-3260 . 307752) (-3261 . 307658)
+ (-3262 . 307259) (-3263 . 307203) (-3264 . 307144) (-3265 . 306982)
+ (-3266 . 306913) (-3267 . 306768) (-3268 . 306672) (-3269 . 305954)
+ (-3270 . 305681) (-3271 . 305321) (-3272 . 305200) (-3273 . 305101)
+ (-3274 . 305029) (-3275 . 304948) (-3276 . 304775) (-3277 . 304229)
+ (-3278 . 304059) (-3279 . 303467) (-3280 . 303307) (-3281 . 303126)
+ (-3282 . 303067) (-3283 . 302964) (-3284 . 302776) (-3285 . 302623)
+ (-3286 . 302522) (-3287 . 302428) (-3288 . 302151) (-3289 . 302042)
+ (-3290 . 301818) (-3291 . 301714) (-3292 . 301646) (-3293 . 301586)
+ (-3294 . 301426) (-3295 . 300922) (-3296 . 300809) (-3297 . 300752)
+ (** . 297663) (-3299 . 297564) (-3300 . 297452) (-3301 . 296845)
+ (-3302 . 296796) (-3303 . 296693) (-3304 . 296665) (-3305 . 296605)
+ (-3306 . 296519) (-3307 . 296490) (-3308 . 296358) (-3309 . 296276)
+ (-3310 . 296245) (-3311 . 296161) (-3312 . 296005) (-3313 . 295921)
+ (-3314 . 295697) (-3315 . 295598) (-3316 . 295449) (-3317 . 295394)
+ (-3318 . 295300) (-3319 . 295222) (-3320 . 295094) (-3321 . 294969)
+ (-3322 . 294751) (-3323 . 294685) (-3324 . 294632) (-3325 . 294579)
+ (-3326 . 294520) (-3327 . 294416) (-3328 . 294244) (-3329 . 293765)
+ (-3330 . 293458) (-3331 . 293247) (-3332 . 293173) (-3333 . 292999)
+ (-3334 . 292791) (-3335 . 292710) (-3336 . 292587) (-3337 . 292205)
+ (-3338 . 292064) (-3339 . 291880) (-3340 . 291794) (-3341 . 291692)
+ (-3342 . 291552) (-3343 . 291413) (-3344 . 291385) (-3345 . 291255)
+ (-3346 . 291109) (-3347 . 291056) (-3348 . 290752) (-3349 . 290629)
+ (-3350 . 290338) (-3351 . 289987) (-3352 . 289817) (-3353 . 289734)
+ (-3354 . 289021) (-3355 . 288900) (-3356 . 288829) (-3357 . 288600)
+ (-3358 . 288533) (-3359 . 288481) (-3360 . 288325) (-3361 . 288244)
+ (-3362 . 287587) (-3363 . 287513) (-3364 . 287443) (-3365 . 287141)
+ (-3366 . 286656) (-3367 . 286555) (-3368 . 286306) (-3369 . 286233)
+ (-3370 . 285651) (-3371 . 285335) (-3372 . 285207) (-3373 . 284781)
+ (-3374 . 284685) (-3375 . 284597) (-3376 . 283959) (-3377 . 283877)
+ (-3378 . 282575) (-3379 . 282434) (-3380 . 282351) (-3381 . 282207)
+ (-3382 . 282134) (-3383 . 282097) (-3384 . 281894) (-3385 . 281837)
+ (-3386 . 281800) (-3387 . 281716) (-3388 . 281525) (-3389 . 281377)
+ (-3390 . 281267) (-3391 . 281165) (-3392 . 281128) (-3393 . 281061)
+ (-3394 . 280953) (-3395 . 280884) (-3396 . 280800) (-3397 . 280716)
+ (-3398 . 280401) (-9 . 280373) (-3400 . 280317) (-3401 . 280195)
+ (-3402 . 279999) (-3403 . 279839) (-3404 . 279771) (-3405 . 279397)
+ (-3406 . 276470) (-3407 . 276256) (-3408 . 276115) (-3409 . 275962)
+ (-8 . 275934) (-3411 . 275743) (-3412 . 275602) (-3413 . 275553)
+ (-3414 . 275435) (-3415 . 275291) (-3416 . 275097) (-3417 . 275013)
+ (-3418 . 274739) (-7 . 274711) (-3420 . 274674) (-3421 . 274618)
+ (-3422 . 273345) (-3423 . 273278) (-3424 . 273209) (-3425 . 273121)
+ (-3426 . 273018) (-3427 . 272924) (-3428 . 272817) (-3429 . 272665)
+ (-3430 . 272214) (-3431 . 271139) (-3432 . 271002) (-3433 . 270895)
+ (-3434 . 270817) (-3435 . 270764) (-3436 . 270648) (-3437 . 270264)
+ (-3438 . 270178) (-3439 . 270100) (-3440 . 268888) (-3441 . 268670)
+ (-3442 . 268569) (-3443 . 268291) (-3444 . 268169) (-3445 . 268062)
+ (-3446 . 267565) (-3447 . 267418) (-3448 . 267250) (-3449 . 267033)
+ (-3450 . 266855) (-3451 . 266741) (-3452 . 266675) (-3453 . 266556)
+ (-3454 . 266261) (-3455 . 266082) (-3456 . 266012) (-3457 . 265897)
+ (-3458 . 265773) (-3459 . 265739) (-3460 . 265602) (-3461 . 265459)
+ (-3462 . 265376) (-3463 . 265134) (-3464 . 265003) (-3465 . 264866)
+ (-3466 . 263650) (-3467 . 263535) (-3468 . 263185) (-3469 . 263112)
+ (-3470 . 262992) (-3471 . 262702) (-3472 . 262344) (-3473 . 262264)
+ (-3474 . 261860) (-3475 . 261807) (-3476 . 261551) (-3477 . 261158)
+ (-3478 . 261084) (-3479 . 259996) (-3480 . 259887) (-3481 . 258706)
+ (-3482 . 258214) (-3483 . 258026) (-3484 . 257959) (-3485 . 257885)
+ (-3486 . 257824) (-3487 . 257671) (-3488 . 257619) (-3489 . 257526)
+ (-3490 . 257452) (-3491 . 257366) (-3492 . 257195) (-3493 . 257142)
+ (-3494 . 257021) (-3495 . 256841) (-3496 . 256496) (-3497 . 256307)
+ (-3498 . 255940) (-3499 . 255720) (-3500 . 255434) (-3501 . 255327)
+ (-3502 . 255245) (-3503 . 255193) (-3504 . 254975) (-3505 . 254918)
+ (-3506 . 254774) (-3507 . 254481) (-3508 . 254238) (-3509 . 254129)
+ (-3510 . 253973) (-3511 . 253895) (-3512 . 253842) (-3513 . 253790)
+ (-3514 . 253544) (-3515 . 253351) (-3516 . 252992) (-3517 . 252648)
+ (-3518 . 252560) (-3519 . 252304) (-3520 . 252227) (-3521 . 251306)
+ (-3522 . 251250) (-3523 . 251181) (-3524 . 251080) (-3525 . 249962)
+ (-3526 . 245802) (-3527 . 245168) (-3528 . 244646) (-3529 . 243636)
+ (-3530 . 243456) (-3531 . 243422) (-3532 . 243275) (-3533 . 243137)
+ (-3534 . 243075) (-3535 . 242860) (-3536 . 242762) (-3537 . 242129)
+ (-3538 . 241962) (-3539 . 241730) (-3540 . 241543) (-3541 . 241109)
+ (-3542 . 240855) (-3543 . 240745) (-3544 . 240607) (-3545 . 240519)
+ (-3546 . 240352) (-3547 . 240280) (-3548 . 240214) (-3549 . 240150)
+ (-3550 . 240093) (-3551 . 240009) (-3552 . 239818) (-3553 . 239625)
+ (-3554 . 239021) (-3555 . 238957) (-3556 . 238470) (-3557 . 238340)
+ (-3558 . 238123) (-3559 . 237345) (-3560 . 237190) (-3561 . 237120)
+ (-3562 . 236847) (-3563 . 236725) (-3564 . 236652) (-3565 . 236454)
+ (-3566 . 236214) (-3567 . 236072) (-3568 . 235950) (-3569 . 235898)
+ (-3570 . 235481) (-3571 . 235262) (-3572 . 235213) (-3573 . 234862)
+ (-3574 . 234610) (-3575 . 234412) (-3576 . 234340) (-3577 . 234224)
+ (-3578 . 234156) (-3579 . 234031) (-3580 . 233936) (-3581 . 233839)
+ (-3582 . 233749) (-3583 . 233477) (-3584 . 233206) (-3585 . 232952)
+ (-3586 . 232817) (-3587 . 232764) (-3588 . 232669) (-3589 . 232614)
+ (-3590 . 232499) (-3591 . 232381) (-3592 . 232089) (-3593 . 231973)
+ (-3594 . 231806) (-3595 . 231536) (-3596 . 231462) (-3597 . 231339)
+ (-3598 . 231205) (-3599 . 230884) (-3600 . 230815) (-3601 . 230626)
+ (-3602 . 230369) (-3603 . 230262) (-3604 . 230155) (-3605 . 230035)
+ (-3606 . 229967) (-3607 . 229290) (-3608 . 229202) (-3609 . 228820)
+ (-3610 . 228737) (-3611 . 228664) (-3612 . 228581) (-3613 . 228451)
+ (-3614 . 228344) (-3615 . 227734) (-3616 . 227428) (-3617 . 226754)
+ (-3618 . 226699) (-3619 . 226618) (-3620 . 226460) (-3621 . 226308)
+ (-3622 . 226229) (-3623 . 226141) (-3624 . 226091) (-3625 . 225488)
+ (-3626 . 225407) (-3627 . 225140) (-3628 . 225071) (-3629 . 224876)
+ (-3630 . 224786) (-3631 . 222523) (-3632 . 221559) (-3633 . 221422)
+ (-3634 . 221081) (-3635 . 220979) (-3636 . 220599) (-3637 . 220312)
+ (-3638 . 219703) (-3639 . 219559) (-3640 . 219417) (-3641 . 219250)
+ (-3642 . 219179) (-3643 . 218741) (-3644 . 218635) (-3645 . 218567)
+ (-3646 . 218356) (-3647 . 218260) (-3648 . 218087) (-3649 . 217998)
+ (-3650 . 217929) (-3651 . 217746) (-3652 . 217663) (-3653 . 217534)
+ (-3654 . 217476) (-3655 . 217330) (-3656 . 217014) (-3657 . 216940)
+ (-3658 . 216795) (-3659 . 216700) (-3660 . 216203) (-3661 . 216150)
+ (-3662 . 216047) (-3663 . 215837) (-3664 . 215647) (-3665 . 215615)
+ (-3666 . 215470) (-3667 . 215314) (-3668 . 214971) (-3669 . 214696)
+ (-3670 . 214613) (-3671 . 212198) (-3672 . 212112) (-3673 . 211981)
+ (-3674 . 211929) (-3675 . 211702) (-3676 . 211531) (-3677 . 210718)
+ (-3678 . 210632) (-3679 . 210453) (-3680 . 210303) (-3681 . 210171)
+ (-3682 . 209856) (-3683 . 209703) (-3684 . 209591) (-3685 . 209476)
+ (-3686 . 209204) (-3687 . 209046) (-3688 . 208909) (-3689 . 208738)
+ (-3690 . 208614) (-3691 . 208448) (-3692 . 208379) (-3693 . 208327)
+ (-3694 . 208261) (-3695 . 208163) (-3696 . 208005) (-3697 . 207922)
+ (-3698 . 207595) (-3699 . 207263) (-3700 . 207182) (-3701 . 207024)
+ (-3702 . 206816) (-3703 . 206680) (-3704 . 206587) (-3705 . 206460)
+ (-3706 . 206148) (-3707 . 206028) (-3708 . 205913) (-3709 . 205737)
+ (-3710 . 205663) (-3711 . 204797) (-3712 . 204633) (-3713 . 204475)
+ (-3714 . 204342) (-3715 . 204218) (-3716 . 204168) (-3717 . 203925)
+ (-3718 . 203844) (-3719 . 203706) (-3720 . 203654) (-3721 . 203529)
+ (-3722 . 203226) (-3723 . 203175) (-3724 . 203046) (-3725 . 202835)
+ (-3726 . 202717) (-3727 . 202406) (-3728 . 202293) (-3729 . 202128)
+ (-3730 . 202061) (-3731 . 201923) (-3732 . 201871) (-3733 . 201495)
+ (-3734 . 201379) (-3735 . 201299) (-3736 . 201174) (-3737 . 199396)
+ (-3738 . 199294) (-3739 . 199207) (-3740 . 199155) (-3741 . 199078)
+ (-3742 . 198821) (-3743 . 198392) (-3744 . 198230) (-3745 . 198087)
+ (-3746 . 197950) (-3747 . 197870) (-3748 . 197763) (-3749 . 197262)
+ (-3750 . 197234) (-3751 . 197160) (-3752 . 197086) (-3753 . 196942)
+ (-3754 . 196889) (-3755 . 196597) (-3756 . 196351) (-3757 . 196196)
+ (-3758 . 195809) (-3759 . 195723) (-3760 . 195663) (-3761 . 195344)
+ (-3762 . 195247) (-3763 . 195065) (-3764 . 194958) (-3765 . 194851)
+ (-3766 . 194728) (-3767 . 194575) (-3768 . 194397) (-3769 . 194342)
+ (-3770 . 194140) (-3771 . 193987) (-3772 . 193402) (-3773 . 193298)
+ (-3774 . 193128) (-3775 . 193042) (-3776 . 192916) (-3777 . 192790)
+ (-3778 . 191917) (-3779 . 191746) (-3780 . 191267) (-3781 . 191189)
+ (-3782 . 191155) (-3783 . 190997) (-3784 . 190920) (-3785 . 190854)
+ (-3786 . 190678) (-3787 . 190135) (-3788 . 189997) (-3789 . 189897)
+ (-3790 . 189788) (-3791 . 189714) (-3792 . 189407) (-3793 . 189356)
+ (-3794 . 189262) (-3795 . 189209) (-3796 . 189086) (-3797 . 188836)
+ (-3798 . 188186) (-3799 . 187746) (-3800 . 187681) (-3801 . 187609)
+ (-3802 . 187557) (-3803 . 186983) (-3804 . 186906) (-3805 . 186836)
+ (-3806 . 186409) (-3807 . 186164) (-3808 . 186111) (-3809 . 185974)
+ (-3810 . 185789) (-3811 . 185672) (-3812 . 185313) (-3813 . 184873)
+ (-3814 . 184817) (-3815 . 183821) (-3816 . 183675) (-3817 . 183465)
+ (-3818 . 183357) (-3819 . 183125) (-3820 . 183018) (-3821 . 182903)
+ (-3822 . 182851) (-3823 . 182779) (-3824 . 182670) (-3825 . 182488)
+ (-3826 . 182436) (-3827 . 182359) (-3828 . 182296) (-3829 . 182144)
+ (-3830 . 182088) (-3831 . 181531) (-3832 . 181445) (-3833 . 181258)
+ (-3834 . 181202) (-3835 . 181095) (-3836 . 181021) (-3837 . 180549)
+ (-3838 . 180376) (-3839 . 180288) (-3840 . 180206) (-3841 . 179857)
+ (-3842 . 179745) (-3843 . 179145) (-3844 . 178992) (-3845 . 178740)
+ (-3846 . 178688) (-3847 . 178633) (-3848 . 178458) (-3849 . 178316)
+ (-3850 . 178253) (-3851 . 177800) (-3852 . 177584) (-3853 . 177478)
+ (-3854 . 177273) (-3855 . 177087) (-3856 . 177004) (-3857 . 176268)
+ (-3858 . 176086) (-3859 . 175956) (-3860 . 175774) (-3861 . 175690)
+ (-3862 . 175637) (-3863 . 174995) (-3864 . 174932) (-3865 . 174879)
+ (-3866 . 174431) (-3867 . 164869) (-3868 . 164795) (-3869 . 164674)
+ (-3870 . 164562) (-3871 . 164419) (-3872 . 164364) (-3873 . 164218)
+ (-3874 . 163937) (-3875 . 163755) (-3876 . 163610) (-3877 . 163388)
+ (-3878 . 163272) (-3879 . 163152) (-3880 . 163079) (-3881 . 162525)
+ (-3882 . 162174) (-3883 . 162026) (-3884 . 161949) (-3885 . 161882)
+ (-3886 . 161769) (-3887 . 161662) (-3888 . 161517) (-3889 . 161375)
+ (-3890 . 161324) (-3891 . 161238) (-3892 . 161143) (-3893 . 161014)
+ (-3894 . 160909) (-3895 . 160802) (-3896 . 160750) (-3897 . 160698)
+ (-3898 . 160591) (-3899 . 160386) (-3900 . 160331) (-3901 . 160247)
+ (-3902 . 160127) (-3903 . 160050) (-3904 . 159684) (-3905 . 159451)
+ (-3906 . 159189) (-3907 . 159116) (-3908 . 159085) (-3909 . 159005)
+ (-3910 . 158617) (-3911 . 158315) (-3912 . 158262) (-3913 . 158163)
+ (-3914 . 158084) (-3915 . 158011) (-3916 . 157901) (-3917 . 157622)
+ (-3918 . 157428) (-3919 . 157058) (-3920 . 156679) (-3921 . 156578)
+ (-3922 . 156338) (-3923 . 156236) (-3924 . 155733) (-3925 . 155609)
+ (-3926 . 155435) (-3927 . 155318) (-3928 . 155210) (-3929 . 155087)
+ (-3930 . 154977) (-3931 . 154816) (-3932 . 154653) (-3933 . 154501)
+ (-3934 . 154366) (-3935 . 154307) (-3936 . 154205) (-3937 . 153977)
+ (-3938 . 148639) (-3939 . 148577) (-3940 . 148463) (-3941 . 148154)
+ (-3942 . 148053) (-3943 . 147660) (-3944 . 147604) (-3945 . 147507)
+ (-3946 . 147455) (-3947 . 147229) (-3948 . 147059) (-3949 . 146708)
+ (-3950 . 146646) (-3951 . 146330) (-3952 . 146246) (-3953 . 146092)
+ (-3954 . 145841) (-3955 . 145647) (-3956 . 145008) (-3957 . 144733)
+ (-3958 . 144547) (-3959 . 144444) (-3960 . 144389) (-3961 . 143519)
+ (-3962 . 143254) (-3963 . 142960) (-3964 . 142862) (-3965 . 142761)
+ (-3966 . 142663) (-3967 . 142462) (-3968 . 142225) (-3969 . 141033)
+ (-3970 . 140981) (-3971 . 140632) (-3972 . 140441) (-3973 . 140342)
+ (-3974 . 140262) (-3975 . 140167) (-3976 . 140051) (-3977 . 139970)
+ (-3978 . 139854) (-3979 . 139532) (-3980 . 139388) (-3981 . 139288)
+ (-3982 . 139094) (-3983 . 139007) (-3984 . 138798) (-3985 . 138646)
+ (-3986 . 138458) (-3987 . 138361) (-3988 . 138250) (-3989 . 138131)
+ (-3990 . 137989) (-3991 . 137930) (-3992 . 137786) (-3993 . 137649)
+ (-3994 . 137618) (-3995 . 137419) (-3996 . 137366) (-3997 . 137144)
+ (-3998 . 136926) (-3999 . 136183) (-4000 . 135938) (-4001 . 135751)
+ (-4002 . 135637) (-4003 . 135379) (-4004 . 135246) (-4005 . 135134)
+ (-4006 . 135074) (-4007 . 134902) (-4008 . 134789) (-4009 . 134671)
+ (-4010 . 134076) (-4011 . 133989) (-4012 . 133797) (-4013 . 133667)
+ (-4014 . 133486) (-4015 . 133383) (-4016 . 133309) (-4017 . 128767)
+ (-4018 . 128671) (-12 . 128499) (-4020 . 128397) (-4021 . 128236)
+ (-4022 . 109522) (-4023 . 109261) (-4024 . 109160) (-4025 . 109016)
+ (-4026 . 108717) (-4027 . 108646) (-4028 . 108530) (-4029 . 108435)
+ (-4030 . 107734) (-4031 . 104913) (-4032 . 104804) (-4033 . 104277)
+ (-4034 . 104200) (-4035 . 104144) (-4036 . 104071) (-4037 . 103976)
+ (-4038 . 103924) (-4039 . 103725) (-4040 . 103693) (-4041 . 102952)
+ (-4042 . 102887) (-4043 . 102859) (-4044 . 102603) (-4045 . 101925)
+ (-4046 . 101708) (-4047 . 101559) (-4048 . 101462) (-4049 . 101355)
+ (-4050 . 101327) (-4051 . 101223) (-4052 . 100964) (-4053 . 99679)
+ (-4054 . 98938) (-4055 . 98864) (-4056 . 98772) (-4057 . 98657)
+ (-4058 . 98538) (-4059 . 98466) (-4060 . 98252) (-4061 . 98095)
+ (-4062 . 97839) (-4063 . 97718) (-4064 . 97030) (-4065 . 96738)
+ (-4066 . 96710) (-4067 . 96445) (-4068 . 96257) (-4069 . 96183)
+ (-4070 . 95961) (-4071 . 95861) (-4072 . 95748) (-4073 . 95172)
+ (-4074 . 95119) (-4075 . 94894) (-4076 . 94758) (-4077 . 94654)
+ (-4078 . 94555) (-4079 . 94448) (-4080 . 94380) (-4081 . 94273)
+ (-4082 . 94063) (-4083 . 93919) (-4084 . 93622) (-4085 . 93046)
+ (-4086 . 92972) (-4087 . 92656) (-4088 . 92557) (-4089 . 92270)
+ (-4090 . 92202) (-4091 . 92064) (-4092 . 91903) (-4093 . 91820)
+ (-4094 . 89964) (-4095 . 89388) (-4096 . 89178) (-4097 . 89101)
+ (-4098 . 89030) (-4099 . 88821) (-4100 . 88019) (-4101 . 87906)
+ (-4102 . 87529) (-4103 . 87498) (-4104 . 87077) (-4105 . 86391)
+ (-4106 . 86312) (-4107 . 86260) (-4108 . 86147) (-4109 . 85840)
+ (-4110 . 85762) (-4111 . 85706) (-4112 . 85599) (-4113 . 85422)
+ (-4114 . 85312) (-4115 . 85196) (-4116 . 85019) (-4117 . 84333)
+ (-4118 . 84106) (-4119 . 83870) (-4120 . 69756) (-4121 . 69552)
+ (* . 65006) (-4123 . 60943) (-4124 . 60819) (-4125 . 60731)
+ (-4126 . 60483) (-4127 . 60409) (-4128 . 60380) (-4129 . 60328)
+ (-4130 . 59927) (-4131 . 59722) (-4132 . 58973) (-4133 . 58831)
+ (-4134 . 58673) (-4135 . 58614) (-4136 . 58128) (-4137 . 57880)
+ (-4138 . 57655) (-4139 . 57500) (-4140 . 57293) (-4141 . 57166)
+ (-4142 . 56592) (-4143 . 56497) (-4144 . 56394) (-4145 . 56174)
+ (-4146 . 55776) (-4147 . 55698) (-4148 . 55666) (-4149 . 55092)
+ (-4150 . 54761) (-4151 . 54658) (-4152 . 54566) (-4153 . 54439)
+ (-4154 . 54224) (-4155 . 54171) (-4156 . 54034) (-4157 . 53963)
+ (-4158 . 53865) (-4159 . 53812) (-4160 . 53238) (-4161 . 53080)
+ (-4162 . 52877) (-4163 . 50608) (-4164 . 50455) (-4165 . 50404)
+ (-4166 . 48059) (-4167 . 46755) (-4168 . 46505) (-4169 . 46453)
+ (-4170 . 46347) (-4171 . 46217) (-4172 . 45530) (-4173 . 45169)
+ (-4174 . 41503) (-4175 . 41451) (-4176 . 41395) (-4177 . 41221)
+ (-4178 . 41140) (-4179 . 40912) (-4180 . 40834) (-4181 . 40675)
+ (-4182 . 40583) (-4183 . 40416) (-4184 . 40328) (-4185 . 40273)
+ (-4186 . 40132) (-4187 . 39805) (-4188 . 39447) (-4189 . 39138)
+ (-4190 . 39055) (-4191 . 38951) (-4192 . 38889) (-4193 . 38432)
+ (-4194 . 38301) (-4195 . 38248) (-4196 . 37767) (-4197 . 37693)
+ (-4198 . 37616) (-4199 . 37343) (-4200 . 37291) (-4201 . 37179)
+ (-4202 . 36315) (-4203 . 36224) (-4204 . 36083) (-4205 . 35821)
+ (-4206 . 35793) (-4207 . 35709) (-4208 . 35654) (-4209 . 35595)
+ (-4210 . 35529) (-4211 . 35431) (-4212 . 35353) (-4213 . 35073)
+ (-4214 . 34908) (-4215 . 34797) (-4216 . 34670) (-4217 . 32812)
+ (-4218 . 32745) (-4219 . 32692) (-4220 . 32604) (-4221 . 32457)
+ (-4222 . 31491) (-4223 . 31323) (-4224 . 31249) (-4225 . 31196)
+ (-4226 . 31137) (-4227 . 30865) (-4228 . 30788) (-4229 . 30504)
+ (-4230 . 29687) (-4231 . 29594) (-4232 . 29480) (-4233 . 29396)
+ (-4234 . 29322) (-4235 . 28801) (-4236 . 26020) (-4237 . 25598)
+ (-4238 . 25477) (-4239 . 25314) (-4240 . 25155) (-4241 . 25069)
+ (-4242 . 24956) (-4243 . 24849) (-4244 . 24556) (-4245 . 24438)
+ (-4246 . 24148) (-4247 . 23901) (-4248 . 23848) (-4249 . 23712)
+ (-4250 . 23599) (-4251 . 23381) (-4252 . 23168) (-4253 . 21988)
+ (-4254 . 21729) (-4255 . 21627) (-4256 . 21472) (-4257 . 21287)
+ (-4258 . 21193) (-4259 . 20332) (-4260 . 20110) (-4261 . 20054)
+ (-4262 . 19667) (-4263 . 19617) (-4264 . 19534) (-4265 . 19430)
+ (-4266 . 19362) (-4267 . 19187) (-4268 . 18996) (-4269 . 18806)
+ (-4270 . 18162) (-4271 . 17985) (-4272 . 17933) (-4273 . 17853)
+ (-4274 . 17664) (-4275 . 17534) (-4276 . 17464) (-4277 . 17409)
+ (-4278 . 17050) (-4279 . 16725) (-4280 . 16642) (-4281 . 16569)
+ (-4282 . 16117) (-4283 . 16003) (-4284 . 15815) (-4285 . 15513)
+ (-4286 . 15370) (-4287 . 14849) (-4288 . 14744) (-4289 . 14572)
+ (-4290 . 14429) (-4291 . 14347) (-4292 . 14183) (-4293 . 13617)
+ (-4294 . 13499) (-4295 . 13214) (-4296 . 12995) (-4297 . 12943)
+ (-4298 . 12890) (-4299 . 12819) (-4300 . 12647) (-4301 . 12567)
+ (-4302 . 12395) (-4303 . 12154) (-4304 . 12081) (-4305 . 12047)
+ (-4306 . 11481) (-4307 . 11117) (-4308 . 11020) (-4309 . 10948)
+ (-4310 . 10741) (-4311 . 10609) (-4312 . 10553) (-4313 . 10473)
+ (-4314 . 10163) (-4315 . 10134) (-4316 . 9962) (-4317 . 9880)
+ (-4318 . 9691) (-4319 . 9563) (-4320 . 9462) (-4321 . 9321)
+ (-4322 . 9197) (-4323 . 9119) (-4324 . 9066) (-4325 . 8893)
+ (-4326 . 8735) (-4327 . 8563) (-4328 . 8225) (-4329 . 8094)
+ (-4330 . 7935) (-4331 . 7852) (-4332 . 7753) (-4333 . 7644)
+ (-4334 . 7499) (-4335 . 6963) (-4336 . 6816) (-4337 . 6520)
+ (-4338 . 6435) (-4339 . 6342) (-4340 . 6237) (-4341 . 5809)
+ (-4342 . 5656) (-4343 . 5537) (-4344 . 5105) (-4345 . 4886)
+ (-4346 . 4780) (-4347 . 4697) (-4348 . 3459) (-4349 . 3331)
+ (-4350 . 3166) (-4351 . 2924) (-4352 . 2871) (-4353 . 2678)
+ (-4354 . 2577) (-4355 . 2492) (-4356 . 2336) (-4357 . 2089)
+ (-4358 . 2034) (-4359 . 1734) (-4360 . 1160) (-4361 . 1069)
+ (-4362 . 850) (-4363 . 708) (-4364 . 627) (-4365 . 599) (-4366 . 547)
+ (-4367 . 389) (-4368 . 291) (-4369 . 148) (-4370 . 30)) \ No newline at end of file